low clamping voltage series

CTVS Ceramic transient voltage suppressors
SMD multilayer varistors (MLVs),
low clamping voltage series
Series/Type:
Date:
July 2014
© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the
information contained therein without EPCOS' prior express consent is prohibited.
EPCOS AG is a TDK Group Company.
Multilayer varistors (MLVs)
Low clamping voltage series
EPCOS type designation system for low clamping voltage series
CT
0201
S
Construction:
CT Single chip with nickel
barrier termination (AgNiSn)
Case sizes:
0201
Tolerance of the varistor voltage:
S Special tolerance
Maximum RMS operating voltage (VRMS):
44V
Internal coding
Value for controlled capacitance
CC2 7 pF
CC4 3 pF
CC5 15 pF
Taping mode:
G 180-mm reel, 7''
Please read Cautions and warnings and
Important notes at the end of this document.
Page 2 of 28
4
A
CC2
G
Multilayer varistors (MLVs)
Low clamping voltage series
Features
Reliable ESD protection up to 8 kV contact and
15 kV air discharge, acc. to IEC 61000-4-2, level 4
Low clamping voltage
Bidirectional protection
Long-term ESD stability
Low parasitic inductance
Low leakage current < 0.1 µA
Capacitance range 3 pF ... 15 pF
Small case size 0201 (0.6 x 0.3 x 0.3 mm3)
RoHS-compatible and lead-free
PSpice simulation models available
Applications
ESD protection in:
dedicated interfaces in smart phones e.g. power
key, side key, on/ off button, head sets, audio
lines, chargers
tablet PCs, notebook PCs, E-books
navigation devices
multimedia players, game consoles
digital cameras
LED packaging
Design
Multilayer technology
Flammability rating better than UL 94 V-0
Termination (see “Soldering directions”):
CT types with nickel barrier terminations (AgNiSn),
recommended for lead-free soldering, and
compatible with tin/lead solder.
V/I characteristics and derating curves
V/I and derating curves are attached to the data sheet.
The curves are sorted by VRMS and then by case size,
which is included in the type designation.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 3 of 28
Single chip
Internal circuit
Available case sizes:
EIA
0201
Metric
0603
Multilayer varistors (MLVs)
Low clamping voltage series
General technical data
Maximum RMS operating voltage
Maximum DC operating voltage
Maximum surge current
Maximum DC leakage current
Maximum DC leakage current
Maximum clamping voltage
Operating temperature
Storage temperature
Response time
(8/20 µs)
(3 V, 25 °C)
(5.5 V, 25 °C)
(1 A, 8/20 µs)
VRMS,max
VDC,max
Isurge,max
Ileak,max
Ileak,max
Vclamp,max
Top
LCT/UCT
tresp
4
5.5
1
0.1
1
22 ... 43
40/+85
40/+125
< 0.5
V
V
A
µA
µA
V
°C
°C
ns
Temperature derating
Climatic category: 40/+85 °C for chip size 0201
Electrical specifications and ordering codes
Maximum ratings (Top,max) and characteristics (TA = 25 °C)
VV,min
VV,max
Vclamp,max
(1 mA) (1 mA) (1 A, 8/20
µs)
V
V
V
CT0201S4ACC2G B72440P5040S260 9
17
33
CT0201S4ACC5G B72440P5040S560 9
17
22
CT0201S4ACC4G B72440P5040S460 20
34
43
Type
Ordering code
Please read Cautions and warnings and
Important notes at the end of this document.
Page 4 of 28
Ctyp
(1 MHz,
1 V)
pF
7
15
3
Cmin
(1 MHz,
1 V)
pF
4
10
1
Cmax
(1 MHz,
1 V)
pF
10
20
6
Multilayer varistors (MLVs)
Low clamping voltage series
Dimensional drawing
Dimensions in mm
Case size
EIA / mm
l
w
h
k
0201 / 0603
0.6 ±0.03
0.30 ±0.03
0.33 max.
0.15 ±0.05
Recommended solder pad layout
Dimensions in mm
Case size
EIA / mm
A
B
C
0201 / 0603
0.30
0.25
0.30
Delivery mode
EIA case size Taping
0201
0201
0201
Reel size
mm
Cardboard 180
Cardboard 180
Cardboard 180
Please read Cautions and warnings and
Important notes at the end of this document.
Packing unit
pcs.
15000
15000
15000
Type
Ordering code
CT0201S4ACC2G
CT0201S4ACC4G
CT0201S4ACC5G
B72440P5040S260
B72440P5040S460
B72440P5040S560
Page 5 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Taping and packing
1
Taping and packing for SMD components
1.1
Blister tape (taping to IEC 60286-3)
Dimensions in mm
8-mm tape
12-mm tape
Case size (inch/mm)
Case size
(inch/mm)
0508/
1220
0612/
1632
1012/
2532
Tolerance
0603/
1608
0506/
1216
0805/
2012
1206/
3216
1210/
3225
1812/
4532
2220/
5750
A0
0.9 ±0.10
1.50
1.60
1.90
2.80
3.50
5.10
±0.20
B0
1.75 ±0.10
1.80
2.40
3.50
3.50
4.80
6.00
±0.20
K0
1.0
0.80
T
T2
1.80
0.30
1.3
1.20
2.50
3.40
max.
0.30
max.
3.90
max.
D0
1.50
1.50
+0.10/0
D1
1.00
1.50
min.
P0
4.00
4.00
±0.101)
P2
2.00
2.00
±0.05
P1
4.00
8.00
±0.10
W
8.00
12.00
±0.30
E
1.75
1.75
±0.10
F
3.50
5.50
±0.05
G
0.75
0.75
min.
1) ≤±0.2 mm over 10 sprocket holes.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 6 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Part orientation in tape pocket for blister tape
For discrete chip, EIA case sizes 0603, 0805,
1206, 1210, 1812 and 2220
For array, EIA case size 0612
For arrays, EIA case sizes 0506 and 1012
For filter array, EIA case size 0508
Additional taping information
Reel material
Polystyrol (PS)
Tape material
Polystyrol (PS) or Polycarbonat (PC) or PVC
Tape break force
min. 10 N
Top cover tape strength
min. 10 N
Top cover tape peel force
0.2 to 0.6 N for 8-mm tape and 0.2 to 0.8 N for
12-mm tape at a peel speed of 300 mm/min
Tape peel angle
Angle between top cover tape and the direction of feed
during peel off: 165° to 180°
Cavity play
Each part rests in the cavity so that the angle between
the part and cavity center line is no more than 20°
Please read Cautions and warnings and
Important notes at the end of this document.
Page 7 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
1.2
Cardboard tape (taping to IEC 60286-3)
Dimensions in mm
8-mm tape
Case size
Tolerance
(inch/mm)
Case size (inch/mm)
0201/0603 0402/1005 0405/1012 0603/1608 1003/2508 0508/1220
A0
0.38 ±0.05
0.60
1.05
0.95
1.00
1.60
±0.20
B0
0.68 ±0.05
1.15
1.60
1.80
2.85
2.40
±0.20
T
0.35 ±0.02
0.60
0.75
0.95
1.00
0.95
max.
T2
0.4 min.
0.70
0.90
1.10
1.10
1.12
max.
D0
1.50 ±0.1
1.50
+0.10/0
1.50
P0
4.00
±0.102)
P2
2.00
±0.05
P1
2.00 ±0.05
2.00
4.00
4.00
4.00
4.00
±0.10
W
8.00
±0.30
E
1.75
±0.10
F
G
±0.05
3.50
1.35
0.75
2) ≤0.2 mm over 10 sprocket holes.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 8 of 28
min.
Multilayer varistors (MLVs)
Low clamping voltage series
Part orientation in tape pocket for cardboard tape
For discrete chip, EIA case sizes 0201, 0402,
0603 and 1003
For array, EIA case size 0405
For array, EIA case size 0508
For filter array, EIA case size 0405
Additional taping information
Reel material
Polystyrol (PS)
Tape material
Cardboard
Tape break force
min. 10 N
Top cover tape strength
min. 10 N
Top cover tape peel force
0.1 to 0.65 N at a peel speed of 300 mm/min
Tape peel angle
Angle between top cover tape and the direction of feed
during peel off: 165° to 180°
Cavity play
Each part rests in the cavity so that the angle between
the part and cavity center line is no more than 20°
Please read Cautions and warnings and
Important notes at the end of this document.
Page 9 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
1.3
Reel packing
Dimensions in mm
8-mm tape
12-mm tape
180-mm reel
330-mm reel
A
180 +0/3
330 +0/2.0
180 +0/3
330 +0/2.0
W1
8.4 +1.5/0
8.4 +1.5/0
12.4 +1.5/0
12.4 +1.5/0
W2
14.4 max.
14.4 max.
18.4 max.
18.4 max.
Leader, trailer
Please read Cautions and warnings and
Important notes at the end of this document.
Page 10 of 28
180-mm reel
330-mm reel
Multilayer varistors (MLVs)
Low clamping voltage series
1.4
Packing units for discrete chip and array chip
Case size
Chip thickness
inch/mm
0201/0603
0402/1005
0405/1012
0506/1216
0508/1220
0603/1608
0612/1632
0805/2012
th
0.33 mm
0.6 mm
0.7 mm
0.5 mm
0.9 mm
0.9 mm
0.7 mm
0.7 mm
0.9 mm
1.3 mm
0.9 mm
1.0 mm
0.9 mm
1.3 mm
1.4 mm
1.6 mm
0.9 mm
1.3 mm
1.4 mm
1.6 mm
1.3 mm
1.4 mm
1.6 mm
2.0 mm
2.3 mm
1.3 mm
1.4 mm
1.6 mm
2.0 mm
2.3 mm
2.7 mm
3.0 mm
1003/2508
1012/2532
1206/3216
1210/3225
1812/4532
2220/5750
Please read Cautions and warnings and
Important notes at the end of this document.
Cardboard tape Blister tape
W
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
W
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
8 mm
12 mm
12 mm
12 mm
12 mm
12 mm
12 mm
12 mm
12 mm
12 mm
12 mm
12 mm
12 mm
Page 11 of 28
∅ 180-mm reel ∅ 330-mm reel
pcs.
15000
10000
5000
4000
4000
4000
3000
3000
3000
3000
4000
2000
3000
3000
2000
2000
3000
3000
2000
2000
1500
1000
1000
1500
1000
1000
600
600
pcs.
50000
16000
12000
12000
12000
8000
8000
12000
8000
8000
4000
3000
3000
3000
3000
Multilayer varistors (MLVs)
Low clamping voltage series
2
Delivery mode for leaded SHCV varistors
Standard delivery mode for SHCV types is bulk. Alternative taping modes (AMMO pack or taped
on reel) are available upon request.
Packing units for:
Type
Pieces
SR6
2000
SR1 / SR2
1000
For types not listed in this data book please contact EPCOS.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 12 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Soldering directions
1
Terminations
1.1
Nickel barrier termination
The nickel barrier layer of the silver/nickel/tin termination prevents leaching of the silver base metallization layer. This allows great flexibility in the selection of soldering parameters. The tin prevents the nickel layer from oxidizing and thus ensures better wetting by the solder. The nickel barrier termination is suitable for all commonly-used soldering methods, including lead-free soldering.
Multilayer CTVS: Structure of nickel barrier termination
1.2
Silver-platinum termination
Silver-platinum terminations are mainly used for the large EIA case sizes 1812 and 2220. The silver-platinum termination is approved for reflow soldering, SnPb soldering and lead-free soldering
with a silver containing solder paste. In case of SnPb soldering, a solder paste Sn62Pb36Ag2 is
recommended. For lead-free reflow soldering, a solder paste SAC, e.g. Sn95.5Ag3.8Cu0.7, is
recommended.
Multilayer varistor: Structure of silver-platinum termination
Please read Cautions and warnings and
Important notes at the end of this document.
Page 13 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
2
Recommended soldering temperature profiles
2.1
Reflow soldering temperature profile
Recommended temperature characteristic for reflow soldering following
JEDEC J-STD-020D
Profile feature
Sn-Pb eutectic assembly
Pb-free assembly
Tsmin
Tsmax
tsmin to tsmax
100 °C
150 °C
60 ... 120 s
150 °C
200 °C
60 ... 180 s
Average ramp-up rate
Tsmax to Tp
3 °C/ s max.
3 °C/ s max.
Liquidous temperature
Time at liquidous
TL
tL
183 °C
60 ... 150 s
217 °C
60 ... 150 s
Peak package body temperature
Tp1)
220 °C ... 235 °C2)
245 °C ... 260 °C2)
20 s3)
30 s3)
6 °C/ s max.
6 °C/ s max.
maximum 6 min
maximum 8 min
Preheat and soak
- Temperature min
- Temperature max
- Time
Time (tP) within 5 °C of specified
classification temperature (Tc)
3)
Average ramp-down rate
Time 25 °C to peak temperature
Tp to Tsmax
1) Tolerance for peak profile temperature (TP) is defined as a supplier minimum and a user maximum.
2) Depending on package thickness. For details please refer to JEDEC J-STD-020D.
3) Tolerance for time at peak profile temperature (tP) is defined as a supplier minimum and a user maximum.
Note: All temperatures refer to topside of the package, measured on the package body surface.
Number of reflow cycles: 3
Please read Cautions and warnings and
Important notes at the end of this document.
Page 14 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
2.2
Wave soldering temperature profile
Temperature characteristics at component terminal with dual-wave soldering
2.3
Lead-free soldering processes
EPCOS multilayer CTVS with AgNiSn termination are designed for the requirements of lead-free
soldering processes only.
Soldering temperature profiles to JEDEC J-STD-020D, IEC 60068-2-58 and ZVEI recommendations.
3
Recommended soldering methods - type-specific releases by EPCOS
3.1
Overview
Reflow soldering
Wave soldering
Type
EIA case size
SnPb
Lead-free
SnPb
Lead-free
CT... / CD...
0201/ 0402
Approved
Approved
No
No
CT... / CD...
0603 ... 2220
Approved
Approved
Approved
Approved
CN...K2
1812, 2220
Approved
Approved
No
No
Arrays
0405 ... 1012
Approved
Approved
No
No
ESD/EMI filters 0405, 0508
Approved
Approved
No
No
SHCV
No
No
Approved
Approved
-
Please read Cautions and warnings and
Important notes at the end of this document.
Page 15 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
3.2
Nickel barrier and AgPt terminated multilayer MLVs
All EPCOS MLVs with nickel barrier and AgPt termination are suitable and fully qualiyfied for leadfree soldering. The nickel barrier layer is 100% matte tin-plated.
3.3
Silver-platinum terminated MLVs
The silver-platinum termination is approved for reflow soldering, SnPb soldering and lead-free
with a silver containing solder paste. In case of SnPb soldering, a solder paste Sn62Pb36Ag2 is
recommended. For lead-free reflow soldering, a solder paste SAC, e.g. Sn95.5Ag3.8Cu0.7, is
recommended.
3.4
Tinned iron wire
All EPCOS SHCV types with tinned termination are approved for lead-free and SnPb soldering.
4
Solder joint profiles / solder quantity
4.1
Nickel barrier termination
If the meniscus height is too low, that means the solder quantity is too low, the solder joint may
break, i.e. the component becomes detached from the joint. This problem is sometimes interpreted as leaching of the external terminations.
If the solder meniscus is too high, i.e. the solder quantity is too large, the vise effect may occur.
As the solder cools down, the solder contracts in the direction of the component. If there is too
much solder on the component, it has no leeway to evade the stress and may break, as in a vise.
The figures below show good and poor solder joints for dual-wave and infrared soldering.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 16 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
4.1.1
Solder joint profiles for nickel barrier termination - dual-wave soldering
Good and poor solder joints caused by amount of solder in dual-wave soldering.
4.1.2
Solder joint profiles for nickel barrier termination / silver-platinum termination
- reflow soldering
Good and poor solder joints caused by amount of solder in reflow soldering.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 17 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
5
Solderability tests
Test
Standard
Wettability
Leaching
resistance
Test conditions
Pb-free soldering
Criteria/ test results
IEC
Immersion in
60068-2-58 60/40 SnPb solder
using non-activated
flux at 215 ±3 °C for
3 ±0.3 s
Immersion in
Sn96.5Ag3.0Cu0.5
solder using non- or
low activated flux
at 245 ±5 °C
for 3 ±0.3 s
Covering of 95% of
end termination,
checked by visual
inspection
IEC
Immersion in
60068-2-58 60/40 SnPb
solder using
mildly activated flux
without preheating
at 260 ±5 °C
for 10 ±1 s
Immersion in
No leaching of
Sn96.5Ag3.0Cu0.5 contacts
solder using non- or
low activated flux
without preheating
at 255 ±5 °C
for 10 ±1 s
Thermal shock
(solder shock)
Test conditions
Sn-Pb soldering
Dip soldering at
300 °C/5 s
Dip soldering at
300 °C/5 s
No deterioration of
electrical parameters.
Capacitance change:
∆C/C0 ≤ 15%
Tests of resistance IEC
Immersion in
Immersion in
to soldering heat
60068-2-58 60/40 SnPb for 10 s Sn96.5Ag3.0Cu0.5
for SMDs
at 260 °C
for 10 s at 260 °C
Change of varistor
voltage:
∆V/V (1 mA) ≤ 5%
Tests of resistance IEC
to soldering heat
60068-2-20
for radial leaded
components
(SHCV)
Change of varistor
voltage: ∆V/V (1
mA) ≤ 5%
Change of
capacitance X7R:
≤ 5/+10%
Please read Cautions and warnings and
Important notes at the end of this document.
Immersion
of leads in
60/40 SnPb
for 10 s at 260 °C
Immersion
of leads in
Sn96.5Ag3.0Cu0.5
for 10 s at 260 °C
Page 18 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Note:
Leaching of the termination
Effective area at the termination might be lost if the soldering temperature and/or immersion time
are not kept within the recommended conditions. Leaching of the outer electrode should not exceed 25% of the chip end area (full length of the edge A-B-C-D) and 25% of the length A-B,
shown below as mounted on substrate.
As a single chip
6
As mounted on substrate
Notes for proper soldering
6.1
Preheating and cooling
According to JEDEC J-STD-020D. Please refer to section 2 of this chapter.
6.2
Repair/ rework
Manual soldering with a soldering iron must be avoided, hot-air methods are recommended for
rework purposes.
6.3
Cleaning
All environmentally compatible agents are suitable for cleaning. Select the appropriate cleaning
solution according to the type of flux used. The temperature difference between the components
and cleaning liquid must not be greater than 100 °C. Ultrasonic cleaning should be carried out
with the utmost caution. Too high ultrasonic power can impair the adhesive strength of the metallized surfaces.
6.4
Solder paste printing (reflow soldering)
An excessive application of solder paste results in too high a solder fillet, thus making the chip
more susceptible to mechanical and thermal stress. Too little solder paste reduces the adhesive
strength on the outer electrodes and thus weakens the bonding to the PCB. The solder should be
applied smoothly to the end surface.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 19 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
6.5
Selection of flux
Used flux should have less than or equal to 0.1 wt % of halogenated content, since flux residue
after soldering could lead to corrosion of the termination and/or increased leakage current on the
surface of the component. Strong acidic flux must not be used. The amount of flux applied should
be carefully controlled, since an excess may generate flux gas, which in turn is detrimental to solderability.
6.6
Storage of CTVSs
Solderability is guaranteed for one year from date of delivery for multilayer varistors, CeraDiodes
and ESD/EMI filters (half a year for chips with AgPt terminations) and two years for SHCV components, provided that components are stored in their original packages.
Storage temperature:
25 °C to +45 °C
Relative humidity:
≤75% annual average, ≤95% on 30 days a year
The solderability of the external electrodes may deteriorate if SMDs and leaded components are
stored where they are exposed to high humidity, dust or harmful gas (hydrogen chloride, sulfurous
acid gas or hydrogen sulfide).
Do not store SMDs and leaded components where they are exposed to heat or direct sunlight.
Otherwise the packing material may be deformed or SMDs/ leaded components may stick together, causing problems during mounting.
After opening the factory seals, such as polyvinyl-sealed packages, it is recommended to use the
SMDs or leaded components as soon as possible.
Solder CTVS components after shipment from EPCOS within the time specified:
CTVS with Ni barrier termination:
CTVS with AgPt termination:
SHCV (leaded components):
6.7
12 months
6 months
24 months
Placement of components on circuit board
Especially in the case of dual-wave soldering, it is of advantage to place the components on the
board before soldering in that way that their two terminals do not enter the solder bath at different
times.
Ideally, both terminals should be wetted simultaneously.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 20 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
6.8
Soldering cautions
An excessively long soldering time or high soldering temperature results in leaching of the outer
electrodes, causing poor adhesion and a change of electrical properties of the varistor due to
the loss of contact between electrodes and termination.
Wave soldering must not be applied for MLVs designated for reflow soldering only (see table
"Overview", section 3.1).
Keep the recommended down-cooling rate.
6.9
Standards
CECC 00802
IEC 60068-2-58
IEC 60068-2-20
JEDEC J-STD-020D
Please read Cautions and warnings and
Important notes at the end of this document.
Page 21 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Symbols and terms
For ceramic transient voltage suppressors (CTVS)
Symbol
Term
Cline,max
Maximum capacitance per line
Cline,min
Minimum capacitance per line
Cline,typ
Typical capacitance per line
Cmax
Maximum capacitance
Cmin
Minimum capacitance
Cnom
Nominal capacitance
∆Cnom
Tolerance of nominal capacitance
Ctyp
Typical capacitance
fcut-off,max
Maximum cut-off frequency
fcut-off,min
Minimum cut-off frequency
fcut-off,typ
Typical cut-off frequency
fres,typ
Typical resonance frequency
I
Current
Iclamp
Clamping current
Ileak
Leakage current
Ileak,max
Maximum leakage current
Ileak,typ
Typical leakage current
IPP
Peak pulse current
Isurge,max
Maximum surge current (also termed peak current)
LCT
Lower category temperature
Ltyp
Typical inductance
Pdiss,max
Maximum power dissipation
PPP
Peak pulse power
Rins
Insulation resistance
Rmin
Minimum resistance
RS
Resistance per line
RS,typ
Typical resistance per line
TA
Ambient temperature
Top
Operating temperature
Top,max
Maximum operating temperature
Tstg
Storage temperature
Please read Cautions and warnings and
Important notes at the end of this document.
Page 22 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Symbol
Term
tr
Duration of equivalent rectangular wave
tresp
Response time
tresp,max
Maximum response time
UCT
Upper category temperature
V
Voltage
VBR,min
Minimum breakdown voltage
Vclamp,max
Maximum clamping voltage
VDC,max
Maximum DC operating voltage (also termed working voltage)
VESD,air
Air discharge ESD capability
VESD,contact
Contact discharge ESD capability
Vjump
Maximum jump-start voltage
VRMS,max
Maximum AC operating voltage, root-mean-square value
VV
Varistor voltage (also termed breakdown voltage)
VLD
Maximum load dump voltage
Vleak
Measurement voltage for leakage current
VV,min
Minimum varistor voltage
VV,max
Maximum varistor voltage
∆VV
Tolerance of varistor voltage
WLD
Maximum load dump energy
Wmax
Maximum energy absorption (also termed transient energy)
αtyp
Typical insertion loss
tan δ
Dissipation factor
Lead spacing
*
Maximum possible application conditions
All dimensions are given in mm.
The commas used in numerical values denote decimal points.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 23 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
For CeraDiodes
CeraDiode
Semiconductor diode
Cmax
Ctyp
Maximum capacitance
Typical capacitance
IBR
Ileak
IPP
IR, IT
IRM
IP, IPP
PPP
PPP
Top
Tstg
VBR
VBR,min
Vclamp
Vclamp,max
VDC
(Reverse) current @ breakdown voltage
(Reverse) leakage current
Current @ clamping voltage; peak pulse
current
Peak pulse power
Operating temperature
Storage temperature
VBR
Vcl, VC
VRM, VRWM, VWM, VDC
VDC,max
VESD,air
VESD,contact
Vleak
VRM, VRWM, VWM, VDC
- *)
- *)
IF
IRM, IRM,max@VRM
- *)
VF
(Reverse) breakdown voltage
Minimum breakdown voltage
Clamping voltage
Maximum clamping voltage
(Reverse) stand-off voltage, working
voltage, operating voltage
Maximum DC operating voltage
Air discharge ESD capability
Contact discharge ESD capability
(Reverse) voltage @ leakage current
Current @ forward voltage
(Reverse) current @ maximum reverse
stand-off voltage, working voltage,
operating voltage
Forward voltage
*) Not applicable due to bidirectional characteristics of CeraDiodes.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 24 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Cautions and warnings
General
Some parts of this publication contain statements about the suitability of our ceramic transient
voltage suppressor (CTVS) components (multilayer varistors (MLVs)), CeraDiodes, ESD/EMI filters, leaded transient voltage/ RFI suppressors (SHCV types)) for certain areas of application, including recommendations about incorporation/design-in of these products into customer applications. The statements are based on our knowledge of typical requirements often made of our
CTVS devices in the particular areas. We nevertheless expressly point out that such statements
cannot be regarded as binding statements about the suitability of our CTVS components for a
particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always incumbent on the customer to check and decide whether the CTVS devices with the properties described in the product specification are suitable for use in a particular customer application.
Do not use EPCOS CTVS components for purposes not identified in our specifications,
application notes and data books.
Ensure the suitability of a CTVS in particular by testing it for reliability during design-in. Always
evaluate a CTVS component under worst-case conditions.
Pay special attention to the reliability of CTVS devices intended for use in safety-critical
applications (e.g. medical equipment, automotive, spacecraft, nuclear power plant).
Design notes
Always connect a CTVS in parallel with the electronic circuit to be protected.
Consider maximum rated power dissipation if a CTVS has insufficient time to cool down
between a number of pulses occurring within a specified isolated time period. Ensure that
electrical characteristics do not degrade.
Consider derating at higher operating temperatures. Choose the highest voltage class
compatible with derating at higher temperatures.
Surge currents beyond specified values will puncture a CTVS. In extreme cases a CTVS will
burst.
If steep surge current edges are to be expected, make sure your design is as low-inductance
as possible.
In some cases the malfunctioning of passive electronic components or failure before the end of
their service life cannot be completely ruled out in the current state of the art, even if they are
operated as specified. In applications requiring a very high level of operational safety and
especially when the malfunction or failure of a passive electronic component could endanger
human life or health (e.g. in accident prevention, life-saving systems, or automotive battery line
applications such as clamp 30), ensure by suitable design of the application or other measures
(e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by
third parties in the event of such a malfunction or failure. Only use CTVS components from the
automotive series in safety-relevant applications.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 25 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Specified values only apply to CTVS components that have not been subject to prior electrical,
mechanical or thermal damage. The use of CTVS devices in line-to-ground applications is
therefore not advisable, and it is only allowed together with safety countermeasures like
thermal fuses.
Storage
Only store CTVS in their original packaging. Do not open the package before storage.
Storage conditions in original packaging: temperature 25 to +45°C, relative humidity ≤75%
annual average, maximum 95%, dew precipitation is inadmissible.
Do not store CTVS devices where they are exposed to heat or direct sunlight. Otherwise the
packaging material may be deformed or CTVS may stick together, causing problems during
mounting.
Avoid contamination of the CTVS surface during storage, handling and processing.
Avoid storing CTVS devices in harmful environments where they are exposed to corrosive
gases for example (SOx, Cl).
Use CTVS as soon as possible after opening factory seals such as polyvinyl-sealed packages.
Solder CTVS components after shipment from EPCOS within the time specified:
CTVS with Ni barrier termination, 12 months
CTVS with AgPt termination, 6 months
SHCV, 24 months
Handling
Do not drop CTVS components and allow them to be chipped.
Do not touch CTVS with your bare hands - gloves are recommended.
Avoid contamination of the CTVS surface during handling.
Washing processes may damage the product due to the possible static or cyclic mechanical
loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts,
which might lead to reduced reliability or lifetime.
Mounting
When CTVS devices are encapsulated with sealing material or overmolded with plastic
material, electrical characteristics might be degraded and the life time reduced.
Make sure an electrode is not scratched before, during or after the mounting process.
Make sure contacts and housings used for assembly with CTVS components are clean before
mounting.
The surface temperature of an operating CTVS can be higher. Ensure that adjacent
components are placed at a sufficient distance from a CTVS to allow proper cooling.
Avoid contamination of the CTVS surface during processing.
Please read Cautions and warnings and
Important notes at the end of this document.
Page 26 of 28
Multilayer varistors (MLVs)
Low clamping voltage series
Soldering
Complete removal of flux is recommended to avoid surface contamination that can result in an
instable and/or high leakage current.
Use resin-type or non-activated flux.
Bear in mind that insufficient preheating may cause ceramic cracks.
Rapid cooling by dipping in solvent is not recommended, otherwise a component may crack.
Operation
Use CTVS only within the specified operating temperature range.
Use CTVS only within specified voltage and current ranges.
Environmental conditions must not harm a CTVS. Only use them in normal atmospheric
conditions. Reducing the atmosphere (e.g. hydrogen or nitrogen atmosphere) is prohibited.
Prevent a CTVS from contacting liquids and solvents. Make sure that no water enters a CTVS
(e.g. through plug terminals).
Avoid dewing and condensation.
EPCOS CTVS components are mainly designed for encased applications. Under all
circumstances avoid exposure to:
direct sunlight
rain or condensation
steam, saline spray
corrosive gases
atmosphere with reduced oxygen content
EPCOS CTVS devices are not suitable for switching applications or voltage stabilization where
static power dissipation is required.
This listing does not claim to be complete, but merely reflects the experience of EPCOS AG.
Display of ordering codes for EPCOS products
The ordering code for one and the same EPCOS product can be represented differently in data
sheets, data books, other publications, on the EPCOS website, or in order-related documents
such as shipping notes, order confirmations and product labels. The varying representations of
the ordering codes are due to different processes employed and do not affect the
specifications of the respective products. Detailed information can be found on the Internet
under www.epcos.com/orderingcodes
Please read Cautions and warnings and
Important notes at the end of this document.
Page 27 of 28
Important notes
The following applies to all products named in this publication:
1. Some parts of this publication contain statements about the suitability of our products for
certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We
nevertheless expressly point out that such statements cannot be regarded as binding
statements about the suitability of our products for a particular customer application.
As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar
with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
2. We also point out that in individual cases, a malfunction of electronic components or
failure before the end of their usual service life cannot be completely ruled out in the
current state of the art, even if they are operated as specified. In customer applications
requiring a very high level of operational safety and especially in customer applications in
which the malfunction or failure of an electronic component could endanger human life or
health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by
means of suitable design of the customer application or other action taken by the customer
(e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by
third parties in the event of malfunction or failure of an electronic component.
3. The warnings, cautions and product-specific notes must be observed.
4. In order to satisfy certain technical requirements, some of the products described in this
publication may contain substances subject to restrictions in certain jurisdictions (e.g.
because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, the products described in this
publication may change from time to time. The same is true of the corresponding product
specifications. Please check therefore to what extent product descriptions and specifications
contained in this publication are still applicable before or when you place an order. We also
reserve the right to discontinue production and delivery of products. Consequently, we
cannot guarantee that all products named in this publication will always be available. The
aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association
(ZVEI).
7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPlas, CSMP, CSSP, CTVS,
DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC,
MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI,
SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP,
ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.
Page 28 of 28