...the world's most energy friendly microcontrollers EFM32TG822 DATASHEET F32/F16/F8 • ARM Cortex-M3 CPU platform • High Performance 32-bit processor @ up to 32 MHz • Wake-up Interrupt Controller • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 1.0 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 51 µA/MHz @ 3 V Sleep Mode • 150 µA/MHz @ 3 V Run Mode, with code executed from flash • 32/16/8 KB Flash • 4/4/2 KB RAM • 37 General Purpose I/O pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 16 asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • 8 Channel DMA Controller • 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware AES with 128/256-bit keys in 54/75 cycles • Timers/Counters • 2× 16-bit Timer/Counter • 2×3 Compare/Capture/PWM channels • 16-bit Low Energy Timer • 1× 24-bit Real-Time Counter • 1× 16-bit Pulse Counter • Watchdog Timer with dedicated RC oscillator @ 50 nA • Integrated LCD Controller for up to 8×11 segments • Voltage boost, adjustable contrast and autonomous animation • Communication interfaces • 2× Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S • Triple buffered full/half-duplex operation • Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • I C Interface with SMBus support • Address recognition in Stop Mode • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s Analog to Digital Converter • 4 single ended channels/2 differential channels • On-chip temperature sensor • 12-bit 500 ksamples/s Digital to Analog Converter • 2× Analog Comparator • Capacitive sensing with up to 4 inputs • 3× Operational Amplifier • 6.1 MHz GBW, Rail-to-rail, Programmable Gain • Supply Voltage Comparator • Low Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in Deep Sleep Mode • Wide range of sensors supported, including LC sensors and capacitive buttons • Ultra efficient Power-on Reset and Brown-Out Detector • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • Pre-Programmed UART Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.98 to 3.8 V • TQFP48 package 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories • Alarm and security systems • Industrial and home automation ...the world's most energy friendly microcontrollers 1 Ordering Information Table 1.1 (p. 2) shows the available EFM32TG822 devices. Table 1.1. Ordering Information Ordering Code Flash (kB) RAM (kB) Max Speed (MHz) Supply Voltage (V) Temperature (ºC) Package EFM32TG822F8-QFP48 8 2 32 1.98 - 3.8 -40 - 85 TQFP48 EFM32TG822F16-QFP48 16 4 32 1.98 - 3.8 -40 - 85 TQFP48 EFM32TG822F32-QFP48 32 4 32 1.98 - 3.8 -40 - 85 TQFP48 Visit www.silabs.com for information on global distributors and representatives. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 2 www.silabs.com ...the world's most energy friendly microcontrollers 2 System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32TG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32TG822 devices. For a complete feature set and indepth information on the modules, the reader is referred to the EFM32TG Reference Manual. A block diagram of the EFM32TG822 is shown in Figure 2.1 (p. 3) . Figure 2.1. Block Diagram TG822F8/ 16/ 32 Core and Memory Clock Managem ent ARM Cortex- M3 processor Flash Memory [KB] 8/ 16/ 32 RAM Memory [KB] Debug Interface DMA Controller 2/ 4/ 4 High Frequency Crystal Oscilla tor High Frequency RC Oscilla tor Aux High Freq RC Oscillator Lo w Frequency RC Oscilla tor Lo w Frequency Crystal Oscilla tor Watchdog Oscillator Energy Managem ent Voltage Regulator Voltage Comparator Power-on Reset Brown-out Detector 32-bit bus Peripheral Reflex System Serial Interfaces I/O Ports Ex ternal Interrupts USA RT General Purpose I/ O I2C Pin Reset Analog Interfaces Timer/ Counter 2x Low Energy Sensor ADC Low Energy Timer™ Real Time Counter Operational Amplifier Pulse Counter Watchdog Timer LCD Controller 37 pins 2x Low Energy UART™ Tim ers and Triggers Security DAC AES 2.1.1 ARM Cortex-M3 Core The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual. 2.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32TG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 3 www.silabs.com ...the world's most energy friendly microcontrollers divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 2.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 2.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32TG. 2.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32TG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 2.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32TG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 2.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 2.1.10 Inter-Integrated Circuit Interface (I2C) 2 2 The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. 2 The interface provided to software by the I C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 4 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 2.1.12 Pre-Programmed UART Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note. 2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) TM The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. 2.1.15 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.16 Low Energy Timer (LETIMER) TM The unique LETIMER , the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC. 2.1.17 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 2.1.18 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 5 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.19 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.20 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals. 2.1.21 Digital to Analog Converter (DAC) The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has one single ended output buffer connected to channel 0. The DAC may be used for a number of different applications such as sensor interfaces or sound output. 2.1.22 Operational Amplifier (OPAMP) The EFM32TG822 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc. 2.1.23 Low Energy Sensor Interface (LESENSE) TM The Low Energy Sensor Interface (LESENSE ), is a highly configurable sensor interface with support for up to 4 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 2.1.24 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.25 General Purpose Input/Output (GPIO) In the EFM32TG822, there are 37 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 6 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.26 Liquid Crystal Display Driver (LCD) The LCD driver is capable of driving a segmented LCD display with up to 8x11 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data. 2.2 Configuration Summary The features of the EFM32TG822 is a subset of the feature set described in the EFM32TG Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features. Table 2.1. Configuration Summary Module Configuration Pin Connections Cortex-M3 Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, DBG_SWO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL USART0 Full configuration with IrDA US0_TX, US0_RX. US0_CLK, US0_CS USART1 Full configuration with I2S US1_TX, US1_RX, US1_CLK, US1_CS LEUART0 Full configuration LEU0_TX, LEU0_RX TIMER0 Full configuration TIM0_CC[2:0] TIMER1 Full configuration TIM1_CC[2:0] RTC Full configuration NA LETIMER0 Full configuration LET0_O[1:0] PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] ACMP0 Full configuration ACMP0_CH[4], ACMP0_O ACMP1 Full configuration ACMP1_CH[7:5], ACMP1_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[7:4] DAC0 Full configuration DAC0_OUT[0], DAC0_OUTxALT AES Full configuration NA GPIO 37 pins Available pins are shown in Table 4.3 (p. 52) OPAMP 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 7 www.silabs.com ...the world's most energy friendly microcontrollers Module Configuration Pin Connections LCD Full configuration LCD_SEG[10:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT 2.3 Memory Map The EFM32TG822 memory map is shown in Figure 2.2 (p. 8) , with RAM and Flash sizes for the largest memory configuration. Figure 2.2. EFM32TG822 Memory Map with largest RAM and Flash sizes 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 8 www.silabs.com ...the world's most energy friendly microcontrollers 3 Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 9) , by simulation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 9), by simulation and/or technology characterisation unless otherwise specified. 3.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 9) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 9) . Table 3.1. Absolute Maximum Ratings Symbol Parameter Condition Min Typ Max -40 Unit 150 1 TSTG Storage temperature range TS Maximum soldering temperature VDDMAX External main supply voltage 0 3.8 V VIOPIN Voltage on any I/O pin -0.3 VDD+0.3 V Latest IPC/JEDEC J-STD-020 Standard °C 260 °C 1 Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 3.3 General Operating Conditions 3.3.1 General Operating Conditions Table 3.2. General Operating Conditions Symbol Parameter TAMB Ambient temperature range VDDOP Operating supply voltage fAPB Internal APB clock frequency 32 MHz fAHB Internal AHB clock frequency 32 MHz 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 Min Typ -40 1.98 9 Max Unit 85 °C 3.8 V www.silabs.com ...the world's most energy friendly microcontrollers 3.4 Current Consumption Table 3.3. Current Consumption Symbol IEM0 IEM1 IEM2 IEM3 IEM4 Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) EM1 current (Production test condition = 14 MHz) Condition Min Typ Max Unit 32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 157 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 150 170 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 153 172 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 155 175 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 157 178 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 162 183 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 200 240 µA/ MHz 32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 53 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 51 57 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 55 59 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 56 61 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 58 63 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 63 68 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V 100 122 µA/ MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 1.0 1.2 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 2.4 5.0 µA VDD= 3.0 V, TAMB=25°C 0.59 1.0 µA VDD= 3.0 V, TAMB=85°C 2.0 4.5 µA VDD= 3.0 V, TAMB=25°C 0.02 0.055 µA VDD= 3.0 V, TAMB=85°C 0.25 0.70 µA EM2 current EM3 current EM4 current 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 10 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.1. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. Figure 3.2. EM3 current consumption. Figure 3.3. EM4 current consumption. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 11 www.silabs.com ...the world's most energy friendly microcontrollers 3.5 Transition between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 3.4. Energy Modes Transitions Symbol Parameter Min Typ Max Unit tEM10 Transition time from EM1 to EM0 0 HFCORECLK cycles tEM20 Transition time from EM2 to EM0 2 µs tEM30 Transition time from EM3 to EM0 2 µs tEM40 Transition time from EM4 to EM0 163 µs 3.6 Power Management The EFM32TG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations". Table 3.5. Power Management Symbol Parameter Condition Min Typ Max VBODextthr- BOD threshold on falling external supply voltage VBODextthr+ BOD threshold on rising external supply voltage VPORthr+ Power-on Reset (POR) threshold on rising external supply voltage tRESET Delay from reset is released until program execution starts Applies to Power-on Reset, Brown-out Reset and pin reset. 163 µs CDECOUPLE Voltage regulator decoupling capacitor. X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF 1.74 Unit 1.96 V 1.85 1.98 V 1.98 V 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 12 www.silabs.com ...the world's most energy friendly microcontrollers 3.7 Flash Table 3.6. Flash Symbol Parameter ECFLASH Flash erase cycles before failure Condition Min TAMB<150°C RETFLASH Flash data retention Typ Max Unit 20000 cycles 10000 h TAMB<85°C 10 years TAMB<70°C 20 years µs tW_PROG Word (32-bit) programming time 20 tP_ERASE Page erase time 20 20.4 20.8 ms tD_ERASE Device erase time 40 40.8 41.6 ms IERASE Erase current 7 1 mA IWRITE Write current 7 1 mA VFLASH Supply voltage during flash erase and write 1.98 3.8 V 1 Measured at 25°C 3.8 General Purpose Input Output Table 3.7. GPIO Symbol Parameter VIOIL Input low voltage VIOIH Input high voltage VIOOH Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Condition Min Typ Max Unit 0.30VDD V 0.70VDD V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.80VDD V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.90VDD V Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.85VDD V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.90VDD V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75VDD V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85VDD V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60VDD V 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 13 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH VIOOL Output low voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Typ Max 0.80VDD Unit V Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.20VDD V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.10VDD V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.10VDD V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.05VDD V Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.30VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.20VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.35VDD V Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.20VDD V IIOLEAK Input leakage current RPU I/O pin pull-up resistor 40 kOhm RPD I/O pin pull-down resistor 40 kOhm RIOESD Internal ESD series resistor 200 Ohm tIOGLITCH Pulse width of pulses to be removed by the glitch suppression filter tIOOF VIOHYST High Impedance IO connected to GROUND or VDD ±0.1 ±100 nA 10 50 ns GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25pF. 20+0.1CL 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600pF 20+0.1CL 250 ns Output fall time I/O pin hysteresis (VIOTHR+ - VIOTHR-) VDD = 1.98 - 3.8 V 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 0.1VDD 14 V www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.4. Typical Low-Level Output Current, 2V Supply Voltage 5 0.20 4 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.15 0.10 3 2 0.05 1 - 40°C 25°C 85°C 0.00 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] - 40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low- Level Output Current [m A] Low- Level Output Current [m A] 15 10 30 25 20 15 5 10 5 - 40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 - 40°C 25°C 85°C 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 15 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.5. Typical High-Level Output Current, 2V Supply Voltage 0.00 0.0 - 40°C 25°C 85°C - 40°C 25°C 85°C –0.5 High- Level Output Current [m A] High- Level Output Current [m A] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –2.5 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] High- Level Output Current [m A] –5 –10 –20 –30 –15 –40 –20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –50 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 16 www.silabs.com ...the world's most energy friendly microcontrollers 0.5 10 0.4 8 Low- Level Output Current [m A] Low- Level Output Current [m A] Figure 3.6. Typical Low-Level Output Current, 3V Supply Voltage 0.3 0.2 0.1 6 4 2 - 40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 40 50 35 40 Low- Level Output Current [m A] Low- Level Output Current [m A] 30 25 20 15 30 20 10 10 5 0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 17 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.7. Typical High-Level Output Current, 3V Supply Voltage 0.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –1 High- Level Output Current [m A] High- Level Output Current [m A] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 2.5 3.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –50 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 18 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.8. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 14 0.7 12 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.6 0.5 0.4 0.3 10 8 6 4 0.2 2 0.1 0.0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 50 50 40 40 30 20 10 30 20 10 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low- Level Output Current [m A] Low- Level Output Current [m A] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 19 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.9. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 –0.1 0 - 40°C 25°C 85°C –1 - 40°C 25°C 85°C –2 High- Level Output Current [m A] High- Level Output Current [m A] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –50 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 20 www.silabs.com ...the world's most energy friendly microcontrollers 3.9 Oscillators 3.9.1 LFXO Table 3.8. LFXO Symbol Parameter Condition Min Typ Max fLFXO Supported nominal crystal frequency ESRLFXO Supported crystal equivalent series resistance (ESR) CLFXOL Supported crystal external load range ILFXO Current consumption for core and buffer after startup. ESR=30 kOhm, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 190 nA tLFXO Start- up time. ESR=30 kOhm, CL=10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 400 ms 32.768 kHz 30 X Unit 120 kOhm 1 25 pF 1 See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration". 3.9.2 HFXO Table 3.9. HFXO Symbol Parameter fHFXO Supported nominal crystal Frequency ESRHFXO The transconductance of the HFXO input transistor at crystal startup CHFXOL Supported crystal external load range tHFXO Min Typ Current consumption for HFXO after startup Startup time Max 4 Supported crystal Crystal frequency 32 MHz equivalent series reCrystal frequency 4 MHz sistance (ESR) gmHFXO IHFXO Condition HFXOBOOST in CMU_CTRL equals 0b11 Unit 32 MHz 30 60 Ohm 400 1500 Ohm 20 mS 5 25 pF 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 85 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 165 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 400 µs 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 21 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.3 LFRCO Table 3.10. LFRCO Symbol Parameter fLFRCO Oscillation frequency , VDD= 3.0 V, TAMB=25°C tLFRCO Startup time not including software calibration 150 µs ILFRCO Current consumption 210 380 nA TUNESTEPL- Frequency step for LSB change in TUNING value 1.5 FRCO Condition Min Typ 31.29 Max 32.768 Unit 34.24 kHz % 42 42 40 40 38 38 Frequency [kHz] Frequency [kHz] Figure 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage - 40°C 25°C 85°C 36 34 34 32 32 30 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 36 30 –40 3.8 –15 5 25 Tem perature [°C] 45 Typ Max 65 85 3.9.4 HFRCO Table 3.11. HFRCO Symbol fHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C Condition Min 28 MHz frequency band 27.16 28.0 28.84 MHz 21 MHz frequency band 20.37 21.0 21.63 MHz 14 MHz frequency band 13.58 14.0 14.42 MHz 11 MHz frequency band 10.67 11.0 11.33 MHz 7 MHz frequency band 6.40 1 1.16 2 1 MHz frequency band tHFRCO_settling IHFRCO Unit 1 6.60 2 1.20 6.80 1 MHz 1.24 2 MHz Settling time after start-up fHFRCO = 14 MHz 0.6 Current consumption (Production test condition = 14 MHz) fHFRCO = 28 MHz 160 190 µA fHFRCO = 21 MHz 125 155 µA 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 22 Cycles www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter TUNESTEPHFRCO Condition Min Typ Max Unit fHFRCO = 14 MHz 104 120 µA fHFRCO = 11 MHz 94 110 µA fHFRCO = 6.6 MHz 63 90 µA fHFRCO = 1.2 MHz 22 32 µA 3 Frequency step for LSB change in TUNING value 0.3 % 1 For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable. 3 The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 2 1.45 1.45 1.40 1.40 1.35 1.35 Frequency [MHz] Frequency [MHz] Figure 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 1.30 - 40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.05 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 6.70 6.70 6.65 6.65 6.60 6.60 Frequency [MHz] Frequency [MHz] Figure 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature 6.55 6.50 6.45 6.40 6.50 6.45 6.40 - 40°C 25°C 85°C 6.35 6.30 2.0 6.55 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 6.30 –40 3.8 23 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 11.2 11.2 11.1 11.1 11.0 11.0 Frequency [MHz] Frequency [MHz] Figure 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 10.9 10.8 10.8 10.7 10.6 2.0 10.9 10.7 - 40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 10.6 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 14.2 14.2 14.1 14.1 14.0 14.0 Frequency [MHz] Frequency [MHz] Figure 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature 13.9 13.8 13.7 13.6 13.8 13.7 13.6 - 40°C 25°C 85°C 13.5 13.4 2.0 13.9 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 13.5 13.4 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 21.2 21.2 21.0 21.0 Frequency [MHz] Frequency [MHz] Figure 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 20.8 20.6 20.4 20.8 20.6 20.4 - 40°C 25°C 85°C 20.2 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 3.4 3.6 2.0 V 3.0 V 3.8 V 20.2 –40 3.8 24 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature 28.2 28.4 28.2 28.0 28.0 Frequency [MHz] Frequency [MHz] 27.8 27.6 27.4 27.8 27.6 27.4 27.2 27.2 - 40°C 25°C 85°C 27.0 26.8 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 27.0 26.8 –40 3.8 –15 5 25 Tem perature [°C] 45 Typ Max 65 85 3.9.5 AUXHFRCO Table 3.12. AUXHFRCO Symbol fAUXHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C tAUXHFRCO_settlingSettling time after start-up Condition Min Unit 28 MHz frequency band 27.16 28.0 28.84 MHz 21 MHz frequency band 20.37 21.0 21.63 MHz 14 MHz frequency band 13.58 14.0 14.42 MHz 11 MHz frequency band 10.67 11.0 11.33 MHz 7 MHz frequency band 6.40 1 6.60 1 MHz frequency band 1.16 2 1.20 fAUXHFRCO = 14 MHz 1 6.80 1 MHz 2 1.24 2 MHz 0.6 Cycles 3 TUNESTEPAUX- Frequency step for LSB change in HFRCO TUNING value 0.3 % 1 For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable. 3 The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 2 3.9.6 ULFRCO Table 3.13. ULFRCO Symbol Parameter Condition fULFRCO Oscillation frequency 25°C, 3V TCULFRCO Temperature coefficient 0.05 %/°C VCULFRCO Supply voltage coefficient -18.2 %/V 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 Min Typ Max 0.70 25 Unit 1.75 kHz www.silabs.com ...the world's most energy friendly microcontrollers 3.10 Analog Digital Converter (ADC) Table 3.14. ADC Symbol Parameter VADCIN Input voltage range Condition Min Single ended Differential VADCREFIN Input range of external reference voltage, single ended and differential Typ Max Unit 0 VREF V -VREF/2 VREF/2 V 1.25 VDD V VADCREFIN_CH7 Input range of external negative reference voltage on channel 7 See VADCREFIN 0 VDD - 1.1 V VADCREFIN_CH6 Input range of external positive reference voltage on channel 6 See VADCREFIN 0.625 VDD V 0 VDD V VADCCMIN Common mode input range IADCIN Input current CMRRADC Analog input common mode rejection ratio IADC Average active current IADCREF Current consumption of internal voltage reference CADCIN Input capacitance RADCIN Input ON resistance RADCFILT Input RC filter resistance CADCFILT Input RC filter/decoupling capacitance 2pF sampling capacitors <100 nA 65 dB 1 MSamples/s, 12 bit, external reference 377 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b00 67 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01 68 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10 71 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b11 244 µA 65 µA 2 pF Internal voltage reference 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 1 MOhm 10 250 26 kOhm fF www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter fADCCLK ADC Clock Frequency tADCCONV Acquisition time tADCACQVDD3 Required acquisition time for VDD/3 reference SNRADC Min Typ Max Unit 13 MHz 6 bit 7 ADCCLK Cycles 8 bit 11 ADCCLK Cycles 12 bit 13 ADCCLK Cycles 1 256 ADCCLK Cycles Conversion time tADCACQ tADCSTART Condition Programmable 2 µs Startup time of reference generator and ADC core in NORMAL mode 5 µs Startup time of reference generator and ADC core in KEEPADCWARM mode 1 µs 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 59 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 1 MSamples/s, 12 bit, single ended, VDD reference 65 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 65 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 67 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 69 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 67 dB Signal to Noise Ratio (SNR) 200 kSamples/s, 12 bit, single ended, VDD reference 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 27 63 www.silabs.com ...the world's most energy friendly microcontrollers Symbol SINADADC Parameter SIgnal-to-Noise And Distortion-ratio (SINAD) Condition Min Spurious-Free Dynamic Range (SFDR) Max Unit 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 200 kSamples/s, 12 bit, differential, VDD reference 69 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 70 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 62 dB 1 MSamples/s, 12 bit, single ended, VDD reference 64 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 64 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 66 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 68 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 61 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 65 dB 200 kSamples/s, 12 bit, single ended, VDD reference 66 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 68 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 69 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 64 dBc 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 76 dBc 200 kSamples/s, 12 bit, differential, VDD reference SFDRADC Typ 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 28 62 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min dBc 1 MSamples/s, 12 bit, differential, internal 1.25V reference 66 dBc 1 MSamples/s, 12 bit, differential, internal 2.5V reference 77 dBc 1 MSamples/s, 12 bit, differential, VDD reference 76 dBc 1 MSamples/s, 12 bit, differential, 2xVDD reference 75 dBc 1 MSamples/s, 12 bit, differential, 5V reference 69 dBc 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 75 dBc 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 75 dBc 76 dBc 200 kSamples/s, 12 bit, differential, internal 1.25V reference 79 dBc 200 kSamples/s, 12 bit, differential, internal 2.5V reference 79 dBc 200 kSamples/s, 12 bit, differential, 5V reference 78 dBc 200 kSamples/s, 12 bit, differential, VDD reference 79 dBc 200 kSamples/s, 12 bit, differential, 2xVDD reference 79 dBc 0.3 4 mV 0.3 mV 68 -4 Offset voltage After calibration, differential Thermometer output gradient DNLADC Differential non-linearity (DNL) VDD= 3.0 V, external 2.5V reference INLADC Integral non-linearity (INL), End point method VDD= 3.0 V, external 2.5V reference MCADC No missing codes GAINED OFFSETED Unit 73 After calibration, single ended TGRADADCTH Max 1 MSamples/s, 12 bit, single ended, VDD reference 200 kSamples/s, 12 bit, single ended, VDD reference VADCOFFSET Typ -1 11.999 1 -1.92 mV/°C -6.3 ADC Codes/ °C ±0.7 4 LSB ±1.2 ±3 LSB 12 2 0.033 %/°C 2 0.03 3 %/°C 2 0.7 3 LSB/°C 2 0.62 3 LSB/°C 1.25V reference 0.01 2.5V reference 0.01 1.25V reference 0.2 2.5V reference 0.2 Gain error drift Offset error drift bits 3 1 On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 29 www.silabs.com ...the world's most energy friendly microcontrollers at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue. 2 Typical numbers given by abs(Mean) / (85 - 25). 3 Max number given by (abs(Mean) + 3x stddev) / (85 - 25). The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.17 (p. 30) and Figure 3.18 (p. 30) , respectively. Figure 3.17. Integral Non-Linearity (INL) Digital ouput code INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1 4095 4094 Actual ADC tranfer function before offset and gain correction 4093 4092 Actual ADC tranfer function after offset and gain correction INL Error (End Point INL) Ideal transfer curve 3 2 1 VOFFSET 0 Analog Input Figure 3.18. Differential Non-Linearity (DNL) Digital ouput code DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2 Full Scale Range 4095 4094 Example: Adjacent input value VD+ 1 corrresponds to digital output code D+ 1 4093 4092 Actual transfer function with one m issing code. Example: Input value VD corrresponds to digital output code D Code width = 2 LSB DNL= 1 LSB Ideal transfer curve 5 0.5 LSB Ideal spacing between two adjacent codes VLSBIDEAL= 1 LSB 4 3 2 1 Ideal 50% Transition Point Ideal Code Center 0 Analog Input 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 30 www.silabs.com ...the world's most energy friendly microcontrollers 3.10.1 Typical performance Figure 3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 31 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 32 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 33 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.22. ADC Absolute Offset, Common Mode = Vdd /2 5 2.0 Vref= 1V25 Vref= 2V5 Vref= 2XVDDVSS Vref= 5VDIFF Vref= VDD 4 1.5 2 1.0 Actual Offset [LSB] Actual Offset [LSB] 3 VRef= 1V25 VRef= 2V5 VRef= 2XVDDVSS VRef= 5VDIFF VRef= VDD 1 0 –1 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 –1.0 –40 3.8 Offset vs Supply Voltage, Temp = 25°C –15 5 25 Tem p (C) 45 65 85 Offset vs Temperature, Vdd = 3V Figure 3.23. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [dB] SNR [dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 25 Tem perature [°C] 45 65 5VDIFF 1V25 85 78.0 –40 Signal to Noise Ratio (SNR) –15 5 25 Tem perature [°C] 45 65 85 Spurious-Free Dynamic Range (SFDR) 3.11 Digital Analog Converter (DAC) Table 3.15. DAC Symbol Parameter Condition VDACOUT Output voltage range VDD voltage reference, single ended VDACCM Output common mode voltage range IDAC Active current including references for 2 channels Min Max Unit 0 VDD V 0 VDD V 500 kSamples/s, 12bit 400 650 µA 100 kSamples/s, 12 bit 200 250 µA 17 25 µA 1 kSamples/s 12 bit NORMAL SRDAC Typ Sample rate 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 500 ksamples/s 34 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Continuous Mode fDAC DAC clock frequency CYCDACCONV Clock cyckles per conversion tDACCONV Conversion time tDACSETTLE Settling time SNRDAC SNDRDAC SFDRDAC Signal to Noise Ratio (SNR) Signal to Noisepulse Distortion Ratio (SNDR) Spurious-Free Dynamic Range(SFDR) Unit 1000 kHz Sample/Hold Mode 250 kHz Sample/Off Mode 250 kHz 2 2 µs 5 µs 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 59 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 57 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 54 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dBc 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 56 dBc 2 mV VDACOFFSET Offset voltage After calibration, single ended DNLDAC Differential non-linearity VDD= 3.0 V, VDD reference ±1 LSB INLDAC Integral non-linearity VDD= 3.0 V, VDD reference ±5 LSB MCDAC No missing codes 12 bits 3.12 Operational Amplifier (OPAMP) The electrical characteristics for the Operational Amplifiers are based on simulations. Table 3.16. OPAMP Symbol IOPAMP GOL Parameter Active Current Open Loop Gain Condition Min Typ Max Unit OPA2 BIASPROG=0xF, HALFBIAS=0x0, Unity Gain 350 405 µA OPA2 BIASPROG=0x7, HALFBIAS=0x1, Unity Gain 95 115 µA OPA2 BIASPROG=0x0, HALFBIAS=0x1, Unity Gain 13 17 µA OPA2 BIASPROG=0xF, HALFBIAS=0x0 101 dB OPA2 BIASPROG=0x7, HALFBIAS=0x1 98 dB OPA2 BIASPROG=0x0, HALFBIAS=0x1 91 dB 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 35 www.silabs.com ...the world's most energy friendly microcontrollers Symbol GBWOPAMP PMOPAMP Parameter Gain Bandwidth Product Phase Margin RINPUT Input Resistance RLOAD Load Resistance Condition Min VOUTPUT VOFFSET MHz OPA0/OPA1 BIASPROG=0x7, HALFBIAS=0x1 0.81 MHz OPA0/OPA1 BIASPROG=0x0, HALFBIAS=0x1 0.11 MHz OPA2 BIASPROG=0xF, HALFBIAS=0x0 2.11 MHz OPA2 BIASPROG=0x7, HALFBIAS=0x1 0.72 MHz OPA2 BIASPROG=0x0, HALFBIAS=0x1 0.09 MHz BIASPROG=0xF, HALFBIAS=0x0, CL=75 pF 64 ° BIASPROG=0x7, HALFBIAS=0x1, CL=75 pF 58 ° BIASPROG=0x0, HALFBIAS=0x1, CL=75 pF 58 ° 100 Mohm 200 Ohm 2000 Ohm OPA0/OPA1 11 mA OPA2 1.5 mA Load Current OPAxHCMDIS=0 VSS VDD V OPAxHCMDIS=1 VSS VDD-1.2 V VSS VDD V Input Voltage Output Voltage Unity Gain, VSS<Vin<VDD, OPAxHCMDIS=0 6 mV Unity Gain, VSS<Vin<VDD-1.2, OPAxHCMDIS=1 1 mV Input Offset Voltage VOFFSET_DRIFT Input Offset Voltage Drift SROPAMP Unit 16.36 OPA2 VINPUT Max OPA0/OPA1 BIASPROG=0xF, HALFBIAS=0x0 OPA0/OPA1 ILOAD_DC Typ 0.02 mV/°C OPA0/OPA1 BIASPROG=0xF, HALFBIAS=0x0 46.11 V/µs OPA0/OPA1 BIASPROG=0x7, HALFBIAS=0x1 1.21 V/µs OPA0/OPA1 BIASPROG=0x0, HALFBIAS=0x1 0.16 V/µs OPA2 BIASPROG=0xF, HALFBIAS=0x0 4.43 V/µs OPA2 BIASPROG=0x7, HALFBIAS=0x1 1.30 V/µs OPA2 BIASPROG=0x0, HALFBIAS=0x1 0.16 V/µs Slew Rate 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 36 www.silabs.com ...the world's most energy friendly microcontrollers Symbol PUOPAMP NOPAMP Parameter Condition Min Typ Max Unit OPA0/OPA1 BIASPROG=0xF, HALFBIAS=0x0 0.09 µs OPA0/OPA1 BIASPROG=0x7, HALFBIAS=0x1 1.52 µs OPA0/OPA1 BIASPROG=0x0, HALFBIAS=0x1 12.74 µs OPA2 BIASPROG=0xF, HALFBIAS=0x0 0.09 µs OPA2 BIASPROG=0x7, HALFBIAS=0x1 0.13 µs OPA2 BIASPROG=0x0, HALFBIAS=0x1 0.17 µs Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 101 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 141 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 196 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 229 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 1230 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 2130 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 1630 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 2590 µVRMS Power-up Time Voltage Noise Figure 3.24. OPAMP Common Mode Rejection Ratio 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 37 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.25. OPAMP Positive Power Supply Rejection Ratio Figure 3.26. OPAMP Negative Power Supply Rejection Ratio Figure 3.27. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 38 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.28. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 39 www.silabs.com ...the world's most energy friendly microcontrollers 3.13 Analog Comparator (ACMP) Table 3.17. ACMP Symbol Parameter VACMPIN Input voltage range 0 VDD V VACMPCM ACMP Common Mode voltage range 0 VDD V IACMP IACMPREF Active current Current consumption of internal voltage reference Condition Min Typ Max Unit BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register 0.1 0.6 µA BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register 2.87 12 µA BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register 195 520 µA Internal voltage reference off. Using external voltage reference 0.0 0.5 µA 2.15 3.00 µA 0 12 mV Internal voltage reference VACMPOFFSET Offset voltage BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register VACMPHYST ACMP hysteresis Programmable 17 mV CSRESSEL=0b00 in ACMPn_INPUTSEL 39 kOhm CSRESSEL=0b01 in ACMPn_INPUTSEL 71 kOhm CSRESSEL=0b10 in ACMPn_INPUTSEL 104 kOhm CSRESSEL=0b11 in ACMPn_INPUTSEL 136 kOhm RCSRES tACMPSTART Capacitive Sense Internal Resistance Startup time -12 10 µs The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 40) . IACMPREF is zero if an external voltage reference is used. Total ACMP Active Current IACMPTOTAL = IACMP + IACMPREF 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 40 (3.1) www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.29. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 20 2.5 HYSTSEL= 0 HYSTSEL= 2 HYSTSEL= 4 HYSTSEL= 6 2.0 Response Tim e [us] Current [uA] 15 1.5 1.0 10 5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 0 12 Current consumption, HYSTSEL = 4 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response time , Vcm = 1.25V, CP+ to CP- = 100mV 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12.0 Hysteresis [m V] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 41 www.silabs.com ...the world's most energy friendly microcontrollers 3.14 Voltage Comparator (VCMP) Table 3.18. VCMP Symbol Parameter VVCMPIN Input voltage range VDD V VVCMPCM VCMP Common Mode voltage range VDD V IVCMP Condition Min Typ Max Unit BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register 0.3 0.6 µA BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. 22 30 µA NORMAL 10 µs Single ended 10 mV Differential 10 mV 17 mV Active current tVCMPREF Startup time reference generator VVCMPOFFSET Offset voltage VVCMPHYST VCMP hysteresis tVCMPSTART Startup time 10 µs The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VCMP Trigger Level as a Function of Level Setting VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 42 (3.2) www.silabs.com ...the world's most energy friendly microcontrollers 3.15 LCD Table 3.19. LCD Symbol Parameter fLCDFR Frame rate NUMSEG Number of segments supported VLCD LCD supply voltage range Condition Min Max 30 Unit 200 Hz 11×8 Internal boost circuit enabled 2.0 seg 3.8 V Display disconnected, static mode, framerate 32 Hz, all segments on. 250 nA 550 nA 0 µA Internal voltage boost on, boosting from 2.2 V to 3.0 V. 8.4 µA VBLEV of LCD_DISPCTRL register to LEVEL0 3.0 V VBLEV of LCD_DISPCTRL register to LEVEL1 3.08 V VBLEV of LCD_DISPCTRL register to LEVEL2 3.17 V VBLEV of LCD_DISPCTRL register to LEVEL3 3.26 V VBLEV of LCD_DISPCTRL register to LEVEL4 3.34 V VBLEV of LCD_DISPCTRL register to LEVEL5 3.43 V VBLEV of LCD_DISPCTRL register to LEVEL6 3.52 V VBLEV of LCD_DISPCTRL register to LEVEL7 3.6 V ILCD Steady state current consumption. Display disconnected, quadruplex mode, framerate 32 Hz, all segments on, bias mode to ONETHIRD in LCD_DISPCTRL register. Internal voltage boost off ILCDBOOST Steady state Current contribution of internal boost. VBOOST Typ Boost Voltage The total LCD current is given by Equation 3.3 (p. 43) . ILCDBOOST is zero if internal boost is off. Total LCD Current Based on Operational Mode and Internal Boost ILCDTOTAL = ILCD + ILCDBOOST 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 43 (3.3) www.silabs.com ...the world's most energy friendly microcontrollers 3.16 I2C Table 3.20. I2C Standard-mode (Sm) Symbol Parameter Min Typ Max fSCL SCL clock frequency tLOW SCL clock low time 4.7 µs tHIGH SCL clock high time 4.0 µs tSU,DAT SDA set-up time 250 0 Unit 100 1 kHz ns 2,3 tHD,DAT SDA hold time 8 3450 ns tSU,STA Repeated START condition set-up time 4.7 µs tHD,STA (Repeated) START condition hold time 4.0 µs tSU,STO STOP condition set-up time 4.0 µs tBUF Bus free time between a STOP and START condition 4.7 µs 1 For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32TG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 4). 2 Table 3.21. I2C Fast-mode (Fm) Symbol Parameter Min Typ fSCL SCL clock frequency tLOW SCL clock low time 1.3 µs tHIGH SCL clock high time 0.6 µs tSU,DAT SDA set-up time 100 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 0.6 µs tHD,STA (Repeated) START condition hold time 0.6 µs tSU,STO STOP condition set-up time 0.6 µs tBUF Bus free time between a STOP and START condition 1.3 µs 0 8 Max Unit 400 1 2,3 900 kHz ns 1 For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32TG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 4). 2 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 44 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.22. I2C Fast-mode Plus (Fm+) Symbol Parameter Min Typ Max Unit fSCL SCL clock frequency tLOW SCL clock low time 0.5 µs tHIGH SCL clock high time 0.26 µs tSU,DAT SDA set-up time 50 ns tHD,DAT SDA hold time 8 ns tSU,STA Repeated START condition set-up time 0.26 µs tHD,STA (Repeated) START condition hold time 0.26 µs tSU,STO STOP condition set-up time 0.26 µs tBUF Bus free time between a STOP and START condition 0.5 µs 1 0 1000 kHz 1 For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32TG Reference Manual. 3.17 Digital Peripherals Table 3.23. Digital Peripherals Symbol Parameter Condition IUSART USART current USART idle current, clock enabled 7.5 µA/ MHz ILEUART LEUART current LEUART idle current, clock enabled 150 nA II2C I2C current I2C idle current, clock enabled 6.25 µA/ MHz ITIMER TIMER current TIMER_0 idle current, clock enabled 8.75 µA/ MHz ILETIMER LETIMER current LETIMER idle current, clock enabled 75 nA IPCNT PCNT current PCNT idle current, clock enabled 60 nA IRTC RTC current RTC idle current, clock enabled 40 nA ILCD LCD current LCD idle current, clock enabled 50 nA IAES AES current AES idle current, clock enabled 2.5 µA/ MHz IGPIO GPIO current GPIO idle current, clock enabled 5.31 µA/ MHz IPRS PRS current PRS idle current 2.81 µA/ MHz IDMA DMA current Clock enable 8.12 µA/ MHz 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 Min 45 Typ Max Unit www.silabs.com ...the world's most energy friendly microcontrollers 4 Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32TG822. 4.1 Pinout The EFM32TG822 pinout is shown in Figure 4.1 (p. 46) and Table 4.1 (p. 46). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 4.1. EFM32TG822 Pinout (top view, not to scale) Table 4.1. Device Pinout Pin Alternate Functionality / Description Pin # QFP48 Pin# and Name Pin Name Analog Timers Communication Other 1 PA0 LCD_SEG13 TIM0_CC0 #0/1/4 LEU0_RX #4 I2C0_SDA #0 PRS_CH0 #0 GPIO_EM4WU0 2 PA1 LCD_SEG14 TIM0_CC1 #0/1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 46 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # QFP48 Pin# and Name Pin Name Analog Timers Communication Other 3 PA2 LCD_SEG15 TIM0_CC2 #0/1 CMU_CLK0 #0 4 IOVDD_0 5 VSS 6 PB3 LCD_SEG20/ LCD_COM4 7 PB4 LCD_SEG21/ LCD_COM5 8 PB5 LCD_SEG22/ LCD_COM6 9 PB6 LCD_SEG23/ LCD_COM7 10 PC4 ACMP0_CH4 DAC0_P0 / OPAMP_P0 LETIM0_OUT0 #3 LES_CH4 #0 11 PB7 LFXTAL_P TIM1_CC0 #3 US0_TX #4 US1_CLK #0 12 PB8 LFXTAL_N TIM1_CC1 #3 US0_RX #4 US1_CS #0 13 PA12 LCD_BCAP_P 14 PA13 LCD_BCAP_N 15 PA14 LCD_BEXT 16 RESETn 17 PB11 18 VSS 19 AVDD_1 20 PB13 HFXTAL_P US0_CLK #4/5 LEU0_TX #1 21 PB14 HFXTAL_N US0_CS #4/5 LEU0_RX #1 22 IOVDD_3 Digital IO power supply 3. 23 AVDD_0 Analog power supply 0. 24 PD4 ADC0_CH4 OPAMP_P2 LEU0_TX #0 25 PD5 ADC0_CH5 OPAMP_OUT2 #0 LEU0_RX #0 26 PD6 ADC0_CH6 DAC0_P1 / OPAMP_P1 TIM1_CC0 #4 LETIM0_OUT0 #0 PCNT0_S0IN #3 US1_RX #2 I2C0_SDA #1 LES_ALTEX0 #0 ACMP0_O #2 27 PD7 ADC0_CH7 DAC0_N1 / OPAMP_N1 TIM1_CC1 #4 LETIM0_OUT1 #0 PCNT0_S1IN #3 US1_TX #2 I2C0_SCL #1 CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2 28 VDD_DREG Power supply for on-chip voltage regulator. 29 DECOUPLE Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. 30 PE4 LCD_COM0 US0_CS #1 31 PE5 LCD_COM1 US0_CLK #1 32 PE6 LCD_COM2 US0_RX #1 Digital IO power supply 0. Ground. Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. DAC0_OUT0 / OPAMP_OUT0 TIM1_CC2 #3 LETIM0_OUT0 #1 Ground. Analog power supply 1. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 47 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # QFP48 Pin# and Name Pin Name Analog Timers Communication Other 33 PE7 LCD_COM3 34 PC13 ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0 35 PC14 ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT TIM1_CC1 #0 PCNT0_S1IN #0 US0_CS #3 LES_CH14 #0 36 PC15 ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT TIM1_CC2 #0 US0_CLK #3 LES_CH15 #0 DBG_SWO #1 37 PF0 TIM0_CC0 #5 LETIM0_OUT0 #2 US1_CLK #2 LEU0_TX #3 I2C0_SDA #5 DBG_SWCLK #0/1 38 PF1 TIM0_CC1 #5 LETIM0_OUT1 #2 US1_CS #2 LEU0_RX #3 I2C0_SCL #5 DBG_SWDIO #0/1 GPIO_EM4WU3 39 PF2 LCD_SEG0 TIM0_CC2 #5 LEU0_TX #4 ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4 40 PF3 LCD_SEG1 PRS_CH0 #1 41 PF4 LCD_SEG2 PRS_CH1 #1 42 PF5 LCD_SEG3 PRS_CH2 #1 43 IOVDD_5 44 VSS 45 PE10 LCD_SEG6 TIM1_CC0 #1 US0_TX #0 BOOT_TX 46 PE11 LCD_SEG7 TIM1_CC1 #1 US0_RX #0 LES_ALTEX5 #0 BOOT_RX 47 PE12 LCD_SEG8 TIM1_CC2 #1 US0_RX #3 US0_CLK #0 I2C0_SDA #6 CMU_CLK1 #2 LES_ALTEX6 #0 48 PE13 LCD_SEG9 US0_TX #3 US0_CS #0 I2C0_SCL #6 LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5 US0_TX #1 LES_CH13 #0 Digital IO power supply 5. Ground. 4.2 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 48) . The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 4.2. Alternate functionality overview LOCATION Alternate Functionality 0 ACMP0_CH4 PC4 ACMP0_O PE13 1 2 3 4 5 6 Description Analog comparator ACMP0, channel 4. PD6 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 Analog comparator ACMP0, digital output. 48 www.silabs.com ...the world's most energy friendly microcontrollers Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description ACMP1_CH5 PC13 Analog comparator ACMP1, channel 5. ACMP1_CH6 PC14 Analog comparator ACMP1, channel 6. ACMP1_CH7 PC15 Analog comparator ACMP1, channel 7. ACMP1_O PF2 ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOT_RX PE11 Bootloader RX. BOOT_TX PE10 Bootloader TX. CMU_CLK0 PA2 PD7 Clock Management Unit, clock output number 0. CMU_CLK1 PA1 PE12 Clock Management Unit, clock output number 1. DAC0_N1 / OPAMP_N1 PD7 Operational Amplifier 1 external negative input. DAC0_OUT0 / OPAMP_OUT0 PB11 Digital to Analog Converter DAC0_OUT0 / OPAMP output channel number 0. DAC0_OUT1ALT / OPAMP_OUT1ALT PD7 PC13 PC14 Analog comparator ACMP1, digital output. Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1. PC15 OPAMP_OUT2 PD5 Operational Amplifier 2 output. DAC0_P0 / OPAMP_P0 PC4 Operational Amplifier 0 external positive input. DAC0_P1 / OPAMP_P1 PD6 Operational Amplifier 1 external positive input. OPAMP_P2 PD4 Operational Amplifier 2 external positive input. DBG_SWCLK PF0 PF0 DBG_SWDIO PF1 PF1 DBG_SWO PF2 PC15 GPIO_EM4WU0 PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 PE13 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. I2C0_SCL PA1 PD7 PF1 PE13 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PF0 PE12 I2C0 Serial Data input / output. LCD_BCAP_N PA13 LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P. LCD_BCAP_P PA12 LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P. Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up. Debug-interface Serial Wire viewer Output. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 Note that this function is not enabled after reset, and must be enabled by software to be used. 49 www.silabs.com ...the world's most energy friendly microcontrollers Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. LCD_BEXT PA14 An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO. LCD_COM0 PE4 LCD driver common line number 0. LCD_COM1 PE5 LCD driver common line number 1. LCD_COM2 PE6 LCD driver common line number 2. LCD_COM3 PE7 LCD driver common line number 3. LCD_SEG0 PF2 LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG1 PF3 LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG2 PF4 LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG3 PF5 LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0. LCD_SEG6 PE10 LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG7 PE11 LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1. LCD_SEG8 PE12 LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG9 PE13 LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2. LCD_SEG13 PA0 LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG14 PA1 LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG15 PA2 LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3. LCD_SEG20/ LCD_COM4 PB3 LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4 LCD_SEG21/ LCD_COM5 PB4 LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5 LCD_SEG22/ LCD_COM6 PB5 LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6 LCD_SEG23/ LCD_COM7 PB6 LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7 LES_ALTEX0 PD6 LESENSE alternate exite output 0. LES_ALTEX1 PD7 LESENSE alternate exite output 1. LES_ALTEX5 PE11 LESENSE alternate exite output 5. LES_ALTEX6 PE12 LESENSE alternate exite output 6. LES_ALTEX7 PE13 LESENSE alternate exite output 7. LES_CH4 PC4 LESENSE channel 4. LES_CH13 PC13 LESENSE channel 13. LES_CH14 PC14 LESENSE channel 14. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 50 www.silabs.com ...the world's most energy friendly microcontrollers Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description LES_CH15 PC15 LETIM0_OUT0 PD6 LETIM0_OUT1 PD7 LEU0_RX PD5 PB14 PF1 PA0 LEUART0 Receive input. LEU0_TX PD4 PB13 PF0 PF2 LEUART0 Transmit output. Also used as receive input in half duplex communication. LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. PCNT0_S0IN PC13 PD6 Pulse Counter PCNT0 input number 0. PCNT0_S1IN PC14 PD7 Pulse Counter PCNT0 input number 1. PRS_CH0 PA0 PF3 Peripheral Reflex System PRS, channel 0. PRS_CH1 PA1 PF4 Peripheral Reflex System PRS, channel 1. PF5 Peripheral Reflex System PRS, channel 2. PRS_CH2 LESENSE channel 15. PB11 PF0 PC4 Low Energy Timer LETIM0, output channel 0. PF1 TIM0_CC0 PA0 PA0 TIM0_CC1 PA1 TIM0_CC2 Low Energy Timer LETIM0, output channel 1. PA0 PF0 Timer 0 Capture Compare input / output channel 0. PA1 PF1 Timer 0 Capture Compare input / output channel 1. PA2 PA2 PF2 Timer 0 Capture Compare input / output channel 2. TIM1_CC0 PC13 PE10 PB7 PD6 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 PC14 PE11 PB8 PD7 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 PC15 PE12 PB11 PC13 Timer 1 Capture Compare input / output channel 2. US0_CLK PE12 PE5 PC15 PB13 PB13 USART0 clock input / output. US0_CS PE13 PE4 PC14 PB14 PB14 USART0 chip select input / output. US0_RX PE11 PE6 PE12 PB8 USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. US0_TX PE10 PE7 PE13 PB7 USART0 Synchronous mode Master Output / Slave Input (MOSI). US1_CLK PB7 PF0 USART1 clock input / output. US1_CS PB8 PF1 USART1 chip select input / output. USART1 Asynchronous Receive. US1_RX PD6 USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. US1_TX PD7 USART1 Synchronous mode Master Output / Slave Input (MOSI). 4.3 GPIO Pinout Overview The specific GPIO pins available in EFM32TG822 is shown in Table 4.3 (p. 52) . Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 51 www.silabs.com ...the world's most energy friendly microcontrollers Table 4.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port A - PA14 PA13 PA12 - - - - - - - - - PA2 PA1 PA0 Port B - PB14 PB13 - PB11 - - PB8 PB7 PB6 PB5 PB4 PB3 - - - Port C PC15 PC14 PC13 - - - - - - - - PC4 - - - - Port D - - - - - - - - PD7 PD6 PD5 PD4 - - - - Port E - - PE13 PE12 PE11 PE10 - - PE7 PE6 PE5 PE4 - - - - Port F - - - - - - - - - - PF5 PF4 PF3 PF2 PF1 PF0 4.4 Opamp Pinout Overview The specific opamp terminals available in EFM32TG822 is shown in Figure 4.2 (p. 52) . Figure 4.2. Opamp Pinout PB11 PC4 PD4 PD6 PD7 OUT0ALT + OPA0 OUT0 + OPA2 OUT2 OUT1ALT + OPA1 OUT1 - PC13 PC14 PC15 PD5 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 52 www.silabs.com ...the world's most energy friendly microcontrollers 4.5 TQFP48 Package Figure 4.3. TQFP48 Note: 1. Dimensions and tolerance per ASME Y14.5M-1994 2. Control dimension: Millimeter. 3. Datum plane AB is located at bottom of lead and is coincident with the lead where the lead exists from the plastic body at the bottom of the parting line. 4. Datums T, U and Z to be determined at datum plane AB. 5. Dimensions S and V to be determined at seating plane AC. 6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimensions A and B do include mold mismatch and are determined at datum AB. 7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimension to exceed 0.350. 8. Minimum solder plate thickness shall be 0.0076. 9. Exact shape of each corner is optional. Table 4.4. QFP48 (Dimensions in mm) DIM MIN NOM MAX DIM MIN NOM MAX A - 7.000 BSC - M - 12DEG REF - A1 - 3.500 BSC - N 0.090 - 0.160 B - 7.000 BSC - P - 0.250 BSC - B1 - 3.500 BSC - R 0.150 - 0.250 C 1.000 - 1.200 S - 9.000 BSC - 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 53 www.silabs.com ...the world's most energy friendly microcontrollers DIM MIN NOM MAX DIM MIN NOM MAX D 0.170 - 0.270 S1 - 4.500 BSC - E 0.950 - 1.050 V - 9.000 BSC - F 0.170 - 0.230 V1 - 4.500 BSC - G - 0.500 BSC - W - 0.200 BSC - H 0.050 - 0.150 AA - 1.000 BSC - J 0.090 - 0.200 K 0.500 - 0.700 L 0DEG - 7DEG The TQFP48 Package is 7 by 7 mm in size and has a 0.5 mm pin pitch. The TQFP48 Package uses Nickel-Palladium-Gold preplated leadframe. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 54 www.silabs.com ...the world's most energy friendly microcontrollers 5 PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. TQFP48 PCB Land Pattern a p8 p7 p6 p1 b e c p2 p5 p3 p4 d Table 5.1. QFP48 PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dim. (mm) Symbol Pin number Symbol Pin number a 1.60 P1 1 P6 36 b 0.30 P2 12 P7 37 c 0.50 P3 13 P8 48 d 8.50 P4 24 - - e 8.50 P5 25 - - 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 55 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.2. TQFP48 PCB Solder Mask a b e c d Table 5.2. QFP48 PCB Solder Mask Dimensions (Dimensions in mm) Symbol Dim. (mm) a 1.72 b 0.42 c 0.50 d 8.50 e 8.50 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 56 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.3. TQFP48 PCB Stencil Design a b e c d Table 5.3. QFP48 PCB Stencil Design Dimensions (Dimensions in mm) 1. 2. 3. 4. 5. 6. Symbol Dim. (mm) a 1.50 b 0.20 c 0.50 d 8.50 e 8.50 The drawings are not to scale. All dimensions are in millimeters. All drawings are subject to change without notice. The PCB Land Pattern drawing is in compliance with IPC-7351B. Stencil thickness 0.125 mm. For detailed pin-positioning, see Figure 4.3 (p. 53) . 5.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 57 www.silabs.com ...the world's most energy friendly microcontrollers 6 Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking (top view) 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 58) . 6.3 Errata Please see the errata document for EFM32TG822 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 58 www.silabs.com ...the world's most energy friendly microcontrollers 7 Revision History 7.1 Revision 1.40 March 6th, 2015 Updated Block Diagram. Updated Energy Modes current consumption. Updated Power Management section. Updated LFRCO and HFRCO sections. Added AUXHFRCO to block diagram and Electrical Characteristics. Corrected unit to kHz on LFRCO plots y-axis. Updated ADC section and added clarification on conditions for INLADC and DNLADC parameters. Updated DAC section and added clarification on conditions for INLDAC and DNLDAC parameters. Updated OPAMP section. Updated ACMP section and the response time graph. Updated VCMP section. Updated Digital Peripherals section. 7.2 Revision 1.30 July 2nd, 2014 Corrected single power supply voltage minimum value from 1.85V to 1.98V. Updated current consumption. Updated transition between energy modes. Updated power management data. Updated GPIO data. Updated LFXO, HFXO, HFRCO and ULFRCO data. Updated LFRCO and HFRCO plots. Updated ACMP data. 7.3 Revision 1.21 November 21st, 2013 Updated figures. Updated errata-link. Updated chip marking. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 59 www.silabs.com ...the world's most energy friendly microcontrollers Added link to Environmental and Quality information. Re-added missing DAC-data. 7.4 Revision 1.20 September 30th, 2013 Added I2C characterization data. Corrected GPIO operating voltage from 1.8 V to 1.85 V. Corrected the ADC gain and offset measurement reference voltage from 2.25 to 2.5V. Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. Document changed status from "Preliminary". Updated Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections. 7.5 Revision 1.10 June 28th, 2013 Updated power requirements in the Power Management section. Removed minimum load capacitance figure and table. Added reference to application note. Other minor corrections. 7.6 Revision 1.00 September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Added GPIO_EM4WU3, GPIO_EM4WU4 and GPIO_EM4WU5 pins and removed GPIO_EM4WU1 in the Alternate functionality overview table. Other minor corrections. 7.7 Revision 0.96 May 4th, 2012 Corrected PCB footprint figures and tables. 7.8 Revision 0.95 February 27th, 2012 Corrected operating voltage from 1.8 V to 1.85 V. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 60 www.silabs.com ...the world's most energy friendly microcontrollers Added rising POR level and corrected Thermometer output gradient in Electrical Characteristics section. Updated Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup. Added Gain error drift and Offset error drift to ADC table. Added reference to errata document. 7.9 Revision 0.92 July 22nd, 2011 Updated current consumption numbers from latest device characterization data. Updated OPAMP electrical characteristics. Made ADC plots render properly in Adobe Reader. Corrected number of DAC channels available. 7.10 Revision 0.90 April 14th, 2011 Initial preliminary release. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 61 www.silabs.com ...the world's most energy friendly microcontrollers A Disclaimer and Trademarks A.1 Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. A.2 Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 62 www.silabs.com ...the world's most energy friendly microcontrollers B Contact Information Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 63 www.silabs.com ...the world's most energy friendly microcontrollers Table of Contents 1. Ordering Information .................................................................................................................................. 2 2. System Summary ...................................................................................................................................... 3 2.1. System Introduction ......................................................................................................................... 3 2.2. Configuration Summary .................................................................................................................... 7 2.3. Memory Map ................................................................................................................................. 8 3. Electrical Characteristics ............................................................................................................................. 9 3.1. Test Conditions .............................................................................................................................. 9 3.2. Absolute Maximum Ratings .............................................................................................................. 9 3.3. General Operating Conditions ........................................................................................................... 9 3.4. Current Consumption ..................................................................................................................... 10 3.5. Transition between Energy Modes .................................................................................................... 12 3.6. Power Management ....................................................................................................................... 12 3.7. Flash .......................................................................................................................................... 13 3.8. General Purpose Input Output ......................................................................................................... 13 3.9. Oscillators .................................................................................................................................... 21 3.10. Analog Digital Converter (ADC) ...................................................................................................... 26 3.11. Digital Analog Converter (DAC) ...................................................................................................... 34 3.12. Operational Amplifier (OPAMP) ...................................................................................................... 35 3.13. Analog Comparator (ACMP) .......................................................................................................... 40 3.14. Voltage Comparator (VCMP) ......................................................................................................... 42 3.15. LCD .......................................................................................................................................... 43 3.16. I2C ........................................................................................................................................... 44 3.17. Digital Peripherals ....................................................................................................................... 45 4. Pinout and Package ................................................................................................................................. 46 4.1. Pinout ......................................................................................................................................... 46 4.2. Alternate Functionality Pinout .......................................................................................................... 48 4.3. GPIO Pinout Overview ................................................................................................................... 51 4.4. Opamp Pinout Overview ................................................................................................................. 52 4.5. TQFP48 Package .......................................................................................................................... 53 5. PCB Layout and Soldering ........................................................................................................................ 55 5.1. Recommended PCB Layout ............................................................................................................ 55 5.2. Soldering Information ..................................................................................................................... 57 6. Chip Marking, Revision and Errata .............................................................................................................. 58 6.1. Chip Marking ................................................................................................................................ 58 6.2. Revision ...................................................................................................................................... 58 6.3. Errata ......................................................................................................................................... 58 7. Revision History ...................................................................................................................................... 59 7.1. Revision 1.40 ............................................................................................................................... 59 7.2. Revision 1.30 ............................................................................................................................... 59 7.3. Revision 1.21 ............................................................................................................................... 59 7.4. Revision 1.20 ............................................................................................................................... 60 7.5. Revision 1.10 ............................................................................................................................... 60 7.6. Revision 1.00 ............................................................................................................................... 60 7.7. Revision 0.96 ............................................................................................................................... 60 7.8. Revision 0.95 ............................................................................................................................... 60 7.9. Revision 0.92 ............................................................................................................................... 61 7.10. Revision 0.90 .............................................................................................................................. 61 A. Disclaimer and Trademarks ....................................................................................................................... 62 A.1. Disclaimer ................................................................................................................................... 62 A.2. Trademark Information ................................................................................................................... 62 B. Contact Information ................................................................................................................................. 63 B.1. ................................................................................................................................................. 63 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 64 www.silabs.com ...the world's most energy friendly microcontrollers List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32TG822 Memory Map with largest RAM and Flash sizes ........................................................................ 8 3.1. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ......................................................... 11 3.2. EM3 current consumption. ..................................................................................................................... 11 3.3. EM4 current consumption. ..................................................................................................................... 11 3.4. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 15 3.5. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. 16 3.6. Typical Low-Level Output Current, 3V Supply Voltage .................................................................................. 17 3.7. Typical High-Level Output Current, 3V Supply Voltage ................................................................................. 18 3.8. Typical Low-Level Output Current, 3.8V Supply Voltage ............................................................................... 19 3.9. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................... 20 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 22 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 23 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 23 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 24 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 24 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 24 3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 25 3.17. Integral Non-Linearity (INL) ................................................................................................................... 30 3.18. Differential Non-Linearity (DNL) .............................................................................................................. 30 3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 31 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 32 3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 33 3.22. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 34 3.23. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 34 3.24. OPAMP Common Mode Rejection Ratio ................................................................................................. 37 3.25. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 38 3.26. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 38 3.27. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 38 3.28. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 39 3.29. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 41 4.1. EFM32TG822 Pinout (top view, not to scale) .............................................................................................. 46 4.2. Opamp Pinout ...................................................................................................................................... 52 4.3. TQFP48 .............................................................................................................................................. 53 5.1. TQFP48 PCB Land Pattern ..................................................................................................................... 55 5.2. TQFP48 PCB Solder Mask ..................................................................................................................... 56 5.3. TQFP48 PCB Stencil Design ................................................................................................................... 57 6.1. Example Chip Marking (top view) ............................................................................................................. 58 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 65 www.silabs.com ...the world's most energy friendly microcontrollers List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 7 3.1. Absolute Maximum Ratings ...................................................................................................................... 9 3.2. General Operating Conditions ................................................................................................................... 9 3.3. Current Consumption ............................................................................................................................. 10 3.4. Energy Modes Transitions ...................................................................................................................... 12 3.5. Power Management ............................................................................................................................... 12 3.6. Flash .................................................................................................................................................. 13 3.7. GPIO .................................................................................................................................................. 13 3.8. LFXO .................................................................................................................................................. 21 3.9. HFXO ................................................................................................................................................. 21 3.10. LFRCO .............................................................................................................................................. 22 3.11. HFRCO ............................................................................................................................................. 22 3.12. AUXHFRCO ....................................................................................................................................... 25 3.13. ULFRCO ............................................................................................................................................ 25 3.14. ADC .................................................................................................................................................. 26 3.15. DAC .................................................................................................................................................. 34 3.16. OPAMP ............................................................................................................................................. 35 3.17. ACMP ............................................................................................................................................... 40 3.18. VCMP ............................................................................................................................................... 42 3.19. LCD .................................................................................................................................................. 43 3.20. I2C Standard-mode (Sm) ...................................................................................................................... 44 3.21. I2C Fast-mode (Fm) ............................................................................................................................ 44 3.22. I2C Fast-mode Plus (Fm+) .................................................................................................................... 45 3.23. Digital Peripherals ............................................................................................................................... 45 4.1. Device Pinout ....................................................................................................................................... 46 4.2. Alternate functionality overview ................................................................................................................ 48 4.3. GPIO Pinout ........................................................................................................................................ 52 4.4. QFP48 (Dimensions in mm) .................................................................................................................... 53 5.1. QFP48 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 55 5.2. QFP48 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 56 5.3. QFP48 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 57 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 66 www.silabs.com ...the world's most energy friendly microcontrollers List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 40 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 42 3.3. Total LCD Current Based on Operational Mode and Internal Boost ................................................................. 43 2015-03-06 - EFM32TG822FXX - d0052_Rev1.40 67 www.silabs.com