AS5304/AS5306 Preliminary Datasheet

high
performance
needs great
design.
Datasheet: AS5304/AS5306 Integrated Hall ICs for Linear and OffAxis Rotary Motion Detection
Please be patient while we update our brand image as
austriamicrosystems and TAOS are now ams.
www.ams.com
AS5304 / AS5306
I n t e g r a t e d H a l l I C s f o r L i n e a r an d O f f - A x i s R o t a r y M o t i o n D e t e c t i o n
1 General Description
2 Key Features
The AS5304/AS5306 are single-chip ICs with integrated Hall
elements for measuring linear or rotary motion using multi-pole
magnetic strips or rings. This allows the usage of the AS5304/
AS5306 in applications where the Sensor IC cannot be mounted at
the end of a rotating device (e.g. at hollow shafts). Instead, the
AS5304/AS5306 are mounted off-axis underneath a multi-pole
magnetized ring or strip and provides a quadrature incremental
output with 40 pulses per pole period at speeds of up to 20 meters/
sec (AS5304) or 12 meters/sec (AS5306).
High speed, up to 20m/s (AS5304), 12m/s (AS5306)
A single index pulse is generated once for every pole pair at the
Index output. Using, for example, a 32pole-pair magnetic ring, the
AS5304/AS5306 can provide a resolution of 1280 pulses/rev, which
is equivalent to 5120 positions/rev or 12.3bit. The maximum speed at
this configuration is 9375 rpm.
Circular off-axis movement measurement using multi-pole
Magnetic pole pair length: 4mm (AS5304) or 2.4mm (AS5306)
Resolution: 25µm (AS5304) or
15µm (AS5306)
40 pulses / 160 positions per magnetic period
1 index pulse per pole pair
Linear movement measurement using multi-pole magnetic
strips
magnetic rings
4.5 to 5.5V operating voltage
Magnetic field strength indicator, magnetic field alarm for end-
of-strip or missing magnet
The pole pair length is 4mm (2mm north pole / 2mm south pole) for
the AS5304, and 2.4mm (1.2mm north pole / 1.2mm south pole) for
the AS5306. The chip accepts a magnetic field strength down to 5mT
(peak). Both chips are available with push-pull outputs (AS530xA)
or with open drain outputs (AS530xB). The AS5304/AS5306 are
available in a small 20-pin TSSOP package and specified for an
operating ambient temperature of -40° to +125°C.
3 Applications
The AS5304 and AS5306 are ideal for high speed linear motion and
off-axis rotation measurement in applications, such as electrical
motors, X-Y-stages, rotation knobs, and industrial drives.
Figure 1. AS5304 / AS5306 Block Diagram
AS5304 / AS5306
S IN
Hall Array
&
Frontend
Amplifier
CO S
SIN
Signal
Processing
&
Channel
Amplifier
C OS
A
B
Index
magnetic
field alarm
Automatic
Gain
Control
www.ams.com
ADC
&
DSP
A/ B
Quadrature
Incremental
Interface
&
Index
Analog
Output
Revision 1.9
AO
1 - 19
AS5304 / AS5306
Datasheet - C o n t e n t s
Contents
1 General Description ..................................................................................................................................................................
1
2 Key Features.............................................................................................................................................................................
1
3 Applications...............................................................................................................................................................................
1
4 Pin Assignments .......................................................................................................................................................................
3
4.1 Pin Descriptions....................................................................................................................................................................................
3
5 Absolute Maximum Ratings ......................................................................................................................................................
4
6 Electrical Characteristics...........................................................................................................................................................
5
6.1 Operating Conditions............................................................................................................................................................................
5
6.2 System Parameters ..............................................................................................................................................................................
5
6.3 A / B / C Push/Pull or Open Drain Output.............................................................................................................................................
5
6.4 CAO Analog Output Buffer ...................................................................................................................................................................
6
6.5 Magnetic Input ......................................................................................................................................................................................
6
7 Detailed Description..................................................................................................................................................................
7
7.1 Electrical Connection............................................................................................................................................................................
7
7.2 Incremental Quadrature AB Output ......................................................................................................................................................
8
7.2.1
7.2.2
7.2.3
7.2.4
Index Pulse .................................................................................................................................................................................. 8
Magnetic Field Warning Indicator ................................................................................................................................................ 8
Vertical Distance between Magnet and IC................................................................................................................................... 9
Soft Stop Feature for Linear Movement Measurement.............................................................................................................. 10
7.3 Incremental Hysteresis .......................................................................................................................................................................
10
7.4 Integral Non-Linearity (INL) ................................................................................................................................................................
11
7.4.1 Error Caused by Pole Length Variations ................................................................................................................................... 11
7.5 Dynamic Non-Linearity (DNL).............................................................................................................................................................
8 Application Information ...........................................................................................................................................................
8.1 The AO Output ...................................................................................................................................................................................
8.2 Resolution and Maximum Rotating Speed .........................................................................................................................................
8.2.1
8.2.2
8.2.3
8.2.4
Resolution..................................................................................................................................................................................
Multi-pole Ring Diameter ...........................................................................................................................................................
Maximum Rotation Speed .........................................................................................................................................................
Maximum Linear Travelling Speed ............................................................................................................................................
9 Package Drawings and Markings ...........................................................................................................................................
www.ams.com
Revision 1.9
14
14
14
14
15
15
16
9.1 Sensor Placement in Package ...........................................................................................................................................................
10 Ordering Information.............................................................................................................................................................
12
13
17
18
2 - 19
AS5304 / AS5306
Datasheet - P i n A s s i g n m e n t s
4 Pin Assignments
Figure 2. Pin Assignments (Top View)
1
20
ZPZ
A
2
19
TEST
VDDP
3
18
TEST
B
4
17
TEST
TEST
5
16
VDDA
AO
6
15
TEST_GND
VDD
7
14
TEST
INDEX
8
13
TEST
NC
9
12
TEST
NC
10
11
NC
AS5304 / AS5306
VSS
4.1 Pin Descriptions
Table 1. Pin Descriptions
Pin Nunber
Pin Name
Pin Type
1
VSS
Supply pin
2
A
3
VDDP
4
B
5,12,13,
14,17,18,19
TEST
Analog input/output
6
AO
Analog output
7
VDD
Supply pin
8
Index
9,10,11
TEST
15
TEST_GND
16
VDDA Hall
20
ZPZmskdis
www.ams.com
Description
Supply ground
Digital output push pull or Incremental quadrature position output A. Short circuit current limitation
open drain (programmable)
Supply pin
Peripheral supply pin, connect to VDD
Digital output push pull or Incremental quadrature position output B. Short Circuit Current Limitation
open drain (programmable)
Test pins, must be left open
AGC Analog Output. (Used to detect low magnetic field strength)
Positive supply pin
Digital output push pull or Index output, active HIGH. Short Circuit Current Limitation
open drain (programmable)
Analog input/output
Supply pin
Digital input
Test pins, must be left open
Test pin, must be connected to VSS
Hall Bias Supply Support (connected to VDD)
Test input, connect to VSS during operation
Revision 1.9
3 - 19
AS5304 / AS5306
Datasheet - A b s o l u t e M a x i m u m R a t i n g s
5 Absolute Maximum Ratings
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of
the device at these or any other conditions beyond those indicated in Magnetic Input on page 6 is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
Table 2. Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Units
VDD
Supply
-0.3
7
V
Vin
Input pin voltage
VSS-0.5
VDD+0.5
V
Iscr
Input current (latchup immunity)
-100
100
mA
Norm: JESD78
ESD
+/-2
kV
Norm: MIL 883 E method 3015
ΘJA
Package thermal resistance
114.5
°C /W
Still Air / Single Layer PCB
Tstrg
Storage temperature
150
°C
Tbody
Soldering conditions
260
°C
85
%
Humidity non-condensing
MSL
www.ams.com
Moisture Sensitive Level
-55
5
3
Revision 1.9
Comments
Norm: IPC/JEDEC J-STD-020
Represents a maximum floor life time of 168h
4 - 19
AS5304 / AS5306
Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s
6 Electrical Characteristics
6.1 Operating Conditions
Table 3. Operating Conditions
Symbol
Parameter
AVDD
Positive supply voltage
DVDD
Digital supply voltage
VSS
Negative supply voltage
IDD
Conditions
Power supply current, AS5304
A/B/Index, AO unloaded!
Power supply current, AS5306
Min
Typ
Max
Units
4.5
5.0
5.5
V
0.0
0.0
0.0
V
25
35
20
30
mA
Tamb
Ambient temperature
-40
125
°C
TJ
Junction temperature
-40
150
°C
LSB
Resolution
INL
Integral nonlinearity
Ideal input signal
(ErrMax - ErrMin) / 2
2.5
LSB
DNL
Differential nonlinearity
No missing pulses.
optimum alignment
±0.5
LSB
Hyst
Hysteresis
AS5304
25
AS5306
15
µm
1
1.5
2
LSB
Min
Typ
Max
Units
6.2 System Parameters
Table 4. System Parameters
Symbol
Parameter
Conditions
TPwrUp
Power up time
Amplitude within valid range / Interpolator
locked, A B Index enabled
500
µs
TProp
Propagation delay
Time between change of input signal to
output signal
20
µs
Max
Units
6.3 A / B / C Push/Pull or Open Drain Output
Push Pull Mode is set for AS530xA, Open Drain Mode is set for AS530xB versions.
Table 5. Open Drain Output
Symbol
Parameter
Conditions
Min
VOH
High level output voltage
Push/Pull mode
0.8 VDD
VOL
Low level output voltage
ILOH
Current source capability
ILOL
Current sink capability
IShort
Short circuit limitation current
Reduces maximum operating temperature
25
CL
Capacitive load
see Figure 3
20
pF
RL
Load resistance
see Figure 3
820
Ω
tR
Rise time
Push/Pull mode
tF
Fall time
www.ams.com
Typ
V
0.4 + VSS
Push/Pull mode
Revision 1.9
V
12
14
mA
13
15
mA
39
mA
1.2
µs
1.2
µs
5 - 19
AS5304 / AS5306
Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s
Figure 3. Typical Digital Load
VDD = 5V
R L = 820O
A/B/Index
from
AS5304/6
TTL
74LS00
C L = 20pF
6.4 CAO Analog Output Buffer
Table 6. CAO Analog Output Buffer
Symbol
Parameter
Conditions
Min
Typ
Max
Units
VOutRange
Minimum output voltage
Strong field, minimum AGC
0.5
1
1.2
V
VOutRange
Maximum output voltage
Weak field, maximum AGC
3
4
5.1
V
VOffs
Offset
±10
mV
IL
Current sink / source capability
IShort
Average short circuit current
CL
Capacitive load
10
pF
BW
Bandwidth
5
KHz
5
Reduces maximum operating temperature
mA
6
40
mA
6.5 Magnetic Input
Table 7. Magnetic Input
Symbol
Parameter
Conditions
Min
LP_FP
Magnetic pole length
TFP
Magnetic pole pair length
Amag
Magnetic amplitude
10
Operating dynamic input range
1:6
Typ
AS5304
2.0
AS5306
1.2
AS5304
4.0
AS5306
2.4
Max
Units
mm
mm
60
mT
1:12
Offmag
Magnetic offset
±0.5
mT
Tdmag
Magnetic temperature drift
-0.2
%/K
fmag
Input frequency
5
kHz
www.ams.com
0
Revision 1.9
6 - 19
AS5304 / AS5306
Datasheet - D e t a i l e d D e s c r i p t i o n
7 Detailed Description
The AS5304/AS5306 require a multi-pole magnetic strip or ring with a pole length of 2mm (4mm pole pair length) on the AS5304, and a pole
length of 1.2mm (2.4mm pole pair length) on the AS5306. The magnetic field strength of the multi-pole magnet should be in the range of 5 to
60mT at the chip surface.
The Hall elements on the AS5304/AS5306 are arranged in a linear array.
By moving the multi-pole magnet over the Hall array, a sinusoidal signal (SIN) is generated internally. With proper configuration of the Hall
elements, a second 90° phase shifted sinusoidal signal (COS) is obtained. Using an interpolation circuit, the length of a pole pair is divided into
160 positions and further decoded into 40 quadrature pulses.
An Automatic Gain Control provides a large dynamic input range of the magnetic field.
An Analog output pin (AO) provides an analog voltage that changes with the strength of the magnetic field (see The AO Output on page 14).
7.1 Electrical Connection
The supply pins VDD, VDDP and VDDA are connected to +5V. Pins VSS and TEST_GND are connected to the supply ground. A 100nF
decoupling capacitor close to the device is recommended.
Figure 4. Electrical Connection of the AS5304 / AS5306
VDD = 5V
10K
AS5304B,
AS5306B
ONLY!
1
Quadrature
Position A
2
3
Quadrature
Position B
HOST
uC
4
No Connect
5
6
7
8
Index
No Connect
No Connect
www.ams.com
9
10
VSS
A
VDDP
B
ZPZ
AS5304A
AS5304B
AS5306A
AS5306B
TEST
TEST
TEST
TEST
VDDA
AO
TEST_GND
VDD
TEST
INDEX
TEST
NC
TEST
NC
NC
Revision 1.9
20
19
No Connect
18
No Connect
17
No Connect
16
VDD = 5V
0.1uF
15
14
13
12
11
10uF
(optional)
No Connect
No Connect
No Connect
No Connect
7 - 19
AS5304 / AS5306
Datasheet - D e t a i l e d D e s c r i p t i o n
7.2 Incremental Quadrature AB Output
The digital output is compatible to optical incremental encoder outputs. Direction of rotation is encoded into two signals A and B that are phaseshifted by 90º. Depending on the direction of rotation, A leads B (CW) or B leads A (CCW).
7.2.1
Index Pulse
A single index pulse is generated once for every pole pair. One pole pair is interpolated to 40 quadrature pulses (160 steps), so one index pulse
is generated after every 40 quadrature pulses (see Figure 5).
The Index output is switched to Index = high, when a magnet is placed over the Hall array as shown in Figure 7, top graph: the north pole of the
magnet is placed over the left side of the IC (top view, pin#1 at bottom left) and the south pole is placed over the right side of the IC.
The index output will switch back to Index = low, when the magnet is moved by one LSB from position X=0 to X=X1, as shown in Figure 6,
bottom graph. One LSB is 25µm for AS5304 and 15µm for AS5306.
Note: Since the small step size of 1 LSB is hardly recognizable in a correctly scaled graph it is shown as an exaggerated step in the bottom
graph of Figure 6.
Figure 5. Quadrature A / B and Index Output
S
N
40
1
S
N
2
40
1
S
2
A
40
1
2
40
1
2
B
Index
Detail:
A
B
Index
Step #
7.2.2
157 158 159
0
1
2
3
4
5
Magnetic Field Warning Indicator
The AS5304 can also provide a low magnetic field warning to indicate a missing magnet or when the end of the magnetic strip has been
reached. This condition is indicated by using a combination of A, B and Index, that does not occur in normal operation:
A low magnetic field is indicated with:
Index = high
A=B=low
www.ams.com
Revision 1.9
8 - 19
AS5304 / AS5306
Datasheet - D e t a i l e d D e s c r i p t i o n
7.2.3
Vertical Distance between Magnet and IC
The recommended vertical distance between magnet and IC depends on the strength of the magnet and the length of the magnetic pole.
Typically, the vertical distance between magnet and chip surface should not exceed ½ of the pole length. That means for AS5304, having a pole
length of 2.0mm, the maximum vertical gap should be 1.0mm. For the AS5306, having a pole length of 1.2mm, the maximum vertical gap should
be 0.6mm. These figures refer to the chip surface. Given a typical distance of 0.2mm between chip surface and IC package surface, the
recommended vertical distances between magnet and IC surface are therefore:
AS 5304: ≤ 0.8mm
AS 5306: ≤ 0.4mm
X =0
Figure 6. Magnet Placement for Index Pulse Generation
Magnet drawn at
index position X =0
X
CW magnet
movement direction
N
S
4.220±0.235
Hall Array Center Line
Index = High
Pin 1
Chip Top view
3. 0475±0. 235
X = X1
X=0
25µm(AS5304)
15µm(AS5306)
X
Magnet drawn at
position X 1
( exaggerated)
CW magnet
movement direction
N
Pin 1
Chip Top view
S
4.220±0.235
Hall Array Center Line
Index = Low
3. 0475±0. 235
www.ams.com
Revision 1.9
9 - 19
AS5304 / AS5306
Datasheet - D e t a i l e d D e s c r i p t i o n
7.2.4
Soft Stop Feature for Linear Movement Measurement
When using long multi-pole strips, it may often be necessary to start from a defined home (or zero) position and obtain absolute position
information by counting the steps from the defined home position. The AS5304/AS5306 provide a soft stop feature that eliminates the need for a
separate electro-mechanical home position switch or an optical light barrier switch to indicate the home position.
The magnetic field warning indicator (see Magnetic Field Warning Indicator on page 8) together with the index pulse can be used to indicate a
unique home position on a magnetic strip:
1. Firstly, the AS5304/AS5306 move to the end of the strip until a magnetic field warning is displayed (Index = high, A=B=low).
2. Then, the AS5304/AS5306 move back towards the strip until the first index position is reached (Note that an index position is generated
once for every pole pair, it is indicated with: Index = high, A=B= high). Depending on the polarity of the strip magnet, the first index
position may be generated when the end of the magnet strip only covers one half of the Hall array. This position is not recommended
as a defined home position, as the accuracy of the AS5304/AS5306 are reduced as long as the multi-pole strip does not fully cover the
Hall array.
3. It is therefore recommended to continue to the next (second) index position from the end of the strip (Index = high, A=B= high). This
position can now be used as a defined home position.
7.3 Incremental Hysteresis
If the magnet is sitting right at the transition point between two steps, the noise in the system may cause the incremental outputs to jitter back
and forth between these two steps, especially when the magnetic field is weak.
To avoid this unwanted jitter, a hysteresis has been implemented. The hysteresis lies between 1 and 2 LSB, depending on device scattering.
Figure 7 shows an example of 1LSB hysteresis: the horizontal axis is the lateral position of the magnet as it scans across the IC, the vertical axis
is the change of the incremental outputs, as they step forward (blue line) with movement in +X direction and backward (red line) in –X direction.
Note: 1LSB = 25µm for AS5304, 15µm for AS5306
Figure 7. Hysteresis of the Incremental Output
Incremental
output
Hysteresis:
1 LSB
X +4
X +3
X +2
X +1
Magnet position
X
X
X+1
X+2
X+3
X+4
Movement direction: +X
Movement direction: - X
www.ams.com
Revision 1.9
10 - 19
AS5304 / AS5306
Datasheet - D e t a i l e d D e s c r i p t i o n
7.4 Integral Non-Linearity (INL)
The INL (integral non-linearity) is the deviation between indicated position and actual position. It is better than 1LSB for both AS5304 and
AS5306, assuming an ideal magnet. Pole length variations and imperfections of the magnet material, which lead to a non-sinusoidal magnetic
field will attribute to additional linearity errors.
7.4.1
Error Caused by Pole Length Variations
Figure 8 and Figure 9 show the error caused by a non-ideal pole length of the multi-pole strip or ring. This is less of an issue with strip magnets,
as they can be manufactured exactly to specification using the proper magnetization tooling.
Figure 8. Additional Error Caused by Pole Length Variation: AS5304
Error [µm]
AS5304 Systematic Linearity Error caused by Pole
Leng th Deviation
140
120
100
80
60
40
20
0
1500
Error [µm]
1700
1900
2100
2300
2500
Pole Leng th [µm ]
However, when using a ring magnet (see Figure 11), the pole length differs depending on the measurement radius. For optimum performance, it
is therefore essential to mount the IC such that the Hall sensors are exactly underneath the magnet at the radius where the pole length is 2.0mm
(AS5304) or 1.2mm (AS5306), see also Multi-pole Ring Diameter on page 14 .
Note: This is an additional error, which must be added to the intrinsic errors INL (page 11) and DNL (page 12).
Figure 9. Additional Error Caused by Pole Length Variation: AS5306
Error [µm]
AS5306 Systematic Linearity Error caused by Pole
Leng th Deviation
140
120
100
80
60
40
20
0
Error [µm]
900
1000
1100
1200
1300
1400
1500
Pole Leng th [µm ]
www.ams.com
Revision 1.9
11 - 19
AS5304 / AS5306
Datasheet - D e t a i l e d D e s c r i p t i o n
7.5 Dynamic Non-Linearity (DNL)
The DNL (dynamic non-linearity) describes the non-linearity of the incremental outputs from one step to the next. In an ideal system, every
change of the incremental outputs would occur after exactly one LSB (e.g. 25µm on AS5304). In practice however, this step size is not ideal, the
output state will change after 1LSB ±DNL. The DNL must be < ±½ LSB to avoid a missing code. Consequently, the incremental outputs will
change when the magnet movement over the IC is minimum 0.5 LSB and maximum 1.5 LSBs.
AS5304:
DNL (dynamic non-linearity
1 LSB -DNL
12.5µm
1 LSB
25µm
incremental output steps
incremental output steps
Figure 10. DNL of AS5304 (left) and AS5306 (right)
1 LSB+ DNL
37.5µm
1 LSB -DNL
7. 5µm
1 LSB
15µm
1 LSB + DNL
22.5µm
lateral magnet movement
www.ams.com
AS5306:
DNL (dynamic non-linearity
lateral magnet movement
Revision 1.9
12 - 19
AS5304 / AS5306
Datasheet - A p p l i c a t i o n I n f o r m a t i o n
8 Application Information
Figure 11. AS5304 (AS5306) with Multi-pole Ring Magnet
Figure 12. AS5306 (AS5304) with Magnetic Multi-pole Strip Magnet for Linear Motion Measurement
www.ams.com
Revision 1.9
13 - 19
AS5304 / AS5306
Datasheet - A p p l i c a t i o n I n f o r m a t i o n
8.1 The AO Output
The Analog Output (AO) provides an analog output voltage that represents the Automatic Gain Control (AGC) of the Hall sensors signal control
loop.
This voltage can be used to monitor the magnetic field strength and hence the gap between magnet and chip surface:
Short distance between magnet and IC → strong magnetic field → low loop gain → low AO voltage
Long distance between magnet and IC → weak magnetic field → high loop gain → high AO voltage
Figure 13. AO vs. AGC, Magnetic Field Strength, Magnet-to-IC Gap
VAO [V]
weak field,
high AGC
5.1
3
1.2
recommended range
strong field,
low AGC
0.5
vertical gap
8.2 Resolution and Maximum Rotating Speed
When using the AS5304/AS5306 in an off-axis rotary application, a multi-pole ring magnet must be used. Resolution, diameter and maximum
speed depend on the number of pole pairs on the ring.
8.2.1
Resolution
The angular resolution increases linearly with the number of pole pairs. One pole pair has a resolution (= interpolation factor) of 160 steps or 40
quadrature pulses.
Resolution [steps] = [interpolation factor] x [number of pole pairs]
Resolution [bit] = log (resolution[steps]) / log (2)
Example: Multi-pole ring with 22 pole pairs
Resolution = 160x22 = 3520 steps per revolution
= 40x22 = 880 quadrature pulses / revolution
= 11.78 bits per revolution = 0.1023° per step
8.2.2
Multi-pole Ring Diameter
The length of a pole pair across the median of the multi-pole ring must remain fixed at either 4mm (AS5304) or 2.4mm (AS5306). Hence, with
increasing pole pair count, the diameter increases linearly with the number of pole pairs on the magnetic ring.
www.ams.com
Revision 1.9
14 - 19
AS5304 / AS5306
Datasheet - A p p l i c a t i o n I n f o r m a t i o n
Magnetic ring diameter = [pole length] * [number of pole pairs] / π
for AS5304: d = 4.0mm * number of pole pairs / π
for AS5306: d = 2.4mm * number of pole pairs / π
Example: (same as above) Multi-pole ring with 22 pole pairs for AS5304
Ring diameter = 4 * 22 / 3.14 = 28.01mm (this number represents the median diameter of the ring, this is where the Hall elements of the AS5304/
AS5306 should be placed; (see Figure 15).
For the AS5306, the same ring would have a diameter of: 2.4 * 22 / 3.14 = 16.8mm
8.2.3
Maximum Rotation Speed
The AS5304/AS5306 use a fast interpolation technique allowing an input frequency of 5kHz. This means, it can process magnetic field changes
in the order of 5000 pole pairs per second or 300,000 revolutions per minute. However, since a magnetic ring consists of more than one pole
pair, the above value must be divided by the number of pole pairs to get the maximum rotation speed:
Maximum rotation speed = 300,000 rpm / [number of pole pairs]
Example: (same as above) Multi-pole ring with 22 pole pairs:
Maximum speed = 300,000 / 22 = 13,636 rpm (this is independent of the pole length)
8.2.4
Maximum Linear Travelling Speed
For linear motion sensing, a multi-pole strip using equally spaced north and south poles is used. The pole length is again fixed at 2.0mm for the
AS5304 and 1.2mm for the AS5306. As shown in Maximum Rotation Speed above, the sensors can process up to 5000 pole pairs per
second, so the maximum travelling speed is:
Maximum linear travelling speed = 5000 * [pole pair length]
Example: Linear multi-pole strip:
Maximum linear travelling speed = 4mm * 5000 1/sec = 20,000mm/sec = 20m/sec {for AS5304}
Maximum linear travelling speed = 2.4mm * 5000 1/sec = 12,000mm/sec = 12m/sec {for AS5306}
www.ams.com
Revision 1.9
15 - 19
AS5304 / AS5306
Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s
9 Package Drawings and Markings
The devices are available in a 20-pin TSSOP package.
Figure 14. Drawings and Dimensions
YYWWMZZ
AS5304
YYWWMZZ
AS5306
www.ams.com
Revision 1.9
16 - 19
AS5304 / AS5306
Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s
Symbol
A
A1
A2
b
c
D
E
E1
e
L
L1
Min
0.05
0.80
0.19
0.09
6.40
4.30
0.45
-
Nom
1.00
6.50
6.40 BSC
4.40
0.65 BSC
0.60
1.00 REF
Symbol
R
R1
S
θ1
θ2
θ3
aaa
bbb
ccc
ddd
N
Max
1.20
0.15
1.05
0.30
0.20
6.60
4.50
0.75
-
Min
0.09
0.09
0.20
0º
-
Nom
12 REF
12 REF
0.10
0.10
0.05
0.20
20
Max
8º
-
Notes:
1. Dimensions and tolerancing conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
Marking: YYWWMZZ.
YY
WW
M
ZZ
Year
Manufacturing Week
Assembly plant identifier
Assembly traceability code
9.1 Sensor Placement in Package
TSSOP20 / 0.65mm pin pitch
Figure 15. Sensor in Package
3.200±0.235
Die C/L
1.02
0.2299±0.100
0.2341±0.100
Package
Outline
0.7701±0.150
3.0475±0.235
Die Tilt Tolerance ±1º
www.ams.com
Revision 1.9
17 - 19
AS5304 / AS5306
Datasheet - O r d e r i n g I n f o r m a t i o n
10 Ordering Information
The devices are available as the standard products shown in Table 8 and Table 9.
Table 8. AS5304 Ordering Information
Ordering Code
Description
Delivery Form
AS5304A
25µm resolution, 2mm Magnet pole length, Push Pull
AS5304B
25µm resolution, 2mm Magnet pole length, Open Drain
Package
20-pin TSSOP
Table 9. AS5306 Ordering Information
Ordering Code
Description
Delivery Form
AS5306A
15µm resolution, 1.2mm Magnet pole length, Push Pull
AS5306B
15µm resolution, 1.2mm Magnet pole length, Open Drain
Package
20-pin TSSOP
Note: All products are RoHS compliant and ams green.
Buy our products or get free samples online at www.ams.com/ICdirect
Technical Support is available at www.ams.com/Technical-Support
For further information and requests, email us at [email protected]
(or) find your local distributor at www.ams.com/distributor
www.ams.com
Revision 1.9
18 - 19
AS5304 / AS5306
Datasheet - C o p y r i g h t s
Copyrights
Copyright © 1997-2012, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights
reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the
copyright owner.
All products and companies mentioned are trademarks or registered trademarks of their respective companies.
Disclaimer
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no
warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described
devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior
to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal
commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability
applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing
by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard
production flow, such as test flow or test location.
The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third
party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or
indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the
technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other
services.
Contact Information
Headquarters
ams AG
Tobelbaderstrasse 30
A-8141 Unterpremstaetten, Austria
Tel
Fax
: +43 (0) 3136 500 0
: +43 (0) 3136 525 01
For Sales Offices, Distributors and Representatives, please visit:
http://www.ams.com/contact
www.ams.com
Revision 1.9
19 - 19