To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. 2. 3. 4. 5. 6. 7. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. “Standard”: 8. 9. 10. 11. 12. Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support. “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries. (Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. R8C/33T Group RENESAS MCU 1. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Overview 1.1 Features The R8C/33T Group of single-chip MCUs incorporates the R8C CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing. Power consumption is low, and the supported operating modes allow additional power control. These MCUs are designed to maximize EMI/EMS performance. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components. The R8C/33T Group has data flash (1 KB × 4 blocks) with the background operation (BGO) function. 1.1.1 Applications Electronic household appliances, office equipment, audio equipment, consumer equipment, etc. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 1 of 47 R8C/33T Group 1.1.2 1. Overview Specifications Tables 1.1 and 1.2 outline the Specifications for R8C/33T Group. Table 1.1 Item CPU Specifications for R8C/33T Group (1) Function Central processing unit Memory ROM, RAM, Data flash Power Supply Voltage detection Voltage circuit Detection I/O Ports Programmable I/O ports Clock Clock generation circuits Interrupts Watchdog Timer DTC (Data Transfer Controller) Timer Timer RA Timer RB Timer RC Specification R8C CPU core • Number of fundamental instructions: 89 • Minimum instruction execution time: 50 ns (f(XIN) = 20 MHz, VCC = 2.7 V to 5.5 V) 200 ns (f(XIN) = 5 MHz, VCC = 1.8 V to 5.5 V) • Multiplier: 16 bits × 16 bits → 32 bits • Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits • Operation mode: Single-chip mode (address space: 1 Mbyte) Refer to Table 1.3 Product List for R8C/33T Group. • Power-on reset • Voltage detection 3 (detection level of voltage detection 0 and voltage detection 1 selectable) • Input-only: 1 pin • CMOS I/O ports: 27, selectable pull-up resistor • High current drive ports: 27 • 3 circuits: XIN clock oscillation circuit, High-speed on-chip oscillator (with frequency adjustment function), Low-speed on-chip oscillator • Oscillation stop detection: XIN clock oscillation stop detection function • Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16 • Low power consumption modes: Standard operating mode (high-speed clock, high-speed on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode • Number of interrupt vectors: 69 • External Interrupt: 7 (INT × 4, Key input × 4) • Priority levels: 7 levels • 14 bits × 1 (with prescaler) • Reset start selectable • Low-speed on-chip oscillator for watchdog timer selectable • 1 channel • Activation sources: 22 • Transfer modes: 2 (normal mode, repeat mode) 8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), pulse output mode (output level inverted every period), event counter mode, pulse width measurement mode, pulse period measurement mode 8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation mode (PWM output), programmable one-shot generation mode, programmable wait oneshot generation mode 16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 3 pins), PWM2 mode (PWM output pin) REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 2 of 47 R8C/33T Group Table 1.2 Item Serial Interface 1. Overview Specifications for R8C/33T Group (2) Function UART0, UART1 UART2 LIN Module A/D Converter Sensor Control Unit Flash Memory Operating Frequency/Supply Voltage Current Consumption Operating Ambient Temperature Package Specification Clock synchronous serial I/O/UART × 2 channel Clock synchronous serial I/O/UART, I2C mode (I2C-bus), SSU mode, multiprocessor communication function Hardware LIN: 1 (timer RA, UART0) 10-bit resolution × 12 channels, includes sample and hold function, with sweep mode System CH × 3, electrostatic capacitive touch detection × 18 • Programming and erasure voltage: VCC = 2.7 V to 5.5 V • Programming and erasure endurance: 10,000 times (data flash) 1,000 times (program ROM) • Program security: ROM code protect, ID code check • Debug functions: On-chip debug, on-board flash rewrite function • Background operation (BGO) function f(XIN) = 20 MHz (VCC = 2.7 V to 5.5 V) f(XIN) = 5 MHz (VCC = 1.8 V to 5.5 V) Typ. 6.5 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 3.5 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 3.5 µA (VCC = 3.0 V, wait mode) Typ. 2.0 µA (VCC = 3.0 V, stop mode) −20 to 85°C (N version) −40 to 85°C (D version) (1) 32-pin LQFP Package code: PLQP0032GB-A (previous code: 32P6U-A) Note: 1. Specify the D version if D version functions are to be used. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 3 of 47 R8C/33T Group 1.2 1. Overview Product List Table 1.3 lists Product List for R8C/33T Group. Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/33T Group. Table 1.3 Product List for R8C/33T Group Current of Mar. 2010 ROM Capacity Program ROM Data flash R5F21334TNFP 16 Kbytes 1 Kbyte × 4 R5F21335TNFP 24 Kbytes 1 Kbyte × 4 R5F21336TNFP 32 Kbytes 1 Kbyte × 4 R5F21334TDFP 16 Kbytes 1 Kbyte × 4 R5F21335TDFP 24 Kbytes 1 Kbyte × 4 R5F21336TDFP 32 Kbytes 1 Kbyte × 4 R5F21334TNXXXFP (D) 16 Kbytes 1 Kbyte × 4 R5F21335TNXXXFP (D) 24 Kbytes 1 Kbyte × 4 R5F21336TNXXXFP (D) 32 Kbytes 1 Kbyte × 4 1.5 Kbytes 2 Kbytes 2.5 Kbytes 1.5 Kbytes 2 Kbytes 2.5 Kbytes 1.5 Kbytes 2 Kbytes 2.5 Kbytes R5F21334TDXXXFP (D) 16 Kbytes R5F21335TDXXXFP (D) 24 Kbytes R5F21336TDXXXFP (D) 32 Kbytes 1.5 Kbytes 2 Kbytes 2.5 Kbytes Part No. 1 Kbyte × 4 1 Kbyte × 4 1 Kbyte × 4 RAM Capacity Package Type PLQP0032GB-A PLQP0032GB-A PLQP0032GB-A PLQP0032GB-A PLQP0032GB-A PLQP0032GB-A PLQP0032GB-A PLQP0032GB-A PLQP0032GB-A Remarks N version D version N version Factoryprogramming product PLQP0032GB-A D version PLQP0032GB-A FactoryPLQP0032GB-A programming product (D): Under development Part No. R 5 F 21 33 6 T N XXX FP Package type: FP: PLQP0032GB-A (0.8 mm pin-pitch, 7 mm square body) ROM number Classification N: Operating ambient temperature −20°C to 85°C D: Operating ambient temperature −40°C to 85°C ROM capacity 4: 16 KB 5: 24 KB 6: 32 KB R8C/33T Group R8C/3x Series Memory type F: Flash memory Renesas MCU Renesas semiconductor Figure 1.1 Part Number, Memory Size, and Package of R8C/33T Group REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 4 of 47 R8C/33T Group 1.3 1. Overview Block Diagram Figure 1.2 shows a Block Diagram. I/O ports 8 8 3 5 Port P0 Port P1 Port P2 Port P3 3 1 Port P4 Peripheral functions Timers UART or clock synchronous serial I/O (8 bits × 3) System clock generation circuit LIN module XIN-XOUT High-speed on-chip oscillator Low-speed on-chip oscillator Timer RA (8 bits × 1) Timer RB (8 bits × 1) Timer RC (16 bits × 1) Sensor Control Unit Watchdog timer (14 bits) Low-speed on-chip oscillator for watchdog timer A/D converter (10 bits × 12 channels) Voltage detection circuit DTC Memory R8C CPU core R0H R1H R0L R1L R2 R3 SB ISP INTB A0 A1 FB ROM (1) USP RAM (2) PC FLG Multiplier Notes: 1. ROM size varies with MCU type. 2. RAM size varies with MCU type. Figure 1.2 Block Diagram REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 5 of 47 R8C/33T Group 1.4 1. Overview Pin Assignment P1_7/CH12/INT1(/TRAIO) P1_2/CH7/AN10/Kl2(/TRCIOB) P1_3/CH8/AN11/Kl3/TRBO(/TRCIOC) P1_4/CH9(/TXD0/TRCCLK) P1_5/CH10(/INT1/RXD0/TRAIO) P1_6/CH11(/CLK0) P1_0/CH5/AN8/KI0(/TRCIOD) P1_1/CH6/AN9/KI1(/TRCIOA/TRCTRG) Figure 1.3 shows Pin Assignment (Top View). Table 1.4 outlines the Pin Name Information by Pin Number. 24 23 22 21 20 19 18 17 P0_7/CH4/AN0(/TRCIOC) 25 16 P0_6/CH3/AN1(/TRCIOD) P0_5/CH2/AN2(/TRCIOB/CLK2) P0_4/CH1/AN3(/TRCIOB) P0_3/CH0/AN4(/TRCIOB/CLK1) P0_2/CHxA/AN5(/TRCIOA/TRCTRG/RXD1) P0_1/CHxB/AN6(/TRCIOA/TRCTRG/TXD1) P0_0/CHxC/AN7(/TRCIOA/TRCTRG/TXD2/SDA2) 26 15 R8C/33T Group 27 28 14 13 12 29 PLQP0032GB-A (32P6U-A) (top view) 3 4 5 6 10 9 7 8 VCC/AVCC 2 P4_2/VREF MODE 1 11 P3_7/TRAO(/RXD2/SCL2/TXD2/SDA2/TRCCLK/INT3) 32 VSS/AVSS P4_6/XIN 31 RESET P4_7/XOUT 30 P4_5/CH13/ADTRG/INT0(/RXD2/SCL2) P3_1/CH14/TRBO(/TRCIOA/TRCTRG/CTS2/RTS2) P2_0/CH15(/INT1/TRCIOB/RXD2/SCL2/TXD2/SDA2) P2_1/CH16(/TRCIOC/CLK2) P2_2/CH17(/TRCIOD/RXD2/SCL2/TXD2/SDA2) P3_3/SCUTRG/INT3/TRBO(/CTS2/RTS2/TRCCLK) P3_4/INT2(/RXD2/SCL2/TXD2/SDA2/TRCIOC) P3_5/TRAIO(/CLK2/TRCIOD/INT1) Notes: 1. Can be assigned to the pin in parentheses by a program. 2. Confirm the pin 1 position on the package by referring to the package dimensions. Figure 1.3 Pin Assignment (Top View) REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 6 of 47 R8C/33T Group Table 1.4 1. Overview Pin Name Information by Pin Number I/O Pin Functions for Peripheral Modules Pin Number Control Pin 1 2 3 MODE 4 5 6 7 8 Port Interrupt Timer Serial Interface P4_2 RESET XOUT VSS/AVSS XIN VCC/AVCC A/D Converter Sensor Control Unit VREF P4_7 P4_6 TRAO/ (TRCCLK) TRAIO/ (TRCIOD) (TRCIOC) P3_7 (INT3) 9 P3_5 (INT1) 10 P3_4 INT2 11 P3_3 INT3 12 P2_2 TRBO/ (TRCCLK) (TRCIOD) 13 14 P2_1 P2_0 (TRCIOC) (TRCIOB) 15 P3_1 16 P4_5 INT0 17 P1_7 INT1 (TRAIO) 18 19 P1_6 P1_5 (INT1) (TRAIO) 20 21 P1_4 P1_3 KI3 22 P1_2 KI2 (TRCCLK) TRBO (/TRCIOC) (TRCIOB) 23 P1_1 KI1 24 P1_0 KI0 25 26 27 28 29 30 P0_7 P0_6 P0_5 P0_4 P0_3 P0_2 31 P0_1 32 P0_0 (INT1) TRBO/ (TRCTRG/ TRCIOA) (RXD2/SCL2/ TXD2/SDA2) (CLK2) (RXD2/SCL2/ TXD2/SDA2) (CTS2/RTS2) SCUTRG (RXD2/TXD2/ SCL2/SDA2) (CLK2) (RXD2/TXD2/ SCL2/SDA2) CH17 ADTRG CH13 CH12 (CLK0) (RXD0) CH11 CH10 (TXD0) AN11 CH9 CH8 AN10 CH7 AN9 CH6 AN8 CH5 (CLK1) (RXD1) AN0 AN1 AN2 AN3 AN4 AN5 CH4 CH3 CH2 CH1 CH0 CHxA (TXD1) AN6 CHxB (TXD2/SDA2) AN7 CHxC (TRCIOA/ TRCTRG) (TRCIOD) (CLK2) Note: 1. Can be assigned to the pin in parentheses by a program. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 7 of 47 CH14 (CTS2/RTS2) (RXD2/SCL2) (TRCIOC) (TRCIOD) (TRCIOB) (TRCIOB) (TRCIOB) (TRCIOA/ TRCTRG) (TRCIOA/ TRCTRG) (TRCIOA/ TRCTRG) CH16 CH15 R8C/33T Group 1.5 1. Overview Pin Functions Table 1.5 lists Pin Functions. Table 1.5 Pin Functions Item Power supply input Analog power supply input Reset input Pin Name VCC, VSS AVCC, AVSS I/O Type — — I MODE XIN clock input RESET MODE XIN I I XIN clock output XOUT I/O INT interrupt input INT0 to INT3 I Key input interrupt KI0 to KI3 TRAIO TRAO TRBO TRCCLK TRCTRG TRCIOA, TRCIOB, TRCIOC, TRCIOD CLK0, CLK1, CLK2 RXD0, RXD1, RXD2 TXD0, TXD1, TXD2 I Timer RA Timer RB Timer RC Serial interface CTS2 Reference voltage input A/D converter Sensor control unit I/O port Input port Description Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin. Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS. Input “L” on this pin resets the MCU. Connect this pin to VCC via a resistor. These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. (1) To use an external clock, input it to the XOUT pin and leave the XIN pin open. INT interrupt input pins. INT0 is timer RB, and RC input pin. Key input interrupt input pins I/O O O I I I/O Timer RA I/O pin Timer RA output pin Timer RB output pin External clock input pin External trigger input pin Timer RC I/O pins I/O I O I Transfer clock I/O pins Serial data input pins Serial data output pins Transmission control input pin RTS2 SCL2 O Reception control output pin I/O I2C mode clock I/O pin SDA2 I/O VREF I I2C mode data I/O pin Reference voltage input pin to A/D converter AN0 to AN11 I I Analog input pins to A/D converter AD external trigger input pin ADTRG CHxA, CHxB, CHxC CH0 to CH17 SCUTRG P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_2, P3_1, P3_3 to P3_5, P3_7, P4_5 to P4_7 P4_2 I/O I I Control pins for electrostatic capacitive touch detection Electrostatic capacitive touch detection pins Sensor control unit external trigger input I/O CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports. I Input-only port I: Input O: Output I/O: Input and output Note: 1. Refer to the oscillator manufacturer for oscillation characteristics. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 8 of 47 R8C/33T Group 2. 2. Central Processing Unit (CPU) Central Processing Unit (CPU) Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank. b31 b15 R2 R3 b8b7 b0 R0H (high-order of R0) R0L (low-order of R0) R1H (high-order of R1) R1L (low-order of R1) Data registers (1) R2 R3 A0 A1 FB b19 b15 Address registers (1) Frame base register (1) b0 Interrupt table register INTBL INTBH The 4 high order bits of INTB are INTBH and the 16 low order bits of INTB are INTBL. b19 b0 Program counter PC b15 b0 USP User stack pointer ISP Interrupt stack pointer SB Static base register b15 b0 FLG b15 b8 IPL b7 Flag register b0 U I O B S Z D C Carry flag Debug flag Zero flag Sign flag Register bank select flag Overflow flag Interrupt enable flag Stack pointer select flag Reserved bit Processor interrupt priority level Reserved bit Note: 1. These registers comprise a register bank. There are two register banks. Figure 2.1 CPU Registers REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 9 of 47 R8C/33T Group 2.1 2. Central Processing Unit (CPU) Data Registers (R0, R1, R2, and R3) R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0. 2.2 Address Registers (A0 and A1) A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32bit address register (A1A0). 2.3 Frame Base Register (FB) FB is a 16-bit register for FB relative addressing. 2.4 Interrupt Table Register (INTB) INTB is a 20-bit register that indicates the starting address of an interrupt vector table. 2.5 Program Counter (PC) PC is 20 bits wide and indicates the address of the next instruction to be executed. 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP) The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP. 2.7 Static Base Register (SB) SB is a 16-bit register for SB relative addressing. 2.8 Flag Register (FLG) FLG is an 11-bit register indicating the CPU state. 2.8.1 Carry Flag (C) The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit. 2.8.2 Debug Flag (D) The D flag is for debugging only. Set it to 0. 2.8.3 Zero Flag (Z) The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0. 2.8.4 Sign Flag (S) The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0. 2.8.5 Register Bank Select Flag (B) Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1. 2.8.6 Overflow Flag (O) The O flag is set to 1 when an operation results in an overflow; otherwise to 0. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 10 of 47 R8C/33T Group 2.8.7 2. Central Processing Unit (CPU) Interrupt Enable Flag (I) The I flag enables maskable interrupts. Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged. 2.8.8 Stack Pointer Select Flag (U) ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed. 2.8.9 Processor Interrupt Priority Level (IPL) IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled. 2.8.10 Reserved Bit If necessary, set to 0. When read, the content is undefined. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 11 of 47 R8C/33T Group 3. 3. Memory Memory 3.1 R8C/33T Group Figure 3.1 is a Memory Map of R8C/33T Group. The R8C/33T Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh. The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here. The internal ROM (data flash) is allocated addresses 03000h to 03FFFh. The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged. Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users. 00000h SFR (Refer to 4. Special Function Registers (SFRs)) 002FFh 00400h Internal RAM 0FFD8h 0XXXXh 02C00h 02FFFh 03000h Reserved area SFR (Refer to 4. Special Function Registers (SFRs)) 0FFDCh Internal ROM (data flash) (1) 03FFFh 0YYYYh Undefined instruction Overflow BRK instruction Address match Single step Watchdog timer, oscillation stop detection, voltage monitor Address break (Reserved) Reset Internal ROM (program ROM) 0FFFFh 0FFFFh Internal ROM (program ROM) ZZZZZh FFFFFh Notes: 1. Data flash indicates block A (1 Kbyte), block B (1 Kbyte), block C (1 Kbyte), and block D (1 Kbyte). 2. The blank areas are reserved and cannot be accessed by users. Part Number R5F21334TNFP, R5F21334TDFP, R5F21334TNXXXFP, R5F21334TDXXXFP R5F21335TNFP, R5F21335TDFP, R5F21335TNXXXFP, R5F21335TDXXXFP R5F21336TNFP, R5F21336TDFP, R5F21336TNXXXFP, R5F21336TDXXXFP Figure 3.1 Internal RAM Internal ROM Size Address 0YYYYh Address ZZZZZh Size Address 0XXXXh 16 Kbytes 0C000h — 1.5 Kbytes 009FFh 24 Kbytes 0A000h — 2 Kbytes 00BFFh 32 Kbytes 08000h — 2.5 Kbytes 00DFFh Memory Map of R8C/33T Group REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 12 of 47 R8C/33T Group 4. 4. Special Function Registers (SFRs) Special Function Registers (SFRs) An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers. Table 4.13 lists the ID Code Areas and Option Function Select Area. Table 4.1 Address 0000h 0001h 0002h 0003h 0004h 0005h 0006h 0007h 0008h 0009h 000Ah 000Bh 000Ch 000Dh 000Eh 000Fh 0010h 0011h 0012h 0013h 0014h 0015h 0016h 0017h 0018h 0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh 0020h 0021h 0022h 0023h 0024h 0025h 0026h 0027h 0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h SFR Information (1) (1) Register Symbol After Reset Processor Mode Register 0 Processor Mode Register 1 System Clock Control Register 0 System Clock Control Register 1 Module Standby Control Register System Clock Control Register 3 Protect Register Reset Source Determination Register Oscillation Stop Detection Register Watchdog Timer Reset Register Watchdog Timer Start Register Watchdog Timer Control Register PM0 PM1 CM0 CM1 MSTCR CM3 PRCR RSTFR OCD WDTR WDTS WDTC 00h 00h 00101000b 00100000b 00h 00h 00h 0XXXXXXXb (2) 00000100b XXh XXh 00111111b High-Speed On-Chip Oscillator Control Register 7 FRA7 When shipping Count Source Protection Mode Register CSPR 00h 10000000b (3) High-Speed On-Chip Oscillator Control Register 0 High-Speed On-Chip Oscillator Control Register 1 High-Speed On-Chip Oscillator Control Register 2 On-Chip Reference Voltage Control Register FRA0 FRA1 FRA2 OCVREFCR 00h When shipping 00h 00h Clock Prescaler Reset Flag High-Speed On-Chip Oscillator Control Register 4 High-Speed On-Chip Oscillator Control Register 5 High-Speed On-Chip Oscillator Control Register 6 CPSRF FRA4 FRA5 FRA6 00h When shipping When shipping When shipping High-Speed On-Chip Oscillator Control Register 3 Voltage Monitor Circuit Control Register Voltage Monitor Circuit Edge Select Register FRA3 CMPA VCAC When shipping 00h 00h Voltage Detect Register 1 Voltage Detect Register 2 VCA1 VCA2 00001000b 00h (4) 00100000b (5) Voltage Detection 1 Level Select Register VD1LS 00000111b Voltage Monitor 0 Circuit Control Register VW0C 1100X010b (4) 1100X011b (5) 10001010b 0039h Voltage Monitor 1 Circuit Control Register VW1C X: Undefined Notes: 1. The blank areas are reserved and cannot be accessed by users. 2. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, Software reset, or watchdog timer reset does not affect this bit. 3. The CSPROINI bit in the OFS register is set to 0. 4. The LVDAS bit in the OFS register is set to 1. 5. The LVDAS bit in the OFS register is set to 0. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 13 of 47 R8C/33T Group Table 4.2 Address 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh 0040h 0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh 0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h 0058h 0059h 005Ah 005Bh 005Ch 005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah 006Bh 006Ch 006Dh 006Eh 006Fh 0070h 0071h 0072h 0073h 0074h 0075h 0076h 0077h 0078h 0079h 007Ah 007Bh 007Ch 007Dh 007Eh 007Fh 4. Special Function Registers (SFRs) SFR Information (2) (1) Register Voltage Monitor 2 Circuit Control Register VW2C After Reset 10000010b Flash Memory Ready Interrupt Control Register FMRDYIC XXXXX000b Timer RC Interrupt Control Register TRCIC XXXXX000b UART2 Transmit Interrupt Control Register UART2 Receive Interrupt Control Register Key Input Interrupt Control Register A/D Conversion Interrupt Control Register S2TIC S2RIC KUPIC ADIC XXXXX000b XXXXX000b XXXXX000b XXXXX000b UART0 Transmit Interrupt Control Register UART0 Receive Interrupt Control Register UART1 Transmit Interrupt Control Register UART1 Receive Interrupt Control Register INT2 Interrupt Control Register Timer RA Interrupt Control Register S0TIC S0RIC S1TIC S1RIC INT2IC TRAIC XXXXX000b XXXXX000b XXXXX000b XXXXX000b XX00X000b XXXXX000b Timer RB Interrupt Control Register INT1 Interrupt Control Register INT3 Interrupt Control Register TRBIC INT1IC INT3IC XXXXX000b XX00X000b XX00X000b INT0 Interrupt Control Register UART2 Bus Collision Detection Interrupt Control Register INT0IC U2BCNIC XX00X000b XXXXX000b Sensor Control Unit Interrupt Control Register SCUIC XXXXX000b Voltage Monitor 1 Interrupt Control Register Voltage Monitor 2 Interrupt Control Register VCMP1IC VCMP2IC XXXXX000b XXXXX000b X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 14 of 47 Symbol R8C/33T Group Table 4.3 Address 0080h 0081h 0082h 0083h 0084h 0085h 0086h 0087h 0088h 0089h 008Ah 008Bh 008Ch 008Dh 008Eh 008Fh 0090h 0091h 0092h 0093h 0094h 0095h 0096h 0097h 0098h 0099h 009Ah 009Bh 009Ch 009Dh 009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh 00AEh 00AFh 00B0h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BBh 00BCh 00BDh 00BEh 00BFh 4. Special Function Registers (SFRs) SFR Information (3) (1) DTC Activation Control Register Register Symbol DTCTL 00h DTC Activation Enable Register 0 DTC Activation Enable Register 1 DTC Activation Enable Register 2 DTC Activation Enable Register 3 DTCEN0 DTCEN1 DTCEN2 DTCEN3 00h 00h 00h 00h DTC Activation Enable Register 5 DTC Activation Enable Register 6 DTCEN5 DTCEN6 00h 00h UART0 Transmit/Receive Mode Register UART0 Bit Rate Register UART0 Transmit Buffer Register U0MR U0BRG U0TB UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1 UART0 Receive Buffer Register U0C0 U0C1 U0RB UART2 Transmit/Receive Mode Register UART2 Bit Rate Register UART2 Transmit Buffer Register U2MR U2BRG U2TB UART2 Transmit/Receive Control Register 0 UART2 Transmit/Receive Control Register 1 UART2 Receive Buffer Register U2C0 U2C1 U2RB UART2 Digital Filter Function Select Register URXDF 00h XXh XXh XXh 00001000b 00000010b XXh XXh 00h XXh XXh XXh 00001000b 00000010b XXh XXh 00h UART2 Special Mode Register 5 UART2 Special Mode Register 4 UART2 Special Mode Register 3 UART2 Special Mode Register 2 UART2 Special Mode Register U2SMR5 U2SMR4 U2SMR3 U2SMR2 U2SMR 00h 00h 000X0X0Xb X0000000b X0000000b X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 15 of 47 After Reset R8C/33T Group Table 4.4 Address 00C0h 00C1h 00C2h 00C3h 00C4h 00C5h 00C6h 00C7h 00C8h 00C9h 00CAh 00CBh 00CCh 00CDh 00CEh 00CFh 00D0h 00D1h 00D2h 00D3h 00D4h 00D5h 00D6h 00D7h 00D8h 00D9h 00DAh 00DBh 00DCh 00DDh 00DEh 00DFh 00E0h 00E1h 00E2h 00E3h 00E4h 00E5h 00E6h 00E7h 00E8h 00E9h 00EAh 00EBh 00ECh 00EDh 00EEh 00EFh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00FAh 00FBh 00FCh 00FDh 00FEh 00FFh 4. Special Function Registers (SFRs) SFR Information (4) (1) Register Symbol After Reset XXh 000000XXb XXh 000000XXb XXh 000000XXb XXh 000000XXb XXh 000000XXb XXh 000000XXb XXh 000000XXb XXh 000000XXb A/D Register 0 AD0 A/D Register 1 AD1 A/D Register 2 AD2 A/D Register 3 AD3 A/D Register 4 AD4 A/D Register 5 AD5 A/D Register 6 AD6 A/D Register 7 AD7 A/D Mode Register A/D Input Select Register A/D Control Register 0 A/D Control Register 1 ADMOD ADINSEL ADCON0 ADCON1 00h 11000000b 00h 00h Port P0 Register Port P1 Register Port P0 Direction Register Port P1 Direction Register Port P2 Register Port P3 Register Port P2 Direction Register Port P3 Direction Register Port P4 Register P0 P1 PD0 PD1 P2 P3 PD2 PD3 P4 XXh XXh 00h 00h XXh XXh 00h 00h XXh Port P4 Direction Register PD4 00h X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 16 of 47 R8C/33T Group Table 4.5 Address 0100h 0101h 0102h 0103h 0104h 0105h 0106h 0107h 0108h 0109h 010Ah 010Bh 010Ch 010Dh 010Eh 010Fh 0110h 0111h 0112h 0113h 0114h 0115h 0116h 0117h 0118h 0119h 011Ah 011Bh 011Ch 011Dh 011Eh 011Fh 0120h 0121h 0122h 0123h 0124h 0125h 0126h 0127h 0128h 0129h 012Ah 012Bh 012Ch 012Dh 012Eh 012Fh 0130h 0131h 0132h 0133h 0134h 0135h 0136h 0137h 0138h 0139h 013Ah 013Bh 013Ch 013Dh 013Eh 013Fh 4. Special Function Registers (SFRs) SFR Information (5) (1) Timer RA Control Register Timer RA I/O Control Register Timer RA Mode Register Timer RA Prescaler Register Timer RA Register LIN Control Register 2 LIN Control Register LIN Status Register Timer RB Control Register Timer RB One-Shot Control Register Timer RB I/O Control Register Timer RB Mode Register Timer RB Prescaler Register Timer RB Secondary Register Timer RB Primary Register Register Symbol TRACR TRAIOC TRAMR TRAPRE TRA LINCR2 LINCR LINST TRBCR TRBOCR TRBIOC TRBMR TRBPRE TRBSC TRBPR Timer RC Mode Register Timer RC Control Register 1 Timer RC Interrupt Enable Register Timer RC Status Register Timer RC I/O Control Register 0 Timer RC I/O Control Register 1 Timer RC Counter TRCMR TRCCR1 TRCIER TRCSR TRCIOR0 TRCIOR1 TRC Timer RC General Register A TRCGRA Timer RC General Register B TRCGRB Timer RC General Register C TRCGRC Timer RC General Register D TRCGRD Timer RC Control Register 2 Timer RC Digital Filter Function Select Register Timer RC Output Master Enable Register Timer RC Trigger Control Register TRCCR2 TRCDF TRCOER TRCADCR Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 17 of 47 After Reset 00h 00h 00h FFh FFh 00h 00h 00h 00h 00h 00h 00h FFh FFh FFh 01001000b 00h 01110000b 01110000b 10001000b 10001000b 00h 00h FFh FFh FFh FFh FFh FFh FFh FFh 00011000b 00h 01111111b 00h R8C/33T Group Table 4.6 Address 0140h 0141h 0142h 0143h 0144h 0145h 0146h 0147h 0148h 0149h 014Ah 014Bh 014Ch 014Dh 014Eh 014Fh 0150h 0151h 0152h 0153h 0154h 0155h 0156h 0157h 0158h 0159h 015Ah 015Bh 015Ch 015Dh 015Eh 015Fh 0160h 0161h 0162h 0163h 0164h 0165h 0166h 0167h 0168h 0169h 016Ah 016Bh 016Ch 016Dh 016Eh 016Fh 0170h 0171h 0172h 0173h 0174h 0175h 0176h 0177h 0178h 0179h 017Ah 017Bh 017Ch 017Dh 017Eh 017Fh 4. Special Function Registers (SFRs) SFR Information (6) (1) Register Symbol UART1 Transmit/Receive Mode Register UART1 Bit Rate Register UART1 Transmit Buffer Register U1MR U1BRG U1TB UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1 UART1 Receive Buffer Register U1C0 U1C1 U1RB X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 18 of 47 After Reset 00h XXh XXh XXh 00001000b 00000010b XXh XXh R8C/33T Group Table 4.7 Address 0180h 0181h 0182h 0183h 0184h 0185h 0186h 0187h 0188h 0189h 018Ah 018Bh 018Ch 018Dh 018Eh 018Fh 0190h 0191h 0192h 0193h 0194h 0195h 0196h 0197h 0198h 0199h 019Ah 019Bh 019Ch 019Dh 019Eh 019Fh 01A0h 01A1h 01A2h 01A3h 01A4h 01A5h 01A6h 01A7h 01A8h 01A9h 01AAh 01ABh 01ACh 01ADh 01AEh 01AFh 01B0h 01B1h 01B2h 01B3h 01B4h 01B5h 01B6h 01B7h 01B8h 01B9h 01BAh 01BBh 01BCh 01BDh 01BEh 01BFh 4. Special Function Registers (SFRs) SFR Information (7) (1) Timer RA Pin Select Register Timer RB/RC Pin Select Register Timer RC Pin Select Register 0 Timer RC Pin Select Register 1 Register Symbol TRASR TRBRCSR TRCPSR0 TRCPSR1 00h 00h 00h 00h UART0 Pin Select Register UART1 Pin Select Register UART2 Pin Select Register 0 UART2 Pin Select Register 1 U0SR U1SR U2SR0 U2SR1 00h 00h 00h 00h INT Interrupt Input Pin Select Register I/O Function Pin Select Register Low-Voltage Signal Mode Control Register INTSR PINSR TSMR 00h 00h 00h Flash Memory Status Register FST 10000X00b Flash Memory Control Register 0 Flash Memory Control Register 1 Flash Memory Control Register 2 FMR0 FMR1 FMR2 00h 00h 00h X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 19 of 47 After Reset R8C/33T Group Table 4.8 Address 01C0h 01C1h 01C2h 01C3h 01C4h 01C5h 01C6h 01C7h 01C8h 01C9h 01CAh 01CBh 01CCh 01CDh 01CEh 01CFh 01D0h 01D1h 01D2h 01D3h 01D4h 01D5h 01D6h 01D7h 01D8h 01D9h 01DAh 01DBh 01DCh 01DDh 01DEh 01DFh 01E0h 01E1h 01E2h 01E3h 01E4h 01E5h 01E6h 01E7h 01E8h 01E9h 01EAh 01EBh 01ECh 01EDh 01EEh 01EFh 01F0h 01F1h 01F2h 01F3h 01F4h 01F5h 01F6h 01F7h 01F8h 01F9h 01FAh 01FBh 01FCh 01FDh 01FEh 01FFh 4. Special Function Registers (SFRs) SFR Information (8) (1) Address Match Interrupt Register 0 Register Symbol RMAD0 Address Match Interrupt Enable Register 0 Address Match Interrupt Register 1 AIER0 RMAD1 Address Match Interrupt Enable Register 1 AIER1 After Reset XXh XXh 0000XXXXb 00h XXh XXh 0000XXXXb 00h Pull-Up Control Register 0 Pull-Up Control Register 1 PUR0 PUR1 00h 00h Port P1 Drive Capacity Control Register Port P2 Drive Capacity Control Register Drive Capacity Control Register 0 Drive Capacity Control Register 1 P1DRR P2DRR DRR0 DRR1 00h 00h 00h 00h Input Threshold Control Register 0 Input Threshold Control Register 1 VLT0 VLT1 00h 00h External Input Enable Register 0 INTEN 00h INT Input Filter Select Register 0 INTF 00h Key Input Enable Register 0 KIEN 00h X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 20 of 47 R8C/33T Group Table 4.9 Address 02C0h 02C1h 02C2h 02C3h 02C4h 02C5h 02C6h 02C7h 02C8h 02C9h 02CAh 02CBh 02CCh 02CDh 02CEh 02CFh 02D0h 02D1h 02D2h 02D3h 02D4h 02D5h 02D6h 02D7h 02D8h 02D9h 02DAh 02DBh 02DCh 02DDh 02DEh 02DFh : 2C00h 2C01h 2C02h 2C03h 2C04h 2C05h 2C06h 2C07h 2C08h 2C09h 2C0Ah : : 2C3Ah 2C3Bh 2C3Ch 2C3Dh 2C3Eh 2C3Fh 2C40h 2C41h 2C42h 2C43h 2C44h 2C45h 2C46h 2C47h 2C48h 2C49h 2C4Ah 2C4Bh 2C4Ch 2C4Dh 2C4Eh 2C4Fh 4. Special Function Registers (SFRs) SFR Information (9) (1) Register SCU Control Register 0 SCU Mode Register SCU Timing Control Register 0 SCU Timing Control Register 1 SCU Timing Control Register 2 SCU Timing Control Register 3 SCU Channel Control Register SCU Channel Control Counter SCU Flag Register SCU Status Counter SCU Secondary Counter Set Register SCU Secondary Counter Symbol SCUCR0 SCUMR SCTCR0 SCTCR1 SCTCR2 SCTCR3 SCHCR SCUCHC SCUFR SCUSTC SCSCSR SCUSCC After Reset 00h 00h 00000011b 00000001b 00010000b 00h 00h 00h 00h 00h 00000111b 00000111b SCU Destination Address Register SCUDAR SCU Data Buffer Register SCUDBR SCU Primary Counter SCUPRC 00h 00001100b 00h 00h 00h 00h Touch Sensor Input Enable Register 0 Touch Sensor Input Enable Register 1 Touch Sensor Input Enable Register 2 TSIER0 TSIER1 TSIER2 DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Transfer Vector Area DTC Control Data 0 DTCD0 DTC Control Data 1 DTCD1 X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 21 of 47 00h 00h 00h XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh R8C/33T Group Table 4.10 Address 2C50h 2C51h 2C52h 2C53h 2C54h 2C55h 2C56h 2C57h 2C58h 2C59h 2C5Ah 2C5Bh 2C5Ch 2C5Dh 2C5Eh 2C5Fh 2C60h 2C61h 2C62h 2C63h 2C64h 2C65h 2C66h 2C67h 2C68h 2C69h 2C6Ah 2C6Bh 2C6Ch 2C6Dh 2C6Eh 2C6Fh 2C70h 2C71h 2C72h 2C73h 2C74h 2C75h 2C76h 2C77h 2C78h 2C79h 2C7Ah 2C7Bh 2C7Ch 2C7Dh 2C7Eh 2C7Fh 2C80h 2C81h 2C82h 2C83h 2C84h 2C85h 2C86h 2C87h 2C88h 2C89h 2C8Ah 2C8Bh 2C8Ch 2C8Dh 2C8Eh 2C8Fh 4. Special Function Registers (SFRs) SFR Information (10) (1) DTC Control Data 2 Register Symbol DTCD2 DTC Control Data 3 DTCD3 DTC Control Data 4 DTCD4 DTC Control Data 5 DTCD5 DTC Control Data 6 DTCD6 DTC Control Data 7 DTCD7 DTC Control Data 8 DTCD8 DTC Control Data 9 DTCD9 X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 22 of 47 After Reset XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh R8C/33T Group Table 4.11 Address 2C90h 2C91h 2C92h 2C93h 2C94h 2C95h 2C96h 2C97h 2C98h 2C99h 2C9Ah 2C9Bh 2C9Ch 2C9Dh 2C9Eh 2C9Fh 2CA0h 2CA1h 2CA2h 2CA3h 2CA4h 2CA5h 2CA6h 2CA7h 2CA8h 2CA9h 2CAAh 2CABh 2CACh 2CADh 2CAEh 2CAFh 2CB0h 2CB1h 2CB2h 2CB3h 2CB4h 2CB5h 2CB6h 2CB7h 2CB8h 2CB9h 2CBAh 2CBBh 2CBCh 2CBDh 2CBEh 2CBFh 2CC0h 2CC1h 2CC2h 2CC3h 2CC4h 2CC5h 2CC6h 2CC7h 2CC8h 2CC9h 2CCAh 2CCBh 2CCCh 2CCDh 2CCEh 2CCFh 4. Special Function Registers (SFRs) SFR Information (11) (1) DTC Control Data 10 Register Symbol DTCD10 DTC Control Data 11 DTCD11 DTC Control Data 12 DTCD12 DTC Control Data 13 DTCD13 DTC Control Data 14 DTCD14 DTC Control Data 15 DTCD15 DTC Control Data 16 DTCD16 DTC Control Data 17 DTCD17 X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 23 of 47 After Reset XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh R8C/33T Group Table 4.12 Address 2CD0h 2CD1h 2CD2h 2CD3h 2CD4h 2CD5h 2CD6h 2CD7h 2CD8h 2CD9h 2CDAh 2CDBh 2CDCh 2CDDh 2CDEh 2CDFh 2CE0h 2CE1h 2CE2h 2CE3h 2CE4h 2CE5h 2CE6h 2CE7h 2CE8h 2CE9h 2CEAh 2CEBh 2CECh 2CEDh 2CEEh 2CEFh 2CF0h 2CF1h 2CF2h 2CF3h 2CF4h 2CF5h 2CF6h 2CF7h 2CF8h 2CF9h 2CFAh 2CFBh 2CFCh 2CFDh 2CFEh 2CFFh 2D00h : 2FFFh 4. Special Function Registers (SFRs) SFR Information (12) (1) DTC Control Data 18 Register Symbol DTCD18 DTC Control Data 19 DTCD19 DTC Control Data 20 DTCD20 DTC Control Data 21 DTCD21 DTC Control Data 22 DTCD22 DTC Control Data 23 DTCD23 X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 24 of 47 After Reset XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh R8C/33T Group 4. Special Function Registers (SFRs) Table 4.13 ID Code Areas and Option Function Select Area Address : FFDBh : FFDFh : FFE3h : FFEBh : FFEFh : FFF3h : FFF7h : FFFBh : FFFFh Area Name Option Function Select Register 2 Symbol OFS2 After Reset (Note 1) ID1 (Note 2) ID2 (Note 2) ID3 (Note 2) ID4 (Note 2) ID5 (Note 2) ID6 (Note 2) ID7 (Note 2) Option Function Select Register OFS (Note 1) Notes: 1. The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh. When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user. 2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 25 of 47 R8C/33T Group 5. 5. Electrical Characteristics Electrical Characteristics Table 5.1 Symbol Absolute Maximum Ratings Parameter Rated Value Unit −0.3 to 6.5 V Input voltage −0.3 to Vcc + 0.3 V VO Output voltage −0.3 to Vcc + 0.3 V Pd Power dissipation 500 mW Topr Operating ambient temperature −20 to 85 (N version)/ −40 to 85 (D version) °C Tstg Storage temperature −65 to 150 °C VCC/AVCC Supply voltage VI REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 26 of 47 Condition −40°C ≤ Topr ≤ 85°C R8C/33T Group Table 5.2 5. Electrical Characteristics Recommended Operating Conditions Symbol Parameter Conditions Standard Unit Min. Typ. Max. VCC/AVCC Supply voltage 1.8 — 5.5 VSS/AVSS Supply voltage — 0 — V 0.8 Vcc — Vcc V VIH Input “H” voltage Other than CMOS input CMOS Input level Input level selection input switching : 0.35 Vcc function (I/O port) Input level selection : 0.5 Vcc 4.0 V ≤ Vcc ≤ 5.5 V 0.5 Vcc — Vcc V 2.7 V ≤ Vcc < 4.0 V 0.55 Vcc — Vcc V 1.8 V ≤ Vcc < 2.7 V 0.65 Vcc — Vcc V 4.0 V ≤ Vcc ≤ 5.5 V 0.65 Vcc — Vcc V 2.7 V ≤ Vcc < 4.0 V 0.7 Vcc — Vcc V 1.8 V ≤ Vcc < 2.7 V 0.8 Vcc — Vcc V Input level selection 4.0 V ≤ Vcc ≤ 5.5 V : 0.7 Vcc 2.7 V ≤ Vcc < 4.0 V 0.85 Vcc — Vcc V 0.85 Vcc — Vcc V 1.8 V ≤ Vcc < 2.7 V 0.85 Vcc — Vcc V 1.2 — Vcc V V External clock input (XOUT) VIL Input “L” voltage V Other than CMOS input CMOS Input level Input level selection input switching : 0.35 Vcc function (I/O port) Input level selection : 0.5 Vcc 0 — 0.2 Vcc 4.0 V ≤ Vcc ≤ 5.5 V 0 — 0.2 Vcc V 2.7 V ≤ Vcc < 4.0 V 0 — 0.2 Vcc V 1.8 V ≤ Vcc < 2.7 V 0 — 0.2 Vcc V 4.0 V ≤ Vcc ≤ 5.5 V 0 — 0.4 Vcc V 2.7 V ≤ Vcc < 4.0 V 0 — 0.3 Vcc V 1.8 V ≤ Vcc < 2.7 V 0 — 0.2 Vcc V Input level selection 4.0 V ≤ Vcc ≤ 5.5 V : 0.7 Vcc 2.7 V ≤ Vcc < 4.0 V 0 — 0.55 Vcc V 0 — 0.45 Vcc V 1.8 V ≤ Vcc < 2.7 V 0 — 0.35 Vcc V External clock input (XOUT) 0 — 0.4 Vcc V Sum of all pins IOH(peak) — — −160 mA IOH(sum) Peak sum output “H” current IOH(sum) Average sum Sum of all pins IOH(avg) output “H” current — — −80 mA IOH(peak) Peak output “H” current Drive capacity Low — — −10 mA Drive capacity High — — −40 mA IOH(avg) Average output “H” current Drive capacity Low — — −5 mA Drive capacity High — — −20 mA IOL(sum) Peak sum output “L” current Sum of all pins IOL(peak) — — 160 mA IOL(sum) Average sum output “L” current Sum of all pins IOL(avg) — — 80 mA IOL(peak) Peak output “L” current Drive capacity Low — — 10 mA Drive capacity High — — 40 mA Average output “L” current Drive capacity Low — — 5 mA Drive capacity High — — 20 mA 2.7 V ≤ Vcc ≤ 5.5 V — — 20 MHz 1.8 V ≤ Vcc < 2.7 V — — 5 MHz 2.7 V ≤ Vcc ≤ 5.5 V 32 — 40 MHz MHz IOL(avg) f(XIN) XIN clock input oscillation frequency fOCO40M When used as the count source for timer RC (3) fOCO-F fOCO-F frequency — System clock frequency f(BCLK) CPU clock frequency 2.7 V ≤ Vcc ≤ 5.5 V — — 20 1.8 V ≤ Vcc < 2.7 V — — 5 MHz 2.7 V ≤ Vcc ≤ 5.5 V — — 20 MHz 1.8 V ≤ Vcc < 2.7 V — — 5 MHz 2.7 V ≤ Vcc ≤ 5.5 V — — 20 MHz 1.8 V ≤ Vcc < 2.7 V — — 5 MHz Notes: 1. Vcc = 1.8 V to 5.5 V at Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified. 2. The average output current indicates the average value of current measured during 100 ms. 3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 27 of 47 R8C/33T Group 5. Electrical Characteristics P0 P1 P2 P3 P4 Figure 5.1 Ports P0 to P4 Timing Measurement Circuit REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 28 of 47 30 pF R8C/33T Group Table 5.3 5. Electrical Characteristics A/D Converter Characteristics Symbol Parameter — Resolution — Absolute accuracy Vref = AVcc 10-bit mode 8-bit mode φAD A/D conversion clock — Tolerance level impedance tCONV Conversion time Standard Conditions Min. Typ. Max. Unit — — 10 Bit Vref = AVcc = 5.0 V AN0 to AN7 input AN8 to AN11 input — — ±3 LSB Vref = AVcc = 3.3 V AN0 to AN7 input AN8 to AN11 input — — ±5 LSB Vref = AVcc = 3.0 V AN0 to AN7 input AN8 to AN11 input — — ±5 LSB Vref = AVcc = 2.2 V AN0 to AN7 input AN8 to AN11 input — — ±5 LSB Vref = AVcc = 5.0 V AN0 to AN7 input AN8 to AN11 input — — ±2 LSB Vref = AVcc = 3.3 V AN0 to AN7 input AN8 to AN11 input — — ±2 LSB Vref = AVcc = 3.0 V AN0 to AN7 input AN8 to AN11 input — — ±2 LSB Vref = AVcc = 2.2 V AN0 to AN7 input AN8 to AN11 input — — ±2 LSB 4.0 V ≤ Vref = AVcc ≤ 5.5 V (2) 2 — 20 MHz 3.2 V ≤ Vref = AVcc ≤ 5.5 V (2) 2 — 16 MHz 2.7 V ≤ Vref = AVcc ≤ 5.5 V (2) 2 — 10 MHz 2.2 V ≤ Vref = AVcc ≤ 5.5 V 2 — 5 MHz kΩ (2) — 3 — 10-bit mode Vref = AVcc = 5.0 V, φAD = 20 MHz 2.15 — — µs 8-bit mode Vref = AVcc = 5.0 V, φAD = 20 MHz 2.15 — — ms 0.75 — — µs — 45 — µA 2.2 — AVcc V 0 — Vref V 1.19 1.34 1.49 V tSAMP Sampling time φAD = 20 MHz IVref Vref current Vcc = 5.0 V, XIN = f1 = φAD = 20 MHz Vref Reference voltage VIA Analog input voltage (3) OCVREF On-chip reference voltage 2 MHz ≤ φAD ≤ 4 MHz Notes: 1. Vcc/AVcc = Vref = 2.2 V to 5.5 V, Vss = 0 V at Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified. 2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-consumption current mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion. 3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 29 of 47 R8C/33T Group Table 5.4 5. Electrical Characteristics Flash Memory (Program ROM) Electrical Characteristics Symbol Parameter Conditions Standard Min. Typ. Max. Unit 1,000 (3) — — times Byte program time — 80 500 µs Block erase time — 0.3 — s td(SR-SUS) Time delay from suspend request until suspend — — 5 + CPU clock × 3 cycles ms — Interval from erase start/restart until following suspend request 0 — — µs — Time from suspend until erase restart — — 30 + CPU clock × 1 cycle µs td(CMDRST Time from when command is forcibly -READY) terminated until reading is enabled — — 30 + CPU clock × 1 cycle µs — Program, erase voltage 2.7 — 5.5 V — Read voltage 1.8 — 5.5 V 0 — 60 °C 20 — — year — Program/erase endurance (2) — — — Program, erase temperature — Data hold time (7) Ambient temperature = 55°C Notes: 1. Vcc = 2.7 V to 5.5 V at Topr = 0°C to 60°C, unless otherwise specified. 2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited). 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number. 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur. 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative. 7. The data hold time includes time that the power supply is off or the clock is not supplied. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 30 of 47 R8C/33T Group Table 5.5 5. Electrical Characteristics Flash Memory (Data flash Block A to Block D) Electrical Characteristics Symbol Parameter Standard Conditions Min. Typ. Max. Unit 10,000 (3) — — times Byte program time (program/erase endurance ≤ 1,000 times) — 160 1,500 µs — Byte program time (program/erase endurance > 1,000 times) — 300 1,500 µs — Block erase time (program/erase endurance ≤ 1,000 times) — 0.2 1 s — Block erase time (program/erase endurance > 1,000 times) — 0.3 1 s td(SR-SUS) Time delay from suspend request until suspend — — 5 + CPU clock × 3 cycles ms — Interval from erase start/restart until following suspend request 0 — — µs — Time from suspend until erase restart — — 30 + CPU clock × 1 cycle µs td(CMDRST Time from when command is forcibly -READY) terminated until reading is enabled — — 30 + CPU clock × 1 cycle µs — Program, erase voltage 2.7 — 5.5 V — Read voltage 1.8 — 5.5 V — Program, erase temperature −20 (7) — 85 °C — Data hold time (8) 20 — — year — Program/erase endurance (2) — Ambient temperature = 55°C Notes: 1. Vcc = 2.7 V to 5.5 V at Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified. 2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited). 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number. 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur. 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative. 7. −40°C for D version. 8. The data hold time includes time that the power supply is off or the clock is not supplied. Suspend request (FMR21 bit) FST7 bit FST6 bit Fixed time Clock-dependent time td(SR-SUS) FST6, FST7: Bit in FST register FMR21: Bit in FMR2 register Figure 5.2 Time delay until Suspend REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 31 of 47 Access restart R8C/33T Group Table 5.6 Symbol Vdet0 5. Electrical Characteristics Voltage Detection 0 Circuit Electrical Characteristics Parameter Standard Unit Min. Typ. Max. Voltage detection level Vdet0_0 (2) 1.80 1.90 2.05 V Voltage detection level Vdet0_1 (2) 2.15 2.35 2.50 V Voltage detection level Vdet0_2 (2) 2.70 2.85 3.05 V (2) 3.55 3.80 4.05 V — 6 150 µs — 1.5 — µA — — 100 µs Voltage detection level Vdet0_3 — Condition Voltage detection 0 circuit response time (4) — Voltage detection circuit self power consumption td(E-A) Waiting time until voltage detection circuit operation starts (3) At the falling of Vcc from 5 V to (Vdet0_0 − 0.1) V VCA25 = 1, Vcc = 5.0 V Notes: 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version). 2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register. 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0. 4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0. Table 5.7 Symbol Vdet1 — — Voltage Detection 1 Circuit Electrical Characteristics Parameter Condition Standard Min. Typ. Max. Unit Voltage detection level Vdet1_0 (2) At the falling of Vcc 2.00 2.20 2.40 V Voltage detection level Vdet1_1 (2) At the falling of Vcc 2.15 2.35 2.55 V Voltage detection level Vdet1_2 (2) At the falling of Vcc 2.30 2.50 2.70 V Voltage detection level Vdet1_3 (2) At the falling of Vcc 2.45 2.65 2.85 V Voltage detection level Vdet1_4 (2) At the falling of Vcc 2.60 2.80 3.00 V Voltage detection level Vdet1_5 (2) At the falling of Vcc 2.75 2.95 3.15 V Voltage detection level Vdet1_6 (2) At the falling of Vcc 2.85 3.10 3.40 V Voltage detection level Vdet1_7 (2) At the falling of Vcc 3.00 3.25 3.55 V Voltage detection level Vdet1_8 (2) At the falling of Vcc 3.15 3.40 3.70 V Voltage detection level Vdet1_9 (2) At the falling of Vcc 3.30 3.55 3.85 V Voltage detection level Vdet1_A (2) At the falling of Vcc 3.45 3.70 4.00 V Voltage detection level Vdet1_B (2) At the falling of Vcc 3.60 3.85 4.15 V Voltage detection level Vdet1_C (2) At the falling of Vcc 3.75 4.00 4.30 V Voltage detection level Vdet1_D (2) At the falling of Vcc 3.90 4.15 4.45 V Voltage detection level Vdet1_E (2) At the falling of Vcc 4.05 4.30 4.60 V Voltage detection level Vdet1_F (2) At the falling of Vcc 4.20 4.45 4.75 V Hysteresis width at the rising of Vcc in voltage detection 1 circuit Vdet1_0 to Vdet1_5 selected — 0.07 — V Vdet1_6 to Vdet1_F selected — 0.10 — V At the falling of Vcc from 5 V to (Vdet1_0 − 0.1) V — 60 150 µs — 1.7 — µA — — 100 µs Voltage detection 1 circuit response time (3) — Voltage detection circuit self power consumption td(E-A) Waiting time until voltage detection circuit operation starts (4) VCA26 = 1, Vcc = 5.0 V Notes: 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version). 2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register. 3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1. 4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 32 of 47 R8C/33T Group Table 5.8 5. Electrical Characteristics Voltage Detection 2 Circuit Electrical Characteristics Symbol Parameter Standard Condition Vdet2 Voltage detection level Vdet2_0 — Hysteresis width at the rising of Vcc in voltage detection 2 circuit At the falling of Vcc — Voltage detection 2 circuit response time (2) At the falling of Vcc from 5 V to (Vdet2_0 − 0.1) V — Voltage detection circuit self power consumption VCA27 = 1, Vcc = 5.0 V td(E-A) Waiting time until voltage detection circuit operation starts (3) Unit Min. Typ. Max. 3.70 4.00 4.30 V — 0.10 — V — 20 150 µs — 1.7 — µA — — 100 µs Notes: 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version). 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2. 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0. Power-on Reset Circuit (2) Table 5.9 Symbol Parameter External power Vcc rise gradient trth Standard Condition (Note 1) Min. Typ. 0 — Max. Unit 50000 mV/msec Notes: 1. The measurement condition is Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified. 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0. Vdet0 (1) Vdet0 (1) trth trth External Power VCC 0.5 V tw(por) (2) Voltage detection 0 circuit response time Internal reset signal 1 × 32 fOCO-S 1 × 32 fOCO-S Notes: 1. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual (REJ09B0544) for details. 2. tw(por) indicates the duration the external power VCC must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more. Figure 5.3 Power-on Reset Circuit Electrical Characteristics REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 33 of 47 R8C/33T Group Table 5.10 Symbol 5. Electrical Characteristics High-speed On-Chip Oscillator Circuit Electrical Characteristics Parameter Condition Standard Unit Min. Typ. Max. High-speed on-chip oscillator frequency after reset Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C 38.4 40 41.6 MHz Vcc = 1.8 V to 5.5 V −40°C ≤ Topr ≤ 85°C 38.0 40 42.0 MHz High-speed on-chip oscillator frequency when the FRA4 register correction value is written into the FRA1 register and the FRA5 register correction value into the FRA3 register (2) Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C 35.389 36.864 38.338 MHz Vcc = 1.8 V to 5.5 V −40°C ≤ Topr ≤ 85°C 35.020 36.864 38.707 MHz High-speed on-chip oscillator frequency when the FRA6 register correction value is written into the FRA1 register and the FRA7 register correction value into the FRA3 register Vcc = 1.8 V to 5.5 V −20°C ≤ Topr ≤ 85°C 30.72 32 33.28 MHz Vcc = 1.8 V to 5.5 V −40°C ≤ Topr ≤ 85°C 30.40 32 33.60 MHz — Oscillation stability time Vcc = 5.0 V, Topr = 25°C — 0.5 3 ms — Self power consumption at oscillation Vcc = 5.0 V, Topr = 25°C — 400 — µA — Notes: 1. Vcc = 1.8 V to 5.5 V, Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified. 2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode. Table 5.11 Symbol Low-speed On-Chip Oscillator Circuit Electrical Characteristics Parameter Condition Standard Min. Typ. Max. Unit fOCO-S Low-speed on-chip oscillator frequency 60 125 250 — Oscillation stability time Vcc = 5.0 V, Topr = 25°C — 30 100 kHz µs — Self power consumption at oscillation Vcc = 5.0 V, Topr = 25°C — 2 — µA Note: 1. Vcc = 1.8 V to 5.5 V, Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified. Table 5.12 Symbol td(P-R) Power Supply Circuit Timing Characteristics Parameter Condition Time for internal power supply stabilization during power-on (2) Notes: 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = 25°C. 2. Waiting time until the internal power supply generation circuit stabilizes during power-on. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 34 of 47 Standard Min. Typ. Max. — — 2000 Unit µs R8C/33T Group Table 5.13 5. Electrical Characteristics Electrical Characteristics (1) [4.2 V ≤ Vcc ≤ 5.5 V] Symbol VOH VOL Parameter Output “H” voltage Output “L” voltage Other than XOUT Standard Condition Unit Min. Typ. Max. Drive capacity High Vcc = 5 V IOH = −20 mA Vcc − 2.0 — Vcc V Drive capacity Low Vcc = 5 V IOH = −5 mA Vcc − 2.0 — Vcc V 1.0 — Vcc V IOH = −200 µA XOUT Vcc = 5 V Other than XOUT Drive capacity High Vcc = 5 V IOL = 20 mA — — 2.0 V Drive capacity Low Vcc = 5 V IOL = 5 mA — — 2.0 V XOUT Vcc = 5 V VT+-VT- Hysteresis IIH Input “H” current IIL Input “L” current VI = 0 V, Vcc = 5.0 V RPULLUP Pull-up resistance VI = 0 V, Vcc = 5.0 V RfXIN Feedback resistance VRAM RAM hold voltage INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SCL2, SDA2 RESET VI = 5 V, Vcc = 5.0 V XIN During stop mode IOL = 200 µA — — 0.5 V 0.1 1.2 — V 0.1 1.2 — V — — 5.0 µA — — −5.0 µA 25 50 100 kΩ — 0.3 — MΩ 1.8 — — V Note: 1. 4.2 V ≤ Vcc ≤ 5.5 V at Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 35 of 47 R8C/33T Group Table 5.14 Symbol ICC 5. Electrical Characteristics Electrical Characteristics (2) [3.3 V ≤ Vcc ≤ 5.5 V] (Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified.) Parameter Condition Standard Unit Min. Typ. Max. XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division — 6.5 15 mA XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division — 5.3 12.5 mA XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division — 3.6 — mA XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 — 3 — mA XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 — 2.2 — mA XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 — 1.5 — mA XIN clock off High-speed High-speed on-chip oscillator on fOCO-F = 20 MHz on-chip oscillator mode Low-speed on-chip oscillator on = 125 kHz — 7 15 mA XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 — 3 — mA XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1 — 1 — mA XIN clock off Low-speed High-speed on-chip oscillator off on-chip oscillator mode Low-speed on-chip oscillator on = 125 kHz — 90 400 µA Wait mode XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 15 100 µA XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 4 90 µA XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 3.5 — µA XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 — 2 5.0 µA XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 — 5 — µA Power supply current High-speed (Vcc = 3.3 V to 5.5 V) clock mode Single-chip mode, output pins are open, other pins are Vss No division Divide-by-8, FMR27 = 1, VCA20 = 0 Stop mode REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 36 of 47 R8C/33T Group 5. Electrical Characteristics Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) Table 5.15 External Clock Input (XOUT) Symbol Standard Parameter Min. Max. Unit tc(XOUT) XOUT input cycle time 50 — tWH(XOUT) XOUT input “H” width 24 — ns tWL(XOUT) XOUT input “L” width 24 — ns tC(XOUT) ns Vcc = 5 V tWH(XOUT) External clock input tWL(XOUT) Figure 5.4 Table 5.16 External Clock Input Timing Diagram when Vcc = 5 V TRAIO Input Symbol Standard Parameter Min. Max. Unit tc(TRAIO) TRAIO input cycle time 100 — tWH(TRAIO) TRAIO input “H” width 40 — ns tWL(TRAIO) TRAIO input “L” width 40 — ns tC(TRAIO) tWH(TRAIO) TRAIO input tWL(TRAIO) Figure 5.5 TRAIO Input Timing Diagram when Vcc = 5 V REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 37 of 47 ns Vcc = 5 V R8C/33T Group Table 5.17 5. Electrical Characteristics Serial Interface Symbol Standard Parameter Min. Max. Unit tc(CK) CLKi input cycle time 200 — ns tW(CKH) CLKi input “H” width 100 — ns tW(CKL) CLKi input “L” width 100 — ns td(C-Q) TXDi output delay time — 50 ns th(C-Q) TXDi hold time 0 — ns tsu(D-C) RXDi input setup time 50 — ns th(C-D) RXDi input hold time 90 — ns i = 0 to 2 tC(CK) Vcc = 5 V tW(CKH) CLKi tW(CKL) th(C-Q) TXDi td(C-Q) tsu(D-C) th(C-D) RXDi i = 0 to 2 Figure 5.6 Table 5.18 Serial Interface Timing Diagram when Vcc = 5 V External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt KIi (i = 0 to 3) Symbol tW(INH) tW(INL) Standard Parameter Unit Min. Max. INTi input “H” width, KIi input “H” width 250 (1) — ns INTi input “L” width, KIi input “L” width 250 (2) — ns Notes: 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. Vcc = 5 V INTi input (i = 0 to 3) KIi input (i = 0 to 3) Figure 5.7 tW(INL) tW(INH) Input Timing for External Interrupt INTi and Key Input Interrupt KIi when Vcc = 5 V REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 38 of 47 R8C/33T Group Table 5.19 5. Electrical Characteristics Electrical Characteristics (3) [2.7 V ≤ Vcc < 4.2 V] Symbol VOH Parameter Output “H” voltage Output “L” voltage Min. Typ. Max. Unit Drive capacity High IOH = −5 mA Vcc − 0.5 — Vcc Drive capacity Low IOH = −1 mA Vcc − 0.5 — Vcc V IOH = −200 µA 1.0 — Vcc V Drive capacity High IOL = 5 mA — — 0.5 V Drive capacity Low IOL = 1 mA — — 0.5 V IOL = 200 µA — — 0.5 V Vcc = 3.0 V INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SCL2, SDA2 0.1 0.4 — V Vcc = 3.0 V 0.1 0.5 — V VI = 3 V, Vcc = 3.0 V — — 4.0 µA Other than XOUT XOUT VOL Standard Condition Other than XOUT XOUT V VT+-VT- Hysteresis IIH Input “H” current IIL Input “L” current VI = 0 V, Vcc = 3.0 V — — −4.0 µA RPULLUP Pull-up resistance VI = 0 V, Vcc = 3.0 V 42 84 168 kΩ RfXIN Feedback resistance — 0.3 — MΩ VRAM RAM hold voltage 1.8 — — V RESET XIN During stop mode Note: 1. 2.7 V ≤ Vcc < 4.2 V at Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 39 of 47 R8C/33T Group Table 5.20 Symbol ICC 5. Electrical Characteristics Electrical Characteristics (4) [2.7 V ≤ Vcc < 3.3 V] (Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified.) Parameter Condition Standard Unit Min. Typ. Max. — 3.5 10 mA — 1.5 7.5 mA XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division — 7 15 mA XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 — 3 — mA XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division — 4 — mA XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 — 1.5 — mA XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1 — 1 — mA Low-speed on-chip oscillator mode XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0 — 90 390 µA Wait mode XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 15 90 µA XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 4 80 µA XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 3.5 — µA XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 — 2 5.0 µA XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 — 5 — µA Power supply current High-speed XIN = 10 MHz (square wave) (Vcc = 2.7 V to 3.3 V) clock mode High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Single-chip mode, No division output pins are open, XIN = 10 MHz (square wave) other pins are Vss High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 High-speed on-chip oscillator mode Stop mode REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 40 of 47 R8C/33T Group 5. Electrical Characteristics Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) Table 5.21 External Clock Input (XOUT) Symbol Standard Parameter Min. Max. Unit tc(XOUT) XOUT input cycle time 50 — tWH(XOUT) XOUT input “H” width 24 — ns tWL(XOUT) XOUT input “L” width 24 — ns tC(XOUT) ns Vcc = 3 V tWH(XOUT) External clock input tWL(XOUT) Figure 5.8 Table 5.22 External Clock Input Timing Diagram when Vcc = 3 V TRAIO Input Symbol Standard Parameter Min. Max. Unit tc(TRAIO) TRAIO input cycle time 300 — tWH(TRAIO) TRAIO input “H” width 120 — ns tWL(TRAIO) TRAIO input “L” width 120 — ns tC(TRAIO) tWH(TRAIO) TRAIO input tWL(TRAIO) Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 41 of 47 ns Vcc = 3 V R8C/33T Group Table 5.23 5. Electrical Characteristics Serial Interface Symbol Standard Parameter Min. Max. Unit tc(CK) CLKi input cycle time 300 — ns tW(CKH) CLKi input “H” width 150 — ns tW(CKL) CLKi Input “L” width 150 — ns td(C-Q) TXDi output delay time — 80 ns th(C-Q) TXDi hold time 0 — ns tsu(D-C) RXDi input setup time 70 — ns th(C-D) RXDi input hold time 90 — ns i = 0 to 2 tC(CK) Vcc = 3 V tW(CKH) CLKi tW(CKL) th(C-Q) TXDi td(C-Q) tsu(D-C) th(C-D) RXDi i = 0 to 2 Figure 5.10 Table 5.24 Serial Interface Timing Diagram when Vcc = 3 V External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt KIi (i = 0 to 3) Symbol tW(INH) tW(INL) Standard Parameter Unit Min. Max. INTi input “H” width, KIi input “H” width 380 (1) — ns INTi input “L” width, KIi input “L” width 380 (2) — ns Notes: 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. Vcc = 3 V INTi input (i = 0 to 3) KIi input (i = 0 to 3) Figure 5.11 tW(INL) tW(INH) Input Timing for External Interrupt INTi and Key Input Interrupt KIi when Vcc = 3 V REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 42 of 47 R8C/33T Group Table 5.25 5. Electrical Characteristics Electrical Characteristics (5) [1.8 V ≤ Vcc < 2.7 V] Symbol VOH Parameter Output “H” voltage Other than XOUT Output “L” voltage Other than XOUT Min. Typ. Max. Unit Drive capacity High IOH = −2 mA Vcc − 0.5 — Vcc V Drive capacity Low IOH = −1 mA Vcc − 0.5 — Vcc V IOH = −200 µA 1.0 — Vcc V Drive capacity High IOL = 2 mA — — 0.5 V Drive capacity Low IOL = 1 mA — — 0.5 V IOL = 200 µA — — 0.5 V 0.05 0.20 — V 0.05 0.20 — V — — 4.0 µA XOUT VOL Standard Condition XOUT VT+-VT- Hysteresis IIH Input “H” current IIL Input “L” current VI = 0 V, Vcc = 2.2 V — — −4.0 µA RPULLUP Pull-up resistance VI = 0 V, Vcc = 2.2 V 70 140 300 kΩ RfXIN Feedback resistance — 0.3 — MΩ VRAM RAM hold voltage 1.8 — — V INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SCL2, SDA2 RESET VI = 2.2 V, Vcc = 2.2 V XIN During stop mode Note: 1. 1.8 V ≤ Vcc < 2.7 V at Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified. REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 43 of 47 R8C/33T Group Table 5.26 Symbol ICC 5. Electrical Characteristics Electrical Characteristics (6) [1.8 V ≤ Vcc < 2.7 V] (Topr = −20°C to 85°C (N version)/−40°C to 85°C (D version), unless otherwise specified.) Parameter Condition Standard Unit Min. Typ. Max. — 2.2 — mA — 0.8 — mA XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division — 2.5 10 mA XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 — 1.7 — mA XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRD = MSTTRC = 1 — 1 — mA Low-speed on-chip oscillator mode XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0 — 90 300 µA Wait mode XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 15 90 µA XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 4 80 µA XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 — 3.5 — µA XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 — 2 5 µA XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 — 5 — µA Power supply current High-speed XIN = 5 MHz (square wave) (Vcc = 1.8 V to 2.7 V) clock mode High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Single-chip mode, No division output pins are open, other pins are Vss XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 High-speed on-chip oscillator mode Stop mode REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 44 of 47 R8C/33T Group 5. Electrical Characteristics Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) Table 5.27 External Clock Input (XOUT) Symbol Standard Parameter Min. Max. Unit tc(XOUT) XOUT input cycle time 200 — tWH(XOUT) XOUT input “H” width 90 — ns tWL(XOUT) XOUT input “L” width 90 — ns tC(XOUT) ns Vcc = 2.2 V tWH(XOUT) External clock input tWL(XOUT) Figure 5.12 Table 5.28 External Clock Input Timing Diagram when Vcc = 2.2 V TRAIO Input Symbol Standard Parameter Min. Max. Unit tc(TRAIO) TRAIO input cycle time 500 — tWH(TRAIO) TRAIO input “H” width 200 — ns tWL(TRAIO) TRAIO input “L” width 200 — ns tC(TRAIO) tWH(TRAIO) TRAIO input tWL(TRAIO) Figure 5.13 TRAIO Input Timing Diagram when Vcc = 2.2 V REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 45 of 47 ns Vcc = 2.2 V R8C/33T Group Table 5.29 5. Electrical Characteristics Serial Interface Symbol Standard Parameter Min. Max. Unit tc(CK) CLKi input cycle time 800 — ns tW(CKH) CLKi input “H” width 400 — ns tW(CKL) CLKi input “L” width 400 — ns td(C-Q) TXDi output delay time — 200 ns th(C-Q) TXDi hold time 0 — ns tsu(D-C) RXDi input setup time 150 — ns th(C-D) RXDi input hold time 90 — ns i = 0 to 2 tC(CK) Vcc = 2.2 V tW(CKH) CLKi tW(CKL) th(C-Q) TXDi td(C-Q) tsu(D-C) th(C-D) RXDi i = 0 to 2 Figure 5.14 Table 5.30 Serial Interface Timing Diagram when Vcc = 2.2 V External Interrupt INTi (i = 0 to 3) Input, Key Input Interrupt KIi (i = 0 to 3) Symbol tW(INH) tW(INL) Standard Parameter Unit Min. Max. INTi input “H” width, KIi input “H” width 1000 (1) — ns INTi input “L” width, KIi input “L” width 1000 (2) — ns Notes: 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. Vcc = 2.2 V INTi input (i = 0 to 3) KIi input (i = 0 to 3) Figure 5.15 tW(INL) tW(INH) Input Timing for External Interrupt INTi and Key Input Interrupt KIi when Vcc = 2.2 V REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 46 of 47 R8C/33T Group Package Dimensions Package Dimensions Diagrams showing the latest package dimensions and mounting information are available in the “Packages” section of the Renesas Technology website. JEITA Package Code P-LQFP32-7x7-0.80 RENESAS Code PLQP0032GB-A Previous Code 32P6U-A MASS[Typ.] 0.2g HD *1 D 24 17 NOTE) 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET. 16 25 bp c c1 *2 E HE b1 Reference Symbol 32 9 1 ZE Terminal cross section 8 ZD c A A1 F A2 Index mark L D E A2 HD HE A A1 bp b1 c c1 L1 y e *3 Detail F bp x REJ03B0311-0100 Rev.1.00 Mar 16, 2010 Page 47 of 47 e x y ZD ZE L L1 Dimension in Millimeters Min Nom Max 6.9 7.0 7.1 6.9 7.0 7.1 1.4 8.8 9.0 9.2 8.8 9.0 9.2 1.7 0.1 0.2 0 0.32 0.37 0.42 0.35 0.09 0.145 0.20 0.125 0° 8° 0.8 0.20 0.10 0.7 0.7 0.3 0.5 0.7 1.0 REVISION HISTORY Rev. Date 1.00 Mar 16, 2010 R8C/33T Group Datasheet Description Page — Summary First Edition issued All trademarks and registered trademarks are the property of their respective owners. C-1 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes: 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document. 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples. 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations. 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com ) 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document. 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products. 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above. 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems (2) surgical implantations (3) healthcare intervention (e.g., excision, administration of medication, etc.) (4) any other purposes that pose a direct threat to human life Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications. 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges. 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment. 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas. 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2010. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .7.2