ELM621LA-S ELM621LA High efficiency 30V step up DC/DC

ELM621LA High efficiency 30V step up DC/DC converter
■General description
ELM621LA is a high efficiency step-up DC/DC converter using a constant frequency, current mode
architecture. Featuring current-mode and fixed frequency operation, this device incorporates an integrated
main switch and the switching frequency is internally set at 1.3MHz, allowing the use of small surface mount
inductors and capacitor. As for the output voltage, it can be regulated ranging from 2.7V to 30V.
ELM621LA is available in a low profile TSOT-25 package.
■Features
■Application
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Current mode operation
Thermal shutdown protection
Undervoltage-lockout (UVLO)
Input voltage range
Internal current limit
Shutdown current
Constant frequency operation
High efficiency
Package
: 2.5V to 5.5V
: 1.45A
: < 0.1µA
: Typ.1.3MHz
: 90%
: TSOT-25
Cellular telephones
PDAs and smart phones
MP3 players
Wireless and DSL card
Digital still cameras
Slim-type DVD
Portable instruments
■Maximum absolute ratings
Parameter
VIN power supply voltage
Apply voltage to EN
Apply voltage to FB
Apply voltage to SW
SW peak current
Power dissipation
Operating temperature range
Storage temperature range
Symbol
Vin
Ven
Vfb
Vsw
Isw
Pd
Top
Tstg
Limit
GND-0.3 to +6.5
GND-0.3 to +6.5
GND-0.3 to +6.5
GND-0.3 to +43
2
200
-20 to +85
-65 to +150
Caution:Permanent damage to the device may occur when ratings above maximum absolute ones are used.
Unit
V
V
V
V
A
mW
°C
°C
■Selection guide
ELM621LA-S
Symbol
a
b
c
Package
Product version
Taping direction
L: TSOT-25
A
S: Refer to PKG file
ELM621LA - S
↑↑ ↑
ab c
* Taping direction is one way.
9 - 1
Rev.1.2
ELM621LA High efficiency 30V step up DC/DC converter
■Pin configuration
TSOT-25(TOP VIEW)
5
4
3
2
1
Pin No.
1
2
3
4
5
Pin name
SW
GND
FB
EN
VIN
Pin description
Power switch output
Ground
Output voltage feedback
Regulator enable control Input
Power input
■Block diagram
VIN
Start up
and
reference
circuit
EN
Thermal
Shutdown &
UVLO
REF=1.25V
+
FB
Control
logic
Driver
-
Error
amplifier
NMOS
LG
SW
Current
sense
GND
9 - 2
Rev.1.2
ELM621LA High efficiency 30V step up DC/DC converter
■Standard circuit
Vin
Cin=
4.7µF
L=4.7µH
D=B340
ELM621LA
Cout=
10µF
VIN
EN
GND
SW
Vout
R1
FB
R2
■DC electrical characteristics
Vin= 5V, Vout=12V, Top=25°C, unless otherwise noted
Symbol
Condition
Min.
Typ.
Max. Unit
Vin
2.5
5.5
V
Vout
2.7
30.0
V
Ifb
-30.0
0.5
30.0
nA
Vfb -20°C ≤Ta≤85°C
1.25
V
Is
Ven=0V
0.01
1.00
µA
Iq
Vfb=1.5V, No switching
250
µA
Ven=0V, Vout=5.5V
SW leakage current
Ileak
-1
1
µA
Vlx=0V or 5.5V
SW on resistance
Rdson lsw =-100mA
0.25
Ω
SW current limit
Ilim_sw
1.45
A
Oscillator frequency
Fosc
1.04
1.30
1.56 MHz
Thermal shutdown temperature
Ts
145
°C
EN high level input voltage
Venh -20°C ≤Ta≤85°C
0.6
V
EN low level input voltage
Venl -20°C ≤Ta≤85°C
0.3
V
EN input current
Ien Ven=0V to Vin
-1
1
µA
Under voltaqe lockout
UVLO Vin rising
2.35
2.45
V
Under voltage lockout hvsteresis ULVOH
230
mV
Parameter
Input voltaqe
Output voltage
Feedback current
Feedback voltage
Shutdown current into VIN
Quiescent current
9 - 3
Rev.1.2
ELM621LA High efficiency 30V step up DC/DC converter
■Functional description
ELM621LA is a step-up converter with the constant frequency and current-mode PWM. It provides the function to set the output voltage ranging from 2.7V to 30V by an external resistor divider. The output voltage (Vout)
can be obtained by the following formula:
Vout = 1.25 * ( 1+ R1 / R2 )
The duty cycle D of a step-up converter is defined as the following:
D = Ton * Fosc * 100% ≈ (1-Vin / Vout) * 100%
where Ton is the main switch on time, and Fosc is the oscillator frequency.
1) Current mode PWM control
Slope compensated current mode PWM control provides stable switching and cycle-by-cycle current limit for
superior load and line response and protection of the internal main switch. ELM621LA switches at a constant
frequency (1.3MHz) and regulates the output voltage. The PWM comparator modulates the power transferred to
the load by changing the inductor peak current based on the feedback error voltage during each cycle.The main
switch is turned on for a certain time to ramp the inductor current at each rising edge of the internal oscillator
under normal operation whereas off when the peak inductor current is above the error voltage.
2) Soft-start
ELM621LA features an internal soft-start function, which reduces inrush current and overshoot of the output
voltage. Soft-start can be achieved by ramping up the reference voltage (Vref), which is applied to the input of
the error amplifier.
3) Thermal shutdown
As soon as the junction temperature exceeds the typical 145°C, the device goes into thermal shutdown and the
main switch is latched off in this mode.
4) Undervoltage-lockout (UVLO)
The undervoltage-Iockout (UVLO) circuit prevents mal-operation of the device at low input voltage. It prevents the converter from turning on the main switch under undefined conditions.
5) Shutdown
Driving the EN pin low can make the device enter the shutdown mode, during which the supply current drops
to 0.01µA. The capacitance and load at the output determine the rate at which Vout decays. The Vout is connected to the input through the inductor and output rectifier, holding the output voltage to one diode drop below
Vin when the converter is shut down.
6) Output voltage
The output voltage is set using the FB pin and a resistor divider connected to the output as shown in standard
circuit. Schematic below. The output voltage (Vout) can be calculated according to the voltage of the FB pin (Vfb)
and ratio of the feedback resistors by the following equation, where (Vfb) is 1.25V:
Vfb=Vout × R2 / (R1 + R2)
Thus the output voltage is:
Vout = 1.25 × (R1 + R2) / R2
9 - 4
Rev.1.2
ELM621LA High efficiency 30V step up DC/DC converter
■Application notes
1. Input and output capacitor selection
For the most optimized application of ELM621LA, 4.7µF of the input ceramic capacitor and 10µF of output
ceramic capacitor are recommended. Additionally, ceramic capacitors with low ESR are recommended for better
voltage filtering. Regarding the ceramic type, multi-layer ceramic (MLC) type such as X5R or X7R is recommended to ensure good capacitance stability over the full operating temperature range.
An output capacitor is required to filter the output and supply the load transient current. The high capacitor
value and low ESR will reduce the output ripple and the load transient drop. These requirements can be met by
a mix of capacitors and careful layout. Assuming a capacitor with zero ESR, the minimum capacitance needed
for a given ripple can be obtained by the following formula:
Cout = (Vout - Vin) × Iout / (Vout × Fs × Vripple)
Vripple = Peak to peak output ripple
The additional output ripple component caused by ESR is calculated using:
Vripple_ESR = Iout × Resr
High frequency decoupling capacitors should be placed as close to the power pins of the load as physically
possible. For the decoupling requirements, please consult the capacitor manufacturers for confirmation.
2. Inductor selection
For the value of the inductor to achieve the most optimized application, it is recommended to select that ranging from 4.7µH to 15µH. The small size as well as better efficiency are the main concern for portable devices
such as mobile phones. Therefore low core loss at 1.3MHz and low DCR are required for the inductor to have
better efficiency. Besides, the inductor saturation current rating should be considered to cover the inductor peak
current.
3. Diode selection
To get better efficiency, Schottky diode is a good choice for ELM621LA because of its low forward voltage
drop and fast reverse recovery. The high speed rectification is also a good characteristic of it for the high switching frequency. The current rating of the diode must meet the root mean square of the peak current and output
average current multiplication as the following:
Id(RMS) ≈ (Iout × Ipeak)
The diode’s reverse breakdown voltage should be larger than the output voltage. 40V rated Schottky diodes are
recommended for outputs less than 30V, while 60V rated Schottky diodes are recommended for outputs greater
than 35V.
4. Layout consideration
The physical design of the PCB is the final stage in the design of power converter. If designed improperly, the
PCB could radiate excessive EMI and contribute instability to the power converter. Therefore, following the
PCB layout guidelines below can ensure better performance of ELM621LA.
1) The bold lines of AP Circuit1 below show the main power current paths. Keep the traces short and wide.
2) To reduce resistive voltage drops and the number of via, ELM621LA and power components (Cin. Cout and L)
should be placed on the component side of the board and power current traces routed on its component layer.
3) SW node supports high frequency voltage swing (dv/dt). It should be routed small area.
4) Place input capacitor CIN as close as possible to the IC pins (VIN and GND).
5) When laying out a board, minimize trace lengths between the IC and inductor, diode, input capacitor, and
out capacitor.
6) To minimize parasitical capacitor couplings and magnetic field-to-loop couplings, the power converter should
be located away from other circuitry, especially from sensitive analog circuitry.
9 - 5
Rev.1.2
ELM621LA High efficiency 30V step up DC/DC converter
■AP circuit1
12V Step up converter
Vin 2.5V~5.5V to Vout 12V
12V
Vout
Vin Vin=2.5~5.5V
Vout<30V
D B340
1
2
C3
10µF
C2
4.7µF
L
4.7µH
R1 115K
3
C1
0.1µF
U2
SW
GND
VIN
EN
FB
Enable
5
R3 100K
4
ELM621LA
R2
13.3K
C4
0.1µF
Vref=1.25V
■AP circuit2 SEPIC Converter(Step up/Step down)
Step up/Step down converter is realized by ELM621LA and SEPIC topology. Vin2.5V~4.2V to Vout 3.3V.
3.3V
150mA
Vout
D B340
C6
1µF
C3
10µF
L2
Vin Vin=2.5~4.2V
L1
10µH
C2
4.7µF
10µH
C1
0.1µF
U2
1
2
3
R1 1M
R2
604K
9 - 6
SW
GND
FB
VIN
EN
ELM621LA
Vref=1.25V
5
4
R3 100K
Enable
C4
0.1µF
Rev.1.2
ELM621LA High efficiency 30V step up DC/DC converter
■AP circuit3 ±15V voltage converter(Charge pump circuit)
+15V and -5V are regulated from One VIn 5V by ELM621LA and charge pump circuit.
Vout2
-15V
50mA
C6
22µF
D2
Vin=5V
Vin
C4
1µF
BAT54S/SOT
D3
C5
1µF
1
BAT54S/SOT
2
Vout1
15V
50mA
3
C9
22µF
C2
4.7µF
L
15µH
C1
0.1µF
U1
SW
GND
FB
VIN
EN
ELM621LA
C7
2.2nF
Vref=1.25V
R2
150K
Enable
5
4
R1 100K
C3
0.1µF
R3
13.7K
■Marking
TSOT-25
abcd
efghi
a to i : Assembly lot No.
A to Z (I, O, X excepted) and 0 to 9
9 - 7
Rev.1.2
����
������
���
����
����
ELM621LA High efficiency 30V step up DC/DC converter
����
����
���
���
■Typical characteristics
���
�
��
��
�������
��
��
���
• L=4.7µH, Cin=4.7µF, Cout=10µF, Top=25°C
Temp-Vfb
Temp-F
��������
������
���������
������
����
�� ���
����
������
�������
������
������
���
����
��
��������
��������
��������
��������
���
����
��
���
�
����
����
����
����
���
���
�
���
�
��
��
�������
Temp(°C)
��
��
���
���
�
���
��������
��������
���
���
Iout-Vout
���������
��
���
�
���
���
��
��
��������
�������
Temp(°C)
��������
��������
�������
��������
���
��
Iout-Vout
���
��
���
���������������������������
Vin=5V, Vout=12V
����
������
����
������
����
�����
��������
��������
������
���
��
����
�
���
�
���� �
���
���
�������
������
�������
����
��������
��������
��������
��������
��������
��������
����
��
����
����
�������
��������
����
����
���
���
���
�
���
��������
Iout(mA)
���
��
��
�������
���
���
����
�
��
��
��
���
���
���
���
���
���
���
Iout(mA)
��������
���
���������������������������
Vin-Current
Limit
����������������
����
����
���
����
����
���
����
�
��
���
����
�������
����������������
���
���
Load Transient Response
Vin=2.5V, Vout=12V, Iout=50mA~100mA
Vout(AC)
100mV/Dev
����
����
���
����
���
����
�
�
���
��
�
���
���
���
��������
���
�
������
Vin(V)
���
���
���
���
���
Iout
50mA/Div
�
Time(200µs/Div)
9 - 8
Rev.1.2
ELM621LA High efficiency 30V step up DC/DC converter
Enable On
Enable Off
Vin=5V, Vout=12V, Iout=100mA
Vin=5V, Vout=12V, Iout=100mA
Vin
5V/Div
Vin
5V/Div
Vout
10V/Div
Vout
10V/Div
EN
2V/Div
EN
2V/Div
IL
500mA/Div
IL
500mA/Div
Time(500µs/Div)
Time(500µs/Div)
Ripple
Ripple
Vin=2.5V, Vout=12V, Iout=100mA
Vin=5.0V, Vout=12V, Iout=100mA
Vin(AC)
50mV/Div
Vin(AC)
50mV/Div
Vout(AC)
50mV/Div
Vout(AC)
50mV/Div
IL
500mA/Div
IL
500mA/Div
9 - 9
Rev.1.2