Accu-Guard® SMD Thin-Film Fuse HOW TO CHOOSE THE CORRECT ACCU-GUARD® FUSE FOR CIRCUIT PROTECTION Correct choice of an Accu-Guard® fuse for a given application is fairly straightforward. The factor of pre-arc I2t, however, requires clarification. The proper design for pre-arc I2t is presented by way of example. DESIGN PARAMETERS 1. Operating Temperature The Accu-Guard® is specified for operation in the temperature range of -55°C to +125°C. Note, however, that fusing current is sensitive to temperature. This means that the fuse must be derated or uprated at circuit temperatures other than 25°C: Environmental Temperature Accu-Guard® Current Carrying Capacity* F0402E, F0603E F0805B, F1206A, F0805B 2.50A F1206B & 3.00A F0603C F0612D -55°C to -11°C 1.07 x IR 1.07 x IR 1.07 x IR -10°C to 60°C IR IR IR 1.07 x IR 1.07 x IR 61°C to 100°C 0.85 x IR 0.93 x IR 0.90 x IR 0.90 x IR 0.80 x IR 101°C to 125°C 0.80 x IR 0.90 x IR 0.90 x IR 0.75 x IR 0.75 x IR IR IR *As a function of nominal rated current, IR. 2. Circuit Voltage Maximum Voltage: Accu-Guard® is specified for circuits of up to rated voltage. Accu-Guard® will successfully break currents at higher voltages as well, but over voltage may crack the fuse body. Minimum Voltage: Accu-Guard® cannot be used in circuits with voltage of about 0.5V and less. The internal resistance of the fuse will limit the fault current to a value which will prevent reliable actuation of the fuse (<2 x rated current). 3. Maximum Fault Current 5. Switch-on and Other Pulse Current Many circuits generate a large current pulse when initially connected to power. There are also circuits which are subject to momentary current pulses due to external sources; telephone line cards which are subject to lightning-induced pulses are one example. These current pulses must be passed by the fuse without causing actuation. These pulses may be so large that they are the determining factor for choosing the Accu-Guard® current rating; not necessarily steady state current. In order to design for current pulses, the concept of fuse pre-arc Joule integral, I2t, must be understood. Fuse current rating is defined by the requirement that 2 x IR will cause actuation in <5 seconds. This rating does not indicate how the fuse will react to very high currents of very short duration. Rather, the fusing characteristic at very high currents is specified by I2t-t curves (or I2t-I). I2t expresses the amount of energy required to actuate the fuse. Total I2t expresses the total energy which will be passed by the fuse until total cessation of current flow. Pre-arc I2t expresses that energy required to cause large irreversible damage to the fuse element (Total I2t = pre-arc I2t + arc I2t). If the Joule integral of the switch-on pulse is larger than the fuse pre-arc I2t, nuisance actuation will occur. In order to choose the proper Accu-Guard® current rating for a given application, it is necessary to calculate the I2t Joule integral of the circuit switch-on and other current pulses and compare them to the Accu-Guard® I2t-t curves. An AccuGuard® fuse must be chosen such that the pulse I2t is no more than 50% of the pre-arc I2t of the prospective fuse. Pre-arc I2t of the Accu-Guard® fuses is well characterized; I2t-t and I2t-I graphs are in this catalog. The problem is calculating the I2t of the circuit current pulses. This concept is not familiar to most engineers. Correct calculation of pulse Joule integral and subsequent choice of Accu-Guard® current rating is illustrated by way of the attached examples. Accu-Guard® is fully tested and specified for fault currents up to 50A. Accu-Guard® will successfully break currents above 50A, but such over current may crack the fuse body or damage the fuse terminations. 4. Steady-State Current The Accu-Guard® current rating is based on IEC Specification 127-3. In accordance with this international standard, Accu-Guard® is specified to operate at least 4 hours at rated current without fusing (25°C). Engineering tests have shown that F0805B and F1206A/B Accu-Guard® will in fact operate at least 20,000 hours at rated current without fusing (25°C). 27 Accu-Guard® SMD Thin-Film Fuse DESIGNING FOR CURRENT PULSE SITUATIONS 2. Triangular current pulse The Joule integral for triangular pulse is [(Imax.)2 x t]/3, see Fig. 2a. 1. Sine wave current pulse The Joule integral for sine wave pulse is [(Imax.)2 x t]/2, l max. see Fig. 1a. l max. t t Fig. 1a. Sine wave pulse parameters for Joule integral calculation, example #1. Thus, for the current pulse in Figure 1b, the Joule integral is [(4.8A)2 x 7.7 x 10-6 sec]/2 = 8.9 x 10-5 A2 sec. Fig. 2a. Triangular pulse parameters for Joule integral calculation, example #2. Thus, for the current pulse in Figure 2b, the Joule integral is [(1.5A)2 x 3 x 10-3 sec]/3 = 2.25 x 10-3 A2sec. 10 µsec/div 2 msec/div 0.5A/div 1A/div Fig. 1b. Sine wave pulse, example #1. Fig. 2b. Triangular pulse, example #2. The pulse duration is 7.7µsec. We must find a fuse that can absorb at least 8.9 x 10-5 X 2 = 1.8 x 10-4 A2sec Joule integral within 7.7 µsec without actuation. According to the I2t graph on page 6, pre-arcing Joule integral is 2.3x10-4 A2sec for the 0.5A fuse, which is slightly more than needed. The next lower rating (0.375A), has only 6x10-5 A2sec, which is not enough. Therefore, 0.5A fuse should be chosen for this application, see Figure 1c. The pulse duration is 3 msec. In the I2t graph on page 6, prearcing Joule integral for 3 msec pulse is 4 x 10-3A2sec for the 0.5A fuse (not enough) and 2 x 10-2 for the 0.75A fuse (more than enough). Therefore, 0.75A fuse should be chosen for this application, see Figure 2c. FUSE PRE-ARCING JOULE INTEGRALS vs. PRE-ARCING TIME 100 PRE-ARCING TIME l2t, A2 100 1 sec 10-1 10-2 1 10-3 10-1 10-4 10-3 PRE-ARCING TIME l2t, A2 sec 10 10 10-2 x 10-5 -7 -6 10 10 10-5 10-4 10-3 10-2 10-1 PRE-ARCING TIME, sec 0.75A x 10-5 10-7 10-6 10-5 10-4 10-3 10-2 10-1 PRE-ARCING TIME, sec 0.5A 10-4 1 10 Fig. 1c. Choice of 0.5A fuse, example #1. Pre-arcing I2t Maximum I2t design rule I2t for sample current pulse X 28 FUSE PRE-ARCING JOULE INTEGRALS vs. PRE-ARCING TIME 1 10 Fig. 2c. Choice of 0.75A fuse, example #2. Pre-arcing I2t Maximum I2t design rule X I2t for sample switch-on pulse Accu-Guard® SMD Thin-Film Fuse DESIGNING FOR CURRENT PULSE SITUATIONS (CONT.) 3. Trapezoidal current pulse 4. Lightning strike The Joule integral for a trapezoidal pulse is (Imin.)2 + Imin. x (Imax. - Imin.) + ( Imax-Imin)2 x t, 3 [ A lightning strike pulse is shown in Figure 4a. After an initial linear rise, the current declines exponentially. ] see Fig. 3a. l max. 0.51 max. l max. l min. t Fig. 3a. Trapezoidal pulse parameters for Joule integral calculation, example #3. Thus, for current pulse in Figure 3b, the Joule integral is: {(0.56A)2+0.56A x (1A-0.56A)+ (1A-0.56A)2 } x 3 x 10-3s = 1.9 x 10-3A2sec. 3 [ ] 0.5 msec/div t0.5 Fig. 4a. Lightning pulse parameters for Joule integral calculation, example #4. Joule integral for the linear current rise is calculated as for a triangular pulse, see example #2. The Joule integral for the exponential decline is Imax.2 x t0.5 x (-1/2In 0.5) = 0.72Imax.2 x t0.5 Thus, for the sample lightning strike pulse in Figure 4b, the total Joule integral is: (25A)2 x 2 x 10-6sec/3+0.72 x (25A)2 x 10 x 10-6sec = 4.92 x 10-3A2sec. 10 µsec/div 0.5A/div 5A/div Fig. 3b. Trapezoidal pulse, example #3. According to the I2t graph on page 6, the 0.5A fuse should be chosen for this application, see Figure 3c. FUSE PRE-ARCING JOULE INTEGRALS vs. PRE-ARCING TIME 100 PRE-ARCING TIME l2t, A2 sec Fig. 4b. Lightning strike pulse, example #4. For practical calculations, the duration of exponential decline may be assumed to be 3t0.5, because within this time 98.5% of the pulse energy is released. Thus, the total pulse duration in this example is 30 µsec, and the 1.25A fuse should be chosen for this application, see Figure 4c. 10 FUSE PRE-ARCING JOULE INTEGRALS vs. PRE-ARCING TIME 1 10-1 10-2 10-3 0.50A 100 x PRE-ARCING TIME l2t, A2 sec 10 10-4 1 10-5 10-7 10-6 10-5 10-4 10-3 10-2 10-1 PRE-ARCING TIME, sec 1 10 Fig. 3c. Choice of 0.5A fuse, example #3. Pre-arcing I2t Maximum I2t design rule X I2t for sample switch-on pulse 1.25A 10-1 10-2 x 10-3 10-4 10-5 10-7 10-6 10-5 10-4 10-3 10-2 10-1 PRE-ARCING TIME, sec 1 10 Fig. 4c. Choice of 0.5A fuse, example #4. Pre-arcing I2t Maximum I2t design rule X I2t for sample switch-on pulse 29 Accu-Guard® SMD Thin-Film Fuse DESIGNING FOR CURRENT PULSE SITUATIONS (CONT.) 5. Complex current pulse 6. Switch-on pulse and steady-state current If the pulse consists of several waveforms, all of them should be evaluated separately, and then the total Joule integral should be calculated as well. In Figure 6a, the switch-on pulse is a triangle pulse with a 5.1 x 10-3 A2sec Joule integral of 5 msec duration; the 0.75A fuse will meet this requirement, see Figure 6b. 200 µsec/div 2 msec/div 2A/div Fig. 5a. Complex pulse, example #5. In Figure 5a, the Joule integral for the first triangle is [(4.67A)2 x 294 x 10-6sec]/3=2.14 x 10-3 A2sec and 0.75A fuse should meet this condition, see Figure 5b. FUSE PRE-ARCING JOULE INTEGRALS vs. PRE-ARCING TIME 100 Fig. 6a. Switch-on pulse and steady-state current, example #6. FUSE PRE-ARCING JOULE INTEGRALS vs. PRE-ARCING TIME 100 10 10-1 10 10-2 1 10-3 10-2 10-3 PRE-ARCING TIME l2t, A2 sec 1 PRE-ARCING TIME l2t, A2 sec 0.75A x 10-4 10-1 0.75A x x 10-5 10-7 10-6 10-5 10-4 10-3 10-2 10-1 PRE-ARCING TIME, sec 10-4 10-5 10-7 10-6 10-5 10-4 10-3 10-2 10-1 PRE-ARCING TIME, sec 1 10 Fig. 5b. Choice of fuse, example #5. Pre-arcing I2t Maximum I2t design rule X I2t for sample switch-on pulse The Joule integral for the second triangle is [(5.33A)2 x 269 x 10-6sec]/3 = 2.55 x 10-3 A2sec, and 0.75A fuse is suitable for this case also, see Figure 5b. However, for the whole pulse, the Joule integral is 4.7 x 10-3 A2sec, and the total duration is 563 µsec. For the 0.75A fuse, the Joule integral is only 8.6 x 10-3 A2sec for this pulse duration, so the 1A fuse should be chosen for this application, see Figure 5b. 30 0.5A/div 1 10 Fig. 6b. Choice of 0.75A fuse, example #6. Pre-arcing I2t Maximum I2t design rule X I2t for sample switch-on pulse The steady-state current is 0.5A, and 1A fuse is typically recommended to meet the steady-state condition. Based on steady-state current, the 1A fuse should be chosen for this application.