...the world's most energy friendly microcontrollers EFM32ZG108 DATASHEET F32/F16/F8/F4 • ARM Cortex-M0+ CPU platform • High Performance 32-bit processor @ up to 24 MHz • Wake-up Interrupt Controller • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.5 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 48 µA/MHz @ 3 V Sleep Mode • 114 µA/MHz @ 3 V Run Mode, with code executed from flash • 32/16/8/4 KB Flash • 4/4/2/2 KB RAM • 17 General Purpose I/O pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 11 asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • 4 Channel DMA Controller • 4 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Timers/Counters • 2× 16-bit Timer/Counter • 2×3 Compare/Capture/PWM channels • 1× 24-bit Real-Time Counter • 1× 16-bit Pulse Counter • Watchdog Timer with dedicated RC oscillator @ 50 nA • Communication interfaces • Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S • Triple buffered full/half-duplex operation • Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • I C Interface with SMBus support • Address recognition in Stop Mode • Ultra low power precision analog peripherals • 1× Analog Comparator • Capacitive sensing with up to 2 inputs • Supply Voltage Comparator • Ultra efficient Power-on Reset and Brown-Out Detector • 2-pin Serial Wire Debug interface • Pre-Programmed UART Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.98 to 3.8 V • QFN24 package 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories • Alarm and security systems • Industrial and home automation ...the world's most energy friendly microcontrollers 1 Ordering Information Table 1.1 (p. 2) shows the available EFM32ZG108 devices. Table 1.1. Ordering Information Ordering Code Flash (kB) RAM (kB) Max Speed (MHz) Supply Voltage (V) Temperature (ºC) Package EFM32ZG108F4-QFN24 4 2 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG108F8-QFN24 8 2 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG108F16-QFN24 16 4 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG108F32-QFN24 32 4 24 1.98 - 3.8 -40 - 85 QFN24 Visit www.silabs.com for information on global distributors and representatives. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 2 www.silabs.com ...the world's most energy friendly microcontrollers 2 System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M0+, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32ZG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32ZG108 devices. For a complete feature set and indepth information on the modules, the reader is referred to the EFM32ZG Reference Manual. A block diagram of the EFM32ZG108 is shown in Figure 2.1 (p. 3) . Figure 2.1. Block Diagram ZG108F32/ 16/ 8/ 4 Clock Managem ent Core and Mem ory ARM Cortex ™ M0+ processor Flash Program Mem ory RAM Mem ory Debug Interface DMA Controller Energy Managem ent High Freq Crystal Oscillator High Freq RC Oscillator Voltage Regulator Voltage Com parator Aux High Freq RC Oscillator Low Freq RC Oscillator Brown- out Detector Power- on Reset Low Freq Crystal Oscillator Ultra Low Freq RC Oscillator 32- bit bus Peripheral Ref lex Syst em Serial Interfaces USART Low Energy Uart™ 2 IC I/ O Ports Tim ers and Triggers Analog Interfaces Ex ternal Interrupts General Purpose I/ O Tim er/ Counter Real Tim e Counter Analog Com parator Pin Reset Pin Wakeup Pulse Counter Watchdog Tim er 2.1.1 ARM Cortex-M0+ Core The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M0+ is described in detail in ARM Cortex-M0+ Devices Generic User Guide. 2.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface . 2.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32ZG microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 2.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32ZG. 2.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32ZG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 2.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32ZG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 2.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 2.1.10 Inter-Integrated Circuit Interface (I2C) 2 2 The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. 2 The interface provided to software by the I C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 4 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.12 Pre-Programmed UART Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note. 2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) TM The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. 2.1.15 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.16 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 2.1.17 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.18 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.19 General Purpose Input/Output (GPIO) In the EFM32ZG108, there are 17 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 11 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 5 www.silabs.com ...the world's most energy friendly microcontrollers 2.2 Configuration Summary The features of the EFM32ZG108 is a subset of the feature set described in the EFM32ZG Reference Manual. Table 2.1 (p. 6) describes device specific implementation of the features. Table 2.1. Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL USART1 Full configuration with I2S and IrDA US1_TX, US1_RX, US1_CLK, US1_CS LEUART0 Full configuration LEU0_TX, LEU0_RX TIMER0 Full configuration TIM0_CC[2:0] TIMER1 Full configuration TIM1_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] ACMP0 Full configuration ACMP0_CH[1:0], ACMP0_O VCMP Full configuration NA GPIO 17 pins Available pins are shown in Table 4.3 (p. 40) 2.3 Memory Map The EFM32ZG108 memory map is shown in Figure 2.2 (p. 7) , with RAM and Flash sizes for the largest memory configuration. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 6 www.silabs.com ...the world's most energy friendly microcontrollers Figure 2.2. EFM32ZG108 Memory Map with largest RAM and Flash sizes 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 7 www.silabs.com ...the world's most energy friendly microcontrollers 3 Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 8) , by simulation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified. 3.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 8) . Table 3.1. Absolute Maximum Ratings Symbol Parameter Condition Min Typ Max -40 Unit 150 1 TSTG Storage temperature range TS Maximum soldering temperature VDDMAX External main supply voltage 0 3.8 V VIOPIN Voltage on any I/O pin -0.3 VDD+0.3 V Latest IPC/JEDEC J-STD-020 Standard °C 260 °C 1 Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 3.3 General Operating Conditions 3.3.1 General Operating Conditions Table 3.2. General Operating Conditions Symbol Parameter TAMB Ambient temperature range VDDOP Operating supply voltage fAPB Internal APB clock frequency 24 MHz fAHB Internal AHB clock frequency 24 MHz 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 Min Typ -40 1.98 8 Max Unit 85 °C 3.8 V www.silabs.com ...the world's most energy friendly microcontrollers 3.4 Current Consumption Table 3.3. Current Consumption Symbol IEM0 IEM1 Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) EM1 current (Production test condition = 14 MHz) Condition Min Typ Max Unit 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 115 132 µA/ MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 117 136 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 114 128 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 116 132 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 117 131 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 118 133 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 118 133 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 120 135 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 124 139 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 125 142 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 155 177 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 162 181 µA/ MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 48 57 µA/ MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 49 59 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 48 52 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 49 53 µA/ MHz 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 9 www.silabs.com ...the world's most energy friendly microcontrollers Symbol IEM2 IEM3 IEM4 Parameter Condition Min Typ Max Unit 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 50 54 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 51 56 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 52 56 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 53 58 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 57 63 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 59 66 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 89 99 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 92 103 µA/ MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 0.9 1.25 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 1.7 2.35 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD= 3.0 V, TAMB=25°C 0.5 0.9 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD= 3.0 V, TAMB=85°C 1.3 2.0 µA VDD= 3.0 V, TAMB=25°C 0.02 0.035 µA VDD= 3.0 V, TAMB=85°C 0.29 0.700 µA EM2 current EM3 current EM4 current 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 10 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.1 EM0 Current Consumption Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24 MHz 2.84 2.80 Idd [m A] 2.78 2.82 2.80 2.78 Idd [m A] 2.82 2.84 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.76 2.76 2.74 2.74 2.72 2.72 2.70 2.70 2.68 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.68 –40 3.8 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 5 25 Tem perature [°C] 45 65 85 Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz 2.40 2.40 Idd [m A] 2.45 Idd [m A] 2.45 2.35 2.35 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.30 2.0 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 2.30 3.8 –40 11 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 1.68 1.68 1.66 1.66 1.64 1.64 1.62 1.62 Idd [m A] Idd [m A] Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz 1.60 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.58 1.56 1.54 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 1.60 1.58 1.56 1.54 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 1.34 1.34 1.32 1.32 1.30 1.30 Idd [m A] Idd [m A] Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz 1.28 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.26 1.24 1.22 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 1.28 1.26 1.24 1.22 –40 3.8 12 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 0.84 0.84 0.83 0.83 0.82 0.82 0.81 0.81 Idd [m A] Idd [m A] Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 6.6 MHz 0.80 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.79 0.78 0.77 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.80 0.79 0.78 0.77 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 3.4.2 EM1 Current Consumption Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 24 MHz 1.20 1.18 1.20 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.18 Idd [m A] 1.16 Idd [m A] 1.16 1.14 1.14 1.12 1.12 1.10 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 1.10 –40 3.8 13 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 1.04 1.04 1.03 1.03 1.02 1.02 1.01 1.01 Idd [m A] Idd [m A] Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz 1.00 0.99 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.98 0.97 0.96 0.95 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.00 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.99 0.98 0.97 0.96 0.95 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 Idd [m A] Idd [m A] Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz 0.69 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.68 0.67 0.66 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.69 0.68 0.67 0.66 –40 3.8 14 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 0.59 0.59 0.58 0.58 0.57 0.57 Idd [m A] Idd [m A] Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz 0.56 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.55 0.54 0.53 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.56 0.55 0.54 0.53 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 0.395 0.395 0.390 0.390 0.385 0.385 0.380 0.380 Idd [m A] Idd [m A] Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz 0.375 0.370 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.365 0.360 0.355 0.350 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 0.375 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V 0.370 0.365 0.360 0.355 0.350 –40 3.8 15 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.3 EM2 Current Consumption Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. 2.0 2.0 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.8 1.6 1.4 Idd [uA] Idd [uA] 1.6 1.8 1.2 1.4 1.2 1.0 1.0 0.8 0.8 0.6 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.6 –40 3.8 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 5 25 Tem perature [°C] 45 65 85 5 25 Tem perature [°C] 45 65 85 3.4.4 EM3 Current Consumption Figure 3.12. EM3 current consumption. 1.6 1.6 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.4 1.2 Idd [uA] Idd [uA] 1.2 1.4 1.0 1.0 0.8 0.8 0.6 0.6 0.4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 0.4 –40 3.8 16 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –15 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.5 EM4 Current Consumption Figure 3.13. EM4 current consumption. 0.5 Idd [uA] 0.3 0.4 0.3 Idd [uA] 0.4 0.5 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.2 0.2 0.1 0.1 0.0 0.0 –0.1 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –0.1 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 3.5 Transition between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 3.4. Energy Modes Transitions Symbol Parameter Min Typ Max Unit tEM10 Transition time from EM1 to EM0 0 HFCORECLK cycles tEM20 Transition time from EM2 to EM0 2 µs tEM30 Transition time from EM3 to EM0 2 µs tEM40 Transition time from EM4 to EM0 163 µs 3.6 Power Management The EFM32ZG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations". 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 17 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.5. Power Management Symbol Parameter VBODextthr- BOD threshold on falling external supply voltage VBODextthr+ BOD threshold on rising external supply voltage tRESET Delay from reset is released until program execution starts CDECOUPLE Voltage regulator decoupling capacitor. Condition Min Typ Max 1.74 Unit 1.96 V 1.85 V Applies to Power-on Reset, Brown-out Reset and pin reset. 163 µs X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF 3.7 Flash Table 3.6. Flash Symbol Parameter ECFLASH Flash erase cycles before failure Condition Min TAMB<150°C RETFLASH Flash data retention Typ Max Unit 20000 cycles 10000 h TAMB<85°C 10 years TAMB<70°C 20 years µs tW_PROG Word (32-bit) programming time 20 tP_ERASE Page erase time 20 20.4 20.8 ms tD_ERASE Device erase time 40 40.8 41.6 ms IERASE Erase current 7 1 mA IWRITE Write current 7 1 mA VFLASH Supply voltage during flash erase and write 1.98 3.8 V 1 Measured at 25°C 3.8 General Purpose Input Output Table 3.7. GPIO Symbol Parameter VIOIL Input low voltage VIOIH Input high voltage VIOOH Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Condition Min Typ Max Unit 0.30VDD V 0.70VDD V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.80VDD V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.90VDD V 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 18 www.silabs.com ...the world's most energy friendly microcontrollers Symbol VIOOL Parameter Output low voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Condition Min Typ Max Unit Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.85VDD V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.90VDD V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75VDD V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85VDD V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60VDD V Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.80VDD V Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.20VDD V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.10VDD V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.10VDD V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.05VDD V Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.30VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.20VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.35VDD V Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.25VDD V IIOLEAK Input leakage current High Impedance IO connected to GROUND or Vdd RPU I/O pin pull-up resistor 40 kOhm RPD I/O pin pull-down resistor 40 kOhm RIOESD Internal ESD series resistor 200 Ohm tIOGLITCH Pulse width of pulses to be removed 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 ±0.1 10 19 ±100 nA 50 ns www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit by the glitch suppression filter tIOOF VIOHYST GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25pF. 20+0.1CL 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600pF 20+0.1CL 250 ns Output fall time I/O pin hysteresis (VIOTHR+ - VIOTHR-) VDD = 1.98 - 3.8 V 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 0.1VDD 20 V www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage 5 0.20 4 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.15 0.10 3 2 0.05 1 - 40°C 25°C 85°C 0.00 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] - 40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low- Level Output Current [m A] Low- Level Output Current [m A] 15 10 30 25 20 15 5 10 5 - 40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 - 40°C 25°C 85°C 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 21 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage 0.00 0.0 - 40°C 25°C 85°C - 40°C 25°C 85°C –0.5 High- Level Output Current [m A] High- Level Output Current [m A] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –2.5 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] High- Level Output Current [m A] –5 –10 –20 –30 –15 –40 –20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –50 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 22 www.silabs.com ...the world's most energy friendly microcontrollers 0.5 10 0.4 8 Low- Level Output Current [m A] Low- Level Output Current [m A] Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage 0.3 0.2 0.1 6 4 2 - 40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 40 50 35 40 Low- Level Output Current [m A] Low- Level Output Current [m A] 30 25 20 15 30 20 10 10 5 0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 23 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage 0.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –1 High- Level Output Current [m A] High- Level Output Current [m A] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 2.5 3.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –50 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 24 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 14 0.7 12 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.6 0.5 0.4 0.3 10 8 6 4 0.2 2 0.1 0.0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 50 50 40 40 30 20 10 30 20 10 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low- Level Output Current [m A] Low- Level Output Current [m A] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 25 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 –0.1 0 - 40°C 25°C 85°C –1 - 40°C 25°C 85°C –2 High- Level Output Current [m A] High- Level Output Current [m A] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –50 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 26 www.silabs.com ...the world's most energy friendly microcontrollers 3.9 Oscillators 3.9.1 LFXO Table 3.8. LFXO Symbol Parameter Condition Min Typ Max fLFXO Supported nominal crystal frequency ESRLFXO Supported crystal equivalent series resistance (ESR) CLFXOL Supported crystal external load range ILFXO Current consumption for core and buffer after startup. ESR=30 kOhm, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 190 nA tLFXO Start- up time. ESR=30 kOhm, CL=10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 1100 ms 32.768 Unit kHz 30 120 kOhm 5 25 pF For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration". 3.9.2 HFXO Table 3.9. HFXO Symbol Parameter fHFXO Supported nominal crystal Frequency ESRHFXO The transconductance of the HFXO input transistor at crystal startup CHFXOL Supported crystal external load range tHFXO Min Typ Current consumption for HFXO after startup Startup time Max 4 Supported crystal Crystal frequency 24 MHz equivalent series reCrystal frequency 4 MHz sistance (ESR) gmHFXO IHFXO Condition HFXOBOOST in CMU_CTRL equals 0b11 Unit 24 MHz 30 100 Ohm 400 1500 Ohm 20 mS 5 25 pF 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 85 µA 24 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 165 µA 24 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 785 µs 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 27 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.3 LFRCO Table 3.10. LFRCO Symbol Parameter fLFRCO Oscillation frequency , VDD= 3.0 V, TAMB=25°C tLFRCO Startup time not including software calibration 150 µs ILFRCO Current consumption 190 nA TUNESTEPL- Frequency step for LSB change in TUNING value 1.5 % FRCO Condition Min Typ 31.29 Max 32.768 Unit 34.28 kHz 42 42 40 40 38 38 Frequency [MHz] Frequency [MHz] Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage - 40°C 25°C 85°C 36 34 34 32 32 30 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 30 –40 3.8 28 2.0 V 3.0 V 3.8 V 36 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.4 HFRCO Table 3.11. HFRCO Symbol Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C fHFRCO tHFRCO_settling Settling time after start-up Current consumption (Production test condition = 14 MHz) IHFRCO TUNESTEPHFRCO Condition Min Typ Max Unit 21 MHz frequency band 20.37 21.0 21.63 MHz 14 MHz frequency band 13.58 14.0 14.42 MHz 11 MHz frequency band 10.67 11.0 11.33 MHz 7 MHz frequency band 6.40 6.60 6.80 MHz 1 MHz frequency band 1.15 1.20 1.25 MHz fHFRCO = 14 MHz 0.6 Cycles fHFRCO = 21 MHz 93 175 µA fHFRCO = 14 MHz 77 140 µA fHFRCO = 11 MHz 72 125 µA fHFRCO = 6.6 MHz 63 105 µA fHFRCO = 1.2 MHz 22 40 µA 1 Frequency step for LSB change in TUNING value 0.3 % 1 The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 1.45 1.45 1.40 1.40 1.35 1.35 Frequency [MHz] Frequency [MHz] Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 1.30 - 40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 1.05 –40 3.8 29 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 6.70 6.70 6.65 6.65 6.60 6.60 Frequency [MHz] Frequency [MHz] Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature 6.55 6.50 6.45 6.40 6.50 6.45 6.40 - 40°C 25°C 85°C 6.35 6.30 2.0 6.55 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 6.30 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 11.2 11.2 11.1 11.1 11.0 11.0 Frequency [MHz] Frequency [MHz] Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 10.9 10.8 10.8 10.7 10.6 2.0 10.9 10.7 - 40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 10.6 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 14.2 14.2 14.1 14.1 14.0 14.0 Frequency [MHz] Frequency [MHz] Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature 13.9 13.8 13.7 13.6 13.8 13.7 13.6 - 40°C 25°C 85°C 13.5 13.4 2.0 13.9 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 3.4 3.6 2.0 V 3.0 V 3.8 V 13.5 13.4 –40 3.8 30 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 21.2 21.2 21.0 21.0 Frequency [MHz] Frequency [MHz] Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 20.8 20.6 20.4 20.8 20.6 20.4 - 40°C 25°C 85°C 20.2 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 20.2 –40 3.8 –15 5 25 Tem perature [°C] 45 Typ Max 65 85 3.9.5 AUXHFRCO Table 3.12. AUXHFRCO Symbol fAUXHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C tAUXHFRCO_settlingSettling time after start-up Condition Min Unit fAUXHFRCO = 21 MHz 20.37 21.0 21.63 MHz fAUXHFRCO = 14 MHz 13.58 14.0 14.42 MHz fAUXHFRCO = 11 MHz 10.67 11.0 11.33 MHz fAUXHFRCO = 6.6 MHz 6.40 6.60 6.80 MHz fAUXHFRCO = 1.2 MHz 1.15 1.20 1.25 MHz fAUXHFRCO = 14 MHz TUNESTEPAUX- Frequency step for LSB change in HFRCO TUNING value 0.6 Cycles 0.3 % 3.9.6 ULFRCO Table 3.13. ULFRCO Symbol Parameter Condition fULFRCO Oscillation frequency 25°C, 3V TCULFRCO Temperature coefficient 0.05 %/°C VCULFRCO Supply voltage coefficient -18.2 %/V 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 Min Typ Max 0.70 31 Unit 1.75 kHz www.silabs.com ...the world's most energy friendly microcontrollers 3.10 Analog Comparator (ACMP) Table 3.14. ACMP Symbol Parameter VACMPIN Input voltage range 0 VDD V VACMPCM ACMP Common Mode voltage range 0 VDD V IACMP IACMPREF Active current Current consumption of internal voltage reference Condition Min Typ Max Unit BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register 0.1 0.4 µA BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register 2.87 15 µA BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register 195 520 µA Internal voltage reference off. Using external voltage reference 0 µA Internal voltage reference 5 µA 0 12 mV VACMPOFFSET Offset voltage BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register VACMPHYST ACMP hysteresis Programmable 17 mV CSRESSEL=0b00 in ACMPn_INPUTSEL 39 kOhm CSRESSEL=0b01 in ACMPn_INPUTSEL 71 kOhm CSRESSEL=0b10 in ACMPn_INPUTSEL 104 kOhm CSRESSEL=0b11 in ACMPn_INPUTSEL 136 kOhm RCSRES tACMPSTART Capacitive Sense Internal Resistance Startup time -12 10 µs The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 32) . IACMPREF is zero if an external voltage reference is used. Total ACMP Active Current IACMPTOTAL = IACMP + IACMPREF 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 32 (3.1) www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.26. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 20 2.5 HYSTSEL= 0 HYSTSEL= 2 HYSTSEL= 4 HYSTSEL= 6 2.0 Response Tim e [us] Current [uA] 15 1.5 1.0 10 5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 0 12 Current consumption, HYSTSEL = 4 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response time , Vcm = 1.25V, CP+ to CP- = 100mV 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12.0 Hysteresis [m V] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 33 www.silabs.com ...the world's most energy friendly microcontrollers 3.11 Voltage Comparator (VCMP) Table 3.15. VCMP Symbol Parameter VVCMPIN Input voltage range VDD V VVCMPCM VCMP Common Mode voltage range VDD V IVCMP Condition Min Typ Max Unit BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register 0.1 0.8 µA BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. 14.7 35 µA NORMAL 10 µs Single ended 10 mV Differential 10 mV 17 mV Active current tVCMPREF Startup time reference generator VVCMPOFFSET Offset voltage VVCMPHYST VCMP hysteresis tVCMPSTART Startup time 10 µs The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VCMP Trigger Level as a Function of Level Setting VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL (3.2) 3.12 I2C Table 3.16. I2C Standard-mode (Sm) Symbol Parameter Min Typ 0 Max Unit fSCL SCL clock frequency tLOW SCL clock low time 4.7 µs tHIGH SCL clock high time 4.0 µs tSU,DAT SDA set-up time 250 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 4.7 µs tHD,STA (Repeated) START condition hold time 4.0 µs tSU,STO STOP condition set-up time 4.0 µs tBUF Bus free time between a STOP and START condition 4.7 µs 8 100 1 2,3 3450 kHz ns 1 For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32ZG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 5). 2 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 34 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.17. I2C Fast-mode (Fm) Symbol Parameter Min Typ Max fSCL SCL clock frequency tLOW SCL clock low time 1.3 µs tHIGH SCL clock high time 0.6 µs tSU,DAT SDA set-up time 100 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 0.6 µs tHD,STA (Repeated) START condition hold time 0.6 µs tSU,STO STOP condition set-up time 0.6 µs tBUF Bus free time between a STOP and START condition 1.3 µs 0 Unit 1 400 2,3 8 900 kHz ns 1 For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32ZG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 5). 2 Table 3.18. I2C Fast-mode Plus (Fm+) Symbol Parameter Min Typ Max Unit fSCL SCL clock frequency tLOW SCL clock low time 0.5 µs tHIGH SCL clock high time 0.26 µs tSU,DAT SDA set-up time 50 ns tHD,DAT SDA hold time 8 ns tSU,STA Repeated START condition set-up time 0.26 µs tHD,STA (Repeated) START condition hold time 0.26 µs tSU,STO STOP condition set-up time 0.26 µs tBUF Bus free time between a STOP and START condition 0.5 µs 1 0 1000 kHz 1 For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32ZG Reference Manual. 3.13 Digital Peripherals Table 3.19. Digital Peripherals Symbol Parameter Condition IUSART USART current USART idle current, clock enabled 7.5 µA/ MHz ILEUART LEUART current LEUART idle current, clock enabled 150 nA II2C I2C current I2C idle current, clock enabled 6.25 µA/ MHz ITIMER TIMER current TIMER_0 idle current, clock enabled 8.75 µA/ MHz IPCNT PCNT current PCNT idle current, clock enabled 100 nA IRTC RTC current RTC idle current, clock enabled 100 nA 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 Min 35 Typ Max Unit www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition IGPIO GPIO current GPIO idle current, clock enabled 5.31 µA/ MHz IPRS PRS current PRS idle current 2.81 µA/ MHz IDMA DMA current Clock enable 8.12 µA/ MHz 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 Min 36 Typ Max Unit www.silabs.com ...the world's most energy friendly microcontrollers 4 Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32ZG108. 4.1 Pinout The EFM32ZG108 pinout is shown in Figure 4.1 (p. 37) and Table 4.1 (p. 37). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 4.1. EFM32ZG108 Pinout (top view, not to scale) Table 4.1. Device Pinout Pin # QFN24 Pin# and Name Pin Name 0 VSS Pin Alternate Functionality / Description Analog Timers Communication Other Ground. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 37 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # QFN24 Pin# and Name Pin Name Analog Timers Communication Other 1 PA0 TIM0_CC0 #0/1/4 LEU0_RX #4 I2C0_SDA #0 PRS_CH0 #0 GPIO_EM4WU0 2 IOVDD_0 3 PC0 ACMP0_CH0 TIM0_CC1 #4 PCNT0_S0IN #2 US1_TX #0 I2C0_SDA #4 PRS_CH2 #0 4 PC1 ACMP0_CH1 TIM0_CC2 #4 PCNT0_S1IN #2 US1_RX #0 I2C0_SCL #4 PRS_CH3 #0 5 PB7 LFXTAL_P TIM1_CC0 #3 US1_CLK #0 6 PB8 LFXTAL_N TIM1_CC1 #3 US1_CS #0 7 RESETn 8 PB11 9 AVDD_2 10 PB13 HFXTAL_P LEU0_TX #1 11 PB14 HFXTAL_N LEU0_RX #1 12 AVDD_0 13 PD6 TIM1_CC0 #4 PCNT0_S0IN #3 US1_RX #2/3 I2C0_SDA #1 ACMP0_O #2 14 PD7 TIM1_CC1 #4 PCNT0_S1IN #3 US1_TX #2/3 I2C0_SCL #1 CMU_CLK0 #2 15 VDD_DREG Power supply for on-chip voltage regulator. 16 DECOUPLE Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. 17 PC14 TIM1_CC1 #0 PCNT0_S1IN #0 US1_CS #3 PRS_CH0 #2 18 PC15 TIM1_CC2 #0 US1_CLK #3 PRS_CH1 #2 19 PF0 TIM0_CC0 #5 US1_CLK #2 LEU0_TX #3 I2C0_SDA #5 DBG_SWCLK #0 BOOT_TX 20 PF1 TIM0_CC1 #5 US1_CS #2 LEU0_RX #3 I2C0_SCL #5 DBG_SWDIO #0 GPIO_EM4WU3 BOOT_RX 21 PF2 TIM0_CC2 #5 LEU0_TX #4 GPIO_EM4WU4 22 IOVDD_5 23 PE12 TIM1_CC2 #1 I2C0_SDA #6 CMU_CLK1 #2 24 PE13 I2C0_SCL #6 ACMP0_O #0 GPIO_EM4WU5 Digital IO power supply 0. Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. TIM1_CC2 #3 Analog power supply 2. Analog power supply 0. Digital IO power supply 5. 4.2 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 39) . The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 38 www.silabs.com ...the world's most energy friendly microcontrollers Table 4.2. Alternate functionality overview Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description ACMP0_CH0 PC0 Analog comparator ACMP0, channel 0. ACMP0_CH1 PC1 Analog comparator ACMP0, channel 1. ACMP0_O PE13 BOOT_RX PF1 Bootloader RX. BOOT_TX PF0 Bootloader TX. PD6 Analog comparator ACMP0, digital output. CMU_CLK0 PD7 Clock Management Unit, clock output number 0. CMU_CLK1 PE12 Clock Management Unit, clock output number 1. Debug-interface Serial Wire clock input. DBG_SWCLK PF0 DBG_SWDIO PF1 Note that this function is enabled to pin out of reset, and has a built-in pull up. GPIO_EM4WU0 PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 PE13 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. I2C0_SCL I2C0_SDA PA0 PD7 PC1 PF1 PE13 I2C0 Serial Clock Line input / output. PD6 PC0 PF0 PE12 I2C0 Serial Data input / output. LEU0_RX PB14 PF1 PA0 LEUART0 Receive input. LEU0_TX PB13 PF0 PF2 LEUART0 Transmit output. Also used as receive input in half duplex communication. LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. PCNT0_S0IN PC0 PD6 Pulse Counter PCNT0 input number 0. PD7 Pulse Counter PCNT0 input number 1. PCNT0_S1IN PC14 PC1 PRS_CH0 PA0 PC14 Peripheral Reflex System PRS, channel 0. PC15 Peripheral Reflex System PRS, channel 1. PRS_CH1 PRS_CH2 PC0 Peripheral Reflex System PRS, channel 2. PRS_CH3 PC1 Peripheral Reflex System PRS, channel 3. TIM0_CC0 PA0 PA0 PA0 PF0 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 PC0 PF1 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 PC1 PF2 Timer 0 Capture Compare input / output channel 2. TIM1_CC0 TIM1_CC1 PC14 TIM1_CC2 PC15 US1_CLK PB7 US1_CS US1_RX PE12 PB7 PD6 Timer 1 Capture Compare input / output channel 0. PB8 PD7 Timer 1 Capture Compare input / output channel 1. PB11 Timer 1 Capture Compare input / output channel 2. PF0 PC15 USART1 clock input / output. PB8 PF1 PC14 USART1 chip select input / output. PC1 PD6 PD6 USART1 Asynchronous Receive. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 39 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. US1_TX PC0 PD7 PD7 USART1 Synchronous mode Master Output / Slave Input (MOSI). 4.3 GPIO Pinout Overview The specific GPIO pins available in EFM32ZG108 is shown in Table 4.3 (p. 40) . Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0. Table 4.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port A - - - - - - - - - - - - - - - PA0 Port B - PB14 PB13 - PB11 - - PB8 PB7 - - - - - - - Port C PC15 PC14 - - - - - - - - - - - - PC1 PC0 Port D - - - - - - - - PD7 PD6 - - - - - - Port E - - PE13 PE12 - - - - - - - - - - - - Port F - - - - - - - - - - - - - PF2 PF1 PF0 4.4 QFN24 Package Figure 4.2. QFN24 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 40 www.silabs.com ...the world's most energy friendly microcontrollers Note: 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994. 2. All dimensions are in millimeters. Angles are in degrees. 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable. 4. Coplanarity applies to the exposed heat slug as well as the terminal. 5. Radius on terminal is optional Table 4.4. QFN24 (Dimensions in mm) Symbol A A1 Min 0.80 0.00 Nom 0.85 - Max 0.90 0.05 A3 b D E 0.25 0.203 0.30 REF 5.00 5.00 BSC BSC 0.35 D2 E2 3.50 3.50 3.60 3.60 3.70 3.70 e 0.65 BSC L L1 0.35 0.00 0.40 0.45 aaa bbb ccc ddd eee 0.10 0.10 0.10 0.05 0.08 0.10 The QFN24 Package uses Nickel-Palladium-Gold preplated leadframe. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 41 www.silabs.com ...the world's most energy friendly microcontrollers 5 PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. QFN24 PCB Land Pattern a p8 b p7 p1 p6 e g p9 c p2 p5 p3 p4 f d Table 5.1. QFN24 PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dim. (mm) Symbol Pin number Symbol Pin number a 0.80 P1 1 P8 24 b 0.30 P2 6 P9 25 c 0.65 P3 7 - - d 5.00 P4 12 - - e 5.00 P5 13 - - f 3.60 P6 18 - - g 3.60 P7 19 - - 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 42 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.2. QFN24 PCB Solder Mask a b g e c f d Table 5.2. QFN24 PCB Solder Mask Dimensions (Dimensions in mm) Symbol Dim. (mm) Symbol Dim. (mm) a 0.92 e 5.00 b 0.42 f 3.72 c 0.65 g 3.72 d 5.00 - - 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 43 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.3. QFN24 PCB Stencil Design a b x y e z c d Table 5.3. QFN24 PCB Stencil Design Dimensions (Dimensions in mm) 1. 2. 3. 4. 5. 6. Symbol Dim. (mm) Symbol Dim. (mm) a 0.60 e 5.00 b 0.25 x 1.00 c 0.65 y 1.00 d 5.00 z 0.50 The drawings are not to scale. All dimensions are in millimeters. All drawings are subject to change without notice. The PCB Land Pattern drawing is in compliance with IPC-7351B. Stencil thickness 0.125 mm. For detailed pin-positioning, see Figure 4.2 (p. 40) . 5.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions. Place as many and as small as possible vias underneath each of the solder patches under the ground pad. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 44 www.silabs.com ...the world's most energy friendly microcontrollers 6 Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking (top view) 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 45) . 6.3 Errata Please see the errata document for EFM32ZG108 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 45 www.silabs.com ...the world's most energy friendly microcontrollers 7 Revision History 7.1 Revision 1.10 March 6th, 2015 Updated Max ESRHFXO value for Crystal Frequency of 24 MHz. Updated current consumption. Updated LFXO and HFXO data. Updated LFRCO and HFRCO data. Updated ACMP data. Updated VCMP data. Updated Memory Map. Added DMA current in Digital Peripherals section. Added AUXHFRCO to block diagram and Electrical Characteristics. Updated Package dimensions table. Updated block diagram. 7.2 Revision 1.00 July 2nd, 2014 Corrected single power supply voltage minimum value from 1.85V to 1.98V. Removed "Preliminary" markings. Updated current consumption. Updated transition between energy modes. Updated power management data. Updated GPIO data. Updated LFXO, HFXO, HFRCO and ULFRCO data. Updated LFRCO and HFRCO plots. Updated ACMP data. 7.3 Revision 0.61 November 21st, 2013 Updated figures. Updated errata-link. Updated chip marking. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 46 www.silabs.com ...the world's most energy friendly microcontrollers Added link to Environmental and Quality information. 7.4 Revision 0.60 October 9th, 2013 Added I2C characterization data. Updated current consumption table and figures in Electrical characteristics section. Removed Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections. 7.5 Revision 0.50 April 22nd, 2013 Updated HFCORE max frequency from 32 MHz to 24 MHz. Updated pinout. Other minor corrections. 7.6 Revision 0.40 September 11th, 2012 Updated CPU core from Cortex M0 to Cortex M0+. Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Corrected operating voltage from 1.8 V to 1.85 V. Other minor corrections. 7.7 Revision 0.30 July 16th, 2011 Updated the Electrical Characteristics section. 7.8 Revision 0.20 June 8th, 2011 Corrected all current values in Electrical Characteristics section. Updated Cortex M0 related items in the memory map. 7.9 Revision 0.10 June 7th, 2011 Initial preliminary release. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 47 www.silabs.com ...the world's most energy friendly microcontrollers A Disclaimer and Trademarks A.1 Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. A.2 Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 48 www.silabs.com ...the world's most energy friendly microcontrollers B Contact Information Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 49 www.silabs.com ...the world's most energy friendly microcontrollers Table of Contents 1. Ordering Information .................................................................................................................................. 2 2. System Summary ...................................................................................................................................... 3 2.1. System Introduction ......................................................................................................................... 3 2.2. Configuration Summary .................................................................................................................... 6 2.3. Memory Map ................................................................................................................................. 6 3. Electrical Characteristics ............................................................................................................................. 8 3.1. Test Conditions .............................................................................................................................. 8 3.2. Absolute Maximum Ratings .............................................................................................................. 8 3.3. General Operating Conditions ........................................................................................................... 8 3.4. Current Consumption ....................................................................................................................... 9 3.5. Transition between Energy Modes .................................................................................................... 17 3.6. Power Management ....................................................................................................................... 17 3.7. Flash .......................................................................................................................................... 18 3.8. General Purpose Input Output ......................................................................................................... 18 3.9. Oscillators .................................................................................................................................... 27 3.10. Analog Comparator (ACMP) .......................................................................................................... 32 3.11. Voltage Comparator (VCMP) ......................................................................................................... 34 3.12. I2C ........................................................................................................................................... 34 3.13. Digital Peripherals ....................................................................................................................... 35 4. Pinout and Package ................................................................................................................................. 37 4.1. Pinout ......................................................................................................................................... 37 4.2. Alternate Functionality Pinout .......................................................................................................... 38 4.3. GPIO Pinout Overview ................................................................................................................... 40 4.4. QFN24 Package ........................................................................................................................... 40 5. PCB Layout and Soldering ........................................................................................................................ 42 5.1. Recommended PCB Layout ............................................................................................................ 42 5.2. Soldering Information ..................................................................................................................... 44 6. Chip Marking, Revision and Errata .............................................................................................................. 45 6.1. Chip Marking ................................................................................................................................ 45 6.2. Revision ...................................................................................................................................... 45 6.3. Errata ......................................................................................................................................... 45 7. Revision History ...................................................................................................................................... 46 7.1. Revision 1.10 ............................................................................................................................... 46 7.2. Revision 1.00 ............................................................................................................................... 46 7.3. Revision 0.61 ............................................................................................................................... 46 7.4. Revision 0.60 ............................................................................................................................... 47 7.5. Revision 0.50 ............................................................................................................................... 47 7.6. Revision 0.40 ............................................................................................................................... 47 7.7. Revision 0.30 ............................................................................................................................... 47 7.8. Revision 0.20 ............................................................................................................................... 47 7.9. Revision 0.10 ............................................................................................................................... 47 A. Disclaimer and Trademarks ....................................................................................................................... 48 A.1. Disclaimer ................................................................................................................................... 48 A.2. Trademark Information ................................................................................................................... 48 B. Contact Information ................................................................................................................................. 49 B.1. ................................................................................................................................................. 49 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 50 www.silabs.com ...the world's most energy friendly microcontrollers List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32ZG108 Memory Map with largest RAM and Flash sizes ........................................................................ 7 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24 MHz ........................................................................................................................................................ 11 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz ........................................................................................................................................................ 11 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz ........................................................................................................................................................ 12 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz ........................................................................................................................................................ 12 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 6.6 MHz ........................................................................................................................................................ 13 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 24 MHz .............................. 13 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz ........................... 15 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ....................................................... 16 3.12. EM3 current consumption. ................................................................................................................... 16 3.13. EM4 current consumption. ................................................................................................................... 17 3.14. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21 3.15. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22 3.16. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23 3.17. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25 3.19. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31 3.26. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 33 4.1. EFM32ZG108 Pinout (top view, not to scale) .............................................................................................. 37 4.2. QFN24 ................................................................................................................................................ 40 5.1. QFN24 PCB Land Pattern ...................................................................................................................... 42 5.2. QFN24 PCB Solder Mask ....................................................................................................................... 43 5.3. QFN24 PCB Stencil Design .................................................................................................................... 44 6.1. Example Chip Marking (top view) ............................................................................................................. 45 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 51 www.silabs.com ...the world's most energy friendly microcontrollers List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 6 3.1. Absolute Maximum Ratings ...................................................................................................................... 8 3.2. General Operating Conditions ................................................................................................................... 8 3.3. Current Consumption ............................................................................................................................... 9 3.4. Energy Modes Transitions ...................................................................................................................... 17 3.5. Power Management ............................................................................................................................... 18 3.6. Flash .................................................................................................................................................. 18 3.7. GPIO .................................................................................................................................................. 18 3.8. LFXO .................................................................................................................................................. 27 3.9. HFXO ................................................................................................................................................. 27 3.10. LFRCO .............................................................................................................................................. 28 3.11. HFRCO ............................................................................................................................................. 29 3.12. AUXHFRCO ....................................................................................................................................... 31 3.13. ULFRCO ............................................................................................................................................ 31 3.14. ACMP ............................................................................................................................................... 32 3.15. VCMP ............................................................................................................................................... 34 3.16. I2C Standard-mode (Sm) ...................................................................................................................... 34 3.17. I2C Fast-mode (Fm) ............................................................................................................................ 35 3.18. I2C Fast-mode Plus (Fm+) .................................................................................................................... 35 3.19. Digital Peripherals ............................................................................................................................... 35 4.1. Device Pinout ....................................................................................................................................... 37 4.2. Alternate functionality overview ................................................................................................................ 39 4.3. GPIO Pinout ........................................................................................................................................ 40 4.4. QFN24 (Dimensions in mm) .................................................................................................................... 41 5.1. QFN24 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 42 5.2. QFN24 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 43 5.3. QFN24 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 44 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 52 www.silabs.com ...the world's most energy friendly microcontrollers List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 32 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 34 2015-03-06 - EFM32ZG108FXX - d0063_Rev1.10 53 www.silabs.com