size:1MB - Torex Semiconductor

XC9265 Series
ETR05053-002
Ultra Low Power Synchronous Step-Down PFM DC/DC Converter
☆GreenOperation Compatible
■GENERAL DESCRIPTION
XC9265 series are Ultra Low Power synchronous-rectification type PFM step down DC/DC converters with a built-in 0.4Ω
(TYP.) Pch driver and 0.4Ω (TYP.) Nch synchronous switching transistor, designed to allow the use of ceramic capacitor.
PFM control enables a low quiescent current, making these products ideal for battery operated devices that require high
efficiency and long battery life.
Only inductor, CIN and CL capacitors are needed as external parts to make a step down DC/DC circuit.
Operation voltage range is from 2.0V to 6.0V. This product has fixed output voltage from 1.0V to 4.0V(accuracy: ±2.0%) in
increments of 0.1V.
During stand-by, all circuits are shutdown to reduce consumption to as low as 0.1μA(TYP.) or less.
With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when input
voltage gets lower than UVLO detection voltage. Besides, XC9265 series has UVLO release voltage of 1.8V (Typ.).
The product with CL discharge function can discharge CL capacitor during stand-by mode due to the internal resistance by turning
on the internal switch between VOUT -GND. This enables output voltage restored to GND level fast.
■FEATURES
■APPLICATIONS
Input Voltage Range
:
2.0V~6.0V
●
Wearable Devices
●
Smart meters
●
Bluetooth units
●
Energy Harvest devices
●
Back up power supply circuits
Supply Current
:
0.50μA @ VOUT(T)=1.8V (TYP.)
●
Portable game consoles
Control Method
:
PFM control
●
Devices with 1 Lithium cell
High Speed Transient
PFM Switching Current
:
:
50mV (VIN=3.6V, VOUT=1.8V, IOUT=10μA→50mA)
330mA(XC9265A/C), 180mA(XC9265B/D)
Function
:
Short Protection
Output Voltage Setting
:
1.0V~4.0V (±2.0%, 0.1V step increments)
Output Current
:
200mA(XC9265A/C)
50mA(XC9265B/D)
Driver Transistor
:
0.4Ω (Pch Driver Tr)
0.4Ω (Nch Synchronous rectifier Switch Tr)
CL Discharge(XC9265C/ D)
UVLO
Ceramic Capacitor Compatible
Operation Ambient Temperature
:
-40~+85℃
Package
:
SOT-25, USP-6EL
Environmentally Friendly
:
EU RoHS compliant, Pb Free
■ TYPICAL PERFORMANCE
CHARACTERISTICS
■TYPICAL APPLICATION CIRCUIT
●Efficiency vs. Output Current
XC9265B181xR-G(VOUT=1.8V)
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
CIN
(Ceramic)
L
VIN
LX
CE
VOUT
GND
100
VOUT
CL
(Ceramic)
Efficiency : EFFI (%)
VIN
80
VIN =4.2V
60
40
VIN =3.6V
VIN =2.7V
20
0
0.01
0.1
1
10
100
Output Current : I OUT (mA)
1/29
XC9265 series
■BLOCK DIAGRAM
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
XC9265A and B type do not have CL Discharge function.
■PRODUCT CLASSIFICATION
●Ordering information
XC9265①②③④⑤⑥-⑦
DESIGNATOR
Product Type
①
②③
(*1)
Output Voltage
Fixed number
④
⑤⑥-⑦
ITEM
(*2)
Packages (Order Unit)
SYMBOL
DESCRIPTION
A
Iout=200mA Without CL Discharge
B
Iout=50mA Without CL Discharge
C
Iout=200mA With CL Discharge
D
Iout=50mA With CL Discharge
10 ~ 40
1
Output Voltage
e.g. VOUT=1.8V⇒②=1, ③=8
Fixed number
4R-G
USP-6EL (3,000/Reel)
MR-G
SOT-25 (3,000/Reel)
(*1)
VOUT=1.8V is standard.
(*2)
The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.
2/29
XC9265
Series
■PIN CONFIGURATION
LX
VOUT
5
4
1
2
3
VIN
GND
CE
VIN 6
1 LX
NC 5
2 GND
CE 4
3 VOUT
USP-6EL
(BOTTOM VIEW)
SOT-25
(TOP VIEW)
* The dissipation pad for the USP-6EL package should be solder-plated in
recommended mount pattern and metal masking so as to enhance mounting
strength and heat release.
The mount pattern should be connected to GND pin (No.2).
■PIN ASSIGNMENT
PIN NUMBER
USP-6EL
SOT-25
PIN NAME
FUNCTIONS
1
5
LX
Switching
2
2
GND
Ground
3
4
VOUT
Output Voltage
4
3
CE
Chip Enable
5
-
NC
No Connection
6
1
VIN
Power Input
■CE PIN FUNCTION
PIN NAME
CE
SIGNAL
STATUS
H
Operation (All Series)
L
Standby (All Series)
* Please do not leave the CE pin open.
■ABSOLUTE MAXIMUM RATINGS
Ta=25˚C
PARAMETER
SYMBOL
RATINGS
UNITS
VIN Pin Voltage
VN
-0.3 ~ +7.0
V
LX Pin Voltage
VLX
-0.3 ~ VIN+0.3 or +7.0 (*1)
V
VOUT Pin Voltage
VOUT
-0.3 ~ VIN+0.3 or +7.0 (*1)
V
CE Pin Voltage
VCE
-0.3 ~ +7.0
V
LX Pin Current
ILX
1000
mA
Power Dissipation
SOT-25
USP-6EL
Pd
250
120
mW
Operating Ambient Temperature
Topr
-40 ~ +85
˚C
Storage Temperature
Tstg
-55 ~ +125
˚C
* All voltages are described based on the GND.
(*1)
The maximum value is the lower of either VIN + 0.3 or +7.0.
3/29
XC9265 series
■ELECTRICAL CHARACTERISTICS
●XC9265Axx1 Type, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Output Voltage
VOUT(E) (*2)
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Hysteresis Voltage
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
E2
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
LX SW “H” Leak Current
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
260
330
400
mA
①
100
-
-
%
②
-
93
-
%
①
-
93
-
%
①
-
87
-
%
①
PFM Switching Current
IPFM
Maximum Duty Ratio (*3)
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
CE “Low” Current
ICEL
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V(*1).
Unless otherwise stated, VIN=VCE=5.0V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
(*4)
Not applicable to the products with VOUT(T) < 2.2V since it is out of operational volatge range.
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5)
LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
4/29
XC9265
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9265Bxx1 Type, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Output Voltage
VOUT(E) (*2)
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Hysteresis Voltage
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
E2
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
LX SW “H” Leak Current
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
115
180
250
mA
①
100
-
-
%
②
-
95
-
%
①
-
95
-
%
①
-
89
-
%
①
PFM Switching Current
IPFM
Maximum Duty Ratio (*3)
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
CE “Low” Current
ICEL
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V(*1).
Unless otherwise stated, VIN=VCE=5.0V
(*1)
VOUT(T)=Nominal Output Voltage
(*2)
VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.2V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5)
LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
5/29
XC9265 series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9265Cxx1Type、with CL Discharge Function
PARAMETER
SYMBOL
Input Voltage
VIN
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Output Voltage
VOUT(E) (*2)
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Hysteresis Voltage
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
E2
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
LX SW “H” Leak Current
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
260
330
400
mA
①
100
-
-
%
②
-
93
-
%
①
-
93
-
%
①
-
87
-
%
①
PFM Switching Current
IPFM
Maximum Duty Ratio (*3)
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
55
80
105
Ω
③
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
CE “Low” Current
ICEL
Short Protection
Threshold Voltage
CL Discharge
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V(*1).
RDCHG
VIN=VOUT=5.0V, VCE=0V, LX=Open.
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.2V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
6/29
XC9265
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9265Dxx1 Type, with CL Discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.
Output Voltage
VOUT(E) (*2)
Voltage which LX pin changes “L” to “H” level
E1
while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Release Voltage
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.8
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
UVLO Hysteresis Voltage
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
VIN=2.0V, if VOUT(T)≦1.5V (*1),
E2
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
LX SW “H” Leak Current
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
115
180
250
mA
①
100
-
-
%
②
-
95
-
%
①
-
95
-
%
①
-
89
-
%
①
PFM Switching Current
IPFM
Maximum Duty Ratio (*3)
MAXDTY
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
Efficiency (*4)
EFFI
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA.
VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA.
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
55
80
105
Ω
③
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
CE “Low” Current
ICEL
Short Protection
Threshold Voltage
CL Discharge
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V(*1).
RDCHG
VIN=VOUT=5.0V, VCE=0V, LX=Open.
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.2V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
7/29
XC9265 series
■ELECTRICAL CHARACTERISTICS (Continued)
XC9265 series voltage chart
SYMBOL
E1
E2
PARAMETER
Output Voltage
Supply Current
UNITS: V
UNITS: V
UNITS: μA
OUTPUT
MIN.
MAX.
1.0
0.980
1.020
1.1
1.078
1.122
1.2
1.176
1.224
1.3
1.274
1.326
1.4
1.372
1.428
1.5
1.470
1.530
1.6
1.568
1.632
1.7
1.666
1.734
1.8
1.764
1.836
1.9
1.862
1.938
2.0
1.960
2.040
2.1
2.058
2.142
2.2
2.156
2.244
2.3
2.254
2.346
2.4
2.352
2.448
2.5
2.450
2.550
2.6
2.548
2.652
2.7
2.646
2.754
2.8
2.744
2.856
2.9
2.842
2.958
3.0
2.940
3.060
3.1
3.038
3.162
3.2
3.136
3.264
3.3
3.234
3.366
3.4
3.332
3.468
3.5
3.430
3.570
3.6
3.528
3.672
3.7
3.626
3.774
3.8
3.724
3.876
3.9
3.822
3.978
4.0
3.920
4.080
VOLTAGE
8/29
TYP.
MAX.
0.5
0.8
0.5
0.9
0.6
1.1
0.7
1.5
0.8
2.1
1.5
3.0
XC9265
Series
■TEST CIRCUITS
9/29
XC9265 series
■TYPICAL APPLICATION CIRCUIT
L
VIN
CIN
(Ceramic)
VIN
LX
CE
VOUT
VOUT
CL
(Ceramic)
GND
【Recommended components】
MANUFACTURE
PRODUCT NUMBER
VALUE
L
TDK
VLF302512M-100M
10μH
CIN
TAIYO YUDEN
LMK107BJ106MA
10μF/10V
CL
TAIYO YUDEN
JMK107BJ226MA
22μF/6.3V
* Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components.
* Characteristics are dependent on deviations in the coil inductance value. Test fully using the actual device.
* A value of 10μH is recommended for the coil inductance.
* If a tantalum or electrolytic capacitor is used for the load capacitance CL, ripple voltage will increase, and there is a possibility that operation will
become unstable. Test fully using the actual device.
10/29
XC9265
Series
■ OPERATIONAL EXPLANATION
The XC9265 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch Tr, current
sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.)
An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the IC operates with
high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even when switching current
superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage and current range. The IC is compatible
with low-capacitance ceramic capacitors, and a small, high-performance step-down DC-DC converter can be created.
The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block diagram. Therefore
the average output voltage of the step-down circuit, including peripheral components, depends on the ripple voltage. Before use, test fully using
the actual device.
VIN =VCE=3.6V、VOUT=1.8V、IOUT=5mA、L=10μH、CL=22uF、Ta=25℃
VIN =VCE=3.6V、VOUT=1.8V、IOUT=30mA、L=10μH 、CL =22uF、Ta=25℃
VLX
VLX
VOUT
VOUT
VLX : 2[V/div]
VOUT : 50[mV/div]
VOUT(E)
Voltage
ILX
ILX
IPFM
10[μs/div ]
ILX : 100[mA/div]
10[μs/div ]
<Reference voltage supply (VREF)>
Reference voltage for stabilization of the output voltage of the IC.
<PFM control>
(1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing resistors RFB1 and
RFB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM comparator sends a signal to the
buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is higher than VREF, the PFM comparator sends a
signal to prevent the Pch driver Tr from turning on.
(2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the Lx pin. When the
current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver through the PFM control circuit. This
signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.
(3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time elapses and the
PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal to the PFM control circuit that
prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage, the PFM comparator starts Pch driver Tr on.
11/29
XC9265 series
■OPERATIONAL EXPLANATION (Continued)
By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output voltage is
stabilized with high efficiency from light loads to heavy loads.
<PFM Switching Current >
The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr current.
The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this on-time tON can be
calculated using the following equation:
tON = L × IPFM / (VIN – VOUT)
<Maximum on-time function>
To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain interval even though
the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any timing using the maximum on-time
function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function instead of the current sense circuit, the Nch
synchronous rectification switch Tr will not turn on and the coil current will flow to the VOUT pin by means of the parasite diode of the Nch
synchronous rectification switch Tr.
<Through mode>
When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on continuously.
(1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current that is several tens
of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM control circuit to the buffer driver. This
signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.
(2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches the set PFM
switching current (IPFM) again.
If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of mA lower than the
PFM switching current (IPFM), the Pch driver Tr stays on continuously.
<VIN start mode>
When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage approaches VREF. After
the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is released. In order to prevent an excessive
rush current while VIN start mode is activated, the coil current flows to the VOUT pin by means of the parasitic diode of the Nch synchronous
rectification Tr. In VIN start mode as well, the coil current is limited by the PFM switching current.
<Short-circuit protection function>
The short-circuit protection function monitors the VOUT voltage. In the event that the VOUT pin is accidentally shorted to GND or an excessive load
current causes the VOUT voltage to drop below the set short-circuit protection voltage, the short-circuit protection function activates, and turns off
and latches the Pch driver Tr at any selected timing. Once in the latched state, the IC is turned off and then restarted from the CE pin, or operation
is started by re-applying the VIN voltage.
<UVLO function>
When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns off the Pch driver
Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above the UVLO release voltage, the
IC restarts operation.
<CL discharge function>
On the XC9265 series, a CL discharge function is available as an option (XC9265C/XC9265D types). This function enables quick discharging of
the CL load capacitance when “L” voltage is input into the CE pin by the Nch Tr connected between the VOUT-GND pins, or in UVLO mode. This
prevents malfunctioning of the application in the event that a charge remains on CL when the IC is stopped. The discharge time is determined by
CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram below). Using this time constant τ= CL×RDCHG, the
discharge time of the output voltage is calculated by means of the equation below.
V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V)
V: Output voltage after discharge
VOUT : Set output voltage
t: Discharge time
CL: Value of load capacitance (CL)
RDCHG : Value of CL discharge resistance Varies by power supply voltage.
τ: CL × RDCHG
The CL discharge function is not available on the XC9265A/XC9265B types.
12/29
XC9265
Series
■NOTE ON USE
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected
components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the
characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA
Standard) ceramic capacitor.
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC
operation to become unstable, so reinforce the area around the GND pin of the IC in particular.
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.
5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple voltage will be
too large. Before use, test fully using the actual device.
6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.
7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency may result.
8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive may cause
the short-circuit protection function to activate. Before use, test fully using the actual device.
9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high temperature,
test fully using the actual device
10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise.
11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test fully using the
actual device.
12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current overlay may
occur during the interval until the output voltage reaches the set voltage (refer to the diagram below).
XC9265Aシリーズ、V
XC9265A series
IN=VCE=0→6.0V、VOUT =1.0V、I OUT =200mA、L=10μH、C L=22uF、Ta=25℃
VLX
ILX
VLX : 10[V/div ]
IPFM
I L : 200[mA/div ]
VOUT : 1[V/div ]
VOUT
VIN : 5[V/div ]
VIN
Zoom
200[μs/div ]
VLX
VLX : 10[V/div ]
I L : 200[mA/div ]
ILX
VOUT : 1[V/div ]
VOUT
VIN
VIN : 5[V/div ]
5[μs/div ]
13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches a value near the
set voltage.
14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not operate. Before
use, test fully using the actual device.
15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage. Before use, test
fully using the actual device.
13/29
XC9265 series
■NOTE ON USE (Continued)
16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use, test fully using
the actual device.
17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use, test fully using
the actual device.
18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching current (IPFM), or
before the maximum on-time elapses. Before use, test fully using the actual device.
19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases.
20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
21. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.
14/29
XC9265
Series
■NOTE ON USE (Continued)
●Instructions of pattern layouts
1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and ground pin.
2. Please mount each external component as close to the IC as possible.
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of
switching may result in instability of the IC.
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.
●Recommended Pattern Layout (USP-6EL)
Top view
Bottom view
●Recommended Pattern Layout (SOT-25)
Top view
Bottom view
15/29
XC9265 series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Efficiency vs. Output Current
XC9265A181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
100
80
40
VIN =2.7V
VIN =4.2V
60
Efficiency : EFFI (%)
Efficiency : EFFI (%)
100
XC9265A181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN =3.6V
80
VIN =2.7V
60
VIN =4.2V
VIN =3.6V
40
20
20
0
0
0.01
0.1
1
10
100
0.01
1000
0.1
XC9265B181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL =44μF(JMK107BJ226MA×2)
Efficiency : EFFI (%)
Efficiency : EFFI (%)
VIN =3.6V
VIN =2.7V
20
80
VIN =4.2V
60
VIN =3.6V
VIN =2.7V
40
20
0
0
0.01
0.1
1
10
100
0.01
0.1
1
Output Current : I OUT (mA)
100
XC9265A301
XC9265A301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
100
100
80
80
VIN =4.2V
VIN =3.6V
40
20
VIN =4.2V
60
VIN =3.6V
40
20
0
0
0.1
1
10
Output Current : I OUT (mA)
16/29
10
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
Efficiency : EFFI (%)
Efficiency : EFFI (%)
Output Current : I OUT (mA)
0.01
1000
100
VIN =4.2V
60
100
XC9265B181
80
40
10
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
100
60
1
Output Current : I OUT (mA)
Output Current : I OUT (mA)
100
1000
0.01
0.1
1
10
Output Current : I OUT (mA)
100
1000
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(1) Efficiency vs. Output Current (Continued)
XC9265B301
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L =22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L =44μF(JMK107BJ226MA×2)
100
80
Efficiency : EFFI (%)
Efficiency : EFFI (%)
100
VIN =4.2V
60
VIN =3.6V
40
20
80
VIN =4.2V
60
VIN =3.6V
40
20
0
0
0.01
0.1
1
10
100
0.01
0.1
Output Current : I OUT (mA)
1
10
100
Output Current : I OUT (mA)
(2) Output Voltage vs. Output Current
XC9265A181
XC9265A181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L =44μF(JMK107BJ226MA×2)
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
C L =22μF(JMK107BJ226MA)
2.2
VIN =2.7V,3.6V,4.2V
VIN =2.7V,3.6V,4.2V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
2.2
2.0
1.8
1.6
2.0
1.8
1.6
1.4
1.4
1.2
1.2
0.01
0.1
1
10
100
0.01
1000
Output Current : I OUT (mA)
1
10
100
1000
Output Current : I OUT (mA)
XC9265B181
XC9265B181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L =22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L =44μF(JMK107BJ226MA×2)
2.2
2.2
VIN =2.7V,3.6V,4.2V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
0.1
2.0
1.8
1.6
1.4
VIN =2.7V,3.6V,4.2V
2.0
1.8
1.6
1.4
1.2
1.2
0.01
0.1
1
Output Current : I OUT (mA)
10
100
0.01
0.1
1
10
100
Output Current : I OUT (mA)
17/29
XC9265 series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Output Current (Continued)
XC9265A301
XC9265A301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
3.4
3.4
VIN =3.6V,4.2V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
VIN =3.6V,4.2V
3.2
3.0
2.8
3.2
3.0
2.8
2.6
2.6
2.4
2.4
0.01
0.1
1
10
100
0.01
1000
0.1
Output Current : I OUT (mA)
10
100
XC9265B301
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
3.4
1000
3.4
VIN =3.6V,4.2V
VIN =3.6V,4.2V
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
1
Output Current : I OUT (mA)
3.2
3.0
2.8
2.6
3.2
3.0
2.8
2.6
2.4
2.4
0.01
0.1
1
10
100
0.01
0.1
Output Current : I OUT (mA)
1
10
100
Output Current : I OUT (mA)
XC9265A181
XC9265A181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
300
300
250
250
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
(3) Ripple Voltage vs. Output Current
VIN =2.7V
200
VIN =3.6V
150
VIN =4.2V
100
50
0.1
1
10
Output Current : I OUT (mA)
18/29
VIN =3.6V
150
VIN =2.7V
100
50
0
0
0.01
VIN =4.2V
200
100
1000
0.01
0.1
1
10
Output Current : I OUT (mA)
100
1000
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Ripple Voltage vs. Output Current (Continued)
XC9265B181
XC9265B181
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
300
Ripple Voltage : Vr (mV)
300
Ripple Voltage : Vr (mV)
250
200
150
VIN =4.2V
VIN =3.6V
100
VIN =2.7V,3.6V,4.2V
250
200
150
100
VIN =2.7V
50
50
0
0.01
0
0.1
1
10
100
0.01
0.1
Output Current : I OUT (mA)
XC9265A301
250
250
200
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
300
VIN =4.2V
VIN =3.6V
100
50
200
VIN =4.2V
150
VIN =3.6V
100
50
0
0
0.1
1
10
100
1000
0.01
0.1
1
10
100
1000
Output Current : I OUT (mA)
XC9265B301
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
300
300
250
250
Ripple Voltage : Vr (mV)
Ripple Voltage : Vr (mV)
Output Current : I OUT (mA)
200
VIN =3.6V
VIN =4.2V
150
100
200
150
VIN =4.2V
VIN =3.6V
100
50
50
0
0.01
100
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL =44μF(JMK107BJ226MA×2)
300
0.01
10
XC9265A301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
150
1
Output Current : I OUT (mA)
0
0.1
1
Output Current : I OUT (mA)
10
100
0.01
0.1
1
10
100
Output Current : I OUT (mA)
19/29
XC9265 series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Output Voltage Vs. Ambient Temperature
XC9265x301
XC9265x181
3.3
VIN =5.0V
VIN =5.0V
2.0
Output Voltage : VOUT (V)
Output Voltage : VOUT (V)
2.1
1.9
1.8
1.7
3.2
3.1
3.0
2.9
2.8
1.6
2.7
1.5
-50
-25
0
25
50
75
-50
100
-25
Ambient Temperature: Ta(℃)
0
25
50
75
100
Ambient Temperature: Ta(℃)
(5) Supply Current vs. Ambient Temperature
XC9265x301
XC9265x181
3.0
3.0
VIN =2.3V
VIN =3.5V
2.5
Supply Current : Iq ( μA)
Supply Current : Iq ( μA)
2.5
2.0
1.5
1.0
2.0
1.5
1.0
0.5
0.5
0.0
0.0
-50
-25
0
25
50
75
-50
100
-25
Ambient Temperature: Ta(℃)
0
25
50
75
100
Ambient Temperature: Ta(℃)
(6) Stand-by Current vs. Ambient Temperature
XC9265x301
XC9265x181
3.0
VIN=5.0V,3.6V,2.3V
Standby Current: I STB (μA)
Standby Current: I STB (μA)
3.0
2.5
2.0
1.5
1.0
2.0
1.5
1.0
0.5
0.5
0.0
0.0
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
20/29
VIN=5.0V,3.6V
2.5
75
100
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
75
100
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(7) UVLO Release Voltage vs. Ambient Temperature
XC9265x181
XC9265x301
2.00
UVLO Release Voltage: VRELEASE (V)
UVLO Release Voltage: VRELEASE (V)
2.00
VRELEASE (T) =1.8V
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
VRELEASE (T) =1.8V
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature: Ta(℃)
0
25
50
75
100
Ambient Temperature: Ta(℃)
XC9265A181
XC9265A301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL =22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL =22μF(JMK107BJ226MA)
600
600
VIN =5.0V,3.6V
500
PFM Switching Current: IPFM (mA)
PFM Switching Current: IPFM (mA)
(8) PFM Switching Current vs. Ambient Temperature
VIN =2.3V
400
300
200
100
0
VIN =5.0V,3.6V
500
400
300
200
100
0
-50
-25
0
25
50
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
XC9265B181
XC9265B301
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL =22μF(JMK107BJ226MA)
500
500
400
PFM Switching Current: IPFM (mA)
PFM Switching Current: IPFM (mA)
Ambient Temperature: Ta (℃)
VIN =5.0V
VIN =3.6V
VIN =2.3V
300
200
100
0
400
VIN =5.0V
300
VIN =3.6V
200
100
0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
21/29
XC9265 series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(9) Maximum Frequency vs. Ambient Temperature
XC9265A101
XC9265A251
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
3,000
3,000
VIN =5.0V
Maximum Frequency (kHz)
Maximum Frequency (kHz)
VIN =5.0V
2,500
VIN =3.6V
2,000
VIN =2.7V
1,500
VIN =2.0V
1,000
500
2,500
VIN =4.2V
VIN =3.6V
2,000
1,500
1,000
500
0
0
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature: Ta(℃)
0
25
50
XC9265A401
XC9265B101
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
3,000
VIN =5.0V
2,500
VIN =5.5V
Maximum Frequency (kHz)
Maximum Frequency (kHz)
2,500
VIN =5.0V
2,000
1,500
1,000
500
VIN =3.6V
2,000
VIN =2.7V
VIN =2.0V
1,500
1,000
500
0
0
-50
-25
0
25
50
75
-50
100
-25
VIN =3.6V
50
75
100
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
VIN =4.2V
3,000
VIN =6.0V
VIN =5.0V
Maximum Frequency (kHz)
2,500
25
XC9265B401
XC9265B251
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
3,000
0
Ambient Temperature: Ta(℃)
Ambient Temperature: Ta(℃)
Maximum Frequency (kHz)
100
3,000
VIN =6.0V
2,000
1,500
1,000
500
0
VIN =5.5V
2,500
VIN =5.0V
2,000
1,500
1,000
500
0
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
22/29
75
Ambient Temperature: Ta(℃)
75
100
-50
-25
0
25
50
Ambient Temperature: Ta(℃)
75
100
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Pch Driver ON Resistance vs. Ambient Temperature
(11) Nch Driver ON Resistance vs. Ambient Temperature
XC9265
VIN =VCE,VOUT=0V,ILX=100mA
1.2
1.0
Topr=85℃
Topr=25℃
0.8
Topr=-40℃
0.6
0.4
0.2
LX SW “Nch” ON Resistance: RLXN (Ω)
LX SW “Pch” ON Resistance: RLXP (Ω)
XC9265
0.0
VIN =VCE
1.2
1.0
Topr=85℃
Topr=25℃
0.8
Topr=-40℃
0.6
0.4
0.2
0.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
1.5
2.0
(12) Lx SW "H" Leakage Current vs. Ambient Temperature
XC9265
3.0
4.0
4.5
5.0
XC9265
VOUT=VCE=0V,VLX=0V
VOUT=VCE=0V,VLX=5.0V
LX Leak Current : ILXL (μA)
3.0
VIN =5.0V
2.5
2.0
1.5
1.0
0.5
VIN =5.0V
2.5
2.0
1.5
1.0
0.5
0.0
0.0
-50
-25
0
25
50
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta ( ℃)
Ambient Temperature: Ta (℃)
(14) CE "High" Voltage vs. Ambient Temperature
(15) CE "Low" Voltage vs. Ambient Temperature
XC9265
XC9265
1.0
CE “Low” Voltage: VCEL (V)
1.0
CE “High” Voltage: VCEH (V)
3.5
(13) Lx SW "L" Leakage Current vs. Ambient Temperature
3.0
LX Leak Current : ILXL (μA)
2.5
Input Voltage : VIN (V)
Input Voltage : VIN (V)
0.8
0.6
VIN =5.0V
VIN =3.6V
0.4
VIN =2.0V
0.2
0.0
0.8
0.6
VIN =5.0V
VIN =3.6V
0.4
VIN =2.0V
0.2
0.0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
23/29
XC9265 series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(16) CL Discharge vs. Ambient Temperature
(17) Short Protection Thrreshold vs. Ambient Temperature
XC9265C/D
XC9265
VIN =VOUT,VCE=0V
VIN =VCE
1.0
Short Protection Thrreshold Volage(V)
CL Discharge Resistance: (Ω)
600
500
400
VIN =6.0V
300
VIN =4.0V
VIN =2.0V
200
100
0
VIN =5.0V,3.6V,2.0V
0.8
0.6
0.4
0.2
0.0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
(18) Rising Output Voltage
XC9265A181
XC9265A181
VIN =VCE=0→3.6V,IOUT=10uA
VIN =VCE=0→3.6V,IOUT=100mA
VOUT
VOUT
VIN
VIN
VLX
VLX
ILx
ILx
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
XC9265B181
XC9265B181x
VIN =VCE=0→3.6V,IOUT=10uA
VIN =VCE=0→3.6V,IOUT=50mA
VOUT
VIN
VIN
VLX
VLX
ILx
ILx
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
24/29
VOUT
VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BBJ106MA),
CL=22μF(JMK107BJ226MA)
XC9265
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(19) Load Transient Response
XC9625A301
XC9265A301
VIN =3.6V, IOUT=10uA→100mA
VIN =3.6V IOUT=10uA→100mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
XC9265B301
XC9265B301
VIN =3.6V, IOUT=10uA→50mA
VIN =3.6V, IOUT=10uA→50mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
XC9265A181
XC9265A181
VIN =3.6V, IOUT=10uA→100mA
VIN =3.6V IOUT=10uA→100mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=44μF(JMK107BJ226MA×2)
25/29
XC9265 series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(19) Load Transient Response (Continued)
XC9265B181
XC9265B181
VIN =3.6V IOUT=10uA→50mA
VIN =3.6V IOUT=10uA→50mA
VOUT
VOUT
VLX
VLX
ILx
ILx
Iout
Iout
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
C L=22μF(JMK107BJ226MA)
26/29
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226MA×2)
XC9265
Series
■PACKAGING INFORMATION
●SOT-25
(unit: mm)
●USP-6EL
(unit: mm)
1.8±0.05
1PIN INDENT
0.3±0.05
1
6
2
3
5
4
(0.55)
1.5±0.05
●USP-6EL Reference Pattern Layout (unit: mm)
A※構造上、端子の一部がパッケージ側面よ
part of the pin may appear from
り露出する場合があります。
the
side of the package because of
its structure.
●USP-6EL Reference Metal Mask Design (unit: mm)
27/29
XC9265 series
■MARKING RULE
SOT-25(Under
●SOT-25(Underdot仕様)
dot)
5
①
4
②
③
④
MARK① represents product series
MARK
PRODUCT SERIES
C
XC9265A/B/C/D*****-G
MARK② represents output voltage
⑤
MARK
1
2
3
Zoom
拡大
●USP-6EL
USP-6EL
②
⑤
③
3
④
2
①
1
6
5
OUTPUT VOLTAGE
PRODUCT SERIES
0
-
1.9
2.9
3.9
1
1.0
2.0
3.0
4.0
2
1.1
2.1
3.1
-
3
1.2
2.2
3.2
-
4
1.3
2.3
3.3
-
5
1.4
2.4
3.4
-
6
1.5
2.5
3.5
-
7
1.6
2.6
3.6
-
8
1.7
2.7
3.7
-
9
1.8
2.8
3.8
-
A
-
1.9
2.9
3.9
B
1.0
2.0
3.0
4.0
C
1.1
2.1
3.1
-
D
1.2
2.2
3.2
-
E
1.3
2.3
3.3
-
F
1.4
2.4
3.4
-
H
1.5
2.5
3.5
-
K
1.6
2.6
3.6
-
L
1.7
2.7
3.7
-
M
1.8
2.8
3.8
-
4
XC9265A/B*****-G
XC9265C/D*****-G
MARK③ represents output voltage range
MARK
OUTPUT
VOLTAGE
A
1.0~1.8V
B
1.9~2.8V
C
2.9~3.8V
D
3.9~4.0V
E
1.0~1.8V
F
1.9~2.8V
H
2.9~3.8V
K
3.9~4.0V
PRODUCT SERIES
XC9265A/C*****-G
XC9265B/D*****-G
MARK④⑤ represents production lot number
01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ
(G, I, J, O, Q, W excluded and no character inversion used)
28/29
XC9265
Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
29/29