D12S1R880D

D12S1R880D
FEATURES









High efficiency with 200LFM@55℃
95.5%@ 11Vin, 3.3V/65A out
94.7%@ 11Vin, 2.5V/70A out
93.3%@ 11Vin, 1.8V/80A out
91.0%@ 11Vin, 1.0V/80A out
87.0%@ 11Vin, 0.6V/80A out
High accuracy current sense resistor
±2% tolerance@25ºC; 200PPM/ºC
Small size and low profile
25.4x12.7x12.2mm
(1.00” x 0.50” x 0.48”) (SMD)
Surface mount
No minimum load required
Input UVLO, Output OCP/SCP, OVP
Parallel Units
ISO 9000, TL 9000, ISO 14001 certified
manufacturing facility
D12S1R880D, Non-Isolated, Power Block
DC/DC Power Modules: 7.0~13.2Vin,
0.6V~1.8V/80A, 2.5V/70A, 3.3V/65A
The Delphi D12S1R880D, surface mounted, power block is the
latest offering from a world leader in power systems technology and
manufacturing — Delta Electronics, Inc. The D12S1R880D is the
latest offering in the DXP80 family which was developed to address
the ever-growing demands of increased current and power densities
in networking applications while providing maximum flexibility for
system configuration, its benefits can easily be applied to other
applications transcending various market segments. The DXP80
family, containing all necessary power components and boasting of
a USABLE (55˚C, 200LFM) current density of 160A/in2 and a power
density of up to 890W/in3, is a building block for a new open Digital
Power Architecture developed to work with either digital or analog
controllers. Measured at 0.5”Wx1.0”Lx0.48”H and rated at 80A of
output current, the D12S1R880D is designed to operate with an
input voltage from 7V to 13.2V and provide an output voltage
adjustable from 0.6V to 3.3V. Each D12S1R880D contains two
power trains which can provides either an interleaved single output,
or two independent outputs. Multiple D12S1R880D can be used in
parallel to serve applications where output currents are in excess of
80A with limitation imposed only by the control circuit, analog or
digital. Designed for superior price/performance, the D12S1R880D
can provide 1.8V and 80A full load in ambient temperature up to
55˚C with 200LFM airflow.
DS_ D12S1R880D _04062016
APPLICATIONS

Telecom / DataCom

Distributed power architectures

Servers and workstations

LAN / WAN applications

Data processing applications
E-mail: [email protected]
http://www.deltaww.com/dcdc
P1
TECHNICAL SPECIFICATIONS
TA = 25°C, airflow rate = 200 LFM, Vin = 7~13.2Vdc, nominal Vout and Fsw=450kHz unless otherwise noted.
PARAMETER
NOTES and CONDITIONS
D12S1R880D
Min.
Typ.
Max.
Units
0
15
Vdc
-40
-40
85
125
°C
°C
13.2
33A
V
ABSOLUTE MAXIMUM RATINGS
Input Voltage (Continuous)
Operating Temperature
Storage Temperature
INPUT CHARACTERISTICS
Operating Input Voltage
Maximum Input Current
PWM Rising Threshold
PWM Falling Threshold
Tri_state Shutdown Window
Driver Voltage
Driver Current
Recommended controller
OUTPUT CHARACTERISTICS
Output Voltage Adjustable Range
Total Output Voltage Regulation
Output Voltage Ripple and Noise
Output Voltage Overshoot
Output Current Range
Transient Response
Inductor Value
Inductor DCR
Inductor Saturation Current
Output Current Sense Resistor Value
Output Current Sense Resistor Tolerance
Environment temperature
7.0
2.6
Driver
1.2
6.7
200LFM@55℃
Vin=11.0V
Total Regulation over load, line and temperature
Vin=11.0V;Cout:6x 330μF Tan Capacitor +
2x100μF+4.7μF ceramic capacitor, BW=20MHz
turn on
0.6V~1.8V dual output - Vout1, Vout2
0.6V~1.8V single output - Combine Vout1 and Vout2
as one output
2.5V dual output -Vout1, Vout2
2.5V single output - Combine Vout1 and Vout2 as one
output
3.3V dual output -Vout1, Vout2
3.3V single output - Combine Vout1 and Vout2 as one
output
50
2
V
V
V
V
mA
V
%Vo.sett
mVpp
Vo,set
% Vo,set
Vo,set
A
A
0
40
0
80
0
35
A
0
70
A
0
32.5
A
0
65
A
Peak value at temperature of 100°C
TA = 25°C
90
mVpp
135
0.3
53
0.25
nH
mΩ
A
mΩ
-2
200LFM @ 55℃
Vin=11.0V, Vo=0.6V, Io=80A
Vin=11.0V, Vo=1.0V, Io=80A
Vin=11.0V, Vo=1.8V, Io=80A
Vin=11.0V, Vo=2.5V, Io=70A
Vin=11.0V, Vo=3.3V, Io=65A
Normal input,Io=Io,max, Ta=40℃,100LFM
3.3
1
Vin = 11.0V;Iout step:50%~100%~50%Iout;
Slew/Rate: 0.5A/uS;Cout: 6x 330μF Tan Capacitor +
2x100μF+4.7μF ceramic capacitor, BW=20MHz
TA = 25°C
0.6
2.0
7.0
7.3
150
LTC3861-1 / TPS40425
0.6
Output Current Sense Resistor
Temperature Coefficient
EFFICIENCY
Vo=0.6V
Vo=1.0V
Vo=1.8V
Vo=2.5V
Vo=3.3V
FEATURE CHARACTERISTICS
Switching Frequency
GENERAL SPECIFICATIONS
MTBF
Weight
11.0
Vin=7V, Vout=3.3V, Iout=65A with 200LFM@55℃
2
%
200
PPM/°C
87.0
91.0
93.3
94.7
95.5
%
%
%
%
%
450
kHz
12.5
M hours
grams
3
Block diagram :
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P2
ELECTRICAL CHARACTERISTICS CURVES
Figure 1: Converter efficiency vs. output current
(0.6V output voltage)
Figure 3: Converter efficiency vs. output current
(1.8V output voltage)
Figure 2: Converter efficiency vs. output current
(1.0V output voltage)
Figure 4: Converter efficiency vs. output current
(2.5V output voltage)
Figure 5: Converter efficiency vs. output current
(3.3V output voltage)
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P3
Figure 6: Output ripple & noise at 11.0Vin, 0.6V/ 0A out
Figure 7: Output ripple & noise at 11.0Vin, 0.6V/80A out
20mV/div, 2uS/div
20mV/div, 2uS/div
Figure 8: Output ripple & noise at 11.0Vin, 1.0V/ 0A out
20mV/div, 2uS/div
Figure 9: Output ripple & noise at 11.0Vin, 1.0V/ 80A out
20mV/div, 2uS/div
Figure 10: Output ripple & noise at 11.0Vin, 1.8V/ 0A out
20mV/div, 2uS/div
Figure 11: Output ripple & noise at 11.0Vin, 1.8V/ 80A out
20mV/div, 2uS/div
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P4
Figure 12: Output ripple & noise at 11.0Vin, 2.5V/ 0A out
20mV/div, 2uS/div
Figure 13: Output ripple & noise at 11.0Vin, 2.5V/ 70A out
20mV/div, 2uS/div
Figure 14: Output ripple & noise at 11.0Vin, 3.3V/ 0A out
20mV/div, 2uS/div
Figure 15: Output ripple & noise at 11.0Vin, 3.3V/ 65A out
20mV/div, 2uS/div
Figure 16: Typical transient response, 11.0Vin/0.6Vo
50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout ,
Figure 17 Typical transient response, 11.0Vin/1.0Vo
50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout ,
slew rate=0.5A/uS)
slew rate=0.5A/uS)
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P5
Figure 18: Typical transient response, 11.0Vin/1.8Vo
50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout ,
slew rate=0.5A/uS)
Figure 19: Typical transient response, 11.0Vin/2.5Vo
50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout ,
slew rate=0.5A/uS)
Figure 20: Typical transient response, 11.0Vin/3.3Vo
50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout ,
slew rate=0.5A/uS)
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P6
TEST CONFIGURATIONS
DESIGN CONSIDERATIONS
The power module should be connected to a low
ac-impedance input source. Highly inductive source
impedances can affect the stability of the module. An
input capacitance must be placed close to the modules
input pins to filter ripple current and ensure module
stability in the presence of inductive traces that supply the
input voltage to the module.
Figure 21: Peak-peak output ripple & noise and startup
FEATURES DESCRIPTIONS
transient measurement test setup
Over-Current Protection
Note: 6pcs 330μF TAN and 2 pcs 100μF MLCC
capacitor in the module output. Scope measurement
should be made by using a BNC connector.
DISTRIBUTION LOSSES
VI
Vo
II
Io
LOAD
SUPPLY
To provide protection in an output over load fault
condition, the unit is equipped with over-current
protection by external controller. When the over-current
protection is triggered, the unit will be shutdown and
restart after a period of time. The units operate normally
once the fault condition is removed.
GND
Over-Temperature Protection
CONTACT RESISTANCE
The over-temperature protection was provided by the
external circuitry or controller ,it can protect our module
Figure 22: Output voltage and efficiency measurement
test setup
from thermal damage. If the temperature exceeds the
over-temperature threshold the module will shut down.
Note: All measurements are taken at the module
terminals. When the module is not soldered (via socket),
place Kelvin connections at module terminals to avoid
measurement errors due to contact resistance.
 (
Vo  Io
)  100 %
Vi  Ii  Vdriver * Idriver
Input
SCOPE
Cin
Cout
16V/100uF * 1pcs
Aluminum
Vo
Figure23: Peak-peak Input ripple & noise measurement
test setup
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P7
THERMAL CONSIDERATIONS
THERMAL CURVES
Thermal management is an important part of the system
design. To ensure proper, reliable operation, sufficient
cooling of the power module is needed over the entire
temperature range of the module. Convection cooling is
usually the dominant mode of heat transfer.
Hence, the choice of equipment to characterize the
thermal performance of the power module is a wind
tunnel.
Thermal Testing Setup
Delta’s DC/DC power modules are characterized in
heated vertical wind tunnels that simulate the thermal
environments encountered in most electronics
equipment. This type of equipment commonly uses
vertically mounted circuit cards in cabinet racks in which
the power modules are mounted.
Figure 25: * Hot spot temperature measured point.
The allowed maximum hot spot temperature is defined at 115℃.
The following figure shows the wind tunnel
characterization setup. The power module is mounted on
a test PWB and is vertically positioned within the wind
tunnel.
Figure 24: Wind tunnel test setup
Thermal Derating
Heat can be removed by increasing airflow over the
module. To enhance system reliability; the power module
should always be operated below the maximum
operating temperature. If the temperature exceeds the
maximum module temperature, reliability of the unit may
be affected.
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P8
THERMAL CURVES (3.3VOUT)
THERMAL CURVES (2.5VOUT)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 7V, Vout=3.3V (Either Orientation)
Output Current(A)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 7V, Vout=2.5V (Either Orientation)
Output Current(A)
70
60
Natural
Convection
50
Natural
Convection
60
100LFM
100LFM
50
200LFM
200LFM
40
40
300LFM
400LFM
300LFM
30
30
500LFM
400LFM
500LFM
20
20
10
10
0
0
25
30
35
40
45
50
55
60
65
70
75
80
25
85
30
35
40
45
50
55
60
65
70
Ambient Temperature (℃)
75
80
Figure 26: Output current vs. ambient temperature and air
Figure 29: Output current vs. ambient temperature and air
velocity@ Vin=7V, Vout=3.3V (Either Orientation)
velocity@ Vin=7V, Vout=2.5V (Either Orientation)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 11V, Vout=3.3V (Either Orientation)
Output Current(A)
85
Ambient Temperature (℃)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 11V, Vout=2.5V (Either Orientation)
Output Current(A)
70
60
Natural
Convection
Natural
Convection
60
50
100LFM
50
100LFM
200LFM
40
200LFM
40
300LFM
30
300LFM
400LFM
30
400LFM
500LFM
20
20
500LFM
600LFM
10
600LFM
10
0
0
25
30
35
40
45
50
55
60
65
70
75
80
25
85
30
35
40
45
50
55
60
65
70
Ambient Temperature (℃)
Figure 27: Output current vs. ambient temperature and air
velocity@ Vin=11V, Vout=3.3V (Either Orientation)
80
85
Ambient Temperature (℃)
Figure 30: Output current vs. ambient temperature and air
velocity@ Vin=11V, Vout=2.5V (Either Orientation)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 13.2V, Vout=3.3V (Either Orientation)
Output Current(A)
75
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 13.2V, Vout=2.5V (Either Orientation)
Output Current(A)
70
60
Natural
Convection
60
Natural
Convection
50
50
100LFM
100LFM
40
200LFM
40
200LFM
300LFM
30
30
300LFM
400LFM
20
400LFM
20
500LFM
500LFM
600LFM
10
10
600LFM
0
0
25
30
35
40
45
50
55
60
65
70
75
80
85
Ambient Temperature (℃)
25
30
35
40
45
50
55
60
65
70
75
80
Figure 28: Output current vs. ambient temperature and air
Figure 31: Output current vs. ambient temperature and air
velocity@ Vin=13.2V, Vout=3.3V (Either Orientation)
velocity@ Vin=13.2V, Vout=2.5V (Either Orientation)
DS_ D12S1R880D_04062016
85
Ambient Temperature (℃)
E-mail: [email protected]
http://www.deltaww.com/dcdc
P9
THERMAL CURVES(1.8VOUT)
THERMAL CURVES(1.0VOUT)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin =7V, Vout =1.8V (Either Orientation)
Output Current(A)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 7V, Vout=1.0V (Either Orientation)
Output Current(A)
80
80
Natural
Convection
70
Natural
Convection
70
60
100LFM
60
100LFM
200LFM
50
50
300LFM
200LFM
40
400LFM
40
300LFM
500LFM
30
30
400LFM
600LFM
500LFM
20
20
600LFM
10
10
0
0
25
30
35
40
45
50
55
60
65
70
75
80
85
25
30
35
40
45
50
55
60
65
70
Ambient Temperature (℃)
75
80
85
Ambient Temperature (℃)
Figure 32: Output current vs. ambient temperature and air
Figure 35: Output current vs. ambient temperature and air
velocity@ Vin=7V, Vout=1.8V (Either Orientation)
velocity@ Vin=7V, Vout=1.0V (Either Orientation)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 11V, Vout=1.8V (Either Orientation)
Output Current(A)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 11V, Vout=1.0V (Either Orientation)
Output Current(A)
80
80
70
Natural
Convection
70
Natural
Convection
60
100LFM
60
200LFM
100LFM
50
50
300LFM
200LFM
40
40
400LFM
300LFM
30
500LFM
30
400LFM
500LFM
20
20
600LFM
10
10
0
0
25
30
35
40
45
50
55
60
65
70
75
80
85
25
30
35
40
45
50
55
60
65
70
Ambient Temperature (℃)
Figure 33: Output current vs. ambient temperature and air
velocity@ Vin=11V, Vout=1.8V (Either Orientation)
80
85
Ambient Temperature (℃)
Figure 36: Output current vs. ambient temperature and air
velocity@ Vin=11V, Vout=1.0V (Either Orientation)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin =13.2V, Vout =1.8V (Either Orientation)
Output Current(A)
75
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 13.2V, Vout=1.0V (Either Orientation)
Output Current(A)
80
80
70
Natural
Convection
70
Natural
Convection
60
100LFM
60
200LFM
100LFM
50
50
200LFM
40
300LFM
400LFM
40
500LFM
300LFM
30
30
600LFM
400LFM
20
20
500LFM
10
10
600LFM
0
0
25
30
35
40
45
50
55
60
65
70
75
80
85
Ambient Temperature (℃)
25
30
35
40
45
50
55
60
65
70
75
80
85
Ambient Temperature (℃)
Figure 34: Output current vs. ambient temperature and air
Figure 37: Output current vs. ambient temperature and air
velocity@ Vin=13.2V, Vout=1.8V (Either Orientation)
velocity@ Vin=13.2V, Vout=1.0V (Either Orientation)
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P10
THERMAL CURVES(0.6VOUT)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 7V, Vout=0.6V (Either Orientation)
Output Current(A)
80
Natural
Convection
70
100LFM
60
200LFM
50
300LFM
40
30
20
10
0
25
30
35
40
45
50
55
60
65
70
75
80
85
Ambient Temperature (℃)
Figure 38: Output current vs. ambient temperature and air
velocity@ Vin=7V, Vout=0.6V (Either Orientation)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 11V, Vout=0.6V (Either Orientation)
Output Current(A)
80
Natural
Convection
70
100LFM
60
200LFM
50
300LFM
40
30
20
10
0
25
30
35
40
45
50
55
60
65
70
75
80
85
Ambient Temperature (℃)
Figure 39: Output current vs. ambient temperature and air
velocity@ Vin=11V, Vout=0.6V (Either Orientation)
D12S1R880 Output Current vs. Ambient Temperature and Air Velocity
@Vin = 13.2V, Vout=0.6V (Either Orientation)
Output Current(A)
80
Natural
Convection
70
100LFM
60
200LFM
50
300LFM
40
400LFM
30
20
10
0
25
30
35
40
45
50
55
60
65
70
75
80
85
Ambient Temperature (℃)
Figure 40: Output current vs. ambient temperature and air
velocity@ Vin=13.2V, Vout=0.6V (Either Orientation)
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P11
MECHANICAL CONSIDERATIONS
SURFACE-MOUNT TAPE & REEL
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P12
LEADED (SN/PB) PROCESS RECOMMEND TEMP. PROFILE
Note: The temperature refers to the pin of D12S1R880D, measured on the pin +Vout joint.
LEAD FREE (SAC) PROCESS RECOMMEND TEMP. PROFILE
Temp.
Peak Temp. 240 ~ 245 ℃
217℃
Ramp down
max. 4℃/sec.
200℃
Preheat time
100~140 sec.
150℃
Time Limited 90 sec.
above 217℃
Ramp up
max. 3℃/sec.
25℃
Time
Note: The temperature refers to the pin of D12S1R880D, measured on the pin +Vout joint.
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P13
MECHANICAL DRAWING
All pins are copper alloy with Matte Tin plated over Ni under-plating.
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P14
RECOMMENDED PAD LAYOUT
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P15
PART NUMBERING SYSTEM
D
12
S
1R8
80
D
Type of Product
Input Voltage
Number of Outputs
Output Voltage
Output Current
Option Code
DC/DC modules
7.0~ 12.0 ~13.2V
Single
0.6~1.8~3.3V
80A max
D-Standard
MODEL LIST
Model Name
Input Voltage
D12S1R880D
7.0 ~ 13.2Vdc
Output Voltage Output Current
0.6 ~ 3.3V
80A Max
RoHS
Total Height
Efficiency 11Vin,
3.3Vout
@ 100% load
RoHS 6/6
0.48’’
95.2%
CONTACT: www.deltaww.com/dcdc Email: [email protected]
USA:
Telephone:
East Coast: 978-656-3993
West Coast: 510-668-5100
Fax: (978) 656 3964
Europe:
Telephone: +31-20-655-0967
Fax: +31-20-655-0999
Asia & the rest of world:
Telephone: +886 3 4526107 x6220~6224
Fax: +886 3 4513485
WARRANTY
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available
upon request from Delta.
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by
Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to
revise these specifications at any time, without notice.
DS_ D12S1R880D_04062016
E-mail: [email protected]
http://www.deltaww.com/dcdc
P16