high performance needs great design. Datasheet: AS5304/AS5306 Integrated Hall ICs for Linear and OffAxis Rotary Motion Detection Please be patient while we update our brand image as austriamicrosystems and TAOS are now ams. www.ams.com AS5304 / AS5306 I n t e g r a t e d H a l l I C s f o r L i n e a r an d O f f - A x i s R o t a r y M o t i o n D e t e c t i o n 1 General Description 2 Key Features The AS5304/AS5306 are single-chip ICs with integrated Hall elements for measuring linear or rotary motion using multi-pole magnetic strips or rings. This allows the usage of the AS5304/ AS5306 in applications where the Sensor IC cannot be mounted at the end of a rotating device (e.g. at hollow shafts). Instead, the AS5304/AS5306 are mounted off-axis underneath a multi-pole magnetized ring or strip and provides a quadrature incremental output with 40 pulses per pole period at speeds of up to 20 meters/ sec (AS5304) or 12 meters/sec (AS5306). High speed, up to 20m/s (AS5304), 12m/s (AS5306) A single index pulse is generated once for every pole pair at the Index output. Using, for example, a 32pole-pair magnetic ring, the AS5304/AS5306 can provide a resolution of 1280 pulses/rev, which is equivalent to 5120 positions/rev or 12.3bit. The maximum speed at this configuration is 9375 rpm. Circular off-axis movement measurement using multi-pole Magnetic pole pair length: 4mm (AS5304) or 2.4mm (AS5306) Resolution: 25µm (AS5304) or 15µm (AS5306) 40 pulses / 160 positions per magnetic period 1 index pulse per pole pair Linear movement measurement using multi-pole magnetic strips magnetic rings 4.5 to 5.5V operating voltage Magnetic field strength indicator, magnetic field alarm for end- of-strip or missing magnet The pole pair length is 4mm (2mm north pole / 2mm south pole) for the AS5304, and 2.4mm (1.2mm north pole / 1.2mm south pole) for the AS5306. The chip accepts a magnetic field strength down to 5mT (peak). Both chips are available with push-pull outputs (AS530xA) or with open drain outputs (AS530xB). The AS5304/AS5306 are available in a small 20-pin TSSOP package and specified for an operating ambient temperature of -40° to +125°C. 3 Applications The AS5304 and AS5306 are ideal for high speed linear motion and off-axis rotation measurement in applications, such as electrical motors, X-Y-stages, rotation knobs, and industrial drives. Figure 1. AS5304 / AS5306 Block Diagram AS5304 / AS5306 S IN Hall Array & Frontend Amplifier CO S SIN Signal Processing & Channel Amplifier C OS A B Index magnetic field alarm Automatic Gain Control www.ams.com ADC & DSP A/ B Quadrature Incremental Interface & Index Analog Output Revision 1.9 AO 1 - 19 AS5304 / AS5306 Datasheet - C o n t e n t s Contents 1 General Description .................................................................................................................................................................. 1 2 Key Features............................................................................................................................................................................. 1 3 Applications............................................................................................................................................................................... 1 4 Pin Assignments ....................................................................................................................................................................... 3 4.1 Pin Descriptions.................................................................................................................................................................................... 3 5 Absolute Maximum Ratings ...................................................................................................................................................... 4 6 Electrical Characteristics........................................................................................................................................................... 5 6.1 Operating Conditions............................................................................................................................................................................ 5 6.2 System Parameters .............................................................................................................................................................................. 5 6.3 A / B / C Push/Pull or Open Drain Output............................................................................................................................................. 5 6.4 CAO Analog Output Buffer ................................................................................................................................................................... 6 6.5 Magnetic Input ...................................................................................................................................................................................... 6 7 Detailed Description.................................................................................................................................................................. 7 7.1 Electrical Connection............................................................................................................................................................................ 7 7.2 Incremental Quadrature AB Output ...................................................................................................................................................... 8 7.2.1 7.2.2 7.2.3 7.2.4 Index Pulse .................................................................................................................................................................................. 8 Magnetic Field Warning Indicator ................................................................................................................................................ 8 Vertical Distance between Magnet and IC................................................................................................................................... 9 Soft Stop Feature for Linear Movement Measurement.............................................................................................................. 10 7.3 Incremental Hysteresis ....................................................................................................................................................................... 10 7.4 Integral Non-Linearity (INL) ................................................................................................................................................................ 11 7.4.1 Error Caused by Pole Length Variations ................................................................................................................................... 11 7.5 Dynamic Non-Linearity (DNL)............................................................................................................................................................. 8 Application Information ........................................................................................................................................................... 8.1 The AO Output ................................................................................................................................................................................... 8.2 Resolution and Maximum Rotating Speed ......................................................................................................................................... 8.2.1 8.2.2 8.2.3 8.2.4 Resolution.................................................................................................................................................................................. Multi-pole Ring Diameter ........................................................................................................................................................... Maximum Rotation Speed ......................................................................................................................................................... Maximum Linear Travelling Speed ............................................................................................................................................ 9 Package Drawings and Markings ........................................................................................................................................... www.ams.com Revision 1.9 14 14 14 14 15 15 16 9.1 Sensor Placement in Package ........................................................................................................................................................... 10 Ordering Information............................................................................................................................................................. 12 13 17 18 2 - 19 AS5304 / AS5306 Datasheet - P i n A s s i g n m e n t s 4 Pin Assignments Figure 2. Pin Assignments (Top View) 1 20 ZPZ A 2 19 TEST VDDP 3 18 TEST B 4 17 TEST TEST 5 16 VDDA AO 6 15 TEST_GND VDD 7 14 TEST INDEX 8 13 TEST NC 9 12 TEST NC 10 11 NC AS5304 / AS5306 VSS 4.1 Pin Descriptions Table 1. Pin Descriptions Pin Nunber Pin Name Pin Type 1 VSS Supply pin 2 A 3 VDDP 4 B 5,12,13, 14,17,18,19 TEST Analog input/output 6 AO Analog output 7 VDD Supply pin 8 Index 9,10,11 TEST 15 TEST_GND 16 VDDA Hall 20 ZPZmskdis www.ams.com Description Supply ground Digital output push pull or Incremental quadrature position output A. Short circuit current limitation open drain (programmable) Supply pin Peripheral supply pin, connect to VDD Digital output push pull or Incremental quadrature position output B. Short Circuit Current Limitation open drain (programmable) Test pins, must be left open AGC Analog Output. (Used to detect low magnetic field strength) Positive supply pin Digital output push pull or Index output, active HIGH. Short Circuit Current Limitation open drain (programmable) Analog input/output Supply pin Digital input Test pins, must be left open Test pin, must be connected to VSS Hall Bias Supply Support (connected to VDD) Test input, connect to VSS during operation Revision 1.9 3 - 19 AS5304 / AS5306 Datasheet - A b s o l u t e M a x i m u m R a t i n g s 5 Absolute Maximum Ratings Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Magnetic Input on page 6 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 2. Absolute Maximum Ratings Symbol Parameter Min Max Units VDD Supply -0.3 7 V Vin Input pin voltage VSS-0.5 VDD+0.5 V Iscr Input current (latchup immunity) -100 100 mA Norm: JESD78 ESD +/-2 kV Norm: MIL 883 E method 3015 ΘJA Package thermal resistance 114.5 °C /W Still Air / Single Layer PCB Tstrg Storage temperature 150 °C Tbody Soldering conditions 260 °C 85 % Humidity non-condensing MSL www.ams.com Moisture Sensitive Level -55 5 3 Revision 1.9 Comments Norm: IPC/JEDEC J-STD-020 Represents a maximum floor life time of 168h 4 - 19 AS5304 / AS5306 Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s 6 Electrical Characteristics 6.1 Operating Conditions Table 3. Operating Conditions Symbol Parameter AVDD Positive supply voltage DVDD Digital supply voltage VSS Negative supply voltage IDD Conditions Power supply current, AS5304 A/B/Index, AO unloaded! Power supply current, AS5306 Min Typ Max Units 4.5 5.0 5.5 V 0.0 0.0 0.0 V 25 35 20 30 mA Tamb Ambient temperature -40 125 °C TJ Junction temperature -40 150 °C LSB Resolution INL Integral nonlinearity Ideal input signal (ErrMax - ErrMin) / 2 2.5 LSB DNL Differential nonlinearity No missing pulses. optimum alignment ±0.5 LSB Hyst Hysteresis AS5304 25 AS5306 15 µm 1 1.5 2 LSB Min Typ Max Units 6.2 System Parameters Table 4. System Parameters Symbol Parameter Conditions TPwrUp Power up time Amplitude within valid range / Interpolator locked, A B Index enabled 500 µs TProp Propagation delay Time between change of input signal to output signal 20 µs Max Units 6.3 A / B / C Push/Pull or Open Drain Output Push Pull Mode is set for AS530xA, Open Drain Mode is set for AS530xB versions. Table 5. Open Drain Output Symbol Parameter Conditions Min VOH High level output voltage Push/Pull mode 0.8 VDD VOL Low level output voltage ILOH Current source capability ILOL Current sink capability IShort Short circuit limitation current Reduces maximum operating temperature 25 CL Capacitive load see Figure 3 20 pF RL Load resistance see Figure 3 820 Ω tR Rise time Push/Pull mode tF Fall time www.ams.com Typ V 0.4 + VSS Push/Pull mode Revision 1.9 V 12 14 mA 13 15 mA 39 mA 1.2 µs 1.2 µs 5 - 19 AS5304 / AS5306 Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s Figure 3. Typical Digital Load VDD = 5V R L = 820O A/B/Index from AS5304/6 TTL 74LS00 C L = 20pF 6.4 CAO Analog Output Buffer Table 6. CAO Analog Output Buffer Symbol Parameter Conditions Min Typ Max Units VOutRange Minimum output voltage Strong field, minimum AGC 0.5 1 1.2 V VOutRange Maximum output voltage Weak field, maximum AGC 3 4 5.1 V VOffs Offset ±10 mV IL Current sink / source capability IShort Average short circuit current CL Capacitive load 10 pF BW Bandwidth 5 KHz 5 Reduces maximum operating temperature mA 6 40 mA 6.5 Magnetic Input Table 7. Magnetic Input Symbol Parameter Conditions Min LP_FP Magnetic pole length TFP Magnetic pole pair length Amag Magnetic amplitude 10 Operating dynamic input range 1:6 Typ AS5304 2.0 AS5306 1.2 AS5304 4.0 AS5306 2.4 Max Units mm mm 60 mT 1:12 Offmag Magnetic offset ±0.5 mT Tdmag Magnetic temperature drift -0.2 %/K fmag Input frequency 5 kHz www.ams.com 0 Revision 1.9 6 - 19 AS5304 / AS5306 Datasheet - D e t a i l e d D e s c r i p t i o n 7 Detailed Description The AS5304/AS5306 require a multi-pole magnetic strip or ring with a pole length of 2mm (4mm pole pair length) on the AS5304, and a pole length of 1.2mm (2.4mm pole pair length) on the AS5306. The magnetic field strength of the multi-pole magnet should be in the range of 5 to 60mT at the chip surface. The Hall elements on the AS5304/AS5306 are arranged in a linear array. By moving the multi-pole magnet over the Hall array, a sinusoidal signal (SIN) is generated internally. With proper configuration of the Hall elements, a second 90° phase shifted sinusoidal signal (COS) is obtained. Using an interpolation circuit, the length of a pole pair is divided into 160 positions and further decoded into 40 quadrature pulses. An Automatic Gain Control provides a large dynamic input range of the magnetic field. An Analog output pin (AO) provides an analog voltage that changes with the strength of the magnetic field (see The AO Output on page 14). 7.1 Electrical Connection The supply pins VDD, VDDP and VDDA are connected to +5V. Pins VSS and TEST_GND are connected to the supply ground. A 100nF decoupling capacitor close to the device is recommended. Figure 4. Electrical Connection of the AS5304 / AS5306 VDD = 5V 10K AS5304B, AS5306B ONLY! 1 Quadrature Position A 2 3 Quadrature Position B HOST uC 4 No Connect 5 6 7 8 Index No Connect No Connect www.ams.com 9 10 VSS A VDDP B ZPZ AS5304A AS5304B AS5306A AS5306B TEST TEST TEST TEST VDDA AO TEST_GND VDD TEST INDEX TEST NC TEST NC NC Revision 1.9 20 19 No Connect 18 No Connect 17 No Connect 16 VDD = 5V 0.1uF 15 14 13 12 11 10uF (optional) No Connect No Connect No Connect No Connect 7 - 19 AS5304 / AS5306 Datasheet - D e t a i l e d D e s c r i p t i o n 7.2 Incremental Quadrature AB Output The digital output is compatible to optical incremental encoder outputs. Direction of rotation is encoded into two signals A and B that are phaseshifted by 90º. Depending on the direction of rotation, A leads B (CW) or B leads A (CCW). 7.2.1 Index Pulse A single index pulse is generated once for every pole pair. One pole pair is interpolated to 40 quadrature pulses (160 steps), so one index pulse is generated after every 40 quadrature pulses (see Figure 5). The Index output is switched to Index = high, when a magnet is placed over the Hall array as shown in Figure 7, top graph: the north pole of the magnet is placed over the left side of the IC (top view, pin#1 at bottom left) and the south pole is placed over the right side of the IC. The index output will switch back to Index = low, when the magnet is moved by one LSB from position X=0 to X=X1, as shown in Figure 6, bottom graph. One LSB is 25µm for AS5304 and 15µm for AS5306. Note: Since the small step size of 1 LSB is hardly recognizable in a correctly scaled graph it is shown as an exaggerated step in the bottom graph of Figure 6. Figure 5. Quadrature A / B and Index Output S N 40 1 S N 2 40 1 S 2 A 40 1 2 40 1 2 B Index Detail: A B Index Step # 7.2.2 157 158 159 0 1 2 3 4 5 Magnetic Field Warning Indicator The AS5304 can also provide a low magnetic field warning to indicate a missing magnet or when the end of the magnetic strip has been reached. This condition is indicated by using a combination of A, B and Index, that does not occur in normal operation: A low magnetic field is indicated with: Index = high A=B=low www.ams.com Revision 1.9 8 - 19 AS5304 / AS5306 Datasheet - D e t a i l e d D e s c r i p t i o n 7.2.3 Vertical Distance between Magnet and IC The recommended vertical distance between magnet and IC depends on the strength of the magnet and the length of the magnetic pole. Typically, the vertical distance between magnet and chip surface should not exceed ½ of the pole length. That means for AS5304, having a pole length of 2.0mm, the maximum vertical gap should be 1.0mm. For the AS5306, having a pole length of 1.2mm, the maximum vertical gap should be 0.6mm. These figures refer to the chip surface. Given a typical distance of 0.2mm between chip surface and IC package surface, the recommended vertical distances between magnet and IC surface are therefore: AS 5304: ≤ 0.8mm AS 5306: ≤ 0.4mm X =0 Figure 6. Magnet Placement for Index Pulse Generation Magnet drawn at index position X =0 X CW magnet movement direction N S 4.220±0.235 Hall Array Center Line Index = High Pin 1 Chip Top view 3. 0475±0. 235 X = X1 X=0 25µm(AS5304) 15µm(AS5306) X Magnet drawn at position X 1 ( exaggerated) CW magnet movement direction N Pin 1 Chip Top view S 4.220±0.235 Hall Array Center Line Index = Low 3. 0475±0. 235 www.ams.com Revision 1.9 9 - 19 AS5304 / AS5306 Datasheet - D e t a i l e d D e s c r i p t i o n 7.2.4 Soft Stop Feature for Linear Movement Measurement When using long multi-pole strips, it may often be necessary to start from a defined home (or zero) position and obtain absolute position information by counting the steps from the defined home position. The AS5304/AS5306 provide a soft stop feature that eliminates the need for a separate electro-mechanical home position switch or an optical light barrier switch to indicate the home position. The magnetic field warning indicator (see Magnetic Field Warning Indicator on page 8) together with the index pulse can be used to indicate a unique home position on a magnetic strip: 1. Firstly, the AS5304/AS5306 move to the end of the strip until a magnetic field warning is displayed (Index = high, A=B=low). 2. Then, the AS5304/AS5306 move back towards the strip until the first index position is reached (Note that an index position is generated once for every pole pair, it is indicated with: Index = high, A=B= high). Depending on the polarity of the strip magnet, the first index position may be generated when the end of the magnet strip only covers one half of the Hall array. This position is not recommended as a defined home position, as the accuracy of the AS5304/AS5306 are reduced as long as the multi-pole strip does not fully cover the Hall array. 3. It is therefore recommended to continue to the next (second) index position from the end of the strip (Index = high, A=B= high). This position can now be used as a defined home position. 7.3 Incremental Hysteresis If the magnet is sitting right at the transition point between two steps, the noise in the system may cause the incremental outputs to jitter back and forth between these two steps, especially when the magnetic field is weak. To avoid this unwanted jitter, a hysteresis has been implemented. The hysteresis lies between 1 and 2 LSB, depending on device scattering. Figure 7 shows an example of 1LSB hysteresis: the horizontal axis is the lateral position of the magnet as it scans across the IC, the vertical axis is the change of the incremental outputs, as they step forward (blue line) with movement in +X direction and backward (red line) in –X direction. Note: 1LSB = 25µm for AS5304, 15µm for AS5306 Figure 7. Hysteresis of the Incremental Output Incremental output Hysteresis: 1 LSB X +4 X +3 X +2 X +1 Magnet position X X X+1 X+2 X+3 X+4 Movement direction: +X Movement direction: - X www.ams.com Revision 1.9 10 - 19 AS5304 / AS5306 Datasheet - D e t a i l e d D e s c r i p t i o n 7.4 Integral Non-Linearity (INL) The INL (integral non-linearity) is the deviation between indicated position and actual position. It is better than 1LSB for both AS5304 and AS5306, assuming an ideal magnet. Pole length variations and imperfections of the magnet material, which lead to a non-sinusoidal magnetic field will attribute to additional linearity errors. 7.4.1 Error Caused by Pole Length Variations Figure 8 and Figure 9 show the error caused by a non-ideal pole length of the multi-pole strip or ring. This is less of an issue with strip magnets, as they can be manufactured exactly to specification using the proper magnetization tooling. Figure 8. Additional Error Caused by Pole Length Variation: AS5304 Error [µm] AS5304 Systematic Linearity Error caused by Pole Leng th Deviation 140 120 100 80 60 40 20 0 1500 Error [µm] 1700 1900 2100 2300 2500 Pole Leng th [µm ] However, when using a ring magnet (see Figure 11), the pole length differs depending on the measurement radius. For optimum performance, it is therefore essential to mount the IC such that the Hall sensors are exactly underneath the magnet at the radius where the pole length is 2.0mm (AS5304) or 1.2mm (AS5306), see also Multi-pole Ring Diameter on page 14 . Note: This is an additional error, which must be added to the intrinsic errors INL (page 11) and DNL (page 12). Figure 9. Additional Error Caused by Pole Length Variation: AS5306 Error [µm] AS5306 Systematic Linearity Error caused by Pole Leng th Deviation 140 120 100 80 60 40 20 0 Error [µm] 900 1000 1100 1200 1300 1400 1500 Pole Leng th [µm ] www.ams.com Revision 1.9 11 - 19 AS5304 / AS5306 Datasheet - D e t a i l e d D e s c r i p t i o n 7.5 Dynamic Non-Linearity (DNL) The DNL (dynamic non-linearity) describes the non-linearity of the incremental outputs from one step to the next. In an ideal system, every change of the incremental outputs would occur after exactly one LSB (e.g. 25µm on AS5304). In practice however, this step size is not ideal, the output state will change after 1LSB ±DNL. The DNL must be < ±½ LSB to avoid a missing code. Consequently, the incremental outputs will change when the magnet movement over the IC is minimum 0.5 LSB and maximum 1.5 LSBs. AS5304: DNL (dynamic non-linearity 1 LSB -DNL 12.5µm 1 LSB 25µm incremental output steps incremental output steps Figure 10. DNL of AS5304 (left) and AS5306 (right) 1 LSB+ DNL 37.5µm 1 LSB -DNL 7. 5µm 1 LSB 15µm 1 LSB + DNL 22.5µm lateral magnet movement www.ams.com AS5306: DNL (dynamic non-linearity lateral magnet movement Revision 1.9 12 - 19 AS5304 / AS5306 Datasheet - A p p l i c a t i o n I n f o r m a t i o n 8 Application Information Figure 11. AS5304 (AS5306) with Multi-pole Ring Magnet Figure 12. AS5306 (AS5304) with Magnetic Multi-pole Strip Magnet for Linear Motion Measurement www.ams.com Revision 1.9 13 - 19 AS5304 / AS5306 Datasheet - A p p l i c a t i o n I n f o r m a t i o n 8.1 The AO Output The Analog Output (AO) provides an analog output voltage that represents the Automatic Gain Control (AGC) of the Hall sensors signal control loop. This voltage can be used to monitor the magnetic field strength and hence the gap between magnet and chip surface: Short distance between magnet and IC → strong magnetic field → low loop gain → low AO voltage Long distance between magnet and IC → weak magnetic field → high loop gain → high AO voltage Figure 13. AO vs. AGC, Magnetic Field Strength, Magnet-to-IC Gap VAO [V] weak field, high AGC 5.1 3 1.2 recommended range strong field, low AGC 0.5 vertical gap 8.2 Resolution and Maximum Rotating Speed When using the AS5304/AS5306 in an off-axis rotary application, a multi-pole ring magnet must be used. Resolution, diameter and maximum speed depend on the number of pole pairs on the ring. 8.2.1 Resolution The angular resolution increases linearly with the number of pole pairs. One pole pair has a resolution (= interpolation factor) of 160 steps or 40 quadrature pulses. Resolution [steps] = [interpolation factor] x [number of pole pairs] Resolution [bit] = log (resolution[steps]) / log (2) Example: Multi-pole ring with 22 pole pairs Resolution = 160x22 = 3520 steps per revolution = 40x22 = 880 quadrature pulses / revolution = 11.78 bits per revolution = 0.1023° per step 8.2.2 Multi-pole Ring Diameter The length of a pole pair across the median of the multi-pole ring must remain fixed at either 4mm (AS5304) or 2.4mm (AS5306). Hence, with increasing pole pair count, the diameter increases linearly with the number of pole pairs on the magnetic ring. www.ams.com Revision 1.9 14 - 19 AS5304 / AS5306 Datasheet - A p p l i c a t i o n I n f o r m a t i o n Magnetic ring diameter = [pole length] * [number of pole pairs] / π for AS5304: d = 4.0mm * number of pole pairs / π for AS5306: d = 2.4mm * number of pole pairs / π Example: (same as above) Multi-pole ring with 22 pole pairs for AS5304 Ring diameter = 4 * 22 / 3.14 = 28.01mm (this number represents the median diameter of the ring, this is where the Hall elements of the AS5304/ AS5306 should be placed; (see Figure 15). For the AS5306, the same ring would have a diameter of: 2.4 * 22 / 3.14 = 16.8mm 8.2.3 Maximum Rotation Speed The AS5304/AS5306 use a fast interpolation technique allowing an input frequency of 5kHz. This means, it can process magnetic field changes in the order of 5000 pole pairs per second or 300,000 revolutions per minute. However, since a magnetic ring consists of more than one pole pair, the above value must be divided by the number of pole pairs to get the maximum rotation speed: Maximum rotation speed = 300,000 rpm / [number of pole pairs] Example: (same as above) Multi-pole ring with 22 pole pairs: Maximum speed = 300,000 / 22 = 13,636 rpm (this is independent of the pole length) 8.2.4 Maximum Linear Travelling Speed For linear motion sensing, a multi-pole strip using equally spaced north and south poles is used. The pole length is again fixed at 2.0mm for the AS5304 and 1.2mm for the AS5306. As shown in Maximum Rotation Speed above, the sensors can process up to 5000 pole pairs per second, so the maximum travelling speed is: Maximum linear travelling speed = 5000 * [pole pair length] Example: Linear multi-pole strip: Maximum linear travelling speed = 4mm * 5000 1/sec = 20,000mm/sec = 20m/sec {for AS5304} Maximum linear travelling speed = 2.4mm * 5000 1/sec = 12,000mm/sec = 12m/sec {for AS5306} www.ams.com Revision 1.9 15 - 19 AS5304 / AS5306 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s 9 Package Drawings and Markings The devices are available in a 20-pin TSSOP package. Figure 14. Drawings and Dimensions YYWWMZZ AS5304 YYWWMZZ AS5306 www.ams.com Revision 1.9 16 - 19 AS5304 / AS5306 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s Symbol A A1 A2 b c D E E1 e L L1 Min 0.05 0.80 0.19 0.09 6.40 4.30 0.45 - Nom 1.00 6.50 6.40 BSC 4.40 0.65 BSC 0.60 1.00 REF Symbol R R1 S θ1 θ2 θ3 aaa bbb ccc ddd N Max 1.20 0.15 1.05 0.30 0.20 6.60 4.50 0.75 - Min 0.09 0.09 0.20 0º - Nom 12 REF 12 REF 0.10 0.10 0.05 0.20 20 Max 8º - Notes: 1. Dimensions and tolerancing conform to ASME Y14.5M-1994. 2. All dimensions are in millimeters. Angles are in degrees. Marking: YYWWMZZ. YY WW M ZZ Year Manufacturing Week Assembly plant identifier Assembly traceability code 9.1 Sensor Placement in Package TSSOP20 / 0.65mm pin pitch Figure 15. Sensor in Package 3.200±0.235 Die C/L 1.02 0.2299±0.100 0.2341±0.100 Package Outline 0.7701±0.150 3.0475±0.235 Die Tilt Tolerance ±1º www.ams.com Revision 1.9 17 - 19 AS5304 / AS5306 Datasheet - O r d e r i n g I n f o r m a t i o n 10 Ordering Information The devices are available as the standard products shown in Table 8 and Table 9. Table 8. AS5304 Ordering Information Ordering Code Description Delivery Form AS5304A 25µm resolution, 2mm Magnet pole length, Push Pull AS5304B 25µm resolution, 2mm Magnet pole length, Open Drain Package 20-pin TSSOP Table 9. AS5306 Ordering Information Ordering Code Description Delivery Form AS5306A 15µm resolution, 1.2mm Magnet pole length, Push Pull AS5306B 15µm resolution, 1.2mm Magnet pole length, Open Drain Package 20-pin TSSOP Note: All products are RoHS compliant and ams green. Buy our products or get free samples online at www.ams.com/ICdirect Technical Support is available at www.ams.com/Technical-Support For further information and requests, email us at [email protected] (or) find your local distributor at www.ams.com/distributor www.ams.com Revision 1.9 18 - 19 AS5304 / AS5306 Datasheet - C o p y r i g h t s Copyrights Copyright © 1997-2012, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. All products and companies mentioned are trademarks or registered trademarks of their respective companies. Disclaimer Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location. The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services. Contact Information Headquarters ams AG Tobelbaderstrasse 30 A-8141 Unterpremstaetten, Austria Tel Fax : +43 (0) 3136 500 0 : +43 (0) 3136 525 01 For Sales Offices, Distributors and Representatives, please visit: http://www.ams.com/contact www.ams.com Revision 1.9 19 - 19