www.avx.com AVX Advanced Ceramic Capacitors for Power Supply, High Voltage and Tip and Ring Applications Version 15.5 Contents Introduction – Application Specific MLCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 SMPS (Switch Mode Power Supply) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 SM Style Stacked MLC Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-29 RM Style Stacked MLC Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-32 SMM Style Stacked MLC Capacitors Extended Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-34 RoHS Compliant RMM Style Stacked MLC Capacitors Extended Range . . . . . . . . . . . . . . . . . . 35-36 SMX High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-40 CH/CV Style Vertical/Horizontal Mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41-46 SXP Style for High Temperature Application up to 200ºC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47-48 TurboCapTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-51 RoHS TurboCapTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-54 Mini-TurboCapTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-56 RoHS Compliant Mini-TurboCapTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-58 MH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 RH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60-61 Custom Lead Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Assembly Guidelines (SM, CH, CV & RH Styles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63-64 SK Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-66 SE Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67-68 CECC Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 High Voltage MLC Leaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 ESCC Qualified SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-75 HV Style (US Preferred Sizes) DIP Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76-78 RV Style – RoHS Compliant High Voltage DIP Leaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-81 CH/CV Style (European Preferred Sizes) Vertical/Horizontal Mount, DIP & Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82-85 SV Style Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86-89 SV Style Automotive Grade High Voltage MLC Radial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90-91 MLC Chip Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93-96 Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97-101 MIL-PRF-123/Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102-106 High Temperature MLCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107-112 High Voltage MLC Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113-114 High Voltage MLCC Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118-119 High Voltage MLC Chips FLEXITERM® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120-124 High Voltage MLC Leaded Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125-126 Tip & Ring Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127-128 Tip & Ring Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129-130 MLC Chips, Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131-132 Surface Mount CapGuardTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133-134 Single-In-Line Packages (SIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135-136 Discoidal MLC Feed-Through Capacitors, Filters and Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 137-140 DC Style (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137-139 Custom Discoidal Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Filtered Arrays XD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Baseline Management – BS9100 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Advanced Application Specific Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Application Specific MLCs Problem Solving at the Leading Edge As the world’s leading manufacturer and innovator in application specific multilayer ceramic (ASMLC) capacitors, AVX offers a unique technological and production capability to the field. AVX actively pursues and satisfies the high reliability and custom needs of a variety of governmental and industrial customers. Successful involvement in missile programs, extensive work in ultra-high reliability telecommunications and sophisticated capacitor design applications – all have established AVX as the source for advanced and high reliability ASMLC capacitors. Advanced Products are ISO9001 certified organizations for design and manufacturing of MLC capacitors. AVX Advanced Application Capacitors are organized around three distinct functions: • Application Specific Development Laboratories • Advanced Manufacturing Facilities • Quality Control For designs or applications not listed please consult Advanced Products. Olean, NY, USA - 716-372-6611 Coleraine, Northern Ireland - ++44(0) 28703 44188 St. Appollinaire, France - ++33(0) 38071 7400 International Space Station 2 ■ MAY 2015 Defense / Military Telecommunications Undersea Cable Repeater Application Specific MLCs Problem Solving at the Leading Edge APPLICATION SPECIFIC DEVELOPMENT LABORATORIES Initially, AVX technical personnel communicate with customers to learn the requirements that the new capacitor must satisfy. The personnel involved are well-versed in material, manufacturing and electronic application technologies. They study the overall application and the environment in which the part will function. Programs are begun for selection of appropriate ceramic formulations, metal systems and designs. These programs yield a detailed technology profile from which mechanical design and process specifications follow. ADVANCED MANUFACTURING FACILITIES The ability and reputation of AVX in high reliability MLCs is due in part to the company’s complete control over all phases of the production process. This includes powder processing, tape casting and/or wet build-up, green MLC assembly and final capacitor assembly/packaging. Recent renovations at AVX have upgraded green MLC assembly areas to certified clean room levels. A favorite feature with many customers of AVX is our ability to work with customers in solving special packaging requirements. This includes special lead configurations and multiple chip packaging that simplifies the mounting of specialty capacitors. To the customer, the total capability of AVX assures a high level of consistent control at all steps of production. QUALITY CONTROL The Q. A. organization is an integral part of manufacturing. Quality Control tests the product of each manufacturing process, detects flaws or variations from the narrow acceptable standard and isolates the cause of the deviation. Corrective action can then be taken to return the process to within its predetermined control levels. Quality Assurance has large and well-equipped laboratories where statistical samples are evaluated and tested to determine failure rates, characterize products and assure compliance with specification. Both destructive and nondestructive testing are used, including advanced ultrasonic inspection equipment for non-destructive inspection of an entire production quantity. Put the experience, technology and facilities of the leading company in multilayer ceramics to work for you. No other source offers the unique combination of capability and commitment to advanced application specific components. MAY 2015 ■3 SMPS Capacitors SMPS Capacitor Applications FOREWORD Output Filter Capacitor High speed switch mode power supplies place high demands on the capacitors used in the input or output filters of Resonant DC-DC or Pulse Modulated DC-DC converters. AVX Corporation has developed several multilayer ceramic (MLC) capacitor styles for these switcher applications. These capacitors have been extensively tested and characterized and found to have almost ideal performances to meet the stringent requirements of these applications. The output from the switching circuit of a Switcher consists of current on and off. From an elevated DC reference, this current is an AC ripple additive on the DC. In order to smooth this ripple effect, a filter circuit (usually inductive input) is built to allow a storage of energy to take place during the rising ripple portion and to allow a discharge of energy during the falling ripple portion. The ESR and ESL of the capacitor contribute to the net ripple effect. The output filter capacitor is chosen for ESR, and with previous types of capacitors, multiples were used in an attempt to lower the net ESR. The MLC offers ESRs well below the minimum allowable to lower noise levels, thus eliminating the need for multiple units. Input Filter Capacitor The Input Filter capacitor is required to perform two functions: To supply an unrestricted burst of current to the power supply switch circuitry and to not only do it without generating any noise, but to help suppress noise generated in the switch circuitry. It is, in effect, a very large decoupling capacitor. It must have very low ESL, capabilities for very high dv/dt, as well as di/dt and it must have a very low ESR to eliminate power loss. The distance from the primary DC source, as well as the type of capacitor used in this source (usually electrolytics), presents a very high inductance to the input of the Switcher. The MLC input capacitor, with its excellent ESL and ESR characteristics, is located physically close to the switch circuitry. Repetitive peak currents, inherent with the Switcher design, require a high ripple capability, as well as high surge capability for transients, both induced and conducted from other sources. MLCs have both these capabilities. 4 ■ MAY 2015 Other MLC Capacitors for SMPS Applications AVX also manufactures coupling, decoupling, resonant and snubber capacitors for SMPS applications. Contact AVX for Application Specific S.M.P.S. capacitor requirements. Olean, NY, USA 716-372-6611 Coleraine, Northern Ireland ++44(0) 28703 44188 St. Apollinaire, France ++33(0) 38071 7400 SMPS Capacitors Capacitor Selection and Performance ASMLC CAPACITOR SELECTION SMPS Design Information (SM, CH, CV, RH and SK Styles) Absolute Maximum Capacitance ESL Absolute Maximum Output Capacitance Assuming no ESR - Capacitive Induced Ripple Assuming no ESL and no ESR 25 2 MHz Load Current - Amps 1 MHz 50 mV Noise Due to Capacitance 20 Load Current - Amps 25 15 500 KHz 10 5 250 KHz DIP Leads SK Series 20 50 mV Noise Due to ESL 15 250 KHz 10 500 KHz 5 1 MHz 2 MHz 0 0 0 5 10 15 Maximum Output Filter Capacitance ( F) 0 20 5 10 15 Maximum Output Filter Capacitance ESL (nH) 20 Absolute Maximum Capacitance ESR Assuming no ESL - Capacitive Induced Ripple 50 mV Noise Due to ESR 20 15 5 SK Series 10 DIP Leads Load Current - Amps 25 0 0 10 20 30 Maximum Output Filter Capacitance ESR (mOhm) 40 ASMLC CAPACITOR PERFORMANCE Capacitance as Measured from dv/dt Slope 200 mA/ns Current Pulse Measurement starts after Inductive Ring Decay 16 14 AI Electrolytic 15 F 12 Capacitance ( F) MLC SM02 10 F 10 Wet Ta 10 F 8 Solid Ta 5.6 F 6 4 MLC SM04 4.7 F 2 0 10 -9 10 -8 10 -7 10 -6 10 -5 Time (Seconds) MAY 2015 ■5 SMPS Capacitors Capacitor Performance AC Ripple Capability Due to the wide range of product offering in this catalog, the AC ripple capabilities for switch mode power supply capacitors and high voltage capacitors are provided in the form of IBM compatible software package called SpiCalci. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com. SpiCalci program will provide answers to most of the design engineers’ questions on critical parameters for their specific applications: • Equivalent Series Resistance - function of frequency and temperature • Equivalent Series Inductance - function of design • Self Resonant Frequency f = 1/ (2 x π L x C) • Thermal Characteristics - function of design • AC Ripple Capabilities - function of frequency, temperature and design Examples of Product Performance TYPICAL ESR -vs- Frequency MAXIMUM RMS CURRENT FOR 50 VDC, CH - X7R FOR SM04 STYLE CAPACITORS 4.7+F 9+F 1+F @ 100 KHz & 25ⴗC Ambient ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION 50 10.000 45 40 35 A RMS ESR (Ohms) 1.000 0.100 30 25 20 15 0.010 10 5 0.001 1.0 10.0 100.0 Frequency (kHz) 1000.0 0 6.8 CH41 8.7 CH51 10.4 CH61 16.5 11.9 CH71 CH76 STYLE 29.9 CH81 26.6 CH86 28.8 CH91 EXAMPLE (CH ONLY) MAXIMUM RMS CURRENT FOR 50 WVDC, SM - X7R MAXIMUM RMS CURRENT FOR 25 WVDC, SK - Z5U @ 100 KHz & 25ⴗC Ambient ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION @ 100 KHz & 25ⴗC Ambient ASSUMING MAX. CAP. FOR EACH STYLE 50 12 100 KHz ARMS 45 100 KHz ARMS 40 35 30 25 20 10 8 6 4 2 0 1.7 SK01 15 10 4.5 SK04 6.2 SK05 7.4 7.7 SK06 SK07 STYLE EXAMPLE (SK ONLY) 5 0 36.8 SM01 28.3 SM02 22.7 9.7 SM03 SM04 STYLE EXAMPLE (SM ONLY) 6 ■ MAY 2015 5.7 SM05 33.8 SM06 11.0 SK08 6.7 SK09 8.7 SK10 SMPS Capacitors Application Information on SupraCap® SUPRACAP® - LARGE CAPACITANCE VALUE MLCs High speed switch mode power supplies require extremely low equivalent series resistance (ESR) and equivalent series inductance (ESL) capacitors for input and output filtering. These requirements are beyond the practical limits of electrolytic capacitors, both aluminum and tantalums, but are readily met by multilayer ceramic (MLCs) capacitors (Figure 1). Theoretical SMPS’s output filter capacitor values are in the range of 6-10 μF/amp at 40KHz and drop to less than 1 μF/amp at 1MHz. Most electrolytic applications use 10 to 100 times the theoretical value in order to obtain lower ESR from paralleling many capacitors. This is not necessary with SupraCap® MLC capacitors which inherently have ESRs in the range of milliohms. These extremely low values of ESR mean low ripple voltage and less self-heating of the capacitor. ESR Comparison of Different Capacitor Technologies ESR -vs- Frequency 100μF Filter Capacitors 1.E+00 ESR (⍀) 1.E-01 1.E-02 Output noise spikes are reduced by lowering the filter capacitance self-inductance. The ripple current is a triangle wave form with constant di/dt except when it changes polarity, then the di/dt is very high. The noise voltage generated by the filter capacitor is VNoise = L Capacitor di/dt AVX SupraCap® devices have inductance value less than 3nH. Figure 2 compares a 5.6 μF MLC to a 5.6 μF tantalum which was specially designed for low ESR and ESL. When subjected to a di/dt of 200 mA/ns the tantalum shows an ESR of 165 mΩ and an ESL of 18nH versus the MLC’s 4 mΩ and 0.3 nH. These performance differences allow considerable reduction in size and weight of the filter capacitor. Additionally, MLCs are compatible with surface mount technology reflow and assembly techniques which is the desirable assembly for conversion frequencies exceeding 1 MHz. Electrolytic capacitors (both aluminum and tantalum) are not compatible with normal vapor phase (VPS) or infrared (IR) reflow temperatures (205-215°C) due to electrolyte and structural problems. AVX SupraCap® devices are supplied with lead frames for either thru-hole or surface mount assembly. The lead frames act as stress relief for differences in coefficients of expansion between the large ceramic chip (10 ppm/°C) and the PC boards. 50nS TPOS-7 50mV DSW 16 Ta 1.E-03 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Frequency (Hz) Aluminum Electrolytic 100μF / 50V Low ESR Solid Tantalum 100μF / 10V Solid Aluminum Electrolytic 100μF / 16V MLCC 100μF / 50V MLC Figure 1 CSW 1 50mV ⌬V=2.0mV 50nS VZR-0.2 ⌬T=25.5nS Figure 2 MAY 2015 ■7 SMPS Stacked MLC Capacitors (SM Style) Technical Information on SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Dielectric Withstanding Voltage 25°C (Flash Test) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current. Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC) Z5U: 150% rated voltage at +85°C Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R, Z5U: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Z5U: 1K MΩ or 100 MΩ-μF, whichever is less. Not RoHS Compliant Typical ESR Performance (mΩ) ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz ESR @ 500KHz ESR @ 1MHz ESR @ 5MHz ESR @ 10MHz HOW TO ORDER SM0 1 Aluminum Electrolytic 100μF/50V 300 285 280 265 265 335 560 Low ESR Solid Tantalum 100μF/10V 72 67 62 56 56 72 91 Solid Aluminum Electrolytic 100μF/16V 29 22 20 18 17 17 22 MLCC SMPS 100μF/50V 3 2 2.5 4 7 12.5 20 AVX Styles: SM-1, SM-2, SM-3, SM-4, SM-5, SM-6 7 C 106 M AVX Style Size Voltage Temperature Capacitance SM0 = Uncoated See 50V = 5 Coefficient Code SM5 = Epoxy Coated Dimensions 100V = 1 C0G = A (2 significant digits chart 200V = 2 X7R = C + number of zeros) 500V = 7 Z5U = E 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 Note: Capacitors with X7R and Z5U dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. * Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. A N Capacitance Test Level Termination Tolerance A = Standard N = Straight Lead B = Hi-Rel* C0G: J = Leads formed in 5 = Standard/MIL** L = Leads formed out J = ±5% 6 = Hi-Rel/MIL*** K = ±10% P = P Style Leads M = ±20% Z = Z Style Leads X7R: K = ±10% M = ±20% Z = +80%, -20% 650 Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" Z5U: M = ±20% Z = +80%, -20% P = GMV (+100, -0%) ** Form, fit & function equivalent to MIL-PRF-49470 part. Applies to 50V rated parts only. No screening. *** Form, fit & function equivalent to MIL-PRF-49470 part. Applies to 50V rated parts only. Hi-Rel screening the same as option B. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 8 ■ MAY 2015 MLCC SMPS 4.7μF/50V 66 23 15 8 7.5 8 14 SMPS Stacked MLC Capacitors (SM Style) Surface Mount and Thru-Hole Styles (SM0, SM5) CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. B E RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style SM-1 SM-2 SM-3 SM-4 SM-5 SM-6 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 10 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 11.4 20.3 11.4 10.2 6.35 31.8 (0.450) (0.800) (0.450) (0.400) (0.250) (1.250) D ±.635 (±0.025) 52.1 38.4 26.7 10.2 6.35 52.1 (2.050) (1.510) (1.050) (0.400) (0.250) (2.050) E (max.) 12.7 22.1 12.7 11.2 7.62 34.3 (0.500) (0.870) (0.500) (0.440) (0.300) (1.350) No. of Leads per side 20 15 10 4 3 20 Note: For SM5 add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E MAY 2015 ■9 SMPS Stacked MLC Capacitors (SM Style) Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm SM01 _ _ _ _ _ _ AN120 AVX STYLE SM02 _ _ _ _ _ _ AN120 SM03 _ _ _ _ _ _ AN120 SM04 _ _ _ _ _ _ AN120 SM05 _ _ _ _ _ _ AN120 SM06 _ _ _ _ _ _ AN120 50V 100V 200V 500V 50V 100V 200V 500V 50V .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 –– 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V C0G 1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 X7R 27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 Z5U 84 32 12 – – 110 46 34 –– 40 15 100V 200V 500V 1.3 .50 Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm SM01 _ _ _ _ _ _ AN240 AVX STYLE SM02 _ _ _ _ _ _ AN240 SM03 _ _ _ _ _ _ AN240 SM04 _ _ _ _ _ _ AN240 SM05 _ _ _ _ _ _ AN240 SM06 _ _ _ _ _ _ AN240 50V 100V 200V 500V 50V 100V 200V 500V 50V .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18 12 –– 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 X7R 54 24 14 5.2 82 36 22 8.0 36 12 Z5U 160 64 24 – – 230 92 68 –– 80 30 C0G 100V 200V 500V 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm SM01 _ _ _ _ _ _ AN360 AVX STYLE SM02 _ _ _ _ _ _ AN360 SM03 _ _ _ _ _ _ AN360 100V 200V 500V SM04 _ _ _ _ _ _ AN360 SM05 _ _ _ _ _ _ AN360 SM06 _ _ _ _ _ _ AN360 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 100V 200V 500V 3.9 1.5 X7R 82 36 21 7.8 120 54 33 12 54 18 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28 Z5U 250 96 36 – – 350 130 100 – – 120 45 18 –– 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – – Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm SM01 _ _ _ _ _ _ AN480 AVX STYLE SM02 _ _ _ _ _ _ AN480 SM03 _ _ _ _ _ _ AN480 SM04 _ _ _ _ _ _ AN480 SM05 _ _ _ _ _ _ AN480 SM06 _ _ _ _ _ _ AN480 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37 24 –– 48 18 12 –– 18 7.2 2.8 – – 1000 570 360 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V C0G 4.0 2.8 1.6 .72 4.8 4.0 2.2 1.0 2.0 1.6 .80 X7R 110 48 28 10 160 72 44 16 72 24 Z5U 330 120 48 – – 470 180 130 – – 160 60 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm SM01 _ _ _ _ _ _ AN650 AVX STYLE SM02 _ _ _ _ _ _ AN650 SM03 _ _ _ _ _ _ AN650 SM04 _ _ _ _ _ _ AN650 SM05 _ _ _ _ _ _ AN650 SM06 _ _ _ _ _ _ AN650 50V 100V 200V 500V 50V 100V 200V 500V 50V .47 .80 .65 .35 .25 .20 18 6.5 36 9.0 5.5 2.0 12 30 –– 60 23 15 –– 23 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 X7R 130 60 35 13 200 90 55 20 90 30 Z5U 420 160 60 – – 590 230 170 – – 200 75 10 ■ MAY 2015 100V 200V 500V .12 100V 200V 500V .12 .05 16 12 6.5 2.5 3.4 2.0 .80 400 200 120 47 9.0 3.6 – – 1300 720 460 – – SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 Level “B” is the standard reliability. Level “T” is the high reliability suitable for space application. AVX is qualified to supply MIL-PRF-49470/1 parts. These are unencapsulated ceramic dielectric, switch mode power supply capacitors. AVX is also qualified to supply MIL-PRF49470/2 parts. These are encapsulated ceramic dielectric, switch mode power supply capacitors. PLEASE CONTACT THE DLA WEBSITE http://www.landandmaritime.dla.mil/programs/milspec/DocS earch.aspx for details on testing, electrical, mechanical and part number options. PLEASE CONTACT THE DLA WEBSITE http://www.landandmaritime.dla.mil/Programs/QmlQpl/ for the latest QPL (Qualified Products List). AVX IS QUALIFIED TO MIL-PRF-49470/1 AND MIL-PRF-49470/2 The SMPS capacitors are designed for high current, highpower and high-temperature applications. These capacitors have very low ESR (Equivalent Series Resistance) and ESL (Equivalent Series Inductance). SMPS Series capacitors offer design and component engineers a proven technology specifically designed for programs requiring high reliability performance in harsh environments. MIL-PRF-49470 SMPS Series capacitors are primarily used in input/output filters of high-power and high-voltage power supplies as well as in bus filters and DC snubbers for high power inverters and other high-current applications. These capacitors are available with through-hole and surface mount leads. The operating temperature is -55°C to +125°C. The MIL-PRF-49470 capacitors are preferred over the DSCC drawing 87106 capacitors. MIL-PRF-49470 specification was created to produce a robust replacement for DSCC 87106. MIL-PRF-49470 offers two product levels. Not RoHS Compliant HOW TO ORDER M49470 R 01 474 K C N Performance specification indicating MIL-PRF-49470 Characteristic P = BP Q = BQ R = BR X = BX Performance specification sheet number 01 – indicating MIL-PRF-49470/1 02 – indicating MIL-PRF-49470/2 Capacitance Capacitance Tolerance BP: J = ±5% K = ±10% BX, BR & BQ: K = ±10% M = ±20% Rated Voltage Z = 25V A = 50V B = 100V C = 200V E = 500V Configuration (Lead Style) See chart for Lead configurations For “T” level parts, replace the “M” in the pin with “T” (for example M49470R01474KCN becomes T49470R01474KCN) MIL-PRF-49470 contains additional capacitors that are not available in 87106, such as additional lead configurations and lower profile parts. On the pages to follow is the general dimensional outline along with a cross reference from 87106 parts to MIL-PRF49470 parts. LEAD CONFIGURATION Symbol (Last digit of military PN, 12th digit of AVX PN) N L M J K A B D C F millimeters (inches) Lead Style N (straight) L (formed) L (formed) J (formed) J (formed) N (straight) L (formed) L (formed) J (formed) J (formed) Height Profile (Dimension A) Standard Standard Standard Standard Standard Low Low Low Low Low Formed lead length, L N/A 1.78 ± 0.25 (0.070 ± 0.010) 1.14 ± 0.25 (0.045 ± 0.010) 1.78 ± 0.25 (0.070 ± 0.010) 1.14 ± 0.25 (0.045 ± 0.010) N/A 1.78 ± 0.25 (0.070 ± 0.010) 1.14 ± 0.25 (0.045 ± 0.010) 1.78 ± 0.25 (0.070 ± 0.010) 1.14 ± 0.25 (0.045 ± 0.010) Note: Lead options available marked with a “-” as a place holder. See lead configuration column for available lead options to replace the “-”. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci MAY 2015 ■ 11 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470/1 MIL-PRF-49470/1 MIL-PRF-49470/1 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable), standard reliability and high reliability unencapsulated, Style PS01. D E A See B See Note 4 Note 4 1.397 ±0.254 (0.055 ±0.010) SEATING PLANE See Note 3 6.35 (0.250) MIN 0.254 ±0.05 (0.010 ±0.002) See Note 6 2.54 (0.100) MAX 0.635 (0.025) MIN (See Note 5) 2.54 (0.100) TYP 0.508 ±0.050 (0.020 ±0.002) 6.35 (0.250) MIN LEAD STYLE N AND A E E 0.254 (0.010) RAD (TYP) 1.27 (0.050) MIN C L C LEAD STYLE J AND C 0.254 (0.010) RAD (TYP) L 1.27 (0.050) MIN C CIRCUIT DIAGRAM LEAD STYLE L AND B DIMENSIONS: millimeters (inches) D C ±0.635 (±0.025) 1 11.4 (0.450) 49.5 (1.950) 52.7 (2.075) 12.7 (0.500) 20 2 20.3 (0.800) 36.8 (1.450) 40.0 (1.535) 22.1 (0.870) 15 3 11.4 (0.450) 24.1 (0.950) 27.3 (1.075) 12.7 (0.500) 10 4 10.2 (0.400) 8.89 (0.350) 10.8 (0.425) 11.2 (0.440) 4 5 6.35 (0.250) 6.20 (0.224) 6.97 (0.275) 7.62 (0.300) 3 6 31.8 (1.250) 49.5 (1.950) 52.7 (2.075) 34.3 (1.350) 20 Min. Max. E (max.) Number of Leads per side Case Code NOTES: 1. Dimensions are in millimeters (inches) 2. Unless otherwise specified, tolerances are 0.254 (±0.010). 3. Lead frame configuration is shown as typical above the seating plane. 4. See table I of MIL-PRF-49470/1 for specific maximum A dimension. For maximum B dimension, add 1.65 (0.065) to the appropriate A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage rating. 5. For case code 5, dimensions shall be 2.54 (0.100) maximum and 0.305 (0.012) minimum. 6. Lead alignment within pin rows shall be within ±0.10 (0.005). 12 ■ MAY 2015 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470/2 MIL-PRF-49470/2 MIL-PRF-49470/2 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable), standard reliability and high reliability encapsulated, Style PS02. D E A MAX See Note 3 0.38 ±0.13 (0.015 ±0.005) SEATING PLANE 0.254 ±0.05 (0.010 ±0.002) See Note 4 0.50 ±0.05 (0.020 ±0.002) 4.45 (0.175) MAX 1.02 (0.040) MIN 6.35 (0.250) MIN C 2.54 (0.100) TYP LEAD STYLE N AND A E E 0.254 (0.010) RAD (TYP) L 0.254 (0.010) RAD (TYP) 1.27 (0.050) MIN L 1.27 (0.050) MIN C C LEAD STYLE J AND C CIRCUIT DIAGRAM DIMENSIONS: LEAD STYLE L AND B millimeters (inches) D ±0.635 (±0.025) E (max) Number of Leads per side Case Code C ±0.635 (±0.025) 1 11.4 (0.450) 54.7 (2.155) 14.7 (0.580) 20 2 20.3 (0.800) 41.0 (1.615) 24.1 (0.950) 15 3 11.4 (0.450) 29.3 (1.155) 14.7 (0.580) 10 4 10.2 (0.400) 12.3 (0.485) 12.3 (0.485) 4 5 6.35 (0.250) 9.02 (0.355) 9.02 (0.355) 3 6 31.8 (1.250) 54.7 (2.155) 36.3 (1.430) 20 NOTES: 1. Dimensions are in millimeters (inches) 2. Unless otherwise specified, tolerances are 0.254 (±0.001). 3. See table I of MIL-PRF-49470/2 for specific maximum A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage rating. 4. Lead alignment within pin rows shall be within ±0.10 (0.004). MAY 2015 ■ 13 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 MIL-PRF-49470 PIN 1/ AVX PART NUMBER (for reference only) 2/ -49470X0-155-Z-49470X0-185-Z-49470X0-225-Z-49470X0-275-Z-49470X0-335-Z-49470X0-395-Z-49470X0-475-Z-49470X0-565-Z-49470X0-685-Z-49470X0-685-Z-49470X0-825-Z-49470X0-825-Z-49470X0-106-Z-49470X0-106-Z-49470X0-126-Z-49470X0-156-Z-49470X0-156-Z-49470X0-186-Z-49470X0-186-Z-49470X0-226-Z-49470X0-226-Z-49470X0-276-Z-49470X0-276-Z-49470X0-336-Z-49470X0-336-Z-49470X0-396-Z-49470X0-396-Z-49470X0-476-Z-49470X0-476-Z-49470X0-566-Z-49470X0-566-Z-49470X0-686-Z-49470X0-686-Z-49470X0-826-Z-49470X0-826-Z-49470X0-107-Z-49470X0-107-Z-49470X0-127-Z-49470X0-127-Z-49470X0-157-Z-49470X0-157-Z-49470X0-187-Z-49470X0-187-Z-49470X0-227-Z-49470X0-277-Z-49470X0-337-Z-49470X0-397-Z- SM-53C155-H-120 SM-53C185-H-120 SM-53C225-H-120 SM-53C275-H-240 SM-53C335-H-240 SM-53C395-H-240 SM-53C475-H-240 SM-53C565-H-360 SM-53C685-H-360 SM-43C685-H-120 SM-53C825-H-480 SM-43C825-H-240 SM-53C106-H-650 SM-43C106-H-240 SM-43C126-H-240 SM-43C156-H-360 SM-33C156-H-120 SM-43C186-H-360 SM-33C186-H-120 SM-43C226-H-480 SM-33C226-H-240 SM-43C276-H-480 SM-33C276-H-240 SM-43C336-H-650 SM-33C336-H-240 SM-33C396-H-360 SM-13C396-H-240 SM-33C476-H-480 SM-13C476-H-360 SM-33C566-H-480 SM-13C566-H-360 SM-33C686-H-480 SM-13C686-H-360 SM-33C826-H-650 SM-13C826-H-360 SM-13C107-H-480 SM-23C107-H-360 SM-13C127-H-650 SM-23C127-H-360 SM-23C157-H-480 SM-63C157-H-240 SM-23C187-H-650 SM-63C187-H-360 SM-63C227-H-360 SM-63C277-H-480 SM-63C337-H-650 SM-63C397-H-650 -49470P0-563-A-49470P0-683-A-49470P0-823-A-49470P0-104-A-49470P0-124-A-49470P0-154-A-49470P0-184-A-49470P0-184-A- SM-55A563-H-120 SM-55A683-H-240 SM-55A823-H-240 SM-55A104-H-240 SM-55A124-H-360 SM-55A154-H-360 SM-55A184-H-480 SM-45A184-H-240 Capacitance μF 25V 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 6.8 8.2 8.2 10 10 12 15 15 18 18 22 22 27 27 33 33 39 39 47 47 56 56 68 68 82 82 100 100 120 120 150 150 180 180 220 270 330 390 50V 0.056 0.068 0.082 0.1 0.12 0.15 0.18 0.18 Tolerance Characteristic Case Code Lead Configuration K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX 5 5 5 5 5 5 5 5 5 4 5 4 5 4 4 4 3 4 3 4 3 4 3 4 3 3 1 3 1 3 1 3 1 3 1 1 2 1 2 2 6 2 6 6 6 6 6 N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K J, J, J, J, J, J, J, J, K K K K K K K K BP BP BP BP BP BP BP BP 5 5 5 5 5 5 5 4 N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F 1/ Complete PIN shall include additional symbols replacing dashes (from left to right): product level (M for B level, or T for T level), part style (1 for unencapsulated, 2 for encapsulated), capacitance tolerance, lead configuration 2/ Complete AVX Part Number (provided for reference only) shall include additional symbols replacing dashes (from left to right): part style (0 for unencapsulated and 9 for encapsulated), capacitance tolerance, lead configuration The last 3 digits of the AVX Part Number represent the chip height of the unencapsulated version. For the encapsulated version, replace the last 3 digits as follows: (120 replace with 270, 240 replace with 390, 360 replace with 530, 480 replace with 660 and 650 replace with 800). 14 ■ MAY 2015 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 -49470P0-224-A-49470P0-224-A-49470P0-274-A-49470P0-274-A-49470P0-334-A-49470P0-394-A-49470P0-474-A-49470P0-564-A-49470P0-564-A-49470P0-684-A-49470P0-824-A-49470P0-105-A-49470X0-105-A-49470P0-125-A-49470X0-125-A-49470P0-155-A-49470X0-155-A-49470P0-185-A-49470X0-185-A-49470P0-225-A-49470X0-225-A-49470X0-275-A-49470X0-335-A-49470X0-395-A-49470X0-475-A-49470X0-475-A-49470X0-565-A-49470X0-565-A-49470X0-685-A-49470X0-825-A-49470X0-106-A-49470X0-126-A-49470X0-156-A-49470X0-156-A-49470X0-186-A-49470X0-226-A-49470X0-276-A-49470X0-336-A-49470X0-396-A-49470X0-476-A-49470X0-476-A-49470X0-566-A-49470X0-566-A-49470X0-686-A-49470X0-686-A-49470X0-826-A-49470X0-826-A-49470X0-107-A-49470X0-107-A-49470X0-127-A-49470X0-157-A-49470X0-187-A-49470X0-227-A-49470X0-277-A- AVX PART NUMBER (for reference only) 2/ SM-55A224-H-480 SM-45A224-H-240 SM-55A274-H-650 SM-45A274-H-240 SM-45A334-H-360 SM-45A394-H-480 SM-45A474-H-480 SM-45A564-H-650 SM-35A564-H-240 SM-35A684-H-240 SM-35A824-H-240 SM-35A105-H-360 SM-55C105-H-120 SM-35A125-H-360 SM-55C125-H-120 SM-35A155-H-480 SM-55C155-H-240 SM-35A185-H-480 SM-55C185-H-240 SM-35A225-H-650 SM-55C225-H-240 SM-55C275-H-360 SM-55C335-H-360 SM-55C395-H-480 SM-55C475-H-480 SM-45C475-H-240 SM-55C565-H-650 SM-45C565-H-240 SM-45C685-H-360 SM-45C825-H-360 SM-45C106-H-480 SM-45C126-H-480 SM-45C156-H-650 SM-35C156-H-240 SM-35C186-H-240 SM-35C226-H-360 SM-35C276-H-360 SM-35C336-H-360 SM-35C396-H-480 SM-35C476-H-650 SM-25C476-H-240 SM-15C566-H-360 SM-25C566-H-240 SM-15C686-H-480 SM-25C686-H-360 SM-15C826-H-480 SM-25C826-H-360 SM-15C107-H-650 SM-25C107-H-480 SM-25C127-H-480 SM-25C157-H-650 SM-65C187-H-480 SM-65C227-H-480 SM-65C277-H-650 -49470P0-473-B-49470P0-563-B- SM-51A473-H-240 SM-51A563-H-240 MIL-PRF-49470 PIN 1/ Capacitance μF 0.22 0.22 0.27 0.27 0.33 0.39 0.47 0.56 0.56 0.68 0.82 1 1 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 3.3 3.9 4.7 4.7 5.6 5.6 6.8 8.2 10 12 15 15 18 22 27 33 39 47 47 56 56 68 68 82 82 100 100 120 150 180 220 270 100V 0.047 0.056 Tolerance Characteristic Case Code Lead Configuration J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K K, M J, K K, M J, K K, M J, K K, M J, K K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M BP BP BP BP BP BP BP BP BP BP BP BP BX BP BX BP BX BP BX BP BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX 5 4 5 4 4 4 4 4 3 3 3 3 5 3 5 3 5 3 5 3 5 5 5 5 5 4 5 4 4 4 4 4 4 3 3 3 3 3 3 3 2 1 2 1 2 1 2 1 2 2 2 6 6 6 N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K J, K J, K BP BP 5 5 N, L, M, J, K N, L, M, J, K 1/ Complete PIN shall include additional symbols replacing dashes (from left to right): product level (M for B level, or T for T level), part style (1 for unencapsulated, 2 for encapsulated), capacitance tolerance, lead configuration 2/ Complete AVX Part Number (provided for reference only) shall include additional symbols replacing dashes (from left to right): part style (0 for unencapsulated and 9 for encapsulated), capacitance tolerance, lead configuration The last 3 digits of the AVX Part Number represent the chip height of the unencapsulated version. For the encapsulated version, replace the last 3 digits as follows: (120 replace with 270, 240 replace with 390, 360 replace with 530, 480 replace with 660 and 650 replace with 800). MAY 2015 ■ 15 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 MIL-PRF-49470 PIN 1/ -49470P0-683-B-49470P0-823-B-49470P0-104-B-49470P0-124-B-49470P0-154-B-49470P0-154-B-49470P0-184-B-49470P0-184-B-49470P0-224-B-49470P0-224-B-49470P0-274-B-49470P0-334-B-49470P0-394-B-49470P0-474-B-49470P0-474-B-49470P0-564-B-49470P0-564-B-49470P0-684-B-49470X0-684-B-49470P0-824-B-49470X0-824-B-49470P0-105-B-49470X0-105-B-49470P0-125-B-49470X0-125-B-49470P0-155-B-49470X0-155-B-49470P0-185-B-49470X0-185-B-49470X0-225-B-49470X0-225-B-49470X0-275-B-49470X0-335-B-49470X0-335-B-49470X0-395-B-49470X0-475-B-49470X0-565-B-49470X0-685-B-49470X0-825-B-49470X0-825-B-49470X0-106-B-49470X0-126-B-49470X0-156-B-49470X0-186-B-49470X0-226-B-49470X0-276-B-49470X0-276-B-49470X0-336-B-49470X0-336-B-49470X0-396-B-49470X0-396-B-49470X0-476-B-49470X0-476-B-49470X0-566-B-49470X0-686-B-49470X0-826-B-49470X0-107-B- AVX PART NUMBER (for reference only) 2/ SM-51A683-H-240 SM-51A823-H-240 SM-51A104-H-360 SM-51A124-H-360 SM-51A154-H-480 SM-41A154-H-240 SM-51A184-H-650 SM-41A184-H-240 SM-51A224-H-650 SM-41A224-H-240 SM-41A274-H-360 SM-41A334-H-480 SM-41A394-H-480 SM-41A474-H-650 SM-31A474-H-240 SM-41A564-H-650 SM-31A564-H-240 SM-31A684-H-240 SM-51C684-H-120 SM-31A824-H-360 SM-51C824-H-240 SM-31A105-H-360 SM-51C105-H-240 SM-31A125-H-480 SM-51C125-H-240 SM-31A155-H-480 SM-51C155-H-360 SM-31A185-H-650 SM-51C185-H-360 SM-51C225-H-480 SM-41C225-H-240 SM-51C275-H-480 SM-51C335-H-650 SM-41C335-H-240 SM-41C395-H-360 SM-41C475-H-360 SM-41C565-H-480 SM-41C685-H-480 SM-41C825-H-650 SM-31C825-H-240 SM-31C106-H-240 SM-31C126-H-240 SM-31C156-H-360 SM-31C186-H-360 SM-31C226-H-480 SM-31C276-H-650 SM-21C276-H-240 SM-11C336-H-360 SM-21C336-H-240 SM-11C396-H-480 SM-21C396-H-360 SM-11C476-H-480 SM-21C476-H-360 SM-11C566-H-650 SM-21C686-H-480 SM-21C826-H-650 SM-61C107-H-360 Capacitance μF Tolerance Characteristic Case Code Lead Configuration 0.068 0.082 0.1 0.12 0.15 0.15 0.18 0.18 0.22 0.22 0.27 0.33 0.39 0.47 0.47 0.56 0.56 0.68 0.68 0.82 0.82 1 1 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 3.3 3.3 3.9 4.7 5.6 6.8 8.2 8.2 10 12 15 18 22 27 27 33 33 39 39 47 47 56 68 82 100 J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K K, M J, K K, M J, K K, M J, K K, M J, K K, M J, K K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BX BP BX BP BX BP BX BP BX BP BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX BX 5 5 5 5 5 4 5 4 5 4 4 4 4 4 3 4 3 3 5 3 5 3 5 3 5 3 5 3 5 5 4 5 5 4 4 4 4 4 4 3 3 3 3 3 3 3 2 1 2 1 2 1 2 1 2 2 6 N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K 1/ Complete PIN shall include additional symbols replacing dashes (from left to right): product level (M for B level, or T for T level), part style (1 for unencapsulated, 2 for encapsulated), capacitance tolerance, lead configuration 2/ Complete AVX Part Number (provided for reference only) shall include additional symbols replacing dashes (from left to right): part style (0 for unencapsulated and 9 for encapsulated), capacitance tolerance, lead configuration The last 3 digits of the AVX Part Number represent the chip height of the unencapsulated version. For the encapsulated version, replace the last 3 digits as follows: (120 replace with 270, 240 replace with 390, 360 replace with 530, 480 replace with 660 and 650 replace with 800). 16 ■ MAY 2015 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 -49470X0-127-B-49470X0-157-B-49470X0-187-B- AVX PART NUMBER (for reference only) 2/ SM-61C127-H-360 SM-61C157-H-480 SM-61C187-H-540 -49470P0-223-C-49470P0-273-C-49470P0-333-C-49470P0-393-C-49470P0-473-C-49470P0-563-C-49470P0-683-C-49470P0-683-C-49470P0-823-C-49470P0-823-C-49470P0-104-C-49470P0-104-C-49470P0-124-C-49470P0-154-C-49470P0-184-C-49470P0-224-C-49470P0-274-C-49470P0-274-C-49470P0-334-C-49470P0-394-C-49470P0-474-C-49470R0-474-C-49470P0-564-C-49470P0-564-C-49470R0-564-C-49470P0-684-C-49470R0-684-C-49470P0-824-C-49470R0-824-C-49470P0-105-C-49470R0-105-C-49470R0-105-C-49470R0-125-C-49470R0-125-C-49470R0-155-C-49470R0-155-C-49470R0-185-C-49470R0-225-C-49470R0-275-C-49470R0-335-C-49470R0-395-C-49470R0-395-C-49470R0-475-C-49470R0-565-C-49470R0-685-C-49470R0-825-C-49470R0-106-C-49470R0-126-C-49470R0-126-C-49470R0-156-C-49470R0-156-C-49470R0-186-C-49470R0-186-C- SM-52A223-H-120 SM-52A273-H-240 SM-52A333-H-240 SM-52A393-H-240 SM-52A473-H-360 SM-52A563-H-360 SM-52A683-H-480 SM-42A683-H-120 SM-52A823-H-480 SM-42A823-H-240 SM-52A104-H-650 SM-42A104-H-240 SM-42A124-H-360 SM-42A154-H-360 SM-42A184-H-480 SM-42A224-H-480 SM-42A274-H-650 SM-32A274-H-240 SM-32A334-H-240 SM-32A394-H-240 SM-32A474-H-360 SM-52C474-H-240 SM-32A564-H-480 SM-32A564-H-360 SM-52C564-H-240 SM-32A684-H-480 SM-52C684-H-360 SM-32A824-H-650 SM-52C824-H-360 SM-32A105-H-650 SM-52C105-H-480 SM-42C105-H-120 SM-52C125-H-480 SM-42C125-H-240 SM-52C155-H-650 SM-42C155-H-240 SM-42C185-H-360 SM-42C225-H-360 SM-42C275-H-480 SM-42C335-H-480 SM-42C395-H-650 SM-32C395-H-240 SM-32C475-H-240 SM-32C565-H-240 SM-32C685-H-360 SM-32C825-H-360 SM-32C106-H-480 SM-32C126-H-650 SM-22C126-H-240 SM-12C156-H-360 SM-22C156-H-240 SM-12C186-H-480 SM-22C186-H-360 MIL-PRF-49470 PIN 1/ Capacitance μF 120 150 180 200V 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.068 0.082 0.082 0.1 0.1 0.12 0.15 0.18 0.22 0.27 0.27 0.33 0.39 0.47 0.47 0.56 0.56 0.56 0.68 0.68 0.82 0.82 1 1 1 1.2 1.2 1.5 1.5 1.8 2.2 2.7 3.3 3.9 3.9 4.7 5.6 6.8 8.2 10 12 12 15 15 18 18 Tolerance Characteristic Case Code Lead Configuration K, M K, M K, M BX BX BX 6 6 6 N, L, M, J, K N, L, M, J, K N, L, M, J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K K, M J, K J, K K, M J, K K, M J, K K, M J, K K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BR BP BP BR BP BR BP BR BP BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR BR 5 5 5 5 5 5 5 4 5 4 5 4 4 4 4 4 4 3 3 3 3 5 3 3 5 3 5 3 5 3 5 4 5 4 5 4 4 4 4 4 4 3 3 3 3 3 3 3 2 1 2 1 2 N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F 1/ Complete PIN shall include additional symbols replacing dashes (from left to right): product level (M for B level, or T for T level), part style (1 for unencapsulated, 2 for encapsulated), capacitance tolerance, lead configuration 2/ Complete AVX Part Number (provided for reference only) shall include additional symbols replacing dashes (from left to right): part style (0 for unencapsulated and 9 for encapsulated), capacitance tolerance, lead configuration The last 3 digits of the AVX Part Number represent the chip height of the unencapsulated version. For the encapsulated version, replace the last 3 digits as follows: (120 replace with 270, 240 replace with 390, 360 replace with 530, 480 replace with 660 and 650 replace with 800). MAY 2015 ■ 17 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 -49470R0-226-C-49470R0-226-C-49470R0-276-C-49470R0-276-C-49470R0-336-C-49470R0-396-C-49470R0-476-C-49470R0-566-C-49470R0-686-C-49470R0-826-C-49470R0-107-C-49470R0-127-C- AVX PART NUMBER (for reference only) 2/ SM-12C226-H-650 SM-22C226-H-360 SM-12C276-H-650 SM-22C276-H-480 SM-22C336-H-480 SM-22C396-H-650 SM-62C476-H-240 SM-62C566-H-360 SM-62C686-H-360 SM-62C826-H-480 SM-62C107-H-650 SM-62C127-H-650 -49470P0-103-E-49470P0-123-E-49470P0-153-E-49470P0-183-E-49470P0-223-E-49470P0-273-E-49470P0-333-E-49470P0-333-E-49470P0-393-E-49470P0-393-E-49470P0-473-E-49470P0-473-E-49470P0-563-E-49470P0-683-E-49470P0-823-E-49470P0-104-E-49470P0-124-E-49470P0-124-E-49470P0-154-E-49470Q0-154-E-49470P0-184-E-49470Q0-184-E-49470P0-224-E-49470Q0-224-E-49470P0-274-E-49470Q0-274-E-49470P0-334-E-49470Q0-334-E-49470P0-394-E-49470Q0-394-E-49470Q0-474-E-49470Q0-564-E-49470Q0-564-E-49470Q0-684-E-49470Q0-684-E-49470Q0-824-E-49470Q0-105-E-49470Q0-125-E-49470Q0-155-E-49470Q0-185-E-49470Q0-185-E-49470Q0-225-E-49470Q0-275-E-49470Q0-335-E- SM-57A103-H-120 SM-57A123-H-240 SM-57A153-H-240 SM-57A183-H-240 SM-57A223-H-360 SM-57A273-H-360 SM-57A333-H-480 SM-47A333-H-240 SM-57A393-H-480 SM-47A393-H-240 SM-57A473-H-650 SM-47A473-H-360 SM-47A563-H-360 SM-47A683-H-360 SM-47A823-H-480 SM-47A104-H-480 SM-47A124-H-650 SM-37A124-H-240 SM-37A154-H-240 SM-57C154-H-120 SM-37A184-H-240 SM-57C184-H-240 SM-37A224-H-360 SM-57C224-H-240 SM-37A274-H-360 SM-57C274-H-240 SM-37A334-H-480 SM-57C334-H-360 SM-37A394-H-650 SM-57C394-H-360 SM-57C474-H-360 SM-57C564-H-480 SM-47C564-H-240 SM-57C684-H-650 SM-47C684-H-240 SM-47C824-H-360 SM-47C105-H-360 SM-47C125-H-360 SM-47C155-H-480 SM-47C185-H-650 SM-37C185-H-240 SM-37C225-H-240 SM-37C275-H-360 SM-37C335-H-360 MIL-PRF-49470 PIN 1/ Capacitance μF 22 22 27 27 33 39 47 56 68 82 100 120 500V 0.01 0.012 0.015 0.018 0.022 0.027 0.033 0.033 0.039 0.039 0.047 0.047 0.056 0.068 0.082 0.1 0.12 0.12 0.15 0.15 0.18 0.18 0.22 0.22 0.27 0.27 0.33 0.33 0.39 0.39 0.47 0.56 0.56 0.68 0.68 0.82 1 1.2 1.5 1.8 1.8 2.2 2.7 3.3 Characteristic Case Code Lead Configuration M M M M M M M M M M M M BR BR BR BR BR BR BR BR BR BR BR BR 1 2 1 2 2 2 6 6 6 6 6 6 N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K J, K K, M J, K K, M J, K K, M J, K K, M J, K K, M J, K K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M K, M BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BP BQ BP BQ BP BQ BP BQ BP BQ BP BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ 5 5 5 5 5 5 5 4 5 4 5 4 4 4 4 4 4 3 3 5 3 5 3 5 3 5 3 5 3 5 5 5 4 5 4 4 4 4 4 4 3 3 3 3 N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, C, D, F N, L, M, J, K A, B, C, D, F N, L, M, J, K A, B, C, D, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, C, D, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K Tolerance K, K, K, K, K, K, K, K, K, K, K, K, 1/ Complete PIN shall include additional symbols replacing dashes (from left to right): product level (M for B level, or T for T level), part style (1 for unencapsulated, 2 for encapsulated), capacitance tolerance, lead configuration 2/ Complete AVX Part Number (provided for reference only) shall include additional symbols replacing dashes (from left to right): part style (0 for unencapsulated and 9 for encapsulated), capacitance tolerance, lead configuration The last 3 digits of the AVX Part Number represent the chip height of the unencapsulated version. For the encapsulated version, replace the last 3 digits as follows: (120 replace with 270, 240 replace with 390, 360 replace with 530, 480 replace with 660 and 650 replace with 800). 18 ■ MAY 2015 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles MIL-PRF-49470 MIL-PRF-49470 PIN 1/ -49470Q0-395-E-49470Q0-475-E-49470Q0-565-E-49470Q0-565-E-49470Q0-685-E-49470Q0-685-E-49470Q0-825-E-49470Q0-825-E-49470Q0-106-E-49470Q0-106-E-49470Q0-126-E-49470Q0-126-E-49470Q0-156-E-49470Q0-186-E-49470Q0-226-E-49470Q0-276-E-49470Q0-336-E-49470Q0-396-E- AVX PART NUMBER (for reference only) 2/ SM-37C395-H-360 SM-37C475-H-480 SM-37C565-H-650 SM-27C565-H-240 SM-17C685-H-480 SM-27C685-H-240 SM-17C825-H-480 SM-27C825-H-360 SM-17C106-H-480 SM-27C106-H-360 SM-17C126-H-650 SM-27C126-H-480 SM-27C156-H-650 SM-27C186-H-650 SM-67C226-H-360 SM-67C276-H-360 SM-67C336-H-480 SM-67C396-H-650 Capacitance μF 3.9 4.7 5.6 5.6 6.8 6.8 8.2 8.2 10 10 12 12 15 18 22 27 33 39 Tolerance K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, M M M M M M M M M M M M M M M M M M Characteristic Case Code Lead Configuration BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ BQ 3 3 3 2 1 2 1 2 1 2 1 2 2 2 6 6 6 6 N, L, M, J, K N, L, M, J, K N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K A, B, D, C, F N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K N, L, M, J, K 1/ Complete PIN shall include additional symbols replacing dashes (from left to right): product level (M for B level, or T for T level), part style (1 for unencapsulated, 2 for encapsulated), capacitance tolerance, lead configuration 2/ Complete AVX Part Number (provided for reference only) shall include additional symbols replacing dashes (from left to right): part style (0 for unencapsulated and 9 for encapsulated), capacitance tolerance, lead configuration The last 3 digits of the AVX Part Number represent the chip height of the unencapsulated version. For the encapsulated version, replace the last 3 digits as follows: (120 replace with 270, 240 replace with 390, 360 replace with 530, 480 replace with 660 and 650 replace with 800). MAY 2015 ■ 19 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 CHIP SEPARATION 0.254 (0.010) TYP. D E B 1.397 (0.055) ±0.254 (0.010) A 6.35 (0.250) MIN. 0.508 (0.020) TYP. 0.254 (0.010) TYP. 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. (NOTE 4) C “N” STYLE LEADS 0.254 (0.010) RAD. TYP. 1.778 (0.070) ±0.254 (0.010) 1.905 (0.075) ±0.635 (0.025) TYP. SCHEMATIC “J” STYLE LEADS DIMENSIONS millimeters (inches) Case Code A (max.) (See Note 2) B (max.) (See Note 2) C ±.635 (±0.025) E (max.) No. of Leads per side 1 16.5 (0.650) 18.2 (0.715) 11.4 (0.450) 52.1 (2.050) 12.7 (0.500) 20 2 16.5 (0.650) 18.2 (0.715) 20.3 (0.800) 38.4 (1.510) 22.1 (0.870) 15 3 16.5 (0.650) 18.2 (0.715) 11.4 (0.450) 26.7 (1.050) 12.7 (0.500) 10 4 16.5 (0.650) 18.2 (0.715) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4 5 16.5 (0.650) 18.2 (0.715) 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3 6 16.5 (0.650) 18.2 (0.715) 31.8 (1.250) 52.1 (2.050) 34.3 (1.350) 20 D ±.635 (±0.025) NOTES: 1. Unless otherwise specified, tolerances 0.254 (±0.010). 2. “A” dimensions are maximum (see tables on pages 23 thru 26 for specific part number dimensions). 3. “N” straight leads; “J” leads formed in. 4. For case code 5, dimensions shall be 2.54 (0.100) maximum, 0.305 (0.012) minimum. 20 ■ MAY 2015 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 Ordering Information Insulation Resistance. Part Number: The complete part number shall be as follows: At +25°C, rated voltage: 100K MΩ or 1,000 MΩ-μF, whichever is less. X7R: 87106 XXX ______________ Dash number (see list) Ordering Data. The contract or purchase order should specify the following: At +125°C, rated voltage: 10K MΩ or 100 MΩ-μF, whichever is less. _________________ Drawing number Dielectric Withstanding Voltage. Dielectric withstanding voltage shall be 250 percent of rated voltage except 500V rated parts at 150 percent of rated voltage. a. Complete part number. b. Requirements for delivery of one copy of the quality conformance inspection data with each shipment of parts by the manufacturer. Capacitance Tolerance. M = ±20 percent. J = ±5 percent, K = ±10 percent, c. Whether the manufacturer performs the group B tests, or provides certification of compliance with group B requirements. Solderability of Terminals. 49470. In accordance with MIL-PRF- d. Requirements for notification of change of products to acquiring activity, if applicable. Resistance to Soldering Heat. In accordance with MIL-STD202, method 210, condition B, for 20 seconds. e. Requirements for packaging and packing. Source of Supply. Vendor CAGE number _____________ 96095 Shock. In accordance with MIL-PRF-49470. Vendor name and address _________________________ Olean Advanced Products A Division of AVX Corporation 1695 Seneca Avenue Olean, NY 14760 Performance Characteristics Operating Temperature Range. The operating temperature range shall be -55°C to +125°C. Electrical Characteristics. Rated Voltage. See tables on pages 23-26. Immersion Cycling. In accordance with MIL-PRF-49470. Moisture Resistance. In accordance with MIL-PRF-49470. Life. Life shall be 200 percent of rated voltage except 500V rated parts at 120 percent of rated voltage applied at +125°C for 1,000 hours. Thermal Shock. MIL-STD-202, method 107, test condition A, except high temperature is +125°C. Capacitance. Measured in accordance with method 305 of MIL-STD-202 (1KHz at 1.0Vrms, open circuit voltage, at +25°C). Dissipation Factor (+25°C). X7R: Dissipation factor shall be 2.5 percent maximum (measured under the same conditions as capacitance.) C0G: Dissipation factor shall be 0.15 percent maximum. Temperature Coefficient. DSCC Dwg. Bias = 0 volt 88011 All Voltages 0±30 ppm/°C 87106 50 WVDC ±15% and 100 WVDC 87106 200 WVDC ±15% 87106 500 WVDC ±15% Bias = rated voltage 0±30 ppm/°C +15, -25% +15, -40% +15, -50% Voltage Conditioning. In accordance with MIL-PRF-49470, except 500V rated parts at 120 percent of rated voltage at +125°C. Terminal Strength. MIL-STD-202, method 211, condition B, except that each lead shall be bent away from the body 90 degrees from the original position and back, two bends. Marking. Marking shall be in accordance with MIL-STD-1285, except the part number shall be as specified in paragraph 1.2 of 87106, or 88011 with the manufacturer’s name or code and date code minimum, except case sizes 4 and 5 shall be marked with coded cap and tolerance minimum. Full marking shall be included on the package. MAY 2015 ■ 21 SMPS Stacked MLC Capacitors (SM Style) DSCC #87106 and #88011 Table II. Group A inspection. Inspection Requirement paragraph of MIL-PRF-49470 Test method paragraph of MIL-PRF-49470 Sampling procedure 3.9 4.8.5 100% inspection 3.4 3.1 3.5 and 3.5.1 4.8.4 Subgroup 1 Thermal shock and voltage conditioning 1/ Subgroup 2 Visual and mechanical examination: Material Physical dimensions Interface requirements (other than physical dimensions) Marking 2/ Workmanship 13 samples 0 failures 3.28 3.30 1/ Post checks are required (see paragraph 3.9 of MIL-PRF-49470). 2/ Marking defects are based on visual examination only. Any subsequent electrical defects shall not be used as a basis for determining marking defects. Table III. Group B inspection. 1/ Inspection Requirement paragraph of MIL-PRF-49470 Test method paragraph of MIL-PRF-49470 Subgroup 1 3/ Temperature coefficient Resistance to solvents 5/ 6/ Immersion Terminal strength 5/ 4/ 3.23 3.18 3.24 4/ 4.8.20 4.8.15 4.8.10 Subgroup 2 Resistance to soldering heat Moisture resistance 3.20 3.21 Number of sample units to be inspected Number of defectives permitted 2/ 12 1 4.8.17 4.8.18 12 1 3.28.1 4.8.4.1 6 1 Subgroup 4 Solderability 3.15 4.8.12 3 0 Subgroup 5 Life 3.26 4.8.22 5 minimum per case code 0 Subgroup 3 Marking legibility (laser marking only) 1/ Unless otherwise specified herein, when necessary, mounting of group B samples shall be at the discretion of the manufacturer. 2/ A sample unit having one or more defects shall be charged as a single defective. 3/ Order of tests is at discretion of manufacturer. 4/ See 3.2.3 of DSCC 87106. 5/ Sample size shall be 3 pieces with zero defectives permitted. 6/ Total of one defect allowed for combination of subgroup 1, subgroup 2, and subgroup 3 inspections. 22 ■ MAY 2015 6/ 1 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) Electrical characteristics Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- Cap. Value (μF) 001 002 241 242 003 004 243 244 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 005 006 245 246 007 008 247 248 009 010 249 250 1.5 1.5 1.5 1.5 1.8 1.8 1.8 1.8 2.2 2.2 2.2 2.2 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 011 012 251 252 013 014 253 254 2.7 2.7 2.7 2.7 3.3 3.3 3.3 3.3 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 015 016 255 256 017 018 257 258 3.9 3.9 3.9 3.9 4.7 4.7 4.7 4.7 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 019 020 259 260 5.6 5.6 5.6 5.6 K M K M 5 5 5 5 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 223 224 261 262 6.8 6.8 6.8 6.8 K M K M 4 4 4 4 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 021 022 263 264 8.2 8.2 8.2 8.2 K M K M 4 4 4 4 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 023 024 265 266 025 026 267 268 10 10 10 10 12 12 12 12 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 027 028 269 270 15 15 15 15 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 029 030 271 18 18 18 K M K 3 3 3 N N J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- Cap. Value (μF) 272 272 18 18 M M 3 3 J J 6.10 (0.240) 6.10 (0.240) 031 032 273 274 033 034 275 276 035 036 277 278 22 22 22 22 27 27 27 27 33 33 33 33 K M K M K M K M K M K M 3 3 3 3 3 3 3 3 3 3 3 3 N N J J N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 037 038 279 280 39 39 39 39 K M K M 3 3 3 3 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 039 040 281 282 47 47 47 47 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 225 226 283 284 56 56 56 56 K M K M 1 1 1 1 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 041 042 285 286 043 044 287 288 68 68 68 68 82 82 82 82 K M K M K M K M 1 1 1 1 1 1 1 1 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 045 046 289 290 100 100 100 100 K M K M 1 1 1 1 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 227 228 291 292 120 120 120 120 K M K M 2 2 2 2 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 047 048 293 294 150 150 150 150 K M K M 2 2 2 2 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 049 050 295 296 051 052 297 298 180 180 180 180 220 220 220 220 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 053 054 299 300 270 270 270 270 K M K M 6 6 6 6 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- Cap. Value (μF) 055 056 301 302 .68 .68 .68 .68 K M K M 5 5 5 5 N N J J 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 057 058 303 304 059 060 305 306 061 062 307 308 .82 .82 .82 .82 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 063 064 309 310 065 066 311 312 1.5 1.5 1.5 1.5 1.8 1.8 1.8 1.8 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 067 068 313 314 069 070 315 316 2.2 2.2 2.2 2.2 2.7 2.7 2.7 2.7 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 071 072 317 318 3.3 3.3 3.3 3.3 K M K M 5 5 5 5 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 073 074 319 320 075 076 321 322 3.9 3.9 3.9 3.9 4.7 4.7 4.7 4.7 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 077 078 323 324 079 080 325 326 5.6 5.6 5.6 5.6 6.8 6.8 6.8 6.8 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 081 082 327 328 8.2 8.2 8.2 8.2 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 229 230 329 330 083 084 331 332 10 10 10 10 12 12 12 12 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 50V 50V 100V MAY 2015 ■ 23 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) Electrical characteristics DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 085 086 333 334 087 088 335 336 15 15 15 15 18 18 18 18 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 113 114 361 362 115 116 363 364 .47 .47 .47 .47 .56 .56 .56 .56 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 089 090 337 338 22 22 22 22 K M M M 3 3 3 3 N N K J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 091 092 339 340 27 27 27 27 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 117 118 365 366 119 120 367 368 .68 .68 .68 .68 .82 .82 .82 .82 K M K M K M M M 5 5 5 5 5 5 5 5 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 093 094 341 342 33 33 33 33 K M K M 1 1 1 1 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 095 096 343 344 097 098 345 346 39 39 39 39 47 47 47 47 K M K M K M K M 1 1 1 1 1 1 1 1 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 121 122 369 370 123 124 371 372 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M 5 5 5 5 5 5 5 5 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 125 126 373 374 1.5 1.5 1.5 1.5 K M K M 5 5 5 5 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 099 100 347 348 56 56 56 56 K M K M 1 1 1 1 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 101 102 349 350 68 68 68 68 K M K M 2 2 2 2 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 127 128 375 376 129 130 377 378 1.8 1.8 1.8 1.8 2.2 2.2 2.2 2.2 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 103 104 351 352 82 82 82 82 K M K M 2 2 2 2 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 105 106 353 354 107 108 355 356 100 100 100 100 120 120 120 120 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 131 132 379 380 133 134 381 382 2.7 2.7 2.7 2.7 3.3 3.3 3.3 3.3 K M K M K M K M 4 4 4 4 4 4 4 4 N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 135 136 383 384 3.9 3.9 3.9 3.9 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 109 110 357 358 150 150 150 150 K M K M 6 6 6 6 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 111 112 359 360 180 180 180 180 K M K M 6 6 6 6 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 137 138 385 386 139 140 387 388 4.7 4.7 4.7 4.7 5.6 5.6 5.6 5.6 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 141 142 389 390 143 144 391 392 6.8 6.8 6.8 6.8 8.2 8.2 8.2 8.2 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 100V 24 ■ MAY 2015 DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 145 146 393 394 10 10 10 10 K M K M 3 3 3 3 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 147 148 395 396 12 12 12 12 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 149 150 397 398 15 15 15 15 K M K M 1 1 1 1 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 151 152 399 400 18 18 18 18 K M K M 1 1 1 1 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 153 154 401 402 155 156 403 404 22 22 22 22 27 27 27 27 K M K M K M K M 1 1 1 1 1 1 1 1 N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 157 158 405 406 33 33 33 33 K M K M 2 2 2 2 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 159 160 407 408 39 39 39 39 K M K M 2 2 2 2 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 161 162 409 410 47 47 47 47 K M K M 6 6 6 6 N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 163 164 411 412 165 166 413 414 56 56 56 56 68 68 68 68 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 167 168 415 416 82 82 82 82 K M K M 6 6 6 6 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 169 170 417 418 171 172 419 420 100 100 100 100 120 120 120 120 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 200V 200V SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #87106 (X7R) Electrical characteristics DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) DSCC Dwg. 87106- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 500V 500V 173 174 421 422 .15 .15 .15 .15 K M K M 5 5 5 5 N N J J 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 3.05 (0.120) 175 176 423 424 177 178 425 426 179 180 427 428 .18 .18 .18 .18 .22 .22 .22 .22 .27 .27 .27 .27 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 181 182 429 430 183 184 431 432 185 186 433 434 .33 .33 .33 .33 .39 .39 .39 .39 .47 .47 .47 .47 K M K M K M K M K M K M 5 5 5 5 5 5 5 5 5 5 5 5 N N J J N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 187 188 435 436 .56 .56 .56 .56 K M K M 5 5 5 5 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 189 190 437 438 231 232 439 440 191 192 441 442 193 194 443 444 .68 .68 .68 .68 .82 .82 .82 .82 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 K M K M K M K M K M K M K M K M 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 N N J J N N J J N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 195 196 445 446 1.5 1.5 1.5 1.5 K M K M 4 4 4 4 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 197 198 447 448 1.8 1.8 1.8 1.8 K M K M 4 4 4 4 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 233 234 449 450 2.2 2.2 2.2 2.2 K M K M 3 3 3 3 N N J J 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 199 200 451 452 2.7 2.7 2.7 2.7 K M K M 3 3 3 3 N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 201 202 453 454 203 204 455 456 3.3 3.3 3.3 3.3 3.9 3.9 3.9 3.9 K M K M K M K M 3 3 3 3 3 3 3 3 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 205 206 457 458 4.7 4.7 4.7 4.7 K M K M 3 3 3 3 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 207 208 459 460 5.6 5.6 5.6 5.6 K M K M 3 3 3 3 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 235 236 461 462 209 210 463 464 211 212 465 466 6.8 6.8 6.8 6.8 8.2 8.2 8.2 8.2 10 10 10 10 K M K M K M K M K M K M 1 1 1 1 1 1 1 1 1 1 1 1 N N J J N N J J N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 213 214 467 468 237 238 469 470 215 216 471 472 12 12 12 12 15 15 15 15 18 18 18 18 K M K M K M K M K M K M 1 1 1 1 2 2 2 2 2 2 2 2 N N J J N N J J N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 239 240 473 474 217 218 475 476 22 22 22 22 27 27 27 27 K M K M K M K M 6 6 6 6 6 6 6 6 N N J J N N J J 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 219 220 477 478 33 33 33 33 K M K M 6 6 6 6 N N J J 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 221 222 479 480 39 39 39 39 K M K M 6 6 6 6 N N J J 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) MAY 2015 ■ 25 SMPS Stacked MLC Capacitors (SM Style) SM Military Styles DSCC Dwg. #88011 (C0G) CG (C0G) Electrical characteristics per MIL-C-20 DSCC Dwg. 88011- Cap. Value (μF) Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 001* 002* 003* 004* 005* 006* 007* 008* 009* 010* 011* 012* 013* 014* 015* 016* 017* 018* 019* 020* 021* 022* 023* 024* 025* 026* 027* 028* 029* 030* 031* 032* 033* 034* 035* 036* 037* 038* 039* 040* 041* 042* 043* 044* 045* 046* 047* 048* 049* 050* 051* 052* 053* 054* 055* 056* 057* 058* 059* 060* .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 10 10 12 12 15 15 J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 061* 062* 063* 064* 065* 066* 067* 068* 069* 070* 071* 072* 073* 074* 075* 076* 077* 078* 079* .047 .047 .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 J K J K J K J K J K J K J K J K J K J DSCC Dwg. 88011- Cap. Value (μF) 080* 081* 082* 083* 084* 085* 086* 087* 088* 089* 090* 091* 092* 093* 094* 095* 096* 097* 098* 099* 100* 101* 102* 103* 104* 105* 106* 107* 108* 109* 110* 111* 112* 113* 114* 115* 116* 117* 118* 119* 120* .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 6.8 6.8 8.2 8.2 10 10 12 12 K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 121* 122* 123* 124* 125* 126* 127* 128* 129* 130* 131* 132* 133* 134* 135* 136* 137* 138* 139* 140* 141* 142* 143* 144* 145* 146* 147* 148* 149* 150* 151* 152* 153* 154* 155* 156* 157* 158* .022 .022 .027 .027 .033 .033 .039 .039 .047 .047 .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 50V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 2 2 6 6 6 6 6 6 6 6 6 6 3.05 (0.120) 3.05 (0.120) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) N N N N N N N N N N N N N N N N N N N 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) *Add J or L for applicable formed leads 26 ■ MAY 2015 DSCC Dwg. 88011- Cap. Value (μF) 159* 160* 161* 162* 163* 164* 165* 166* 167* 168* 169* 170* 171* 172* 173* 174* 175* 176* 177* 178* 179* 180* .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 2.7 2.7 3.3 3.3 3.9 3.9 4.7 4.7 5.6 5.6 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 2 2 2 2 6 6 6 6 6 6 6 6 6 6 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 3.05 (0.120) 3.05 (0.120) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 200V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) J K J K J K J K J K J K J K J K J K J K J K 181* 182* 183* 184* 185* 186* 187* 188* 189* 190* 191* 192* 193* 194* 195* 196* 197* 198* 199* 200* 201* 202* 203* 204* 205* 206* 207* 208* 209* 210* 211* 212* 213* 214* 215* 216* 217* 218* 219* 220* 221* 222* 223* 224* 225* 226* 227* 228* 229* 230* 231* 232* 233* 234* 235* 236* 237* 238* .010 .010 .012 .012 .015 .015 .018 .018 .022 .022 .027 .027 .033 .033 .039 .039 .047 .047 .056 .056 .068 .068 .082 .082 .10 .10 .12 .12 .15 .15 .18 .18 .22 .22 .27 .27 .33 .33 .39 .39 .47 .47 .56 .56 .68 .68 .82 .82 1.0 1.0 1.2 1.2 1.5 1.5 1.8 1.8 2.2 2.2 J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K J K 200V (continued) 100V (continued) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 100V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 Max. A Cap. Case Lead Dimension Tol. Code Style mm (inches) 3 3 3 3 1 1 1 1 1 1 2 2 2 2 6 6 6 6 6 6 6 6 N N N N N N N N N N N N N N N N N N N N N N 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 3.05 (0.120) 3.05 (0.120) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 6.10 (0.240) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 9.14 (0.360) 9.14 (0.360) 12.2 (0.480) 12.2 (0.480) 16.5 (0.650) 16.5 (0.650) 500V 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 2 2 2 2 6 6 6 6 6 6 SMPS Stacked MLC Capacitors (SM9 Style) Technical Information on SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Dielectric Withstanding Voltage 25°C (Flash Test) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current. Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC) Z5U: 150% rated voltage at +85°C Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R, Z5U: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Z5U: 1K MΩ or 100 MΩ-μF, whichever is less. Not RoHS Compliant Typical ESR Performance (mΩ) ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz ESR @ 500KHz ESR @ 1MHz ESR @ 5MHz ESR @ 10MHz HOW TO ORDER SM9 AVX Style SM9 = Plastic Case 1 Aluminum Electrolytic 100μF/50V 300 285 280 265 265 335 560 Low ESR Solid Tantalum 100μF/10V 72 67 62 56 56 72 91 Solid Aluminum Electrolytic 100μF/16V 29 22 20 18 17 17 22 MLCC SMPS 100μF/50V 3 2 2.5 4 7 12.5 20 MLCC SMPS 4.7μF/50V 66 23 15 8 7.5 8 14 AVX Styles: SM91, SM92, SM93, SM94, SM95, SM96 7 C 106 M Size Voltage Temperature Capacitance See 50V = 5 Coefficient Code Dimensions 100V = 1 C0G = A (2 significant digits chart 200V = 2 X7R = C + number of zeros) 500V = 7 Z5U = E 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 Note: Capacitors with X7R and Z5U dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. * Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. A N 660 Capacitance Test Level Termination Tolerance A = Standard N = Straight Lead B = Hi-Rel* C0G: J = Leads formed in 5 = Standard/MIL** L = Leads formed out J = ±5% 6 = Hi-Rel/MIL*** K = ±10% M = ±20% Height See table on page 29 for max cap per height X7R: K = ±10% M = ±20% Z = +80%, -20% Z5U: Z = +80%, -20% P = GMV (+100, -0%) ** Form, fit & function equivalent to MIL-PRF-49470 part. Applies to 50V rated parts only. No screening. *** Form, fit & function equivalent to MIL-PRF-49470 part. Applies to 50V rated parts only. Hi-Rel screening the same as option B. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. MAY 2015 ■ 27 SMPS Stacked MLC Capacitors Encapsulated in DAP (Diallyl Phthalate) Case (SM9 Style) D E 0.381 (0.015) ±0.127 (0.005) Maximum Height (see table) 6.35 (0.250) (MIN.) 4.445 (0.175) MAX 1.016 (0.040) MIN 0.254 (0.010) TYP. C 0.508 (0.020) TYP. 2.54 (0.100) CENTERS TYP. “N” STYLE LEADS D E Maximum Height (see table) 0.381 (0.015) ±0.127 (0.005) 0.254 (0.010) RAD. TYP. 1.778 (0.070) ±0.254 (0.010) 0.254 (0.010) TYP. 0.508 (0.020) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 4.445 (0.175) MAX 1.016 (0.040) MIN C 2.54 (0.100) CENTERS TYP. “J” STYLE LEADS D E Maximum Height (see table) 0.381 (0.015) ±0.127 (0.005) 0.254 (0.010) RAD. TYP. 1.778 (0.070) ±0.254 (0.010) 0.254 (0.010) TYP. 0.508 (0.020)TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 4.445 (0.175) MAX 1.016 (0.040) MIN 2.54 (0.100) CENTERS TYP. C “L” STYLE LEADS DIMENSIONS Case Code SM91 SM92 SM93 SM94 SM95 SM96 *Leads styles N, J or L available 28 ■ MAY 2015 millimeters (inches) C ±0.635 (0.025) 11.4 20.3 11.4 10.2 6.35 31.8 (0.450) (0.800) (0.450) (0.400) (0.250) (1.250) D ±0.254 (0.010) 54.7 41.0 29.3 12.3 9.02 54.7 (2.155) (1.615) (1.155) (0.485) (0.355) (2.155) E +0.000 (0.000) -0.254 (0.010) 14.7 24.1 14.7 12.3 9.02 36.3 (0.580) (0.950) (0.580) (0.485) (0.355) (1.430) No. of Leads per side* 20 15 10 4 3 20 SMPS Stacked MLC Capacitors Encapsulated in DAP (Diallyl Phthalate) Case (SM9 Style) Max Capacitance (μF) Available Versus Style with Height of 0.270" - 6.86mm SM91 _ _ _ _ _ _ AN270 AVX STYLE SM92 _ _ _ _ _ _ AN270 SM93 _ _ _ _ _ _ AN270 SM94 _ _ _ _ _ _ AN270 SM95 _ _ _ _ _ _ AN270 SM96 _ _ _ _ _ _ AN270 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50 X7R 27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4 Z5U 84 32 12 – – 110 46 34 –– 40 15 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 –– 100V 200V 500V 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height of 0.390" - 9.91mm SM91 _ _ _ _ _ _ AN390 AVX STYLE C0G SM92 _ _ _ _ _ _ AN390 SM93 _ _ _ _ _ _ AN390 50V 100V 200V 500V 50V 100V 200V 500V 50V 2.0 1.4 .80 .36 2.4 2.0 1.0 .80 .40 1.2 .52 SM94 _ _ _ _ _ _ AN390 SM95 _ _ _ _ _ _ AN390 SM96 _ _ _ _ _ _ AN390 50V 100V 200V 500V 50V 100V 200V 500V 50V .18 .32 .26 .14 .05 .10 .08 .80 100V 200V 500V 100V 200V 500V .05 .02 6.4 4.8 2.6 1.0 .32 160 80 48 18 X7R 54 24 14 5.2 82 36 22 8.0 36 12 7.2 2.6 15 3.6 2.2 5.6 1.3 .80 Z5U 160 64 24 – – 230 92 68 –– 80 30 12 –– 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – – Max Capacitance (μF) Available Versus Style with Height of 0.530" - 13.46mm SM91 _ _ _ _ _ _ AN530 AVX STYLE C0G SM92 _ _ _ _ _ _ AN530 SM93 _ _ _ _ _ _ AN530 50V 100V 200V 500V 50V 100V 200V 500V 50V 3.0 2.1 1.2 3.6 3.0 1.8 .78 1.5 1.2 54 33 12 54 .54 SM94 _ _ _ _ _ _ AN530 SM95 _ _ _ _ _ _ AN530 SM96 _ _ _ _ _ _ AN530 50V 100V 200V 500V 50V 100V 200V 500V 50V .27 .48 .39 .21 .07 .15 .12 100V 200V 500V .60 100V 200V 500V .07 .03 9.6 7.2 3.9 1.5 .48 240 120 72 28 X7R 82 36 21 7.8 120 18 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 Z5U 250 96 36 – – 350 130 100 – – 120 45 18 –– 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – – Max Capacitance (μF) Available Versus Style with Height of 0.660" - 16.76mm SM91 _ _ _ _ _ _ AN660 AVX STYLE SM92 _ _ _ _ _ _ AN660 SM93 _ _ _ _ _ _ AN660 SM94 _ _ _ _ _ _ AN660 SM95 _ _ _ _ _ _ AN660 SM96 _ _ _ _ _ _ AN660 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37 24 –– 48 18 12 –– 18 7.2 2.8 – – 1000 570 360 – – 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V C0G 4.0 2.8 1.6 .72 4.8 4.0 2.4 1.0 2.0 1.6 .80 X7R 110 48 28 10 160 72 44 16 72 24 Z5U 330 120 48 – – 470 180 130 – – 160 60 Max Capacitance (μF) Available Versus Style with Height of 0.800" - 20.3mm SM91 _ _ _ _ _ _ AN800 AVX STYLE SM92 _ _ _ _ _ _ AN800 SM93 _ _ _ _ _ _ AN800 100V 200V 500V SM94 _ _ _ _ _ _ AN800 SM95 _ _ _ _ _ _ AN800 SM96 _ _ _ _ _ _ AN800 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .47 .80 .65 .35 .12 .25 .20 .12 .05 16 6.5 2.5 X7R 130 60 35 13 200 90 55 20 90 30 18 6.5 36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47 Z5U 420 160 60 – – 590 230 170 – – 200 75 30 –– 60 23 15 –– 23 9.0 3.6 – – 1300 720 460 – – 100V 200V 500V 12 MAY 2015 ■ 29 RoHS Compliant SMPS Stacked MLC Capacitors (RM Style) Technical Information on SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Dielectric Withstanding Voltage 25°C (Flash Test) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC) Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R: Ten cycles with no voltage applied. Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Typical ESR Performance (mΩ) ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz ESR @ 500KHz ESR @ 1MHz ESR @ 5MHz ESR @ 10MHz HOW TO ORDER RM0 AVX Style RM0 = Uncoated RM5 = Epoxy Coated 1 Aluminum Electrolytic 100μF/50V 300 285 280 265 265 335 560 Low ESR Solid Tantalum 100μF/10V 72 67 62 56 56 72 91 Solid Aluminum Electrolytic 100μF/16V 29 22 20 18 17 17 22 MLCC SMPS 100μF/50V 3 2 2.5 4 7 12.5 20 MLCC SMPS 4.7μF/50V 66 23 15 8 7.5 8 14 AVX Styles: RM-1, RM-2, RM-3, RM-4, RM-5, RM-6 7 C Size Voltage Temperature See 50V = 5 Coefficient Dimensions 100V = 1 C0G = A chart 200V = 2 X7R = C 500V = 7 106 M A N 650 Capacitance Code (2 significant digits + number of zeros) 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% Test Level A = Standard Termination N = Straight Lead J = Leads formed in L = Leads formed out P = P Style Leads Z = Z Style Leads Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" X7R: K = ±10% M = ±20% Z = +80%, -20% Note: Capacitors with X7R and Z5U dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 30 ■ MAY 2015 RoHS Compliant SMPS Stacked MLC Capacitors (RM Style) Surface Mount and Thru-Hole Sytles (RM0, RM5) CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. 0.254 (0.010) TYP. C 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. B E RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style RM-1 RM-2 RM-3 RM-4 RM-5 RM-6 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 32 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 11.4 20.3 11.4 10.2 6.35 31.8 (0.450) (0.800) (0.450) (0.400) (0.250) (1.250) D ±.635 (±0.025) 52.1 38.4 26.7 10.2 6.35 52.1 (2.050) (1.510) (1.050) (0.400) (0.250) (2.050) E (max.) 12.7 22.1 12.7 11.2 7.62 34.3 (0.500) (0.870) (0.500) (0.440) (0.300) (1.350) No. of Leads per side 20 15 10 4 3 20 Note: For RM5 add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E MAY 2015 ■ 31 RoHS Compliant SMPS Stacked MLC Capacitors (RM Style) Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm RM01 _ _ _ _ _ _ AN120 AVX STYLE RM02 _ _ _ _ _ _ AN120 RM03 _ _ _ _ _ _ AN120 100V 200V 500V RM04 _ _ _ _ _ _ AN120 RM05 _ _ _ _ _ _ AN120 RM06 _ _ _ _ _ _ AN120 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50 X7R 27 12 7.0 2.6 41 18 11 4.0 18 3.6 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 24 9.4 6.0 100V 200V 500V 40 Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm RM01 _ _ _ _ _ _ AN240 AVX STYLE RM02 _ _ _ _ _ _ AN240 RM03 _ _ _ _ _ _ AN240 100V 200V 500V RM04 _ _ _ _ _ _ AN240 RM05 _ _ _ _ _ _ AN240 RM06 _ _ _ _ _ _ AN240 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0 X7R 54 24 14 5.2 82 36 22 8.0 36 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18 12 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm RM03 _ _ _ _ _ _ AN360 RM04 _ _ _ _ _ _ AN360 RM05 _ _ _ _ _ _ AN360 RM06 _ _ _ _ _ _ AN360 50V RM01 _ _ _ _ _ _ AN360 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5 X7R 82 36 21 7.8 120 54 33 12 54 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28 AVX STYLE RM02 _ _ _ _ _ _ AN360 100V 200V 500V 18 100V 200V 500V Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm RM01 _ _ _ _ _ _ AN480 AVX STYLE RM02 _ _ _ _ _ _ AN480 RM03 _ _ _ _ _ _ AN480 100V 200V 500V RM04 _ _ _ _ _ _ AN480 RM05 _ _ _ _ _ _ AN480 RM06 _ _ _ _ _ _ AN480 50V 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V C0G 4.0 2.8 1.6 .72 4.8 4.0 2.2 1.0 2.0 1.6 .80 .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0 X7R 110 48 28 10 160 72 44 16 72 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37 24 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm RM03 _ _ _ _ _ _ AN650 RM04 _ _ _ _ _ _ AN650 RM05 _ _ _ _ _ _ AN650 RM06 _ _ _ _ _ _ AN650 50V RM01 _ _ _ _ _ _ AN650 100V 200V 500V 50V 100V 200V 500V 50V 50V 100V 200V 500V 50V 100V 200V 500V 50V C0G 5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .47 .80 .65 .35 .12 .25 .20 .12 .05 16 6.5 2.5 X7R 130 60 35 13 200 90 55 20 90 18 6.5 36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47 AVX STYLE 32 ■ MAY 2015 RM02 _ _ _ _ _ _ AN650 100V 200V 500V 30 100V 200V 500V 12 SMPS Stacked MLC Capacitors (SMM Style) Extended Range GENERAL DESCRIPTION The SMM series SMPS capacitors incorporate the Super X7R dielectric material. AVX SMM stacked capacitors offer high dielectric constant (K) characteristics allowing for an extended capacitance range. The higher capacitance values in the smaller case sizes reduce the amount of board space needed to mount these components. The SMM series capacitors are designed for use in applications ranging from high end DC/DC converters to general power supplies, telecom networks, snubbers, aerospace instrumentation panels, hybrid power applications and more. ELECTRICAL SPECIFICATIONS Temperature Coefficient ±15%, -55ºC to +125ºC Capacitance Test (MIL-STD-202 Method 305) 25ºC, 1.0 ± 0.2 Vrms (open circuit voltage) at 1 kHz Dissipation Factor 25°C 2.5% Max @ 25ºC, 1.0 ± 0.2 Vrms (open circuit voltage) at 1 kHz Insulation Resistance 25°C (MIL-STD-202 Method 302) 1000 MΩ-μF, whichever is less Insulation Resistance 125°C (MIL-STD-202 Method 302) 100 MΩ-μF, whichever is less Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA maximum charging current (500 Volt units @ 750 VDC) Life Test (1000 hrs) 200% rated voltage for at 125°C (500 Volts units @ 600 VDC) Not RoHS Compliant HOW TO ORDER SMM4 5 C 186 M A K 120 AVX Style SMM3 SMM4 SMM5 Voltage 50V = 5 100V = 1 200V = 2 500V = 7 Temperature Coefficient X7R = C Capacitance Code (pF - 2 significant digits + number of zeros) 1μF = 105 10 μF = 106 100 μF = 107 Tolerance K = ±10% M = ±20% Test Level A = Standard B = Hi-Rel* Leads N = Straight Lead K = Leads formed in M = Leads formed out Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 600 = 0.600" *Hi-Rel screening for consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. MAY 2015 ■ 33 SMPS Stacked MLC Capacitors (SMM Style) Extended Range CHIP SEPARATION 0.254 (0.010) TYP. D E B 1.397 (0.055) ±0.254 (0.010) A 0.508 (0.020) TYP. 6.35 (0.250) MIN. 0.254 (0.010) TYP. 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. C “N” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. D E B 0.254 (0.010) RAD. (TYP.) A 0.508 (0.020) TYP. 2.54 (0.100) TYP. 0.254 (0.010) TYP. 1.397 (0.055) ±0.127 (0.005) TYP. 1.143 (0.045) ±0.254 (0.010) C 2.54 (0.100) MAX. 0.635 (0.025) MIN. “K” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. D E 0.254 (0.010) RAD. (TYP.) B A 1.143 (0.045) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) C 0.254 (0.010) TYP. 1.397 (0.055) ±0.127 (0.005) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “M” STYLE LEADS DIMENSIONS Style millimeters (inches) A (max.) B (max.) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) 11.4 (0.450) 10.2 (0.400) 6.35 (0.250) 26.7 (1.050) 10.2 (0.400) 6.35 (0.250) 12.7 (0.500) 11.2 (0.440) 7.62 (0.300) SMM3 See next table For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) SMM4 below for maximum For “K” & “M” Style Leads: “A” Dimension Plus 1.39 (0.055) “A” Dimension SMM5 CAPACITANCE RANGE Max Capacitance (μF) Available Versus Style and Height (Diminsion “A”) AVX STYLE 50V Height “A” 0.120" 0.240" 0.360" 0.480" 0.600" 27 56 82 100 120 SMM3 100V 200V 15 27 47 56 68 34 ■ MAY 2015 8.2 15 22 33 39 500V 50V SMM4 100V 200V 500V 50V SMM5 100V 200V 500V 3.9 6.8 12 15 18 10 18 27 39 49 4.7 8.2 12 18 22 1.2 2.2 3.3 4.7 5.6 3.9 6.8 12 15 18 1.8 3.3 5.6 6.8 8.2 0.56 1.0 1.6 2.2 2.7 3.3 6.8 10 12 15 1.2 2.2 3.3 4.7 5.6 No. of Leads per side 10 4 3 RoHS Compliant SMPS Stacked MLC Capacitors (RMM Style) Extended Range GENERAL DESCRIPTION The RMM series SMPS capacitors incorporate the Super X7R dielectric material. AVX RMM stacked capacitors offer high dielectric constant (K) characteristics allowing for an extended capacitance range. The higher capacitance values in the smaller case sizes reduce the amount of board space needed to mount these components. The RMM series capacitors are designed for use in applications ranging from high end DC/DC converters to general power supplies, telecom networks, snubbers, aerospace instrumentation panels, hybrid power applications and more. ELECTRICAL SPECIFICATIONS Temperature Coefficient ±15%, -55ºC to +125ºC Capacitance Test (MIL-STD-202 Method 305) 25ºC, 1.0 ± 0.2 Vrms (open circuit voltage) at 1 kHz Dissipation Factor 25°C 2.5% Max @ 25ºC, 1.0 ± 0.2 Vrms (open circuit voltage) at 1 kHz Insulation Resistance 25°C (MIL-STD-202 Method 302) 1000 MΩ-μF, whichever is less Insulation Resistance 125°C (MIL-STD-202 Method 302) 100 MΩ-μF, whichever is less Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA maximum charging current (500 Volt units @ 750 VDC) Life Test (1000 hrs) 200% rated voltage for at 125°C (500 Volts units @ 600 VDC) HOW TO ORDER RMM4 5 C 186 M A K 120 AVX Style RMM3 RMM4 RMM5 Voltage 50V = 5 100V = 1 200V = 2 500V = 7 Temperature Coefficient X7R = C Capacitance Code (pF - 2 significant digits + number of zeros) 1μF = 105 10 μF = 106 100 μF = 107 Tolerance K = ±10% M = ±20% Test Level A = Standard B = Hi-Rel* Leads N = Straight Lead K = Leads formed in M = Leads formed out Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 600 = 0.600" *Hi-Rel screening for consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. MAY 2015 ■ 35 RoHS Compliant SMPS Stacked MLC Capacitors (RMM Style) Extended Range CHIP SEPARATION 0.254 (0.010) TYP. D E B 1.397 (0.055) ±0.254 (0.010) A 0.508 (0.020) TYP. 6.35 (0.250) MIN. 0.254 (0.010) TYP. 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. C “N” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. D E B 0.254 (0.010) RAD. (TYP.) A 0.508 (0.020) TYP. 2.54 (0.100) TYP. 0.254 (0.010) TYP. 1.397 (0.055) ±0.127 (0.005) TYP. 1.143 (0.045) ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C “K” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. D E 0.254 (0.010) RAD. (TYP.) B A 0.508 (0.020) TYP. 2.54 (0.100) TYP. 1.143 (0.045) ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.397 (0.055) ±0.127 (0.005) TYP. “M” STYLE LEADS DIMENSIONS Style millimeters (inches) A (max.) B (max.) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) 11.4 (0.450) 10.2 (0.400) 6.35 (0.250) 26.7 (1.050) 10.2 (0.400) 6.35 (0.250) 12.7 (0.500) 11.2 (0.440) 7.62 (0.300) RMM3 See next table For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) RMM4 below for maximum For “K” & “M” Style Leads: “A” Dimension Plus 1.39 (0.055) “A” Dimension RMM5 CAPACITANCE RANGE Max Capacitance (μF) Available Versus Style and Height (Diminsion “A”) AVX STYLE 50V Height “A” 0.120" 0.240" 0.360" 0.480" 0.600" 27 56 82 100 120 RMM3 100V 200V 15 27 47 56 68 36 ■ MAY 2015 8.2 15 22 33 39 500V 50V RMM4 100V 200V 500V 50V RMM5 100V 200V 500V 3.9 6.8 12 15 18 10 18 27 39 49 4.7 8.2 12 18 22 1.2 2.2 3.3 4.7 5.6 3.9 6.8 12 15 18 1.8 3.3 5.6 6.8 8.2 0.56 1.0 1.6 2.2 2.7 3.3 6.8 10 12 15 1.2 2.2 3.3 4.7 5.6 No. of Leads per side 10 4 3 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC SMX-style, stacked Switch Mode Power Supply Capacitors (SMPS) utilizing Multilayer Ceramic (MLCC) construction are ideally suited for high temperature applications up to 200ºC. This product is intended for downhole oil exploration, including logging while drilling, geophysical probes, as well as space and aerospace electronics. The high temperature solder utilized in the construction of SMX-style parts assures reliable operation in harsh environments. The wide product offering provides designers a solution for high capacitance value and high voltage capacitors rated at 200ºC. The SMX-style capacitors are ideally suited for applications as DC filters in high power, high frequency motor drives, high pulsed-current circuitry, as well as low power electronics. SMX-style, SMPS capacitors are characterized with excellent performance in comparison to wet tantalum products. The main benefits of SMX-product over wet tantalum capacitors include: • Much lower ESR and lower losses • Excellent capacitance retention with frequency • Excellent high frequency performance • Low DC leakage current • Much higher current handling capabilities Typical Extended Temperature TCC Characterization of C0G, SMPS Capacitors Test conditions: 1 Vrms, 1 kHz, 0 VDC bias Typical Extended Temperature TCC Characterization of VHT, SMPS Capacitors Test conditions: 1 Vrms, 1 kHz, 0 VDC bias 1.0 Percentage Capacitance Change 20 0.8 Percentage Capacitance Change 0.6 0.4 0.2 0.0 -0.2 0 -20 -40 -60 -80 -0.4 -100 -80 -0.6 -40 -20 0 20 40 60 80 100 120 140 160 180 200 Temperature (ºC) -0.8 -1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 Temperature (ºC) Typical Extended Temperature IR Characterization of VHT, SMPS Capacitors Typical Extended Temperature IR Characterization of C0G, SMPS Capacitors 1000 RC Product (⍀*F) RC Product (⍀*F) 10000 1000 100 100 10 10 120 130 140 150 160 170 Temperature (ºC) 180 190 200 150 160 170 180 190 200 Temperature (ºC) MAY 2015 ■ 37 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient VHT: C Temperature Coefficient 0 ±30 ppm/°C, -55° to +200°C ±15%, -55°C to +125°C +15% - 56%, -55ºC to +200°C Capacitance Test (MIL-STD-202 Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz VHT: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) 100K MΩ or 1000 MΩ-μF, whichever is less. Insulation Resistance 125°C (MIL-STD-202 Method 302) 10K MΩ or 100 MΩ-μF, whichever is less. Insulation Resistance 200°C (MIL-STD-202 Method 302) 1K MΩ or 10 MΩ -μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Moisture Resistance (MIL-STD-202 Method 106) Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Not RoHS Compliant HOW TO ORDER SMX AVX Style SMX = Uncoated 1 AVX Styles: SMX1, SMX2, SMX3, SMX4, SMX5, SMX6 7 C 106 Size Voltage Temperature Capacitance See 25 = 3 Coefficient Code Dimensions 50V = 5 C0G = A (2 significant digits chart 100V = 1 VHT = C + number of zeros) 200V = 2 10 pF = 100 500V = 7 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 M A N 650 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% Test Level A = Standard Termination N = Straight Lead J = Leads formed in L = Leads formed out P = P Style Leads Z = Z Style Leads Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" X7R: K = ±10% M = ±20% Z = +80%, -20% Note: Capacitors with X7R/X9U dielectric is not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. 38 ■ MAY 2015 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A E 0.254 (0.010) TYP. B RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style SMX1 SMX2 SMX3 SMX4 SMX5 SMX6 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 40 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 11.4 20.3 11.4 10.2 6.35 31.8 (0.450) (0.800) (0.450) (0.400) (0.250) (1.250) D ±.635 (±0.025) 52.1 38.4 26.7 10.2 6.35 52.1 (2.050) (1.510) (1.050) (0.400) (0.250) (2.050) E (max.) 12.7 22.1 12.7 11.2 7.62 34.3 (0.500) (0.870) (0.500) (0.440) (0.300) (1.350) No. of Leads per side 20 15 10 4 3 20 MAY 2015 ■ 39 SMPS Stacked MLC Capacitors SMX Style for High Temperature Applications up to 200ºC Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm AVX STYLE C0G VHT SMX1 _ _ _ _ _ _ AN120 SMX2 _ _ _ _ _ _ AN120 25V 50V 100V 200V 500V 25V 1.0 .70 .40 .18 .068 1.2 – 18 10 3.9 1.8 – SMX3 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V 1.0 .60 .26 .10 .50 27 15 5.6 2.7 12 SMX4 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V .40 .20 .09 .033 .16 8.2 4.7 1.8 .82 3.9 SMX5 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V .13 .07 .02 .01 .05 2.7 1.5 .56 .27 1.5 SMX6 _ _ _ _ _ _ AN120 50V 100V 200V 500V 25V 50V 100V 200V 500V .04 .02 .01 .0039 3.2 2.4 1.3 .50 .20 1.0 .56 .22 .10 – 56 33 12 5.6 Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm AVX STYLE C0G VHT SMX1 _ _ _ _ _ _ AN240 SMX2 _ _ _ _ _ _ AN240 SMX3 _ _ _ _ _ _ AN240 SMX4 _ _ _ _ _ _ AN240 SMX5 _ _ _ _ _ _ AN240 SMX6 _ _ _ _ _ _ AN240 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 2.0 1.4 .80 .36 .13 2.4 2.0 1.2 .52 .20 1.0 .80 .40 .18 .068 .33 .26 .14 .05 .02 .10 .08 .05 .02 .0078 6.4 4.8 2.6 1.0 .40 – 33 18 6.8 3.3 – 47 27 10 4.7 22 15 8.2 3.3 1.5 6.8 4.7 2.7 1.0 .47 2.7 1.8 1.0 .39 .18 – 100 56 22 10 Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm AVX STYLE C0G VHT SMX1 _ _ _ _ _ _ AN360 SMX2 _ _ _ _ _ _ AN360 SMX3 _ _ _ _ _ _ AN360 SMX4 _ _ _ _ _ _ AN360 SMX5 _ _ _ _ _ _ AN360 SMX6 _ _ _ _ _ _ AN360 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 3.0 2.1 1.2 .54 .22 3.6 3.0 1.8 .78 .30 1.5 1.2 .60 .27 .10 .48 .39 .21 .07 .03 .15 .12 .07 .03 .011 10 7.2 3.9 1.5 .60 – 47 27 10 4.7 – 68 39 15 6.8 33 22 12 5.6 2.2 12 6.8 3.9 1.5 .68 3.9 2.7 1.5 .56 .27 – 150 82 33 15 Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm AVX STYLE C0G VHT SMX1 _ _ _ _ _ _ AN480 SMX2 _ _ _ _ _ _ AN480 SMX3 _ _ _ _ _ _ AN480 SMX4 _ _ _ _ _ _ AN480 SMX5 _ _ _ _ _ _ AN480 SMX6 _ _ _ _ _ _ AN480 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 4.0 2.8 1.6 .72 .27 4.8 4.0 2.2 1.0 .40 2.0 1.6 .80 .36 .130 .64 .52 .28 .10 .04 .20 .16 .10 .04 .015 13 9.6 5.2 2.0 .80 – 68 39 15 6.8 – 100 56 22 10 47 33 18 6.8 3.3 15 10 5.6 2.2 1.0 5.6 3.9 2.2 .82 .39 – 220 120 47 22 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm AVX STYLE C0G VHT SMX1 _ _ _ _ _ _ AN650 SMX2 _ _ _ _ _ _ AN650 SMX3 _ _ _ _ _ _ AN650 SMX4 _ _ _ _ _ _ AN650 SMX5 _ _ _ _ _ _ AN650 SMX6 _ _ _ _ _ _ AN650 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 5.0 3.5 2.0 .90 .34 6.0 5.0 3.0 1.3 .50 2.5 2.0 1.0 .45 .160 .82 .65 .35 .12 .05 .25 .20 .12 .05 .019 16 12 6.5 2.5 1.0 – 82 47 18 8.2 – 120 68 27 12 56 39 22 8.2 3.9 18 12 6.8 2.7 1.2 6.8 4.7 2.7 1.0 .47 – 270 150 56 27 40 ■ MAY 2015 SMPS Capacitors Chip Assemblies CH/CV - Radial, Dual-in-Line, 4 Terminal/SMT ‘J’ & ‘L’ Ranges The CH/CV range exhibits low ESR/ESL making them well suited for high frequency applications. With its’ PME technology, the range exhibits high current handling capabilities where as other technologies may not, making them the ideal choice for filtering, smoothing and decoupling circuit applications. The CH/CV range uses a number of different lead frames types which reduces the thermo-mechanical stresses which makes them the designer’s choice for high reliability applications. In combination with this the range uses a stacked capacitor design which saves on PCB space. FEATURES • • • • BS9100 approved Voltage range 50-500 V DC Dielectrics 1B/COG and 2C1/X7R Customised ceramic capacitor packages and lead frames available. Note: AVX does not recommend or advise the use of adhesives to secure the CH/CV components to the PCB ELECTRICAL SPECIFICATIONS Temperature Coefficient CECC 30 000, (4.24.1) 1B/C0G: A Temperature Coefficient - 0 ± 30 ppm/ºC, -55º to +125ºC 2C1/X7R: C Temperature Characteristic - ± 15%, -55º to +125ºC Life Test (1000 hrs) CECC 30 000 (4.23) 1B/C0G & 2C1/X7R: 200% rated voltage at +125ºC. (500 Volt units @ 120% rated voltage) Capacitance Test 25ºC 1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz for 100 pF or less) 2C1/X7R: Measured at 1 VRMS max at 1KHz Damp Heat IEC 68-2-3, 56 days. Dissipation Factor 25°C 1B/C0G: 0.15% max at 1KHz, 1 VRMS max (1MHz for 100 pF or less) 2C1/X7R: 2.5% max at 1KHz, 1 VRMS max Resistance to Solder Heat IEC 68-2-20 Insulation Resistance 25°C 1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF, whichever is less Thermal Shock IEC 68-2-14 -55ºC to +125ºC, 5 cycles Vibration IEC 68-2-6 10Hz - 2000Hz, 0.75mm or 98m/sec2, 6 hrs. Bump IEC 68-2-29 390m/sec2, 4000 bumps Dielectric Withstanding Voltage 25°C (Flash Test) 1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 150% rated voltage) MARKING CH and CV 4x, 5x, 81-84 A5C 225K xxxxxx Top line A (AVX). Voltage code, dielectric code. Middle line capacitance code, tolerance code. Bottom line 6 digit batch code. Other CH, CV Styles AVX 5C 156M xxxxxx Top line AVX. Second line voltage code, dielectric code. Third line capacitance code, tolerance code. Bottom line, 6 digit batch code. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. MAY 2015 ■ 41 SMPS Capacitors (CV Style) Chip Assemblies VERTICALLY MOUNTED RADIAL PRODUCT DIMENSIONS Part Number format (CVxxxxxxxxxxxA2) Typical Part Number CV525C106MA30A2 T Max. millimeters (inches) L (max) Style CV41-44 CV51-54 CV61-64 CV71-74 CV76-79 L Max. H Max. 10.6 11.9 16.5 17.8 22.7 H (max) (0.417) (0.468) (0.649) (0.700) (0.893) 8.7 10.7 13.6 21.6 16.6 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) 8.2 10.2 15.2 15.2 21.2* (0.322) (0.400) (0.600) (0.600) (0.834) Lead Dia (nom) 0.7 (0.028) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) *Tolerance ± 0.8 millimeters (inches) 25 (0.984) ±3 (0.118) Style Lead Dia. See Table T max CV41/51/61/71/76 CV42/52/62/72/77 CV43/53/63/73/78 CV44/54/64/74/79 S ±0.5 (0.020) 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) VERTICALLY MOUNTED 4 TERMINAL RADIAL PRODUCT Part Number format (CVxxxxxxxxx3xx4) DIMENSIONS Typical Part Number CV435C106MA30A4 T Max. L (max) Style M1 = M2 ±0.5 (0.020) L Max. H Max. millimeters (inches) CV43-44 CV53-54 CV63-64 CV73-74 CV78-79 10.6 11.9 16.5 17.8 22.7 H (max) (0.417) (0.468) (0.649) (0.700) (0.893) 8.7 10.7 13.6 21.6 16.6 (0.342) (0.421) (0.535) (0.850) (0.653) Lead Dia (nom) 0.7 (0.028) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) S (nom) 8.2 10.2 15.2 15.2 21.2* (0.322) (0.400) (0.600) (0.600) (0.834) *Tolerance ± 0.8 (0.031) 25 (0.984) ±3 (0.118) M1 Lead Dia. See Table M2 S1 ±0.5 (0.020) millimeters (inches) Style S1 ±0.5 (0.020) CV43/53/63/73/78 CV44/54/64/74/79 T max S1 11.1 (0.437) 14.8 (0.583) 5.08 (0.200) 7.62 (0.300) Note 1. This style is only available in 3 & 4 chip assemblies HOW TO ORDER CV Style Code 52 5 C 106 M Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance (see product section) 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R A 3 0 Specification Code Finish Code Lead Dia. Code Lead Space Code Lead Style Code 3 = Uncoated 0 = Standard 8 = Coated (classified as uninsulated) A = Standard 2 = 2 Terminal 4 = 4 Terminal See Note 1 above (2 significant C0G: J = ±5% A = Non-customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% A 2 Not RoHS Compliant Note: See page 142 for How to Order BS9100 parts 42 ■ MAY 2015 SMPS Capacitors (CH Style) Chip Assemblies HORIZONTALLY MOUNTED 4 TERMINAL RADIAL PRODUCT DIMENSIONS Part Number format (CHxxxxxxxxx3xx4) Typical Part Number CH782C106MA30A4 W max L max T max 25 (0.984) ±3 (0.118) Lead dia (see table) Style L (max) W (max) S (nom) CH42-44 CH52-54 CH62-64 CH72-74 CH77-79 CH82-84 CH87-89 CH92-94 10.6 (0.417) 11.9 (0.468) 16.5 (0.649) 17.8 (0.700) 22.7 (0.893) 14.1 (0.555) 17.8 (0.700) 24.0 (0.944) 8.7 (0.342) 10.7 (0.421) 13.6 (0.535) 21.6 (0.850) 16.6 (0.653) 38.2 (1.503) 38.2 (1.503) 40.6 (1.598) 8.2 (0.322) 10.2 (0.400) 15.2 (0.600) 15.2 (0.600) 21.2* (0.834) 10.2 (0.400) 15.2 (0.600) 21.2* (0.834) S1 (nom) 5.08 (0.200) 7.62 (0.300) 7.62 (0.300) 15.2 (0.600) 10.2 (0.400) 27.9 (1.100) 27.9 (1.100) 30.5 (1.200) *Tolerance ± 0.8 M2 M1 millimeters (inches) S Lead Dia (nom) 0.7 (0.028) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 0.9 (0.035) 1.0 (0.039) 1.2 (0.047) NOTE: This style is only available in 2, 3 & 4 chip assemblies only S1 ± 0.5 (0.020) M1 = M2 ± 0.5 (0.020) millimeters (inches) Style S ± 0.5 (0.020) T max CH42/52/62/72/77/87/92 CH43/53/63/73/78/88/93 CH44/54/64/74/79/89/94 7.4 (0.291) 11.1 (0.437) 14.8 (0.583) HORIZONTALLY MOUNTED DUAL-IN-LINE PRODUCT DIMENSIONS Part Number format (CHxxxxxxxxxx0A0) Typical Part Number CH615C106MA30A0 W max CH41-44 CH51-54 CH61-64 CH71-74 CH76-79 CH81-84 CH86-89 CH91-94 2.0 (0.079) max T max 13 (0.512) ± 1 (0.039) L2 9.2 10.7 14.9 16.8 21.6 12.0 18.9 24.0 (0.362) (0.421) (0.586) (0.661) (0.850) (0.472) (0.744) (0.944) W (max) 8.7 10.7 13.6 21.6 16.6 38.2 38.2 40.6 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) (1.503) (1.503) (1.598) 8.2 10.2 14.0 15.2 20.3* 10.2 15.2 20.3* (0.322) (0.400) (0.551) (0.600) (0.800) (0.400) (0.600) (0.800) No. of Leads per side 3 4 5 7 6 14 14 14 *Tolerance ± 0.8 (0.031) S ± 0.5 (0.020) millimeters (inches) Style CH41/51/61/71/76/81/86/91 CH42/52/62/72/77/82/87/92 CH43/53/63/73/78/83/88/93 CH44/54/64/74/79/84/89/94 L1 2.54 (0.100) ± 0.05 (0.002) L (max) Style L max millimeters (inches) Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) T max 3.8 (0.150) 7.4 (0.291) 11.1 (0.437) 14.8 (0.583) HOW TO ORDER CH Style Code 52 5 C 106 M Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance (see product section) 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R A 3 0 Specification Code Finish Code Lead Dia. Code Lead Space Code 3 = Uncoated 0 = Standard 8 = Coated (classified as uninsulated) A = Standard (2 significant C0G: J = ±5% A = Non-customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% A 0 Lead Style Code 0 = Straight dual in line 4 = 4 Terminal Not RoHS Compliant Note: See page 142 for How to Order BS9100 parts MAY 2015 ■ 43 SMPS Capacitors (CH Style) Chip Assemblies HORIZONTALLY MOUNTED ‘L’ LEAD SMT PRODUCT DIMENSIONS Part Number format (CHxxxxxxxxxx0A7) Typical Part Number CH411C275KA30A7 L (max) Style W max 2.54 (0.1) ± 0.5 (0.02) T max L max S ± 0.5 (0.02) 2.54 (0.1) ± 0.5 (0.02) millimeters (inches) CH41-44 CH51-54 CH61-64 CH71-74 CH76-79 CH81-84 CH86-89 CH91-94 9.2 10.7 14.9 16.8 21.6 12.0 18.9 24.0 W (max) (0.362) (0.421) (0.586) (0.661) (0.850) (0.472) (0.744) (0.944) 8.7 10.7 13.6 21.6 16.6 38.2 38.2 40.6 No. of Leads per side 3 4 5 7 6 14 14 14 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) (1.503) (1.503) (1.598) 8.2 10.2 14.0 15.2 20.3* 10.2 15.2 20.3* (0.322) (0.400) (0.551) (0.600) (0.800) (0.400) (0.600) (0.800) *Tolerance ± 0.8 (0.031) NOTE: A ‘L’ lead low profile version (CH....0A5) is available with lead height 1.1 (0.043) max. for single chip assemblies eg. CH415C225MA30A5 L1 L2 Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) millimeters (inches) Style CH41/51/61/71/76/81/86/91 CH42/52/62/72/77/82/87/92 CH43/53/63/73/78/83/88/93 CH44/54/64/74/79/84/89/94 T max 3.8 (0.150) 7.4 (0.291) 11.1 (0.437) 14.8 (0.583) HORIZONTALLY MOUNTED ‘J’ LEAD SMT PRODUCT Part Number format (CHxxxxxxxxxx0A8) DIMENSIONS Typical Part Number CH411C275KA30A8 L2 L1 2.54 (0.100) ± 0.5 (0.020) T max L max S ± 0.5 (0.020) W max millimeters (inches) L (max) Style CH41-44 CH51-54 CH61-64 CH71-74 CH76-79 CH81-84 CH86-89 CH91-94 9.2 10.7 14.9 16.8 21.6 12.0 18.9 24.0 W (max) (0.362) (0.421) (0.586) (0.661) (0.850) (0.472) (0.744) (0.944) 8.7 10.7 13.6 21.6 16.6 38.2 38.2 40.6 S (nom) (0.342) (0.421) (0.535) (0.850) (0.653) (1.503) (1.503) (1.598) 8.2 10.2 14.0 15.2 20.3* 10.2 15.2 20.3* (0.322) (0.400) (0.551) (0.600) (0.800) (0.400) (0.600) (0.800) No. of Leads per side 3 4 5 7 6 14 14 14 *Tolerance ± 0.8 (0.031) 2.54 (0.100) ± 0.5 (0.020) millimeters (inches) Style CH41/51/61/71/76/81/86/91 CH42/52/62/72/77/82/87/92 CH43/53/63/73/78/83/88/93 CH44/54/64/74/79/84/89/94 NOTE: A ‘J’ lead low profile version (CH....0A3) is available with lead height 1.1 (0.043) max. for single chip assemblies eg. CH515C475MA30A3 Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) T max 3.8 (0.150) 7.4 (0.291) 11.1 (0.437) 14.8 (0.583) HOW TO ORDER CH Style Code 52 5 C 106 M Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance (see product section) 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R Specification Code (2 significant C0G: J = ±5% A = Non-customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% Note: See page 142 for How to Order BS9100 parts 44 ■ MAY 2015 A 3 0 Finish Code Lead Dia. Code 3 = Uncoated 0 = Standard 8 = Coated (classified as uninsulated) A 7 Lead Space Code Lead Style Code A = Standard 3 = Low profile ‘J’ (single chip) 5 = Low profile ‘L’ (single chip) 7 = ‘L’ Dual in line 8 = ‘J’ Dual in line Not RoHS Compliant SMPS Capacitors (CH/CV Style) Chip Assemblies C0G DIELECTRIC ULTRA STABLE CERAMIC CH/CV41-44 Styles CH/CV51-54 Styles CH/CV61-64 Styles CH/CV71-74 Styles CH/CV76-79 Styles CH81-84 Styles CH86-89 Styles CH91-94 Styles Voltage DC Cap μF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 0.01 41 0.012 41 0.015 41 0.018 41 0.022 42 51 0.027 42 51 0.033 41 42 52 61 0.039 41 42 52 61 0.047 41 41 43 52 61 61 0.056 41 41 43 52 0.068 41 41 41 44 51 53 62 71 76 81 0.082 41 41 42 51 53 62 71 76 81 0.1 41 42 42 51 51 54 62 71 76 81 0.12 42 42 42 51 51 52 61 62 72 77 81 86 0.15 42 42 42 51 52 52 61 61 63 72 77 81 86 0.18 42 42 43 51 52 52 61 61 63 72 77 82 86 0.22 42 43 43 52 52 52 61 61 62 64 71 72 77 81 82 86 0.27 43 43 44 52 52 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91 0.33 43 44 52 53 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91 0.39 44 76 91 52 53 54 62 62 62 71 71 72 74 76 76 77 79 81 81 81 83 86 87 92 0.47 53 54 62 62 63 71 71 72 76 76 77 81 81 81 83 86 87 92 0.56 53 62 63 63 71 72 72 76 77 77 81 81 82 84 0.68 54 62 63 64 72 72 72 77 77 77 81 82 82 0.82 63 64 72 72 73 77 77 78 82 82 82 86 86 87 89 1 63 64 72 72 73 77 77 78 82 82 82 86 87 87 72 73 74 77 78 79 82 82 83 87 87 87 91 91 92 94 78 78 82 83 83 87 87 87 91 92 92 1.2 64 86 86 88 92 86 86 86 88 92 91 93 91 91 93 1.5 73 73 1.8 73 74 78 79 83 83 84 87 87 88 92 92 92 2.2 74 79 83 84 87 88 88 92 92 92 88 88 89 2.7 84 3.3 88 89 3.9 89 92 92 93 92 93 93 93 93 94 4.7 93 94 5.6 94 NB Figures in cells refer to size within ordering information MAY 2015 ■ 45 SMPS Capacitors (CH/CV Style) Chip Assemblies X7R DIELECTRIC STABLE CERAMIC CH/CV41-44 Styles CH/CV51-54 Styles CH/CV61-64 Styles CH/CV71-74 Styles CH/CV76-79 Styles CH81-84 Styles CH86-89 Styles CH91-94 Styles Voltage DC Cap μF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 0.12 41 0.15 41 0.18 41 0.22 41 0.27 42 51 0.33 41 42 51 0.39 41 42 51 0.47 41 42 51 61 0.56 41 43 52 61 0.68 42 43 51 52 61 0.82 42 44 51 52 61 71 76 81 1 41 42 44 51 53 61 62 71 76 81 41 42 52 53 61 62 71 76 81 1.2 1.5 41 43 52 54 61 62 71 76 81 1.8 41 41 43 52 61 62 72 77 82 86 86 2.2 41 41 44 51 52 61 63 71 72 76 77 81 82 86 2.7 41 41 51 53 62 63 71 72 76 77 81 82 87 91 3.3 41 42 51 53 3.9 42 42 51 51 54 4.7 42 42 51 52 5.6 42 42 6.8 8.2 62 64 71 72 76 77 81 82 87 91 62 72 73 77 78 81 83 86 87 91 61 62 72 73 77 78 82 83 86 87 91 51 52 61 63 72 74 77 79 82 84 86 88 92 42 43 52 52 61 61 63 43 43 52 52 61 61 64 10 43 44 52 53 61 62 64 12 44 53 53 62 62 15 53 54 62 62 71 71 76 76 81 81 84 18 54 62 63 71 72 76 77 81 81 22 54 62 63 72 72 77 77 27 63 64 72 72 33 63 64 39 64 72 77 82 86 88 92 71 73 76 78 82 87 89 91 92 71 73 76 78 83 87 91 92 71 71 74 76 76 79 81 83 87 92 93 86 87 92 93 86 88 92 94 81 82 86 86 88 92 77 77 82 82 86 86 89 93 72 73 77 78 82 82 86 87 91 93 72 73 77 78 82 82 87 87 91 91 94 47 73 74 78 79 82 83 87 87 91 92 56 73 78 83 83 87 87 92 92 68 74 79 83 84 87 88 92 92 84 88 88 92 92 100 88 89 92 93 120 89 93 93 82 150 93 94 180 94 NB Figures in cells refer to size within ordering information 46 ■ MAY 2015 SMPS Molded Radial MLC Capacitors SXP Style for High Temperature Applications up to 200ºC SXP-style, encapsulated radial leaded MLC capacitors are ideally suited for high temperature applications up to 200ºC. This product is intended for downhole oil exploration, including logging while drilling, geophysical probes, as well as space, aerospace and hybrid automotive applications. This product supplements the SMX family of capacitors and offers mechanical protection to the ceramic element in extreme harsh environment. The high temperature solder utilized in the construction of SXPstyle parts assures reliable operation in high temperature and rugged environments. The SXP-style capacitors are ideally suited for applications as DC filters in high power, high frequency motor drives, high pulsed-current circuitry, as well as standard electronic equipment designed for high temperature applications. SXP-style, switch mode power supply capacitors are characterized with excellent performance. The main benefits of SXP product include: • Low ESR, low ESL • Low DC leakage • Excellent high frequency performance Not RoHS Compliant HOW TO ORDER SXP 3 1 C 104 AVX Style Size See Dimensions chart Voltage Code 50V = 5 100V = 1 200V = 2 500V = 7 1000V = A 1500V = S 2000V = G 3000V = H Temperature Coefficient C0G = A VHT = C Capacitance Code (2 significant digits + number of zeros) 100 pF = 101 22,000 pF = 223 1μF = 105 M Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% A A Test Level A = Standard Leads A = Standard Sn/Pb (min. 5% Pb) X7R: J = ±5% K = ±10% M = ±20% Z = +80%, -20% Tighter tolerances available upon request ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient VHT: C Temperature Coefficient 0 ±30 ppm/°C, -55° to +200°C ±15%, -55°C to +125°C +15% - 56%, -55ºC to +200°C Capacitance Test (MIL-STD-202 Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R/X9U: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Insulation Resistance 125°C (MIL-STD-202 Method 302) 10K MΩ or 100 MΩ-μF, whichever is less. Insulation Resistance 200°C (MIL-STD-202 Method 302) 1k MΩ or 10 MΩ -μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. (150% for 500 VDC and 120% for 1000 VDC and higher voltage ratings) Insulation Resistance 25°C (MIL-STD-202 Method 302) 100K MΩ or 1000 MΩ-μF, whichever is less. MAY 2015 ■ 47 SMPS Molded Radial MLC Capacitors SXP Style for High Temperature Applications up to 200ºC STYLE L T H LL LD LS DIMENSIONS AVX Style SXP1 SXP2 SXP3 SXP4 millimeters (inches) Length (L) ±0.25 (±0.010) 8.9 (0.350) 11.4 (0.450) 12.7 (0.500) 22.4 (0.880) Height (H) ±0.25 (±0.010) 8.9 (0.350) 11.4 (0.450 12.7 (0.500) 16.3 (0.640) Thickness (T) ±0.25 (±0.010) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.84 (0.230) Lead Spacing ±0.76 (±0.030) 5.08 (0.200) 5.08 (0.200) 10.2 (0.400) 19.8 (0.780) LD ±0.05 (±0.002) 0.51 (0.020) 0.51 (0.020) 0.64 (0.025) 0.81 (0.032) CAPACITANCE RANGE C0G Style 50V SXP1 (MIN) 1000pF (MAX) .047μF SXP2 (MIN) .01μF (MAX) .10μF (MIN) .01μF SXP3 (MAX) .15μF (MIN) .01μF SXP4 (MAX) .39μF 100V 1000pF .027μF 1000pF .056μF 1000pF .068μF .01μF .22μF 200V 1000pF 8200pF 1000pF .018μF 1000pF .022μF 1000pF .068μF 500V 100pF 4700pF 100pF 8200pF 1000pF .012μF 1000pF .033μF 1000V 100pF 2200pF 100pF 4700pF 1000pF 6800pF 1000pF .018μF 1500V 100pF 1000pF 100pF 1800pF 100pF 2700pF 1000pF 8200pF 2000V 100pF 560pF 100pF 1200pF 100pF 1500pF 100pF 4700pF 3000V 100pF 270pF 100pF 560pF 100pF 1000pF 100pF 2700pF 100V .01μF 1.0μF .1μF 1.8μF .1μF 2.7μF .1μF 8.2μF 200V .01μF .33μF .01μF .68μF .01μF 1.0μF .1μF 2.7μF 500V .01μF .12μF .01μF .27μF .01μF .33μF .01μF 1.0μF 1000V .01μF .056μF .01μF .10μF .01μF .15μF .01μF .47μF 1500V .01μF .022μF .01μF .056μF .01μF .082μF .01μF .22μF 2000V 1000pF .012μF .01μF .022μF .01μF .033μF .01μF .10μF 3000V 1000pF 4700pF 1000pF 8200pF .01μF .015μF .01μF .039μF VHT Style SXP1 (MIN) (MAX) SXP2 (MIN) (MAX) SXP3 (MIN) (MAX) (MIN) SXP4 (MAX) 50V .1μF 1.5μF .1μF 2.7μF .01μF 3.9μF 1μF 12μF 48 ■ MAY 2015 LL 25.4 (1.000) TurboCapTM High-CV SMPS Capacitors The TurboCapTM, MLC capacitors from AVX Corporation are characterized with very high capacitance in a small volume. By vertical stacking of the ceramic elements, the footprint required for mounting the capacitors is greatly reduced. TurboCapsTM are ideally suited as filters in the input and output stages of switch mode power supplies (SMPS). With their ultra-low ESR, these capacitors are designed to handle high ripple current at high frequencies and high power levels. The DIP leads in either thru-hole or surface mount configurations offer superior stress relief to the ceramic elements. The leads effectively decouple the parts from the board and minimize thermally or mechanically induced stresses encountered during assembly, temperature cycling or other environmental conditions. TYPICAL APPLICATION OF TURBOCAPTM SMPS CAPACITORS FOR INPUT AND OUTPUT FILTERS IN DC/DC CONVERTERS SNUBBER Vout Vin OUTPUT FILTER INPUT FILTER VCC FB G PWM CONTROLLER GND Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. MAY 2015 ■ 49 TurboCapTM High-CV SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient Temperature Coefficient Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. ±15%, -55° to +125°C Capacitance Test (MIL-STD-202 Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Life Test (1000 hrs) X7R: 150% rated voltage at +125°C. Dissipation Factor 25°C 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Moisture Resistance (MIL-STD-202 Method 106) Ten cycles with no voltage applied. Insulation Resistance 25°C (MIL-STD-202 Method 302) 500 MΩ-μF, whichever is less. Thermal Shock (MIL-STD-202 Method 107, Condition A) Insulation Resistance 125°C (MIL-STD-202 Method 302) 50 MΩ-μF, whichever is less. Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Typical ESR Performance (Ω) 27μF 0.007 0.003 0.002 ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz 47μF 0.004 0.002 0.0015 100μF 0.003 0.0015 0.001 Not RoHS Compliant HOW TO ORDER AVX Styles: ST12 and ST20 ST12 5 C 186 M A N 03 AVX Style ST12 ST20 Voltage 25V = 3 50V = 5 100V = 1 Temperature Coefficient X7R = C Capacitance Code (2 significant digits + no. of zeros) 1 μF = 105 10 μF = 106 100 μF = 107 Capacitance Tolerance M = ±20% Test Level A = Standard Termination N = Straight Lead J = Leads formed in L = Leads formed out Number of Leads Per Side 03 = 3 05 = 5 10 = 10 CAPACITANCE (μF) ST12 Cap (μF) .82 1.3 2.7 8.2 12 14 18 22 27 47 50 68 100 220 50 ■ MAY 2015 50V ST20 100V Voltage 25V 50V 100V ...03 ...05 ...03 ...03 ...10 ...05 ...05 ...03 ...05 ...10 ...03 ...05 ...10 ...10 ...10 TurboCapTM High-CV SMPS Capacitors E D B A 1.397 (0.055) ±0.254 (0.010) 6.35 (0.25) MIN. 0.254 (0.010) TYP. 0.508 (0.020) TYP. C 3, 5 or 10 leads per side 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “N” STYLE LEADS E D B 0.254 (0.010) RAD. TYP. A 1.397 (0.055) ±0.254 (0.010) 1.778 (0.070) ± 0.254 (0.010) B 0.508 (0.020) TYP. 3, 5 or 10 leads per side 1.397 (0.055) ± 0.127 (0.005) C 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “J” STYLE LEADS E D B A 1.397 (0.055) ±0.254 (0.010) 1.778 (0.070) ± 0.254 (0.010) B 0.508 (0.020) TYP. 3, 5 or 10 leads per side 0.254 (0.010) RAD. TYP. 1.397 (0.055) ± 0.127 (0.005) C 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “L” STYLE LEADS DIMENSIONS Style ST125C***M*N03 ST125C***M*N05 ST125C***M*N10 ST205C***M*N03 ST205C***M*N05 ST205C***M*N10 millimeters (inches) A (max.) 3.56 3.56 3.56 5.59 5.59 5.59 (0.140) (0.140) (0.140) (0.220) (0.220) (0.220) B (max.)* 5.21 5.21 5.21 7.24 7.24 7.24 (0.205) (0.205) (0.205) (0.285) (0.285) (0.285) C ± 0.635 (± 0.025) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 6.35 (0.250) 6.35 (0.250) 6.35 (0.250) D (max.) 10.8 (0.425) 15.9 (0.625) 27.9 (1.100) 9.5(0.375) 14.6 (0.575) 27.3 (1.075) E (max.) 6.35 6.35 6.35 7.62 7.62 7.62 (0.250) (0.250) (0.250) (0.300) (0.300) (0.300) Lead Style N N N N N N No. of Leads Per Side 03 05 10 03 05 10 *The “B” dimension is defined for the “N” Style leads. The “L” and “J” Style Leads are 0.381 (0.015) longer. The ST12 will be 5.89 (0.220), the ST20 will be 7.62 (0.300). MAY 2015 ■ 51 RoHS Compliant TurboCapTM High-CV SMPS Capacitors The RoHS Compliant TurboCapTM, MLC capacitors from AVX Corporation are characterized with very high capacitance in a small volume. By vertical stacking of the ceramic elements, the footprint required for mounting the capacitors is greatly reduced. TurboCapsTM are ideally suited as filters in the input and output stages of switch mode power supplies (SMPS). With their ultra-low ESR, these capacitors are designed to handle high ripple current at high frequencies and high power levels. The DIP leads in either thru-hole or surface mount configurations offer superior stress relief to the ceramic elements. The leads effectively decouple the parts from the board and minimize thermally or mechanically induced stresses encountered during assembly, temperature cycling or other environmental conditions. TYPICAL APPLICATION OF TURBOCAPTM SMPS CAPACITORS FOR INPUT AND OUTPUT FILTERS IN DC/DC CONVERTERS SNUBBER Vout Vin OUTPUT FILTER INPUT FILTER VCC FB G PWM CONTROLLER GND Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 52 ■ MAY 2015 RoHS Compliant TurboCapTM High-CV SMPS Capacitors ELECTRICAL SPECIFICATIONS Temperature Coefficient Temperature Coefficient Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. ±15%, -55° to +125°C Capacitance Test (MIL-STD-202 Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Life Test (1000 hrs) X7R: 150% rated voltage at +125°C. Dissipation Factor 25°C 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Moisture Resistance (MIL-STD-202 Method 106) Ten cycles with no voltage applied. Insulation Resistance 25°C (MIL-STD-202 Method 302) 500 MΩ-μF, whichever is less. Thermal Shock (MIL-STD-202 Method 107, Condition A) Insulation Resistance 125°C (MIL-STD-202 Method 302) 50 MΩ-μF, whichever is less. Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Typical ESR Performance (Ω) 27μF 0.007 0.003 0.002 ESR @ 10KHz ESR @ 50KHz ESR @ 100KHz HOW TO ORDER 47μF 0.004 0.002 0.0015 100μF 0.003 0.0015 0.001 AVX Styles: RT12 and RT20 RT12 5 C 186 M A N 03 AVX Style RT12 RT20 Voltage 25V = 3 50V = 5 100V = 1 Temperature Coefficient X7R = C Capacitance Code (2 significant digits + no. of zeros) 1 μF = 105 10 μF = 106 100 μF = 107 Capacitance Tolerance M = ±20% Test Level A = Standard Termination N = Straight Lead J = Leads formed in L = Leads formed out Number of Leads Per Side 03 = 3 05 = 5 10 = 10 CAPACITANCE (μF) RT12 Cap (μF) .82 1.3 2.7 8.2 12 14 18 22 27 47 50 68 100 220 50V RT20 100V Voltage 25V 50V 100V ...03 ...05 ...03 ...03 ...10 ...05 ...05 ...03 ...05 ...10 ...10 ...03 ...05 ...10 ...10 MAY 2015 ■ 53 RoHS Compliant TurboCapTM High-CV SMPS Capacitors E D B A 1.397 (0.055) ±0.254 (0.010) 6.35 (0.25) MIN. 0.254 (0.010) TYP. 0.508 (0.020) TYP. C 3, 5 or 10 leads per side 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “N” STYLE LEADS E D B 0.254 (0.010) RAD. TYP. A 1.397 (0.055) ±0.254 (0.010) 1.778 (0.070) ± 0.254 (0.010) B 0.508 (0.020) TYP. 3, 5 or 10 leads per side 1.397 (0.055) ± 0.127 (0.005) C 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “J” STYLE LEADS E D B A 1.397 (0.055) ±0.254 (0.010) 1.778 (0.070) ± 0.254 (0.010) B 0.508 (0.020) TYP. 3, 5 or 10 leads per side 0.254 (0.010) RAD. TYP. 1.397 (0.055) ± 0.127 (0.005) C 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. “L” STYLE LEADS DIMENSIONS Style RT125C***M*N03 RT125C***M*N05 RT125C***M*N10 RT205C***M*N03 RT205C***M*N05 RT205C***M*N10 millimeters (inches) A (max.) 3.56 3.56 3.56 5.59 5.59 5.59 (0.140) (0.140) (0.140) (0.220) (0.220) (0.220) B (max.)* 5.21 5.21 5.21 7.24 7.24 7.24 (0.205) (0.205) (0.205) (0.285) (0.285) (0.285) C ± 0.635 (± 0.025) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 6.35 (0.250) 6.35 (0.250) 6.35 (0.250) D (max.) 10.8 15.9 27.9 9.50 14.6 27.3 (0.425) (0.625) (1.100) (0.375) (0.575) (1.075) E (max.) 6.35 6.35 6.35 7.62 7.62 7.62 (0.250) (0.250) (0.250) (0.300) (0.300) (0.300) Lead Style N N N N N N No. of Leads Per Side 03 05 10 03 05 10 *The “B” dimension is defined for the “N” Style leads. The “L” and “J” Style Leads are 0.381 (0.015) longer. The RT12 will be 5.89 (0.220), the RT20 will be 7.62 (0.300). 54 ■ MAY 2015 Mini-TurboCapTM Small Footprint, High Volumetric Efficiency, High-CV SMPS Capacitors The Mini-TurboCap is constructed from state-of-the-art BME (Base Metal Electrode) MLC Capacitors achieving very high CV, as well as, ultra low ESR and ESL. The resulting, very large capacitance values allow for component and board space reduction. Stress relieving lead frames provide effective mechanical decoupling of the ceramic chips from the board, minimizing the stress created by board flexing, vibration and temperature cycling. High temperature solder is used to attach chips to the lead frame thus eliminating the risk of solder reflow during assembly to the board. CAPACITANCE (μF) Voltage Cap (μF) 8.2 18 39* 82* 25V 50V 100V Not RoHS Compliant HOW TO ORDER ST10 5 C 186 M A K 02 AVX Style Voltage 25V = 3 50V = 5 100V = 1 Temperature Coefficient X7R = C Capacitance Code (2 significant digits + no. of zeros) 1 μF = 105 10 μF = 106 Capacitance Tolerance M = ±20% Test Level A = Standard Termination N = Straight Lead K = Leads formed in M = Leads formed out Number of Leads Per Side 02 = 2 Additional stacked/lead configurations available upon request. Consult with AVX factory personnel for details. ELECTRICAL SPECIFICATIONS Temperature Coefficient ±15%, -55° to +125°C Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Dissipation Factor 5% Max @ 25°C, for 50VDC and 100VDC voltage ratings Insulation Resistance 25°C (MIL-STD-202, Method 302) 500 MΩ-μF (*100 MΩ-μF) Insulation Resistance 125°C (MIL-STD-202, Method 302) 50 MΩ-μF (*10 MΩ-μF) Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. Life Test Capabilities (1000 hrs) 150% rated voltage at +125°C. MAY 2015 ■ 55 Mini-TurboCapTM Small Footprint, High Volumetric Efficiency, High-CV SMPS Capacitors STYLE/DIMENSIONS E D A B 1.397 (0.055) ±0.254 (0.010) 0.508 (0.020) TYP. 6.35 (0.25) MIN. 2.54 (0.100) TYP. C 1.27 (0.050) MAX. 0.635 (0.025) MIN. 2 LEADS PER SIDE LEAD THICKNESS = 0.254 (0.010) TYP. TOP VIEW “N” STYLE LEADS B E D A 1.14 (0.045) ±0.254 (0.010) 0.254 (0.010) RAD. TYP. 1.397 (0.055) ±0.127 (0.005) 0.508 (0.020) TYP. C 2.54 (0.100) TYP. 1.27 (0.050) MAX. 0.635 (0.025) MIN. 2 LEADS PER SIDE LEAD THICKNESS = 0.254 (0.010) TYP. TOP VIEW “K” STYLE LEADS B E D A 1.14 (0.045) ±0.254 (0.010) 0.254 (0.010) RAD. TYP. 1.397 (0.055) ±0.127 (0.005) 0.508 (0.020) TYP. C 2.54 (0.100) TYP. 1.27 (0.050) MAX. 0.635 (0.025) MIN. 2 LEADS PER SIDE LEAD THICKNESS = 0.254 (0.010) TYP. TOP VIEW “M” STYLE LEADS DIMENSIONS millimeters (inches) Style A (max.) B (max.) ST10 5.59 (0.220) 7.00 (0.275) C ± 0.635 (± 0.025) 3.81 (0.150) D ± 0.635 (± 0.025) 5.33 (0.210) E (max.) 4.83 (0.190) No. of Leads Per Side 02 PART NUMBER AVAILABLE OPTIONS (2X2) Part Number ST103C826MA-02 ST105C186MA-02 ST105C396MA-02 ST101C825MA-02 56 ■ MAY 2015 Temperature Coefficeient X7R X7R X7R X7R Voltage 25 50 50 100 Capacitance Code 826 186 396 825 Capacitance 82μF 18μF 39μF 8.2μF Capacitance Tolerance ±20% ±20% ±20% ±20% Number Of Leads 2 2 2 2 Lead Styles N, N, N, N, K, K, K, K, M M M M RoHS Compliant Mini-TurboCapTM Small Footprint, High Volumetric Efficiency, High-CV SMPS Capacitors The RoHS Compliant Mini-TurboCapTM is constructed from state-of-the-art BME (Base Metal Electrode) MLC Capacitors achieving very high CV, as well as, ultra low ESR and ESL. The resulting, very large capacitance values allow for component and board space reduction. Stress relieving lead frames provide effective mechanical decoupling of the ceramic chips from the board, minimizing the stress created by board flexing, vibration and temperature cycling. High temperature solder is used to attach chips to the lead frame thus eliminating the risk of solder reflow during assembly to the board. CAPACITANCE RANGE Voltage Cap (μF) 8.2 18 39* 82* 25V 50V 100V HOW TO ORDER RT10 5 C 186 M A K 02 AVX Style Voltage 25V = 3 50V = 5 100V = 1 Temperature Coefficient X7R = C Capacitance Code (2 significant digits + no. of zeros) 1 μF = 105 10 μF = 106 Capacitance Tolerance M = ±20% Test Level A = Standard Termination N = Straight Lead K = Leads formed in M = Leads formed out Number of Leads Per Side 02 = 2 Additional stacked/lead configurations available upon request. Consult with AVX factory personnel for details. ELECTRICAL SPECIFICATIONS Temperature Coefficient ±15%, -55° to +125°C Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Dissipation Factor 5% Max @ 25°C, for 50VDC and 100VDC voltage ratings Insulation Resistance 25°C (MIL-STD-202, Method 302) 500 MΩ-μF (*100 MΩ-μF) Insulation Resistance 125°C (MIL-STD-202, Method 302) 50 MΩ-μF (*10 MΩ-μF) Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. Life Test Capabilities (1000 hrs) 150% rated voltage at +125°C. MAY 2015 ■ 57 RoHS Compliant Mini-TurboCapTM Small Footprint, High Volumetric Efficiency, High-CV SMPS Capacitors STYLE/DIMENSIONS E D A B 1.397 (0.055) ±0.254 (0.010) 0.508 (0.020) TYP. 6.35 (0.25) MIN. 2.54 (0.100) TYP. C 1.27 (0.050) MAX. 0.635 (0.025) MIN. 2 LEADS PER SIDE LEAD THICKNESS = 0.254 (0.010) TYP. TOP VIEW “N” STYLE LEADS B E D A 1.14 (0.045) ±0.254 (0.010) 0.254 (0.010) RAD. TYP. 1.397 (0.055) ±0.127 (0.005) 0.508 (0.020) TYP. C 2.54 (0.100) TYP. 1.27 (0.050) MAX. 0.635 (0.025) MIN. 2 LEADS PER SIDE LEAD THICKNESS = 0.254 (0.010) TYP. TOP VIEW “K” STYLE LEADS B E D A 1.14 (0.045) ±0.254 (0.010) 0.254 (0.010) RAD. TYP. 1.397 (0.055) ±0.127 (0.005) 0.508 (0.020) TYP. C 2.54 (0.100) TYP. 1.27 (0.050) MAX. 0.635 (0.025) MIN. 2 LEADS PER SIDE LEAD THICKNESS = 0.254 (0.010) TYP. TOP VIEW “M” STYLE LEADS DIMENSIONS millimeters (inches) Style A (max.) B (max.) RT10 5.59 (0.220) 7.00 (0.275) C ± 0.635 (± 0.025) 3.81 (0.150) D ± 0.635 (± 0.025) 5.33 (0.210) E (max.) 4.83 (0.190) No. of Leads Per Side 02 PART NUMBER AVAILABLE OPTIONS (2X2) Part Number RT103C826MA-02 RT105C186MA-02 RT105C396MA-02 RT101C825MA-02 58 ■ MAY 2015 Temperature Coefficeient X7R X7R X7R X7R Voltage 25 50 50 100 Capacitance Code 826 186 396 825 Capacitance 82μF 18μF 39μF 8.2μF Capacitance Tolerance ±20% ±20% ±20% ±20% Number Of Leads 2 2 2 2 Lead Styles N, N, N, N, K, K, K, K, M M M M MH Ceramic Capacitor Lead Free Ceramic Capacitor in Molded SM Leadframe The MH components use a X7R high capacitance value ceramic capacitor in a surface mount precision made moulded case. The MH capacitor combine the ceramic attributes of very low ESR, non-polar construction, excellent high frequency behaviour and voltage stress capabilities and wide temperature range; with the enhanced mechanical protection of a moulded case. The moulded case is UL94 V-0 flame retardant and the MH is RoHs and also AEC-Q200 compliant. The MH range provides a lead frame solution to customers who have previously been unable to use large case ceramic capacitors because of mechanical stressing concerns. For those applications where a tin termination is not acceptable, a Tin/Lead termination is available. FEATURES • • • • Capacitance: 2.2u F – 22 μF MHs are AEC-Q200 compliant Voltage Range DC: 25V – 100V Enhanced thermo mechanical stress resistance. HOW TO ORDER MH V 1 1 C 475 M A T 2 A MH Series Case Size see table below MLCC Count Voltage 3 = 25V 5 = 50V 1 = 100V Dielectric C = X7R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = ±10% M = ±20% Failure Rate A = Not Applicable Terminations T = Tin Plated B = Tin/Lead Plated Packaging 2 = 7" Reel 4 = 13" Reel 6 = Waffle Pack Special Code A= Std. Product MH X7R RANGE 225 335 475 685 106 156 226 Cap μF 2.2 3.3 4.7 6.8 10 15 22 PACKAGING QUANTITY 25V 50V 100V “V” CASE DIMENSIONS: millimeters (inches) L W 7" Reels 13" Reels Waffle Pack 400 1500 108 LEAD-FREE COMPATIBLE COMPONENT 7.3±0.2 0 (0.287 ±0.008) 6.1 + 0.20 - 0.10 (0.24 + 0.008 – 0.004) H 3.45±0.30 (0.136±0.012) W1 3.1±0.20 (0.120±0.008) A 1.4 + 0.30 - 0.20 (0.055 + 0.012 – 0.008) S Min TS 16949, ISO 14001 Certified Manufacture 4.40 (0.173) Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci MAY 2015 ■ 59 SMPS Capacitors (RH Style) RH - Surface Mount ‘J’ Lead Range The RH range uses high volumetric efficient X7R capacitors in a “J” style lead frame. The range of components are uncoated and are suitable for input or output filter capacitors in high frequency DC-DC convertor, automotive, telecom, industrial and military applications When large ceramic capacitors are used in applications they can easily be affected stresses caused by temperature variations, thermal shock, and mechanical vibrations. PCB bend movement and temperature stresses on the ceramic capacitors. The RH range allows the capacitors to be double stacked so a higher volumetric efficiency can be achieved by the customer and this saves on PCB space. FEATURES • • • • RH 21/22 are AEC-Q200 compliant. RH range has low ESR/ESL capability PCB space saving using double stacked MLCCs Enhanced thermo mechanical stress resistance. Note: AVX does not recommend or advise the use of adhesives to secure the RH components to the PCB. ELECTRICAL SPECIFICATIONS Typical ESR (mΩ) 3 μF, 100V X7R Temperature Coefficient CECC 30 000, (4.24.1) X7R: C Temperature Characteristic - ± 15%, -55ºC to +125ºC Capacitance Test Measured at 1 VRMS max at 1KHz ESR @ 100KHz 17 ESR @ 500KHz 12 ESR @ 1MHz 14 DIMENSIONS Dissipation Factor 25°C 2.5% max at 1KHz, 1 VRMS max Style L max RH21 7.20 (0.283) 5.40 (0.213) 4.60 (0.181) 2.50 (0.098) RH22 7.20 (0.283) 5.40 (0.213) 7.50 (0.295) 2.50 (0.098) RH31 7.62 (0.300) 7.00 (0.270) 5.08 (0.200) 5.08 (0.200) RH32 7.62 (0.300) 7.00 (0.270) 8.13 (0.320) 5.08 (0.200) Life Test (1000 hrs) CECC 30 000 (4.23) 200% rated voltage at +125ºC. (500 Volt units @ 120% rated voltage) RH41 9.20 (0.362) 8.70 (0.342) 4.90 (0.192) 5.08 (0.200) RH42 9.20 (0.362) 8.70 (0.342) 8.20 (0.323) 5.08 (0.200) Thermal Shock IEC 68.2.14 -55ºC to +125ºC, 5 cycles RH51 10.7 (0.421) 10.7 (0.421) 4.90 (0.192) 7.62 (0.300) RH52 10.7 (0.421) 10.7 (0.421) 8.20 (0.323) 7.62 (0.300) RH61 14.9 (0.586) 13.6 (0.535) 4.90 (0.192) 10.2 (0.400) RH62 14.9 (0.586) 13.6 (0.535) 8.20 (0.323) 10.2 (0.400) Insulation Resistance 25°C 100K megohms or 1000 megohms-μF, whichever is less Dielectric Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 150% rated voltage) W max millimeters (inches) H max S ± 0.1 (±0.004) Resistance to Solder Heat IEC 68.2.20 No. of leads per side h 1.50 ±0.30 (0.059 ±0.012) 1.50 ±0.30 (0.059 ±0.012) 1.78 ±0.25 (0.070 ±0.010) 1.78 ±0.25 (0.070 ±0.010) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 1.60 ±0.10 (0.062 ±0.004) 2 2 3 3 3 3 4 4 5 5 DIMENSIONS millimeters (inches) L Max. W Max. 0.6 (0.024) 0.1 (0.004) M1 = M2 0.5 (0.020) M1 H Max. h M2 1.4 (0.055) Typ. 1.65 (0.065) 0.15 (0.006) 0.25 (0.010)Typ. Bend Radius 90º±5º S Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 60 ■ MAY 2015 SMPS Capacitors (RH Style) RH - Surface Mount ‘J’ Lead Range X7R STABLE DIELECTRIC RH21/RH22 Style Cap μF 0.047 0.056 0.068 0.082 0.1 0.12 0.15 0.18 0.22 0.27 0.33 0.39 0.47 0.56 0.68 0.78 0.82 1 1.2 1.5 1.8 2.2 3 3.3 3.9 4.7 6.8 8.2 10 12 15 18 22 33 47 25 50 100 200 RH31/RH32 Style 500 50 100 RH41/RH42 Style Voltage DC 200 500 50 100 RH51/RH52 Style 200 500 50 100 200 RH61/RH62 Style 500 50 100 200 500 RH31 RH41 RH32 RH31 RH42 RH51 RH41 RH32 RH52 RH42 RH31 RH62 RH31 RH41 RH32 RH21 RH61 RH51 RH61 RH52 RH41 RH32 RH62 RH42 RH51 RH42 RH21 RH22 RH51 RH21 RH22 RH61 RH62 RH52 RH61 RH62 RH52 RH22 For availability of further parts in the RH21/RH22 Series, contact manufacturing. PACKAGING Style RH21 RH22 RH31 RH32 RH41 RH42 RH51 RH52 RH61 RH62 Qty/Reel 13" 800 500 800 500 see note 500 750 see note 500 see note Max. Qty/Waffle Pack 270 270 108 108 108 100 88 88 42 42 Please contact plant for details Note: T&R is not yet available. Contact manufacturing for further information as this will be available in the future. HOW TO ORDER RH 31 5 C 225 M Style Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Code Tolerance (see table above) 3 = 25V C = X7R (2 significant K = ±10% 5 = 50V 1 = 100V 2 = 200V 7 = 500V digits + no. of zeros) eg. 105 = 1 μF 104 = 0.1 μF M = ±20% A 3 0 Specification Code Package Code Lead Dia. Code A = Non customized 3 = Waffle Pack A = Tape & Reel A 3 Lead Space Lead Style Code Code 0 = Standard A = Standard R = RoHS Compliant 3 = ‘J’ Lead MAY 2015 ■ 61 SMPS Capacitors Custom Geometries and Lead Configurations For the requirements that cannot be satisfied by standard SMPS style products (SM0-style or SM9-style), AVX offers leading edge solutions in custom configuration and packaging. Ranging from unique geometries, lead configurations, packaging and stress relief mounting options, AVX has optimized solutions for a wide range of customer specific designs. The solutions provided by AVX maintain high reliability of stacked capacitor product originally developed by AVX and historically recognized as the highest reliability product in the market. Custom packaging options provide solutions that eliminate reliability concerns in the next level assembly. These custom options provide the following benefits: CUSTOM LEAD CONFIGURATIONS… 62 ■ MAY 2015 • eliminate soldering requirements altogether by providing means of electrical/mechanical connection to the circuit • provide options for remote soldering away from large ceramic capacitor body and eliminating the risk of thermal shock (refer to photograph with soft, insulated leads soldered to the stacked capacitor using high melting point SN10 solder) Many other innovations are available from AVX Olean Advanced Products. Let them apply these ideas to your application specific requirements. Please contact AVX for a solution that will meet demands of your program requirements. CUSTOM PACKAGING… SMPS Capacitors Assembly Guidelines Reliability ២ ២ = ២ Voltage Acceleration ២ AVX has been involved in numerous military and customer High Reliability programs for over 40 years. Reliability [% Failure Rate (FR%) or Mean Time Between Failure (MTBF)] is based on the number of failures and the cumulative test hours expanded by test versus use acceleration factors. The acceleration factors are calculated according to the following relationships: TT – TU 25 Temperature Where: = 10 Acceleration TT = test temp. (°C) TU = use temp. (°C) VT Vu 3 Where: VT = test voltage VU = use voltage Military Reliability levels are usually expressed in terms of rated conditions versus test conditions (generally 125°C and 2X WVDC). If actual conditions are less than rated, the reliability levels will improve significantly over rated and can be calculated by use of the above relationship for determining accelerated test hours. For example, if the actual use conditions were 75°C and 1/2 WVDC rating for a 125°C rated part, the acceleration factors are 64X for voltage and 100X for temperature. Reliabilities based on current testing can be obtained by contacting AVX. General Processing Guidelines Soldering The SM styles capacitors are generally quite large relative to other types of MLC capacitors. As a result of the size, precautions must be taken before subjecting the parts to any soldering operation in order to prevent thermal shock. Preheat prior to soldering is essential. The heating rate of the SupraCap® ceramic bodies during preheat must not exceed 4°C/second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies, adjacent to lead material, through the soldering process. The leads are attached to the chip stack with 10 / 88 / 2 (Sn / Pb / Ag, Solidus 268°C, Liquidus 290°C). Vibration Specifications* Due to the weight of the SupraCap® and the size and strength of the lead frame used, when the SupraCap® is to be used in an application where it will undergo high frequency vibration, we strongly recommend using our potted SM9 styles SupraCap®. If other DIP styles SupraCap® are to be used in a high frequency vibration environment, the SupraCap® should be supported in some way to prevent oscillation of the capacitor assembly which will result in lead breakage. If “strapping” the SupraCap® to the board is the chosen method of support, care should be taken not to chip the ceramic or apply undue pressure so that cracking of the ceramic results. If bonding the SupraCap® to the board with adhesive, consideration of the CTE (coefficient of thermal expansion) is necessary. A mismatch between the CTE of the ceramic and adhesive can cause the ceramic to crack during temperature cycles. Processing Guidelines* There are practical size limitations for MLCs which prohibit reliable direct mounting of chip capacitors larger than 2225 (.22" x .25") to a substrate. These large chips are subject to thermal shock cracking and thermal cycling solder joint fatigue. Even 1812 (.18" x .12") and 2225 chip capacitors will have solder joint failures due to mechanical fatigue after 1500 thermal cycles from 0 to 85°C on FR4 and 3000 cycles on alumina from -55 to 125°C. This is due to differences in the Coefficient of Thermal Expansion (CTE) between MLCs and substrate materials used in hybrids and surface mount assemblies. Materials used in the manufacture of all electronic components and substrates have wide ranges of CTEs as shown in Table 1. Table I CTEs of Typical Components and Substrates Material Alloy 42 Alumina Barium Titanate Capacitor Body Copper Copper Clad Invar Filled Epoxy Resin (<TR) FR4/G-10 PC Board (X, Y) Nickel or Steel Polyimide/Glass PCB (X, Y) Polyimide/Kevlar PCB (X, Y) Tantalum Tin Lead Alloys CTE (ppm/°C) 5.3 7 10-12 17.6 6-7 18-25 18 15 12 7 6.5 27 Linear Displacement This CTE difference translates into mechanical stress that is due to the linear displacement of substrate and component. Linear displacement is a function of ⌬CTE (CTEsub – CTEcomp) and the overall length of the component. Long components/ substrates have large linear displacements even with a small ⌬CTE which will cause high stress in the solder joints and fatigue after a few temperature cycles. Figure 1 shows linear displacement for conditions where ⌬CTE is positive and negative. * Reference AVX Technical Information paper, “Processing Guidelines for SMPS Capacitors.” MAY 2015 ■ 63 SMPS Capacitors Assembly Guidelines DIMENSIONS AT AMBIENT TEMPERATURE CAPACITOR "J" LEADS CAPACITOR BODY SUBSTRATE SUBSTRATE LINEAR DISPLACEMENT PUTS SOLDER JOINT AND CAPACITOR IN TENSION CAPACITOR SUBSTRATE "L" LEADS CAPACITOR BODY SOLDER FILLETS SOLDER LAND Toper > T amb CTE sub > CTE cap SUBSTRATE SUBSTRATE LINEAR DISPLACEMENT PUTS SOLDER JOINT AND CAPACITOR IN COMPRESSION CAPACITOR SUBSTRATE Figure 3. “J” and “L” Leadframes Mounted on Capacitors to Relieve Stress Toper > T amb CTE sub < CTE cap Figure 1. Linear Displacement Between Component and Substrate General Processing Guidelines Figure 2 shows the location of maximum stress in the solder joint due to positive and negative DCTE and linear displacement. SOLDER FILLET CAPACITOR MAXIMUM STRESS Inductance Adding leadframes has a small impact on component inductance but this is the price that must be paid for reliable operation over temperature. Figure 4 shows typical leadframe inductance that is added for two lead standoff distances (0.020" and 0.050") versus the number of leads along one side of SupraCap® which are specifically designed output filter capacitors for 1 MHz and above switchers. The actual inductance will be somewhat less because the leadframes flare out from the lead where the leadframe is attached to the capacitor body. 0.4 Stress for Toper > T amb CTE sub > CTE cap MAXIMUM STRESS CAPACITOR Total Leadframe Inductance (nH) SUBSTRATE 0.3 0.2 0.1 0.050" Standoff 0.020" Standoff SOLDER FILLET 0 SUBSTRATE 5 10 15 Number of leads on one side of Capacitor 20 Figure 4. Number of Leads on One Side of Capacitor vs. Total Leadframe Inductance vs. Substrate Standoff Height Stress for Toper > T amb CTE sub < CTE cap Figure 2 Stress Relief Leadframes on larger capacitor sizes (greater than 2225) must be used to minimize mechanical stress on the solder joints during temperature cycling which is normal operation for power supplies (Figure 3). Failing solder joints increase both ESR and ESL causing an increase in ripple, noise and heat, accelerating failure. Layout Effective solder dams must be used to keep all molten solder on the solder lands during reflow or solder will migrate away from the land, causing opens or weak solder joints. High frequency output filters cannot use low power layout techniques such as necked down conductors because of the stringent inductance requirements. 64 ■ MAY 2015 Very high frequency switch mode power supplies place tremendous restrictions on output filter capacitors. In addition to handling high ripple current (low ESR), ESL must approach zero nano henrys, part must be truly surface mountable and be available in new configurations to be integrated into transmission lines to further reduce inductance with load currents greater than 40A at 1 MHz and as frequencies move above 1-2 MHz. The total inductance is the sum of each side of the part where the inductance of one side is the parallel combination of each lead in the leadframe. That inductance is given by: L (nH) = 5x [In (2x) / (B+C) + 1/2] Where = lead length in inches In = natural log B+C = lead cross section in inches so L1 (nH) = 2xL (nH) where L1 is the total inductance of the leadframe. SMPS Capacitors (SK Style) Commercial Radial Range PRODUCT OFFERING – C0G, N1500, X7R AND Z5U AVX SK styles are conformally coated MLC capacitors for input or output filtering in switch mode power supplies. They are specially processed to handle high currents and are low enough in cost for commercial SMPS application. ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A Temperature Coefficient – 0 ±30 ppm/°C, -55° to +125°C N1500: 4 Temperature Coefficient – -1500 ±250 ppm/°C X7R: C Temperature Coefficient – ±15%, -55° to +125°C Z5U: E Temperature Coefficient – +22, -56%, +10° to +85°C Capacitance Test (MIL-STD-202 Method 305) C0G, N1500: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Dissipation Factor 25°C C0G, N1500: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G, N1500, X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G, N1500, X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Z5U: 1 KMΩ or 100 MΩ-μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test) C0G, N1500, X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 750 VDC) Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current. Life Test (1000 hrs) C0G, N1500, X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC) Z5U: 150% rated voltage at +85°C Moisture Resistance (MIL-STD-202 Method 106) C0G, N1500, X7R, Z5U: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) HOW TO ORDER SK 01 3 E 125 Style Size See chart below Voltage 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 Temperature Coefficient Z5U = E X7R = C C0G = A N1500 = 4 Capacitance Code (2 significant digits + no. of zeros) 22 nF = 223 220 nF = 224 1 μF = 105 100 μF = 107 Z A * Test Capacitance Leads Packaging Level Tolerance A = Tin/Lead (See Note 1) A = Standard R = RoHS C0G, N1500: J = ±5% B = Hi-Rel* K = ±10% Compliant** M = ±20% X7R: K = ±10% Note 1: No suffix signifies bulk packaging, M = ±20% which is AVX standard packaging. Z = +80, -20% SK01, SK*3, SK*4, SK*5, SK*6, SK*9 Z5U: M = ±20% & SK*0 are available taped and reel Z = +80, -20% per EIA-468. Use suffix “TR1” if tape & P = GMV (+100, -0%) reel is required. Note: Capacitors with X7R and Z5U dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. TAPE & REEL QUANTITY A *Hi-Rel screening for C0G, N1500 and X7R only. Screening consists of 100% Group A (B Level), Subgroup 1 per MIL-PRF-49470. **RoHS Compliant parts are not available in the Z5U dielectric. RoHS Part SK01 Pieces 2000 Part SK01 Available Yes SK03/SK53 1000 SK03/SK53 Yes SK04/SK54 1000 SK04/SK54 Yes SK05/SK55 500 SK05/SK55 Yes SK06/SK56 500 SK06/SK56 Yes SK07 N/A SK07 Yes SK08 N/A SK08 Yes SK09/SK59 500 SK09/SK59 Yes SK10/SK60 400 SK10/SK60 Yes Not RoHS Compliant For RoHS compliant products, please select correct termination style. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. MAY 2015 ■ 65 SMPS Capacitors (SK Style) Product Offering – C0G, X7R and Z5U L L T L H H H H + 3.683 (0.145) M M M LL LL LL LD LD LD LS LS SK01 LS SK03 – SK10 SK53 - SK56 and SK59 – SK60 C0G Capacitance Range (μF) 25 WVDC Style SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 min./max. .001/0.015 .01/0.056 .01/0.12 .01/0.18 .10/0.56 .10/0.68 .82/1.20 .10/0.27 .10/0.68 50 WVDC min./max. .001/0.012 .01/0.047 .01/0.10 .01/0.15 .01/0.47 .01/0.56 .68/1.10 .01/0.22 .01/0.56 100 WVDC X7R Capacitance Range (μF) 200 WVDC 500 WVDC min./max. min./max. min./max. .001/0.010 .0010/0.0056 .0010/0.0018 .01/0.039 .001/0.022 .001/0.0068 .01/0.082 .01/0.047 .001/0.015 .01/0.12 .01/0.068 .001/0.022 .01/0.39 .01/0.22 .01/0.068 .01/0.47 .01/0.27 .01/0.082 .56/0.82 .33/0.47 .10/0.15 .01/0.18 .01/0.10 .001/0.039 .01/0.47 .01/0.27 .01/0.082 SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 N1500 Capacitance Range (μF) Style SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 50 WVDC min./max. .001/0.022 .01/0.10 .01/0.22 .01/0.27 .01/0.82 .01/1.00 .68/2.00 .01/0.56 .01/1.00 min./max. .001/0.012 .01/0.056 .01/0.12 .01/0.18 .01/0.47 .01/0.56 .62/1.20 .01/0.27 .01/0.68 min./max. .001/0.0027 .001/0.012 .001/0.027 .001/0.039 .01/0.12 .01/0.15 .21/0.30 .01/0.068 .01/0.15 min./max. .01/0.39 .10/2.2 .10/4.7 .10/6.8 1.0/15 1.0/18 22/33 .10/8.2 1.0/18 50 WVDC min./max. .01/0.33 .10/1.8 .10/3.3 .10/6.8 1.0/10 1.0/14 15/22 .10/5.6 1.0/12 100 WVDC min./max. .01/0.27 .01/1.5 .10/2.7 .10/3.9 .10/5.6 1.0/8.2 10/15 .10/3.3 .10/6.8 Style SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 25 WVDC min./max. .10/1.2 .10/5.6 1.0/10.0 1.0/18.0 1.0/47.0 1.0/68.0 82/120.0 1.0/27.0 1.0/56.0 50 WVDC min./max. .10/0.82 .10/3.30 1.0/8.20 1.0/10.00 1.0/39.00 1.0/47.00 56/100.00 1.0/18.00 1.0/39.00 DIMENSIONS Style SK01 SK03/SK53 SK04/SK54 SK05/SK55 SK06/SK56 SK07 SK08 SK09/SK59 SK10/SK60 L = Length H = Height 66 ■ MAY 2015 200 WVDC min./max. .01/0.12 .01/0.68 .01/1.0 .10/1.8 .10/3.9 .10/4.7 5.6/8.2 .10/2.2 .10/4.7 500 WVDC min./max. .001/0.047 .01/0.27 .01/0.47 .01/0.68 .10/1.5 .10/2.2 2.2/3.9 .10/1.2 .10/2.2 Z5U Capacitance Range (μF) 100 WVDC 200 WVDC 500 WVDC min./max. .001/0.018 .01/0.082 .01/0.15 .01/0.22 .01/0.68 .01/0.82 .88/1.60 .01/0.39 .01/0.82 25 WVDC Style 100 WVDC 200 WVDC min./max. .10/0.47 .10/2.20 .10/4.70 1.0/6.80 1.0/22.00 1.0/27.00 33/47.00 1.0/10.00 1.0/22.00 min./max. .10/0.33 .10/1.50 .10/3.30 .10/4.70 1.0/15.00 1.0/18.00 22/33.00 1.0/6.80 1.0/18.00 millimeters (inches) L (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 22.1 (0.870) 27.9 (1.100) 27.9 (1.100) 17.0 (0.670) 23.6 (0.930) H (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 15.2 (0.600) 15.2 (0.600) 15.2 (0.600) 13.7 (0.540) 18.3 (0.720) T = Thickness M = Meniscus 1.52 (0.060) max. T (max.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 8.89 (0.350) 5.08 (0.200) 6.35 (0.250) LS (nom.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 10.2 (0.400) 20.1 (0.790) 24.9 (0.980) 24.9 (0.980) 14.6 (0.575) 20.3 (0.800) LD (nom.) 0.508 (0.020) 0.508 (0.020) 0.508 (0.020) 0.635 (0.025) 0.813 (0.032) 0.813 (0.032) 0.813 (0.032) 0.635 (0.025) 0.813 (0.032) LS = Lead Spacing Nominal ±.787 (0.031) LL = Lead Length 50.8 (2.000) max./25.4 (1.000) min. LD = Lead Diameter Nominal ±.050 (0.002) SMPS Capacitors (SE Style) Extended Commercial Radial Range PRODUCT OFFERING – X7R AVX SE styles offer capacitance extension to popular SK ranges. The CV product for SE-series, X7R capacitors (TCC: ±15% over -55 to +125°C) compares favorably to high CV ranges offered by other suppliers in much less stable Y5U dielectric (TCC: +22/-56% over -30 to +85°C). SE style capacitors are conformally coated and are designed for input and output filtering applications in switch mode power supplies. ELECTRICAL SPECIFICATIONS Temperature Coefficient X7R: Temperature Coefficient ±15%, -55° to +125°C Capacitance Test (MIL-STD-202 Method 305) X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Dissipation Factor 25°C X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Insulation Resistance 125°C (MIL-STD-202 Method 302) X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test) X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. Life Test (1000 hrs) X7R: 200% rated voltage at +125°C Moisture Resistance (MIL-STD-202 Method 106) X7R: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Resistance To Solder Heat (MIL-STD-202, Method 210, Condition B, for 20 seconds) HOW TO ORDER SE Style 01 Size See chart below 3 C 125 M Voltage 25V = 3 50V = 5 100V = 1 Temperature Coefficient X7R = C Capacitance Code (2 significant digits + no. of zeros) 22 nF = 223 220 nF = 224 1 μF = 105 100 μF = 107 Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. TAPE & REEL QUANTITY Capacitance Tolerance X7R: K = ±10% M = ±20% Z = +80, -20% A Test Level A = Standard B = Hi-Rel* A * Leads Packaging A = Tin/Lead (See Note 1) R = RoHS Compliant Note 1: No suffix signifies bulk packaging, which is AVX standard packaging. Parts available tape and reel per EIA468. Use suffix “TR1” if tape & reel is required. *Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-39014. Not RoHS Compliant RoHS Part SE01 Pieces 2000 Part SE01 Available Yes SE03/SE53 1000 SE03/SE53 Yes SE04/SE54 1000 SE04/SE54 Yes SE05/SE55 500 SE05/SE55 Yes SE06/SE56 500 SE06/SE56 Yes For RoHS compliant products, please select correct termination style. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. MAY 2015 ■ 67 SMPS Capacitors (SE Style) Product Offering – X7R L L T L H H H H + 3.683 (0.145) M M M LL LL LL LD LD LD LS LS SE01 LS SE03 – SE06 SE53 – SE56 X7R Capacitance Range (μF) Style 25 WVDC 50 WVDC 100 WVDC min./max. min./max. min./max. SE01 0.47/1.5 0.39/1.0 0.33/0.68 SE03/SE53 2.7/6.8 2.2/4.7 1.8/3.3 SE04/SE54 5.6/12 3.9/10 3.3/6.8 SE05/SE55 8.2/18 6.8/12 4.7/10.0 SE06/SE56 18/39 12/27 6.8/15 DIMENSIONS Style SE01 SE03/SE53 SE04/SE54 SE05/SE55 SE06/SE56 L = Length H = Height 68 ■ MAY 2015 millimeters (inches) L (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 22.1 (0.870) H (max.) 5.08 (0.200) 7.62 (0.300) 10.2 (0.400) 12.7 (0.500) 15.2 (0.600) T = Thickness M = Meniscus 1.52 (0.060) max. T (max.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) LS (nom.) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 10.2 (0.400) 20.1 (0.790) LD (nom.) 0.508 (0.020) 0.508 (0.020) 0.508 (0.020) 0.635 (0.025) 0.813 (0.032) LS = Lead Spacing Nominal ±.787 (0.031) LL = Lead Length 50.8 (2.000) max./25.4 (1.000 min.) LD = Lead Diameter Nominal ±.050 (0.002) SMPS Capacitors (CECC Offering) L T H 1.50 31.7 (0.059) (1.248) MAX. MIN. t S DIMENSIONS Size Code millimeters (inches) Length (L) (max.) 10.16 (0.400) 12.7 (0.500) 23.6 (0.930) BR40 BR50 BR84 Height (H) (max.) 11.7 (0.460) 12.7 (0.500) 17.78 (0.700) Thickness (T) (max.) 3.81 (0.150) 5.1 (0.200) 6.35 (0.250) Nom (t) S ±0.4 0.51 (0.020) 0.64 (0.025) 0.76 (0.030) 5.08 (0.200) 10.16 (0.400) 20.32 (0.800) CECC APPROVED RANGE BR40 BR50 BR84 50V 683-104 124-224 104-564 1B/C0G CECC 30 601 801 Issue 1 100V 200V 473-683 333-473 104-154 683-104 104-474 104-334 500V 4R5-153 820-333 223-104 50V 185-275 395-475 475-186 2C1/X7R CECC 30 701 801 Issue 1 100V 200V 125-185 334-474 225-275 684-105 475-156 105-335 500V 473-154 104-394 474-155 Not RoHS Compliant HOW TO ORDER BR 84 1 C 156 K T A Style Code Size Code See Voltage Code Dielectric Code Capacitance Code Capacitance Tolerance Specification Code Lead Length Code 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = C0G C = X7R table above (2 significant digits + no. of zeros) G = ±2% C0G only J = ±5% C0G only K = ±10% M = ±20% P = -0 +100% T = CECC A = 31.7mm min. Note: If tape and reel is required, add TR to the end of the part number MAY 2015 ■ 69 ESCC Qualified SMPS Capacitors High Voltage Chip/Leaded Capacitors HIGH VOLTAGE CHIP CAPACITORS Capacitors, Fixed, Chip, Ceramic Dielectric, Type II, High Voltage, Based on Styles 1812 and 1825 for use in ESCC space programs, according to ESCC Generic Specification 3009 and associated Detail Specification 3009/034 as recommended by the Space Components Coordination Group. (ranges in table below) Note: Variants 01 to 12: metallized pads Size Variant 1812 01 02 03 04 05 06 07 08 09 10 11 12 1825 Rated Voltage Tolerance Capacitance (kV) (%) Code (E12) ±10 1.0 392 - 223 ±20 ±10 2.0 152 - 182 ±20 ±10 3.0 821 - 102 ±20 ±10 1.0 273 - 563 ±20 ±10 2.0 222 - 682 ±20 ±10 3.0 821 - 392 ±20 HOW TO ORDER Parts should be ordered using the ESCC variant number as follows: 3009034 XX B XXX Test Level Detail Spec Type Variant C = Standard test level Number (per table) B = Level C plus serialized and capacitance recorded before and after 100% burn-in. Capacitance Code The first two digits represent significant figures and the third digit specifies the number of zeros to follow; i.e. 102 = 1000pF 103 = 10000pF Eg 300903401C223 HIGH VOLTAGE LEADED CAPACITORS Capacitors, Fixed, Ceramic Dielectric, Type II, High Voltage, 1.0 to 5.0 kV, Based on Case Styles VR, CV and CH for use in ESCC space programs, according to ESCC Generic Specification 3001 and associated Detail Specification 3001/034 as recommended by the Space Components Coordination Group. (ranges in table) Note 1: Lead Types a - Leaded Radial (epoxy coated) b - Leaded Radial (Polyurethane Varnish) c - Straight Dual in Line d - L Dual in Line Note 2: Tolerances of ±10% and ±20% are available Not RoHS Compliant HOW TO ORDER Parts should be ordered using the ESCC variant number as follows: Capacitance Code (E12) 2.0kV 3.0kV 4.0kV Case Lead Size Variant Type 1.0kV VR30S VR30 VR40 VR50 VR66 VR84 VR90 CV41 CH41 CH41 CV51 CH51 CH51 CV61 CH61 CH61 CV76 CH76 CH76 CV91 CH91 CH91 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 a a a a a a a b c d b c d b c d b c d b c d 392 273 473 154 224 684 125 473 473 473 154 154 154 224 224 224 684 684 684 125 125 125 - 203 563 124 274 564 105 275 124 124 124 274 274 274 564 564 564 105 105 105 275 275 275 152 222 822 183 393 473 184 822 822 822 183 183 183 393 393 393 473 473 473 184 184 184 - 182 682 153 333 823 154 334 153 153 153 333 333 333 823 823 823 154 154 154 334 334 334 821 821 472 123 223 473 823 472 472 472 123 123 123 223 223 223 473 473 473 823 823 823 - 102 392 103 183 393 683 184 103 103 103 183 183 183 393 393 393 683 683 683 184 184 184 182 562 103 183 473 182 182 182 562 562 562 103 103 103 183 183 183 473 473 473 - 222 822 153 393 124 222 222 222 822 822 822 153 153 153 393 393 393 124 124 124 5.0kV 332 682 123 223 - 392 103 183 563 332 332 332 682 682 682 123 123 123 223 223 223 - 392 392 392 103 103 103 183 183 183 563 563 563 3001034 XX B XXX K X Detail Spec Number Type Variant (per table above) Test Level C = Standard test level B = Level C plus serialized and capacitance recorded before and after 100% burn-in. Capacitance Code The first two digits represent significant figures and the third digit specifies the number of zeros to follow; i.e. 102 = 1000pF 103 = 10000pF Capacitance Tolerance K = 10% M = 20% Voltage M = 1kV P = 2kV R = 3kV S = 4kV Z = 5kV Eg 300103412C274KM 70 ■ MAY 2015 ESCC Qualified SMPS Capacitors High Capacitance HIGH CAPACITANCE LEADED CAPACITORS Capacitors, Fixed, Ceramic Dielectric, Type II, High Capacitance, Based on Case Styles BR, CV and CH for use in ESCC space programs, according to ESCC Generic Specification 3001 and associated Detail Specification 3001/030 as recommended by the Space Components Coordination Group. (see ranges in table below) Case Size Variant Figure BR40 BR50 BR66 BR72 BR84 CV41 CH41 CH41 CH42 CH42 CH43 CH43 CH44 CH44 CV51 CH51 CH51 CH52 CH52 CH53 CH53 CH54 CH54 CV61 CH61 CH61 CH62 CH62 CH63 CH63 CH64 CH64 CV71 CH71 CH71 CH72 CH72 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ˜31 32 33 34 35 36 37 a a a a a b c d c d c d c d b c d c d c d c d b c d c d c d c d b c d c d 50V Capacitance Code (E12) 100V 200V 500V 185 - 335 395 - 565 685 - 106 126 - 186 126 - 186 185 - 335 185 - 335 185 - 335 395 - 685 395 - 685 825 - 106 825 - 106 126 126 395 - 565 395 - 565 395 - 565 685 - 106 685 - 106 126 - 156 126 - 156 186 - 226 186 - 226 685 - 106 685 - 106 685 - 106 126 - 226 126 - 226 276 - 336 276 - 336 396 396 126 - 186 126 - 186 126 - 186 226 - 396 226 - 396 125 - 275 225 - 395 475 - 825 825 - 156 825 - 156 125 - 275 125 - 275 125 - 275 335 - 565 335 - 565 685 - 825 685 - 825 106 106 225 - 395 225 - 395 225 - 395 475 - 825 475 - 825 106 - 126 106 - 126 156 156 475 - 825 475 - 825 475 - 825 106 - 156 106 - 156 186 - 226 186 - 226 276 - 336 276 - 336 825 - 156 825 - 156 825 - 156 186 - 276 186 - 276 334 - 564 684 - 105 105 - 225 225 - 335 225 - 335 334 - 564 334 - 564 334 - 564 684 - 125 684 - 125 155 - 185 155 - 185 225 225 684 - 105 684 - 105 684 - 105 125 - 225 125 - 225 275 - 335 275 - 335 395 395 105 - 225 105 - 225 105 - 225 275 - 475 275 - 475 565 - 685 565 - 685 825 - 106 825 - 106 225 - 335 225 - 335 225 - 335 395 - 685 395 - 685 124 - 224 274 - 394 474 - 105 824 - 155 824 - 155 124 - 224 124 - 224 124 - 224 274 - 474 274 - 474 564 - 684 564 - 684 824 - 105 824 - 105 274 - 394 274 - 394 274 - 394 474 - 824 474 - 824 105 - 125 105 - 125 155 155 474 - 105 474 - 105 474 - 105 105 - 185 105 - 185 225 - 275 225 - 275 335 335 824 - 155 824 - 155 824 - 155 185 - 335 185 - 335 Note 1: Lead Types a - Leaded Radial (epoxy coated) b - Leaded Radial (Polyurethane Varnish) c - Straight Dual in Line d - L Dual in Line Note 2: Tolerances of ±10% and ±20% are available Case Size Variant Figure CH73 CH73 CH74 CH74 CV76 CH76 CH76 CH77 CH77 CH78 CH78 CH79 CH79 CH81 CH81 CH82 CH82 CH83 CH83 CH84 CH84 CH86 CH86 CH87 CH87 CH88 CH88 CH89 CH89 CH91 CH91 CH92 CH92 CH93 CH93 CH94 CH94 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 c d c d b c d c d c d c d c d c d c d c d c d c d c d c d c d c d c d c d 50V 476 - 566 476 - 566 686 686 126 - 186 126 - 186 126 - 186 226 - 396 226 - 396 476 - 566 476 - 566 686 686 156 - 226 156 - 226 276 - 476 276 - 476 566 - 686 566 - 686 826 826 226 - 336 226 - 336 396 - 686 396 - 686 826 - 107 826 - 107 127 127 396 - 476 396 - 476 566 - 107 566 - 107 127 - 157 127 - 157 187 187 Capacitance Code (E12) 100V 200V 500V 336 - 396 336 - 396 476 476 825 - 156 825 - 156 825 - 156 186 - 276 186 - 276 336 - 396 336 - 396 476 476 126 - 186 126 - 186 226 - 396 226 - 396 476 - 566 476 - 566 686 686 156 - 276 156 - 276 336 - 566 336 - 566 686 - 826 686 - 826 107 107 336 - 396 336 - 396 476 - 826 476 - 826 107 - 127 107 - 127 157 157 825 - 106 825 - 106 126 126 225 - 335 225 - 335 225 - 335 395 - 685 395 - 685 825 - 106 825 - 106 126 126 225 - 395 225 - 395 475 - 825 475 - 825 106 - 126 106 - 126 156 156 395 - 685 395 - 685 825 - 156 825 - 156 186 - 226 186 - 226 276 276 825 - 106 825 - 106 126 - 226 126 - 226 276 - 336 276 - 336 396 396 395 - 475 395 - 475 565 565 824 - 155 824 - 155 824 - 155 185 - 335 185 - 335 395 - 475 395 - 475 565 565 824 - 155 824 - 155 155 - 225 155 - 225 HOW TO ORDER Parts should be ordered using the ESCC variant number as follows: 3001030 XX Detail Spec Number Type Variant (per table above) B Test Level C = Standard test level B = Level C plus serialized and capacitance recorded before and after 100% burn-in. EG 300103018C106KC Lot Acceptance Testing is available for all our ESCC qualified ranges. LAT 1 LAT 2 LAT 3 42 samples → 12 mechanical + 20 life test + 6 for TC + 4 for solder 30 samples → 20 life test + 6 for TC + 4 for solder 10 samples → 6 for TC + 4 for solder XXX K X Capacitance Code The first two digits represent significant figures and the third digit specifies the number of zeros to follow; i.e. 102 = 1000pF 103 = 10000pF Capacitance Tolerance K = 10% M = 20% Voltage C = 50V E = 100V G = 200V L = 500V Not RoHS Compliant MAY 2015 ■ 71 SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3009/034 PHYSICAL DIMENSIONS Millimeters (Inches) L Symbol I L l e e M = = M M Variants 01 to 06 Variants 07 to 12 Min. Max. Min. Max. 4.20 (0.165) 2.80 (0.110) – 5.00 (0.197) 3.60 (0.142) 3.00 (0.118) 0.75 (0.030) 4.20 (0.165) 5.67 (0.223) – 5.00 (0.197) 6.67 (0.263) 3.30 (0.130) 0.75 (0.030) 0.25 (0.010) 0.25 (0.010) ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – VR STYLE Millimeters (Inches) B F H Variant Case Size 01 VR30S 02 VR30 03 VR40 04 VR50 05 VR66 06 VR84 07 VR90 J L Ød E B Max. 7.62 (0.300) 7.62 (0.300) 10.16 (0.400) 12.7 (0.500) 17.5 (0.689) 23.62 (0.930) 23.5 (0.925) Ød Min. Max. 0.46 (0.018) 0.46 (0.018) 0.46 (0.018) 0.59 (0.023) 0.86 (0.034) 0.86 (0.034) 0.86 (0.034) 0.56 (0.022) 0.56 (0.022) 0.56 (0.022) 0.69 (0.027) 0.96 (0.038) 0.96 (0.038) 0.96 (0.038) Min. E Max. F Max. H Max. J Max. L Min. 4.58 (0.180) 4.58 (0.180) 4.58 (0.180) 9.66 (0.380) 14.2 (0.559) 20.4 (0.803) 20.4 (0.803) 5.58 (0.220) 5.58 (0.220) 5.58 (0.220) 10.66 (0.420) 15.2 (0.598) 22.0 (0.866) 22.0 (0.866) 5.00 (0.197) 5.00 (0.197) 5.00 (0.197) 5.10 (0.201) 6.40 (0.252) 6.40 (0.252) 6.40 (0.252) 4.60 (0.181) 9.62 (0.379) 11.7 (0.461) 14.2 (0.559) 16.5 (0.650) 19.78 (0.779) 42.0 (1.654) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – CV STYLE Millimeters (Inches) F B Ød H L E 72 ■ MAY 2015 L Variant Case Size 08 CV41 11 CV51 14 CV61 17 CV76 20 CV91 B Max. 10.6 (0.417) 11.9 (0.469) 16.5 (0.650) 22.7 (0.894) 22.7 (0.894) Ød Min. Max. 0.65 (0.026) 0.85 (0.033) 0.85 (0.033) 0.85 (0.033) 1.15 (0.045) 0.75 (0.030) 0.95 (0.037) 0.95 (0.037) 0.95 (0.037) 1.25 (0.049) Min. E Max. F Max. H Max. Min. L Max. 7.70 (0.303) 9.66 (0.380) 14.74 (0.580) 20.4 (0.803) 20.4 (0.803) 8.70 (0.343) 10.66 (0.420) 15.74 (0.620) 22.0 (0.866) 22.0 (0.866) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 8.70 (0.343) 10.7 (0.421) 13.6 (0.535) 16.6 (0.654) 40.6 (1.598) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – CH STYLE, D.I.L. a1 A L b1 E e b D F Symbol a1 Min. 0.45 (0.018) 0.204 (0.008) 2.49 (0.098) 12.0 (0.472) b b1 e L Max. Notes 2.00 (0.079) 0.55 (0.022) 0.304 (0.012) 2.59 (0.102) 14.0 (0.551) 1 1 1 2 1 Notes: 1 – All leads 2 – Each space Millimeters (Inches) Variant Case Size 07 09 11 13 16 18 20 22 25 27 29 31 34 36 38 40 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 CH41 CH42 CH43 CH44 CH51 CH52 CH53 CH54 CH61 CH62 CH63 CH64 CH71 CH72 CH73 CH74 CH76 CH77 CH78 CH79 CH81 CH82 CH83 CH84 CH86 CH87 CH88 CH89 CH91 CH92 CH93 CH94 A Max. 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) D Max. 8.70 8.70 8.70 8.70 10.7 10.7 10.7 10.7 13.6 13.6 13.6 13.6 21.6 21.6 21.6 21.6 16.6 16.6 16.6 16.6 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 40.6 40.6 40.6 40.6 (0.343) (0.343) (0.343) (0.343) (0.421) (0.421) (0.421) (0.421) (0.535) (0.535) (0.535) (0.535) (0.850) (0.850) (0.850) (0.850) (0.654) (0.654) (0.654) (0.654) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.598) (1.598) (1.598) (1.598) E Min. 7.70 7.70 7.70 7.70 9.66 9.66 9.66 9.66 13.5 13.5 13.5 13.5 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 9.66 9.66 9.66 9.66 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 Max. (0.303) (0.303) (0.303) (0.303) (0.380) (0.380) (0.380) (0.380) (0.531) (0.531) (0.531) (0.531) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) (0.380) (0.380) (0.380) (0.380) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) 8.70 8.70 8.70 8.70 10.66 10.66 10.66 10.66 14.5 14.5 14.5 14.5 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 10.66 10.66 10.66 10.66 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 ESCC DETAIL SPECIFICATION NO. 3001/034 PHYSICAL DIMENSIONS – CH STYLE, L A L e b L D E L Case Size 10 13 16 19 22 CH41 CH51 CH61 CH76 CH91 b e F L 9.20 9.20 9.20 9.20 10.7 10.7 10.7 10.7 14.9 14.9 14.9 14.9 16.8 16.8 16.8 16.8 21.6 21.6 21.6 21.6 12.0 12.0 12.0 12.0 18.9 18.9 18.9 18.9 24.0 24.0 24.0 24.0 (0.362) (0.362) (0.362) (0.362) (0.421) (0.421) (0.421) (0.421) (0.587) (0.587) (0.587) (0.587) (0.661) (0.661) (0.661) (0.661) (0.850) (0.850) (0.850) (0.850) (0.472) (0.472) (0.472) (0.472) (0.744) (0.744) (0.744) (0.744) (0.945) (0.945) (0.945) (0.945) Millimeters (Inches) Variant Symbol (0.343) (0.343) (0.343) (0.343) (0.420) (0.420) (0.420) (0.420) (0.571) (0.571) (0.571) (0.571) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) (0.420) (0.420) (0.420) (0.420) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) F Max. A Max. 3.80 3.80 3.80 3.80 3.80 (0.150) (0.150) (0.150) (0.150) (0.150) Min. Max. 0.45 (0.018) 2.49 (0.098) 2.04 (0.080) 0.55 (0.022) 2.59 (0.102) 3.01 (0.120) D Max. 8.70 10.7 13.6 16.6 40.6 (0.343) (0.421) (0.535) (0.654) (1.598) E Min. 7.70 9.66 13.5 19.52 19.52 Max. F Max. (0.303) 8.70 (0.343) 9.20 (0.362) (0.380) 10.66 (0.420) 10.7 (0.421) (0.531) 14.5 (0.571) 14.9 (0.587) (0.769) 21.12 (0.831) 21.6 (0.850) (0.769) 21.12 (0.831) 24.0 (0.945) Notes 1 2 1 Notes: 1 – All leads 2 – Each space MAY 2015 ■ 73 SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – BR STYLE Millimeters (Inches) B H F J L E Variant Case Size 01 BR40 02 BR50 03 BR66 04 BR72 05 BR84 B Max. 10.16 (0.400) 12.7 (0.500) 17.5 (0.689) 19.3 (0.760) 23.62 (0.930) Ød Min. Max. 0.46 (0.018) 0.59 (0.023) 0.86 (0.034) 0.86 (0.034) 0.71 (0.028) 0.56 (0.022) 0.69 (0.027) 0.96 (0.038) 0.96 (0.038) 0.81 (0.032) Min. E Max. F Max. H Max. J Max. L Min. 4.58 (0.180) 9.66 (0.380) 14.2 (0.559) 14.74 (0.580) 18.93 (0.745) 5.58 (0.220) 10.66 (0.420) 15.2 (0.598) 15.74 (0.620) 20.83 (0.820) 5.00 (0.197) 5.10 (0.201) 6.40 (0.252) 6.40 (0.252) 6.40 (0.252) 11.7 (0.461) 14.2 (0.559) 16.5 (0.650) 24.0 (0.945) 19.78 (0.779) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 1.50 (0.059) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) 31.7 (1.248) Ød ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – CV STYLE Millimeters (Inches) F B Ød H L E 74 ■ MAY 2015 L Variant Case Size 06 CV41 15 CV51 24 CV61 33 CV71 42 CV76 B Max. 10.6 (0.417) 11.9 (0.469) 16.5 (0.650) 17.8 (0.701) 22.7 (0.894) Ød Min. Max. 0.65 (0.026) 0.85 (0.033) 0.85 (0.033) 0.85 (0.033) 0.85 (0.033) 0.75 (0.030) 0.95 (0.037) 0.95 (0.037) 0.95 (0.037) 0.95 (0.037) Min. E Max. F Max. H Max. Min. L Max. 7.70 (0.303) 9.66 (0.380) 14.74 (0.580) 14.74 (0.580) 20.4 (0.803) 8.70 (0.343) 10.66 (0.420) 15.74 (0.620) 15.74 (0.620) 22.0 (0.866) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 8.70 (0.343) 10.7 (0.421) 13.6 (0.535) 21.6 (0.850) 16.6 (0.654) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 22.0 (0.866) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) 28.0 (1.102) SMPS Capacitors ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – CH STYLE, D.I.L. a1 A L b1 E e b D F Symbol Min. a1 0.45 (0.018) 0.204 (0.008) 2.49 (0.098) 2.04 (0.080) b b1 e L Max. Notes 2.00 (0.079) 0.55 (0.022) 0.304 (0.012) 2.59 (0.102) 3.04 (0.120) 1 1 1 2 1 Notes: 1 – All leads 2 – Each space Millimeters (Inches) Variant Case Size 07 09 11 13 16 18 20 22 25 27 29 31 34 36 38 40 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 CH41 CH42 CH43 CH44 CH51 CH52 CH53 CH54 CH61 CH62 CH63 CH64 CH71 CH72 CH73 CH74 CH76 CH77 CH78 CH79 CH81 CH82 CH83 CH84 CH86 CH87 CH88 CH89 CH91 CH92 CH93 CH94 A Max. 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) D Max. 8.70 8.70 8.70 8.70 10.7 10.7 10.7 10.7 13.6 13.6 13.6 13.6 21.6 21.6 21.6 21.6 16.6 16.6 16.6 16.6 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 40.6 40.6 40.6 40.6 (0.343) (0.343) (0.343) (0.343) (0.421) (0.421) (0.421) (0.421) (0.535) (0.535) (0.535) (0.535) (0.850) (0.850) (0.850) (0.850) (0.654) (0.654) (0.654) (0.654) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.504) (1.598) (1.598) (1.598) (1.598) E Min. 7.70 7.70 7.70 7.70 9.66 9.66 9.66 9.66 13.5 13.5 13.5 13.5 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 9.66 9.66 9.66 9.66 14.74 14.74 14.74 14.74 19.52 19.52 19.52 19.52 Max. (0.303) (0.303) (0.303) (0.303) (0.380) (0.380) (0.380) (0.380) (0.531) (0.531) (0.531) (0.531) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) (0.380) (0.380) (0.380) (0.380) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) ESCC DETAIL SPECIFICATION NO. 3001/030 PHYSICAL DIMENSIONS – CH STYLE, L A L e b L D F Symbol b e L Min. Max. 0.45 (0.018) 2.49 (0.098) 2.04 (0.080) 0.55 (0.022) 2.59 (0.102) 3.04 (0.120) Notes: 1 – All leads 2 – Each space Notes 1 2 1 E L 8.70 8.70 8.70 8.70 10.66 10.66 10.66 10.66 14.5 14.5 14.5 14.5 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 10.66 10.66 10.66 10.66 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 (0.343) (0.343) (0.343) (0.343) (0.420) (0.420) (0.420) (0.420) (0.571) (0.571) (0.571) (0.571) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) (0.420) (0.420) (0.420) (0.420) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) F Max. 9.20 9.20 9.20 9.20 10.7 10.7 10.7 10.7 14.9 14.9 14.9 14.9 16.8 16.8 16.8 16.8 21.6 21.6 21.6 21.6 12.0 12.0 12.0 12.0 18.9 18.9 18.9 18.9 24.0 24.0 24.0 24.0 (0.362) (0.362) (0.362) (0.362) (0.421) (0.421) (0.421) (0.421) (0.587) (0.587) (0.587) (0.587) (0.661) (0.661) (0.661) (0.661) (0.850) (0.850) (0.850) (0.850) (0.472) (0.472) (0.472) (0.472) (0.744) (0.744) (0.744) (0.744) (0.945) (0.945) (0.945) (0.945) Millimeters (Inches) Variant Case Size 08 10 12 14 17 19 21 23 26 28 30 32 35 37 39 41 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 CH41 CH42 CH43 CH44 CH51 CH52 CH53 CH54 CH61 CH62 CH63 CH64 CH71 CH72 CH73 CH74 CH76 CH77 CH78 CH79 CH81 CH82 CH83 CH84 CH86 CH87 CH88 CH89 CH91 CH92 CH93 CH94 A Max. 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 3.80 7.40 11.1 14.8 (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) (0.150) (0.291) (0.437) (0.583) D Max. 8.70 8.70 8.70 8.70 10.7 10.7 10.7 10.7 13.6 13.6 13.6 13.6 21.6 21.6 21.6 21.6 16.6 16.6 16.6 16.6 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 40.6 40.6 40.6 40.6 E Min. (0.343) 7.70 (0.343) 7.70 (0.343) 7.70 (0.343) 7.70 (0.421) 9.66 (0.421) 9.66 (0.421) 9.66 (0.421) 9.66 (0.535) 13.5 (0.535) 13.5 (0.535) 13.5 (0.535) 13.5 (0.850) 14.74 (0.850) 14.74 (0.850) 14.74 (0.850) 14.74 (0.654) 19.52 (0.654) 19.52 (0.654) 19.52 (0.654) 19.52 (1.504) 9.66 (1.504) 9.66 (1.504) 9.66 (1.504) 9.66 (1.504) 14.74 (1.504) 14.74 (1.504) 14.74 (1.504)) 14.74 (1.598) 19.52 (1.598) 19.52 (1.598) 19.52 (1.598) 19.52 (0.303) (0.303) (0.303) (0.303) (0.380) (0.380) (0.380) (0.380) (0.531) (0.531) (0.531) (0.531) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) (0.380) (0.380) (0.380) (0.380) (0.580) (0.580) (0.580) (0.580) (0.769) (0.769) (0.769) (0.769) Max. 8.70 8.70 8.70 8.70 10.66 10.66 10.66 10.66 14.5 14.5 14.5 14.5 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 10.66 10.66 10.66 10.66 15.74 15.74 15.74 15.74 21.12 21.12 21.12 21.12 (0.343 (0.343 (0.343 (0.343 (0.420) (0.420) (0.420) (0.420) (0.571) (0.571) (0.571) (0.571) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) (0.420) (0.420) (0.420) (0.420) (0.620) (0.620) (0.620) (0.620) (0.831) (0.831) (0.831) (0.831) F Max. 9.20 9.20 9.20 9.20 10.7 10.7 10.7 10.7 14.9 14.9 14.9 14.9 16.8 16.8 16.8 16.8 21.6 21.6 21.6 21.6 12.0 12.0 12.0 12.0 18.9 18.9 18.9 18.9 24.0 24.0 24.0 24.0 MAY 2015 (0.362) (0.362) (0.362) (0.362) (0.421) (0.421) (0.421) (0.421) (0.587) (0.587) (0.587) (0.587) (0.661) (0.661) (0.661) (0.661) (0.850) (0.850) (0.850) (0.850) (0.472) (0.472) (0.472) (0.472) (0.744) (0.744) (0.744) (0.744) (0.945) (0.945) (0.945) (0.945) ■ 75 High Voltage DIP Leaded (HV Style) C0G Dielectric N1500 X7R Dielectric General Specifications General Specifications General Specifications Capacitance Range 100 pF to 1.2 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz, for ≤100 pF use 1 MHz) Capacitance Tolerances ±5%, ±10%, ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic 0 ± 30 ppm/°C Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz, for ≤100 pF use 1 MHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 1.9 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Capacitance Tolerances ±5%, ±10%, ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic -1500 ±250 ppm/°C Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 15 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Capacitance Tolerances ±10%, ±20%, +80%, -20% Operating Temperature Range -55°C to +125°C Temperature Characteristic ±15% (0 VDC) Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 2.5% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C HOW TO ORDER AVX Styles: HV01 THRU HV06 HV 01 A C 105 M A N 650 AVX Style Size See Dimensions chart Voltage 1K = A 2K = G 3K = H 4K = J 5K = K Temperature Coefficient C0G = A X7R = C N1500 = 4 Capacitance Code (2 significant digits + number of zeros) 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% Test Level A = Does not apply Termination N = Straight Lead J = Leads formed in L = Leads formed out P = P Style Leads Z = Z Style Leads Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" X7R: K = ±10% M = ±20% Z = +80%, -20% N1500: J = ±5% K = ±10% M = ±20% Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Not RoHS Compliant Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 76 ■ MAY 2015 High Voltage DIP Leaded (HV Style) Surface Mount and Thru-Hole HV Styles CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A E 0.254 (0.010) TYP. B RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style HV01 HV02 HV03 HV04 HV05 HV06 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 78 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 53.3 39.1 27.2 10.2 6.35 53.3 (2.100) (1.540) (1.070) (0.400) (0.250) (2.100) D ±.635 (±0.025) 10.5 20.3 10.5 10.2 6.35 29.0 (0.415) (0.800) (0.415) (0.400) (0.250) (1.140) E (max.) 54.9 40.7 28.2 11.2 7.62 54.9 (2.160) (1.600) (1.130) (0.440) (0.300) (2.160) No. of Leads per side 4 8 4 4 3 11 MAY 2015 ■ 77 High Voltage DIP Leaded (HV Style) Surface Mount and Thru-Hole HV Styles Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm HV01 _ _ _ _ _ _ AN120 HV02 _ _ _ _ _ _ AN120 HV03 _ _ _ _ _ _ AN120 HV04 _ _ _ _ _ _ AN120 HV05 _ _ _ _ _ _ AN120 HV06 _ _ _ _ _ _ AN120 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .086 .024 .011 .0062 .0052 .120 .034 .015 .0088 .0074 .042 .013 .0058 .0030 .0024 .012 .0040 .0018 .0009 .0007 .0048 .0013 .240 .066 .028 .018 .015 N1500 .140 .042 .018 .010 .0084 .200 .058 .024 .014 .012 .068 .020 .0090 .0050 .0040 .020 .0066 .0028 .0014 .0012 .0078 .0022 .380 .100 .046 .030 .026 .060 --- 3.00 .700 .440 .200 .170 C0G X7R 1.10 .260 .150 .066 .052 1.50 .360 .200 .094 .078 .520 .130 .072 .032 .024 .160 .042 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm HV01 _ _ _ _ _ _ AN240 HV02 _ _ _ _ _ _ AN240 HV03 _ _ _ _ _ _ AN240 HV04 _ _ _ _ _ _ AN240 HV05 _ _ _ _ _ _ AN240 HV06 _ _ _ _ _ _ AN240 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .170 .048 .022 .012 .010 .240 .068 .031 .017 .015 .084 .026 .011 .0060 .0048 .025 .0082 .0036 .0018 .0014 .0096 .0027 .480 .130 .056 .036 .031 N1500 .280 .084 .036 .020 .016 .400 .110 .048 .028 .024 .130 .040 .018 .010 .0080 .040 .013 .0056 .0028 .0025 .015 .0044 .760 .210 .092 .060 .052 .120 --- 6.00 1.40 .880 .400 .340 C0G X7R 2.20 .520 .300 .130 .100 3.10 .720 .400 .180 .150 1.00 .270 .140 .064 .048 .330 .084 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.15mm HV01 _ _ _ _ _ _ AN360 HV02 _ _ _ _ _ _ AN360 HV03 _ _ _ _ _ _ AN360 HV04 _ _ _ _ _ _ AN360 HV05 _ _ _ _ _ _ AN360 HV06 _ _ _ _ _ _ AN360 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .250 .072 .033 .018 .015 .360 .100 .047 .026 .022 .120 .039 .017 .0090 .0072 .038 .012 .0054 .0027 .0022 .014 .0040 .720 .200 .084 .055 .047 N1500 .420 .120 .055 .030 .025 .600 .170 .072 .043 .036 .200 .060 .027 .015 .012 .060 .020 .0084 .0043 .0037 .023 .0066 1.10 .310 .130 .090 .078 X7R .180 --- 9.00 2.10 1.30 .600 .510 C0G 3.30 .780 .450 .200 .150 4.70 1.00 .600 .280 .230 1.50 .410 .210 .096 .072 .490 .120 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm HV01 _ _ _ _ _ _ AN480 HV02 _ _ _ _ _ _ AN480 HV03 _ _ _ _ _ _ AN480 HV04 _ _ _ _ _ _ AN480 HV05 _ _ _ _ _ _ AN480 HV06 _ _ _ _ _ _ AN480 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV C0G .340 .096 .044 .024 .020 .480 .130 .063 .035 .030 .160 .052 .023 .012 .0096 .051 .016 .0072 .0036 .0029 .019 .0054 .960 .260 .110 .073 .062 N1500 .560 .160 .073 .040 .033 .800 .230 .096 .057 .048 .270 .080 .036 .020 .016 .080 .026 .011 .0057 .0050 .031 .0088 1.50 .420 .180 .120 .100 .240 --- X7R 4.40 1.00 .600 .260 .200 6.30 1.40 .800 .370 .310 2.00 .550 .280 .120 .096 .650 .160 --- --- --- 12.0 2.80 1.70 .800 .68 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm HV01 _ _ _ _ _ _ AN650 HV02 _ _ _ _ _ _ AN650 HV03 _ _ _ _ _ _ AN650 HV04 _ _ _ _ _ _ AN650 HV05 _ _ _ _ _ _ AN650 HV06 _ _ _ _ _ _ AN650 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV C0G .430 .120 .056 .031 .026 .610 .170 .079 .044 .037 .210 .065 .029 .015 .012 .064 .020 .009 .0045 .0037 .024 .0068 1.20 .330 .140 .092 .078 N1500 .700 .210 .092 .050 .042 1.00 .290 .120 .072 .060 .340 .100 .045 .025 .020 .100 .033 .014 .0072 .0063 .039 .011 1.90 .530 .230 .150 .130 .300 --- 15.0 3.50 2.20 1.00 .850 X7R 5.50 1.30 .750 .330 .260 7.90 1.80 1.00 .470 .390 2.60 .690 .360 .160 .120 .820 .210 78 ■ MAY 2015 --- --- --- RoHS Compliant High Voltage DIP Leaded (RV Style) C0G Dielectric N1500 X7R Dielectric General Specifications General Specifications General Specifications Capacitance Range 100 pF to 1.2 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz, for ≤100 pF use 1 MHz) Capacitance Tolerances ±5%, ±10%, ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic 0 ± 30 ppm/°C Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz, for ≤100 pF use 1 MHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 1.9 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Capacitance Tolerances ±5%, ±10%, ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic -1500 ±250 ppm/°C Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 15 μF (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Capacitance Tolerances ±10%, ±20%, +80%, -20% Operating Temperature Range -55°C to +125°C Temperature Characteristic ±15% (0 VDC) Voltage Ratings 1000 VDC thru 5000 VDC (+125°C) Dissipation Factor 2.5% max. (25°C, 1.0±0.2 Vrms (open circuit voltage) at 1 KHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C HOW TO ORDER AVX Styles: RV01 THRU RV06 RV 01 A C 105 M A N 650 AVX Style Size See Dimensions chart Voltage 1K = A 2K = G 3K = H 4K = J 5K = K Temperature Coefficient C0G = A X7R = C N1500 = 4 Capacitance Code (2 significant digits + number of zeros) 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1μF = 105 10 μF = 106 100 μF = 107 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% Test Level A = Does not apply Termination N = Straight Lead J = Leads formed in L = Leads formed out P = P Style Leads Z = Z Style Leads Height Max Dimension “A” 120 = 0.120" 240 = 0.240" 360 = 0.360" 480 = 0.480" 650 = 0.650" X7R: K = ±10% M = ±20% Z = +80%, -20% N1500: J = ±5% K = ±10% M = ±20% Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. MAY 2015 ■ 79 RoHS Compliant High Voltage DIP Leaded (RV Style) Surface Mount and Thru-Hole RV Styles CHIP SEPARATION 0.254 (0.010) TYP. D CHIP SEPARATION 0.254 (0.010) TYP. CAPACITOR E E 1.651 ± 0.254 (0.065 ± 0.010) B 1.397 (0.055) ±0.254 (0.010) A R 0.508 (0.020) 3 PLACES B 2.540 ± 0.254 (0.100 ± 0.010) 4.191 ± 0.254 (0.165 ± 0.010) DETAIL A 6.350 (0.250) MIN 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. C 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) TYP. 1.016 ± 0.254 (0.040 ± 0.010) DETAIL A “N” STYLE LEADS “P” STYLE LEADS CHIP SEPARATION 0.254 (0.010) TYP. CHIP SEPARATION 0.254 (0.010) TYP. D E E 0.254 (0.010) RAD. (TYP.) B 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) A 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 1.778 (0.070) ±0.254 (0.010) “J” STYLE LEADS C “L” STYLE LEADS 1.397 (0.055) ±0.254 (0.010) A E 0.254 (0.010) TYP. B RAD. 0.254 (0.010) (TYP) 1.270 ± 0.254 (0.050 ± 0.010) CHIP SEPARATION 0.254 (0.010) TYP. D 0.254 (0.010) TYP. 1.905 (0.075) ±0.635 (0.025) TYP. 2.794 ± 0.254 (0.110 ± 0.010) 6.35 (0.250) MIN. 1.778 ±0.254 (0.070 ± 0.010) C 0.508 (0.020) TYP. 2.54 (0.100) TYP. 3.048 ± 0.381 (0.120 ± 0.015) DETAIL B 2.54 (0.100) MAX. 0.635 (0.025) MIN. DETAIL B “Z” STYLE LEADS DIMENSIONS Style RV01 RV02 RV03 RV04 RV05 RV06 A (max.) millimeters (inches) B (max.) For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) See page 81 for For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) maximum “A” For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) Dimension 80 ■ MAY 2015 For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) C ±.635 (±0.025) 53.3 39.1 27.2 10.2 6.35 53.3 (2.100) (1.540) (1.070) (0.400) (0.250) (2.100) D ±.635 (±0.025) 10.5 20.3 10.5 10.2 6.35 29.0 (0.415) (0.800) (0.415) (0.400) (0.250) (1.140) E (max.) 54.9 40.7 28.2 11.2 7.62 54.9 (2.160) (1.600) (1.130) (0.440) (0.300) (2.160) No. of Leads per side 4 8 4 4 3 11 RoHS Compliant High Voltage DIP Leaded (RV Style) Surface Mount and Thru-Hole RV Styles Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm RV01 _ _ _ _ _ _ AN120 RV02 _ _ _ _ _ _ AN120 RV03 _ _ _ _ _ _ AN120 RV04 _ _ _ _ _ _ AN120 RV05 _ _ _ _ _ _ AN120 RV06 _ _ _ _ _ _ AN120 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .086 .024 .011 .0062 .0052 .120 .034 .015 .0088 .0074 .042 .013 .0058 .0030 .0024 .012 .0040 .0018 .0009 .0007 .0048 .0013 .240 .066 .028 .018 .015 N1500 .140 .042 .018 .010 .0084 .200 .058 .024 .014 .012 .068 .020 .0090 .0050 .0040 .020 .0066 .0028 .0014 .0012 .0078 .0022 .380 .100 .046 .030 .026 .060 --- 3.00 .700 .440 .200 .170 C0G X7R 1.10 .260 .150 .066 .052 1.50 .360 .200 .094 .078 .520 .130 .072 .032 .024 .160 .042 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm RV01 _ _ _ _ _ _ AN240 RV02 _ _ _ _ _ _ AN240 RV03 _ _ _ _ _ _ AN240 RV04 _ _ _ _ _ _ AN240 RV05 _ _ _ _ _ _ AN240 RV06 _ _ _ _ _ _ AN240 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .170 .048 .022 .012 .010 .240 .068 .031 .017 .015 .084 .026 .011 .0060 .0048 .025 .0082 .0036 .0018 .0014 .0096 .0027 .480 .130 .056 .036 .031 N1500 .280 .084 .036 .020 .016 .400 .110 .048 .028 .024 .130 .040 .018 .010 .0080 .040 .013 .0056 .0028 .0025 .015 .0044 .760 .210 .092 .060 .052 .120 --- 6.00 1.40 .880 .400 .340 C0G X7R 2.20 .520 .300 .130 .100 3.10 .720 .400 .180 .150 1.00 .270 .140 .064 .048 .330 .084 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.15mm RV01 _ _ _ _ _ _ AN360 RV02 _ _ _ _ _ _ AN360 RV03 _ _ _ _ _ _ AN360 RV04 _ _ _ _ _ _ AN360 RV05 _ _ _ _ _ _ AN360 RV06 _ _ _ _ _ _ AN360 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV .250 .072 .033 .018 .015 .360 .100 .047 .026 .022 .120 .039 .017 .0090 .0072 .038 .012 .0054 .0027 .0022 .014 .0040 .720 .200 .084 .055 .047 N1500 .420 .120 .055 .030 .025 .600 .170 .072 .043 .036 .200 .060 .027 .015 .012 .060 .020 .0084 .0043 .0037 .023 .0066 1.10 .310 .130 .090 .078 X7R .180 --- 9.00 2.10 1.30 .600 .510 C0G 3.30 .780 .450 .200 .150 4.70 1.00 .600 .280 .230 1.50 .410 .210 .096 .072 .490 .120 --- --- --- Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm RV01 _ _ _ _ _ _ AN480 RV02 _ _ _ _ _ _ AN480 RV03 _ _ _ _ _ _ AN480 RV04 _ _ _ _ _ _ AN480 RV05 _ _ _ _ _ _ AN480 RV06 _ _ _ _ _ _ AN480 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV C0G .340 .096 .044 .024 .020 .480 .130 .063 .035 .030 .160 .052 .023 .012 .0096 .051 .016 .0072 .0036 .0029 .019 .0054 .960 .260 .110 .073 .062 N1500 .560 .160 .073 .040 .033 .800 .230 .096 .057 .048 .270 .080 .036 .020 .016 .080 .026 .011 .0057 .0050 .031 .0088 1.50 .420 .180 .120 .100 .240 --- X7R 4.40 1.00 .600 .260 .200 6.30 1.40 .800 .370 .310 2.00 .550 .280 .120 .096 .650 .160 --- --- --- 12.0 2.80 1.70 .800 .68 Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm RV01 _ _ _ _ _ _ AN650 RV02 _ _ _ _ _ _ AN650 RV03 _ _ _ _ _ _ AN650 RV04 _ _ _ _ _ _ AN650 RV05 _ _ _ _ _ _ AN650 RV06 _ _ _ _ _ _ AN650 AVX 1KV 2KV 1KV 2KV 3KV 4KV 5KV STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV C0G .430 .120 .056 .031 .026 .610 .170 .079 .044 .037 .210 .065 .029 .015 .012 .064 .020 .009 .0045 .0037 .024 .0068 1.20 .330 .140 .092 .078 N1500 .700 .210 .092 .050 .042 1.00 .290 .120 .072 .060 .340 .100 .045 .025 .020 .100 .033 .014 .0072 .0063 .039 .011 1.90 .530 .230 .150 .130 .300 --- 15.0 3.50 2.20 1.00 .850 X7R 5.50 1.30 .750 .330 .260 7.90 1.80 1.00 .470 .390 2.60 .690 .360 .160 .120 .820 .210 --- --- --- MAY 2015 ■ 81 High Voltage Leaded (CH Style) Radial, Dual-in-Line & ‘L’ Lead SMT 330 pF to 2.7 μF 1kV to 5kV -55ºC to +125ºC 1B/C0G and 2C1/X7R Dielectrics This range of radial, dual-in-line for both through hole and surface mount products is intended for use in high voltage power supplies and voltage multiplier circuits. The multilayer ceramic construction offers excellent volumetric efficiency compared with other high voltage dielectrics. They are suitable for both high reliability and industrial applications. ELECTRICAL SPECIFICATIONS Temperature Coefficient CECC 30 000, (4.24.1) 1B/C0G: A Temperature Coefficient - 0 ± 30ppm/ºC 2C1/X7R: C Temperature Characteristic - ± 15% (0v dc) Insulation Resistance 1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF, whichever is less Capacitance Test 25ºC 1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz <100 pF) 2C1/X7R: Measured at 1 VRMS max at 1KHz Dielectric Withstanding Voltage 25°C 130% rated voltage for 5 seconds Life Test (1000 hrs) CECC 30000 (4.23) 1B/C0G & 2C1/X7R: 120% rated voltage at +125ºC. Dissipation Factor 25°C 1B/C0G: 0.15% max at 1KHz, 1 VRMS (1MHz for <100 pF) 2C1/X7R: 2.5% max at 1KHz, 1 VRMS Aging 1B/C0G: Zero 2C1/X7R: 2.5%/decade hour DUAL-IN-LINE 3.8 (0.149) max. W max. W max. 2.0 (0.079) max. L max. L max. 13 (0.512) ±1.0 (0.039) L1 L2 3.8 (0.149) max. S ±0.5 (0.020) 2.54 (0.100) ±0.5 (0.200) L2 2.54 (0.100) ±0.5 (0.200) S ±0.5 (0.020) L1 DIMENSIONS millimeters (inches) L (max) Style CH41 CH51 CH61 CH76 CH91 2.54 (0.100) ±0.5 (0.200) 9.2 10.7 14.9 21.6 24.0 (0.362) (0.421) (0.587) (0.850) (0.944) W (max) 8.7 10.7 13.6 16.6 40.6 S (nom) (0.342) (0.421) (0.535) (0.654) (1.598) 8.2 10.2 14.0 20.3* 20.3* (0.323) (0.400) (0.551) (0.800) (0.800) No. of Leads per side 3 4 5 6 14 Lead width 0.5 (0.020) Lead thickness 0.254 (0.010) L1 = L2 ± 0.5 (0.020) *Tolerance ± 0.8 HOW TO ORDER CH Style Code 41 A C 104 K Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance A = 1kV G = 2kV H = 3kV J = 4kV K = 5kV A = C0G C = X7R A Specification Code 8 0 Finish Code Lead Dia. Code Lead Space Code Lead Style Code 0 = Standard A = Standard 0 = Dual in line straight 7 = Dual in line ‘L’ style (2 significant C0G: J = ±5% A = Non customized 8 = Varnish digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% A Not RoHS Compliant Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 82 ■ MAY 2015 7 High Voltage Leaded (CV Style) Chip Assemblies VERTICALLY MOUNTED RADIAL PRODUCT Part Number format (CVxxxxxxxxxxxA2) Typical Part Number CV51AC154MA80A2 T Max. DIMENSIONS L Max. H Max. millimeters (inches) Style L (max) H (max) T (max) S (nom) CV41 CV51 CV61 CV76 CV91 10.6 (0.417) 11.9 (0.469) 16.5 (0.650) 22.7 (0.893) 24.0 (0.944) 8.70 (0.343) 10.7 (0.421) 13.6 (0.536) 16.6 (0.654) 40.6 (1.598) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 3.80 (0.150) 8.20 (0.323) 10.2 (0.402) 15.2 (0.599) 21.2* (0.835) 21.2* (0.835) 25 (0.984) ±3 (0.118) Lead Dia. See Table Lead Dia (nom) 0.70 (0.028) 0.90 (0.035) 0.90 (0.035) 0.90 (0.035) 1.20 (0.047) *Tolerance ± 0.8mm (0.031) S ±0.5 (0.020) Not RoHS Compliant HOW TO ORDER CV Style Code 51 A C 154 M Size Voltage Dielectric Capacitance Capacitance Code Code Code Code Tolerance A = 1kV G = 2kV H = 3kV J = 4kV K = 5kV A = C0G C = X7R A Specification Code (2 significant C0G: J = ±5% A = Non customized digits + no. K = ±10% of zeros) M = ±20% eg. 105 = 1 μF X7R: K = ±10% 106 = 10 μF M = ±20% 107 = 100 μF P = +100, -0% 8 0 A 2 Finish Code Lead Dia. Code Lead Space Code 8 = Varnish 0 = Standard A = Standard Lead Style Code MAY 2015 ■ 83 High Voltage Leaded (CH/CV Style) Chip Assemblies 1B/C0G ULTRA STABLE CERAMIC CV41-CH41 CV51-CH51 CV61-CH61 CV76-CH76 CV91-CH91 Styles Styles Styles Styles Styles 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv Cap pF 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 10000 12000 15000 18000 22000 27000 33000 39000 47000 56000 68000 82000 100000 120000 150000 180000 220000 270000 330000 H H H H J J J J J K K K K G G G G G G A A A A A A H H H J J J J K K K K G G G G G G G A A A A A A H H H H J J J K K K G G G G G G A A A A A A A H H H H J J J J K K K K G G G G G G H H H H H J J J J J K K K K K G G G G G G A A A A A A A A A A A NB Figures in cells refer to size within ordering information 84 ■ MAY 2015 High Voltage Leaded (CH/CV Style) Chip Assemblies 2C1/X7R STABLE CERAMIC CV41-CH41 Styles CV51-CH51 Styles CV61-CH61 Styles CV76-CH76 Styles CV91-CH91 Styles 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv 1 Kv 2 Kv 3 Kv 4 Kv 5 Kv Cap nF 1.2 1.3 1.5 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 G G G G A A A A A A A A A A A H H H H J J J J J J K K K K K K K J J J J G G G G A A A A A A A A A A A H H H H J J J G G G G G A A A A A A A A A A K K K K K H H H H H J J J J J K K K H H H G G G G A A A A A A A A A A G G G G H H H H H J J J J J J K K K K K K A A A A A A A A A A A NB Figures in cells refer to size within ordering information MAY 2015 ■ 85 High Voltage MLC Radials (SV Style) Application Information on High Voltage MLC Capacitors High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC radial leaded capacitors meet these performance characteristics. The added advantage of these capacitors lies in special internal design minimizing the electric field stresses within the MLC. These special design criteria result in significant reduction of partial discharge activity within the dielectric and having, therefore, a major impact on longterm reliability of the product. The SV high voltage radial capacitors are conformally coated with high insulation resistance, high dielectric strength epoxy eliminating the possibility of arc flashover. The SV high voltage radial MLC designs exhibit low ESRs at high frequency. The same criteria governing the high voltage design carries the added benefits of extremely low ESR in relatively low capacitance and small packages. These capacitors are designed and are ideally suited for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. C0G Dielectric N1500 X7R Dielectric General Specifications General Specifications General Specifications Capacitance Range 10 pF to 0.15 μF (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤100 pF use 1 MHz) Capacitance Tolerances ±5%; ±10%; ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic 0 ± 30 ppm/°C Voltage Ratings 600 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤100 pF use 1 MHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min. or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 0.47 μF (+25°C, 1.0 ±0.2 Vrms (open circuit voltage) at 1kHz) Capacitance Tolerances ±5%; ±10%; 20% Operating Temperature Range -55°C to +125°C Temperature Characteristic -1500 ±250 ppm/ºC Voltage Ratings 600 VDC thru 5000 VDC (+125°C) Dissipation Factor 0.15% max. (+25°C, 1.0 ±0.2 Vrms (open circuit voltage) at 1kHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Capacitance Range 100 pF to 2.2 μF (+25°C, 1.0 ±0.2 Vrms at 1kHz) Capacitance Tolerances ±10%; ±20%; +80%, -20% Operating Temperature Range -55°C to +125°C Temperature Characteristic ±15% (0 VDC) Voltage Ratings 600 VDC thru 5000 VDC (+125°C) Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms at 1kHz) Insulation Resistance (+25°C, at 500V) 100K MΩ min., or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 86 ■ MAY 2015 High Voltage MLC Radials (SV Style) L L T H 25.4 (1.000) min. Not RoHS Compliant H H + 3.683 (0.145) 25.4 (1.000) min. LD LD For RoHS compliant products, please select correct termination style. S S SV01 thru SV17 SV52 thru SV59 and SV63 thru SV67 HIGH VOLTAGE RADIAL LEAD HOW TO ORDER SV01 AVX Style A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = C A S G W H J K AVX Styles: SV01 THRU SV67 A 102 K Temperature Coefficient C0G = A X7R = C N1500 = 4 Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80 -20% Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. DIMENSIONS AVX Style Length (L) max A A * Leads Test A = Tin/Lead Level A = Standard R = RoHS Compliant B = Hi-Rel* Packaging (See Note 1) Note 1: No suffix signifies bulk packaging which is AVX standard packaging. Use suffix “TR1” if tape and reel is required. Parts are reel packaged per EIA-468. *Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-49467. (Except partial discharge testing is not performed and DWV is at 120% rated voltage). millimeters (inches) Height (H) Thickness (T) Lead Spacing max max ±.762 (.030) (S) LD (Nom) TAPE & REEL QUANTITY RoHS SV01 6.35 (0.250) 5.59 (0.220) 5.08 (0.200) 4.32 (0.170) 0.64 (0.025) SV02/SV52 8.13 (0.320) 7.11 (0.280) 5.08 (0.200) 5.59 (0.220) 0.64 (0.025) Part SV01 Pieces 1000 Part SV01 Available Yes SV03/SV53 9.40 (0.370) 7.62 (0.300) 5.08 (0.200) 6.99 (0.275) 0.64 (0.025) SV02/SV52 1000 SV02/SV52 Yes SV04/SV54 11.4 (0.450) 5.59 (0.220) 5.08 (0.200) 7.62 (0.300) 0.64 (0.025) SV03/SV53 1000 SV03/SV53 Yes SV05/SV55 11.9 (0.470) 10.2 (0.400) 5.08 (0.200) 9.52 (0.375) 0.64 (0.025) SV04/SV54 1000 SV04/SV54 Yes SV06/SV56 14.0 (0.550) 7.11 (0.280) 5.08 (0.200) 10.16 (0.400) 0.64 (0.025) SV05/SV55 1000 SV05/SV55 Yes 0.64 (0.025) SV06/SV56 500 SV06/SV56 Yes 0.64 (0.025) SV07/SV57 500 SV07/SV57 Yes 0.64 (0.025) SV08/SV58 500 SV08/SV58 Yes SV09/SV59 500 SV09/SV59 Yes SV10 N/A SV10 Yes SV11 N/A SV11 Yes SV12 N/A SV12 Yes SV13/SV63 1000 SV13/SV63 Yes SV07/SV57 SV08/SV58 SV09/SV59 SV10 14.5 (0.570) 12.7 (0.500) 17.0 (0.670) 15.2 (0.600) 19.6 (0.770) 18.3 (0.720) 26.7 (1.050) 12.7 (0.500) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 12.1 (0.475) 14.6 (0.575) 17.1 (0.675) 22.9 (0.900) 0.64 (0.025) SV11 31.8 (1.250) 15.2 (0.600) 5.08 (0.200) 27.9 (1.100) 0.64 (0.025) SV12 36.8 (1.450) 18.3 (0.720) 5.08 (0.200) 33.0 (1.300) 0.64 (0.025) SV13/SV63 7.62 (0.300) 9.14 (0.360) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020) SV14/SV64 10.2 (0.400) 11.7 (0.460) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020) SV14/SV64 1000 SV14/SV64 Yes SV15/SV65 12.7 (0.500) 14.2 (0.560) 5.08 (0.200) 10.2 (0.400) 0.64 (0.025) SV15/SV65 500 SV15/SV65 Yes SV16/SV66 22.1 (0.870) 16.8 (0.660) 5.08 (0.200) 20.1 (0.790) 0.81 (0.032) SV16/SV66 500 SV16/SV66 Yes SV17/SV67 23.6 (0.930) 19.8 (0.780) 6.35 (0.250) 20.3 (0.800) 0.81 (0.032) SV17/SV67 400 SV17/SV67 Yes MAY 2015 ■ 87 High Voltage MLC Radials (SV Style) CAPACITANCE VALUE C0G Style SV01 SV02/SV52 SV03/SV53 SV04/SV54 SV05/SV55 SV06/SV56 SV07/SV57 SV08/SV58 SV09/SV59 SV10 SV11 SV12 SV13/SV63 SV14/SV64 SV15/SV65 SV16/SV66 SV17/SV67 600/630V min./max. 100 pF / 1500 pF 100 pF / 6800 pF 100 pF / 0.012 μF 100 pF / 3900 pF 1000 pF / 0.027 μF 100 pF / 0.012 μF 1000 pF / 0.056 μF 1000 pF / 0.082 μF 1000 pF / 0.150 μF 1000 pF / 0.100 μF 1000 pF / 0.150 μF 0.01 μF / 0.220 μF 100 pF / 0.018 μF 1000 pF / 0.039 μF 1000 pF / 0.056 μF 1000 pF / 0.120 μF 1000 pF / 0.150 μF 1000V 1500V 2000V 2500V 3000V 4000V 5000V min./max. min./max. min./max. min./max. min./max. min./max. min./max. 100 pF / 100 pF / 100 pF / 100 pF / 1000 pF / 100 pF / 1000 pF / 1000 pF / 1000 pF / 1000 pF / 1000 pF / 0.01 μF / 100 pF / 1000 pF / 1000 pF / 1000 pF / 1000 pF / 1000 pF 4700 pF 8200 pF 2700 pF 0.018 μF 0.010 μF 0.033 μF 0.047 μF 0.082 μF 0.056 μF 0.082 μF 0.15 μF 0.012 μF 0.022 μF 0.033 μF 0.082 μF 0.10 μF 10 pF / 330 pF 100 pF / 1500 pF 100 pF / 2700 pF 10 pF / 820 pF 100 pF / 6800 pF 100 pF / 3300 pF 1000 pF / 0.015 μF 1000 pF / 0.022 μF 1000 pF / 0.039 μF 1000 pF / 0.022 μF 1000 pF / 0.039 μF 1000 pF / 0.056 μF 100 pF / 4700 pF 100 pF / 8200 pF 1000 pF /0.015 μF 1000 pF /0.039 μF 1000 pF /0.056 μF 10 pF / 220 pF 10 pF / 1000 pF 100 pF / 1800 pF 10 pF / 560 pF 100 pF / 4700 pF 100 pF / 2200 pF 100 pF / 0.010 μF 1000 pF / 0.015 μF 1000 pF / 0.022 μF 1000 pF / 0.012 μF 1000 pF / 0.022 μF 1000 pF / 0.033 μF 100 pF / 2700 pF 100 pF / 5600 pF 100 pF / 0.01 μF 1000 pF / 0.027 μF 1000 pF / 0.039 μF SV01 SV02/SV52 SV03/SV53 SV04/SV54 SV05/SV55 SV06/SV56 SV07/SV57 SV08/SV58 SV09/SV59 SV10 SV11 SV12 SV13/SV63 SV14/SV64 SV15/SV65 SV16/SV66 SV17/SV67 1000 pF / 2700 pF 1000 pF / 0.012 μF 0.010 pF / 0.027 μF 1000 pF / 8200 pF 0.010 μF / 0.068 μF 0.010 μF / 0.027 μF 0.010 μF / 0.12 μF 0.010 μF / 0.15 μF 0.10 μF / 0.220 μF 0.10 μF / 0.18 μF 0.10 μF / 0.33 μF 0.10 μF / 0.47 μF 0.010 μF / 0.039 μF 0.010 μF / 0.082 μF 0.010 μF / 0.10 μF 0.10 μF / 0.22 μF 0.10 μF / 0.33 μF 1000 pF / 1000 pF / 0.010 pF / 1000 pF / 0.010 μF / 0.010 μF / 0.010 μF / 0.010 μF / 0.10 μF / 0.10 μF / 0.10 μF / 0.10 μF / 0.010 μF / 0.010 μF / 0.010 μF / 0.10 μF / 0.10 μF / 1800 pF 8200 pF 0.018 μF 5600 pF 0.047 μF 0.018 μF 0.10 μF 0.12 μF 0.18 μF 0.15 μF 0.22 μF 0.33 μF 0.027 μF 0.056 μF 0.082 μF 0.18 μF 0.22 μF 100 pF / 680 pF 1000 pF / 2700 pF 1000 pF / 5600 pF 1000 pF / 1800 pF 0.010 μF / 0.015 μF 1000 pF / 5600 pF 0.010 μF / 0.027 μF 0.010 μF / 0.047 μF 0.010 μF / 0.082 μF 0.010 μF / 0.047 μF 0.010 μF / 0.082 μF 0.10 μF / 0.12 μF 1000 pF / 8200 pF 0.010 pF / 0.018 μF 0.010 μF / 0.027 μF 0.010 μF / 0.082 μF 0.010 μF / 0.10 μF 100 pF / 470 pF 1000 pF / 1800 pF 1000 pF / 3900 pF 100 pF / 1200 pF 1000 pF / 0.010 μF 1000 pF / 3900 pF 0.010 μF / 0.018 μF 0.010 pF / 0.033 μF 0.010 μF / 0.047 μF 0.010 μF / 0.027 μF 0.010 μF / 0.039 μF 0.010 μF / 0.068 μF 1000 pF / 5600 pF 1000 pF / 0.012 μF 0.010 pF / 0.018 μF 0.010 μF / 0.039 μF 0.010 μF / 0.056 μF SV01 SV02/SV52 SV03/SV53 SV04/SV54 SV05/SV55 SV06/SV56 SV07/SV57 SV08/SV58 SV09/SV59 SV10 SV11 SV12 SV13/SV63 SV14/SV64 SV15/SV65 SV16/SV66 SV17/SV67 1000 pF / 0.018 μF 1000 pF / 0.082 μF 1000 pF / 0.180 μF 1000 pF / 0.056 μF 0.01 μF / 0.470 μF 0.01 μF / 0.180 μF 0.01 μF / 0.820 μF 0.01 μF / 1.20 μF 0.10 μF / 1.80 μF 0.01 μF / 1.50 μF 0.10 μF / 2.20 μF 0.10 μF / 3.90 μF 0.01 μF / 0.270 μF 0.01 μF / 0.470 μF 0.01 μF / 0.680 μF 0.01 μF / 1.80 μF 0.01 μF / 2.20 μF 1000 pF / 1000 pF / 1000 pF / 1000 pF / 0.01 μF / 0.01 μF / 0.01 μF / 0.01 μF / 0.10 μF / 0.01 μF / 0.10 μF / 0.10 μF / 0.01 μF / 0.01 μF / 0.01 μF / 0.01 μF / 0.01 μF / 0.012 μF 0.047 μF 0.082 μF 0.033 μF 0.22 μF 0.10 μF 0.39 μF 0.68 μF 1.00 μF 0.82 μF 1.2 μF 2.20 μF 0.10 μF 0.18 μF 0.33 μF 1.0 μF 1.2 μF 100 pF / 5600 pF 1000 pF / 0.015 μF 1000 pF / 0.018 μF 100 pF / 6800 pF 1000 pF / 0.056 μF 1000 pF / 0.033 μF 0.01 μF / 0.10 μF 0.01 μF / 0.18 μF 0.01 μF / 0.27 μF 0.01 μF / 0.22 μF 0.01 μF / 0.39 μF 0.01 μF / 0.56 μF 1000 pF / 0.033 μF 1000 pF / 0.068 μF 0.01 μF / 0.10 μF 0.01 μF / 0.27 μF 0.01 μF / 0.39 μF 100 pF / 3900 pF 100 pF / 6800 pF 1000 pF / 0.01 μF 100 pF / 3900 pF 1000 pF / 0.027 μF 1000 pF / 0.012 μF 1000 pF / 0.047 μF 1000 pF / 0.082 μF 0.01 μF / 0.12 μF 0.01 μF / 0.10 μF 0.01 μF / 0.18 μF 0.01 μF / 0.27 μF 1000 pF / 0.012 μF 1000 pF / 0.022 μF 1000 pF / 0.033 μF 0.01 μF / 0.12 μF 0.01 μF / 0.15 μF 10 pF / 120 pF 10 pF / 82 pF 10 pF / 680 pF 10 pF / 560 pF 10 pF / 1000 pF 10 pF / 680 pF 10 pF / 270 pF 10 pF / 180 pF 100 pF / 2700 pF 100 pF / 1500 pF 10 pF / 1200 pF 10 pF / 820 pF 100 pF / 5600 pF 100 pF / 3900 pF 100 pF /0.010 μF 100 pF / 6800 pF 1000 pF /0.015 μF 100 pF / 8200 pF 100 pF / 8200 pF 100 pF / 5600 pF 1000 pF /0.015 μF 100 pF / 8200 pF 1000 pF /0.022 μF 1000 pF / 0.015 μF 100 pF / 1800 pF 100 pF / 1000 pF 100 pF / 3300 pF 100 pF / 1800 pF 100 pF / 5600 pF 100 pF / 2700 pF 1000 pF /0.015 μF 100 pF / 8200 pF 1000 pF /0.022 μF 1000 pF / 0.012 μF 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 10 pF 10 pF 100 pF 100 pF 100 pF — / 150 pF / 390 pF / 100 pF /1000 pF / 470 pF /2200 pF /3300 pF /4700 pF /3300 pF /4700 pF /8200 pF / 470 pF / 820 pF /1800 pF /4700 pF /6800 pF 10 pF 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF 100 pF 10 pF 10 pF 100 pF 100 pF 100 pF — / 100 pF / 220 pF / 68 pF / 560 pF / 390 pF /1200 pF /2200 pF /3300 pF /2200 pF /3300 pF /5600 pF / 390 pF / 680 pF /1200 pF /3300 pF /4700 pF 100 pF 100 pF 100 pF 1000 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 0.010 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF — / 270 pF / 680 pF / 220 pF /2200 pF / 680 pF /3900 pF /6800 pF /8200 pF /5600 pF /0.010 μF /0.015 μF / 820 pF /1800 pF /3300 pF /8200 pF /0.012 μF 100 pF 100 pF 100 pF 1000 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF — / 150 pF / 470 pF / 120 pF /1200 pF / 470 pF /2200 pF /3900 pF /6800 pF /3900 pF /6800 pF /0.010 μF / 680 pF /1500 pF /2700 pF /6800 pF /0.010 μF N1500 100 pF / 220 pF 100 pF / 1000 pF 1000 pF / 2200 pF 100 pF / 560 pF 1000 pF / 5600 pF 1000 pF / 2200 pF 1000 pF /0.012 μF 0.010 μF /0.018 μF 0.010 pF /0.033 μF 0.010 μF /0.018 μF 0.010 μF /0.027 μF 0.010 pF /0.047 μF 1000 pF / 3300 pF 1000 pF / 6800 pF 1000 pF /0.012 μF 0.010 μF /0.027 μF 0.010 μF /0.033 μF 100 pF 100 pF 1000 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 0.010 μF 1000 pF 0.010 μF 0.010 μF 1000 pF 1000 pF 1000 pF 0.010 μF 0.010 μF / 150 pF / 680 pF / 1500 pF / 330 pF / 3300 pF / 1500 pF / 5600 pF / 0.010 μF / 0.015 μF / 0.010 μF / 0.018 μF / 0.027 μF / 1800 pF / 3900 pF / 5600 pF / 0.015 μF / 0.022 μF — 100 pF / 3900 pF 100 pF / 6800 pF 100 pF / 2200 pF 1000 pF /0.018 μF 100 pF / 8200 pF 1000 pF /0.033 μF 1000 pF /0.068 μF 0.01 μF / 0.10 μF 1000 pF /0.082 μF 0.01 μF / 0.15 μF 0.01 μF / 0.22 μF 1000 pF / 0.01 μF 1000 pF /0.018 μF 1000 pF /0.027 μF 0.01 μF / 0.10 μF 0.01 μF / 0.12 μF — 100 pF / 2700 pF 100 pF / 4700 pF 100 pF / 1800 pF 1000 pF / 0.012 μF 100 pF / 6800 pF 1000 pF / 0.027 μF 1000 pF / 0.047 μF 1000 pF / 0.068 μF 1000 pF / 0.056 μF 0.01 μF / 0.10 μF 0.01 μF / 0.15 μF 100 pF / 6800 pF 1000 pF / 0.015 μF 1000 pF / 0.022 μF 1000 pF / 0.068 μF 1000 pF / 0.082 μF X7R Note: Contact factory for other voltage ratings or values. 88 ■ MAY 2015 — — 100 pF /1800 pF 100 pF / 820 pF 100 pF /4700 pF 100 pF /2700 pF 1000 pF / 0.01 μF 1000 pF /0.018 μF 1000 pF /0.027 μF 1000 pF /0.022 μF 1000 pF /0.039 μF 1000 pF /0.056 μF 100 pF /2700 pF 100 pF /5600 pF 1000 pF /8200 pF 1000 pF /0.027 μF 1000 pF /0.039 μF — — — — — 100 pF /1200 pF 100 pF /6800 pF 1000 pF /0.012 μF 1000 pF /0.018 μF 1000 pF /0.022 μF 1000 pF /0.027 μF 1000 pF /0.033 μF — — 100 pF /4700 pF 1000 pF /0.018 μF 1000 pF /0.027 μF High Voltage DSCC Radials AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS Specification # Description 87046 87043 87040 87114 87047 87076 89044 87077 87070 C0G-1000 X7R-1000 X7R-2000 C0G-3000 X7R-3000 C0G-4000 X7R-4000 C0G-5000 X7R-5000 Capacitance Range VDC VDC VDC VDC VDC VDC VDC VDC VDC 10 100 100 10 100 10 100 10 100 pF pF pF pF pF pF pF pF pF - 0.025 μF 0.47 μF 0.22 μF 8200 pF 0.1 μF 6800 pF 0.056 μF 5600 pF 0.033 μF Group A inspection Inspection Requirement paragraph of MIL-PRF-49467 Test method paragraph of MIL-PRF-49467 3.6 3.6 4.8.2.1 4.8.2.2 3.4 and 3.4.1 3.1 4.8.4 Subgroup 1 Thermal Shock Voltage Conditioning Subgroup 2 Visual and mechanical examination: Material Physical dimensions Interface requirements (other than physical dimensions) Marking Workmanship Sampling procedure 100% Inspection 13 samples 0 failures 3.5 3.25 3.27 Subgroup 4 Solderability 3.13 13 samples 0 failures 4.8.9 Group B inspection* Requirement paragraph of MIL-PRF-49467 Test method paragraph of MIL-PRF-49467 Number of sample units to be inspected Subgroup 1 Terminal strength Resistance to soldering heat Moisture resistance 3.18 3.11 3.19 4.8.14 4.8.7 4.8.15 12 1 Subgroup 2 Voltage-temperature limits** Low temperature storage Marking legibility 3.14 3.23 3.25.1 4.8.10 4.8.19 4.8.1.1 6 1 Subgroup 3 Resistance to solvents 3.21 4.8.17 4 1 Subgroup 4 Life (at elevated ambient temperature) 3.22 4.8.18 Inspection Number of defectives permitted 1 10 1 *Customers may accept at their discretion, a certificate of compliance with group B requirements in lieu of performing group B tests. **For Steps E, F & G in Table VII of MIL-PRF-49467, 500 Vdc shall be applied. MAY 2015 ■ 89 Automotive Grade High Voltage MLC Radials Application Information on Automotive Grade High Voltage MLC Radials Automotive grade, AEC-Q200 qualified SV-style capacitors are designed with COG (NPO), class I dielectric that is characterized with very low dielectric losses. This product is designed for AC applications requiring capacitors capable of handling high AC currents at high frequencies. With emergence of strongly coupled magnetic resonance technology that allows for highly efficient wireless transmission of power to recharge batteries, the need for low loss capacitors is apparent. Thanks to their extremely low dissipation factor, automotive grade SV-style parts can reliably handle high rms currents with minimal power losses in medium to high power resonant converters. Multiple parts in parallel may be required depending on the power transmission levels. The automotive grade SV-style capacitors are conformally coated eliminating possibility of arc flashover. The leaded construction provides mechanical decoupling of MLCC chip from the board and thus provides effective stress relief required for automotive applications. Typical Impedance and ESR Characterization C0G Dielectric AVX P/N: SV05AA103K4R General Specifications Impedance ESR Impedance and ESR (Ω) Capacitance Range 1000pF to 0.015 μF (+25°C, 1.0 ±0.2 Vrms at 1kHz) Capacitance Tolerances ±5%; ±10%; ±20% Operating Temperature Range -55°C to +125°C Temperature Characteristic 0 ± 30 ppm/°C Voltage Ratings 1000 VDC (+125°C) Dissipation Factor 0.1% max. (+25°C, 1.0 ±0.2 Vrms at 1kHz, Insulation Resistance (+25°C, at 500V) 100K MΩ min. or 1000 MΩ-μF min., whichever is less Insulation Resistance (+125°C, at 500V) 10K MΩ min., or 100 MΩ-μF min., whichever is less Dielectric Strength 120% rated voltage, 5 seconds Life Test 100% rated and +125°C 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 1.E+05 1.E+06 1.E+07 Frequency (Hz) Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 90 ■ MAY 2015 1.E+08 Automotive Grade High Voltage MLC Radials L L T H 25.4 (1.000) min. Not RoHS Compliant H H + 3.683 (0.145) 25.4 (1.000) min. LD LD For RoHS compliant products, please select correct termination style. S S SSV05, SV13 & SV14 SV55, SV63 & SV64 AUTOMOTIVE GRADE HIGH VOLTAGE MLC RADIALS HOW TO ORDER AVX Styles: SV05, SV13 & SV14 SV05 A A 153 K 4 A * AVX Style Voltage 1000V = A Temperature Coefficient C0G = A Capacitance Code (2 significant digits + no. of zeros) Examples: 1,000 pF = 102 22,000 pF = 223 Capacitance Tolerance J = ±5% K = ±10% M = ±20% Test Level 4 = AEC-Q200 Leads A = Tin/Lead R = RoHS Compliant Packaging (See Note 1) Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. DIMENSIONS Note 1: No suffix signifies bulk packaging which is AVX standard packaging. Use suffix “TR1” if tape and reel is required. Parts are reel packaged per EIA-468. *Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-49467. (Except partial discharge testing is not performed and DWV is at 120% rated voltage). millimeters (inches) Height (H) Thickness (T) Lead Spacing max max ±.762 (.030) (S) TAPE & REEL QUANTITY AVX Style Length (L) max SV05/SV55 11.9 (0.470) 10.2 (0.400) 5.08 (0.200) 9.52 (0.375) 0.64 (0.025) Part SV05/SV55 Pieces 1000 SV13/SV63 7.62 (0.300) 9.14 (0.360) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020) SV13/SV63 1000 SV14/SV64 10.2 (0.400) 11.7 (0.460) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020) SV14/SV64 1000 LD (Nom) CAPACITANCE VALUE C0G Style SV05/SV55 SV13/SV63 SV14/SV64 1000V min./max. 1000 pF / 0.015 μF 1000 pF / 8200 pF 1000 pF / 0.015 μF MAY 2015 ■ 91 MLC Chip Capacitors Basic Construction A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and in manufacture, to produce it in the quality and quantities needed in today’s electronic equipment. Terminations • Standard Nickel Barrier Lead Free Tin Plate (RoHS Compliant) 5% minimum Lead Plated • Leach resistance to 90 seconds at 260°C • Solderable plated for dimensional control • Special materials as required Ceramic Layer Electrode End Terminations Terminated Edge Terminated Edge Margin Electrodes QUALITY STATEMENT AVX focus is customer satisfaction – Customer satisfaction in the broadest sense: Products, service, price, delivery, technical support, and all the aspects of a business that impact you, the customer. Our long term strategy is for continuous improvement which is defined by our Quality Vision 2000. This is a total quality management system developed by and supported by AVX corporate management. The foundation of QV2000 is built 92 ■ MAY 2015 upon military and commercial standards and systems including ISO9001. QV2000 is a natural extension of past quality efforts with world class techniques for ensuring a total quality environment to satisfy our customers during this decade and into the 21st century. As your components supplier, we invite you to experience the quality, service, and commitment of AVX. General Description EIA CODE Percent Capacity Change Over Temperature Range RS198 X7 X5 Y5 Z5 Temperature Range -55°C to +125°C -55°C to +85°C -30°C to +85°C +10°C to +85°C Code Percent Capacity Change D E F P R S T U V ±3.3% ±4.7% ±7.5% ±10% ±15% ±22% +22%, -33% +22%, - 56% +22%, -82% Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage. Cap. Change vs. A.C. Volts X7R Capacitance Change Percent Table 1: EIA and MIL Temperature Stable and General Application Codes 50 40 30 20 10 0 EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F. 12.5 25 37.5 Volts AC at 1.0 KHz 50 Figure 2 MIL CODE Temperature Range A B C -55°C to +85°C -55°C to +125°C -55°C to +150°C Typical Cap. Change vs. Temperature X7R Symbol Q R W X Y Z Cap. Change Zero Volts Cap. Change Rated Volts +15%, -15% +15%, -15% +22%, -56% +15%, -15% +30%, -70% +20%, -20% +15%, -50% +15%, -40% +22%, -66% +15%, -25% +30%, -80% +20%, -30% Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor. In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system. Capacitance Change Percent Symbol Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. +20 +10 0VDC 0 -10 -20 -30 -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 Temperature Degrees Centigrade Figure 3 MAY 2015 ■ 93 General Description Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 4. If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1⁄2 hour will suffice) the part will de-age and return to its initial capacitance and dissipation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after “last heat.” Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed. Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX’s SpiCalci software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com. Typical Curve of Aging Rate X7R +1.5 Effects of Mechanical Stress – High “K” dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high “K” dielectrics as coupling capacitors in extremely low level applications. Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is: Capacitance Change Percent 0 -1.5 -3.0 -4.5 Lo = Lt -6.0 -7.5 1 10 100 Characteristic C0G (NP0) X7R, X5R 1000 10,000 100,000 Hours Max. Aging Rate %/Decade None 2 where Lo = Lt = Vt = Vo = Vt Vo operating life test life test voltage operating voltage X Tt To Y Tt = test temperature and To = operating temperature in °C X,Y = see text Figure 4 Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8. 94 ■ MAY 2015 General Description A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is: C = .224 KA t C K A t capacitance (picofarads) dielectric constant (Vacuum = 1) area in square inches separation between the plates in inches (thickness of dielectric) .224 = conversion constant (.0884 for metric system in cm) Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10-9) or pico (10-12) farad level. Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum. Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume. Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group. Energy Stored – The energy which can be stored in a capacitor is given by the formula: Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is: C = Capacitance L = Inductance Rp = Parallel Resistance Rs = Series Resistance RP = = = = E = 1⁄2CV2 E = energy in joules (watts-sec) V = applied voltage C = capacitance in farads Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor: I ideal = C dV dt where I = Current C = Capacitance dV/dt = Slope of voltage transition across capacitor Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can “sink” is determined by the above equation. L RS C Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is: Z= where R 2S + (XC - XL )2 Z = Total Impedance Rs = Series Resistance XC = Capacitive Reactance = XL = Inductive Reactance 1 2 π fC = 2 π fL The variation of a capacitor’s impedance with frequency determines its effectiveness in many applications. Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a “perfect” capacitor the current in the capacitor will lead the voltage by 90°. I (Ideal) I (Actual) Loss Angle Phase Angle ␦ f V IR s In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and: Power Factor (P.F.) = Cos f or Sine ␦ Dissipation Factor (D.F.) = tan ␦ for small values of ␦ the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry. MAY 2015 ■ 95 General Description Equivalent Series Resistance – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection. E.S.R. C Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor. Dissipation Factor = E.S.R. = (2 π fC) (E.S.R.) XC The watts loss are: Watts loss = (2 π fCV2 ) (D.F.) Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the “Q” or Quality factor of capacitors. Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today’s high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation: V = L di dt di The dt seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage. Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, by-pass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation: 1 fres = 2 LC 96 ■ MAY 2015 Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance R P shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm’s Law). Dielectric Strength – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil. Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the “reappearing voltage” which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions. Corona – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures. Surface Mounting Guide MLC Chip Capacitors REFLOW SOLDERING Case Size D2 D1 D3 D4 D5 Dimensions in millimeters (inches) 0805 (LD05) 1206 (LD06) *1210 (LD10) *1808 (LD08) *1812 (LD12) *1825 (LD13) *2220 (LD20) *2225 (LD14) *HQCC *3640 (LD40) *HQCE D1 3.00 4.00 4.00 5.60 5.60 5.60 6.60 6.60 6.60 10.67 10.67 (0.120) (0.160) (0.160) (0.220) (0.220) (0.220) (0.260) (0.260) (0.260) (0.427) (0.427) D2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.52 1.52 (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.060) (0.060) D3 1.00 2.00 2.00 3.60 3.60 3.60 4.60 4.60 4.60 7.62 7.62 (0.040) (0.090) (0.090) (0.140) (0.140) (0.140) (0.180) (0.180) (0.180) (0.300) (0.300) D4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.52 1.52 millimeters (inches) D5 (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.060) (0.060) 1.25 1.60 2.50 2.00 3.00 6.35 5.00 6.35 6.35 10.16 10.16 (0.050) (0.060) (0.100) (0.080) (0.120) (0.250) (0.200) (0.250) (0.250) (0.400) (0.400) *AVX recommends reflow soldering only. Component Pad Design Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is: • Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this. • Pad overlap 0.5mm beneath component. • Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering. WAVE SOLDERING D2 D1 Case Size 0805 1206 D3 D4 D1 D2 D3 D4 D5 4.00 (0.15) 5.00 (0.19) 1.50 (0.06) 1.50 (0.06) 1.00 (0.04) 2.00 (0.09) 1.50 (0.06) 1.50 (0.06) 1.25 (0.05) 1.60 (0.06) Dimensions in millimeters (inches) D5 Component Spacing For wave soldering com- *1.5mm (0.06) ponents, must be *1mm (0.04) spaced sufficiently far apart to avoid bridging or shadowing (inability of *1mm (0.04) solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required. Preheat & Soldering The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second. For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C. For further specific application or process advice, please consult AVX. Cleaning Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor. Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse. MAY 2015 ■ 97 Surface Mounting Guide Recommended Soldering Profiles REFLOW SOLDER PROFILES Maximum Reflow Profile With Care 250 Component Temperature / ºC AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/JEDECJ-STD020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260ºC max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems. Recommended Reflow Profiles 275 Recommended Pb-Free Reflow Profile Preheat Preheat Reflow CoolCool Down Reflow Down Recommended SnPb Reflow Profile 225 200 175 150 125 100 75 Preheat 50 Reflow Cool Down 25 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 Time / secs Preheat: Wetting Force at 2nd Sec. (higher is better) 0.40 0.30 0.20 F [mN] The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125ºC may be rapid, but from that point (2-3)ºC/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180ºC). SnPb - Sn60Pb40 0.10 Sn - Sn60Pb40 0.00 Sn-Sn3.5Ag0.7Cu -0.10 Sn-Sn2.5Ag1Bi0.5Cu Reflow: -0.20 Sn-Sn0.7Cu In the reflow phase, the maximum recommended time > 230ºC is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250ºC, (see wetting balance chart opposite) but products are qualified to 260ºC max. Please reference individual product datasheets for maximum limits -0.30 Cool Down: Cool down should not be forced and 6ºC/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet. -0.40 200 210 220 230 240 250 260 270 Temperature of Solder [C] IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint. WAVE SOLDER PROFILES Preheat: This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated. Recommended Soldering Profiles 275 Component Temperature / ºC For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260ºC max recommended for SnPb systems. 225 Wave 175 Preheat 125 Wave Cool Down: As with reflow solder, cool down should not be forced and 6ºC/sec is recommended. Any air knives at the end of the 2nd wave should be heated. 98 ■ MAY 2015 Wave 75 Preheat Wave: 250ºC – 260ºC recommended for optimum solderability. Cool Down Preheat Cool Down Cool Down 25 0 50 100 150 200 250 Time / seconds 300 350 400 Surface Mounting Guide MLC Chip Capacitors APPLICATION NOTES Wave 300 Storage Preheat Good solderability is maintained for at least twelve months, provided the components are stored in their “as received” packaging at less than 40°C and 70% RH. Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds. Leaching Solder Temp. Solderability Terminations will resist leaching for at least the immersion times and conditions shown below. Termination Type Nickel Barrier Solder Solder Tin/Lead/Silver Temp. °C 60/40/0 260 ± 5 Solder Temp. 250 200 220°C to 250°C 100 50 0 1 to 2 min 3 sec. max Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods. Lead-Free Reflow Profile Temperature °C 0 General 10 sec. max (Minimize soldering time) 300 250 200 150 100 50 0 0 100 The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above. The following should be noted by customers changing from lead based systems to the new lead free pastes. a) The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large. b) Resin color may darken slightly due to the increase in temperature required for the new pastes. c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified. Natural Cooling 1min 230°C to 250°C 150 Lead-Free Wave Soldering Preheat 1min T (Preheat chips before soldering) T/maximum 150°C Reflow 150 200 50 Immersion Time Seconds 30 ± 1 Recommended Soldering Profiles 300 Natural Cooling 250 Handling 50 100 150 • Pre-heating: 150°C ±15°C / 60-90s • Max. Peak Gradient 2.5°C/s • Peak Temperature: 245°C ±5°C • Time at >230°C: 40s Max. 200 250 Time (s) 300 Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors. Preheat It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second MAY 2015 ■ 99 Surface Mounting Guide MLC Chip Capacitors and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temper-ature differential increases. Soldering Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. POST SOLDER HANDLING Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don’t result in problems unless the stress is large enough to fracture the soldered connection. Ceramic capacitors are more susceptible to such stress because they don’t have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes. Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms: Cooling Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above. Cleaning Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors. Type A: Angled crack between bottom of device to top of solder joint. Type B: Fracture from top of device to bottom of device. Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping. 100 ■ MAY 2015 Surface Mounting Guide MLC Chip Capacitors COMMON CAUSES OF MECHANICAL CRACKING REWORKING OF MLCs The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, vcutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken. A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components. Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards. Solder Tip Preferred Method - No Direct Part Contact Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow. However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300ºC. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor. Solder Tip Poor Method - Direct Contact with Part PCB BOARD DESIGN To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located. No Stress Relief for MLCs Routed Cut Line Relieves Stress on MLC MAY 2015 ■ 101 MIL-PRF-123/Chips AVX's M123 series MIL-qualified ceramic capacitors are designed for high performance application in BX voltage temperature characteristics for general purpose dielectric and in BP voltage temperature characteristics for temperature stable dielectric. M123 series capacitors offer design and component engineers a proven technology for SMD processing and applications requiring space-level reliability. They are designed for use in timing circuits and critical frequency applications where absolute stability of capacitance is required (BP), as well as in applications where a wider capacitance variation with temperature and voltage can be tolerated (BX) HOW TO ORDER Not RoHS Compliant Military Type Designation: Capacitors, Fixed, Ceramic Dielectric, (Temperature Stable and General Purpose), High Reliability M123 A 10 BX B 103 K S Mil-Spec Number Modification Spec. Slash Sheet Number Temperature Characteristic Voltage B = 50V C = 100V Capacitance Code Capacitance Tolerance C = ±0.25pF D = ±0.5pF F = ±1% J = ±5% K = ±10% M = ±20% Termination G = Silver – Nickel - Gold M = Palladium/Silver S = Silver – Nickel – Solder Coated Z = Silver – Nickel – Solder Plated (tin/lead alloy with a minimum of 4 percent lead) Capacitance change with reference to 25ºC over temperature range -55ºC to +125ºC Without With Rated Symbol Voltage DC Voltage BP BX 0 ± 30 ppm/ºC 0 ±30 ppm/ºC +15, -15% +15, -25% DIMENSIONS L W S Slash Sheet Case Size 10 0805 11 1210 12 1808 13 2225 21 1206 22 1812 23 1825 T mm (inches) (L) Length 2.03 (0.080) ± 0.381 (0.015) 3.05 (0.120) ± 0.381 (0.015) 4.57 (0.180) ± 0.381 (0.015) 5.59 (0.220) ± 0.381 (0.015) 3.05 (0.120) ± 0.381 (0.015) 4.57 (0.180) ± 0.381 (0.015) 4.57 (0.180) ± 0.381 (0.015) (W) Width CKS51, /10, 1.27 (0.050) ± 0.381 (0.015) CKS52, /11, 2.54 (0.100) ± 0.381 (0.015) CKS53, /12, 2.03 (0.080) ± 0.381 (0.015) CKS54, /13, 6.35 (0.250) ± 0.381 (0.015) CKS55, /21, 1.52 (0.060) ± 0.381 (0.015) CKS56, /22, 3.18 (0.125) ± 0.381 (0.015) CKS57, /23, 6.35 (0.250) ± 0.381 (0.015) (T) Thickness 0805 Size Chip 0.508 (0.020) Min. 1.40 (0.055) Max. 1210 Size Chip 0.508 (0.020) Min. 1.65 (0.065) Max. 1808 Size Chip 0.508 (0.020) Min. 1.65 (0.065) Max. 2225 Size Chip 0.508 (0.020) Min. 1.78 (0.070) Max. 1206 Size Chip 0.508 (0.020) Min. 1.65 (0.065) Max. 1812 Size Chip 0.508 (0.020) Min. 2.03 (0.080) Max. 1825 Size Chip 0.508 (0.020) Min. 2.03 (0.080) Max. (S) Termination Band 0.508 (0.020) ± 0.254 (0.010) 0.508 (0.020) ± 0.254 (0.010) Dielectric BP BX BP BX BP BX BP BX BP BX BP BX BP BX Cap Range (pF) 1.0-680 330-18,000 300-3,300 5,600-100,000 300-1,000 5,600-100,000 1,100-10,000 120,000-1,000,000 1.0-2,200 4,700-39,000 1,200-10,000 27,000-180,000 3,900-22,000 56,000-470,000 0.508 (0.020) ± 0.254 (0.010) 0.508 (0.020) ± 0.254 (0.010) 0.508 (0.020) ± 0.254 (0.010) 0.508 (0.020) ± 0.254 (0.010) 0.508 (0.020) ± 0.254 (0.010) Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci 102 ■ MAY 2015 MIL-PRF-123/Chips MIL-PRF-123/STYLE CKS51, -/10 Part Number 1/ (0805 Size Chip) Capacitance Capacitance VoltagepF Tolerance Temperature Limits M123A10BP_1R0__ M123A10BP_1R1__ M123A10BP_1R2__ M123A10BP_1R3__ M123A10BP_1R5__ 1.0 1.1 1.2 1.3 1.5 M123A10BP_1R6__ M123A10BP_1R8__ M123A10BP_2R0__ M123A10BP_2R2__ M123A10BP_2R4__ 1.6 1.8 2.0 2.2 2.4 M123A10BP_2R7__ M123A10BP_3R0__ M123A10BP_3R3__ M123A10BP_3R6__ M123A10BP_3R9__ 2.7 3.0 3.3 3.6 3.9 M123A10BP_4R3__ M123A10BP_4R7__ M123A10BP_5R1__ M123A10BP_5R6__ M123A10BP_6R2__ 4.3 4.7 5.1 5.6 6.2 M123A10BP_6R8__ M123A10BP_7R5__ M123A10BP_8R2__ M123A10BP_9R1__ M123A10BP_100__ 6.8 7.5 8.2 9.1 10 M123A10BP_110__ M123A10BP_120__ M123A10BP_130__ M123A10BP_150__ M123A10BP_160__ 11 12 13 15 16 M123A10BP_180__ M123A10BP_200__ M123A10BP_220__ M123A10BP_240__ M123A10BP_270__ 18 20 22 24 27 M123A10BP_300__ M123A10BP_330__ M123A10BP_360__ M123A10BP_390__ M123A10BP_430__ 30 33 36 39 43 M123A10BP_470__ M123A10BP_510__ M123A10BP_560__ M123A10BP_620__ M123A10BP_680__ 47 51 56 62 68 M123A10BP_750__ 75 C,D BP Rated Voltage Part Number 1/ (0805 Size Chip) 50,100 M123A10BP_820__ M123A10BP_910__ M123A10BP_101__ M123A10BP_111__ 82 91 100 110 M123A10BP_121__ M123A10BP_131__ M123A10BP_151__ M123A10BP_161__ M123A10BP_181__ 120 130 150 160 180 M123A10BP_201__ M123A10BP_221__ M123A10BP_241__ M123A10BP_271__ M123A10BP_301__ 200 220 240 270 300 M123A10BP_331__ M123A10BP_361__ M123A10BP_391__ M123A10BP_431__ M123A10BP_471__ 330 360 390 430 470 M123A10BPB511__ M123A10BPB561__ M123A10BPB621__ M123A10BPB681__ 510 560 620 680 M123A10BX_331K_ M123A10BX_391K_ M123A10BX_471K_ M123A10BX_561K_ M123A10BX_681K_ 330 390 470 560 680 M123A10BX_821K_ M123A10BX_102K_ M123A10BX_122K_ M123A10BX_152K_ M123A10BX_182K_ 820 1,000 1,200 1,500 1,800 M123A10BX_222K_ M123A10BX_272K_ M123A10BX_332K_ M123A10BX_392K_ M123A10BX_472K_ 2,200 2,700 3,300 3,900 4,700 M123A10BXB562K_ M123A10BXB682K_ M123A10BXB822K_ M123A10BXB103K_ M123A10BXB123K_ 5,600 6,800 8,200 10,000 12,000 M123A10BXB153K_ M123A10BXB183K_ 15,000 18,000 C, J, K F, J, K F, J, K BP Capacitance Capacitance VoltagepF Tolerance Temperature Limits Rated Voltage F, J, K BP 50,100 F,J,K BP 50,100 F,J,K BP 50 F,J,K BP 50 K BX 50,100 K BX 50,100 K BX 50 K BX 50 50,100 MAY 2015 ■ 103 MIL-PRF-123/Chips MIL-PRF-123/STYLE CKS52, -/11 Part Number 1/ (1210 Size Chip) Capacitance pF Capacitance Tolerance VoltageTemperature Limits Rated Voltage Part Number 1/ (1210 Size Chip) Capacitance pF Capacitance Tolerance VoltageTemperature Limits Rated Voltage M123A11BP_301__ M123A11BP_331__ M123A11BP_361__ M123A11BP_391__ M123A11BP_431__ 300 330 360 390 430 F, J, K BP 50,100 M123A11BPB242__ M123A11BPB272__ M123A11BPB302__ M123A11BPB332__ 2,400 2,700 3,000 3,300 F, J, K BP 50 F, J, K BP 50 M123A11BX_562__ M123A11BX_682__ M123A11BX_822__ M123A11BX_103__ M123A11BX_123__ 5,600 6,800 8,200 10,000 12,000 K, M BX 50,100 M123A11BX_153__ M123A11BX_183__ M123A11BX_223__ M123A11BX_273__ 15,000 18,000 22,000 27,000 K, M BX 50,100 M123A11BXB333__ M123A11BXB393__ M123A11BXB473__ M123A11BXB563__ M123A11BXB683__ 33,000 39,000 47,000 56,000 68,000 K, M BX 50 M123A11BXB823__ M123A11BXB104__ 82,000 100,000 K, M BX 50 Part Number 1/ (1808 Size Chip) Capacitance pF Capacitance Tolerance VoltageTemperature Limits Rated Voltage M123A12BX_562K_ M123A12BX_682K_ M123A12BX_822K_ M123A12BX_103K_ M123A12BX_123K_ 5,600 6,800 8,200 10,000 12,000 K BX 50,100 M123A12BX_153K_ M123A12BX_183K_ M123A12BX_223K_ M123A12BX_273K_ M123A12BX_333K_ 15,000 18,000 22,000 27,000 33,000 K BX 50,100 M123A12BXB393K_ M123A12BXB473K_ M123A12BXB563K_ M123A12BXB683K_ M123A12BXB823K_ 39,000 47,000 56,000 68,000 82,000 K BX 50 M123A12BXB104K_ 100,000 K BX 50 M123A11BP_471__ M123A11BP_511__ M123A11BP_561__ M123A11BP_621__ M123A11BP_681__ 470 510 560 620 680 M123A11BP_751__ M123A11BP_821__ M123A11BP_911__ M123A11BP_102__ M123A11BP_112__ 750 820 910 1,000 1,100 M123A11BP_122__ M123A11BP_132__ M123A11BP_152__ M123A11BP_162__ M123A11BP_182__ 1,200 1,300 1,500 1,600 1,800 M123A11BP_202__ M123A11BP_222__ 2,000 2,200 F, J, K BP 50,100 MIL-PRF-123/STYLE CKS53, -/12 Part Number 1/ (1808 Size Chip) Capacitance pF Capacitance Tolerance VoltageTemperature Limits Rated Voltage M123A12BP_301__ M123A12BP_331__ M123A12BP_361__ M123A12BP_391__ M123A12BP_431__ 300 330 360 390 430 F, J, K BP 50,100 M123A12BP_471__ M123A12BP_511__ M123A12BP_561__ M123A12BP_621__ M123A12BP_681__ 470 510 560 620 680 M123A12BP_751__ M123A12BP_821__ M123A12BP_911__ M123A12BP_102__ 750 820 910 1,000 F, J, K Part Number 1/ (2225 Size Chip) Capacitance pF Capacitance Tolerance VoltageTemperature Limits Rated Voltage Part Number 1/ (2225 Size Chip) Capacitance pF Capacitance Tolerance VoltageTemperature Limits Rated Voltage M123A13BPB112__ M123A13BPB122__ M123A13BPB132__ M123A13BPB152__ M123A13BPB162__ 1,100 1,200 1,300 1,500 1,600 F, J, K BP 50 M123A13BPB562__ M123A13BPB622__ M123A13BPB682__ 5,600 6,200 6,800 F, J, K BP 50 M123A13BPB182__ M123A13BPB202__ M123A13BPB222__ M123A13BPB242__ M123A13BPB272__ 1,800 2,000 2,200 2,400 2,700 M123A13BPB752__ M123A13BPB822__ M123A13BPB912__ M123A13BPB103__ 7,500 8,200 9,100 10,000 F, J, K BP 50 BX 50 3,000 3,300 3,600 3,900 4,300 120,000 150,000 180,000 220,000 270,000 K M123A13BPB302__ M123A13BPB332__ M123A13BPB362__ M123A13BPB392__ M123A13BPB432__ M123A13BXB124K_ M123A13BXB154K_ M123A13BXB184K_ M123A13BXB224K_ M123A13BXB274K_ M123A13BPB472__ M123A13BPB512__ 4,700 5,100 M123A13BXB334K_ M123A13BXB394K_ M123A13BXB474K_ M123A13BXB105K_ 330,000 394,000 474,000 1,000,000 K BX 50 BP 50,100 MIL-PRF-123/STYLE CKS54, -/13 104 ■ MAY 2015 F, J, K BP 50 MIL-PRF-123/Chips MIL-PRF-123/STYLE CKS55, -/21 Part Number 1/ (1206 Size Chip) Capacitance Capacitance VoltagepF Tolerance Temperature Limits M123A21BPC1R0__ M123A21BPC1R1__ M123A21BPC1R2__ M123A21BPC1R3__ M123A21BPC1R5__ M123A21BPC1R6__ 1.0 1.1 1.2 1.3 1.5 1.6 M123A21BPC1R8__ M123A21BPC2R0__ M123A21BPC2R2__ M123A21BPC2R4__ M123A21BPC2R7__ 1.8 2.0 2.2 2.4 2.7 M123A21BPC3R0__ M123A21BPC3R3__ M123A21BPC3R6__ M123A21BPC3R9__ 3.0 3.3 3.6 3.9 M123A21BPC4R3__ M123A21BPC4R7__ M123A21BPC5R1__ M123A21BPC5R6__ M123A21BPC6R2__ M123A21BPC6R8__ 4.3 4.7 5.1 5.6 6.2 6.8 M123A21BPC7R5__ M123A21BPC8R2__ M123A21BPC9R1__ 7.5 8.2 9.1 B, C BP Rated Voltage Part Number 1/ (1206 Size Chip) 100 M123A21BPC100__ M123A21BPC110__ 10 11 M123A21BPC120__ M123A21BPC130__ M123A21BPC150__ M123A21BPC160__ M123A21BPC180__ 12 13 15 16 18 M123A21BPC200__ M123A21BPC240__ M123A21BPC270__ M123A21BPC330__ M123A21BPC360__ 20 24 27 33 36 M123A21BPC390__ M123A21BPC430__ M123A21BPC470__ M123A21BPC510__ M123A21BPC560__ 39 43 47 51 56 M123A21BPC620__ M123A21BPC680__ M123A21BPC750__ M123A21BPC820__ M123A21BPC910__ M123A21BPC101__ 62 68 75 82 91 100 B, C B, C, D B, C, D BP Capacitance Capacitance VoltagepF Tolerance Temperature Limits Rated Voltage F, J, K BP 100 F, J, K BP 100 100 MIL-PRF-123/STYLE CKS55, -/21 Part Number 1/ (1206 Size Chip) Capacitance Capacitance VoltagepF Tolerance Temperature Limits M123A21BPC111__ M123A21BPC121__ M123A21BPC131__ M123A21BPC151__ M123A21BPC161__ 110 120 130 150 160 M123A21BPC181__ M123A21BPC201__ M123A21BPC221__ M123A21BPC241__ M123A21BPC271__ 180 200 220 240 270 M123A21BPC301__ M123A21BPC331__ M123A21BPC361__ M123A21BPC391__ M123A21BPC431__ 300 330 360 390 430 M123A21BPC471__ M123A21BPC511__ M123A21BPC561__ M123A21BPC621__ M123A21BPC681__ 470 510 560 620 680 M123A21BPC751__ M123A21BPC821__ M123A21BPC911__ M123A21BPC102__ 750 820 910 1,000 F, J, K F, J, K BP BP Rated Voltage Part Number 1/ (1206 Size Chip) 100 M123A21BPB112__ M123A21BPB122__ M123A21BPB132__ M123A21BPB152__ M123A21BPB162__ 1,100 1,200 1,300 1,500 1,600 M123A21BPB182__ M123A21BPB202__ M123A21BPB222__ 1,800 2,000 2,200 M123A21BXC472__ M123A21BXC562__ M123A21BXC682__ M123A21BXC822__ M123A21BXC103__ 4,700 5,600 6,800 8,200 10,000 M123A21BXC123__ M123A21BXC153__ 12,000 15,000 M123A21BXB183__ M123A21BXB223__ M123A21BXB273__ M123A21BXB333__ M123A21BXB393__ 18,000 22,000 27,000 33,000 39,000 Capacitance Capacitance VoltagepF Tolerance Temperature Limits Rated Voltage F, J, K BP 50 F, J, K BP 50 K, M BX 100 K, M BX 100 K, M BX 50 K, M BX 50 100 MAY 2015 ■ 105 MIL-PRF-123/Chips MIL-PRF-123/STYLE CKS56, -/22 Part Number 1/ (1812 Size Chip) Capacitance Capacitance VoltagepF Tolerance Temperature Limits M123A22BPC122__ M123A22BPC152__ M123A22BPC182__ M123A22BPC222__ M123A22BPC242__ 1,200 1,500 1,800 2,200 2,400 M123A22BPC272__ M123A22BPC302__ M123A22BPC332__ M123A22BPC362__ M123A22BPC392__ M123A22BPC432__ M123A22BPC472__ 2,700 3,000 3,300 3,600 3,900 4,300 4,700 M123A22BPB512__ M123A22BPB562__ M123A22BPB622__ M123A22BPB682__ M123A22BPB752__ 5,100 5,600 6,200 6,800 7,500 M123A22BPB822__ M123A22BPB912__ M123A22BPB103__ 8,200 9,100 10,000 F, J, K BP Rated Voltage Part Number 1/ (1812 Size Chip) 100 M123A22BXC273__ M123A22BXC333__ M123A22BXC393__ M123A22BXC473__ M123A22BXC563__ 27,000 33,000 39,000 47,000 56,000 M123A22BXB823__ M123A22BXB104__ M123A22BXB124__ M123A22BXB154__ M123A22BXB184__ 82,000 100,000 120,000 150,000 180,000 F, J, K BP 100 F, J, K BP 50 F, J, K BP 50 Capacitance Capacitance VoltagepF Tolerance Temperature Limits Rated Voltage K, M BX 100 K, M BX 100 K, M BX 50 K, M BX 50 MIL-PRF-123/STYLE CKS57, -/23 Part Number 1/ (1825 Size Chip) Capacitance Capacitance VoltagepF Tolerance Temperature Limits M123A23BPC392__ M123A23BPC472__ M123A23BPC512__ M123A23BPC562__ M123A23BPC622__ 3,900 4,700 5,100 5,600 6,200 M123A23BPC682__ M123A23BPC752__ M123A23BPC822__ M123A23BPC912__ M123A23BPC103__ 6,800 7,500 8,200 9,100 10,000 M123A23BPB113__ M123A23BPB123__ M123A23BPB133__ M123A23BPB153__ M123A23BPB163__ 11,000 12,000 13,000 15,000 16,000 M123A23BPB183__ M123A23BPB203__ M123A23BPB223__ 18,000 20,000 22,000 106 ■ MAY 2015 F, J, K BP Rated Voltage Part Number 1/ (1825 Size Chip) 100 M123A23BXC563__ M123A23BXC683__ M123A23BXC823__ M123A23BXC104__ M123A23BXC124__ 56,000 68,000 82,000 100,000 120,000 K, M BX 100 M123A23BXC154__ 150,000 K, M BX 100 M123A23BXB184__ M123A23BXB224__ M123A23BXB274__ M123A23BXB334__ M123A23BXB394__ 180,000 220,000 270,000 330,000 390,000 K, M BX 50 M123A23BXB474__ 470,000 K, M BX 50 F, J, K BP 100 F, J, K BP 50 F, J, K BP 50 Capacitance Capacitance VoltagepF Tolerance Temperature Limits Rated Voltage AT Series High Temperature MLCC – 200ºC & 250°C Rated Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. AVX’s new high temperature chip capacitor product line, with verified capability of longterm operation up to 250°C is a response to both military and commercial business needs. The new capacitors demonstrate high current handling capabilities, high volumetric efficiency, high insulation resistance and low ESR/ESL. This product has been designed for the most demanding applications, such as “down-hole” oil exploration and aerospace programs. HOW TO ORDER AT10 3 AVX Style AT03 = 0603 AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Voltage Code 16V = Y 25V = 3 50V = 5 T 104 K A T 2 A Temperature Capacitance Code Capacitance Test Level Termination Packaging Special Coefficient (2 significant digits Tolerance A = Standard 1 = Pd/Ag Code 2 = 7" Reel C0G 250ºC = A + no. of zeros) J = ±5% T = 100% Sn Plated 4 = 13" Reel A = Standard (RoHS Compliant) 9 = Bulk C0G 200ºC = 2 101 = 100pF K = ±10% VHT 250ºC = T 102 = 1nF M = ±20% VHT 200ºC = 4 103 = 10nF Ni C0G 200C = 3 104 = 100nF Ni C0G 250C = 5 105 = 1μF ELECTRICAL SPECIFICATIONS Temperature Coefficient C0G: A 0±30 ppm/°C, -55°C to +250°C VHT: T ±15%, -55°C to +150°C See TCC Plot for +250°C Insulation Resistance 125°C (MIL-STD-202, Method 302) 10GΩ or 100MΩ.μF (whichever is less) Insulation Resistance 200°C (MIL-STD-202, Method 302) 1GΩ or 10MΩ.μF (whichever is less) Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz Dissipation factor 25°C C0G: 0.15% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz Insulation Resistance 250°C (MIL-STD-202, Method 302) 100MΩ or 1MΩ.μF (whichever is less) Direct Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50mA max charging current (500 Volt units @ 750VDC) Insulation Resistance 25°C (MIL-STD-202, Method 302) 100GΩ or 1000MΩ.μF (whichever is less) DIMENSIONS millimeters (inches) W L T Size (L) Length AT03 = 0603 AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.50 ± 0.30 5.72 ± 0.25 (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.177 ± 0.012) (0.225 ± 0.010) (W) Width 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 3.20 ± 0.20 6.35 ± 0.25 (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.126 ± 0.008) (0.250 ± 0.010) (T) Thickness 1.02 1.30 1.52 1.70 2.54 2.54 Max. (0.040) (0.051) (0.060) (0.067) (0.100) (0.100) (t) terminal min. 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) max. 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) t MAY 2015 ■ 107 AT Series High Temperature MLCC – 200ºC & 250°C Rated PERFORMANCE CHARACTERISTICS Typical Temperature Coefficient of Capacitance (C0G Dielectric) Typical Temperature Coefficient of Capacitance (VHT Dielectric) 15 1 0.8 0.6 -13.75 +30ppm/ºC TTC Limit C (%) C (%) 0.4 -42.5 0.2 0 -0.2 -0.4 -71.25 -30ppm/ºC TTC Limit -0.6 -0.8 -100 -50 -25 0 25 50 75 100 125 150 175 200 225 250 -1 -50 -25 0 25 50 75 Temperature (°C) 100 125 150 175 200 225 250 Temperature (°C) Typical Voltage Coefficient of Capacitance (C0G Dielectric) Typical Voltage Coefficient of Capacitance (VHT Dielectric) 1 5 0.8 Legend: Capacitor’s Rated Voltage -5 16VDC 25VDC 50VDC 100VDC 200VDC -10 0.6 0.4 C (%) C (%) 0 0.2 0 -0.2 -0.4 -15 -0.6 -0.8 -20 0 10 20 30 40 50 60 70 80 90 -1 100 0 10 20 Percentage of Rated Voltage 30 40 50 60 70 80 90 100 225 250 Percentage of Rated Voltage Typical RC vs Temperature (C0G Dielectric) Typical RC vs Temperature (VHT Dielectric) 1000000 10000 100000 1000 RC (Ω*F) RC (Ω*F) 10000 100 1000 100 10 10 1 1 25 50 75 100 125 150 Temperature (°C) 108 ■ MAY 2015 175 200 225 250 25 50 75 100 125 150 Temperature (°C) 175 200 AT Series High Temperature MLCC – 200ºC & 250°C Rated RELIABILITY 250°C Life Test @ 2x Rated Voltage (VHT Dielectric) 250°C Life Test @ 2x Rated Voltage (C0G Dielectric) 48000 AT05YT104 AT103T104 AT123T334 AT143T105 0.825 0.55 0.275 0 Capacitance (pF) Capacitance ( F) 1.1 36000 24000 12000 0 0 250 500 750 AT143A473 AT123A123 1000 0 250 500 750 1000 Time (hrs) Time (hrs) VHT - Failure Rate @ 90% Confidence Level (%/1000 hours) Temperature (°C) 50% Rated Voltage 100% Rated Voltage 200 0.002 0.017 250 0.026 0.210 *Typical 1210, 1812, 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page. C0G - Failure Rate @ 90% Confidence Level (%/1000 hours) Temperature (°C) 50% Rated Voltage 100% Rated Voltage 200 0.006 0.047 250 0.074 0.590 *Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page. FREQUENCY RESPONSE Impedance Frequency Response (C0G Dielectric) Impedance Frequency Response (VHT Dielectric) 1E+06 1E+05 AT05YT104 AT123T334 AT143T105 1E+02 1E+01 1E+00 1E-01 1E-02 1E+01 ) 1E+03 1E+04 1E+03 1E+02 1E+01 1E+00 1E-01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E-02 1E+01 1E+04 1E+05 1E+06 1E+07 ESR Frequency Response (VHT Dielectric) ESR Frequency Response (C0G Dielectric) 1E+03 AT05YT104 AT123T334 AT143T105 ) 1E+01 1E+00 1E+08 AT43A473 AT123A123 1E+02 ESR ( ) 1E+03 Frequency (Hz) 1E+02 ESR ( 1E+02 Frequency (Hz) 1E+03 1E+01 1E+00 1E-01 1E-01 1E-02 1E+01 AT43A473 AT123A123 1E+05 Impedance ( Impedance ( ) 1E+04 1E-02 1E+02 1E+03 1E+04 1E+05 Frequency (Hz) 1E+06 1E+07 1E+08 1E-03 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 Frequency (Hz) MAY 2015 ■ 109 High Temperature MLCC 200ºC Rated Capacitance Range CAPACITANCE RANGE PREFERRED SIZES ARE SHADED VHT Temp. Coefficient: 4 Case Size Soldering (L) Length mm (in.) (W) Width mm (in.) (T) Thickness mm (in.) (t) Terminal min max Rated Temp. (ºC) Temp. Coefficeint Voltage (V) Cap 1000 102 (pF) 1200 122 1500 152 1800 182 2200 222 2700 272 3300 332 3900 392 4700 472 5600 562 6800 682 8200 822 Cap 0.010 103 (μF) 0.012 123 0.015 153 0.018 183 0.022 223 0.027 273 0.033 333 0.039 393 0.047 473 0.056 563 0.068 683 0.082 823 0.100 104 0.120 124 0.150 154 0.180 184 0.220 224 0.270 274 0.330 334 0.390 394 0.470 474 0.560 564 0.680 684 0.820 824 1.000 105 Voltage (V) Rated Temp. (ºC) Case Size 200ºC Rated AT03 = 0603 AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Reflow/Wave Reflow/Wave Reflow/Wave Reflow Only Reflow Only Reflow Only 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 1.02 (0.040) 0.25 (0.010) 0.75 (0.030) 200 4 25 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.25 (0.010) 0.75 (0.030) 200 4 25 50 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 200 4 25 50 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 200 4 25 50 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 200 4 50 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 200 4 50 50 200 50 200 25 200 25 50 200 AT03 = 0603 AT05 = 0805 25 50 200 25 50 200 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Voltage rating per table. Capacitance values specified at 25ºC, derate capacitance value based on TCC and VCC Plots on page 2. NOTE: Contact factory for non-specified capacitance values. 110 ■ MAY 2015 High Temperature MLCC 250ºC Rated Capacitance Range CAPACITANCE RANGE PREFERRED SIZES ARE SHADED VHT Temp. Coefficient: T Case Size Soldering (L) Length mm (in.) (W) Width mm (in.) (T) Thickness mm (in.) (t) Terminal min max Rated Temp. (ºC) Temp. Coefficeint Voltage (V) Cap 1000 102 (pF) 1200 122 1500 152 1800 182 2200 222 2700 272 3300 332 3900 392 4700 472 5600 562 6800 682 8200 822 Cap 0.010 103 (μF) 0.012 123 0.015 153 0.018 183 0.022 223 0.027 273 0.033 333 0.039 393 0.047 473 0.056 563 0.068 683 0.082 823 0.100 104 0.120 124 0.150 154 0.180 184 0.220 224 0.270 274 0.330 334 0.390 394 0.470 474 0.560 564 0.680 684 0.820 824 1.000 105 Voltage (V) Rated Temp. (ºC) Case Size 250ºC Rated AT03 = 0603 AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Reflow/Wave Reflow/Wave Reflow/Wave Reflow Only Reflow Only Reflow Only 1.60 ± 0.15 (0.063 ± 0.006) 0.81 ± 0.15 (0.032 ± 0.006) 1.02 (0.040) 0.25 (0.010) 0.75 (0.030) 250 T 16 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.25 (0.010) 0.75 (0.030) 250 T 16 25 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 250 T 16 25 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 250 T 16 25 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 250 T 25 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 250 T 25 25 250 25 250 16 250 16 25 250 AT03 = 0603 AT05 = 0805 16 25 250 16 25 250 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Voltage rating per table. Capacitance values specified at 25ºC, derate capacitance value based on TCC and VCC Plots on page 2. NOTE: Contact factory for non-specified capacitance values. MAY 2015 ■ 111 AT Series High Temperature MLCC – 200ºC & 250°C Rated CAPACITANCE RANGE PREFERRED SIZES ARE SHADED C0G Temp. Coefficient: 2 Case Size Soldering (L) Length mm (in.) (W) Width mm (in.) (T) Thickness mm (in.) (t) Terminal min max Rated Temp. (ºC) Temp. Coefficeint Voltage (V) Cap 100 101 (pF) 120 121 150 151 180 181 220 221 270 271 330 331 390 391 470 471 560 561 680 681 820 821 1000 102 1200 122 1500 152 1800 182 2200 222 2700 272 3300 332 3900 392 4700 472 5600 562 6800 682 8200 822 Cap 0.010 103 (μF) 0.012 123 0.015 153 0.018 183 0.022 223 0.027 273 0.033 333 0.039 393 0.047 473 0.056 563 0.068 683 0.082 823 0.100 104 Voltage (V) Rated Temp. (ºC) Case Size C0G 200ºC Rated AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Reflow/Wave Reflow/Wave Reflow Only Reflow Only Reflow Only 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.25 (0.010) 0.75 (0.030) 200 2 50 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 200 2 50 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 200 2 50 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 200 2 50 2.75 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 200 2 50 50 200 50 200 50 200 50 200 50 200 AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Temp. Coefficient: A Case Size Soldering (L) Length mm (in.) (W) Width mm (in.) (T) Thickness mm (in.) (t) Terminal min max Rated Temp. (ºC) Temp. Coefficeint Voltage (V) Cap 100 101 (pF) 120 121 150 151 180 181 220 221 270 271 330 331 390 391 470 471 560 561 680 681 820 821 1000 102 1200 122 1500 152 1800 182 2200 222 2700 272 3300 332 3900 392 4700 472 5600 562 6800 682 8200 822 Cap 0.010 103 (μF) 0.012 123 0.015 153 0.018 183 0.022 223 0.027 273 0.033 333 0.039 393 0.047 473 0.056 563 0.068 683 0.082 823 0.100 104 Voltage (V) Rated Temp. (ºC) Case Size 250ºC Rated AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 Reflow/Wave Reflow Only Reflow Only Reflow Only 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.25 (0.010) 0.75 (0.030) 250 A 25 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 250 A 25 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 250 A 25 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 250 A 25 2.75 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 250 A 25 25 250 25 250 25 250 25 250 25 250 AT05 = 0805 AT06 = 1206 AT10 = 1210 AT12 = 1812 AT14 = 2225 Voltage rating per table. Capacitance values specified at 25ºC, derate capacitance value based on TCC and VCC Plots on page 2. NOTE: Contact factory for non-specified capacitance values. 112 ■ MAY 2015 AT14 = 2225 Reflow/Wave High Voltage MLC Chips For 600V to 5000V Applications High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies. Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4ºC per second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing. For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips). NEW 630V RANGE HOW TO ORDER 1808 AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 3640 *** A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = A 271 K A 1 1 A Temperature Capacitance Code Capacitance Test Level Termination* Packaging Special C Coefficient (2 significant digits Tolerance A = Standard 1 = Pd/Ag 1 = 7" Reel** Code A NPO (C0G) = A + no. of zeros) C0G:J = ±5% T = Plated 3 = 13" Reel A = Standard S X7R = C Examples: K = ±10% Ni and Sn (RoHS Compliant) G 10 pF = 100 M = ±20% W 100 pF = 101 X7R:K = ±10% 1,000 pF = 102 M = ±20% H 22,000 pF = 223 Z = +80%, J 220,000 pF = 224 -20% K 1 μF = 105 *Note: Terminations with 5% minimum lead (Pb) is available, see pages 118 and 119 for LD style. Leaded terminations are available, see pages 116 and 117. Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. ** The 3640 Style is not available on 7" Reels. *** AVX offers nonstandard chip sizes. Contact factory for details. W L T DIMENSIONS t millimeters (inches) SIZE (L) Length 0805 1206 1210* 1808* 1812* 1825* 2220* 2225* 3640* 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010) (W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25 (0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010) (T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) *Reflow Soldering Only Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. MAY 2015 ■ 113 High Voltage MLC Chips For 600V to 5000V Applications NP0 (C0G) Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.100 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current NP0 (C0G) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 0805 1206 1210 1808 1812 Soldering Reflow/Wave Reflow/Wave Reflow Only Reflow Only Reflow Only 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.50 ± 0.25 (0.020 ± 0.010) 600 630 1000 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A X X X X X X C C C C C C C C C C C C C C C C C C C C C C C C C C C 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X D X X D X M D X M C X M C X C C X C C X C E X C E X E E X E E C E E C E E C E E C E E C E C E E E E E E E E E E E E E 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 4.57 ± 0.25 (0.180 ± 0.010) 2.03 ± 0.25 (0.080 ± 0.010) 2.03 (0.080) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 (L) Length (W) Width (T) Thickness (t) Terminal mm (in.) mm (in.) mm (in.) min max Voltage (V) Cap (pF) 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 750 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 Cap (μF) 1R5 1R8 2R2 2R7 3R3 3R9 4R7 5R6 6R8 8R2 100 120 150 180 220 270 330 390 470 560 680 820 101 121 151 181 221 271 331 391 471 561 681 751 821 102 122 152 182 222 272 332 392 472 562 682 822 600 X X X X X X X X X X X X X X X X X X X X X X X X X X X C C C C C C E E E E E E E E E 2000 X X X X X X X X X X X X X X X X D D D C C C C E E E E E E E E 600 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E D D D D D D D D D D D D C C C E E E E E E E E E E E E G G D D D D D D D D D C C C C C E E E E E E E E F G G 2000 D D D D D D D D D C C C C C E E E E E E E E F G G 600 C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E E E E F 630 C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E E E E F C C C C C C C C C C C C C C C C C C C C C C C C C F F F F F F F F F F F C C C C C C C C C C C C C C C C C C C C C F F F F F F F F F F E E E C C C C C C C C C C C C C C C C C C C C C F F F F F F F F F F E E E C C C C C C C C C C C C C C C C C C C F F F F F F F F F 3000 C C C C C C C C C C C C C C C C C C C F F F F F F F F F 4000 600 630 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E E 0.010 103 E 0.012 123 F F 0.015 153 G G 0.018 183 G G 0.022 223 0.033 333 0.047 473 0.056 563 0.068 683 0.100 104 600 630 Voltage (V) Case Size 600 630 0805 114 ■ MAY 2015 1000 600 630 1000 1206 1500 2000 600 630 1000 1210 1500 2000 600 630 1000 1500 2000 1808 2500 3000 4000 3000 4000 C C C C C C C C C C C C C C C C C C C C F F F F F F F F F E E F F G C C C C C C C C C C C C C C C C C C F F F F F F F F E F F G G C C C C C C C C C C C C C C C C C C F F F F F F F F E F F G G C C C C C C C C C C C C C C C F F F F F F F G G G G C C C C C C C C C C C C C C C F F F F F F F G G G G E E E E E E E E E F F F F G G 1000 1500 2000 2500 3000 4000 1812 High Voltage MLC Chips For 600V to 5000V Applications NP0 (C0G) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 1825 2220 2225 3640 Soldering Reflow Only Reflow Only Reflow Only Reflow Only (L) Length mm (in.) mm (in.) (T) Thickness mm (in.) (t) Terminal min max Voltage (V) Cap (pF) 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120 15 150 18 180 22 220 27 270 33 330 39 390 47 470 56 560 68 680 82 820 100 101 120 121 150 151 180 181 220 221 270 271 330 331 390 391 470 471 560 561 680 681 750 751 820 821 1000 102 1200 122 1500 152 1800 182 2200 222 2700 272 3300 332 3900 392 4700 472 5600 562 6800 682 8200 822 (W) Width 600 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.30 (0.252 ± 0.012) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 600 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E F F F F F F F F F F F E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G 5.70 ± 0.40 (0.224 ± 0.016) 5.00 ± 0.40 (0.197 ± 0.016) 3.30 (0.130) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 600 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E E E E E E E E F F E E E E E E E E E E E E E E E F F E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F F G 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 600 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G E E E E E E E E E E E E E E E E E E E E E E E E F E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E F F G F F F F F F F F F F F F G G G G G G G G G G 9.14 ± 0.25 (0.360 ± 0.010) 10.2 ± 0.25 (0.400 ± 0.010) 2.54 (0.100) 0.76 (0.030) 1.52 (0.060) 630 1000 1500 2000 2500 3000 4000 5000 F F F F F F F F G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G Cap (μF) 0.010 103 G G G G G G 0.012 123 G G G G G G 0.015 153 G G G G G G 0.018 183 G G G G G G 0.022 223 G G G G G G 0.033 333 G G G G G 0.047 473 G G G G G 0.056 563 G G G 0.068 683 G G G 0.100 104 G G G Voltage (V) 600 630 1000 1500 2000 2500 3000 4000 600 Case Size Letter Max. Thickness 630 1000 1500 2000 2500 3000 4000 5000 600 1825 A 0.813 (0.032) C 1.448 (0.057) 2220 E 1.8034 (0.071) F 2.2098 (0.087) G 2.794 (0.110) X 0.940 (0.037) 630 1000 1500 2000 2500 3000 4000 5000 600 2225 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 630 1000 1500 2000 2500 3000 4000 5000 3640 NOTE: Contact factory for non-specified capacitance values MAY 2015 ■ 115 High Voltage MLC Chips For 600V to 5000V Applications X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 0805 1206 1210 1808 1812 Soldering Reflow/Wave Reflow/Wave Reflow Only Reflow Only Reflow Only 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.50 ± 0.25 (0.020 ± 0.010) 600 630 1000 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 4.57 ± 0.25 (0.180 ± 0.010) 2.03 ± 0.25 (0.080 ± 0.010) 2.03 (0.080) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 (L) Length mm (in.) mm (in.) mm (in.) min max (W) Width (T) Thickness (t) Terminal Voltage (V) Cap (pF) Cap (μF) 2000 600 100 101 X X C 600 C C E E E E E E E 2000 E 600 630 120 121 X X C C C E E E E E E E E 150 151 X X C C C E E E E E E E E 180 181 X X C C C E E E E E E E E 220 221 X X C C C E E E E E E E E 270 271 X X C C C E E E E E E E E 330 331 X X C C C E E E E E E E 390 391 X X C C C E E E E E E 470 471 X X C C C E E E E E 560 561 X X C C C E E E E 680 681 X X C C C E E E 750 751 X X C C C E E 820 821 X X C C C E 1000 102 X X C C C 1200 122 X X C C 1500 152 X X C C 1800 182 X X 2200 222 X X 2700 272 X 3300 332 X 3900 392 4700 472 5600 3000 E E E E E E E F E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E C E E E E E E E C E E E E E E E C C E E E E E E C C E E E E E E X C C E E E E X C C E E E X X C C E E E E X X C C E E E E 562 X X C C E E E E 6800 682 X X C C E E E 8200 822 X X C C E E E 0.010 103 C C C C E E 0.015 153 C C E E E 0.018 183 C C E 0.022 223 C C E 0.027 273 0.033 333 0.039 4000 600 630 3000 E E E E E E E E E E F E E E E E E F E E E E E E E E F F E E E E E E E E E F F E E E E E F F E E E F F E E E E E F F E E E E F F E E E E E F F E E E E E F F E E E E E F F E E E E E E F F E E E E E F F E E E E E E F F E E E E E G G E E E E E E E F F F E E E E F F F E F E E E E F E F E E E E F G E E E G E E E G E E E E E E E E E E E E E E E E E E E E E E E E G G E E E E E G G F E E E E E G G F E E E F F G G F E E E F F G G F E E E F F G G E F E E E G G E E F E E E G G E E E E E G G E E E E E F G G E F F F E E F G E E F F F E E G E E F F E E G E F F E E G E E F F E E G 393 E E F F E E G 0.047 473 E E F F E E G 0.056 563 F F F F F F 0.068 683 F F F F 0.082 823 F F 0.100 104 F F F F 0.150 154 G G 0.220 224 G G 0.270 274 0.330 334 0.390 394 0.470 474 0.560 564 0.680 684 0.820 824 1.000 105 600 630 2500 3000 Voltage (V) Case Size 600 630 0805 116 ■ MAY 2015 1000 600 630 1000 1206 1500 2000 600 630 1000 1210 1500 2000 600 630 1000 1500 2000 1808 2500 3000 4000 F F F F 1000 1500 2000 1812 4000 4000 High Voltage MLC Chips For 600V to 5000V Applications X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 1825 2220 2225 3640 Soldering Reflow Only Reflow Only Reflow Only Reflow Only (L) Length mm (in.) (W) Width mm (in.) (T) Thickness mm (in.) (t) Terminal min max Voltage (V) Cap (pF) 600 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.30 (0.252 ± 0.012) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 600 5.70 ± 0.40 (0.224 ± 0.016) 5.00 ± 0.40 (0.197 ± 0.016) 3.30 (0.130) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 600 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 600 9.14 ± 0.25 (0.360 ± 0.010) 10.2 ± 0.25 (0.400 ± 0.010) 2.54 (0.100) 0.76 (0.030) 1.52 (0.060) 630 1000 1500 2000 2500 3000 4000 5000 100 101 120 121 150 151 180 181 220 221 270 271 330 331 390 391 470 471 560 561 680 681 750 751 820 821 1000 102 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G G 1200 122 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G G 1500 152 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G G 1800 182 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G G 2200 222 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G G 2700 272 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G G 3300 332 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G G 3900 392 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G 4700 472 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G 5600 562 F F F F F F F F F F F F F G F F F F F F F G G G G G G G G 6800 682 F F F G G G G F F F F F G G F F F F F G G G G G G G G G G 8200 822 F F F G G G G F F F G G G G F F F F F G G G G G G G G G Cap (μF) 0.010 103 F F F G G G G F F F G G G G F F F F F G G G G G G G G G 0.015 153 F F F G G G F F F G G G F F F G G G G G G G G G G G 0.018 183 F F F G G F F F G G G F F F G G G G G G G G G G 0.022 223 F F F G G F F F G G F F F G G G G G G G G G 0.027 273 F F F G F F F G G F F F G G G G G G G 0.033 333 F F F G F F F G F F F G G G G G G 0.039 393 F F F G F F F G F F F G G G G G 0.047 473 F F F P F F F G F F F G G G G G 0.056 563 F F F G F F F G F F F G G G G G 0.068 683 F F G F F G F F F G G G G G 0.082 823 F F G F F G F F G G G 0.100 104 F F G F F G F F G G G 0.150 154 F F F F G F F G G G 0.220 224 F F F F G F F G G 0.270 274 F F F F F F G G 0.330 334 F F F F F F G G 0.390 394 F F F F F F G G 0.470 474 F F F F F F G G 0.560 564 G G G G F F G G G G G G 0.680 684 0.820 824 1.000 105 Voltage (V) 600 630 1000 1500 2000 2500 3000 4000 600 Case Size Letter Max. Thickness 630 1000 1500 2000 2500 3000 4000 5000 600 1825 A 0.813 (0.032) C 1.448 (0.057) 2220 E 1.8034 (0.071) F 2.2098 (0.087) G 2.794 (0.110) P 3.048 (0.120) 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 2225 X 0.940 (0.037) 3640 NOTE: Contact factory for non-specified capacitance values MAY 2015 ■ 117 High Voltage MLC Chips Tin/Lead Termination “B” For 600V to 5000V Applications NEW 630V RANGE AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a “B” in the 12th position of the AVX Catalog Part Number. This fulfills AVX’s commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this “B” termination. Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4ºC per second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing. For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips). HOW TO ORDER LD08 A A Voltage Temperature AVX 600V/630V = C Coefficient Style 1000V = A C0G = A LD05 - 0805 1500V = S X7R = C LD06 - 1206 2000V = G LD10 - 1210 2500V = W LD08 - 1808 3000V = H LD12 - 1812 4000V = J LD13 - 1825 5000V = K LD20 - 2220 LD14 - 2225 LD40 - 3640 *** 271 K A Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20% B 1 A Test Termination Packaging Special Code Level B = 5% Min Pb 1 = 7" Reel** A = Standard A = Standard X = FLEXITERM® 3 = 13" Reel with 5% min. 9 = Bulk Pb* Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. * FLEXITERM is not available in the LD40 Style ** The LD40 Style is not available on 7" Reels. *** AVX offers nonstandard chip sizes. Contact factory for details. W Not RoHS Compliant L T DIMENSIONS t millimeters (inches) SIZE (L) Length LD05 (0805) LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225) LD40* (3640) 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010) (W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25 (0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010) (T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) * Reflow soldering only. Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 118 ■ MAY 2015 High Voltage MLC Chips Tin/Lead Termination “B” For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640) 10pF 330pF 10pF 180pF — — — — — — — — — — — — 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 10 pF 120 pF — — — — — — — — 100 pF 2700 pF 10 pF 1500 pF 10 pF 680 pF 10 pF 270 pF — — — — — — — — 100 pF 3300 pF 100 pF 2200 pF 10 pF 820 pF 10 pF 330 pF 10 pF 180 pF 10 pF 120 pF 10 pF 47 pF — — 100 pF 5600 pF 100 pF 3300 pF 10 pF 1800 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 330 pF 10 pF 150 pF — — 1000 pF 0.012 μF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 820 pF 10 pF 330 pF — — 1000 pF 0.012 μF 1000 pF 0.010 μF 100 pF 4700 pF 100 pF 2200 pF 100 pF 1500 pF 10 pF 1000 pF 10 pF 470 pF 10 pF 220 pF 1000 pF 0.018 μF 1000 pF 0.010 μF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 1000 pF 0.047 μF 1000 pF 0.022 μF 100 pF 0.010 μF 100 pF 6800 pF 100 pF 3900 pF 100 pF 2700 pF 100 pF 1200 pF 10 pF 820 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 0805 1206 1210 1808 1812 1825 2220 2225 3640 100pF 6800pF 100pF 1500pF — — — — — — — — — — — — 1000 pF 0.022 μF 100 pF 6800 pF 100 pF 2700 pF 10 pF 1500 pF — — — — — — — — 1000 pF 0.056 μF 1000 pF 0.015 μF 100 pF 5600 pF 100 pF 3300 pF — — — — — — — — 1000 pF 0.068 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF 10 pF 2200 pF 10 pF 1800 pF — — — — 1000 pF 0.120 μF 1000 pF 0.039 μF 100 pF 0.015 μF 100 pF 8200 pF 10 pF 5600 pF 10 pF 3900 pF — — — — 0.010 μF 0.270 μF 1000 pF 0.100 μF 1000 pF 0.056 μF 100 pF 0.022 μF 100 pF 0.015 μF 100 pF 0.010 μF — — — — 0.010 μF 0.270 μF 1000 pF 0.120 μF 1000 pF 0.056 μF 1000 pF 0.027 μF 100 pF 0.018 μF 100 pF 0.012 μF — — — — 0.010 μF 0.330 μF 1000 pF 0.150 μF 1000 pF 0.068 μF 1000 pF 0.033 μF 100 pF 0.022 μF 100 pF 0.015 μF — — — — 0.010 μF 0.560 μF 0.010 μF 0.220 μF 1000 pF 0.100 μF 1000 pF 0.027 μF 1000 pF 0.022 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF MAY 2015 ■ 119 High Voltage MLC Chips FLEXITERM® For 600V to 5000V Applications High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies. To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®. The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns. HOW TO ORDER 1808 AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 *** A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = C C A S G W H J K 272 K Temperature Capacitance Code Capacitance Coefficient (2 significant digits Tolerance C0G: J = ±5% C0G = A + no. of zeros) K = ±10% X7R = C Examples: M = ±20% 10 pF = 100 100 pF = 101 X7R: K = ±10% M = ±20% 1,000 pF = 102 Z = +80%, 22,000 pF = 223 -20% 220,000 pF = 224 1 μF = 105 A Z Test Level Termination* Z = FLEXITERM® 100% Tin (RoHS Compliant) 1 A Packaging Special 1 = 7" Reel Code 3 = 13" Reel A = Standard 9 = Bulk Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. *** AVX offers nonstandard chip sizes. Contact factory for details. W L T t DIMENSIONS SIZE (L) Length millimeters (inches) 0805 2.01 ± 0.20 (0.079 ± 0.008) (W) Width 1.25 ± 0.20 (0.049 ± 0.008) (T) Thickness 1.30 Max. (0.051) (t) terminal min. 0.50 ± 0.25 max. (0.020 ± 0.010) 1206 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 1210* 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 1808* 4.57 ± 0.25 (0.180 ± 0.010) 2.03 ± 0.25 (0.080 ± 0.010) 2.03 (0.080) 0.25 (0.010) 1.02 (0.040) 1812* 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 1825* 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.30 (0.252 ± 0.012) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 2220* 5.7 ± 0.40 (0.224 ± 0.016) 5.0 ± 0.40 (0.197 ± 0.016) 3.30 (0.130) 0.25 (0.010) 1.02 (0.040) *Reflow Soldering Only Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. 120 ■ MAY 2015 2225* 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) High Voltage MLC Chips FLEXITERM® For 600V to 5000V Applications NP0 (C0G) Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz) ±5%, ±10%, ±20% 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current NP0 (C0G) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 0805 1206 1210 1808 1812 Soldering Reflow/Wave Reflow/Wave Reflow Only Reflow Only Reflow Only 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.50 ± 0.25 (0.020 ± 0.010) 600 630 1000 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A X X X X X X C C C C C C C C C C C C C C C C C C C C C C C C C C C 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X D X X D X M D X M C X M C X C C X C C X C E X C E X E E X E E C E E C E E C E E C E E C E C E E E E E E E E E E E E E 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 4.57 ± 0.25 (0.180 ± 0.010) 2.03 ± 0.25 (0.080 ± 0.010) 2.03 (0.080) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 (L) Length (W) Width (T) Thickness (t) Terminal mm (in.) mm (in.) mm (in.) min max Voltage (V) Cap (pF) 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 750 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 Cap (μF) 1R5 1R8 2R2 2R7 3R3 3R9 4R7 5R6 6R8 8R2 100 120 150 180 220 270 330 390 470 560 680 820 101 121 151 181 221 271 331 391 471 561 681 751 821 102 122 152 182 222 272 332 392 472 562 682 822 600 X X X X X X X X X X X X X X X X X X X X X X X X X X X C C C C C C E E E E E E E E E 2000 X X X X X X X X X X X X X X X X D D D C C C C E E E E E E E E 600 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E D D D D D D D D D D D D C C C E E E E E E E E E E E E G G D D D D D D D D D C C C C C E E E E E E E E F G G 2000 D D D D D D D D D C C C C C E E E E E E E E F G G 600 C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E E E E F 630 C C C C C C C C C C C C C C C C C C C C C C C C C C E E E E E E E E E F C C C C C C C C C C C C C C C C C C C C C C C C C F F F F F F F F F F F C C C C C C C C C C C C C C C C C C C C C F F F F F F F F F F E E E C C C C C C C C C C C C C C C C C C C C C F F F F F F F F F F E E E C C C C C C C C C C C C C C C C C C C F F F F F F F F F 3000 C C C C C C C C C C C C C C C C C C C F F F F F F F F F 4000 600 630 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C E E 0.010 103 E 0.012 123 F F 0.015 153 G G 0.018 183 G G 0.022 223 0.033 333 0.047 473 0.056 563 0.068 683 0.100 104 600 630 Voltage (V) Case Size 600 630 0805 1000 600 630 1000 1206 1500 2000 600 630 1000 1210 1500 2000 600 630 1000 1500 2000 1808 2500 3000 4000 3000 4000 C C C C C C C C C C C C C C C C C C C C F F F F F F F F F E E F F G C C C C C C C C C C C C C C C C C C F F F F F F F F E F F G G C C C C C C C C C C C C C C C C C C F F F F F F F F E F F G G C C C C C C C C C C C C C C C F F F F F F F G G G G C C C C C C C C C C C C C C C F F F F F F F G G G G E E E E E E E E E F F F F G G 1000 1500 2000 2500 3000 4000 1812 MAY 2015 ■ 121 High Voltage MLC Chips FLEXITERM® For 600V to 5000V Applications NP0 (C0G) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 1825 2220 2225 Soldering Reflow Only Reflow Only Reflow Only (L) Length mm (in.) mm (in.) (T) Thickness mm (in.) (t) Terminal min max Voltage (V) 600 Cap (pF) 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 E 12 120 E 15 150 E 18 180 E 22 220 E 27 270 E 33 330 E 39 390 E 47 470 E 56 560 E 68 680 E 82 820 E 100 101 E 120 121 E 150 151 E 180 181 E 220 221 E 270 271 E 330 331 E 390 391 E 470 471 E 560 561 E 680 681 E 750 751 E 820 821 E 1000 102 E 1200 122 E 1500 152 E 1800 182 E 2200 222 E 2700 272 E 3300 332 E 3900 392 E 4700 472 E 5600 562 F 6800 682 F 8200 822 G (W) Width 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.30 (0.252 ± 0.012) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 600 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F F G Cap (μF) 0.010 103 G G G 0.012 123 G G G 0.015 153 G G G 0.018 183 G G G 0.022 223 G G G 0.033 333 G G G 0.047 473 G G G 0.056 563 G G G 0.068 683 G G G 0.100 104 G G G 600 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E F F F F F F F F F F F E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G 630 1000 1500 2000 2500 3000 4000 600 Case Size Letter Max. Thickness E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G C 1.448 (0.057) 122 ■ MAY 2015 E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G 2220 E 1.8034 (0.071) F 2.2098 (0.087) E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E E E E E E E E E E E E E E E F F F F G G G E E E E E E E E E E E E E E E F F E E E E E E E E E E E E E E E F F 630 1000 1500 2000 2500 3000 4000 5000 600 1825 A 0.813 (0.032) E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G G G 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F F G Voltage (V) E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G 5.70 ± 0.40 (0.224 ± 0.016) 5.00 ± 0.40 (0.197 ± 0.016) 3.30 (0.130) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 600 G 2.794 (0.110) X 0.940 (0.037) E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E F F G G G G E E E E E E E E E E E E E E E E E E E E E E E E F E F F G E E E E E E E E E E E E E E E E E E E E E E E E E E F F G F F F F F F F F F F F F G G G G G G G G G G F F F F F F F F G G G G G G G G G G 630 1000 1500 2000 2500 3000 4000 5000 2225 NOTE: Contact factory for non-specified capacitance values High Voltage MLC Chips FLEXITERM® For 600V to 5000V Applications X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 0805 1206 1210 1808 1812 Soldering Reflow/Wave Reflow/Wave Reflow Only Reflow Only Reflow Only 2.01 ± 0.20 (0.079 ± 0.008) 1.25 ± 0.20 (0.049 ± 0.008) 1.30 (0.051) 0.50 ± 0.25 (0.020 ± 0.010) 600 630 1000 3.20 ± 0.20 (0.126 ± 0.008) 1.60 ± 0.20 (0.063 ± 0.008) 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 3.20 ± 0.20 (0.126 ± 0.008) 2.50 ± 0.20 (0.098 ± 0.008) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 630 1000 1500 4.57 ± 0.25 (0.180 ± 0.010) 2.03 ± 0.25 (0.080 ± 0.010) 2.03 (0.080) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 4.50 ± 0.30 (0.177 ± 0.012) 3.20 ± 0.20 (0.126 ± 0.008) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 1000 1500 2000 2500 (L) Length mm (in.) mm (in.) mm (in.) min max (W) Width (T) Thickness (t) Terminal Voltage (V) Cap (pF) Cap (μF) 2000 600 100 101 X X C 600 C C E E E E E E E 2000 E 600 630 120 121 X X C C C E E E E E E E E 150 151 X X C C C E E E E E E E E 180 181 X X C C C E E E E E E E E 220 221 X X C C C E E E E E E E E 270 271 X X C C C E E E E E E E E 330 331 X X C C C E E E E E E E 390 391 X X C C C E E E E E E 470 471 X X C C C E E E E E 560 561 X X C C C E E E E 680 681 X X C C C E E E 750 751 X X C C C E E E 820 821 X X C C C E E 1000 102 X X C C C E 1200 122 X X C C C 1500 152 X X C C C 1800 182 X X C 2200 222 X X C 2700 272 X X 3300 332 X 3900 392 X 4700 472 5600 3000 E E E E E E E F E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E C E E E E E E E C E E E E E E F C C E E E E E X C C E E E X C C E E E X X C C E E 562 X X C C E 6800 682 X X C C 8200 822 X X C C 4000 600 630 E E E E E E E E E E F E E E E E E F E E E E E E E E F F E E E E E E E E E F F E E E E E F F E E F F E E E E E F F E E E F F E E E E E F F E E E E F F E E E E E F F E E E E E F F E E E E E F F E E E E E F F E E E E E G G E E E E E E F F E E E E E G G E E E E F F F E E E E E G G F E E E E F F E E E E E G G E F E E E E F F E E E F F G G E G E E E F E E E F F G G E E G E E E F E E E F F G G E E E G E E E F E E E G G E E E E E E E F E E E E E E E 2500 3000 E E E G G E E E G G G 0.010 103 C C C C E E E E E E E E E F G 0.015 153 C C E E E E E E F F F E E F G 0.018 183 C C E E E E E F F F E E G 0.022 223 C C E E E E E F F E E G 0.027 273 E E E E F F E E G 0.033 333 E E E E F F E E G 0.039 393 E E F F E E G 0.047 473 E E F F E E G 0.056 563 F F F F F F 0.068 683 F F F F 0.082 823 F F 0.100 104 F F F F 0.150 154 G G 0.220 224 G G 0.270 274 0.330 334 0.390 394 0.470 474 0.560 564 0.680 684 0.820 824 1.000 105 600 630 Voltage (V) Case Size 600 630 0805 1000 600 630 1000 1206 1500 2000 600 630 1000 1210 1500 2000 600 630 1000 1500 2000 1808 2500 3000 4000 F F F F 1000 1500 2000 3000 4000 4000 1812 MAY 2015 ■ 123 High Voltage MLC Chips FLEXITERM® For 600V to 5000V Applications X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED Case Size 1825 2220 2225 Soldering Reflow Only Reflow Only Reflow Only (L) Length mm (in.) (W) Width mm (in.) (T) Thickness mm (in.) (t) Terminal min max Voltage (V) Cap (pF) 600 4.50 ± 0.30 (0.177 ± 0.012) 6.40 ± 0.30 (0.252 ± 0.012) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 600 5.70 ± 0.40 (0.224 ± 0.016) 5.00 ± 0.40 (0.197 ± 0.016) 3.30 (0.130) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 600 5.72 ± 0.25 (0.225 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 630 1000 1500 2000 2500 3000 4000 5000 100 101 120 121 150 151 180 181 220 221 270 271 330 331 390 391 470 471 560 561 680 681 750 751 820 821 1000 102 F F F F F F F F F F F F F G F F F F F F F 1200 122 F F F F F F F F F F F F F G F F F F F F F 1500 152 F F F F F F F F F F F F F G F F F F F F F 1800 182 F F F F F F F F F F F F F G F F F F F F F 2200 222 F F F F F F F F F F F F F G F F F F F F F 2700 272 F F F F F F F F F F F F F G F F F F F F F 3300 332 F F F F F F F F F F F F F G F F F F F F F 3900 392 F F F F F F F F F F F F F G F F F F F F F 4700 472 F F F F F F F F F F F F F G F F F F F F F 5600 562 F F F F F F F F F F F F F G F F F F F F F 6800 682 F F F G G G G F F F F F G G F F F F F G G 8200 822 F F F G G G G F F F G G G G F F F F F G G Cap (μF) 0.010 103 F F F G G G G F F F G G G G F F F F F G G 0.015 153 F F F G G G F F F G G G F F F G G G G 0.018 183 F F F G G F F F G G G F F F G G G 0.022 223 F F F G G F F F G G F F F G G G 0.027 273 F F F G F F F G G F F F G G 0.033 333 F F F G F F F G F F F G G 0.039 393 F F F G F F F G F F F G 0.047 473 F F F P F F F G F F F G 0.056 563 F F F G F F F G F F F G 0.068 683 F F G F F G F F F G 0.082 823 F F G F F G F F G 0.100 104 F F G F F G F F G 0.150 154 F F F F G F F G 0.220 224 F F F F G F F 0.270 274 F F F F F F 0.330 334 F F F F F F 0.390 394 F F F F F F 0.470 474 F F F F F F 0.560 564 G G G G F F G G G G G G 0.680 684 0.820 824 1.000 105 Voltage (V) 600 630 1000 1500 2000 2500 3000 4000 600 Case Size Letter Max. Thickness 630 1000 1500 2000 2500 3000 4000 5000 600 1825 A 0.813 (0.032) C 1.448 (0.057) 124 ■ MAY 2015 2220 E 1.8034 (0.071) F 2.2098 (0.087) G 2.794 (0.110) P 3.048 (0.120) 630 1000 1500 2000 2500 3000 4000 5000 2225 X 0.940 (0.037) NOTE: Contact factory for non-specified capacitance values High Voltage MLC Leaded Chips For 600V to 5000V Applications HOW TO ORDER 1825 AVX Style 1825 2225 3640 A A Voltage 600V/630V = 1000V = 1500V = 2000V = 2500V = 3000V = 4000V = 5000V = C A S G W H J K 271 K A V 00N Temperature Capacitance Code Capacitance Test Level Finish Lead Style Coefficient (2 significant digits Tolerance A = Standard V = Uncoated 00N = Straight Lead C0G = A + no. of zeros) C0G:J = ±5% W = Epoxy Coated 00J = Leads Formed In X7R = C Examples: K = ±10% 00L = Leads Formed Out 10 pF = 100 M = ±20% 100 pF = 101 X7R:K = ±10% 1,000 pF = 102 M = ±20% 22,000 pF = 223 Z = +80%, 220,000 pF = 224 -20% Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Capacitors may require protective surface coating to prevent external arcing. Not RoHS Compliant B D A 1.397 (0.055) ±0.254 (0.010) E “N” STYLE LEADS 6.35 (0.250) MIN. 0.254 (0.010) TYP. 0.508 (0.020) TYP. 2.54 (0.100) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. C 0.254 (0.010) RAD. (TYP.) B A D 1.397 (0.055) ±0.254 (0.010) E “J” STYLE LEADS 0.254 (0.010) TYP. 1.905 (0.075) 1.778 (0.070) ±0.254 (0.010) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.635 (0.025) C TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. B A D 0.254 (0.010) RAD. (TYP.) 1.397 (0.055) ±0.254 (0.010) E “L” STYLE LEADS 0.254 (0.010) TYP. 1.778 (0.070) 0.508 (0.020) TYP. 2.54 (0.100) TYP. ±0.254 (0.010) C 1.905 (0.075) ±0.635 (0.025) TYP. 2.54 (0.100) MAX. 0.635 (0.025) MIN. DIMENSIONS Style 1825 2225 3640 millimeters (inches) A (max.) B (max.) 2.54 (0.100) For “N” Style Leads, “B” Dimension = 4.19 (0.165) For “J” & “L” Leads, “B” Dimension = 4.58 (0.180) C ±.635 (±0.025) 5.08 (0.200) 6.35 (0.250) 10.2 (0.400) D ±.635 (±0.025) 6.35 (0.250) 6.35 (0.250) 10.2 (0.400) No. of Leads per side 3 3 4 E (max.) 6.86 (0.270) 7.62 (0.300) 11.2 (0.440) Note: For W (Epoxy Coated) part add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E Performance of SMPS capacitors can be simulated by downloading SpiCalci software program http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available. MAY 2015 ■ 125 High Voltage MLC Leaded Chips For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range 10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz) ±5%, ±10%, ±20% 0.15% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz) -55°C to +125°C 0 ±30 ppm/°C (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 1825 min. 600/630 max. min. 1000 max. min. 1500 max. min. 2000 max. min. 2500 max. min. 3000 max. min. 4000 max. min. 5000 max. 1000 pF 0.012 μF 100 pF 8200 pF 100 pF 4700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 8200 pF 10 pF 330 pF — — 2225 1000 pF 0.018 μF 1000 pF 0.010 μF 100 pF 5600 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1200 pF 10 pF 560 pF 10 pF 270 pF 3640 1000 pF 0.047 μF 1000 pF 0.022 μF 100 pF 0.010 μF 100 pF 6800 pF 100 pF 3900 pF 100 pF 2700 pF 100 pF 1200 pF 10 pF 820 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25°C, at 500 VDC) Insulation Resistance (+125°C, at 500 VDC) Dielectric Strength 100 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz) ±10%; ±20%; +80%, -20% 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz) -55°C to +125°C ±15% (0 VDC) 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C) 100K MΩ min. or 1000 MΩ - μF min., whichever is less 10K MΩ min. or 100 MΩ - μF min., whichever is less Minimum 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600/630 1000 1500 2000 2500 3000 4000 5000 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 1825 2225 3640 0.010 μF 0.270 μF 1000 pF 0.100 μF 1000 pF 0.056 μF 100 pF 0.022 μF 100 pF 0.015 μF 100 pF 0.010 μF — — — — 0.010 μF 0.330 μF 1000 pF 0.150 μF 1000 pF 0.068 μF 1000 pF 0.033 μF 100 pF 0.022 μF 100 pF 0.015 μF — — — — 0.010 μF 0.560 μF 0.010 μF 0.220 μF 1000 pF 0.100 μF 1000 pF 0.027 μF 1000 pF 0.022 μF 1000 pF 0.018 μF 100 pF 6800 pF 100 pF 3300 pF 126 ■ MAY 2015 Tip & Ring Multilayer Ceramic Chip Capacitors AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip Capacitors are designed as a standard telecom filter to block -48 Volts DC telephone line voltage and pass subscriber’s AC signal pulse (16 to 25Hz, 70 to 90Vrms). The typical ringing signal is seen on figure on page 128. The ringer capacitors replace large leaded film capacitors and are ideal for telecom/modem applications. Using AVX “Tip & Ring” capacitors not only saves valuable real estate on the board and reduces the weight of overall product, but also features standard surface mounting capabilities, so critical to new and compact designs. The AVX “Tip & Ring” capacitors are offered in standard EIA sizes and standard values. They offer excellent high frequency performance, low ESR and improved temperature performance over film capacitors. HOW TO ORDER 1812 P C 104 K A T AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 Voltage 250 VDC Telco Rating Temp Coefficient X7R Capacitance Code (2 significant digits + no. of zeros) Examples: 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance K = ±10% M = ±20% Test Level A = Standard 1 A Packaging Termination 1 = 7" Reel T = Plated 3 = 13" Reel Ni and Sn (RoHS Compliant) 9 = Bulk Z = FLEXITERM® 100% Tin (RoHS Compliant) Special Code A = Standard Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. W L T t DIMENSIONS Style 0805 millimeters (inches) 1206 1210* 1808* 1812* 1825* 2220* 2225* (L) Length 2.01 ± 0.20 3.20 ± 0.20 3.2 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.60 ± 0.30 5.60 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010) (W)Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25 (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010) (T) Thickness (t) terminal 1.30 max. (0.051 max.) 1.50 max. (0.059 max.) 1.78 max. (0.070 max.) 1.78 max. (0.070 max.) 2.00 max. (0.080 max.) 2.00max. (0.080 max.) 2.00 max. (0.080 max.) 2.00 max. (0.080 max.) 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 (0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) *Reflow Soldering Only MAY 2015 ■ 127 Tip & Ring Multilayer Ceramic Chip Capacitors CAPACITANCE RANGE (μF) Size min. max. 0805 0.0010 0.027 1206 0.0010 0.082 1210 0.0010 0.22 1808 0.010 0.27 1812 0.10 0.47 1825 0.33 1.0 2220 0.47 1.0 2225 0.47 1.2 “TIP & RING” GRAPH 250V Tip & Ring 0 -48V -250V 200ms/div -400ms 1.6s PERFORMANCE CHARACTERISTICS Capacitance Range 1000 pF to 1.2 μF Capacitance Tolerances ±10%, ±20% Dissipation Factor 2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz) Operating Temperature Range Temperature Characteristic (25°C, 1.0 ±0.2 Vrms at 1kHz) -55°C to +125°C X7R ±15% (0 VDC) Voltage Rating 250 VDC Telco rating Insulation Resistance 1000 megohm-microfarad min. Dielectric Strength Minimum 200% rated voltage for 5 seconds at 50 mA max. current 128 ■ MAY 2015 Tip & Ring Tin/Lead Termination “B” Multilayer Ceramic Chip Capacitors AVX Corporation will support customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a “B” in the 12th position of the AVX Catalog Part Number. This fulfills AVX’s commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this “B” termination. AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip Capacitors are designed as a standard telecom filter to block -48 Volts DC telephone line voltage and pass subscriber’s AC signal pulse (16 to 25Hz, 70 to 90 VRMS). The typical ringing signal is seen on figure on page 130. The ringer capacitors replace large leaded film capacitors and are ideal for telecom/modem applications. Using AVX “Tip and Ring” capacitors not only saves valuable real estate on the board and reduces the weight of the overall product, but also features standard surface mounting capabilities, so critical to new and compact designs. The AVX “Tip & Ring” capacitors are offered in standard EIA sizes and standard values. They offer excellent high frequency performance, low ESR and improved temperature performance over film capacitors. HOW TO ORDER A LD12 P C 104 K AVX Style LD05 - 0805 LD06 - 1206 LD10 - 1210 LD08 - 1808 LD12 - 1812 LD13 - 1825 LD20 - 2220 LD14 - 2225 Voltage 250 VDC Telco Rating Temperature Coefficient X7R Capacitance Code (2 significant digits + no. of zeros) Examples: 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 Capacitance Tolerance K = ±10% M = ±20% B Test Termination Level B = 5% Min Pb A = Standard X = FLEXITERM® 5% min. Pb 1 A Packaging 1 = 7" Reel 3 = 13" Reel 9 = Bulk Special Code A = Standard Contact factory for availability of Termination and Tolerance options for Specific Part Numbers. Not RoHS Compliant W L T t DIMENSIONS STYLE (SIZE) (L) Length (W)Width (T) Thickness (t) terminal millimeters (inches) LD05 (0805) LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225) 2.01 ± 0.20 3.20 ± 0.20 3.2 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.60 ± 0.30 5.60 ± 0.25 (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010) 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25 (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010) 1.30 max. (0.051 max.) 1.50 max. (0.059 max.) 1.78 max. (0.070 max.) 1.78 max. (0.070 max.) 2.00 max. (0.080 max.) 2.00max. (0.080 max.) 2.00 max. (0.080 max.) 2.00 max. (0.080 max.) 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 (0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) *Reflow Soldering Only MAY 2015 ■ 129 Tip & Ring Tin/Lead Termination “B” Multilayer Ceramic Chip Capacitors CAPACITANCE RANGE (μF) STYLE (SIZE) min. max. LD05 (0805) 0.0010 0.027 LD06 (1206) 0.0010 0.082 LD10 (1210) 0.0010 0.22 LD08 (1808) 0.010 0.27 LD12 (1812) 0.10 0.47 LD13 (1825) 0.33 1.0 LD20 (2220) 0.47 1.0 LD14 (2225) 0.47 1.2 “TIP & RING” GRAPH 250V Tip & Ring 0 -48V -250V 200ms/div -400ms 1.6s PERFORMANCE CHARACTERISTICS Capacitance Range 1000 pF to 1.2 μF Capacitance Tolerances ±10%, ±20% Dissipation Factor 2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz) Operating Temperature Range (25°C, 1.0 ±0.2 Vrms at 1kHz) -55°C to +125°C Temperature Characteristic X7R ±15% (0 VDC) Voltage Rating 250 VDC Telco rating Insulation Resistance 1000 megohm-microfarad min. Dielectric Strength Minimum 200% rated voltage for 5 seconds at 50 mA max. current 130 ■ MAY 2015 MLC Chips Packaging of Chip Components AUTOMATIC INSERTION PACKAGING TAPE & REEL QUANTITIES All tape and reel specifications are in compliance with EIA481 or IEC-286-3. Tape Size 8mm Component Pitch P1 4.00 12mm 4.00 24mm 8.00 1812 1825 2220 2225 (LD12) (LD13) (LD20) (LD14) 8.00 16.00 HQCC 3640 (LD40) HQCE 0805 (LD05) 1206 (LD06) 1210 (LD10) 1808 (LD08) Qty. per Reel/7" Reel 2000 2000 1000 500 N/A Qty. per Reel/13" Reel 10,000 4000 4000 2000 1000 Note: Lower quantity per reel may be used at the discretion of AVX. REEL DIMENSIONS DIMENSIONS millimeters (inches) Tape Size A Max. B* Min. C D* Min. N Min. W1 W2 Max. W3 8mm 330 (12.992) 1.5 (0.059) 13.0±0.20 (0.512±0.008) 20.2 (0.795) 50 (1.969) +1.5 -0.0 (0.331 +.059) -0.0 14.4 (0.567) 7.9 Min. (0.311) 10.9 Max. (0.429) 12mm 330 (12.992) 1.5 (0.059) 13.0±0.20 (0.512±0.008) 20.2 (0.795) 50 (1.969) +2.0 12.4 -0.0 (0.488 +.079) -0.0 18.4 (0.724) 11.9 Min. (0.469) 15.4 Max. (0.606) 20.2 (0.795) 60 (2.362) +2.0 24.4 -0.0 (0.961 +.079) -0.0 30.4 (1.197) 23.9 Min. (0.941) 27.4 Max. (1.079) +0.5 Metric dimensions will govern. 13.0 -0.2 1.5 English measurements360 rounded and for reference only. 24mm (14.173) (0.059) (0.512 +.020) -.008 8.4 MAY 2015 ■ 131 MLC Chips Packaging of Chip Components P0 T2 T D0 P2 10 PITCHES CUMULATIVE TOLERANCE ON TAPE ±0.2mm (±0.008) EMBOSSMENT DEFORMATION BETWEEN EMBOSSMENTS Chip Orientation E1 A0 F TOP COVER TAPE B1 T1 W B0 K0 S1 E2 CENTER LINES OF CAVITY P1 MAX. CAVITY SIZE - SEE NOTE 1 B1 IS FOR TAPE READER REFERENCE ONLY INCLUDING DRAFT CONCENTRIC AROUND B0 D1 FOR COMPONENTS 2.00 mm x 1.20 mm AND LARGER (0.079 x 0.047) User Direction of Feed 8mm, 12mm & 24mm Embossed Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size D0 8mm 12mm 24mm 1.50 (0.059 +0.10 -0.0 +0.004 -0.0 millimeters (inches) E1 ) P0 1.75 ± 0.10 4.0 ± 0.10 (0.069 ± 0.004) (0.157 ± 0.004) S1 Min. T Max. T1 0.60 (0.024) 0.60 (0.024) 0.10 (0.004) Max. VARIABLE DIMENSIONS Tape Size B1 Max. D1 Min. 8mm 4.35 (0.171) 1.00 (0.039) 12mm 8.20 (0.323) 12mm Double Pitch 24mm E2 Min. millimeters (inches) F P1 R Min. See Note 2 T2 Max. W Max. A0 B0 K0 6.25 3.50 ± 0.05 4.00 ± 0.10 2.00 ± 0.05 (0.246) (0.138 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002) 25.0 (0.984) 2.50 (0.098) 8.30 (0.327) See Note 1 1.50 (0.059) 10.25 5.50 ± 0.05 4.00 ± 0.10 2.00 ± 0.05 (0.404) (0.217 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002) 30.0 (1.181) 6.50 (0.256) 12.3 (0.484) See Note 1 8.20 (0.323) 1.50 (0.059) 10.25 5.50 ± 0.05 8.00 ± 0.10 2.00 ± 0.05 (0.404) (0.217 ± 0.002) (0.315 ± 0.004) (0.079 ± 0.002) 30.0 (1.181) 6.50 (0.256) 12.3 (0.484) See Note 1 20.10 (0.791) 1.50 (0.059) 22.25 11.5 ± 0.10 16.00 ± 0.10 2.00 ± 0.10 (0.876) (0.453 ± 0.004) (0.630 ± 0.004) (0.079 ± 0.004) 30.0 (1.181) 12.00 (0.472) 24.3 (0.957) See Note 1 NOTES: 1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that: a) the component does not protrude beyond the sealing plane of the cover tape. b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed. c) rotation of the component is limited to 20º maximum (see Sketches D & E). d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F). P2 2. Tape with or without components shall pass around radius “R” without damage. 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556. 4. B1 dimension is a reference dimension for tape feeder clearance only. Top View, Sketch "F" Component Lateral Movements 0.50mm (0.020) Maximum 0.50mm (0.020) Maximum Side or Front Sectional View Sketch “D” 132 ■ MAY 2015 Top View Sketch “E” Surface Mount CapGuardTM Varistor/Capacitor Combination for EMI/Surge Suppression AVX’s surface mount CapGuardTM products are designed to provide both transient voltage protection and EMI/RFI suppression for electronic circuits. CapGuards are ideally suited to filter out EMI/RFI noise generated by switch mode power supplies or motors on DC lines or I/O lines in electronic circuits. With multilayer varistor (MLV) utilized in CapGuard product, effective transient voltage protection is achieved to protect sensitive electronics from high voltage transients. The capacitor, on the other hand, absorbs high frequency noise on the line. The MLCC capacitors are designed with temperature stable X7R dielectric, allowing for wide temperature use with good capacitance stability. The surface mount CapGuards are characterized with a very small form factor to minimize board space. The parts are assembled using high melting point solder (268ºC solidus / 290ºC liquidus) allowing for standard reflow processing during board level assembly without a risk of reflowing HMP solder. HOW TO ORDER MV 10 18 J 104 M A A 1 Product Designation MLCC/Varistor (MLV) Component Style 1210 Working Voltage 18 = 18V 26 = 26V 48 = 48V 60 = 60V Transient Energy Rating J = 1.5 - 1.6J H = 1.2J Capacitance Code (2 significant digits + no. of zeros) Examples: 0.012μF = 123 0.047μF = 473 0.1μF = 104 Tolerance M = ±20% Specification Code A = Standard Termination HMP Packaging T&R PRODUCT OFFERING Operating Voltage (V) MV1018J123MAA1 MV1018J473MAA1 MV1018J104MAA1 MV1026H123MAA1 MV1026H473MAA1 MV1026H104MAA1 MV1048H123MAA1 MV1048H473MAA1 MV1048H104MAA1 MV1060J123MAA1 MV1060J473MAA1 MV1060J104MAA1 18 18 18 26 26 26 48 48 48 60 60 60 Nominal Breakdown Voltage (V) 25 25 25 34.5 34.5 34.5 62 62 62 76 76 76 Breakdown Voltage Range (V) 23 - 28 23 - 28 23 - 28 31 - 38 31 - 38 31 - 38 55 - 69 55 - 69 55 - 69 68 - 84 68 - 84 68 - 84 Clamping Voltage (V) 42 42 42 60 60 60 100 100 100 120 120 120 Current for Clamping Voltage (Amp) 5 5 5 5 5 5 5 5 5 5 5 5 Transient Energy (J) Peak Current (Amp) Typical Capacitance (uF) 1.6 1.6 1.6 1.2 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 500 500 500 300 300 300 250 250 250 250 250 250 0.012 0.047 0.1 0.012 0.047 0.1 0.012 0.047 0.1 0.012 0.047 0.1 MAY 2015 ■ 133 Surface Mount CapGuardTM Varistor/Capacitor Combination for EMI/Surge Suppression FEATURES TARGET APPLICATIONS • • • • • • Avionics, Military, I/O port protection EMI filtering with surge protection High Capacitance / EMI Filtering Bi-Directional Protection Fast Turn-On Time Multiple Strike Capability HMP Solder Termination 1210 EIA Case Size GENERAL CHARACTERISTICS Storage Temperature: -55ºC to +125ºC Operating Temperature: -55ºC to +125ºC TYPICAL VOLTAGE CURRENT RESPONSE TYPICAL PULSE POWER DURATION 250 100000 MV1018J123MAA MV1026H123MAA MV1048H123MAA MV1060J123MAA 10000 150 Power Voltage 200 100 1000 MV1018J123MAA MV1026H123MAA MV1048H123MAA MV1060J123MAA 100 50 0 0.000001 10 0.001 1 1000 10 100 Current (Amps) TYPICAL HIGH FREQUENCY CHARACTERISTICS 0 10000 DIMENSIONS CAPACITOR MV1018J123 -10 MV1018J104 MV1060J123 -20 Insertion Loss (dB) 1000 Time (uS) -30 TRANSIENT VOLTAGE SUPPRESSOR T MV1060J104 HIGH TEMPERATURE SOLDER 10/88/2 (Sn/Pb/Ag) MV1026H104 MB (2 PLACES) -40 -50 W -60 -70 0.1 1 10 100 1000 10000 Frequency (MHz) L millimeters (inches) 134 ■ MAY 2015 Lenght (L) Width (W) Thickness (T) 3.302 ± 0.381 (0.130) ± (0.015) 2.540 ± 0.381 (0.100) ± (0.015) 2.794 (0.110) Max. Metallized Bands (MB) 0.5 ± 0.25 (0.02) ± (0.01) Single-In-Line Packages (SIP) Capacitor Arrays SIP-style, MLC ceramic capacitor arrays are Single-In-Line, conformally coated packages. These capacitor networks incorporate multiple capacitors into a single substrate and, therefore, offer excellent TC tracking. The utilization of SIP capacitor arrays minimizes board real estate and reduces component count in the assembly. Various circuit configurations and capacitance/voltage values are available. Dimensions in millimeters (inches) Length (Max.) Length = [# of Leads x 2.54 (0.100)] + 1.27 (0.050) i.e., 10 Lead SIP = 26.67 (1.050) 3.429 (0.135) Max. 7.62 (0.300) Max. 0.254 (0.010) Typ. 3.81 (0.150) Min. 0.508 (0.020) Typ. 1.524 (0.060) Typ. 2.54 (0.100) Typ. 1 2 3 4 5 6 7 8 9 10 CIRCUIT CONFIGURATION "A" ONE END LEAD GROUND 1 2 3 4 5 6 7 8 9 10 CIRCUIT CONFIGURATION "B" ADJACENT LEAD PAIR CAPS 1 2 3 4 5 6 7 8 9 10 CIRCUIT CONFIGURATION "C" BOTH END LEADS GROUND MAY 2015 ■ 135 Single-In-Line Packages (SIP) Capacitor Arrays HOW TO ORDER SP AVX Style A 1 1 A 561 K A A Circuit Lead Style Voltage Temperature Coefficient Capacitance Code Capacitance Tolerance Test Level Number of Leads See page 135 (A, B, C) 50V = 5 100V = 1 C0G = A X7R = C Z5U = E (2 significant digits + no. of zero) 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF = 105 10 μF = 106 100 μF = 107 C0G: K = ±10% A = Standard M = ±20% X7R: K = ±10% M = ±20% Z = +80%,-20% Z5U: M = ±20% Z = +80%,-20% P = GMV (+100,-0%) 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 A = 10 B = 11 C = 12 D = 13 E = 14 *For dimensions, voltages, or capacitance values not specified, please contact factory. Not RoHS Compliant Maximum Capacitance* 50V 2200 pF 0.10 μF 0.39 μF C0G X7R Z5U 100V 1500 pF 0.10 μF 0.10 μF AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS SPECIFICATION # DESCRIPTION CIRCUIT LEADS CAPACITANCE RANGE 87112 BX-100 VDC A 8 87116 C0G-100 VDC A 8 87119 BX-100 VDC C 10 87120 C0G-100 VDC C 10 87122 BX-100 VDC B 8 1000 pF - 0.1 μF 88019 BX-100 VDC A 10 1000 pF - 0.1 μF 89086 C0G-100 VDC B 8 136 ■ MAY 2015 1000 pF - 0.1 μF 10 pF - 820 pF 1000 pF - 0.1 μF 10 pF - 1000 pF 10 pF - 820 pF Discoidal MLC Feed-Through Capacitors and Filters DC Style (US Preferred Sizes) APPLICATION INFORMATION ON DISCOIDAL LOWEST CAPACITANCE IMPEDANCES TO GROUND A discoidal MLC capacitor has very low impedance associated with its ground path since the signal is presented with a multi-directional path. These electrode paths, which can be as many as 100, allow for low ESR and ESL which are the major elements in impedance at high frequencies. The assembled discoidal element or feed-thru allows signal to be fed in through a chassis or bulkhead, conditioned as it passes through the discoidal, and isolated by the chassis and discoidal from the original signal. An example of this application would be in an AFT circuit where the AC noise signal would be required to be stripped from the DC control signal. Other applications include single line EMI/RFI suppression, L-C filter construction, and coaxial shield bypass filtering. The shape of the discoidal lends itself to filter construction. The short length allows compact construction where L-C construction is desired. The size freedom associated with this element allows almost any inside/ outside diameter combination. By allowing the inside diameter to equal the center insulator diameter of a coaxial signal line and special termination techniques, this device will allow bypass filtering of a floating shield to ground. * Discoidal capacitors are available in two (2) temperature coefficients (C0G, X7R) and a variety of shapes and sizes, the most standard of which appear on pages 138 and 139. * Custom designed capacitor arrays are available in an unlimited number of configuration with a wide range of rating voltages (50–2000) and temperature coefficients (NPO, BX, BR, X7R) please see page 138. For additional information please contact AVX. ID T Max. These surfaces are metallized .127 (0.005). minimum wide except for DC61, DC26 and DC63 where metallized surfaces are .127 (0.005) maximum. *Tol. = +-.254 (0.010) or 3%, whichever is greater INSERTION LOSS 0 -10 SINGLE CHIP -20 AVX’s DC Series 50V, 100V, 200V, C0G and X7R parts are capable of meeting the requirements of MIL-PRF-31033. -30 (dB) OD* -40 DISCOIDAL -50 -60 -70 -80 0 100 200 ELECTRICAL SPECIFICATIONS 500 600 700 800 900 1000 Insulation Resistance 125°C (MIL-STD-202 Method 302) C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Dielectric Withstanding Voltage 25°C (Flash Test)* C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max charging current. 500V rated units will be tested at 750 VDC Life Test (1000 hrs) C0G and X7R: 200% rated voltage at +125°C (500 Volt units @ 600 VDC) Moisture Resistance (MIL-STD-202 Method 106) C0G, X7R: Ten cycles with no voltage applied. Thermal Shock (MIL-STD-202 Method 107, Condition A) Immersion Cycling (MIL-STD-202 Method 104, Condition B) Not RoHS Compliant HOW TO ORDER 5 400 f (MHz) Temperature Coefficient C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° +125°C X7R: C Temperature Coefficient - ±15%, -55° to +125°C Capacitance Test (MIL-STD-202 Method 305) C0G: 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz X7R: 25°C, 1.0±0.2 Vrms at 1KHz Dissipation Factor 25°C C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms at 1KHz Insulation Resistance 25°C (MIL-STD-202 Method 302) C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. DC61 300 A AVX Voltage Temperature Style 50V = 5 Coefficient See Pages 100V = 1 C0G = A 138-139 200V = 2 X7R = C 500V = 7 561 K Capacitance Code Capacitance (2 significant digits Tolerance + no. of zeros) C0G: J = ±5% Examples: K = ±10% M = ±20% 10 pF = 100 X7R: K = ±10% 100 pF = 101 M = ±20% 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 A 5 1 06 Test Level A = Standard Termination Inside Maximum 5 = Silver Diameter Thickness (AVX Standard) See Pages 04 = 1.02 (0.040) A = Unterminated 122-123 06 = 1.52 (0.060) 7 = Ti/W/Ni w/Au Sputter 10 = 2.54 (0.100) (100μ inches) For dimensions, voltages or values not specified, please consult factory. MAY 2015 ■ 137 Discoidal MLC Feed-Through Capacitors and Filters DC Style SIZE AND CAPACITANCE SPECIFICATIONS EIA Characteristic C0G DC08 DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72 Outside Diameter (OD)* 1.27 (0.050) 2.03 (0.080) 2.54 (0.100) 3.43 (0.135) 3.81 (0.150) 4.83 (0.190) 5.33 (0.210) 5.97 (0.235) 6.73 (0.265) 8.13 (0.320) 8.51 (0.335) 8.89 (0.350) 9.40 (0.370) 9.78 (0.385) 12.70 (0.500) 15.24 (0.600) 16.26 (0.640) Thickness Maximum 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) 1.52 (0.060) 1.52 (0.060) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 1 1,2 1,2 1,2,3 1,2,3,4 1,2,3 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 Sputter All (T) Inside Diameter No. (ID) Termination Voltage cap. in pF 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 DC50 50 AVX Style Dimensions: millimeters (inches) 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 10,000 12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000 56,000 68,000 82,000 100,000 120,000 150,000 180,000 220,000 270,000 330,000 390,000 470,000 560,000 680,000 DC50 termination can only be sputter Aμ *Outside Diameter: Tolerance is ±0.254 (0.010) or 3% whichever is greater 138 ■ MAY 2015 Inside Diameter: +.127 +.005 1 = .635 -.051 (.025 -.002) +.127 +.005 2 = .762 -.051 (.030 -.002) +.127 +.005 3 = .914 -.051 (.036 -.002) +.127 +.005 4 = 1.07 -.051 (.042 -.002) 5 = 1.27±.127 (0.050±.005) 6 = 1.52±.127 (0.060±.005) 7 = 1.73±.127 (0.068±.005) Discoidal MLC Feed-Through Capacitors and Filters DC Style SIZE AND CAPACITANCE SPECIFICATIONS EIA Characteristic X7R DC08 DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72 Outside Diameter (OD)* 1.27 (0.050) 2.03 (0.080) 2.54 (0.100) 3.43 (0.135) 3.81 (0.150) 4.83 (0.190) 5.33 (0.210) 5.97 (0.235) 6.73 (0.265) 8.13 (0.320) 8.51 (0.335) 8.89 (0.350) 9.40 (0.370) 9.78 (0.385) 12.70 (0.500) 15.24 (0.600) 16.26 (0.640) Thickness Maximum 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) 1.52 (0.060) 1.52 (0.060) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) 1 1,2 1,2 1,2,3 1,2,3,4 1,2,3 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 5,6,7 1,2,3,4 Termination Sputter All Voltage (T) Inside Diameter No. (ID) cap. in pF 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 500 200 100 50 DC50 50 AVX Style Dimensions: millimeters (inches) 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 10,000 12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000 56,000 68,000 82,000 100,000 120,000 150,000 180,000 220,000 270,000 330,000 390,000 470,000 560,000 680,000 820,000 1.0 µF 1.2 µF 1.5 µF 1.8 µF 2.2 µF 2.7 µF 3.3 µF 3.9 µF 6.8 µF DC50 termination can only be sputter Aµ *Outside Diameter: Tolerance is ±0.254 (0.010) or 3% whichever is greater +.127 +.005 1 = .635 -.051 (.025 -.002) +.127 +.005 2 = .762 -.051 (.030 -.002) Inside Diameter: +.127 +.005 3 = .914 -.051 (.036 -.002) +.127 +.005 4 = 1.07 -.051 (.042 -.002) 5 = 1.27±.127 (0.050±.005) 6 = 1.52±.127 (0.060±.005) 7 = 1.73±.127 (0.068±.005) MAY 2015 ■ 139 Custom Discoidal Arrays Custom Applications requiring planar capacitor arrays designed to customer specific schematic including unique shapes, sizes, hole / pin configurations, multiple capacitor values, internal &/or external grounds, and more. APPLICATIONS • • • • • Implantable Medical Military Aerospace EMI Filters Assembly EMI Filter Arrays PRODUCTS These capacitor arrays form the basis for many custom filter assemblies. For full detail of these options, please follow the link below to our EMI filter master catalog. http://www.avx.com/docs/masterpubs/emift.pdf BENEFITS • • • • • 140 ■ MAY 2015 A custom designed filter bracket will help: To reduce your yield losses To eliminate filter rework in assemblies To reduce system assembly costs To minimize your inventory Filtered Arrays XD... Type FEATURES • • • • To be used beneath a connector Provide an EMI filtered signal line between electronic modules Effective insertion loss from 1MHz up to ~ 1GHz Surface mount compatible Not RoHS Compliant HOW TO ORDER XD 06 Z F 0153 AVX Style XD Size Class Voltage Capacitance 03 06 07 C = NP0 Z = X7R F = 200 J = 500 EIA code on 3 or 4 digits K -- Tolerance Packaging NP0 X7R F = ±1% G = ±2% J = ±5% K = ±10% J = ±5% K = ±10% M = ±20% SUFFIX Burn-in 100% 168H = T5 Burn-in 100% 48H = T3 No burn-in = -- STYLE & DIMENSIONS D L P L P d bm tm millimeters (inches) TYPES L P XD07 (4 capacitors) XD06 (4 capacitors) XD03 (2 capacitors) 7.00 ± 0.15 (0.275 ± 0.006) 6.00 ± 0.15 (0.236± 0.006) 6.00 x 3.00 ± 0.15 (0.236 x 0.118 ± 0.006) 2.54 (0.100) 2.54 (0.100) 2.54 (0.100) D 1.70 (0.067 1.70 (0.067 1.70 (0.067 ± ± ± ± ± ± d 0.15 0.006) 0.15 0.006) 0.15 0.006) 1.00 (0.039 1.00 (0.039 1.0 (0.039 ± ± ± ± ± ± 0.10 0.0039) 0.10 0.0039) 0.10 0.0039) bm maxi Thickness maxi 0.3 2mm 0.3 2mm 0.3 1.5mm Terminations: Silver – Palladium – Platinum, on 4 or only 2 sides of the array CAPACITANCE vs VOLTAGE TABLE Cap. Range (each cap.) 200VDC X7R 500VDC 200VDC NP0 500VDC XD07... 33nF → 120nF 4.7nF → 18nF 470pF → 1500pF 220pF → 620pF XD06... 15nF → 68nF 2.2nF → 10nF 220pF → 750pF 120pF → 330pF XD03... 8.2nF → 39nF 1nF → 4.7nF 180pF → 390pF 82pF → 180pF ELECTRICAL CHARACTERISTICS Dielectric Class Temperature Coefficient Climatic Category Rated Voltage (UR) Test Voltage (Ue) Tangent of Loss Angle - DF Insulation Resistance X7R ΔC/C ≤ ± 15% (-55 +125°C) 55 / 125 / 56 200 VDC 500VDC 2 x UR 1.5 x UR tg δ ≤ 250(10-4) C ≤ 10nF = Ri ≥ 100 GΩ C > 10nF = Ri x C ≥ 1000s NP0 0 ± 30ppm/°C 55 / 125 / 56 200VDC 2 x UR tg δ ≤ 15(10-4) Ri ≥ 100 GΩ 500VDC 1.5 x UR MAY 2015 ■ 141 Baseline Management A Dedicated Facility / BS9100 Requirements Baseline Products — A Selection of Options As a matter of course, AVX maintains a level of quality control that is sufficient to guarantee whatever reliability specifications are needed. However, AVX goes further. There are over 65 quality control and inspection operations that are available as options to a customer. Any number may be requested and written into a baseline process. The abbreviated list that follows indicates the breadth and thoroughness of available Q.C. services at AVX: Ultrasonic Scanning Destructive Physical Analysis (DPA) X-Ray Bondability Testing Sorting and Matching to Specification Limits Temperature and Immersion Cycling Load/Humidity Life Testing Dye Penetration Evaluation 100% Ceramic Sheet Inspection Voltage Conditioning Termination Pull Testing Pre-encapsulation Inspection Within the “specials” area, AVX accommodates a broad variety of customer needs. The AVX facilities are capable of developing and producing the most reliable and advanced MLCs available anywhere in the world today. Yet it is equally adept at making volume “custom” components that may differ only in markings or lead placement from the standard catalog part. Stretching the Limits Advanced Products are developed to meet the extraordinary needs of specific applications. Requirements may include: low ESR, low ESL, voltages up to 10’s of thousands, advanced decoupling designs for frequencies up to 10’s of megahertz, temperatures up to 200°C, extremely high current discharge, ability to perform in high radiation or toxic atmospheres, or minimizing piezoelectric effect in high vibration environments. In addition, solving customer packaging problems, aside from addressing circuit problems, is available. Special lead frames for high current or special mounting requirements are examples. Multiple ceramic chip package designs per customer requirements are also available. Advanced Products always begin with a joint development program involving AVX and the customer. In undersea cable components, for example, capacitance and impedance ratings had to be maintained within 1% over the multi-year life of the system. In this case, Advanced Products not only met the parametric requirements of the customer, but accelerated life testing of 3,500 units indicated an average life expectancy of over 100,000 years. PROCUREMENT OF COMPONENTS OF BS9100 (CH/CV RANGE 50-500V) The manufacturing facilities have IS09001 approval. Customers requiring BS9100 approved components are requested to follow these steps: 1. The customer shall submit a specification for the required components to AVX for approval. Once agreed a Customer Detail Specification (CDS) number will be allocated by AVX to this specification. This number with its current revision must be quoted at the time of order placement. 2. If the customer has no specification, 142 ■ MAY 2015 then AVX will supply a copy of the standard CDS for the customer’s approval and signature. As in 1 above, when agreed this CDS number must be quoted at order entry. In the event of agreement not being reached the component cannot be supplied to BS9100. For assistance contact: EMAP Specification Engineering Dept. AVX Ltd. Coleraine, Northern Ireland Telephone ++44 (0)28703 44188, Fax ++44 (0)28703 55527 Baseline Program Management Baseline Program Management has been AVX’s forte over the years. This is both a product and a service function designed to provide the customer the full capabilities of AVX in meeting their program requirements. AVX has had Baseline and Program Management in the following major systems: —AT&T Undersea Cable —Minuteman —Peacekeeper —STC Undersea Cable —CIT Undersea Cable —Raytheon-Hawk Missile —Trident —Small Missile Program —Northrop - Peacekeeper —Sparrow Program —Space Station —European Space Agency (ESA) —Commercial Satellite Program —Arianne 4 & 5 —EuroFighter (Typhoon) —EH101 (Merlin) AVX technical personnel stand ready to answer any questions and provide any information required on your programs from the most exotic Hi-Rel part to the simplest variation on a standard. Put the experience, technology and facilities of the leading company in multilayer ceramics to work for you. No other source offers the unique combination of capability and commitment to advanced application specific components. PACKAGING Unless otherwise stated in the appropriate data sheet parts are supplied in a waffle pack. Advanced Application Specific Products Examples of Special Packaging and Custom Lead Configurations from Advanced Products Custom Lead Configurations. . . optimum 3D packaging, high current applications and high reliability stress relief mounting. Custom Packaging. . . eliminate reliability concerns with multiple component assembly. Many other innovations are available from Advanced Products. Let them apply these ideas to your application specific programs. MAY 2015 ■ 143 AMERICAS EUROPE ASIA-PACIFIC ASIA-KED (KYOCERA Electronic Devices) AVX Greenville, SC AVX Limited, England Tel: 864-967-2150 Tel: +44-1276-697000 AVX/Kyocera (S) Pte Ltd., Singapore KED Hong Kong Ltd. Tel: +852-2305-1080/1223 Tel: +65-6286-7555 AVX S.A.S., France Tel: +33-1-69-18-46-00 AVX/Kyocera, Asia, Ltd., Hong Kong AVX GmbH, Germany Tel: +852-2363-3303 Tel: +49-0811-95949-0 AVX SRL, Italy AVX/Kyocera Yuhan Hoesa, South Korea Tel: +39-02-614-571 Tel: +82-2785-6504 AVX Czech Republic AVX/Kyocera HK Ltd., Taiwan Tel: +420-57-57-57-521 KED Hong Kong Ltd. Shenzen Tel: +86-755-3398-9600 KED Company Ltd. Shanghai Tel: +86-21-3255-1833 KED Hong Kong Ltd. Beijing Tel: +86-10-5869-4655 Tel: +886-2-2656-0258 AVX/ELCO UK KED Taiwan Ltd. Tel: +44-1638-675000 AVX/Kyocera (M) Sdn Bhd, Malaysia ELCO Europe GmbH Tel: +60-4228-1190 Tel: +49-2741-299-0 AVX S.A., Spain AVX/Kyocera International Trading Co. Ltd., Shanghai Tel: +34-91-63-97-197 Tel: +86-21-3255 1933 AVX Benelux AVX/Kyocera Asia Ltd., Shenzen Tel: +65-6509-0328 Tel: +86-755-3336-0615 Kyocera Corporation Japan AVX/Kyocera International Trading Co. Ltd., Beijing Tel: +81-75-604-3449 Tel: +31-187-489-337 Tel: +886-2-2950-0268 KED Korea Yuhan Hoesa, South Korea Tel: +82-2-783-3604/6126 KED (S) Pte Ltd. Singapore Tel: +86-10-6588-3528 AVX/Kyocera India Liaison Office Tel: +91-80-6450-0715 Contact: A KYOCERA GROUP COMPANY http://www.avx.com S-AP0M515-C