MC34VR500 - Freescale Semiconductor

Freescale Semiconductor
Advance Information
Document Number: MC34VR500
Rev. 4.0, 7/2015
Multi-output DC/DC Regulator for
QorIQ LS1/T1 Family of
Communications Processors
34VR500
Power Management
The 34VR500 is a high performance, highly integrated, multi-output,
SMARTMOS, DC/DC regulator solution, with integrated power MOSFETs
ideally suited for the LS1/T1 family of communication processors. Integrating
four switching and five linear regulators, the 34VR500 provides power to the
complete system, including the processor, DDR memory, and system
peripherals.
Features:
• Four buck converters:
• SW1: 4.5 A
• SW2: 2.0 A
• SW3: 2.5 A
• SW4: 1.0 A, (VTT tracking regulator)
• Five general purpose linear regulators
• DDR termination reference voltage (DDR3L and DDR4)
• Programmable low-power modes
• I2C control of all the regulators
• Power Control Logic with processor interface and event detection
• Auto qualified AEC Q100 grade 2
Applications:
• Internet of Things (IoT) gateway
• Mobile wireless router
• MFP printer
• Network attached storage
• Automatic teller machine
LS102X
VR500
SW1
POWER CONTROL LOGIC
3.3 VIN BUS
ES SUFFIX (WF-TYPE)
98ASA00589D
56 QFN-EP WF8X8
SW2
LDO2
LDO4
LDO5
SW3
SW4
REFOUT
VDD
TA_BB_VDD
VDDC
OVDD1/2
L1VDD
OVDD
GVDD
DDR3
VTT
LDO1
HDMI
LDO3
Ethernet
Figure 1. 34VR500 Simplified Application Diagram
* This document contains certain information on a new product.
Specifications and information herein are subject to change without notice.
© Freescale Semiconductor, Inc., 2014-2015. All rights reserved.
Table of Contents
1
2
3
4
5
6
7
8
9
Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Functional Block Requirements and Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 16 MHz and 32 kHz Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Bias and References Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Control Interface I2C Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 34VR500 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.1 Packaging Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
34VR500
2
Analog Integrated Circuit Device Data
Freescale Semiconductor
Orderable Parts
1
Orderable Parts
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided
on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search
for the following device numbers.
Table 1. Orderable Part Variations
Part Number
Temperature
(TA)
Package
SW4 VTT Mode
MC34VR500V1ES
Enabled
MC34VR500V2ES
Disabled
Processor
LS1020/21/22A
MC34VR500V3ES
-40 °C to 105 °C 56 QFN 8x8 mm
Reference Design
DDR Memory
Notes
LS1021A IOT
Gateway
TWR-LS1021A
DDR3L (VTT = 0.675 V)
N/A
(1) (2)
Enabled
MC34VR500V4ES
Enabled
MC34VR500V5ES
Enabled
LS1043/23A
T1023/13
LS1043ARDB
T1023RDB
DDR4 (VTT = 0.6 V)
DDR3L (VTT = 0.675 V)
Notes
1. For Tape and Reel add an R2 suffix to the part number.
2. Refer Table 8 for the start-up configuration.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
3
Internal Block Diagram
2
Internal Block Diagram
VR500
VLDOIN1
LDO1
LDO1
250 mA
LDO2
LDO2
100 mA
VLDOIN23
LDO3
LDO3
350 mA
LDO4
LDO4
100 mA
VLDOIN45
LDO5
LDO5
200 mA
Buck
Regulator
Reference
Generation
LDO
Reference
Generation
SW1 Buck
Regulator
4500 mA
FB1
SW2 Buck
Regulator
2000 mA
FB2
SW3 Buck
Regulator
2500 mA
FB3
SW4 Buck
Regulator
1000 mA
FB4
PVIN1
LX1
PVIN2
LX2
PVIN3
LX3
PVIN4
LX4
EPAD
VDIG
I C Interface
REFOUT
Main State Machine
Clocks and
Resets
REFIN
VHALF
VDIG Regulator
(Internal Use
Only)
VCC Regulator
(Internal Use
Only)
VIN
ICTEST1
EN
VCC
SGND4
2
ICTEST2
INTB
VCCI2C
SCL
SDA
Main and Standby
Bandgap
STBY
PORB
VBG
VBIAS
Figure 2. 34VR500 Simplified Internal Block Diagram
34VR500
4
Analog Integrated Circuit Device Data
Freescale Semiconductor
Pin Connections
Pinout Diagram
SDA
VBG
VDIG
VIN
VCC
SGND4
ICTEST2
DNC
DNC
DNC
VBIAS
Pinout Diagram
SCL
3.1
VCCI2C
Pin Connections
EN
3
56
55
54
53
52
51
50
49
48
47
46
45
44
43
INTB
1
42 DNC
DNC
2
41 LDO5
PORB
3
40 VLDOIN45
STBY
4
39 LDO4
ICTEST1
5
38 FB3
DNC
6
37 PVIN3
PVIN1
7
36 LX3
EP
35 LX3
FB1
13
30 REFIN
SGND1
14
29 VHALF
15
16
17
18
19
20
21
22
23
24
25
26
27
28
LDO3
31 REFOUT
VLDOIN23
12
LDO2
PVIN1
FB2
32 SGND3
PVIN2
11
PVIN2
LX1
LX2
33 DNC
LX4
10
PVIN4
PVIN1
FB4
34 PVIN3
LDO1
9
VLDOIN1
LX1
DNC
8
SGND2
LX1
Figure 3. 34VR500 Pinout Diagram
3.2
Pin Definitions
Table 2. 34VR500 Pin Definitions
Pin Number
Pin Name
Pin
Function
Max. Rating
Type
1
INTB
O
3.6 V
Digital
2, 6, 16, 33,
42, 44, 45, 46
DNC
—
—
Reserved
3
PORB
O
3.6 V
Digital
Open drain reset output to processor.
4
STBY
I
3.6 V
Digital
Standby input signal from processor
5
ICTEST1
I
7.5 V
Digital/
Analog
Reserved pin. Connect to GND in application.
Definition
Open drain interrupt signal to processor
Leave floating
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
5
Pin Connections
Pin Definitions
Table 2. 34VR500 Pin Definitions (continued)
Pin Number
Pin Name
Pin
Function
Max. Rating
Type
Definition
7, 10, 12
PVIN1 (3)
I
4.8 V
Analog
Input to SW1 regulator. Bypass with at least a 4.7 F ceramic capacitor and
a 0.1 F decoupling capacitor as close to the pin as possible.
8, 9, 11
LX1 (3)
O
4.8 V
Analog
SW1 switching node connection
13
FB1 (3)
I
3.6 V
Analog
Output voltage feedback for SW1. Route this trace separately from the high
current path and terminate at the output capacitance.
14
SGND1
GND
-
GND
Signal ground for SW1 regulator. Connect to ground plane directly.
15
SGND2
GND
-
GND
Signal ground for SW2 and SW4 regulators. Connect to ground plane
directly.
17
VLDOIN1
I
3.6 V
Analog
Input supply for LDO1. Bypass with a 1.0 F decoupling capacitor as close
to the pin as possible.
18
LDO1
O
2.5 V
Analog
LDO1 regulator output, Bypass with a 4.7 F ceramic output capacitor.
19
FB4 (3)
I
3.6 V
Analog
Output voltage feedback for SW4. Route this trace separately from the high
current path and terminate at the output capacitance.
20
PVIN4 (3)
I
4.8 V
Analog
Input to SW4 regulator. Bypass with at least a 4.7F ceramic capacitor and
a 0.1 F decoupling capacitor as close to the pin as possible.
21
LX4 (3)
O
4.8 V
Analog
Regulator 4 switching node connection
22
(3)
O
4.8 V
Analog
Regulator 2 switching node connection
LX2
23, 24
PVIN2 (3)
I
4.8 V
Analog
Input to SW2 regulator. Connect pins 23 and 24 together and bypass with at
least a 4.7 F ceramic capacitor and a 0.1 F decoupling capacitor as close
to these pins as possible.
25
FB2 (3)
I
3.6 V
Analog
Output voltage feedback for SW2. Route this trace separately from the high
current path and terminate at the output capacitance.
26
LDO2
O
3.6 V
Analog
LDO2 regulator output. Bypass with a 2.2 F ceramic output capacitor.
27
VLDOIN23
I
3.6 V
Analog
Input supply for LDO2 and LDO3. Bypass with a 1.0 F decoupling capacitor
as close to the pin as possible.
28
LDO3
O
3.6 V
Analog
LDO3 regulator output, Bypass with a 4.7 F ceramic output capacitor.
29
VHALF
I
3.6 V
Analog
Half supply reference for DDR reference.
30
REFIN
I
3.6 V
Analog
REFOUT regulator input. Bypass with at least 1.0 F decoupling capacitor
as close to the pin as possible.
31
REFOUT
O
3.6 V
Analog
REFOUT regulator output
32
SGND3
GND
-
GND
Ground reference for the SW3 regulator. Connect directly to ground plane.
34, 37
PVIN3 (3)
I
4.8 V
Analog
Input to SW3 regulator. Bypass with at least a 4.7 F ceramic capacitor and
a 0.1 F decoupling capacitor as close to the pin as possible.
35, 36
LX3 (3)
O
4.8 V
Analog
Regulator SW3 switching node connection
38
FB3 (3)
I
3.6 V
Analog
Output voltage feedback for SW3. Route this trace separately from the high
current path and terminate at the output capacitance.
39
LDO4
O
3.6 V
Analog
LDO4 regulator output. Bypass with a 2.2 F ceramic output capacitor.
40
VLDOIN45
I
4.8 V
Analog
Input supply for LDO4 and LDO5. Bypass with a 1.0 F decoupling capacitor
as close to the pin as possible.
43
VBIAS
I
1.8 V
Analog
Bypass the pin with a 0.47 F capacitor.
41
LDO5
O
3.6 V
Analog
LDO5 regulator output. By pass with a 2.2 F ceramic output capacitor.
47
ICTEST2
I
7.5 V
Digital/
Analog
Reserved pin. Connect to GND in application.
48
SGND4
GND
-
GND
49
VCC
O
3.6 V
Analog
Ground for the main band gap regulator. Connect directly to ground plane.
Analog Core supply
34VR500
6
Analog Integrated Circuit Device Data
Freescale Semiconductor
Pin Connections
Pin Definitions
Table 2. 34VR500 Pin Definitions (continued)
Pin Number
Pin Name
Pin
Function
Max. Rating
Type
50
VIN
I
4.8 V
Analog
Main chip supply
51
VDIG
O
1.5 V
Analog
Digital Core supply
52
VBG
O
1.5 V
Analog
Main band gap reference. Bypass with 0.22uF capacitor.
53
SDA
I/O
3.6 V
Digital
I2C data line (Open drain)
54
SCL
I
3.6 V
Digital
I2C clock
55
VCCI2C
I
3.6 V
Analog
Supply for I2C bus. Bypass with 0.1 F ceramic capacitor
56
EN
I
3.6 V
Digital
Enable input. Connect to the processor. Pull-up via an 8.0 k to 100 k to
VBIAS if required
-
EP
GND
-
GND
Expose pad. Functions as ground return for buck regulators. Tie this pad to
the inner and external ground planes through vias to allow effective thermal
dissipation.
Definition
Notes
3. Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be
connected to the VIN pin with a 0.1 F bypass capacitor.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
7
General Product Characteristics
Absolute Maximum Ratings
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 3. Absolute Maximum Ratings
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.
Symbol
Description
Value
Unit
-0.3 to 4.8
V
±2000
±500
V
Notes
ELECTRICAL RATINGS
VIN
VESD
Main input supply voltage
ESD Ratings
Human Body Model
Charge Device Model
(4)
Notes
4. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge Device Model
(CDM), Robotic (CZAP = 4.0 pF).
34VR500
8
Analog Integrated Circuit Device Data
Freescale Semiconductor
General Product Characteristics
Thermal Characteristics
4.2
Thermal Characteristics
Table 4. Thermal Ratings
Symbol
Description (Rating)
Min.
Max.
Unit
Notes
THERMAL RATINGS
TA
Ambient Operating Temperature Range
-40
105
C
TJ
Operating Junction Temperature Range
-40
125
C
Storage Temperature Range
-65
150
C
–
Note 7
C
(6) (7)
Junction to Ambient
Natural Convection
Four layer board (2s2p)
Eight layer board (2s6p)
–
–
28
15
°C/W
(8) (9) (10)
Junction to Ambient (at 200 ft/min)
Four layer board (2s2p)
–
22
°C/W
(8) (10)
Junction to Board
–
10
°C/W
(11)
RJCBOTTOM
Junction to Case Bottom
–
1.2
°C/W
(12)
JT
Junction to Package Top
Natural Convection
–
2.0
°C/W
(12)
TST
TPPRT
Peak Package Reflow Temperature
(5)
QFN56 THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS
RJA
RJMA
RJB
Notes
5. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 5 for
thermal protection features.
6. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a
malfunction or permanent damage to the device.
7. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature
and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to
view all orderable parts (i.e. MC33xxxD enter 33xxx), and review parametrics.
8. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
9. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.
10. Per JEDEC JESD51-6 with the board horizontal.
11. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the
board near the package.
12. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
13. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD512. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
9
General Product Characteristics
Electrical Characteristics
4.2.1
Power Dissipation
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the
thermal management and to avoid overheating, the 34VR500 provides thermal protection. An internal comparator monitors the die
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I will be generated when the respective thresholds
specified in Table 5 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register
INTSENSE0.
In the event of excessive power dissipation, thermal protection circuitry will shut down the 34VR500. This thermal protection will act above
the thermal protection threshold listed in Table 5. To avoid any unwanted power downs resulting from internal noise, the protection is
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured such
that this protection is not tripped under normal conditions.
Table 5. Thermal Protection Thresholds
Parameter
Min.
Typ.
Max.
Units
Thermal 110 °C Threshold (THERM110)
100
110
120
°C
Thermal 120 °C Threshold (THERM120)
110
120
130
°C
Thermal 125 °C Threshold (THERM125)
115
125
135
°C
Thermal 130 °C Threshold (THERM130)
120
130
140
°C
Thermal Warning Hysteresis
2.0
–
4.0
°C
Thermal Protection Threshold
130
140
150
°C
4.3
Electrical Characteristics
4.3.1
I/O Specifications
Notes
Table 6. General PMIC Static Characteristics.
TA = -40 to 105 °C, VVIN = 2.8 to 4.5 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V 4.0%, typical external component values and full load
current range, unless otherwise noted.
Pin Name
EN
PORB
SCL
SDA
INTB
STBY
Parameter
Load Condition
Min.
Max.
Unit
VIL
–
0.0
0.2 *VVBIAS
V
VIH
–
0.8 *VVBIAS
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7* VVIN
VVIN
V
VIL
–
0.0
0.2 * VVCCI2C
V
VIH
–
0.8 * VVCCI2C
3.6
V
VIL
–
0.0
0.2 * VVCCI2C
V
VIH
–
0.8 * VVCCI2C
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7 * VVCCI2C
VVCCI2C
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7* VVIN
VVIN
V
VIL
–
0.0
0.2 *VVBIAS
V
VIH
–
0.8 *VVBIAS
3.6
V
Notes
34VR500
10
Analog Integrated Circuit Device Data
Freescale Semiconductor
General Product Characteristics
Electrical Characteristics
4.3.2
Current Consumption
Table 7. Current Consumption Summary
TA = -40 to 105 °C, (See Table 3), VVIN = 3.6 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V 4.0%, typical external component values, unless
otherwise noted. Typical values are characterized at VVIN = 3.6 V, VVCCI2C = 3.3 V, and 25 °C, unless otherwise noted.
Mode
Off
Sleep
Standby
34VR500 Conditions
System Conditions
Typical
Max.
Unit
Notes
Wake-up from EN active
32 k RC on
All other blocks off
VIN UVDET
PMIC able to wake-up
17
25
A
(14) (15)
Wake-up from EN active
Trimmed reference active 
SW3 PFM
Trimmed 16 MHz RC off
32 k RC on
REFOUT disabled
DDR memories in self refresh
122
250
A
(15)
SW1 in PFM
SW2 in PFM
SW3 in PFM
SW4 in PFM
Trimmed 16 MHz RC enabled
Trimmed reference active
LDO1 - 5 enabled
REFOUT enabled
Processor enabled in low power mode. All
rails powered on except boost
(load = 0 mA)
297
550
A
(15)
Notes
14. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 A, typically.
15. For PFM operation (as defined in Table 23).
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
11
General Description
Features
5
General Description
The 34VR500 is a high performance, highly integrated, multi-output, DC/DC regulator solution, with integrated power MOSFETs ideally
suited for the LS1/T1 family of communication processors.
5.1
Features
This section summarizes the 34VR500 features.
• Input voltage range: 2.8 V to 4.5 V
• Buck regulators
• Four independent outputs
• SW1, 4.5 A; 0.625 V to 1.875 V
• SW2, 2.0 A; 0.625 V to 1.975 V
• SW3, 2.5 A; 0.625 V to 1.975 V
• SW4, 1.0 A; operates in VTT mode for DDR termination at 50% of SW3 for 34VR500V1, 34VR500V3, 34VR500V4,
34VR500V5 and 0.625 V to 1.975 V for 34VR500V2
• Dynamic voltage scaling
• Modes: PWM, PFM, APS
• Programmable output voltage
• Programmable current limit
• Programmable soft start
• Programmable PWM switching frequency
• Programmable OCP with fault interrupt
• LDOs
• Five general purpose LDOs
• LDO1, 0.80 V to 1.55 V, 250 mA
• LDO2, 1.8 V to 3.3 V, 100 mA
• LDO3, 1.8 V to 3.3 V, 350 mA
• LDO4, 1.8 V to 3.3 V, 100 mA
• LDO5, 1.8 V to 3.3 V, 200 mA
• Soft start
• DDR memory reference voltage
• REFOUT, 10 mA
• 16 MHz internal master clock
• I2C interface
• User programmable Standby, Sleep, and OFF modes
34VR500
12
Analog Integrated Circuit Device Data
Freescale Semiconductor
General Description
Functional Block Diagram
5.2
Functional Block Diagram
MC34VR500 Functional Block Diagram
Start-up Configuration
(Factory programmable)
Power Generation
Vo1
Vo4
SW1
(0.625 - 1.875 V)
4.5 A
SW2
(0.625-1.975 V)
2.0 A
SW4
(0.625 - 1.975 V)
1.0 A
VTT option
SW3
(0.625-1.975 V)
2.5 A
LDO1
(0.8 - 1.55 V)
250 mA
LDO2
(1.8 - 3.3 V)
100 mA
Vo2
Voltage
Phasing and Frequency Selection
Sequence and Timing
Vo3
Logic and Control
Parallel MCU Interface
Regulator Control
2
LDO3
(1.8 – 3.3 V)
350 mA
LDO4
(1.8 - 3.3 V)
100 mA
I C Communication & Registers
Fault Detection & Protection
LDO5
(1.8 - 3.3 V)
200 mA
Thermal
Current Limit
Short-circuit
Figure 4. 34VR500 Functional Block Diagram
5.3
Functional Description
5.3.1
Power Generation
The 34VR500 PMIC features four buck regulators, five general purpose LDOs, and a DDR voltage reference to supply voltages for the
processor, memory, and peripheral devices.
Depending on the system power path configuration, the five general purpose LDO regulators can be directly supplied from the main input
supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific REFOUT
voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination
5.3.2
Control Logic
The 34VR500 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including
interrupt and reset. Startup voltage and sequence are internally programed. After power up, the regulator voltages can be changed via
I2C. The 34VR500 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
13
General Description
Functional Description
5.3.2.1
Interface Signals
EN
EN is an input signal to the IC that generates a turn-on event. Refer to section Turn ON Events for more details.
STBY
STBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby mode.
STBY can be configured as active high or active low using the STBYINV bit. Refer to the section Standby Mode for more details.
PORB
PORB is an open-drain, active low output. In its default mode, it is de-asserted 2.0 to 4.0 ms after the last regulator in the start-up sequence
is enabled; refer to Figure 8 as an example. In this mode, the signal can be used to bring the processor out of reset, or as an indicator that
all supplies have been enabled; it is only asserted for a turn-off event.
INTB
INTB is an open-drain, active low output. It is asserted when any fault occurs, provided that the fault interrupt is unmasked. INTB is deasserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.
34VR500
14
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Start-up
6
Functional Block Requirements and Behaviors
6.1
Start-up
The 34VR500 starts up from the internal configuration, which is hard-coded into the device. However, the 34VR500 can be controlled
through the I2C port after the Start-up sequence. It is also possible to modify the contents of the Internal Registers via the bus I2C to modify
the start up parameters (see section Start Sequence Creation).
6.1.1
Device Start-up Configuration
Table 8 shows the internal configuration for the 34VR500V1, 34VR500V2, 34VR500V3, 34VR500V4, 34VR500V5.
Table 8. Start-up Configuration
Registers
34VR500V1
34VR500V2
Default I2C Address
34VR500V3
34VR500V4
34VR500V5
0x08
LDO2_VOLT
1.8 V
1.8 V
1.8 V
2.5 V
2.5 V
LDO2_SEQ
1
1
1
2
2
LDO3_VOLT
2.5 V
LDO3_SEQ
1
1
3
2
2
LDO4_VOLT
2.5 V
2.5 V
2.5 V
1.8 V
1.8 V
LDO4_SEQ
1
1
1
3
3
LDO5_VOLT
1.8 V
1.8 V
1.8 V
3.3 V
3.3 V
LDO5_SEQ
1
1
1
3
3
SW1_VOLT
1.0 V
1.0 V
1.0 V
1.5 V
1.5 V
SW1_SEQ
2
SW2_VOLT
1.0 V
1.0 V
1.0 V
1.8 V
1.8 V
SW2_SEQ
2
2
2
1
1
SW3_VOLT
1.35 V
1.35 V
1.2 V
1.2 V
1.35 V
SW3_SEQ
3
3
3
12
12
SW4_VOLT
VTT
1.8 V
VTT
VTT
VTT
SW4_SEQ
3
3
3
12
12
REFOUT_SEQ
3
3
3
12
12
LDO1_VOLT
1.2 V
1.2 V
1.2 V
1.35 V
1.35 V
LDO1_SEQ
4
4
4
1
12
PU CONFIG, SEQ_CLK_SPEED
PU CONFIG, SWDVS_CLK
1.0 ms
6.25 mV/s
SW1 CONFIG
2.0 MHz
SW2 CONFIG
2.0 MHz
SW3 CONFIG
2.0 MHz
SW4 CONFIG
2.0 MHz
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
15
Functional Block Requirements and Behaviors
Start-up
UVDET
VIN
tD1
tR1
EN
tD2
tR2
LDO2,3,4,5
tD3
tR2
SW1,2
tD3
tR2
SW3,4
REFOUT
TD3
LDO1
tR2
tD4
tR3
PORB
Figure 5. Starting Sequence: Example for V1 and V2
Table 9. 34VR500V1 and V2 Start-up Sequence Timing
Parameter
Typ.
Unit
Turn-on delay
6.0
ms
tR1
Rise time of EN
(16)
ms
tD2
Turn-on delay of first regulator
2.5
ms
0.2
ms
tD1
Description
(17)
tR2
Rise time of regulators
tD3
Delay between regulators
1.0
ms
tD4
Turn-on delay of PORB
2.0
ms
tR3
Rise time of PORB
0.2
ms
Notes
16. Depends on the external signal driving EN.
17. Rise time is a function of slew rate of regulators and nominal voltage selected.
34VR500
16
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Start-up
6.1.2
Start Sequence Creation
The 34VR500 powers up based on the contents of the internal registers. Depending on certain bit settings, the internal registers are loaded
from different sources, as shown in Figure 6.
Figure 6. Starting Sequence
The contents of the internal registers are initialized to zero when a valid VIN is first applied. The values that are then loaded into the internal
registers depend on the value of the TBB_POR (the initial value of TBB_POR is always “0”):
• If TBB_POR = 0 the values are loaded from the Default Sequence (this is the case always for first starting)
• If TBB_POR = 1 the values are loaded from the internal RAM. VIN must be valid to maintain the contents of the internal RAM.
To power on with the contents of the internal RAM, the following conditions must exist:
• VIN is valid
• TBB_POR = 1 and there is a valid turn-on event via the EN pin
To keep a regulator off during a start-up sequence is to set its sequence to 0. This corresponds to the XX_SEQ setting of 0x00.
For example, 0x01 corresponds to a sequence of 1, and so on.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
17
Functional Block Requirements and Behaviors
16 MHz and 32 kHz Clocks
Figure 7 explains how to start from a new configuration.
First VIN Applied
34VR500
regulators will not
turn on
Keep EN pin in
low state
Program the new
start sequence and
set TBB_POR to 1
I2C
programming
+
TBB_POR = 1
Create a Turn On
event via the EN pin
Turn On event
EN pin to high
state
TBB_POR
TBB_POR = 1
Start from the
Internal RAM
TBB_POR = 0
Start from the
Default
Sequence
Figure 7. Modifying a Starting Sequence
Table 95 shows the portion of the register map concerning the programming of a new starting sequence.
6.2
16 MHz and 32 kHz Clocks
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within
-8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:
• VIN < UVDET
• All regulators are in SLEEP mode
• All regulators are in PFM switching mode
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:
• During start-up, VIN > UVDET
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 20 are referenced to the 32 kHz derived from the
16 MHz clock. The exceptions are the LOWVINI and ENI interrupts, which are referenced to the 32 kHz untrimmed clock.
34VR500
18
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Bias and References Block Description
Table 10. 16 MHz Clock Specifications
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V 4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
Symbol
Min.
Typ.
Max.
Units
Operating Voltage from the VIN pin
2.8
–
4.5
V
f16MHZ
16 MHz Clock Frequency
14.7
16
17.3
MHz
f2MHZ
2.0 MHz Clock Frequency
1.84
–
2.16
MHz
VIN
Parameters
Notes
(18)
Notes
18. 2.0 MHz clock is derived from the 16 MHz clock.
6.2.1
Clock adjustment
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as 3.0% of the nominal frequency. Contact a
Freescale representative for detailed information on this feature.
6.3
Bias and References Block Description
6.3.1
Internal Core Voltage References
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VBG. The bandgap and the rest
of the core circuitry are supplied from VCC. Table 11 shows the main characteristics of the core circuitry.
Table 11. Core Voltages Electrical Specifications(20)
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V 4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
Notes
–
–
1.5
1.3
–
–
V
(19)
–
–
2.775
0.0
–
–
V
(19)
Output Voltage
–
1.2
–
V
(19)
VBGACC
Absolute Accuracy
–
0.5
–
%
VBGTACC
Temperature Drift
–
0.25
–
%
VDIG (digital core supply)
VDIG
Output Voltage
ON mode
OFF mode
VCC (Analog core supply)
VCC
Output Voltage
ON mode
OFF mode
VBG (BANDGAP / REGULATOR REFERENCE)
VBG
Notes
19. 3.0 V < VIN < 4.5 V, no external loading on VDIG, VCC, or VBG. Extended operation down to UVDET, but no system malfunction.
20.
For information only.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
19
Functional Block Requirements and Behaviors
Bias and References Block Description
6.3.1.1
External Components
Table 12. External Components for Core Voltages
6.3.2
Regulator
Capacitor Value (F)
VDIG
1.0
VCC
1.0
VBG
0.22
REFOUT Voltage Reference
REFOUT is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.
This divider then utilizes a voltage follower to drive the load.
REFIN
REFIN
CHALF1
100 nF
VHALF
_
CHALF2
100 nF
+
Discharge
REFOUT
REFOUT
CREFDDR
1.0 uf
Figure 8. REFOUT Block Diagram
6.3.2.1
REFOUT Control Register
The REFOUT voltage reference is controlled by a single bit in REFOUTCTRL register in Table 13.
Table 13. Register REFOUTCTRL - ADDR 0x6A
Name
UNUSED
REFOUTEN
UNUSED
Bit #
R/W
Default
Description
3:0
–
0x00
UNUSED
4
R/W
0x00
Enable or disables REFOUT output voltage
0 = REFOUT Disabled
1 = REFOUT Enabled
7:5
–
0x00
UNUSED
34VR500
20
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Bias and References Block Description
External Components
Table 14. REFOUT External Components(21)
Capacitor
(22)
REFIN
to VHALF
Capacitance (F)
0.1
VHALF to GND
0.1
REFOUT
1.0
Notes
21. Use X5R or X7R capacitors.
22. REFIN to GND, 1.0 F minimum capacitance is provided by buck regulator output.
REFOUT Specifications
Table 15. REFOUT Electrical Characteristics
TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, VVBIAS = 1.0 V 4.0%, and typical external component
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, and 25 °C, unless
otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
REFOUT
VREFIN
Operating Input Voltage Range
1.2
–
1.8
V
IREFDDR
Operating Load Current Range
0.0
–
10
mA
Current Limit, IREFDDR when VREFOUT is forced to VREFIN/4
10.5
15
25
mA
Quiescent Current
–
8.0
–
A
VREFOUT
Output Voltage
1.2 V < VREFIN < 1.8 V, 0.0 mA < IREFDDR < 10 mA
–
VREFIN/2
–
V
VREFOUTTOL
Output Voltage Tolerance
1.2 V < VREFIN < 1.8 V, 0.6 mA IREFDDR 10 mA
–1.0
–
1.0
%
VREFOUTLOR
Load Regulation
1.0 mA < IREFDDR < 10 mA, 1.2 V < VREFIN < 1.8 V
–
0.40
–
mV/mA
tONREFDDR
Turn-on Time, Enable to 90% of end value
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA
–
–
100
s
tOFFREFDDR
Turn-Off Time, Disable to 10% of initial value
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA
–
–
10
ms
VREFOUTOSH
Start-up Overshoot
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA
–
1.0
6.0
%
VREFOUTTLR
Transient Load Response
VREFIN = 1.2 V, 1.8 V
–
5.0
–
mV
IREFDDRLIM
IREFDDRQ
(23)
Active Mode – DC
Active Mode – AC
Notes
23. When REFOUT is off there is a quiescent current of 1.5 A typical.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
21
Functional Block Requirements and Behaviors
Power Generation
6.4
Power Generation
6.4.1
Modes of Operation
The operation of the 34VR500 can be reduced to four states, or modes: ON, OFF, Sleep, and Standby. Figure 9 shows the state diagram
of the 34VR500, along with the conditions to enter and exit from each state.
Thermal shutdown
OFF
Sleep
EN = 1
& VIN > UVDET
EN = 0
Any SWxOMODE bits=1
EN = 0
All SWxOMODE bits= 0
EN = 0
Any SWxOMODE bits=1
EN = 1
& VIN > UVDET
ON
Thermal shudown
STANDBY asserted
STANDBY de-asserted
EN = 0
All SWxOMODE bits= 0
Thermal shutdown
Standby
Figure 9. State Diagram
To complement the state diagram in Figure 9, a description of the states is provided in following sections. Note that VIN must exceed the
rising UVDET threshold to allow a power up. Refer to Table 22 for the UVDET thresholds. Additionally, the interrupt signal and INTB are
only active in Sleep, Standby, and ON states.
6.4.1.1
ON Mode
The 34VR500 enters the ON mode after a turn-on event. PORB is de-asserted, high, in this mode of operation.
6.4.1.2
OFF Mode
The 34VR500 enters the OFF mode after a turn-off event. A thermal shutdown event also forces the 34VR500 into the OFF mode. Only
VDIG is powered in this mode of operation. To exit the OFF mode, a valid turn-on event is required. PORB is asserted, LOW, in this mode.
34VR500
22
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
6.4.1.3
Standby Mode
• Depending on STBY pin configuration, Standby is entered when the STBY pin is asserted. This is typically used for low-power mode
of operation.
• When STBY is de-asserted, Standby mode is exited.
A product may be designed to go into a Low-power mode after periods of inactivity. The STBY pin is provided for board level control of
going in and out of such deep sleep modes (DSM).
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the
operating mode of the regulators or disabling some regulators. The configuration of the regulators in Standby are pre-programmed through
the I2C interface.
Note that the STBY pin is programmable for Active High or Active Low polarity, and that decoding of a Standby event will take into account
the programmed input polarity as shown in Table 16. When the 34VR500 is powered up first, regulator settings for the Standby mode are
mirrored from the regulator settings for the ON mode. To change the STBY pin polarity to Active Low, set the STBYINV bit via software
first, and then change the regulator settings for Standby mode as required. For simplicity, STBY will generally be referred to as active high
throughout this document.
Table 16. STBY Pin and Polarity Control
STBY (Pin)(25)
STBYINV (I2C bit)(26)
STBY Control (24)
0
0
0
0
1
1
1
0
1
1
1
0
Notes
24. STBY = 0: System is not in Standby, STBY = 1: System is in Standby
25. The state of the STBY pin only has influence in On mode.
26. Bit 6 in Power Control Register (ADDR - 0x1B)
Since STBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the
pin level changes. A programmable delay is provided to hold off the system response to a Standby event. This allows the processor and
peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into Standby
mode.
When enabled (STBYDLY = 01, 10, or 11) per Table 17, STBYDLY will delay the Standby initiated response for the entire IC, until the
STBYDLY counter expires.
An allowance should be made for three additional 32 k cycles required to synchronize the Standby event.
Table 17. STBY Delay - Initiated Response
STBYDLY[1:0](27)
Function
00
No Delay
01
One 32 k period (default)
10
Two 32 k periods
11
Three 32 k periods
Notes
27. Bits [5:4] in Power Control Register (ADDR - 0x1B)
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
23
Functional Block Requirements and Behaviors
Power Generation
6.4.1.4
Sleep Mode
• Depending on EN pin configuration, Sleep mode is entered when EN is de-asserted and SWxOMODE bit is set.
• To exit Sleep mode, assert the EN pin.
In the Sleep mode, the regulator will use the set point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4. The activated
regulators will maintain settings for this mode and voltage until the next turn-on event. Table 18 shows the control bits in Sleep mode.
During Sleep mode, interrupts are active and the INTB pin will report any unmasked fault event.
Table 18. Regulator Mode Control
SWxOMODE
Off Operational Mode (Sleep) (28)
0
Off
1
PFM
Notes
28. For sleep mode, an activated switching regulator, should use the off mode set
point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4.
6.4.2
State Machine Flow Summary
Table 19 provides a summary matrix of the 34VR500 flow diagram to show the conditions needed to transition from one state to another.
Table 19. State Machine Flow Summary
Next State
Initial State
STATE
OFF
Sleep
Standby
ON
OFF
X
X
X
EN = 1 & VIN > UVDET
Sleep
Thermal Shutdown
X
X
EN = 1 & VIN > UVDET
EN = 0, Any SWxOMODE = 1
X
Standby de-asserted
EN = 0, Any SWxOMODE = 1
Standby asserted
X
Standby
Thermal Shutdown
EN = 0, All SWxOMODE = 0
ON
Thermal Shutdown
EN = 0, All SWxOMODE = 0
6.4.2.1
Turn ON Events
From OFF and Sleep modes, the PMIC is powered on by a turn ON event. VIN must be greater than UVDET for the PMIC to turn-on. When
VIN is greater than UVDET, a logic high on the EN pin is a turn ON event, when EN is high before VIN is valid, a VIN transition, from 0.0 V
to a voltage greater than UVDET, also a Turn ON event. See the State diagram, Figure 9, and the Table 19 for more details. Any regulator
enabled in the Sleep mode will remain enabled when transitioning from Sleep to ON, i.e., the regulator will not be turned OFF and then
ON again to match the start-up sequence. The following is a more detailed description of the EN configuration:
• The EN signal is high and VIN > UVDET, the PMIC will turn ON; the interrupt and sense bits, ENI and ENS respectively, will be set.
The sense bit will show the real time status of the EN pin. In this configuration, the EN input can be a mechanical switch debounced through
a programmable debouncer, ENDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press. The interrupt is generated
for both the falling and the rising edge of the EN pin. By default, a 30 ms interrupt debounce is applied to both falling and rising edges.
The falling edge debounce timing can be extended with ENDBNC[1:0] as defined in the table below. The interrupt is cleared by software,
or when cycling through the OFF mode.
34VR500
24
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 20. EN Hardware Debounce Bit Settings
Bits
State
ENDBNC[1:0]
Turn On
Debounce (ms)
Falling Edge INT
Debounce (ms)
Rising Edge INT
Debounce (ms)
00
0.0
31.25
31.25
01
31.25
31.25
31.25
10
125
125
31.25
11
750
750
31.25
Notes
29. The sense bit, ENS, is not debounced and follows the state of the EN pin.
6.4.2.2
Turn OFF Events
EN Pin
The EN pin is used to power off the 34VR500. The Off mode is entered when the EN pin is low and SWxOMODE = 0.
Thermal Protection
If the die temperature surpasses a given threshold, the thermal protection circuit will power off the 34VR500 to avoid damage. A turn-on
event will not power on the PMIC while it is in thermal protection. The part will remain in Off mode until the die temperature decreases
below a given threshold. There are no specific interrupts related to this other than the warning interrupt. See Power Dissipation section
for more detailed information.
Undervoltage Detection
The state machine will transition to the OFF mode when the voltage at the VIN pin drops below the UVDET undervoltage falling threshold.
6.4.3
Power Tree
The 34VR500 features four buck regulators, five general purpose LDOs, and a DDR voltage reference, to supply voltages for the
application and peripheral devices. The buck regulators are supplied directly from the main input supply (VIN). The inputs to all of the buck
regulators must be tied to VIN, whether they are powered ON or OFF. The five general use LDO regulators are directly supplied from the
main input supply or from the switching regulators depending on the application requirements. Since REFOUT is intended to provide DDR
memory reference voltage, it should be supplied by any rail supplying voltage to DDR memories; the typical application recommends the
use of SW3 as the input supply for REFOUT. Refer to Table 21 for a summary of all power supplies provided by the 34VR500.
Table 21. Power Tree Summary
Supply
Output Voltage (V)
Step Size (mV)
Maximum Load Current (mA)
SW1
0.625 - 1.875
25
4500
SW2
0.625 - 1.975
25
2000
SW3
0.625 - 1.975
25
2500
SW4
0.5*SW3_OUT (VTT for V1, V3,
V4, V5), 0.625 - 1.975 (for V2)
LDO1
0.80 – 1.55
50
250
LDO2
1.8 – 3.3
100
100
LDO3
1.8 – 3.3
100
350
LDO4
1.8 – 3.3
100
100
LDO5
1.8 – 3.3
100
200
REFOUT
0.5*SW3_OUT
NA
10
1000
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
25
Functional Block Requirements and Behaviors
Power Generation
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative
tables and text specifying each supply for information on performance metrics and operating ranges. Table 22 summarizes the UVDET
thresholds.
Table 22. UVDET Threshold
UVDET Threshold
VIN
Rising
3.1 V
Falling
2.65 V
VR500
LS102x
SW1
VDDCORE
(0.625 to 1.875 V), 4.5 A
SW2
VDDC
(0.625 to 1.975 V),
2.0 A
VIN
3.3 V
VDDCORE
VDDC
LDO2
(1.8 to 3.3 V),
100 mA
OVDD1/2
LDO4
(1.8 to 3.3 V),
100 mA
L1VDD
LDO5
(1.8 to 3.3 V),
200 mA
OVDD
SW3
DDR CORE
(0.625 to 1.975 V),
2.5 A
SW4
System/VTT
(0.625 to 1.975 V)
(0.5*VDDR)
1.0 A
SW3
VIN
3.3 V
REFOUT
0.5*VDDR, 10 mA
LDO1
(0.80 to 1.55 V),
250 mA
DDR3
VTT
Peripherals
LDO3
(1.8 to 3.3 V),
350 mA
Figure 10. 34VR500 Typical Power Map
34VR500
26
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
6.4.4
Buck Regulators
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.
6.4.4.1
Current Limit
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit
condition persists for more than 8.0 ms, a fault interrupt is generated.
6.4.4.2
General Control
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur
by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current
variation. Available switching modes for buck regulators are presented in Table 23.
Table 23. Switching Mode Description
Mode
Description
OFF
The regulator is switched off and the output voltage is discharged.
PFM
In this mode, the regulator is always in PFM mode, which is useful at light loads for
optimized efficiency.
PWM
In this mode, the regulator is always in PWM mode operation regardless of load conditions.
APS
In this mode, the regulator moves automatically between pulse skipping mode and PWM
mode depending on load conditions.
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes.
Table 24 summarizes the Buck regulator programmability for Normal and Standby modes.
Table 24. Regulator Mode Control
SWxMODE[3:0]
Normal Mode
Standby Mode
SWxMODE[3:0]
Normal Mode
Standby Mode
0000
Off
Off
1000
APS
APS
0001
PWM
Off
1001
Reserved
Reserved
0010
Reserved
Reserved
1010
Reserved
Reserved
0011
PFM
Off
1011
Reserved
Reserved
0100
APS
Off
1100
APS
PFM
0101
PWM
PWM
1101
PWM
PFM
0110
PWM
APS
1110
Reserved
Reserved
0111
Reserved
Reserved
1111
Reserved
Reserved
Transitioning between Normal and Standby modes can affect a change in switching modes as well as output voltage. The rate of the output
voltage change is controlled by the Dynamic Voltage Scaling (DVS), explained in Dynamic Voltage Scaling. For each regulator, the output
voltage options are the same for Normal and Standby modes.
When in Standby mode, the regulator outputs the voltage programmed in its standby voltage register and will operate in the mode selected
by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator will return to its normal switching mode and its output voltage
programmed in its voltage register.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
27
Functional Block Requirements and Behaviors
Power Generation
Any regulators whose SWxOMODE bit is set to “1” will enter Sleep mode if a EN turn-off event occurs, and any regulator whose
SWxOMODE bit is set to “0” will be turned off. In Sleep mode, the regulator outputs the voltage programmed in its off (Sleep) voltage
register and operates in the PFM mode. The regulator will exit the Sleep mode when a turn-on event occurs. Any regulator whose
SWxOMODE bit is set to “1” will remain on and change to its normal configuration settings when exiting the Sleep state to the ON state.
Any regulator whose SWxOMODE bit is set to “0” will be powered up with the same delay in the start-up sequence as when powering On
from Off. At this point, the regulator returns to its default ON state output voltage and switch mode settings.
Table 18 shows the control bits in Sleep mode. When Sleep mode is activated by the SWxOMODE bit, the regulator will use the set point
as programmed by SWxOFF[5:0] for SW1, SW2, SW3, and SW4.
6.4.4.3
Dynamic Voltage Scaling
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.
1. Normal operation: The output voltage is selected by I2C bits SWx[5:0] for SW1, SW2, SW3, and SW4. A voltage transition initiated
by I2C is governed by the DVS stepping rates shown in Table 26.
2. Standby Mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SWxSTBY[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions
initiated by a Standby event are governed by the SWxDVSSPEED[1:0] and I2C bits shown in Table 26.
3. Sleep Mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SWxOFF[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions
initiated by a turn-off event are governed by the SWxDVSSPEED[1:0] I2C bits shown in Table 26.
Table 25, Table 26, summarize the set point control and DVS time stepping applied to all regulators.
Table 25. DVS Control Logic for SW1, SW2, SW3, and SW4
STBY
Set Point Selected by
0
SWx[5:0]
1
SWxSTBY[5:0]
Table 26. DVS Speed Selection for SW1, SW2, SW3, and SW4
SWxDVSSPEED[1:0]
Function
00
25 mV step each 2.0 s
01 (default)
25 mV step each 4.0 s
10
25 mV step each 8.0 s
11
25 mV step each 16 s
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control.
During the DVS period the overcurrent condition on the regulator should be masked.
34VR500
28
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Requested
Set Point
Internally
Controlled Steps
Output Voltage
with light Load
Example
Actual Output
Voltage
Output
Voltage
Initial
Set Point
Actual
Output Voltage
Internally
Controlled Steps
Request for
Higher Voltage
Voltage
Change
Request
Possible
Output Voltage
Window
Request for
Lower Voltage
Initiated by I2C Programming, Standby Control
Figure 11. Voltage Stepping with DVS
6.4.4.4
Regulator Phase Clock
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 27. By default, each regulator is initialized at 90 ° out
of phase with respect to each other. For example, SW1 is set to 0 °, SW2 is set to 90 °, SW3 is set to 180 °, and SW4 is set to 270 ° by
default at power up.
Table 27. Regulator Phase Clock Selection
SWxPHASE[1:0]
Phase of Clock Sent to Regulator (degrees)
00
0
01
90
10
180
11
270
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 29 shows the
selectable options for SWxFREQ[1:0]. For each frequency, all phases will be available, this allows regulators operating at different
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and
4.0 MHz, 180 ° are the same in terms of phasing. Table 28 shows the optimum phasing when using more than one switching frequency.
Table 28. Optimum Phasing
Frequencies
Optimum Phasing
1.0 MHz
2.0 MHz
0°
180 °
1.0 MHz
4.0 MHz
0°
180 °
2.0 MHz
4.0 MHz
0°
180 °
1.0 MHz
2.0 MHz
4.0 MHz
0°
90 °
90 °
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
29
Functional Block Requirements and Behaviors
Power Generation
Table 29. Regulator Frequency Configuration
6.4.4.5
SWxFREQ[1:0]
Frequency
00
1.0 MHz
01
2.0 MHz
10
4.0 MHz
11
Reserved
SW1 Regulator
The SW1 is a 4.5 A regulator capable of providing an output from 0.625 to 1.875 V. Figure 12 shows a high level block diagram of the
SW1 regulator.
PVIN1
PVIN1
SW1MODE
ISENSE
CINSW1
SW1
Controller
LX1
Driver
LSW1
COSW1
SW1FAULT
EP
I2C
Internal
Compensation
FB1
I2C
Interface
Z2
Z1
VREF
EA
DAC
Figure 12. SW1 Regulator Block Diagram
6.4.4.6
SW1 Setup and Control Registers
SW1 output voltage is programmable from 0.625 to 1.875 V in steps of 25 mV. After power up in the default voltage, the output voltage
can be changed in the Normal, Standby and Sleep mode by writing to the SW1[5:0], SW1STBY[5:0], and SW1OFF[5:0] respectively.
Figure 30 shows the output voltage coding for these registers.
Table 30. SW1 Output Voltage Configuration
Set Point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 Output (V)
Set Point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 Output (V)
13
001101
0.6250
39
100111
1.2750
14
001110
0.6500
40
101000
1.3000
15
001111
0.6750
41
101001
1.3250
16
010000
0.7000
42
101010
1.3500
17
010001
0.7250
43
101011
1.3750
18
010010
0.7500
44
101100
1.4000
19
010011
0.7750
45
101101
1.4250
20
010100
0.8000
46
101110
1.4500
21
010101
0.8250
47
101111
1.4750
34VR500
30
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 30. SW1 Output Voltage Configuration (continued)
Set Point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 Output (V)
Set Point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 Output (V)
22
010110
0.8500
48
110000
1.5000
23
010111
0.8750
49
110001
1.5250
24
011000
0.9000
50
110010
1.5500
25
011001
0.9250
51
110011
1.5750
26
011010
0.9500
52
110100
1.6000
27
011011
0.9750
53
110101
1.6250
28
011100
1.0000
54
110110
1.6500
29
011101
1.0250
55
110111
1.6750
30
011110
1.0500
56
111000
1.7000
31
011111
1.0750
57
111001
1.7250
32
100000
1.1000
58
111010
1.7500
33
100001
1.1250
59
111011
1.7750
34
100010
1.1500
60
111100
1.8000
35
100011
1.1750
61
111101
1.8250
36
100100
1.2000
62
111110
1.8500
37
100101
1.2250
63
111111
1.8750
38
100110
1.2500
Table 31 provides a list of registers used to configure and operate SW1 and a detailed description on each one of these register is provided
in Table 31 through Table 36.
Table 31. SW1 Register Summary
Register
Address
Output
SW1VOLT
0x2E
SW1 Output voltage set point in normal operation
SW1STBY
0x2F
SW1 Output voltage set point in Standby
SW1OFF
0x30
SW1 Output voltage set point in Sleep
SW1MODE
0x31
SW1 Switching Mode selector register
SW1CONF
0x32
SW1 DVS, Phase, Frequency and ILIM configuration
Table 32. Register SW1VOLT - ADDR 0x2E
Name
Bit #
R/W
Default
Description
SW1
5:0
R/W
0x00
Sets the SW1 output voltage during normal operation mode. See Table 30
for all possible configurations.
UNUSED
7:6
–
0x00
UNUSED
Table 33. Register SW1STBY - ADDR 0x2F
Name
Bit #
R/W
Default
Description
SW1STBY
5:0
R/W
0x00
Sets the SW1 output voltage during Standby mode. See Table 30 for all
possible configurations.
UNUSED
7:6
–
0x00
UNUSED
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
31
Functional Block Requirements and Behaviors
Power Generation
Table 34. Register SW1OFF - ADDR 0x30
Name
Bit #
R/W
Default
Description
SW1OFF
5:0
R/W
0x00
Sets the SW1 output voltage during Sleep mode. See Table 30 for all
possible configurations.
UNUSED
7:6
–
0x00
UNUSED
Table 35. Register SW1MODE - ADDR 0x31
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW1 switching operation mode. See Table 23 for all possible
configurations.
UNUSED
4
–
0x00
UNUSED
SW1OMODE
5
R/W
0x00
Set status of SW1 when in Sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW1MODE
UNUSED
Description
Table 36. Register SW1CONF - ADDR 0x32
Name
6.4.4.7
Bit #
R/W
Default
Description
SW1ILIM
0
R/W
0x00
SW1 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW1FREQ
3:2
R/W
0x00
SW1 switching frequency selector. See Table 29.
SW1PHASE
5:4
R/W
0x00
SW1 Phase clock selection. See Table 27.
SW1DVSSPEED
7:6
R/W
0x00
SW1 DVS speed selection. See Table 26.
SW1 External Components
Table 37. SW1 External Component Recommendations
Components
Description
Component
CINSW1 (30)
SW1input capacitor
3 x 4.7 F
CIN1HF (30)
SW1decoupling input capacitor
3 x 0.1 F
COSW1(30)
SW1 output capacitor
7 x 22 F
LSW1
SW1 inductor
0.68 H, DCR = 10 mISAT = 9.0 A
Notes
30. Use X5R or X7R capacitors.
34VR500
32
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
6.4.4.8
SW1 Specifications
Table 38. SW1 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
Switch Mode Supply SW1
VPVIN1
Operating Input Voltage
2.8
–
4.5
V
VSW1
Nominal Output Voltage
–
Table 30
–
V
-25
-3.0
–
–
25
3.0
mV
%
-65
-45
-3.0
–
–
–
65
45
3.0
mV
mV
%
–
–
4500
mA
7.1
5.3
10.5
7.9
13.7
10.3
A
Output Voltage Accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 4.5 A
VSW1ACC
ISW1
ISW1LIM
0.625 V  VSW1  1.450 V
1.475 V  VSW1  1.875 V
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 150 mA
0.625 V < VSW1 < 0.675 V
0.7 V < VSW1 < 0.85 V
0.875 V < VSW1 < 1.875 V
Rated Output Load Current,
2.8 V < VIN < 4.5 V, 0.625 V < VSW1 < 1.875 V
Current Limiter Peak Current Detection
• Current through Inductor
SW1ILIM = 0
SW1ILIM = 1
VSW1
Start-up Overshoot
ISW1 = 0 mA
DVS clk = 25 mV/4 s, VIN = VPVIN1 = 4.5 V, VSW1 = 1.875 V
–
–
66
mV
tONSW1
Turn-on Time, Enable to 90% of end value
ISW1 = 0 mA, DVS clk = 25 mV/4.0 s, VIN = VPVIN1 = 4.5 V,
VSW1 = 1.875 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
–
–
–
–
–
–
77
82
86
84
80
68
–
–
–
–
–
–
Output Ripple
–
5.0
–
mV
VSW1LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW1LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW1LOTR
Transient Load Regulation
• Transient load = 0 to 2.25 A, di/dt = 100 mA/s
Overshoot
Undershoot
–
–
–
–
50
50
fSW1
Switching Frequency
SW1FREQ[1:0] = 00
SW1FREQ[1:0] = 01
SW1FREQ[1:0] = 10
MHz
Efficiency
• VIN = 3.6 V, fSW1 = 2.0 MHz, LSW1 = 1.0 H
SW1
VSW1
PFM, 0.9 V, 1.0 mA
PFM, 1.2 V, 50 mA
APS, PWM, 1.2 V, 850 mA
APS, PWM, 1.2 V, 1275 mA
APS, PWM, 1.2 V, 2125 mA
APS, PWM, 1.2 V, 4500 mA
%
mV
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
33
Functional Block Requirements and Behaviors
Power Generation
Table 38. SW1 Electrical Characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Quiescent Current
PFM Mode
APS Mode
–
–
18
145
–
–
µA
RSW1DIS
Discharge Resistance
–
600
–

RONSW1P
SW1 P-MOSFET RDS(on)
VPVIN1 = 3.3 V
–
60
77
m
RONSW1N
SW1 N-MOSFET RDS(on)
VPVIN1 = 3.3 V
–
80
101
m
Notes
Switch Mode Supply SW1 (continued)
Efficiency (%)
ISW1Q
100
90
80
70
60
50
40
30
20
10
0
2MHz, 1.8V, PWM
1MHz, 1.8V, PWM
100
1000
Load Current (mA)
10000
SW1 Efficiency Waveform: VIN = 3.3 V; VOUT = 1.8 V
SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V
SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V
Figure 13. SW1 Efficiency Waveforms
34VR500
34
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Figure 14. Load tRansient Response – SW1 (APS)
6.4.4.9
SW2
SW2 is a 2.0 A rated buck regulator. Table 23 describes the modes, and Table 24 show the options for the SWxMODE[3:0] bits.
Figure 15 shows the block diagram and the external component connections for SW2 regulator.
PVIN2
PVIN2
SW2
LX2
LSW2
COSW2
SW2MODE
ISENSE
CINSW2
Controller
Driver
SW2FAULT
EP
Internal
Compensation
FB2
I2C
Interface
I2C
Z2
Z1
EA
VREF
DAC
Figure 15. SW2 Block Diagram
6.4.4.10
SW2 Setup and Control Registers
SW2 output voltage is programmable from 0.625 to 1.975 V. The output voltage set point is independently programmed for Normal,
Standby, and Sleep mode by setting the SW2[5:0], SW2STBY[5:0] and SW2OFF[5:0] bits, respectively. Table 39 shows the output voltage
coding valid for SW2.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
35
Functional Block Requirements and Behaviors
Power Generation
Table 39. SW2 Output Voltage Configuration
Set Point
SW2[5:0]
SW2 Output
Set Point
SW2[5:0]
SW2 Output
9
001001
0.6250
37
100101
1.3250
10
001010
0.6500
38
100110
1.3500
11
001011
0.6750
39
100111
1.3750
12
001100
0.7000
40
101000
1.4000
13
001101
0.7250
41
101001
1.4250
14
001110
0.7500
42
101010
1.4500
15
001111
0.7750
43
101011
1.4750
16
010000
0.8000
44
101100
1.5000
17
010001
0.8250
45
101101
1.5250
18
010010
0.8500
46
101110
1.5500
19
010011
0.8750
47
101111
1.5750
20
010100
0.9000
48
110000
1.6000
21
010101
0.9250
49
110001
1.6250
22
010110
0.9500
50
110010
1.6500
23
010111
0.9750
51
110011
1.6750
24
011000
1.0000
52
110100
1.7000
25
011001
1.0250
53
110101
1.7250
26
011010
1.0500
54
110110
1.7500
27
011011
1.0750
55
110111
1.7750
28
011100
1.1000
56
111000
1.8000
29
011101
1.1250
57
111001
1.8250
30
011110
1.1500
58
111010
1.8500
31
011111
1.1750
59
111011
1.8750
32
100000
1.2000
60
111100
1.9000
33
100001
1.2250
61
111101
1.9250
34
100010
1.2500
62
111110
1.9500
35
100011
1.2750
63
111111
1.9750
36
100100
1.3000
Setup and control of SW2 is done through I2C registers listed in Table 40, and a detailed description of each one of the registers is provided
in Tables 41 to Table 45.
Table 40. SW2 Register Summary
Register
Address
Description
SW2VOLT
0x35
Output voltage set point on normal operation
SW2STBY
0x36
Output voltage set point on Standby
SW2OFF
0x37
Output voltage set point on Sleep
SW2MODE
0x38
Switching Mode selector register
SW2CONF
0x39
DVS, Phase, Frequency, and ILIM configuration
34VR500
36
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 41. Register SW2VOLT - ADDR 0x35
Name
SW2
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW2 output voltage during normal operation
mode. See Table 39 for all possible configurations.
Table 42. Register SW2STBY - ADDR 0x36
Name
SW2STBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW2 output voltage during Standby mode.
See Table 39 for all possible configurations.
Table 43. Register SW2OFF - ADDR 0x37
Name
SW2OFF
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW2 output voltage during Sleep mode. See
Table 39 for all possible configurations.
Table 44. Register SW2MODE - ADDR 0x38
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW2 switching operation mode.
See Table 23 for all possible configurations.
UNUSED
4
–
0x00
UNUSED
SW2OMODE
5
R/W
0x00
Set status of SW2 when in Sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW2MODE
UNUSED
Description
Table 45. Register SW2CONF - ADDR 0x39
Name
Bit #
R/W
Default
Description
SW2ILIM
0
R/W
0x00
SW2 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW2FREQ
3:2
R/W
0x00
SW2 switching frequency selector.
See Table 29.
SW2PHASE
5:4
R/W
0x00
SW2 Phase clock selection.
See Table 27.
SW2DVSSPEED
7:6
R/W
0x00
SW2 DVS speed selection.
See Table 28.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
37
Functional Block Requirements and Behaviors
Power Generation
6.4.4.11
SW2 External Components
Table 46. SW2 External Component Recommendations
Components
Description
Values
CINSW2(31)
SW2 Input capacitor
4.7 F
CIN2HF(31)
SW2 Decoupling input capacitor
0.1 F
COSW2(31)
SW2 Output capacitor
LSW2
SW2 Inductor
3 x 22 F
1.5 H
DCR = 50 m
ISAT = 2.6 A
Notes
31. Use X5R or X7R capacitors.
6.4.4.12
SW2 Specifications
Table 47. SW2 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V 4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V, 
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
Switch Mode Supply SW2
VPVIN2
Operating Input Voltage
2.8
–
4.5
V
VSW2
Nominal Output Voltage
–
Table 39
–
V
-45
-3.0
–
–
45
3.0
mV
%
-65
-45
-45
–
–
–
65
45
45
mV
mV
mV
–
–
2000
mA
2.8
2.1
4.0
3.0
5.2
3.9
A
Output Voltage Accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 1.0 A
VSW2ACC
ISW2
ISW2LIM
0.625 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
•
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 50 mA
0.625 V < VSW2 < 0.675 V
0.7 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
Rated Output Load Current
2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 1.975 V
Current Limiter Peak Current Detection
• Current through Inductor
SW2ILIM = 0
SW2ILIM = 1
VSW2OSH
Start-up Overshoot
ISW2 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN2 = 4.5 V
–
–
66
mV
tONSW2
Turn-ON Time, Enable to 90% of end value
ISW2 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN2 = 4.5 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
fSW2
Switching Frequency
SW2FREQ[1:0] = 00
SW2FREQ[1:0] = 01
SW2FREQ[1:0] = 10
MHz
34VR500
38
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 47. SW2 Electrical Characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V 4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V, 
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
–
77
–
–
–
–
68
68
76
–
–
–
Output Ripple
–
5.0
–
mV
VSW2LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW2LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW2LOTR
Transient Load Regulation
• Transient load = 0.0 mA to 0.5 A, di/dt = 100 mA/s
Overshoot
Undershoot
–
–
–
–
50
50
Quiescent Current
PFM Mode
APS Mode (Low output voltage settings)
APS Mode (High output voltage settings)
–
–
–
23
145
305
–
–
–
Notes
Switch Mode Supply SW2 (Continued)
Efficiency
• VIN = 2.8V, fSW2 = 2.0 MHz, LSW2 = 1.0 H
SW2
VSW2
ISW2Q
•
APS, PWM, 1.0 V, 1000 mA
VIN = 4.5V, fSW2 = 2.0 MHz, LSW2 = 1.0 H
PFM, 1.0 V, 50 mA
APS, 1.0 V, 1.0 mA
APS, 1.0 V, 1000 mA
%
mV
µA
Switch Mode Supply SW2 (Continued)
RONSW2P
SW2 P-MOSFET RDS(on)
at VIN = VPVIN2 = 3.3 V
–
190
209
m
RONSW2N
SW2 N-MOSFET RDS(on)
at VIN = VPVIN2 = 3.3 V
–
212
255
m
RSW2DIS
Discharge Resistance
–
600
–

SW2 Efficiency Waveform: VIN = 3.6V; VOUT = 3.15V
SW2 Efficiency Waveform: VIN = 3.6V; VOUT = 1.8V
Figure 16. SW2 Efficiency Waveforms
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
39
Functional Block Requirements and Behaviors
Power Generation
Figure 17. Load Transient Response – SW2 (PWM)
6.4.4.13
SW3
SW3 is a 2.5 A regulator capable of providing an output from 0.625 V to 1.975 V. Figure 18 shows a high level block diagram of the SW3
regulator.
PVIN3
PVIN3
CINSW3
SW3
LX3
LSW3
COSW3
SW3MODE
ISENSE
Controller
Driver
SW3FAULT
EP
Internal
Compensation
FB3
I2C
Interface
I2C
Z2
Z1
EA
VREF
DAC
Figure 18. SW3 Regulator Block Diagram
34VR500
40
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
6.4.4.14
SW3 Setup and Control Registers
SW3 output voltage is programmable from 0.625 to 1.975 V. The output voltage set point is independently programmed for Normal,
Standby, and Sleep mode by setting the SW3[5:0], SW3STBY[5:0], and SW3OFF[5:0] bits respectively. Table 48 shows the output voltage
coding valid for SW3.
Table 48. SW3 Output Voltage Configuration
Set Point
SW3[5:0]
SW3 Output
Set Point
SW3[5:0]
SW3 Output
9
001001
0.6250
37
100101
1.3250
10
001010
0.6500
38
100110
1.3500
11
001011
0.6750
39
100111
1.3750
12
001100
0.7000
40
101000
1.4000
13
001101
0.7250
41
101001
1.4250
14
001110
0.7500
42
101010
1.4500
15
001111
0.7750
43
101011
1.4750
16
010000
0.8000
44
101100
1.5000
17
010001
0.8250
45
101101
1.5250
18
010010
0.8500
46
101110
1.5500
19
010011
0.8750
47
101111
1.5750
20
010100
0.9000
48
110000
1.6000
21
010101
0.9250
49
110001
1.6250
22
010110
0.9500
50
110010
1.6500
23
010111
0.9750
51
110011
1.6750
24
011000
1.0000
52
110100
1.7000
25
011001
1.0250
53
110101
1.7250
26
011010
1.0500
54
110110
1.7500
27
011011
1.0750
55
110111
1.7750
28
011100
1.1000
56
111000
1.8000
29
011101
1.1250
57
111001
1.8250
30
011110
1.1500
58
111010
1.8500
31
011111
1.1750
59
111011
1.8750
32
100000
1.2000
60
111100
1.9000
33
100001
1.2250
61
111101
1.9250
34
100010
1.2500
62
111110
1.9500
35
100011
1.2750
63
111111
1.9750
36
100100
1.3000
Table 49 provides a list of registers used to configure and operate SW3. A detailed description on each of these register is provided on
Tables 49 through Table 54.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
41
Functional Block Requirements and Behaviors
Power Generation
Table 49. SW3 Register Summary
Register
Address
Output
SW3VOLT
0x3C
SW3 Output voltage set point on normal operation
SW3STBY
0x3D
SW3 Output voltage set point on Standby
SW3OFF
0x3E
SW3 Output voltage set point on Sleep
SW3MODE
0x3F
SW3 Switching mode selector register
SW3CONF
0x40
SW3 DVS, phase, frequency and ILIM configuration
Table 50. Register SW3VOLT - ADDR 0x3C
Name
SW3
Bit #
R/W
Default
5:0
R/W
0x00
Description
Sets the SW3 output voltage, during normal operation mode. See
Table 48 for all possible configurations.
Table 51. Register SW3STBY - ADDR 0x3D
Name
SW3STBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3 output voltage, during Standby mode. See Table 48 for all
possible configurations.
Table 52. Register SW3OFF - ADDR 0x3E
Name
SW3OFF
Bit #
R/W
Default
5:0
R/W
0x00
Description
Sets the SW3 output voltage during Sleep mode. See Table 48 for all
possible configurations.
Table 53. Register SW3MODE - ADDR 0x3F
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW3 switching operation mode.
See Table 23 for all possible configurations.
UNUSED
4
–
0x00
UNUSED
SW3OMODE
5
R/W
0x00
Set status of SW3 when in Sleep mode.
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW3MODE
UNUSED
Description
Table 54. Register SW3CONF - ADDR 0x40
Name
Bit #
R/W
Default
Description
SW3ILIM
0
R/W
0x00
SW3 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW3FREQ
3:2
R/W
0x00
SW3 switching frequency selector. See Table 29.
SW3PHASE
5:4
R/W
0x00
SW3 Phase clock selection. See Table 27.
SW3DVSSPEED
7:6
R/W
0x00
SW3 DVS speed selection. See Table 28.
34VR500
42
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
6.4.4.15
SW3 External Components
Table 55. SW3 External Component Requirements
Components
CINSW3 (32)
Description
SW3
SW3 input capacitor
2 x 4.7 F
COSW3
(32)
SW3 output capacitor
3 x 22 F
CIN3HF
(32)
SW3 decoupling input capacitor
2 x 0.1 F
LSW3
1.5 H
DCR = 25 m
ISAT = 5.0 A
SW3 inductor
Notes
32. Use X5R or X7R capacitors.
6.4.4.16
SW3 Specifications
Table 56. SW3 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VPVIN3 = 3.6 V, 
VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
Switch Mode Supply SW3
VPVIN3
Operating Input Voltage
2.8
–
4.5
V
VSW3
Nominal Output Voltage
-
Table 48
-
V
-25
-3.0
–
–
25
3.0
mV
%
-65
-45
-45
–
–
–
65
45
45
mV
mV
mV
–
–
2500
3.5
2.7
5.0
3.8
6.5
4.9
Start-up Overshoot
ISW3 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN3 = 4.5 V
–
–
66
mV
Turn-on Time
Enable to 90% of end value
ISW3 = 0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN3 = 4.5 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
Output Voltage Accuracy
• PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3 < 2.5 A
VSW3ACC
ISW3
ISW3LIM
VSW3OSH
tONSW3
fSW3
•
0.625 V < VSW3 < 0.85 V
0.875 V < VSW3 < 1.975 V
PFM , steady state (2.8 V < VIN < 4.5 V, 0 < ISW3 < 50 mA)
0.625 V < VSW3 < 0.675 V
0.7 V < VSW3 < 0.85 V
0.875 V < VSW3 < 1.975 V
Rated Output Load Current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW3 < 1.975 V
PWM, APS mode
Current Limiter Peak Current Detection
• Current through inductor
SW3ILIM = 0
SW3ILIM = 1
Switching Frequency
SW3FREQ[1:0] = 00
SW3FREQ[1:0] = 01
SW3FREQ[1:0] = 10
mA
A
MHz
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
43
Functional Block Requirements and Behaviors
Power Generation
Table 56. SW3 Electrical Characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VPVIN3 = 3.6 V, 
VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
–
–
–
–
–
–
84
85
85
84
80
74
–
–
–
–
–
–
Output Ripple
–
5.0
–
mV
VSW3LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW3LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW3LOTR
Transient Load Regulation
• Transient Load = 0.0 mA to 1.25 A, di/dt = 100 mA/s
Overshoot
Undershoot
–
–
–
–
50
50
Quiescent Current
PFM Mode
APS Mode
–
–
22
300
–
–
108
123
129
163
600
–
Notes
Switch Mode Supply SW3 (Continued)
Efficiency
• fSW3 = 2.0 MHz, LSW3 1.0 H
SW3
VSW3
ISW3Q
PFM, 1.5 V, 1.0 mA
PFM, 1.5 V, 50 mA
APS, PWM 1.5 V, 500 mA
APS, PWM 1.5 V, 750 mA
APS, PWM 1.5 V, 1250 mA
APS, PWM 1.5 V, 2500 mA
RONSW3P
SW3 P-MOSFET RDSON
at VIN = VPVIN3 = 3.3 V
–
RONSW3N
SW3 N-MOSFET RDSON
at VIN = VPVIN3 = 3.3 V
–
RSW3DIS
Discharge Resistance
–
%
mV
µA
m
m

100
90
80
PFM ‐ Vout = 1.5V
20
APS ‐ Vout = 1.5V
Efficiency (%)
70
)
%
(y 60
c
n 50
ie
ci
ff 40
E
30
10
PWM ‐ Vout = 1.5V
0
0.1
1
10
100
1000
Load Current (mA)
Figure 19. SW3 Efficiency Waveforms
34VR500
44
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Figure 20. Load Transient Response – SW3 (PWM)
6.4.4.17
SW4
SW4 operates by default in VTT mode (for the 34VR500V1, V3, V4, V5) and it's not possible to change this configuration and modify the
output voltage after the Start-up sequence. SW4 operates in non VTT mode for the 34VR500V2, and it is possible to change the output
voltage by the I2C bus.
SW4 is a 1.0 A rated buck regulator capable of operating in two modes. In Regulator mode, it operates as a normal buck regulator with a
programmable output between 0.625 and 1.975 V. It is capable of operating in the three available switching modes: PFM, APS, and PWM,
described on Table 23 and configured by the SW4MODE[3:0] bits, as shown in Table 24.
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage will track the
output voltage of SW3, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The minimum output
voltage for SW4 in VTT mode is 0.6 V
Figure 21 shows the block diagram and the external component connections for the SW4 regulator.
PVIN4
PVIN4
CINSW4
SW4
LX4
LSW4
COSW4
SW4MODE
ISENSE
Controller
Driver
SW4FAULT
EP
Internal
Compensation
FB4
I2C
Interface
I2C
Z2
Z1
EA
VREF
DAC
Figure 21. SW4 Block Diagram
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
45
Functional Block Requirements and Behaviors
Power Generation
6.4.4.18
SW4 Setup and Control Registers
In Regulator mode, the SW4 output voltage is programmable from 0.625 to 1.975 V.
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW4[5:0], SW4STBY[5:0],
and SW4OFF[5:0] bits, respectively. Table 57 shows the output voltage coding valid for SW4.
Table 57. SW4 Output Voltage Configuration
Set Point
SW4[5:0]
SW4 Output
Set Point
SW4[5:0]
SW4 Output
9
001001
0.6250
37
100101
1.3250
10
001010
0.6500
38
100110
1.3500
11
001011
0.6750
39
100111
1.3750
12
001100
0.7000
40
101000
1.4000
13
001101
0.7250
41
101001
1.4250
14
001110
0.7500
42
101010
1.4500
15
001111
0.7750
43
101011
1.4750
16
010000
0.8000
44
101100
1.5000
17
010001
0.8250
45
101101
1.5250
18
010010
0.8500
46
101110
1.5500
19
010011
0.8750
47
101111
1.5750
20
010100
0.9000
48
110000
1.6000
21
010101
0.9250
49
110001
1.6250
22
010110
0.9500
50
110010
1.6500
23
010111
0.9750
51
110011
1.6750
24
011000
1.0000
52
110100
1.7000
25
011001
1.0250
53
110101
1.7250
26
011010
1.0500
54
110110
1.7500
27
011011
1.0750
55
110111
1.7750
28
011100
1.1000
56
111000
1.8000
29
011101
1.1250
57
111001
1.8250
30
011110
1.1500
58
111010
1.8500
31
011111
1.1750
59
111011
1.8750
32
100000
1.2000
60
111100
1.9000
33
100001
1.2250
61
111101
1.9250
34
100010
1.2500
62
111110
1.9500
35
100011
1.2750
63
111111
1.9750
36
100100
1.3000
Full setup and control of SW4 is done through the I2C registers listed on Table 58, and a detailed description of each one of the registers
is provided in Tables 59 to Table 63.
34VR500
46
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 58. SW4 Register Summary
Register
Address
Description
SW4VOLT
0x4A
Output voltage set point on normal operation
SW4STBY
0x4B
Output voltage set point on Standby
SW4OFF
0x4C
Output voltage set point on Sleep
SW4MODE
0x4D
Switching mode selector register
SW4CONF
0x4E
DVS, phase, frequency and ILIM configuration
Table 59. Register SW4VOLT - ADDR 0x4A
Name
SW4
UNUSED
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW4 output voltage during normal operation mode. See Table 57
for all possible configurations.
7
–
0x00
UNUSED
Table 60. Register SW4STBY - ADDR 0x4B
Name
Bit #
R/W
Default
Description
SW4STBY
5:0
R/W
0x00
Sets the SW4 output voltage during Standby mode. See Table 57 for all
possible configurations.
UNUSED
7
–
0x00
UNUSED
Table 61. Register SW4OFF - ADDR 0x4C
Name
Bit #
R/W
Default
Description
SW4OFF
5:0
R/W
0x00
Sets the SW4 output voltage during Sleep mode. See Table 57 for all
possible configurations.
UNUSED
7
–
0x00
UNUSED
Table 62. Register SW4MODE - ADDR 0x4D
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW4 switching operation mode. See Table 23 for all possible
configurations.
UNUSED
4
–
0x00
UNUSED
SW4OMODE
5
R/W
0x00
Set status of SW4 when in Sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW4MODE
UNUSED
Description
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
47
Functional Block Requirements and Behaviors
Power Generation
Table 63. Register SW4CONF - ADDR 0x4E
Name
Bit #
R/W
Default
SW4ILIM
0
R/W
0x00
SW4 current limit level selection
0 = High level Current limit
1 = Low level Current limit
UNUSED
1
R/W
0x00
Unused
SW4FREQ
3:2
R/W
0x00
SW4 switching frequency selector. See Table 29.
SW4PHASE
5:4
R/W
0x00
SW4 Phase clock selection. See Table 27.
SW4DVSSPEED
7:6
R/W
0x00
SW4 DVS speed selection. See Table 28.
6.4.4.19
Description
SW4 External Components
Table 64. SW4 External Component Recommendations
Components
Description
Values
CINSW4(33)
SW4 Input capacitor
4.7 F
CIN4HF(33)
SW4 Decoupling input capacitor
0.1 F
COSW4(33)
SW4 Output capacitor
LSW4
SW4 Inductor
3 x 22 F
1.5 H
DCR = 50 m
ISAT = 2.6 A
Notes
33. Use X5R or X7R capacitors.
6.4.4.20
SW4 Specifications
Table 65. SW4 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, fSW4 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
Switch Mode Supply SW4
VPVIN4
Operating Input Voltage
2.8
–
4.5
V
VSW4
Nominal Output Voltage
Normal operation
VTT Mode
–
–
Table 57
VSW3/2
–
–
V
-25
-3.0
–
–
25
3.0
mV
%
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA
0.625 V < VSW4 < 0.675 V
0.7 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
-65
-45
-45
–
–
–
65
45
45
mV
mV
mV
VTT Mode, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
-40
–
40
mV
–
–
1000
mA
Output Voltage Accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
0.625 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
VSW4ACC
•
•
ISW4
Rated Output Load Current
2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 1.975 V
34VR500
48
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 65. SW4 Electrical Characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, fSW4 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
1.4
1.0
2.0
1.5
3.0
2.4
Unit
Notes
Switch Mode Supply SW4 (CONTINUED)
ISW4LIM
Current Limiter Peak Current Detection
Current through inductor
SW4ILIM = 0
SW4ILIM = 1
A
VSW4OSH
Start-up Overshoot
ISW4 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN4 = 4.5 V
–
–
66
mV
tONSW4
Turn-on Time
Enable to 90% of end value
ISW4 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN4 = 4.5 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
PFM, 1.8 V, 1.0 mA
PFM, 1.8 V, 50 mA
APS, PWM 1.8 V, 200 mA
APS, PWM 1.8 V, 500 mA
APS, PWM 1.8 V, 1000 mA
–
–
–
–
–
81
78
87
88
83
–
–
–
–
–
PWM 0.75 V, 200 mA
PWM 0.75 V, 500 mA
PWM 0.75 V, 1000 mA
–
–
–
78
76
66
–
–
–
Output Ripple
–
5.0
–
mV
VSW4LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW4LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW4LOTR
Transient Load Regulation
• Transient Load = 0.0 mA to 500 mA, di/dt = 100 mA/s
Overshoot
Undershoot
–
–
–
–
–
–
22
145
–
–
µA
fSW4
Switching Frequency
SW4FREQ[1:0] = 00
SW4FREQ[1:0] = 01
SW4FREQ[1:0] = 10
MHz
Efficiency
• fSW4 = 2.0 MHz, LSW4 = 1.0 H
SW4
VSW4
ISW4Q
Quiescent Current
PFM Mode
APS Mode
50
50
%
mV
RONSW4P
SW4 P-MOSFET RDSON
at VIN = VPVIN4 = 3.3 V
–
236
274
m
RONSW4N
SW4 N-MOSFET RDSON
at VIN = VPVIN4 = 3.3 V
–
293
378
m
RSW4DIS
Discharge Resistance
–
600
–

34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
49
Functional Block Requirements and Behaviors
Power Generation
100
90
Efficiency (%)
80
70
)
%
(y 60
c
n 50
ie
ci
ff 40
E
30
PFM ‐ Vout = 1.8V
APS ‐ Vout = 1.8V
20
PWM ‐ Vout = 1.8 V
10
PWM ‐ Vout = 0.7 5V
0
0.1
1
10
100
1000
Load Current (mA)
Figure 22. SW4 Efficiency Waveforms
Figure 23. Load Transient Response – SW4 (PWM)
6.4.5
LDO Regulators Description
This section describes the LDO regulators provided by the 34VR500. All regulators use the main bandgap as reference. Refer to Bias and
References Block Description section for further information on the internal reference voltages.
A Low Power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest
bias currents may be attained by forcing the part into its Low Power mode by setting the LDOxLPWR bit. The use of this bit is only
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.
When a regulator is disabled, the output will be discharged by an internal pull-down. The pull-down is also activated when PORB is low.
34VR500
50
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
VLDOINx
VLDOINx
VREF
_
+
LDOx
LDOxLPWR
LDOx
LDOx
I2C
Interface
CLDOx
LDOx
Discharge
Figure 24. General LDO Block Diagram
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
51
Functional Block Requirements and Behaviors
Power Generation
6.4.5.1
Transient Response Waveforms
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 25. Note that the transient
line and load response refers to the overshoot, or undershoot only, excluding the DC shift.
IMAX ILOAD
IMAX/10 1.0 us
1.0 us Transient Load Stimulus
IL = IMAX/10 IL = IMAX Overshoot VOUT
Undershoot VOUT Transient Load Response
VINx_INITIAL VINx
VINx_FINAL 10 us 10 us
Transient Line Stimulus
VINx_INITIAL
VINx_FINAL Overshoot VOUT
Undershoot VOUT Transient Line Response
Figure 25. Transient Waveforms
34VR500
52
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
6.4.5.2
Short-circuit Protection
All general purpose LDOs have short-circuit protection capability. The Short-circuit Protection (SCP) system includes debounced fault
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product
damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its LDOxEN bit, while at the same time, an interrupt
LDOxFAULTI will be generated to flag the fault to the system processor. The LDOxFAULTI interrupt is maskable through the
LDOxFAULTM mask bit.
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators will not automatically be disabled upon a
short-circuit detection. However, the current limiter will continue to limit the output current of the regulator. By default, the REGSCPEN is
not set; therefore, at start-up none of the regulators will be disabled if an overloaded condition occurs. A fault interrupt, LDOxFAULTI, will
be generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 66 for SCP behavior configuration.
Table 66. Short-circuit Behavior
6.4.5.3
REGSCPEN[0]
Short-circuit Behavior
0
Current limit
1
Shutdown
LDO Regulator Control
Each LDO is fully controlled through its respective LDOxCTL register. This register enables the user to set the LDO output voltage
according to Table 67 for LDO1 and uses the voltage set point on Table 68 for LDO2 through LDO5.
Table 67. LDO1 Output Voltage Configuration
Set Point
LDO1[3:0]
LDO1 Output (V)
0
0000
0.800
1
0001
0.850
2
0010
0.900
3
0011
0.950
4
0100
1.000
5
0101
1.050
6
0110
1.100
7
0111
1.150
8
1000
1.200
9
1001
1.250
10
1010
1.300
11
1011
1.350
12
1100
1.400
13
1101
1.450
14
1110
1.500
15
1111
1.550
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
53
Functional Block Requirements and Behaviors
Power Generation
Table 68. LDO2/3/4/5 Output Voltage Configuration
Set Point
LDOx[3:0]
LDOx Output (V)
0
0000
1.80
1
0001
1.90
2
0010
2.00
3
0011
2.10
4
0100
2.20
5
0101
2.30
6
0110
2.40
7
0111
2.50
8
1000
2.60
9
1001
2.70
10
1010
2.80
11
1011
2.90
12
1100
3.00
13
1101
3.10
14
1110
3.20
15
1111
3.30
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as
programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for this. Table 69
presents a summary of all valid combinations of the control bits on LDOxCTL register and the expected behavior of the LDO output.
Table 69. LDO Control
LDOxEN
LDOxLPWR
LDOxSTBY
STANDBY(34)
LDOxOUT
0
X
X
X
Off
1
0
0
X
On
1
1
0
X
Low Power
1
X
1
0
On
1
0
1
1
Off
1
1
1
1
Low Power
Notes
34. STANDBY refers to a Standby event as described earlier.
For more detail information, Table 70 through Table 74 provide a description of all registers necessary to operate all five general purpose
LDO regulators.
Table 70. Register LDO1CTL - ADDR 0x6D
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO1 output voltage. See Table 67 for all possible configurations.
LDO1EN
4
–
0x00
Enables or Disables LDO1 output
0 = OFF
1 = ON
LDO1STBY
5
R/W
0x00
Set LDO1 output state when in Standby. Refer to Table 69.
LDO1
Description
34VR500
54
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 70. Register LDO1CTL - ADDR 0x6D
Name
Bit #
R/W
Default
Description
LDO1LPWR
6
R/W
0x00
Enable Low Power Mode for LDO1. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
Table 71. Register LDO2CTL - ADDR 0x6E
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO2 output voltage. See Table 68 for all possible configurations.
LDO2EN
4
–
0x00
Enables or Disables LDO2 output
0 = OFF
1 = ON
LDO2STBY
5
R/W
0x00
Set LDO2 output state when in Standby. Refer to Table 69.
LDO2LPWR
6
R/W
0x00
Enable Low Power Mode for LDO2. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO2
Description
Table 72. Register LDO3CTL - ADDR 0x6F
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO3 output voltage. See Table 68 for all possible configurations.
LDO3EN
4
–
0x00
Enables or Disables LDO3 output
0 = OFF
1 = ON
LDO3STBY
5
R/W
0x00
Set LDO3 output state when in Standby. Refer to Table 69.
LDO3LPWR
6
R/W
0x00
Enable Low Power Mode for LDO3. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO3
Description
Table 73. Register LDO4CTL - ADDR 0x70
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO4 output voltage. See Table 68 for all possible configurations.
LDO4EN
4
–
0x00
Enables or Disables LDO4 output
0 = OFF
1 = ON
LDO4STBY
5
R/W
0x00
Set LDO4 output state when in Standby. Refer to Table 69.
LDO4LPWR
6
R/W
0x00
Enable Low Power Mode for LDO4. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO4
Description
Table 74. Register LDO5CTL - ADDR 0x71
Name
Bit #
R/W
Default
Description
3:0
R/W
0x80
Sets LDO5 output voltage. See Table 68 for all possible configurations.
LDO5EN
4
–
0x00
Enables or Disables LDO5 output
0 = OFF
1 = ON
LDO5STBY
5
R/W
0x00
Set LDO5 output state when in Standby. Refer to Table 69.
LDO5LPWR
6
R/W
0x00
Enable Low Power Mode for LDO5. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO5
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
55
Functional Block Requirements and Behaviors
Power Generation
6.4.5.4
External Components
Table 75 lists the typical component values for the general purpose LDO regulators.
Table 75. LDO External Components
Regulator
Output Capacitor (F)(35)
LDO1
4.7
LDO2
2.2
LDO3
4.7
LDO4
2.2
LDO5
2.2
Notes
35. Use X5R/X7R ceramic capacitors.
6.4.5.5
6.4.5.5.1
LDO Specifications
LDO1
Table 76. LDO1 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN1 = 3.0 V, VLDO1[3:0] = 1111, ILDO1 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, 
VLDOIN1 = 3.0 V, LDO1[3:0] = 1111, ILDO1 = 10 mA and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
LDO1
VLDOIN1
Operating Input Voltage
1.75
–
3.40
V
LDO1NOM
Nominal Output Voltage
–
Table 67
–
V
ILDO1
Operating Load Current
0.0
–
250
mA
-3.0
–
3.0
%
LDO1 Active Mode - DC
VLDO1TOL
Output Voltage Tolerance
1.75 V <VLDOIN1 < 3.4 V, 0.0 mA < ILDO1 < 250 mA
LDO1[3:0] = 0000 to 1111
VLDO1LOR
Load Regulation
(VLDO1 at ILDO1 = 250 mA) - (VLDO1 at ILDO2 = 0.0 mA)
For any 1.75 V <VLDOIN1 < 3.4 V
–
0.05
–
mV/mA
VLDO1LIR
Line Regulation
(VLDO1 at VLDOIN1 = 3.4 V) - (VLDO1 at VLDOIN1 = 1.75 V)
For any 0.0 mA < ILDO1 < 250 mA
–
0.50
–
mV/V
ILDO1LIM
Current Limit
ILDO1 when LDO1 is forced to LDO1NOM/2
305
417
510
ILDO1OCP
Overcurrent Protection Threshold
ILDO1 required to cause the SCP function to disable LDO when
REGSCPEN = 1
290
–
500
–
16
–
ILDO1Q
Quiescent Current
No load, Change in IVIN and IVLDOIN1
When LDO1 enabled
mA
mA
A
34VR500
56
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 76. LDO1 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN1 = 3.0 V, VLDO1[3:0] = 1111, ILDO1 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, 
VLDOIN1 = 3.0 V, LDO1[3:0] = 1111, ILDO1 = 10 mA and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
50
37
60
45
–
–
–
–
–
-108
-118
-124
-100
-108
-112
–
–
–
–
12.5
16.5
Unit
Notes
dB
(36)
LDO1 AC AND tRANSIENT
PSRRLDO1
PSRR
• ILDO1 = 187.5 mA, 20 Hz to 20 kHz
LDO1[3:0] = 0000 - 1101
LDO1[3:0] = 1110, 1111
Output Noise Density
• VLDOIN1 = 1.75 V, ILDO1 = 187.5 mA
NOISELDO1
SLWRLDO1
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
Turn-On Slew Rate
• 10% to 90% of end value
• 1.75 V VLDOIN1 3.4 V, ILDO1 = 0.0 mA
LDO1[3:0] = 0000 to 0111
LDO1[3:0] = 1000 to 1111
dBV/Hz
mVs
tONLDO1
Turn-On Time
Enable to 90% of end value, VLDOIN1 = 1.75 V, 3.4 V
ILDO1 = 0.0 mA
60
–
500
s
tOFFLDO1
Turn-Off Time
Disable to 10% of initial value, VLDOIN1 = 1.75 V
ILDO1 = 0.0 mA
–
–
10
ms
LDO1OSHT
Start-up Overshoot
VLDOIN1 = 1.75 V, 3.4 V, ILDO1 = 0.0 mA
–
1.0
2.0
%
VLDO1LOTR
Transient Load Response
VLDOIN1 = 1.75 V, 3.4 V
ILDO1 = 25 to 250 mA in 1.0 s
Peak of overshoot or undershoot of LDO1 with respect to final value
Refer to Figure 25
–
–
3.0
%
VLDO1LITR
Transient Line Response
ILDO1 = 187.5 mA
VLDOIN1INITIAL = 1.75 V to VLDOIN1 = 2.25 V for 
LDO1[3:0] = 0000 to 1101
VLDOIN1INITIAL = VLDO1+0.3 V to VLDOIN1FINAL = VLDO1+0.8 V for
LDO1[3:0] = 1110, 1111
Refer to Figure 25
–
5.0
8.0
mV
Notes
36. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
57
Functional Block Requirements and Behaviors
Power Generation
6.4.5.5.2
LDO2
Table 77. LDO2 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, VLDO2[3:0] = 1111, ILDO2 = 10 mA,
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO2[3:0] = 1111, ILDO2 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
2.8
LDO2NOM+
0.250
–
–
3.6
3.6
V
(37)
LDO2
VLDOIN23
Operating Input Voltage
1.8 V  LDO2NOM  2.5 V
2.6 V  LDO2NOM 3.3 V
LDO2NOM
Nominal Output Voltage
–
Table 68
–
V
ILDO2
Operating Load Current
0.0
–
100
mA
VLDO2TOL
Output Voltage Tolerance
VLDOIN23MIN < VLDOIN23 < 3.6 V
0.0 mA < ILDO2 < 100 mA
LDO2[3:0] = 0000 to 1111
-3.0
–
3.0
%
VLDO2LOR
Load Regulation
(VLDO2 at ILDO2 = 100 mA) - (VLDO2 at ILDO2 = 0.0 mA)
For any VLDOIN23MIN < VLDOIN23 < 3.6 V
–
0.07
–
mV/mA
VLDO2LIR
Line Regulation
(VLDO2 at VLDOIN23 = 3.6 V) - (VLDO2 at VLDOIN23MIN)
For any 0.0 mA < ILDO2 < 100 mA
–
0.8
–
mV/V
ILDO2LIM
Current Limit
ILDO2 when LDO2 is forced to LDO2NOM/2
127
167
200
mA
ILDO2OCP
Overcurrent Protection Threshold
ILDO2 required to cause the SCP function to disable LDO when
REGSCPEN = 1
120
–
200
mA
–
13
–
A
35
55
40
60
–
–
–
–
–
-114
-129
-135
-102
-123
-130
dBV/Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mVs
LDO2 DC
ILDO2Q
Quiescent Current
No load, Change in IVIN and IVLDOIN23
When LDO2 enabled
LDO2 AC AND tRANSIENT
PSRRLDO2
PSRR
• ILDO2 = 75 mA, 20 Hz to 20 kHz
LDO2[3:0] = 0000 - 1110, VLDOIN23 = VLDOIN23MIN + 100 mV
LDO2[3:0] = 0000 - 1000, VLDOIN23 = LDO2NOM + 1.0 V
dB
(38)
Output Noise Density
• VLDOIN23 = VLDOIN23MIN, ILDO2 = 75 mA
NOISELDO2
SLWRLDO2
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
Turn-On Slew Rate
• 10% to 90% of end value
• VLDOIN23MINVLDOIN23  3.6 V, ILDO2 = 0.0 mA
LDO2[3:0] = 0000 to 0011
LDO2[3:0] = 0100 to 0111
LDO2[3:0] = 1000 to 1011
LDO2[3:0] = 1100 to 1111
34VR500
58
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 77. LDO2 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, VLDO2[3:0] = 1111, ILDO2 = 10 mA,
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO2[3:0] = 1111, ILDO2 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
LDO2 AC AND tRANSIENT (Continued)
tONLDO2
Turn-On Time
Enable to 90% of end value, VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO2 = 0.0 mA
60
–
500
s
tOFFLDO2
Turn-Off Time
Disable to 10% of initial value, VLDOIN23 = VLDOIN23MIN
ILDO2 = 0.0 mA
–
–
10
ms
LDO2OSHT
Start-up Overshoot
VLDOIN23 = VLDOIN23MIN, 3.6 V, ILDO2 = 0.0 mA
–
1.0
2.0
%
VLDO2LOTR
Transient Load Response
VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO2 = 10 to 100 mA in 1.0s
Peak of overshoot or undershoot of LDO2 with respect to final
value. Refer to Figure 25
–
–
3.0
%
VLDO2LITR
Transient Line Response
ILDO2 = 75 mA
VLDOIN23INITIAL = 2.8 V to VLDOIN23FINAL = 3.3 V for 
LDO2[3:0] = 0000 to 0111
VLDOIN23INITIAL = VLDO2+0.3 V to VLDOIN23FINAL = VLDO2+0.8 V for
LDO2[3:0] = 1000 to 1010
VLDOIN23INITIAL = VLDO2+0.25 V to VLDOIN23FINAL = 3.6 V for 
LDO2[3:0] = 1011 to 1111
Refer to Figure 25
–
5.0
8.0
mV
Notes
37. When the LDO Output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
38. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VLDOIN23MIN refers to the minimum allowed input voltage for a particular output voltage.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
59
Functional Block Requirements and Behaviors
Power Generation
6.4.5.5.3
LDO3
Table 78. LDO3 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
2.8
LDO3NOM
+ 0.250
–
–
3.6
3.6
V
(39)
LDO3
VLDOIN23
Operating Input Voltage
1.8 V  LDO3NOM  2.5 V
2.6 V  LDO3NOM  3.3 V
LDO3NOM
Nominal Output Voltage
–
Table 68
–
V
ILDO3
Operating Load Current
0.0
–
350
mA
VLDO3TOL
Output Voltage Tolerance
VLDOIN23MIN < VLDOIN23 < 3.6 V
0.0 mA < ILDO3 < 350 mA
LDO3[3:0] = 0000 to 1111
-3.0
–
3.0
%
VLDO3LOR
Load Regulation
(VLDO3 at ILDO3 = 350 mA) - (VLDO3 at ILDO3 = 0.0 mA)
For any VLDOIN23MIN < VLDOIN23 < 3.6 V
–
0.07
–
mV/mA
VLDO3LIR
Line Regulation
(VLDO3 at 3.6 V) - (VLDO3 at VLDOIN23MIN)
For any 0.0 mA < ILDO3 < 350 mA
–
0.80
–
mV/V
ILDO3LIM
Current Limit
ILDO3 when LDO3 is forced to LDO3NOM/2
435
584.5
700
mA
ILDO3OCP
Overcurrent Protection Threshold
ILDO3 required to cause the SCP function to disable LDO
when REGSCPEN = 1
420
–
700
mA
–
13
–
A
35
55
40
60
–
–
–
–
–
-114
-129
-135
-102
-123
-130
dBV/Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mVs
LDO3 DC
ILDO3Q
Quiescent Current
No load, Change in IVIN and IVLDOIN23
When LDO3 enabled
LDO3 AC AND tRANSIENT
PSRRLDO3
PSRR
• ILDO3 = 262.5 mA, 20 Hz to 20 kHz
LDO3[3:0] = 0000 - 1110, VLDOIN23 = VLDOIN23MIN + 100 mV
LDO3[3:0] = 0000 - 1000, VLDOIN23 = LDO3NOM + 1.0 V
dB
(40)
Output Noise Density
• VLDOIN23 = VLDOIN23MIN, ILDO3 = 262.5 mA
NOISELDO3
SLWRLDO3
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
Turn-On Slew Rate
• 10% to 90% of end value
• VLDOIN23MIN VLDOIN23 3.6 V, ILDO3 = 0.0 mA
LDO3[3:0] = 0000 to 0011
LDO3[3:0] = 0100 to 0111
LDO3[3:0] = 1000 to 1011
LDO3[3:0] = 1100 to 1111
34VR500
60
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 78. LDO3 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
tONLDO3
Turn-On Time
Enable to 90% of end value, VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO3 = 0.0 mA
60
–
500
s
tOFFLDO3
Turn-Off Time
Disable to 10% of initial value, VLDOIN23 = VLDOIN23MIN
ILDO3 = 0.0 mA
–
–
10
ms
LDO3OSHT
Start-up Overshoot
VLDOIN23 = VLDOIN23MIN, 3.6 V, ILDO3 = 0.0 mA
–
1.0
2.0
%
VLDO3LOTR
Transient Load Response
VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO3 = 35 to 350 mA in 1.0 s
Peak of overshoot or undershoot of LDO3 with respect to
final value. Refer to Figure 25
–
–
3.0
%
VLDO3LITR
Transient Line Response
ILDO3 = 262.5 mA
VLDOIN23INITIAL = 2.8 V to VLDOIN23FINAL = 3.3 V for 
LDO3[3:0] = 0000 to 0111
VLDOIN23INITIAL = VLDO3+0.3 V to VLDOIN23FINAL =
VLDO3+0.8 V for LDO3[3:0] = 1000 to 1010
VLDOIN23INITIAL = VLDO3+0.25 V to VLDOIN23FINAL = 3.6 V for 
LDO3[3:0] = 1011 to 1111
Refer to Figure 25
–
5.0
8.0
mV
Notes
LDO3 AC AND tRANSIENT (Continued)
Notes
39. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V
for proper regulation due to the dropout voltage generated through the internal LDO transistor.
40. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to
operate in the dropout region of the regulator under test. VLDOIN23MIN refers to the minimum allowed input voltage for a particular output
voltage.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
61
Functional Block Requirements and Behaviors
Power Generation
6.4.5.5.4
LDO4
Table 79. LDO4 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
2.8
LDO4NOM
+ 0.250
–
–
4.5
4.5
V
(41)
LDO4
VLDOIN45
Operating Input Voltage
1.8 V  LDO4NOM  2.5 V
2.6 V  LDO4NOM  3.3 V
LDO4NOM
Nominal Output Voltage
–
Table 68
–
V
ILDO4
Operating Load Current
0.0
–
100
mA
-3.0
–
3.0
%
LDO4 Active Mode – DC
VLDO4TOL
Output Voltage Tolerance
VLDOIN45MIN < VLDOIN45 < 4.5 V
0.0 mA < ILDO4 < 100 mA, LDO4[3:0] = 0000 to 1111
VLDO4LOR
Load Regulation
(VLDO4 at ILDO4 = 100 mA) - (VLDO4 at ILDO4 = 0.0 mA)
For any VLDOIN45MIN < VLDOIN45 < 4.5 mV
–
0.10
–
mV/mA
VLDO4LIR
Line Regulation
(VLDO4 at VLDOIN45 = 4.5 V) - (VLDO4 at VLDOIN45MIN)
For any 0.0 mA < ILDO4 < 100 mA
–
0.50
–
mV/V
ILDO4LIM
Current Limit
ILDO4 when LDO4 is forced to LDO4NOM/2
122
167
200
mA
ILDO4OCP
Overcurrent Protection threshold
ILDO4 required to cause the SCP function to disable LDO
when REGSCPEN = 1
120
–
200
mA
–
13
–
A
35
52
40
60
–
–
–
–
–
-114
-129
-135
-102
-123
-130
dBV/Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mVs
ILDO4Q
Quiescent Current
No load, Change in IVIN and IVLDOIN45
When LDO4 enabled
LDO4 AC AND tRANSIENT
PSRRLDO4
PSRR
• ILDO4 = 75 mA, 20 Hz to 20 kHz
LDO4[3:0] = 0000 - 1111, VLDOIN45 = VLDOIN45MIN + 100 mV
LDO4[3:0] = 0000 - 1111, VLDOIN45 = LDO4NOM + 1.0 V
dB
(42)
Output Noise Density
• VLDOIN45 = VLDOIN45MIN, ILDO4 = 75 mA
NOISELDO4
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
Turn-On Slew Rate
• 10% to 90% of end value
• VLDOIN45MIN VLDOIN45 4.5 mV, ILDO4 = 0.0 mA
SLWRLDO4
LDO4[3:0] = 0000 to 0011
LDO4[3:0] = 0100 to 0111
LDO4[3:0] = 1000 to 1011
LDO4[3:0] = 1100 to 1111
34VR500
62
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Power Generation
Table 79. LDO4 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
tONLDO4
Turn-On Time
Enable to 90% of end value, VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO4 = 0.0 mA
60
–
500
s
tOFFLDO4
Turn-Off Time
Disable to 10% of initial value, VLDOIN45 = VLDOIN45MIN
ILDO4 = 0.0 mA
–
–
10
ms
LDO4OSHT
Start-Up Overshoot
VLDOIN45 = VLDOIN45MIN, 4.5 V, ILDO4 = 0.0 mA
–
1.0
2.0
%
VLDO4LOTR
Transient Load Response
VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO4 = 10 to 100 mA in 1.0 s
Peak of overshoot or undershoot of LDO4 with respect to
final value.
Refer to Figure 25
–
–
3.0
%
VLDO4LITR
Transient Line Response
ILDO4 = 75 mA
VLDOIN45INITIAL = 2.8 V to VLDOIN45FINAL = 3.3 V for 
LDO4[3:0] = 0000 to 0111
VLDOIN45INITIAL = VLDO4+0.3 V to VLDOIN45FINAL =
VLDO4+0.8 V for LDO4[3:0] = 1000 to 1111
Refer to Figure 25
-
5.0
8.0
mV
Notes
LDO4 Active Mode – DC (Continued)
Notes
41. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V
for proper regulation due to the dropout voltage generated through the internal LDO transistor.
42. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to
operate in the dropout region of the regulator under test. VLDOIN45MIN refers to the minimum allowed input voltage for a particular output
voltage.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
63
Functional Block Requirements and Behaviors
Power Generation
6.4.5.5.5
LDO5
Table 80. LDO5 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
2.8
LDO5NOM+
0.250
–
–
4.5
4.5
V
(43)
LDO5
VLDOIN45
Operating Input Voltage
1.8 V  LDO5NOM  2.5 V
2.6 V  LDO5NOM  3.3 V
LDO5NOM
Nominal Output Voltage
–
Table 68
–
V
ILDO5
Operating Load Current
0.0
–
200
mA
VLDO5TOL
Output Voltage Tolerance
VLDOIN45MIN < VLDOIN45 < 4.5 V, 0.0 mA < ILDO5 < 200 mA
LDO5[3:0] = 0000 to 1111
-3.0
–
3.0
%
VLDO5LOR
Load Regulation
(VLDO5 at ILDO5 = 200 mA) - (VLDO5 at ILDO5 = 0.0 mA)
For any VLDOIN45MIN < VLDOIN45 < 4.5 V
–
0.10
–
mV/mA
VLDO5LIR
Line Regulation
(VLDO5 at VLDOIN45 = 4.5 V) - (VLDO5 at VLDOIN45MIN)
For any 0.0 mA < ILDO5 < 200 mA
–
0.50
–
mV/V
ILDO5LIM
Current Limit
ILDO5 when LDO5 is forced to LDO5NOM/2
232
333
475
ILDO5OCP
Over Current Protection Threshold
ILDO5 required to cause the SCP function to disable LDO when
REGSCPEN = 1
220
–
475
–
13
–
35
52
40
60
–
–
–
–
–
-114
-129
-135
-102
-123
-130
dBV/Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mVs
LDO5 DC
ILDO5Q
Quiescent Current
No load, Change in IVIN and IVLDOIN45, When LDO5 enabled
mA
mA
A
LDO5 AC AND tRANSIENT
PSRRLDO5
PSRR
• ILDO5 = 150 mA, 20 Hz to 20 kHz
LDO5[3:0] = 0000 - 1111, VLDOIN45 = VLDOIN45MIN + 100 mV
LDO5[3:0] = 0000 - 1111, VLDOIN45 = LDO5NOM + 1.0 V
dB
(44)
Output Noise Density
• VLDOIN45 = VLDOIN45MIN, ILDO5 = 150 mA
NOISELDO5
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
Turn-On Slew Rate
• 10% to 90% of end value
• VLDOIN45MIN VLDOIN45 4.5 V. ILDO5 = 0.0 mA
SLWRLDO5
LDO5[3:0] = 0000 to 0011
LDO5[3:0] = 0100 to 0111
LDO5[3:0] = 1000 to 1011
LDO5[3:0] = 1100 to 1111
34VR500
64
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 80. LDO5 Electrical Characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA, 
VVBIAS = 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
LDO5 AC AND tRANSIENT (Continued)
tONLDO5
Turn-On Time
Enable to 90% of end value, VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO5 = 0.0 mA
60
–
500
s
tOFFLDO5
Turn-Off Time
Disable to 10% of initial value, VLDOIN45 = VLDOIN45MIN
ILDO5 = 0.0 mA
–
–
10
ms
LDO5OSHT
Start-Up Overshoot
VLDOIN45 = VLDOIN45MIN, 4.5 V, ILDO5 = 0 mA
–
1.0
2.0
%
VLDO5LOTR
Transient Load Response
VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO5 = 20 to 200 mA in 1.0 s
Peak of overshoot or undershoot of LDO5 with respect to final
value. Refer to Figure 25
–
–
3.0
%
VLDO5LITR
Transient Line Response
ILDO5 = 150 mA
VLDOIN45INITIAL = 2.8 V to VLDOIN45FINAL = 3.3 V for 
LDO5[3:0] = 0000 to 0111
VLDOIN45INITIAL = VLDO5+0.3 V to VLDOIN45FINAL = VLDO5+0.8 V for
LDO5[3:0] = 1000 to 1111
Refer to Figure 25
–
5.0
8.0
mV
Notes
43. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
44. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VLDOIN45 refers to the minimum allowed input voltage for a particular output voltage.
6.5
Control Interface I2C Block Description
The 34VR500 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these registers,
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL
and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be
accomplished by reducing the drive strength of the I2C master via software. It is recommended to use a drive strength of 80  or higher
to increase the edge times. Alternatively, this can be accomplished by using small capacitors from SCL and SDA to ground. For example,
use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of 4.8 k.
6.5.1
I2C Device ID
I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. The I2C address is set to 0x08.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
65
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
6.5.2
I2C Operation
The I2C mode of the interface is implemented generally following the Fast mode definition which supports up to 400 kbits/s operation
(exceptions to the standard are noted to be 7-bit only addressing and no support for General Call addressing.)
The I2C interface is configured as "Slave".
Timing diagrams, electrical specifications, and further details can be found in the I2C specification, which is available for download at:
http://www.nxp.com/documents/user_manual/UM10204.pdf
I2C read operations are performed in byte increments separated by an ACK. Read operations begin with the MSB and each byte is sent
out unless a STOP command or NACK is received prior to completion.
The 34VR500 only supports single-byte I2C transactions for read and write. The host initiates and terminates all communication. The host
sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains
the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from
the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.
The 34VR500 uses the "repeated start" operation for reads, as shown in Figure 27.
Figure 26. Data Transfer on the I2C Bus
Figure 27. Read Operation
6.5.3
Interrupt Handling
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving
the INTB pin low.
Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each interrupt can
be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this will also cause the INTB pin to go high. If there are
multiple interrupt bits set the INTB pin will remain low until all are either masked or cleared. If a new interrupt occurs while the processor
clears an existing interrupt bit, the INTB pin will remain low.
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB
pin will not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for
status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts
are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin
will go low after unmasking.
34VR500
66
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are
read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable
throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT
summary Table 81. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.
6.5.4
Interrupt Bit Summary
Table 81 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer to
the related chapters.
Table 81. Interrupt, Mask and Sense Bits
Interrupt
Mask
Sense
Purpose
Trigger
Debounce Time (ms)
Low Input Voltage Detect
Sense is 1 if below 2.80 V threshold
H to L
3.9(45)
Enable on button event
H to L
31.25(45)
Sense is 1 if EN is high
L to H
31.25
LOWVINI
LOWVINM
LOWVINS
ENI
ENM
ENS
THERM110
THERM110M
THERM110S
Thermal 110 °C threshold
Sense is 1 if above threshold
Dual
3.9
THERM120
THERM120M
THERM120S
Thermal 120 °C threshold
Sense is 1 if above threshold
Dual
3.9
THERM125
THERM125M
THERM125S
Thermal 125 °C threshold
Sense is 1 if above threshold
Dual
3.9
THERM130
THERM130M
THERM130S
Thermal 130 °C threshold
Sense is 1 if above threshold
Dual
3.9
SW1FAULTI
SW1FAULTM
SW1FAULTS
Regulator 1 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW2FAULTI
SW2FAULTM
SW2FAULTS
Regulator 2 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW3FAULTI
SW3FAULTM
SW3FAULTS
Regulator 3 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW4FAULTI
SW4FAULTM
SW4FAULTS
Regulator 4 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
LDO1FAULTI
LDO1FAULTM
LDO1FAULTS
LDO1 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
LDO2FAULTI
LDO2FAULTM
LDO2FAULTS
LDO2 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
LDO3FAULTI
LDO3FAULTM
LDO3FAULTS
LDO3 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
LDO4FAULTI
LDO4FAULTM
LDO4FAULTS
LDO4 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
LDO5FAULTI
LDO5FAULTM
LDO5FAULTS
LDO5 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
Notes
45. Debounce timing for the falling edge can be extended with ENDBNC[1:0].
A full description of all interrupt, mask, and sense registers is provided in Tables 82 to 90.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
67
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 82. Register INTSTAT0 - ADDR 0x05
Name
Bit #
R/W
Default
Description
ENI
0
R/W1C
0
Power on interrupt bit
LOWVINI
1
R/W1C
0
Low-voltage interrupt bit
THERM110I
2
R/W1C
0
110 °C Thermal interrupt bit
THERM120I
3
R/W1C
0
120 °C Thermal interrupt bit
THERM125I
4
R/W1C
0
125 °C Thermal interrupt bit
THERM130I
5
R/W1C
0
130 °C Thermal interrupt bit
Table 83. Register INTMASK0 - ADDR 0x06
Name
Bit #
R/W
Default
Description
ENM
0
R/W1C
1
Power on interrupt mask bit
LOWVINM
1
R/W1C
1
Low-voltage interrupt mask bit
THERM110M
2
R/W1C
1
110 °C Thermal interrupt mask bit
THERM120M
3
R/W1C
1
120 °C Thermal interrupt mask bit
THERM125M
4
R/W1C
1
125 °C Thermal interrupt mask bit
THERM130M
5
R/W1C
1
130 °C Thermal interrupt mask bit
Table 84. Register INTSENSE0 - ADDR 0x07
Name
Bit #
R/W
Default
Description
ENS
0
R
0
Enable on sense bit
0 = EN low
1 = EN high
LOWVINS
1
R
0
Low voltage sense bit
0 = VIN > 2.8 V
1 = VIN 2.8 V
THERM110S
2
R
0
110 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
THERM120S
3
R
0
120 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
THERM125S
4
R
0
125 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
THERM130S
5
R
0
130 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
Table 85. Register INTSTAT1 - ADDR 0x08
Name
Bit #
R/W
Default
Description
SW1FAULTI
2:0
R/W1C
0
SW1 Overcurrent interrupt bit
SW2FAULTI
3
R/W1C
0
SW2 Overcurrent interrupt bit
34VR500
68
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 85. Register INTSTAT1 - ADDR 0x08 (continued)
Name
Bit #
R/W
Default
Description
SW3FAULTI
5:4
R/W1C
0
SW3 Overcurrent interrupt bit
SW4FAULTI
6
R/W1C
0
SW4 Overcurrent interrupt bit
Table 86. Register INTMASK1 - ADDR 0x09
Name
Bit #
R/W
Default
2:0
R/W
1
SW1 Overcurrent interrupt mask bit
SW2FAULTM
3
R/W
1
SW2 Overcurrent interrupt mask bit
SW3FAULTM
5:4
R/W
1
SW3 Overcurrent interrupt mask bit
SW4FAULTM
6
R/W
1
SW4 Overcurrent interrupt mask bit
SW1FAULTM
Description
Table 87. Register INTSENSE1 - ADDR 0x0A
Name
Bit #
R/W
Default
Description
SW1FAULTS
2:0
R
0
SW1 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
SW2FAULTS
3
R
0
SW2 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
SW3FAULTS
5:4
R
0
SW3 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
SW4FAULTS
6
R
0
SW4 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
Table 88. Register INTSTAT4 - ADDR 0x11
Name
Bit #
R/W
Default
Description
LDO1FAULTI
1
R/W1C
0
LDO1 Overcurrent interrupt bit
LDO2FAULTI
2
R/W1C
0
LDO2 Overcurrent interrupt bit
LDO3FAULTI
3
R/W1C
0
LDO3 Overcurrent interrupt bit
LDO4FAULTI
4
R/W1C
0
LDO4 Overcurrent interrupt bit
LDO5FAULTI
5
R/W1C
0
LDO5 Overcurrent interrupt bit
Table 89. Register INTMASK4 - ADDR 0x12
Name
Bit #
R/W
Default
Description
LDO1FAULTM
1
R/W
1
LDO1 Overcurrent interrupt mask bit
LDO2FAULTM
2
R/W
1
LDO2 Overcurrent interrupt mask bit
LDO3FAULTM
3
R/W
1
LDO3 Overcurrent interrupt mask bit
LDO4FAULTM
4
R/W
1
LDO4 Overcurrent interrupt mask bit
LDO5FAULTM
5
R/W
1
LDO5 Overcurrent interrupt mask bit
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
69
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 90. Register INTSENSE4 - ADDR 0x13
Name
6.5.5
6.5.5.1
Bit #
R/W
Default
Description
LDO1FAULTS
1
R
0
LDO1 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO2FAULTS
2
R
0
LDO2 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO3FAULTS
3
R
0
LDO3 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO4FAULTS
4
R
0
LDO4 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO5FAULTS
5
R
0
LDO5 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
Specific Registers
IC and Version Identification
The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 91 to 93.
Table 91. Register DEVICEID - ADDR 0x00
Name
DEVICEID
Bit #
R/W
Default
3:0
R
0x00
Description
Die version.
0100 = 34VR500
Table 92. Register SILICON REV- ADDR 0x03
Name
METAL_LAYER_REV
FULL_LAYER_REV
Bit #
3:0
7:4
R/W
R
R
Default
Description
0x00
Represents the metal mask revision
Pass 0.0 = 0000
.
.
Pass 0.15 = 1111
0x01
Represents the full mask revision
Pass 1.0 = 0001
.
.
Pass 15.0 = 1111
Table 93. Register FABID - ADDR 0x04
Name
Bit #
R/W
Default
Description
FIN
1:0
R
0x00
Allows for characterizing different options within
the same reticule
FAB
3:2
R
0x00
Represents the wafer manufacturing facility
34VR500
70
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
6.5.6
Register Bitmap
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can
be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page,
the functional registers are the same, but the extended registers are different. To access the Functional Page from one of the extended
pages, no write to the page register is necessary.
Registers that are missing in the sequence are reserved; reading from them will return a value 0x00, and writing to them will have no effect.
The contents of all registers are given in the tables defined in this chapter; each table is structure as follows:
Name: Name of the bit.
Bit #: The bit location in the register (7-0)
R/W: Read / Write access and control
• R is read-only access
• R/W is read and write access
• RW1C is read and write access with write 1 to clear
Reset: Reset signals are color coded based on the following legend.
Bits reset by VCOREDIG_PORB
Bits reset by EN or loaded default
Bits reset by DIGRESETB
Bits reset by PORB
Bits reset by VCOREDIG_PORB
Bits reset by POR or OFFB
Default: The value after reset, as noted in the Default column of the memory map.
• Fixed defaults are explicitly declared as 0 or 1.
• “X” corresponds to Read / Write bits that are initialized at start-up. Bits are subsequently I2C modifiable, when their reset has been
released. “X” may also refer to bits that may have other dependencies. For example, some bits may depend on the version of the
IC, or a value from an analog block, for instance the sense bits for the interrupts.
6.5.6.1
Register map
Table 94. Functional Page
BITS[7:0]
Add
Register
Name
R/W
Default
00
DeviceID
R
8'b0001_0000
7
6
5
4
–
–
–
–
0
0
0
1
3
2
04
05
06
07
SILICONREVID
FABID
INTSTAT0
INTMASK0
INTSENSE0
R
R
RW1C
R/W
R
0
DEVICE ID [3:0]
0
1
FULL_LAYER_REV[3:0]
03
1
0
0
METAL_LAYER_REV[3:0]
8'b0001_0000
0
0
0
1
0
0
0
–
–
–
–
0
0
0
0
0
0
0
0
–
–
THERM130I
THERM125I
THERM120I
THERM110I
LOWVINI
ENI
0
0
0
0
0
0
0
0
–
–
THERM130M
THERM125M
THERM120M
THERM110M
LOWVINM
ENM
0
0
1
1
1
1
1
1
RSVD
RSVD
THERM130S
THERM125S
THERM120S
THERM110S
LOWVINS
ENS
0
0
x
x
x
x
x
x
FAB[1:0]
0
FIN[1:0]
8'b0000_0000
8'b0000_0000
8'b0011_1111
8'b00xx_xxxx
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
71
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 94. Functional Page (continued)
BITS[7:0]
Add
Register
Name
R/W
Default
08
INTSTAT1
RW1C
8'b0000_0000
09
0A
11
12
13
1B
2E
2F
30
31
INTMASK1
INTSENSE1
INTSTAT4
INTMASK4
INTSENSE4
PWRCTL
SW1VOLT
SW1STBY
SW1OFF
SW1MODE
R/W
R
RW1C
R/W
R
R/W
R/W
R/W
R/W
R/W
7
6
5
–
SW4FAULTI
0
0
–
SW4FAULTM
0
1
–
SW4FAULTS
0
x
x
x
x
x
x
–
–
LDO5FAULTI
LDO4FAULTI
LDO3FAULTI
LDO2FAULTI
LDO1FAULTI
–
0
0
0
0
0
0
0
0
–
–
LDO5
FAULTM
LDO4
FAULTM
LDO3
FAULTM
LDO2
FAULTM
LDO1
FAULTM
–
0
0
1
1
1
1
1
1
–
–
LDO5
FAULTS
LDO4
FAULTS
LDO3
FAULTS
LDO2
FAULTS
LDO1
FAULTS
–
0
0
x
x
x
x
x
x
REGSCPEN
STANDBYINV
ENRSTEN
RESTARTEN
0
0
0
0
0
–
–
0
0
x
x
x
–
–
0
0
x
x
x
–
–
0
0
x
x
x
x
–
–
SW1OMODE
–
0
0
0
0
SW3FAULTI
0
35
36
37
38
SW1CONF
SW2VOLT
SW2STBY
SW2OFF
SW2MODE
R/W
R/W
R/W
R/W
R/W
SW2CONF
R/W
2
1
SW2FAULTI
0
SW3FAULTM
0
SW1FAULTI
0
0
0
SW2FAULTM
0
SW1FAULTM
1
1
SW3FAULTS
1
1
1
SW2FAULTS
1
SW1FAULTS
8'b0xxx_xxxx
x
8'b0000_0000
8'b0011_1111
8'b00xx_xxxx
STBYDLY[1:0]
ENDBNC[1:0]
8'b0001_0000
0
1
0
SW1[5:0]
8'b00xx_xxxx
x
x
x
SW1STBY[5:0]
8'b00xx_xxxx
x
x
x
SW1OFF[5:0]
8'b00xx_xxxx
x
x
SW1MODE[3:0]
8'b0000_1000
1
SW1PHASE[1:0]
0
0
0
–
SW1ILIM
x
0
0
x
x
x
x
x
x
x
x
x
SW1FREQ[1:0]
8'bxx00_xx00
x
x
–
–
0
0
–
–
0
0
0
0
x
SW2[5:0]
8'b0xxx_xxxx
x
x
x
SW2STBY[5:0]
8'b0xxx_xxxx
x
x
x
x
–
–
0
0
x
x
SW2OFF[5:0]
–
–
SW2OMODE
–
0
0
0
0
8'b0xxx_xxxx
SW2MODE[3:0]
8'b0000_1000
SW2DVSSPEED[1:0]
39
3
8'b0111_1111
SW1DVSSPEED[1:0]
32
4
1
SW2PHASE[1:0]
0
SW2FREQ[1:0]
0
0
–
SW2ILIM
0
0
8'bxx01_xx00
x
x
0
1
x
x
34VR500
72
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 94. Functional Page (continued)
BITS[7:0]
Add
Register
Name
R/W
Default
3C
SW3VOLT
R/W
8'b0xxx_xxxx
3D
3E
3F
SW3STBY
SW3OFF
SW3MODE
R/W
R/W
R/W
7
6
–
–
0
0
–
–
0
0
–
–
0
0
0
0
5
4A
4B
4C
4D
SW3CONF
SW4VOLT
SW4STBY
SW4OFF
SW4MODE
R/W
R/W
R/W
R/W
R/W
6A
6D
6E
6F
70
71
7F
SW4CONF
REFOUTCRTRL
LDO1CTL
LDO2CTL
LDO3CTL
LDO4CTL
LDO5CTL
Page Register
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
x
x
x
x
x
x
x
x
x
x
x
x
1
0
x
SW3STBY[5:0]
8'b0xxx_xxxx
x
x
x
SW3OFF[5:0]
8'b0xxx_xxxx
x
x
SW3OMODE
–
0
0
SW3MODE[3:0]
8'b0000_1000
SW3PHASE[1:0]
0
0
–
SW3ILIM
x
0
0
x
x
x
x
x
x
x
x
SW3FREQ[1:0]
8'bxx10_xx00
x
x
1
0
–
–
0
0
–
–
0
0
–
–
0
0
x
x
–
–
SW4OMODE
–
0
0
0
0
x
SW4[5:0]
8'b0xxx_xxxx
x
x
x
SW4STBY[5:0]
8'b0xxx_xxxx
x
x
x
SW4OFF[5:0]
8'b0xxx_xxxx
x
x
SW4MODE[3:0]
8'b0000_1000
SW4DVSSPEED[1:0]
4E
3
SW3[5:0]
SW3DVSSPEED[1:0]
40
4
1
SW4PHASE[1:0]
0
SW4FREQ[1:0]
0
0
–
SW4ILIM
8'bxx11_xx00
x
x
1
1
x
x
0
0
–
–
–
REFOUTEN
–
–
–
–
0
0
0
x
0
0
0
0
–
LDO1LPWR
LDO1STBY
LDO1EN
0
0
0
x
x
x
–
LDO2LPWR
LDO2STBY
LDO2EN
0
0
0
x
x
x
–
LDO3LPWR
LDO3STBY
LDO3EN
0
0
0
x
x
x
–
LDO4LPWR
LDO4STBY
LDO4EN
0
0
0
x
x
x
–
LDO5LPWR
LDO5STBY
LDO5EN
0
0
0
x
x
x
–
–
–
0
0
0
x
x
8'b000x_0000
LDO1[3:0]
8'b000x_xxxx
x
x
x
x
LDO2[3:0]
8'b000x_xxxx
LDO3[3:0]
8'b000x_xxxx
x
x
LDO4[3:0]
8'b000x_xxxx
x
x
LDO5[3:0]
8'b000x_xxxx
x
x
PAGE[4:0]
8'b0000_0000
x
x
x
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
73
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 95. Extended Page 1: Internal RAM
BITS[7:0]
Address
A8
Register Name
SW1 VOLT
TYPE
R/W
Default
7
6
–
–
0
0
5
4
3
AA
AC
AD
AE
B0
B1
B2
B8
B9
BA
C4
CC
CD
D0
SW1 SEQ
SW1 CONFIG
SW2 VOLT
SW2 SEQ
SW2 CONFIG
SW3 VOLT
SW3 SEQ
SW3 CONFIG
SW4 VOLT
SW4 SEQ
SW4 CONFIG
REFOUT SEQ
LDO1 VOLT
LDO1 SEQ
LDO2 VOLT
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
x
x
x
x
SW1_VOLT[5:0]
8'b00xx_xxxx
x
x
x
–
A9
2
SW1_SEQ[4:0]
8'b000x_xxxx
0
0
0
x
x
x
x
–
–
–
–
–
–
SW1_FREQ[1:0]
0
0
0
0
0
0
x
x
x
x
x
x
x
x
8'b0000_00xx
–
–
0
0
SW2_VOLT[5:0]
–
–
0
0
0
x
x
x
x
–
–
–
–
–
–
SW2_FREQ[1:0]
0
0
0
0
0
0
x
x
–
–
0
0
x
x
x
–
–
0
0
0
x
x
x
x
–
–
–
–
SW3_CONFIG[1:0]
SW3_FREQ[1:0]
0
0
0
0
x
x
x
x
–
–
0
0
x
x
x
x
–
–
–
0
0
0
x
x
x
x
x
–
–
–
VTT
–
–
SW4_FREQ[1:0]
0
0
0
x
x
x
x
x
–
–
–
0
0
0
x
x
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
8'b0xxx_xxxx
x
SW2_SEQ[4:0]
8'b000x_xxxx
8'b0000_00xx
SW3_VOLT[5:0]
8'b0xxx_xxxx
x
x
x
SW3_SEQ[4:0]
8'b000x_xxxx
x
8'b0000_xxxx
SW4_VOLT[5:0]
8'b00xx_xxxx
x
x
SW4_SEQ[4:0]
8'b000x_xxxx
8'b000x_xxxx
REFOUT_SEQ[4:0]
8'b000x_x0xx
x
0
LDO1_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
LDO1_SEQ[4:0]
8'b000x_xxxx
x
x
LDO2_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
34VR500
74
Analog Integrated Circuit Device Data
Freescale Semiconductor
Functional Block Requirements and Behaviors
Control Interface I2C Block Description
Table 95. Extended Page 1: Internal RAM (continued)
BITS[7:0]
Address
D1
D4
D5
D8
D9
DC
DD
E0
E4
E8
Register Name
LDO2 SEQ
LDO3 VOLT
LDO3 SEQ
LDO4 VOLT
LDO4 SEQ
LDO5 VOLT
LDO5 SEQ
PU CONFIG1
TBB_POR
PWRGD EN
TYPE
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W/M
Default
7
6
5
4
3
2
1
0
–
–
–
0
0
0
x
x
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
PWRON_
CFG1
0
0
0
x
x
x
x
x
TBB_POR
RSVD
–
–
–
–
RSVD
–
0
RSVD
RSVD
RSVD
RSVD
RSVD
RSVD
RSVD
–
–
–
–
–
–
–
PG_EN
0
0
0
0
0
0
x
0
LDO2_SEQ[4:0]
8'b000x_xxxx
x
x
LDO3_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
LDO3_SEQ[4:0]
8'b000x_xxxx
x
x
LDO4_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
LDO4_SEQ[4:0]
8'b000x_xxxx
x
x
LDO5_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
LDO5_SEQ[4:0]
8'b000x_xxxx
8'b000x_xxxx
x
x
SWDVS_CLK1[1:0]
SEQ_CLK_SPEED1[1:0]
8'b0000_00x0
8'b0000_000x
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
75
Typical Applications
Introduction
7
Typical Applications
7.1
Introduction
Figure 28 provides a typical application diagram of the 34VR500 PMIC together with its functional components. For details on component
references and additional components such as filters, refer to the individual sections.
7.1.1
Application Diagram
VLDOIN1
VR500
1.0uF
4.7uF
LDO1
FB1
SW1 Output
Vin
PVIN1
SW1
4500 mA
Buck
LDO1
250mA
O/P
Drive
3 x 4.7 uF
+3 x 0.1 uF
0.68uH
LX1
7 x22 uF
VLDOIN23
1.0uF
LDO2
2.2uF
4.7uF
LDO3
LDO2
100mA
SW2 Output
SW2
2000 mA
Buck
VLDOIN45
1.0uF
1.5uH
LX2
LDO3
350mA
O/P
Drive
Core Control logic
PVIN2
FB2
Vin
3 x 22 uF
4.7 uF
+0.1 uF
LDO4
100mA
2.2uF
LDO4
2.2uF
LDO5
Initialization State Machine
FB3
LDO5
200mA
SW3
2500 mA
Buck
Supplies
Control
VCCI2C
CONTROL
I2C
Interface
4.7k
4.7k
VCCI2C
PVIN3
1.5uH
LX3
Vin
SDA
SW3 Output
Vin 2 x 4.7 uF
+2 x 0.1 uF
3 x 22 uF
FB4
SW4
1000 mA
Buck
SCL
To
MCU
O/P
Drive
PVIN4
O/P
Drive
LX4
SW4 Output
4.7 uF
+0.1 uF
1.5uH
3 x 22 uF
DVS CONTROL
DVS Control
1uF
I2C
Register
map
VDIG
220nF
VBG
1uF
VCC
Trim-In-Package
Reference
Generation
Clocks and
resets
SGND4
0.47uF
VBIAS
1uF
Clocks
REFOUT
32kHz and 16MHz
VSW3
REFIN
Package Pin Legend
Output Pin
100nF
Input Pin
VHALF
Bi-directional Pin
100k
VSW2
INTB
ICTEST2
PORTB
VSW2
100k
EN
STBY
VSW2
100k
ICTEST1
100nF
To/From
AP
Figure 28. Typical Application Schematic
34VR500
76
Analog Integrated Circuit Device Data
Freescale Semiconductor
Typical Applications
Bill of Materials
7.1.2
Application Instructions
Table 96 provides a complete list of the recommended components on a full featured system using the 34VR500 device. Critical
components such as inductors, transistors, and diodes are provided with a recommended part number, but equivalent components may
be used.
7.2
Bill of Materials
Table 96. Bill of Materials (46)
Item
Qty
Schematic
Label
Value
Description
Part Number
Manufacturer
Component/Pin
Assy
Opt
Freescale Components
1
1
Power management IC
34VR500
Freescale
BUCK, SW1 - (0.625-1.875 V), 4.5 A
2
1
0.60 H
4 x 4 x 2.1
ISAT = 10.4 A for 30% drop,
DCRMAX = 10.45 m
XAL4020-601ME
Coilcraft
Output Inductor
3
6
22 F
10 V X5R 0805
LMK212BJ226MG-T
Taiyo Yuden
Output capacitance
4
3
4.7 F
10 V X5R 0603
LMK107BJ475KA-T
Taiyo Yuden
Input capacitance
5
3
0.1 F
10 V X5R 0402
C0402C104K8PAC
Kemet
Input capacitance
BUCK, SW2 - (0.625-1.975 V), 2.0 A
6
1
1.5 H
3.9 x 3.9 x 1.1
ISAT = 2.6 A for 10% drop,
DCRMAX = 70 m
LPS4012-152MR
Coilcraft
Output Inductor
7
2
22 F
10 V X5R 0805
LMK212BJ226MG-T
Taiyo Yuden
Output capacitance
8
1
4.7 F
10 V X5R 0603
LMK107BJ475KA-T
Taiyo Yuden
Input capacitance
9
1
0.1 F
10 V X5R 0402
C0402C104K8PAC
Kemet
Input capacitance
BUCK, SW3 - (0.625-1.975 V), 2.5 A
10
1
1.5 H
4 x 4 x 2.1
ISAT = 7.0 A for 10% drop,
DCRMAX = 21.45 m
XFL4020-152ME
Coilcraft
Output Inductor
11
–
1.5 H
4.3 x 4.3 x 1.4
ISAT = 2.9 A for 10% drop,
DCRMAX = 78 m
LPS4014_152ML
Coilcraft
Output Inductor
(Alternate)
12
–
1.0 H
4 x 4 x 1.2
ISAT = 6.2 A, DCR = 37 m
FDSD0412-H-1R0M
Toko
Output inductor
(Alternate)
13
4
22 F
10 V X5R 0805
LMK212BJ226MG-T
Taiyo Yuden
Output capacitance
14
2
4.7 F
10 V X5R 0603
LMK107BJ475KA-T
Taiyo Yuden
Input capacitance
15
1
0.1 F
10 V X5R 0402
C0402C104K8PAC
Kemet
Input capacitance
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
77
Typical Applications
Bill of Materials
Table 96. Bill of Materials (46) (continued)
Item
Qty
Schematic
Label
Value
Description
Part Number
Manufacturer
Component/Pin
Assy
Opt
BUCK, SW4 - (0.625-1.975 V), 1.0 A
16
1
1.5 H
3.9 x 3.9 x 1.1
ISAT = 2.6 A for 10% drop,
DCRMAX = 70 m
LPS4012-152MR
Coilcraft
Output Inductor
17
2
22 F
10 V X5R 0805
LMK212BJ226MG-T
Taiyo Yuden
Output capacitance
18
1
4.7 F
10 V X5R 0603
LMK107BJ475KA-T
Taiyo Yuden
Input capacitance
19
1
0.1 F
10 V X5R 0402
C0402C104K8PAC
Kemet
Input capacitance
6.3 V X5R 0402
C0402X5R6R3-
Venkel
Output capacitance
6.3 V X5R 0402
C0402C225M9PACTU
Kemet
Output capacitance
6.3 V X5R 0402
C0402X5R6R3-
Venkel
Output capacitance
6.3 V X5R 0402
C0402C225M9PACTU
Kemet
Output capacitance
6.3 V X5R 0402
C0402C225M9PACTU
Kemet
Output capacitance
LDO, LDO1 - (0.80-1.55), 250 mA
20
1
4.7 F
LDO, LDO2 - (1.80-3.30), 100 mA
21
1
2.2 F
LDO, LDO3 - (1.80-3.30), 350 mA
22
1
4.7 F
LDO, LDO4 - (1.80-3.30), 100 mA
23
1
2.2 F
LDO, LDO5 - (1.80-3.30), 200 mA
24
1
2.2 F
Reference, REFOUT - (0.60-0.90V), 10 mA
25
1
1.0 F
10 V X5R 0402
CC0402KRX5R6BB105 Yageo America
Output capacitance
26
2
0.1 F
10 V X5R 0402
C0402C104K8PAC
VHALF, REFIN
Kemet
Internal References, VDIG, VBG, VCC
27
1
1.0 F
10 V X5R 0402
CC0402KRX5R6BB105 Yageo America
VDIG
28
1
1.0 F
10 V X5R 0402
CC0402KRX5R6BB105 Yageo America
VCC
29
1
0.22 F
10 V X5R 0402
GRM155R61A224KE1
Murata
VBG
Kemet
VCCI2C
Miscellaneous
30
1
0.1 F
10 V X5R 0402
CD402C104K8PAC
31
1
1.0 F
10 V X5R 0402
CC0402KRX5R6BB105 Yageo America
VIN
32
1
100 k
1/16 W 0402
RK73H1ETTP1003F
KOA SPEER
EN
33
1
100 k
1/16 W 0402
RK73H1ETTP1003F
KOA SPEER
PORB
34
1
100 k
1/16 W 0402
RK73H1ETTP1003F
KOA SPEER
STBY
35
1
100 k
1/16 W 0402
RK73H1ETTP1003F
KOA SPEER
INTB
Notes
46. Freescale does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables.
While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.
47. Do not populate
48. Critical components. For critical components, it is vital to use the manufacturer listed.
34VR500
78
Analog Integrated Circuit Device Data
Freescale Semiconductor
Typical Applications
34VR500 Layout Guidelines
7.3
34VR500 Layout Guidelines
7.3.1
General Board Recommendations
1. It is recommended to use an eight layer board stack-up arranged as follows:
• High current signal
• GND
• Signal
• Power
• Power
• Signal
• GND
• High current signal
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.
7.3.2
Component Placement
It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and output
capacitors.
7.3.3
1.
•
•
•
•
2.
General Routing Requirements
Some recommended things to keep in mind for manufacturability:
Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole
Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper
Minimum allowed spacing between line and hole pad is 3.5 mils
Minimum allowed spacing between line and line is 3.0 mils
Care must be taken with FBx pins traces. These signals are susceptible to noise and must be routed far away from power, clock, or
high power signals, like the ones on the PVINx, SWx, and LXx pins. They could be also shielded.
3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power
planes shield these traces).
4. Avoid coupling traces between important signal/low noise supplies (like VBG, VCC, VDIG) from any switching node (i.e. LX1, LX2,
LX3, and LX4).
5. Make sure that all components related to a specific block are referenced to the corresponding ground.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
79
Typical Applications
34VR500 Layout Guidelines
7.3.4
1.
•
•
Parallel Routing Requirements
I2C signal routing
CLK is the fastest signal of the system, so it must be given special care.
To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to shield them
with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole signal trace length.
Figure 29. Recommended Shielding for Critical Signals
• These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane.
• Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good practice
is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.
7.3.5
Switching Regulator Layout Recommendations
1. Per design, the switching regulators in 34VR500 are designed to operate with only one input bulk capacitor. However, it is
recommended to add a high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor
should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.
2. Make high-current ripple traces low-inductance (short, high W/L ratio).
3. Make high-current traces wide or copper islands.
34VR500
80
Analog Integrated Circuit Device Data
Freescale Semiconductor
Typical Applications
Thermal Information
VIN
PVINx
CIN_HF
Driver Controller
CIN
SWx
LXx
L
COUT
Compensation
FBx
Figure 30. Generic Buck Regulator Architecture
Figure 31. Layout Example for Buck Regulators
7.4
Thermal Information
7.4.1
Rating Data
The thermal rating data of the packages has been simulated with the results listed in Table 4.
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for
junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-JMA) will be used for
both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p
test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly used.
The JEDEC standards can be consulted at http://www.jedec.org.
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
81
Typical Applications
Thermal Information
7.4.2
Estimation of Junction Temperature
An estimation of the chip junction temperature TJ can be obtained from the equation:
TJ = TA + (RθJA x PD)
with:
TA = Ambient temperature for the package in °C
RJA = Junction to ambient thermal resistance in °C/W
PD = Power dissipation in the package in W
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance.
Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the value obtained on a four
layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be
somewhat degraded in case of significant power dissipated by other components placed close to the device.
At a known board temperature, the junction temperature TJ is estimated using the following equation
TJ = TB + (RθJB x PD) with
TB = Board temperature at the package perimeter in °C
RθJB = Junction to board thermal resistance in °C/W
PD = Power dissipation in the package in W
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.
See Functional Block Requirements and Behaviors for more details on thermal management.
34VR500
82
Analog Integrated Circuit Device Data
Freescale Semiconductor
Packaging
Packaging Dimensions
8
Packaging
8.1
Packaging Dimensions
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.freescale.com and
perform a keyword search for the drawing’s document number. See the Thermal Characteristics section for specific thermal characteristics
for each package.
Table 97. Package Drawing Information
Package
Suffix
56 QFN 8x8 mm - 0.5 mm pitch.
WF-Type (wettable flank)
ES
Package Outline Drawing Number
98ASA00589D
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
83
Packaging
Packaging Dimensions
34VR500
84
Analog Integrated Circuit Device Data
Freescale Semiconductor
Packaging
Packaging Dimensions
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
85
Packaging
Packaging Dimensions
34VR500
86
Analog Integrated Circuit Device Data
Freescale Semiconductor
Revision History
Packaging Dimensions
9
Revision History
Revision
Date
1.0
5/2014
•
Initial release
8/2014
•
•
•
•
•
•
SW2, SW3, and SW4 voltage range modification
Table 6.1.2 added to explain how to change the start sequence.
Table 95 added
Added PC34VR500V2ES to the Orderable part Table 1
Update the 98A number
Added Bill of Materials
•
•
Updated Table 1 (corrected a typo)
Updated values for VSW2ACC in Table 47
•
•
Updated values for VSW3ACC in Table 56
Updated values for VSW4ACC in Table 65
•
•
Updated package outline (changed 98ASA00379D to 98ASA00589D)
Added optimized value for the buck regulator external components
•
Added MC34VR500V3ES, MC34VR500V4ES, MC34VR500V5ES to the Orderable Part Variations
Table
Added SW1, SW2, SW3, SW4 transient load plots
Added SW1, SW2 efficiency plots
Updated Control Interface I2C Block Description, I2C Device ID, and I2C Operation sections
Updated SW2 rated current to 2.0 A
2.0
3.0
4.0
1/2015
7/2015
Description of Changes
•
•
•
•
34VR500
Analog Integrated Circuit Device Data
Freescale Semiconductor
87
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to use Freescale products.
Home Page:
freescale.com
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no
on the information in this document.
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their
respective owners.
© 2015 Freescale Semiconductor, Inc.
Document Number: MC34VR500
Rev. 4.0
7/2015