D12S1R880D FEATURES High efficiency with 200LFM@55℃ 95.5%@ 11Vin, 3.3V/65A out 94.7%@ 11Vin, 2.5V/70A out 93.3%@ 11Vin, 1.8V/80A out 91.0%@ 11Vin, 1.0V/80A out 87.0%@ 11Vin, 0.6V/80A out High accuracy current sense resistor ±2% tolerance@25ºC; 200PPM/ºC Small size and low profile 25.4x12.7x12.2mm (1.00” x 0.50” x 0.48”) (SMD) Surface mount No minimum load required Input UVLO, Output OCP/SCP, OVP Parallel Units ISO 9000, TL 9000, ISO 14001 certified manufacturing facility D12S1R880D, Non-Isolated, Power Block DC/DC Power Modules: 7.0~13.2Vin, 0.6V~1.8V/80A, 2.5V/70A, 3.3V/65A The Delphi D12S1R880D, surface mounted, power block is the latest offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. The D12S1R880D is the latest offering in the DXP80 family which was developed to address the ever-growing demands of increased current and power densities in networking applications while providing maximum flexibility for system configuration, its benefits can easily be applied to other applications transcending various market segments. The DXP80 family, containing all necessary power components and boasting of a USABLE (55˚C, 200LFM) current density of 160A/in2 and a power density of up to 890W/in3, is a building block for a new open Digital Power Architecture developed to work with either digital or analog controllers. Measured at 0.5”Wx1.0”Lx0.48”H and rated at 80A of output current, the D12S1R880D is designed to operate with an input voltage from 7V to 13.2V and provide an output voltage adjustable from 0.6V to 3.3V. Each D12S1R880D contains two power trains which can provides either an interleaved single output, or two independent outputs. Multiple D12S1R880D can be used in parallel to serve applications where output currents are in excess of 80A with limitation imposed only by the control circuit, analog or digital. Designed for superior price/performance, the D12S1R880D can provide 1.8V and 80A full load in ambient temperature up to 55˚C with 200LFM airflow. DS_ D12S1R880D _04062016 APPLICATIONS Telecom / DataCom Distributed power architectures Servers and workstations LAN / WAN applications Data processing applications E-mail: [email protected] http://www.deltaww.com/dcdc P1 TECHNICAL SPECIFICATIONS TA = 25°C, airflow rate = 200 LFM, Vin = 7~13.2Vdc, nominal Vout and Fsw=450kHz unless otherwise noted. PARAMETER NOTES and CONDITIONS D12S1R880D Min. Typ. Max. Units 0 15 Vdc -40 -40 85 125 °C °C 13.2 33A V ABSOLUTE MAXIMUM RATINGS Input Voltage (Continuous) Operating Temperature Storage Temperature INPUT CHARACTERISTICS Operating Input Voltage Maximum Input Current PWM Rising Threshold PWM Falling Threshold Tri_state Shutdown Window Driver Voltage Driver Current Recommended controller OUTPUT CHARACTERISTICS Output Voltage Adjustable Range Total Output Voltage Regulation Output Voltage Ripple and Noise Output Voltage Overshoot Output Current Range Transient Response Inductor Value Inductor DCR Inductor Saturation Current Output Current Sense Resistor Value Output Current Sense Resistor Tolerance Environment temperature 7.0 2.6 Driver 1.2 6.7 200LFM@55℃ Vin=11.0V Total Regulation over load, line and temperature Vin=11.0V;Cout:6x 330μF Tan Capacitor + 2x100μF+4.7μF ceramic capacitor, BW=20MHz turn on 0.6V~1.8V dual output - Vout1, Vout2 0.6V~1.8V single output - Combine Vout1 and Vout2 as one output 2.5V dual output -Vout1, Vout2 2.5V single output - Combine Vout1 and Vout2 as one output 3.3V dual output -Vout1, Vout2 3.3V single output - Combine Vout1 and Vout2 as one output 50 2 V V V V mA V %Vo.sett mVpp Vo,set % Vo,set Vo,set A A 0 40 0 80 0 35 A 0 70 A 0 32.5 A 0 65 A Peak value at temperature of 100°C TA = 25°C 90 mVpp 135 0.3 53 0.25 nH mΩ A mΩ -2 200LFM @ 55℃ Vin=11.0V, Vo=0.6V, Io=80A Vin=11.0V, Vo=1.0V, Io=80A Vin=11.0V, Vo=1.8V, Io=80A Vin=11.0V, Vo=2.5V, Io=70A Vin=11.0V, Vo=3.3V, Io=65A Normal input,Io=Io,max, Ta=40℃,100LFM 3.3 1 Vin = 11.0V;Iout step:50%~100%~50%Iout; Slew/Rate: 0.5A/uS;Cout: 6x 330μF Tan Capacitor + 2x100μF+4.7μF ceramic capacitor, BW=20MHz TA = 25°C 0.6 2.0 7.0 7.3 150 LTC3861-1 / TPS40425 0.6 Output Current Sense Resistor Temperature Coefficient EFFICIENCY Vo=0.6V Vo=1.0V Vo=1.8V Vo=2.5V Vo=3.3V FEATURE CHARACTERISTICS Switching Frequency GENERAL SPECIFICATIONS MTBF Weight 11.0 Vin=7V, Vout=3.3V, Iout=65A with 200LFM@55℃ 2 % 200 PPM/°C 87.0 91.0 93.3 94.7 95.5 % % % % % 450 kHz 12.5 M hours grams 3 Block diagram : DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P2 ELECTRICAL CHARACTERISTICS CURVES Figure 1: Converter efficiency vs. output current (0.6V output voltage) Figure 3: Converter efficiency vs. output current (1.8V output voltage) Figure 2: Converter efficiency vs. output current (1.0V output voltage) Figure 4: Converter efficiency vs. output current (2.5V output voltage) Figure 5: Converter efficiency vs. output current (3.3V output voltage) DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P3 Figure 6: Output ripple & noise at 11.0Vin, 0.6V/ 0A out Figure 7: Output ripple & noise at 11.0Vin, 0.6V/80A out 20mV/div, 2uS/div 20mV/div, 2uS/div Figure 8: Output ripple & noise at 11.0Vin, 1.0V/ 0A out 20mV/div, 2uS/div Figure 9: Output ripple & noise at 11.0Vin, 1.0V/ 80A out 20mV/div, 2uS/div Figure 10: Output ripple & noise at 11.0Vin, 1.8V/ 0A out 20mV/div, 2uS/div Figure 11: Output ripple & noise at 11.0Vin, 1.8V/ 80A out 20mV/div, 2uS/div DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P4 Figure 12: Output ripple & noise at 11.0Vin, 2.5V/ 0A out 20mV/div, 2uS/div Figure 13: Output ripple & noise at 11.0Vin, 2.5V/ 70A out 20mV/div, 2uS/div Figure 14: Output ripple & noise at 11.0Vin, 3.3V/ 0A out 20mV/div, 2uS/div Figure 15: Output ripple & noise at 11.0Vin, 3.3V/ 65A out 20mV/div, 2uS/div Figure 16: Typical transient response, 11.0Vin/0.6Vo 50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout , Figure 17 Typical transient response, 11.0Vin/1.0Vo 50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout , slew rate=0.5A/uS) slew rate=0.5A/uS) DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P5 Figure 18: Typical transient response, 11.0Vin/1.8Vo 50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout , slew rate=0.5A/uS) Figure 19: Typical transient response, 11.0Vin/2.5Vo 50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout , slew rate=0.5A/uS) Figure 20: Typical transient response, 11.0Vin/3.3Vo 50mV/div,200uS/div (Load Step: 50% ~ 100%~50% Iout , slew rate=0.5A/uS) DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P6 TEST CONFIGURATIONS DESIGN CONSIDERATIONS The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the module. An input capacitance must be placed close to the modules input pins to filter ripple current and ensure module stability in the presence of inductive traces that supply the input voltage to the module. Figure 21: Peak-peak output ripple & noise and startup FEATURES DESCRIPTIONS transient measurement test setup Over-Current Protection Note: 6pcs 330μF TAN and 2 pcs 100μF MLCC capacitor in the module output. Scope measurement should be made by using a BNC connector. DISTRIBUTION LOSSES VI Vo II Io LOAD SUPPLY To provide protection in an output over load fault condition, the unit is equipped with over-current protection by external controller. When the over-current protection is triggered, the unit will be shutdown and restart after a period of time. The units operate normally once the fault condition is removed. GND Over-Temperature Protection CONTACT RESISTANCE The over-temperature protection was provided by the external circuitry or controller ,it can protect our module Figure 22: Output voltage and efficiency measurement test setup from thermal damage. If the temperature exceeds the over-temperature threshold the module will shut down. Note: All measurements are taken at the module terminals. When the module is not soldered (via socket), place Kelvin connections at module terminals to avoid measurement errors due to contact resistance. ( Vo Io ) 100 % Vi Ii Vdriver * Idriver Input SCOPE Cin Cout 16V/100uF * 1pcs Aluminum Vo Figure23: Peak-peak Input ripple & noise measurement test setup DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P7 THERMAL CONSIDERATIONS THERMAL CURVES Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Convection cooling is usually the dominant mode of heat transfer. Hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel. Thermal Testing Setup Delta’s DC/DC power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment. This type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted. Figure 25: * Hot spot temperature measured point. The allowed maximum hot spot temperature is defined at 115℃. The following figure shows the wind tunnel characterization setup. The power module is mounted on a test PWB and is vertically positioned within the wind tunnel. Figure 24: Wind tunnel test setup Thermal Derating Heat can be removed by increasing airflow over the module. To enhance system reliability; the power module should always be operated below the maximum operating temperature. If the temperature exceeds the maximum module temperature, reliability of the unit may be affected. DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P8 THERMAL CURVES (3.3VOUT) THERMAL CURVES (2.5VOUT) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 7V, Vout=3.3V (Either Orientation) Output Current(A) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 7V, Vout=2.5V (Either Orientation) Output Current(A) 70 60 Natural Convection 50 Natural Convection 60 100LFM 100LFM 50 200LFM 200LFM 40 40 300LFM 400LFM 300LFM 30 30 500LFM 400LFM 500LFM 20 20 10 10 0 0 25 30 35 40 45 50 55 60 65 70 75 80 25 85 30 35 40 45 50 55 60 65 70 Ambient Temperature (℃) 75 80 Figure 26: Output current vs. ambient temperature and air Figure 29: Output current vs. ambient temperature and air velocity@ Vin=7V, Vout=3.3V (Either Orientation) velocity@ Vin=7V, Vout=2.5V (Either Orientation) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 11V, Vout=3.3V (Either Orientation) Output Current(A) 85 Ambient Temperature (℃) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 11V, Vout=2.5V (Either Orientation) Output Current(A) 70 60 Natural Convection Natural Convection 60 50 100LFM 50 100LFM 200LFM 40 200LFM 40 300LFM 30 300LFM 400LFM 30 400LFM 500LFM 20 20 500LFM 600LFM 10 600LFM 10 0 0 25 30 35 40 45 50 55 60 65 70 75 80 25 85 30 35 40 45 50 55 60 65 70 Ambient Temperature (℃) Figure 27: Output current vs. ambient temperature and air velocity@ Vin=11V, Vout=3.3V (Either Orientation) 80 85 Ambient Temperature (℃) Figure 30: Output current vs. ambient temperature and air velocity@ Vin=11V, Vout=2.5V (Either Orientation) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 13.2V, Vout=3.3V (Either Orientation) Output Current(A) 75 D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 13.2V, Vout=2.5V (Either Orientation) Output Current(A) 70 60 Natural Convection 60 Natural Convection 50 50 100LFM 100LFM 40 200LFM 40 200LFM 300LFM 30 30 300LFM 400LFM 20 400LFM 20 500LFM 500LFM 600LFM 10 10 600LFM 0 0 25 30 35 40 45 50 55 60 65 70 75 80 85 Ambient Temperature (℃) 25 30 35 40 45 50 55 60 65 70 75 80 Figure 28: Output current vs. ambient temperature and air Figure 31: Output current vs. ambient temperature and air velocity@ Vin=13.2V, Vout=3.3V (Either Orientation) velocity@ Vin=13.2V, Vout=2.5V (Either Orientation) DS_ D12S1R880D_04062016 85 Ambient Temperature (℃) E-mail: [email protected] http://www.deltaww.com/dcdc P9 THERMAL CURVES(1.8VOUT) THERMAL CURVES(1.0VOUT) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin =7V, Vout =1.8V (Either Orientation) Output Current(A) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 7V, Vout=1.0V (Either Orientation) Output Current(A) 80 80 Natural Convection 70 Natural Convection 70 60 100LFM 60 100LFM 200LFM 50 50 300LFM 200LFM 40 400LFM 40 300LFM 500LFM 30 30 400LFM 600LFM 500LFM 20 20 600LFM 10 10 0 0 25 30 35 40 45 50 55 60 65 70 75 80 85 25 30 35 40 45 50 55 60 65 70 Ambient Temperature (℃) 75 80 85 Ambient Temperature (℃) Figure 32: Output current vs. ambient temperature and air Figure 35: Output current vs. ambient temperature and air velocity@ Vin=7V, Vout=1.8V (Either Orientation) velocity@ Vin=7V, Vout=1.0V (Either Orientation) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 11V, Vout=1.8V (Either Orientation) Output Current(A) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 11V, Vout=1.0V (Either Orientation) Output Current(A) 80 80 70 Natural Convection 70 Natural Convection 60 100LFM 60 200LFM 100LFM 50 50 300LFM 200LFM 40 40 400LFM 300LFM 30 500LFM 30 400LFM 500LFM 20 20 600LFM 10 10 0 0 25 30 35 40 45 50 55 60 65 70 75 80 85 25 30 35 40 45 50 55 60 65 70 Ambient Temperature (℃) Figure 33: Output current vs. ambient temperature and air velocity@ Vin=11V, Vout=1.8V (Either Orientation) 80 85 Ambient Temperature (℃) Figure 36: Output current vs. ambient temperature and air velocity@ Vin=11V, Vout=1.0V (Either Orientation) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin =13.2V, Vout =1.8V (Either Orientation) Output Current(A) 75 D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 13.2V, Vout=1.0V (Either Orientation) Output Current(A) 80 80 70 Natural Convection 70 Natural Convection 60 100LFM 60 200LFM 100LFM 50 50 200LFM 40 300LFM 400LFM 40 500LFM 300LFM 30 30 600LFM 400LFM 20 20 500LFM 10 10 600LFM 0 0 25 30 35 40 45 50 55 60 65 70 75 80 85 Ambient Temperature (℃) 25 30 35 40 45 50 55 60 65 70 75 80 85 Ambient Temperature (℃) Figure 34: Output current vs. ambient temperature and air Figure 37: Output current vs. ambient temperature and air velocity@ Vin=13.2V, Vout=1.8V (Either Orientation) velocity@ Vin=13.2V, Vout=1.0V (Either Orientation) DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P10 THERMAL CURVES(0.6VOUT) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 7V, Vout=0.6V (Either Orientation) Output Current(A) 80 Natural Convection 70 100LFM 60 200LFM 50 300LFM 40 30 20 10 0 25 30 35 40 45 50 55 60 65 70 75 80 85 Ambient Temperature (℃) Figure 38: Output current vs. ambient temperature and air velocity@ Vin=7V, Vout=0.6V (Either Orientation) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 11V, Vout=0.6V (Either Orientation) Output Current(A) 80 Natural Convection 70 100LFM 60 200LFM 50 300LFM 40 30 20 10 0 25 30 35 40 45 50 55 60 65 70 75 80 85 Ambient Temperature (℃) Figure 39: Output current vs. ambient temperature and air velocity@ Vin=11V, Vout=0.6V (Either Orientation) D12S1R880 Output Current vs. Ambient Temperature and Air Velocity @Vin = 13.2V, Vout=0.6V (Either Orientation) Output Current(A) 80 Natural Convection 70 100LFM 60 200LFM 50 300LFM 40 400LFM 30 20 10 0 25 30 35 40 45 50 55 60 65 70 75 80 85 Ambient Temperature (℃) Figure 40: Output current vs. ambient temperature and air velocity@ Vin=13.2V, Vout=0.6V (Either Orientation) DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P11 MECHANICAL CONSIDERATIONS SURFACE-MOUNT TAPE & REEL DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P12 LEADED (SN/PB) PROCESS RECOMMEND TEMP. PROFILE Note: The temperature refers to the pin of D12S1R880D, measured on the pin +Vout joint. LEAD FREE (SAC) PROCESS RECOMMEND TEMP. PROFILE Temp. Peak Temp. 240 ~ 245 ℃ 217℃ Ramp down max. 4℃/sec. 200℃ Preheat time 100~140 sec. 150℃ Time Limited 90 sec. above 217℃ Ramp up max. 3℃/sec. 25℃ Time Note: The temperature refers to the pin of D12S1R880D, measured on the pin +Vout joint. DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P13 MECHANICAL DRAWING All pins are copper alloy with Matte Tin plated over Ni under-plating. DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P14 RECOMMENDED PAD LAYOUT DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P15 PART NUMBERING SYSTEM D 12 S 1R8 80 D Type of Product Input Voltage Number of Outputs Output Voltage Output Current Option Code DC/DC modules 7.0~ 12.0 ~13.2V Single 0.6~1.8~3.3V 80A max D-Standard MODEL LIST Model Name Input Voltage D12S1R880D 7.0 ~ 13.2Vdc Output Voltage Output Current 0.6 ~ 3.3V 80A Max RoHS Total Height Efficiency 11Vin, 3.3Vout @ 100% load RoHS 6/6 0.48’’ 95.2% CONTACT: www.deltaww.com/dcdc Email: [email protected] USA: Telephone: East Coast: 978-656-3993 West Coast: 510-668-5100 Fax: (978) 656 3964 Europe: Telephone: +31-20-655-0967 Fax: +31-20-655-0999 Asia & the rest of world: Telephone: +886 3 4526107 x6220~6224 Fax: +886 3 4513485 WARRANTY Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta. Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice. DS_ D12S1R880D_04062016 E-mail: [email protected] http://www.deltaww.com/dcdc P16