FPGA Libraries Reference Guide September 2015 Copyright Copyright © 2015 Lattice Semiconductor Corporation. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Lattice Semiconductor Corporation (“Lattice”). Trademarks All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their respective owners. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Lattice may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Lattice makes no commitment to update this documentation. Lattice reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made. Lattice recommends its customers obtain the latest version of the relevant information to establish that the information being relied upon is current and before ordering any products. ii FPGA Libraries Reference Guide Type Conventions Used in This Document Convention Meaning or Use FPGA Libraries Reference Guide Bold Items in the user interface that you select or click. Text that you type into the user interface. <Italic> Variables in commands, code syntax, and path names. Ctrl+L Press the two keys at the same time. Courier Code examples. Messages, reports, and prompts from the software. ... Omitted material in a line of code. . . . Omitted lines in code and report examples. [ ] Optional items in syntax descriptions. In bus specifications, the brackets are required. ( ) Grouped items in syntax descriptions. { } Repeatable items in syntax descriptions. | A choice between items in syntax descriptions. iii iv FPGA Libraries Reference Guide Contents FPGA Libraries Reference Guide Naming Conventions 1 2 Memory Primitives Overview RAM_DP (Dual Port RAM) 4 5 RAM_DP_BE (Dual Port RAM with Byte Enable) RAM_DP_TRUE (True Dual Port RAM) 7 8 RAM_DP_TRUE_BE (True Dual Port RAM with Byte Enable) RAM_DQ (Single Port RAM) 11 RAM_DQ_BE (Single Port RAM with Byte Enable) ROM (Read Only Memory) 13 14 Distributed_DPRAM (Distributed Dual Port RAM) 15 Distributed_ROM (Distributed Read Only Memory) 16 Distributed_SPRAM (Distributed Single Port RAM) 17 FIFO (First In First Out Single Clock) 18 FIFO_DC (First In First Out Dual Clock) 19 Shift Registers (Distributed RAM Shift Register) Primitive Library - ECP5 10 20 22 Primitive Library - LatticeECP/EC and LatticeXP Primitive Library - LatticeECP2/M Primitive Library - LatticeECP3 Primitive Library - LatticeSC/M Primitive Library - LatticeXP2 31 42 52 62 74 Primitive Library - MachXO and Platform Manager 85 Primitive Library - MachXO2 and Platform Manager 2 Primitive Library - MachXO3L 93 104 Alphanumeric Primitives List 114 A 114 FPGA Libraries Reference Guide v CONTENTS AGEB2 114 ALEB2 115 ALU24A 116 ALU24B 119 ALU54A 122 ALU54B 129 AND2 136 AND3 137 AND4 138 AND5 139 ANEB2 140 B 141 BB 141 BBPD 142 BBPU 144 BBW 145 BCINRD 146 BCLVDSO 147 BCLVDSOB 148 C 149 CB2 149 CCU2 150 CCU2B 150 CCU2C 151 CCU2D 152 CD2 153 CIDDLLA 154 CIDDLLB 156 CIMDLLA 158 CLKCNTL 159 CLKDET 160 CLKDIV 160 CLKDIVB 161 CLKDIVC 162 CLKDIVF 164 CLKFBBUFA 165 CU2 166 D 167 DCCA 167 DCMA 168 DCS 170 DCSC 173 DDRDLLA 175 DELAY 176 DELAYB 178 DELAYC 179 DELAYD 179 DELAYE 180 DELAYF 181 DELAYG 182 DLLDELA 183 DLLDELB 184 DLLDELC 186 DLLDELD 186 vi FPGA Libraries Reference Guide CONTENTS DP16KA 187 DP16KB 189 DP16KC 190 DP16KD 192 DP8KA 193 DP8KB 195 DP8KC 196 DPR16X2 198 DPR16X2B 199 DPR16X4A 200 DPR16X4B 201 DPR16X4C 202 DQSBUFB 203 DQSBUFC 203 DQSBUFD 206 DQSBUFE 208 DQSBUFE1 210 DQSBUFF 211 DQSBUFG 213 DQSBUFH 214 DQSBUFM 215 DQSDLL 218 DQSDLLB 219 DQSDLLC 220 DTR 221 E 223 ECLKBRIDGECS 223 ECLKSYNCA 225 ECLKSYNCB 226 EFB 228 EHXPLLA 229 EHXPLLB 232 EHXPLLC 234 EHXPLLD 236 EHXPLLE 238 EHXPLLE1 240 EHXPLLF 242 EHXPLLJ 244 EHXPLLL 249 EPLLB 254 EPLLD 256 EPLLD1 258 EXTREFB 260 F 262 FADD2 262 FADD2B 263 FADSU2 264 FD1P3AX 265 FD1P3AY 267 FD1P3BX 268 FD1P3DX 269 FD1P3IX 271 FD1P3JX 272 FD1S1A 273 FPGA Libraries Reference Guide vii CONTENTS FD1S1AY 275 FD1S1B 276 FD1S1D 277 FD1S1I 278 FD1S1J 280 FD1S3AX 281 FD1S3AY 282 FD1S3BX 284 FD1S3DX 285 FD1S3IX 286 FD1S3JX 288 FIFO16KA 289 FIFO8KA 290 FIFO8KB 292 FL1P3AY 294 FL1P3AZ 296 FL1P3BX 297 FL1P3DX 299 FL1P3IY 300 FL1P3JY 302 FL1S1A 303 FL1S1AY 304 FL1S1B 306 FL1S1D 307 FL1S1I 309 FL1S1J 310 FL1S3AX 312 FL1S3AY 313 FSUB2 314 FSUB2B 316 G 318 GSR 318 I 320 IB 320 IBDDC 321 IBM 321 IBMPD 322 IBMPDS 323 IBMPU 323 IBMPUS 324 IBMS 325 IBPD 326 IBPU 327 IDDRA 328 IDDRDQSX1A 328 IDDRFXA 330 IDDRMFX1A 331 IDDRMX1A 332 IDDRX1A 333 IDDRX2A 334 IDDRX2B 335 IDDRX2D 337 IDDRX2D1 338 IDDRX2DQA 339 viii FPGA Libraries Reference Guide CONTENTS IDDRX2E 340 IDDRX2F 342 IDDRX4A 342 IDDRX4B 344 IDDRX71A 346 IDDR71B 347 IDDRXB 348 IDDRXC 349 IDDRXD 350 IDDRXD1 351 IDDRXE 352 IDDRX1F 353 IFS1P3BX 353 IFS1P3DX 355 IFS1P3IX 356 IFS1P3JX 358 IFS1S1B 359 IFS1S1D 361 IFS1S1I 362 IFS1S1J 364 ILF2P3BX 365 ILF2P3DX 366 ILF2P3IX 368 ILF2P3JX 369 ILVDS 371 IMIPI 372 INRDB 373 INV 374 IOWAKEUPA 375 ISRX1A 375 ISRX2A 376 ISRX4A 377 J 379 JTAGA 379 JTAGB 381 JTAGC 383 JTAGD 385 JTAGE 387 JTAGF 389 L 392 L6MUX21 392 LB2P3AX 393 LB2P3AY 395 LB2P3BX 397 LB2P3DX 399 LB2P3IX 401 LB2P3JX 403 LB4P3AX 405 LB4P3AY 407 LB4P3BX 409 LB4P3DX 410 LB4P3IX 412 LB4P3JX 414 LD2P3AX 416 FPGA Libraries Reference Guide ix CONTENTS LD2P3AY 418 LD2P3BX 420 LD2P3DX 421 LD2P3IX 423 LD2P3JX 425 LD4P3AX 426 LD4P3AY 428 LD4P3BX 429 LD4P3DX 430 LD4P3IX 432 LD4P3JX 433 LU2P3AX 435 LU2P3AY 436 LU2P3BX 438 LU2P3DX 439 LU2P3IX 441 LU2P3JX 442 LU4P3AX 444 LU4P3AY 445 LU4P3BX 446 LU4P3DX 447 LU4P3IX 448 LU4P3JX 450 LUT4 451 LUT5 453 LUT6 454 LUT7 455 LUT8 456 LVDSOB 457 M 458 MULT18X18 458 MULT18X18ADDSUB 461 MULT18X18ADDSUBB 465 MULT18X18ADDSUBSUM 468 MULT18X18ADDSUBSUMB 472 MULT18X18B 476 MULT18X18C 478 MULT18X18D 482 MULT18X18MAC 487 MULT18X18MACB 490 MULT2 493 MULT36X36 494 MULT36X36B 497 MULT9X9 499 MULT9X9ADDSUB 501 MULT9X9ADDSUBB 504 MULT9X9ADDSUBSUM 507 MULT9X9ADDSUBSUMB 512 MULT9X9B 515 MULT9X9C 517 MULT9X9D 520 MULT9X9MAC 525 MUX161 527 MUX21 529 x FPGA Libraries Reference Guide CONTENTS MUX321 530 MUX4 532 MUX41 533 MUX81 534 N 537 ND2 537 ND3 537 ND4 538 ND5 539 NR2 540 NR3 541 NR4 541 NR5 542 O 544 OB 544 OBCO 545 OBW 545 OBZ 546 OBZPD 548 OBZPU 549 ODDRA 550 ODDRDQSX1A 551 ODDRMXA 552 ODDRTDQA 553 ODDRTDQSA 554 ODDRXA 555 ODDRXB 556 ODDRXC 556 ODDRXD 557 ODDRXD1 559 ODDRXDQSA 559 ODDRXE 560 ODDRX1F 561 ODDRX2A 562 ODDRX2B 564 ODDRX2D 565 ODDRX2DQA 566 ODDRX2E 567 ODDRX2F 568 ODDRX2DQSA 569 ODDRX2DQSB 570 ODDRX4A 571 ODDRX4B 572 ODDRX71A 573 ODDR71B 574 OFD1S3AX 575 OFE1P3BX 576 OFE1P3DX 577 OFE1P3IX 578 OFE1P3JX 580 OFS1P3BX 581 OFS1P3DX 582 OFS1P3IX 584 OFS1P3JX 585 FPGA Libraries Reference Guide xi CONTENTS OLVDS 587 OR2 588 OR3 589 OR4 590 OR5 590 ORCALUT4 591 ORCALUT5 594 ORCALUT6 595 ORCALUT7 596 ORCALUT8 597 OSCA 598 OSCC 599 OSCD 600 OSCE 601 OSCF 602 OSCG 604 OSCH 606 OSHX2A 607 OSRX1A 608 OSRX2A 609 OSRX4A 610 P 612 PCNTR 612 PDP16KA 613 PDP8KA 614 PDP8KB 615 PDPW16KB 617 PDPW16KC 618 PDPW16KD 619 PDPW8KC 621 PERREGA 623 PFUMX 624 PG 625 PLLREFCS 627 PRADD18A 628 PRADD9A 629 PUR 633 PVTIOCTRL 634 R 635 RDBK 635 ROM128X1 636 ROM128X1A 637 ROM16X1 638 ROM16X1A 639 ROM256X1 640 ROM256X1A 642 ROM32X1 643 ROM32X1A 644 ROM32X4 645 ROM64X1 647 ROM64X1A 648 S 650 SDCDLLA 650 SEDAA 651 xii FPGA Libraries Reference Guide CONTENTS SEDBA 652 SEDBB 654 SEDCA 655 SEDFA 656 SEDFB 657 SEDGA 658 SGSR 659 SP16KA 660 SP16KB 661 SP16KC 662 SP8KA 663 SP8KB 664 SP8KC 666 SPIM 667 SPR16X2 668 SPR16X2B 669 SPR16X4A 670 SPR16X4B 671 SPR16X4C 672 SSPIA 673 START 674 STFA 675 STRTUP 676 T 678 TDDRA 678 TR1DLLB 679 TRDLLA 680 TRDLLB 682 TSALL 684 TSHX2DQA 685 TSHX2DQSA 686 U 688 USRMCLK 688 V 689 VHI 689 VLO 689 X 691 XNOR2 691 XNOR3 691 XNOR4 692 XNOR5 693 XOR11 694 XOR2 695 XOR21 696 XOR3 697 XOR4 697 XOR5 698 Primitive-Specific HDL Attributes 700 List of Primitive-Specific HDL Attributes FPGA Libraries Reference Guide 700 xiii CONTENTS xiv FPGA Libraries Reference Guide Chapter 1 FPGA Libraries Reference Guide Lattice supports some libraries used in designing FPGAs with different device architectures in a number of CAE synthesis, schematic capture, and simulation platforms. These libraries are the main front-end design libraries for Lattice FPGAs. Logic design primitives in these libraries offer flexibility and efficiency to facilitate building specific applications with Lattice devices. Many primitives can be used in multiple Lattice device architectures. With Schematic Editor, you can place the primitive symbols from the Lattice Symbol Library, lattice.lib, which is composed of primitives compatible with most Lattice FPGA device families. For macro-sized primitives like architectural blocks, arithmetic, or memories, use IPexpress™ to configure and generate schematic symbols and files for implementation. You can also use physical macros that you create in EPIC. See the appropriate topic in the online help system for more information. A specific primitive can be found according to the device family and functional category. Primitives available to each of the following device families are listed according to appropriate functional categories. FPGA Libraries Reference Guide “Primitive Library - ECP5” on page 22 “Primitive Library - LatticeECP/EC and LatticeXP” on page 31 “Primitive Library - LatticeECP2/M” on page 42 “Primitive Library - LatticeECP3” on page 52 “Primitive Library - LatticeSC/M” on page 62 “Primitive Library - LatticeXP2” on page 74 “Primitive Library - MachXO and Platform Manager” on page 85 “Primitive Library - MachXO2 and Platform Manager 2” on page 93 “Primitive Library - MachXO3L” on page 104 1 FPGA LIBRARIES REFERENCE GUIDE : Naming Conventions The “Alphanumeric Primitives List” section contains descriptions of all available primitives in their alphanumeric order. The following information is provided for each primitive, where applicable: Table 1: Information Provided for Each Primitive Fields Description Name Primitive name Definition Brief description of primitive Architectures Supported Index of FPGA families supported by the primitive Port Interface Symbol Graphic to represent the primitive port interface. Data, address, clock, clock enable type ports appear on the left-hand side of the block. Synchronous control ports appear on the top of the symbol, asynchronous control ports on the bottom, and output ports on the right-hand side of the block. Some of the graphic symbols are shown in bus notation for proper layout. Those primitives must be instantiated in expanded bus notation format with each individual bit. Attributes Index of attributes compatible with the primitive. The first value is usually the default value, if it is not explicitly indicated. Attribute function, range, and port-to-attribute or attribute-to-attribute relationships for the primitive are noted. For descriptions of all the attributes used in primitives, see “List of Primitive-Specific HDL Attributes” on page 700. Description Detailed description of primitive function. Exceptions are identified by device family. This section sometimes includes truth table, waveform, state diagram, or other graphical methods to illustrate behavior. References to appropriate Lattice technical notes are listed. Port Description Index of port names, polarity, and function. Connectivity Rules Some primitive ports, such as DDR and DSP blocks, are connected to dedicated routing with source or loads related to other primitives. This section describes connection rules. Naming Conventions The table shows the convention for naming all of the sequential primitives. Each primitive is identified using up to seven characters. FPGA Libraries Reference Guide 2 FPGA LIBRARIES REFERENCE GUIDE : Naming Conventions Flip-Flop/Latch Naming Conventions (name = abcdef) Table 2: Naming Conventions a= F - Static implementation b= D - D type flip-flop J - J/K type flip-flop L - Cells contain a positive select front end (loadable) N - Cells contain a negative select front end (loadable) S - R-S type flip-flop T - Toggle type flip-flop c= Value - Number of clocks d= This parameter identifies the enable capability. S - No enable input P - Positive-level enable N - Negative-level enable e= This parameter identifies the clock capability 1 - Positive-level sense (latch) 2 - Negative edge-triggered (flip-flop) 3 - Positive edge-triggered (flip-flop) 4 - Negative-level sense (latch) f= A - No clear or preset inputs B - Positive-level asynchronous preset D - Positive-level asynchronous clear I - Positive-level synchronous clear J - Positive-level synchronous preset X - Standard primitive where GSR asynchronously clears or presets the flip-flop depending upon the function of the local clear or preset. If no local clear or preset is present (f=A), then GSR clears the register element. Y - Primitive is preset using GSR rather than cleared Z - Primitive not compatible with similar primitives available in the standard cell library Example: FPGA Libraries Reference Guide 3 FPGA LIBRARIES REFERENCE GUIDE : Memory Primitives Overview FD1P3BX is a single clock, positive edge-triggered, static, D-type flip-flop with a positive-level enable and a positive-level asynchronous preset. Table 3: Example: FD1P3BX FD1P3BX a=F Static cell b=D D type c=1 Single clock d=P Positive-level enable e=3 Positive edge-triggered f=B Positive-level asynchronous preset When creating designs from schematic or synthesis, please observe the following rules: Component, net, site, or instance names should be unique and independent of case. For example, if a net in a design is named "d0", then you cannot have an instance of AND2 named "D0". Component, net, site, or instance names cannot be any cell name. Component, net, site, or instance names cannot be GND, PWR, VSS, VDD, GSR, GSRNET, TSALL, TSALLNET, and so forth. Component, net, site, or instance names cannot contain preference keywords such as DIN, DOUT, SITE, COMP, and so forth. Component, net, site, or instance names cannot contain names starting with 0–9, /, \, +, –, and other special characters. Component, net, site, or instance names cannot be named using VHDL or Verilog keywords such as IN, OUT, INOUT, and so forth. Note the following about numbering used throughout this Help: Least significant bits (LSBs) on a primitive are always determined by the lowest integer value (usually zero) expressed in a pin name input or output in a pin grouping just as most significant bits (MSBs) are always determined by the highest integer value. For example, out of the pin group containing pins A0, A1, A2, and A3, A0 is the LSB and A3 is the MSB. The LSB or MSB is not affected by the order in which pins are numbered (that is, whether or not they are in ascending or descending order). Memory Primitives Overview The architectures of various Lattice FPGAs provide resources for on-chip memory intensive applications. The sysMEM™ embedded block RAM (EBR) complements the distributed PFU-based memory. Single-port RAM, dual-port RAM, FIFO, and ROM memories can be constructed using the EBR. LUTs FPGA Libraries Reference Guide 4 FPGA LIBRARIES REFERENCE GUIDE : RAM_DP (Dual Port RAM) and PFU can implement distributed single-port RAM, dual-port RAM, and ROM. The Lattice Diamond software enables you to integrate the EBR- and PFU-based memories in various device families. The EBR-based and PFU-based memory primitives are listed in this document. Designers can utilize the memory primitives in several ways via the IPexpress tool in the Diamond software. IPexpress allows you to specify the attributes of the memory application, such as required type and size. IPexpress takes the customized specification and constructs a netlist to implement the desired memory, using one or more of the memory primitives. The available memory primitives include: “RAM_DP (Dual Port RAM)” on page 5 “RAM_DP_BE (Dual Port RAM with Byte Enable)” on page 7 “RAM_DP_TRUE (True Dual Port RAM)” on page 8 “RAM_DP_TRUE_BE (True Dual Port RAM with Byte Enable)” on page 10 “RAM_DQ (Single Port RAM)” on page 11 “RAM_DQ_BE (Single Port RAM with Byte Enable)” on page 13 “ROM (Read Only Memory)” on page 14 “Distributed_DPRAM (Distributed Dual Port RAM)” on page 15 “Distributed_ROM (Distributed Read Only Memory)” on page 16 “Distributed_SPRAM (Distributed Single Port RAM)” on page 17 “FIFO (First In First Out Single Clock)” on page 18 “FIFO_DC (First In First Out Dual Clock)” on page 19 “Shift Registers (Distributed RAM Shift Register)” on page 20 RAM_DP (Dual Port RAM) Implementation: EBR Table 4: Pins FPGA Libraries Reference Guide Input/Output Port Name Type Size (Buses Only) I WrAddress Bus (pmi_wr_addr_width – 1) : 0 I RdAddress Bus (pmi_rd_addr_width – 1) : 0 I Data Bus (pmi_wr_data_width – 1) : 0 I RdClock Bit N/A I RdClockEn Bit N/A I Reset Bit N/A I WrClock Bit N/A 5 FPGA LIBRARIES REFERENCE GUIDE : RAM_DP (Dual Port RAM) Table 4: Pins Input/Output Port Name Type Size (Buses Only) I WrClockEn Bit N/A I WE Bit N/A O Q Bus (pmi_rd_data_width – 1) : 0 Table 5: Parameters Name Value Default 2 to 65536 512 pmi_rd_addr_width 1 1 to 16 9 pmi_rd_data_width 1 to 256 18 pmi_wr_addr_depth 1 2 to 65536 512 pmi_wr_addr_width 1 1 to 16 9 pmi_wr_data_width 1 to 256 18 pmi_regmode "reg" | "noreg" "reg" pmi_gsr "enable" | "disable" "disable" pmi_resetmode 2 "async" | "sync" "sync" pmi_optimization "area" | "speed" "speed" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" |"LPTM" |"LPTM2" "EC" pmi_rd_addr_depth 1 Note 1. For SC, SCM, ECP2, ECP2M, XP2, and ECP3 FPGA device families, the read/ write address depth ranges from 2 to 131072. The address width ranges from 1 to 17. 2. For ECP3, "async" is not a valid option. FPGA Libraries Reference Guide 6 FPGA LIBRARIES REFERENCE GUIDE : RAM_DP_BE (Dual Port RAM with Byte Enable) RAM_DP_BE (Dual Port RAM with Byte Enable) Implementation: EBR Table 6: Pins Input/Output Port Name Type Size (Buses Only) I WrAddress Bus (pmi_wr_addr_width – 1) : 0 I RdAddress Bus (pmi_rd_addr_width – 1) : 0 I Data Bus (pmi_wr_data_width – 1) : 0 I RdClock Bit N/A I RdClockEn Bit N/A I Reset Bit N/A I WrClock Bit N/A I WrClockEn Bit N/A I WE Bit N/A O Q Bus (pmi_rd_data_width – 1) : 0 I ByteEn Bus ((pmi_wr_data_width + pmi_byte_size – 1) / pmi_byte_size – 1) : 0 Table 7: Parameters Name Value Default 2 to 65536 512 pmi_rd_addr_width 1 1 to 16 9 pmi_rd_data_width 1 to 256 18 pmi_wr_addr_depth 1 2 to 65536 512 pmi_wr_addr_width 1 1 to 16 9 pmi_wr_data_width 1 to 256 18 pmi_regmode "reg" | "noreg" "reg" pmi_gsr "enable" | "disable" "disable" pmi_resetmode 2 "async" | "sync" "sync" pmi_optimization "area" | "speed" "speed" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_rd_addr_depth FPGA Libraries Reference Guide 1 7 FPGA LIBRARIES REFERENCE GUIDE : RAM_DP_TRUE (True Dual Port RAM) Table 7: Parameters (Continued) Name Value Default pmi_family "XP2" | "SC" | "SCM" | "ECP2" | "ECP2M" | "XO2" | "LPTM2" | "ECP3" "ECP2" pmi_byte_size 8|9 9 Note 1. For SC, SCM, ECP2, ECP2M, XP2, and ECP3 FPGA device families, the read/ write address depth ranges from 2 to 131072. The address width ranges from 1 to 17. 2. For ECP3, "async" is not a valid option. RAM_DP_TRUE (True Dual Port RAM) Implementation: EBR Table 8: Pins FPGA Libraries Reference Guide Input/Output Port Name Type Size (Buses Only) I DataInA Bus (pmi_data_width_a – 1) : 0 I DataInB Bus (pmi_data_width_b – 1) : 0 I AddressA Bus (pmi_addr_width_a – 1) : 0 I AddressB Bus (pmi_addr_width_b – 1) : 0 I ClockA Bit N/A I ClockB Bit N/A I ClockEnA Bit N/A I ClockEnB Bit N/A I WrA Bit N/A I WrB Bit N/A I ResetA Bit N/A I ResetB Bit N/A O QA Bus (pmi_data_width_a – 1) : 0 O QB Bus (pmi_data_width_b – 1) : 0 8 FPGA LIBRARIES REFERENCE GUIDE : RAM_DP_TRUE (True Dual Port RAM) Table 9: Parameters Name Value Default pmi_addr_depth_a 1 2 to 65536 512 pmi_addr_width_a 1 1 to 16 9 pmi_data_width_a 1 to 256 18 pmi_addr_depth_b 1 2 to 65536 512 pmi_addr_width_b 1 1 to 16 9 pmi_data_width_b 1 to 256 18 pmi_regmode_a "reg" | "noreg" "reg" pmi_regmode_b "reg" | "noreg" "reg" pmi_gsr "enable" | "disable" "disable" pmi_resetmode 2 "async" | "sync" "sync" pmi_optimization "area" | "speed" "speed" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_write_mode_a 3 "normal" | "writethrough" | "readbeforewrite" "normal" pmi_write_mode_b 3 "normal" | "writethrough" | "readbeforewrite" "normal" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" Note 1. For SC, SCM, ECP2, ECP2M, XP2, and ECP3 FPGA device families, the read/ write address depth ranges from 2 to 131072. The address width ranges from 1 to 17. 2. For ECP3, "async" is not a valid option. 3. The "Readbeforewrite" option is not supported by ECP2, ECP2M, XP2, SC, SCM, or ECP3. FPGA Libraries Reference Guide 9 FPGA LIBRARIES REFERENCE GUIDE : RAM_DP_TRUE_BE (True Dual Port RAM with Byte Enable) RAM_DP_TRUE_BE (True Dual Port RAM with Byte Enable) Implementation: EBR Table 10: Pins Input/Output Port Name Type Size (Buses Only) I DataInA Bus (pmi_data_width_a – 1) : 0 I DataInB Bus (pmi_data_width_b – 1) : 0 I AddressA Bus (pmi_addr_width_a – 1) : 0 I AddressB Bus (pmi_addr_width_b – 1) : 0 I ClockA Bit N/A I ClockB Bit N/A I ClockEnA Bit N/A I ClockEnB Bit N/A I WrA Bit N/A I WrB Bit N/A I ResetA Bit N/A I ResetB Bit N/A O QA Bus (pmi_data_width_a – 1) : 0 O QB Bus (pmi_data_width_b – 1) : 0 I ByteEnA Bus ((pmi_data_width_a + pmi_byte_size – 1) / pmi_byte_size – 1) : 0 I ByteEnB Bus ((pmi_data_width_b + pmi_byte_size – 1) / pmi_byte_size – 1) : 0 Table 11: Parameters FPGA Libraries Reference Guide Name Value Default pmi_addr_depth_a 1 2 to 65536 512 pmi_addr_width_a 1 1 to 16 9 pmi_data_width_a 1 to 256 18 pmi_addr_depth_b 1 2 to 65536 512 pmi_addr_width_b 1 1 to 16 9 10 FPGA LIBRARIES REFERENCE GUIDE : RAM_DQ (Single Port RAM) Table 11: Parameters (Continued) Name Value Default pmi_data_width_b 1 to 256 18 pmi_regmode_a "reg" | "noreg" "reg" pmi_regmode_b "reg" | "noreg" "reg" pmi_gsr "enable" | "disable" "disable" 2 "async" | "sync" "sync" pmi_optimization "area" | "speed" "speed" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_write_mode_a 3 "normal" | "writethrough" | "readbeforewrite" "normal" pmi_write_mode_b 3 "normal" | "writethrough" | "readbeforewrite" "normal" pmi_family "XP2" | "SC" | "SCM" | "ECP2" | "ECP2M" | "XO2" | "LPTM2" | "ECP3" "ECP2" pmi_byte_size 8|9 9 pmi_resetmode Note 1. For SC, SCM, ECP2, ECP2M, XP2, and ECP3 FPGA device families, the read/ write address depth ranges from 2 to 131072. The address width ranges from 1 to 17. 2. For ECP3, "async" is not a valid option. 3. The "Readbeforewrite" option is not supported by ECP2, ECP2M, XP2, SC, SCM, or ECP3. RAM_DQ (Single Port RAM) Implementation: EBR Table 12: Pins FPGA Libraries Reference Guide Input/Output Port Name Type Size (Buses Only) I Data Bus (pmi_data_width – 1) : 0 I Address Bus (pmi_addr_width – 1) : 0 I Clock Bit N/A I ClockEn Bit N/A I Reset Bit N/A 11 FPGA LIBRARIES REFERENCE GUIDE : RAM_DQ (Single Port RAM) Table 12: Pins Input/Output Port Name Type Size (Buses Only) I WE Bit N/A O Q Bus (pmi_data_width – 1) : 0 Table 13: Parameter Name Value Default 2 to 65536 512 1 to 16 9 pmi_data_width 1 to 256 18 pmi_regmode "reg" | "noreg" "reg" pmi_gsr "enable" | "disable" "disable" pmi_resetmode 2 "async" | "sync" "sync" pmi_optimization "area" | "speed" "speed" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_write_mode 3 "normal" | "writethrough" | "readbeforewrite" "normal" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" pmi_addr_depth 1 pmi_addr_width 1 Note 1. For SC, SCM, ECP2, ECP2M, XP2, and ECP3 FPGA device families, the read/ write address depth ranges from 2 to 131072. The address width ranges from 1 to 17. 2. For ECP3, "async" is not a valid option. 3. The "Readbeforewrite" option is not supported by ECP2, ECP2M, XP2, SC, SCM, or ECP3. FPGA Libraries Reference Guide 12 FPGA LIBRARIES REFERENCE GUIDE : RAM_DQ_BE (Single Port RAM with Byte Enable) RAM_DQ_BE (Single Port RAM with Byte Enable) Implementation: EBR Table 14: Pins Input/Output Port Name Type Size (Buses Only) I Data Bus (pmi_data_width – 1) : 0 I Address Bus (pmi_addr_width – 1) : 0 I Clock Bit N/A I ClockEn Bit N/A I Reset Bit N/A I WE Bit N/A O Q Bus (pmi_data_width – 1) : 0 I ByteEn Bus ((pmi_data_width + pmi_byte_size – 1) / pmi_byte_size – 1) : 0 Table 15: Parameters FPGA Libraries Reference Guide Name Value Default pmi_addr_depth 1 2 to 65536 512 pmi_addr_width 1 1 to 16 9 pmi_data_width 1 to 256 18 pmi_regmode "reg" | "noreg" "reg" pmi_gsr "enable" | "disable" "disable" pmi_resetmode 2 "async" | "sync" "sync" pmi_optimization "area" | "speed" "speed" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_write_mode 3 "normal" | "writethrough" | "readbeforewrite" "normal" pmi_family "XP2" | "SC" | "SCM" | "ECP2" | "ECP2M" | "XO2" | "LPTM2" | "ECP3" "ECP2" pmi_byte_size 8|9 9 13 FPGA LIBRARIES REFERENCE GUIDE : ROM (Read Only Memory) Note 1. For SC, SCM, ECP2, ECP2M, XP2, and ECP3 FPGA device families, the read/ write address depth ranges from 2 to 131072. The address width ranges from 1 to 17. 2. For ECP3, "async" is not a valid option. 3. The "Readbeforewrite" option is not supported by ECP2, ECP2M, XP2, SC, SCM, or ECP3. ROM (Read Only Memory) Implementation: EBR Table 16: Pins Input/Output Port Name Type Size (Buses Only) I Address Bus (pmi_addr_width – 1) : 0 I OutClock Bit N/A I OutClockEn Bit N/A I Reset Bit N/A O Q Bus (pmi_data_width – 1) : 0 Table 17: Parameters Name Value Default 2 to 65536 512 pmi_addr_width 1 1 to 16 9 pmi_data_width 1 to 256 18 pmi_regmode "reg" | "noreg" "reg" pmi_gsr "enable" | "disable" "disable" pmi_resetmode 2 "async" | "sync" "sync" pmi_optimization "area" | "speed" "speed" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" pmi_addr_depth FPGA Libraries Reference Guide 1 14 FPGA LIBRARIES REFERENCE GUIDE : Distributed_DPRAM (Distributed Dual Port RAM) Note 1. For SC, SCM, ECP2, ECP2M, XP2, and ECP3 FPGA device families, the read/ write address depth ranges from 2 to 131072. The address width ranges from 1 to 17. 2. For ECP3, "async" is not a valid option. Distributed_DPRAM (Distributed Dual Port RAM) Implementation: LUT Table 18: Pins Input/Output Port Name Type Size (Buses Only) I WrAddress Bus (pmi_addr_width – 1) : 0 I Data Bus (pmi_data_width – 1) : 0 I WrClock Bit N/A I WrClockEn Bit N/A I WE Bit N/A I RdAddress Bus (pmi_addr_width – 1) : 0 I RdClock Bit N/A I RdClockEn Bit N/A I Reset Bit N/A O Q Bus (pmi_data_width – 1) : 0 Table 19: Parameters Name Value Default pmi_addr_depth 2 to 8192 32 pmi_addr_width 1 to 13 5 pmi_data_width 1 to 256 8 pmi_regmode "reg" | "noreg" "reg" <string> "none" pmi_init_file_format 1 "binary" | "hex" "binary" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" pmi_init_file FPGA Libraries Reference Guide 1 15 FPGA LIBRARIES REFERENCE GUIDE : Distributed_ROM (Distributed Read Only Memory) Note 1. The pmi_init_file and pmi_init_file_format parameters are not supported for EC, XP, ECP, ECP2, ECP2M, LPTM, and XO device families in distributed mode. Distributed_ROM (Distributed Read Only Memory) Implementation: LUT Table 20: Pins Input/Output Port Name Type Size (Buses Only) I Address Bus (pmi_addr_width – 1) : 0 I OutClock Bit N/A I OutClockEn Bit N/A I Reset Bit N/A O Q Bus (pmi_data_width – 1) : 0 Table 21: Parameters FPGA Libraries Reference Guide Name Value Default pmi_addr_depth 2 to 8192 32 pmi_addr_width 1 to 13 5 pmi_data_width 1 to 128 8 pmi_regmode "reg" | "noreg" "reg" pmi_init_file <string> "none" pmi_init_file_format "binary" | "hex" "binary" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" 16 FPGA LIBRARIES REFERENCE GUIDE : Distributed_SPRAM (Distributed Single Port RAM) Distributed_SPRAM (Distributed Single Port RAM) Implementation: LUT Table 22: Pins Input/Output Port Name Type Size (Buses Only) I Address Bus (pmi_addr_width – 1) : 0 I Data Bus (pmi_data_width – 1) : 0 I Clock Bit N/A I ClockEn Bit N/A I WE Bit N/A I Reset Bit N/A O Q Bus (pmi_data_width – 1) : 0 Table 23: Parameters Name Value Default pmi_addr_depth 2 to 8192 32 pmi_addr_width 1 to 13 5 pmi_data_width 1 to 128 8 pmi_regmode "reg" | "noreg" "reg" pmi_init_file 1 <string> "none" pmi_init_file_format 1 "binary" | "hex" "binary" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" Note 1. The pmi_init_file and pmi_init_file_format parameters are not supported for EC, XP, ECP, ECP2, ECP2M, LPTM, and XO device families in distributed mode. FPGA Libraries Reference Guide 17 FPGA LIBRARIES REFERENCE GUIDE : FIFO (First In First Out Single Clock) FIFO (First In First Out Single Clock) Implementation: EBR, LUT Table 24: Pins Input/Output Port Name Type Size (Buses Only) I Data Bus (pmi_data_width – 1) : 0 I Clock Bit N/A I WrEn Bit N/A I RdEn Bit N/A I Reset Bit N/A O Q Bus (pmi_data_width – 1) : 0 O Empty Bit N/A O Full Bit N/A O AlmostEmpty Bit N/A O AlmostFull Bit N/A Table 25: Parameters Name Value Default pmi_data_depth 1 2 to 65536 256 pmi_data_width 1 to 256 8 pmi_almost_empty_flag 1 to 512 4 pmi_almost_full_flag 1 to 512 252 pmi_full_flag 1 to pmi_data_depth 256 pmi_empty_flag 0 0 pmi_regmode "reg" | "noreg" | "outreg" | "outreg_rden" "reg" pmi_implementation "EBR" | "LUT" "EBR" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "ECP3" | "LPTM" "EC" Note 1. The device depth for the LUT based FIFO ranges from 2 to 8192. The XP2, ECP2, ECP2M, SC, SCM, and ECP3 device family address depths range from 2 to 131072. The EC, ECP, and XP families range from 2 to 65536. FPGA Libraries Reference Guide 18 FPGA LIBRARIES REFERENCE GUIDE : FIFO_DC (First In First Out Dual Clock) FIFO_DC (First In First Out Dual Clock) Implementation: EBR, LUT Table 26: Pins Input/Output Port Name Type Size (Buses Only) I Data Bus (pmi_data_width_w – 1) : 0 I WrClock Bit N/A I RdClock Bit N/A I WrEn Bit N/A I RdEn Bit N/A I Reset Bit N/A I RPReset Bit N/A O Q Bus (pmi_data_width_r – 1) : 0 O Empty Bit N/A O Full Bit N/A O AlmostEmpty Bit N/A O AlmostFull Bit N/A Table 27: Parameters FPGA Libraries Reference Guide Name Value Default pmi_data_depth_w 1 2 to 131072 256 pmi_data_depth_r 1 2 to 131072 256 pmi_data_width_w 1 to 256 18 pmi_data_width_r 1 to 256 18 pmi_full_flag 1 to pmi_data_depth_r 256 pmi_empty_flag 0 0 pmi_almost_full_flag 1 to pmi_data_depth_w 252 pmi_almost_empty_flag 1 to pmi_data_depth_r 4 pmi_regmode "reg" | "noreg" | "outreg" | "outreg_rden" "reg" pmi_resetmode 2 "async" | "sync" "async" 19 FPGA LIBRARIES REFERENCE GUIDE : Shift Registers (Distributed RAM Shift Register) Table 27: Parameters (Continued) Name Value Default pmi_implementation "EBR" | "LUT" "EBR" pmi_family "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" Note 1. The device depth for the LUT-based FIFO_DC ranges from 2 to 8192. The XP2, ECP2, ECP2M, SC, SCM, and ECP3 device family data depths range from 2 to 131072. The EC, ECP, and XP families range from 2 to 65536. The XO, LPTM, LPTM2 and XO2 data depths range from 2 to 16384. The SC, SCM, XO, XO2, LPTM2 and LPTM device families support different read/write depths and different read/write data widths. The depth settings of SC and SCM are 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65535, and 131072. The depth settings for XO and LPTM are 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, and 16384. 2. The SC, SCM, XO, XO2, LPTM2 and LPTM device families support the pmi_resetmode parameter. The pmi_resetmode applies to the EBR memory implementation. Shift Registers (Distributed RAM Shift Register) Implementation: LUT, EBR 1 Table 28: Pins Input/Output Port Name Type Size (Buses Only) I Din Bus (pmi_data_width – 1) : 0 I Addr Bus (pmi_max_width – 1) : 0 I Clock Bit N/A I ClockEn Bit N/A O Q Bus (pmi_data_width – 1) :0 Table 29: Parameters FPGA Libraries Reference Guide Name Value Default pmi_data_width 1 to 256 16 pmi_regmode "reg" | "noreg" "reg" pmi_shiftreg_type 2 "fixed" | "variable" | "lossless" "fixed" pmi_num_shift 2 to 1024 16 20 FPGA LIBRARIES REFERENCE GUIDE : Shift Registers (Distributed RAM Shift Register) Table 29: Parameters Name Value Default pmi_num_width 0 to 10 4 pmi_max_shift 2 to 1024 16 pmi_max_width 0 to 10 4 <string> "none" "binary" | "hex" "binary" "EC" | "XP" | "XP2" | "SC" | "SCM" | "ECP" | "ECP2" | "ECP2M" | "XO" | "XO2" | "ECP3" | "LPTM" | "LPTM2" "EC" pmi_init_file 3 pmi_init_file_format pmi_family 3 Note 1. EBR implementation is not available in ispLEVER 6.0 or earlier. 2. The lossless mode is not supported in ispLEVER 6.0 or earlier. 3. The pmi_init_file and pmi_init_file_format parameters are not supported for EC, XP, ECP, ECP2, ECP2M, LPTM, and XO device families in distributed mode. FPGA Libraries Reference Guide 21 : Primitive Library - ECP5 Primitive Library - ECP5 This library includes compatible FPGA primitives supported by the ECP5 device family. Adder Subtractors Flip-Flops Input/Output Buffers ECP5 Memory Primitives Logic Gates Miscellaneous Logic Multiplexers Multipliers in DSP Blocks PIC Cells PIC Flip-Flops (Input) PIC Flip-Flops (Output) PIC Latches (Input) Read-Only Memory Special Cells Clock Manager/PLL/DLL Combinatorial Primitives Dual Data Rate Cells Miscellaneous References For further information on individual primitives, a variety of technical notes for the ECP5 family are available on the Lattice Web site. FPGA Libraries Reference Guide TN1260 - ECP5 sysCOFIG Usage Guide TN1261 - ECP5 SERDES/PCS Usage Guide TN1262 - ECP5 sysIO Usage Guide TN1263 - ECP5 sysCLOCK PLL/DLL Design and Usage Guide TN1264 - ECP5 Memory Usage Guide TN1265 - ECP5 High-Speed I/O Interface TN1266 - ECP5 Power Consumption and Management TN1267 - ECP5 sysDSP Usage Guide TN1184 - LatticeECP3 and ECP5 Soft Error Detection (SED) Usage Guide TN1269 - ECP5 Hardware Checklist 22 : Primitive Library - ECP5 Table 30: Adder Subtractors PRADD18A 18-Bit Pre Adder for DSP PRADD9A 9 Bit Pre Adder for DSP Table 31: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable 23 : Primitive Library - ECP5 Table 31: Flip-Flops (Continued) FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 32: Input/Output Buffers BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up IB CMOS Input Buffer IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBCO Output Complementary Buffer OBZ Output Buffer with Tristate OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 33: ECP5 Memory Primitives FPGA Libraries Reference Guide DP16KD True Dual Port Block RAM DPR16X4C Distributed Pseudo Dual Port RAM 24 : Primitive Library - ECP5 Table 33: ECP5 Memory Primitives (Continued) PDPW16KD Pseudo Dual Port Block RAM SPR16X4C Distributed Single Port RAM Table 34: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR2 2 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate XOR11 11 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate 25 : Primitive Library - ECP5 Table 35: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 36: Multiplexers L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux Table 37: Multipliers in DSP Blocks FPGA Libraries Reference Guide MULT18X18C 18x18 Multiplier in DSP blocks MULT18X18D DSP Multiplier MULT9X9C 9x9 Multiplier Multipliers in DSP blocks MULT9X9D DSP Multiplier 26 : Primitive Library - ECP5 PIC Cells Table 38: PIC Flip-Flops (Input) IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Table 39: PIC Flip-Flops (Output) OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) Table 40: PIC Latches (Input) FPGA Libraries Reference Guide IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) 27 : Primitive Library - ECP5 Table 41: Read-Only Memory ROM128X1A 128 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM16X1A 16 Word by 1 Bit Read-Only Memory ROM256X1A 256 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM32X1A 32 Word by 1 Bit Read-Only Memory ROM64X1A 64 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Special Cells Table 42: Clock Manager/PLL/DLL CLKDIVF Clock Divider DCCA Dynamic Clock Control Block DCSC Dynamic Clock Selection DLLDELD Slave Delay ECLKBRIDGECS ECLK Bridge Block Clock Select EHXPLLL GPLL for ECP5. OSCG Oscillator for Configuration Clock PLLREFCS PLL Dynamic Reference Clock Switching Table 43: Combinatorial Primitives FPGA Libraries Reference Guide LUT4 4-Input Look Up Table LUT5 5-Input Look Up Table LUT6 6-Input Look Up Table LUT7 7-Input Look Up Table LUT8 8-Input Look Up Table 28 : Primitive Library - ECP5 Table 44: Dual Data Rate Cells DDRDLLA 90 degree delay for the DQS Input during a memory interface or the clock input for a generic DDR interface DQSBUFM DQS circuit for DDR Memory. ECLKSYNCB ECLK Stop Block IDDR71B 7:1 LVDS Input Supporting 1:7 Gearing IDDRX1F Generic Input DDR primitive IDDRX2DQA Implements DDR2 memory input interface at higher speeds and DDR3 memory interface. IDDRX2F Generic Input DDR primitive ODDRX1F Generic X1 ODDR implementation. ODDRX2F Generic X2 ODDR implementation. ODDRX2DQA Memory Output DDR Primitive for DQ outputs. ODDRX2DQSB Generates DQS clock output for DDR2 and DDR3 memory. ODDR71B 7:1 LVDS ODDR implementation OSHX2A Generates the address and command for DDR3 memory with X2 gearing and write leveling. TSHX2DQA Generates the tristate control for DQ data output for DDR2 memory with X2 gearing and DDR3 memory. TSHX2DQSA Generate the tristate control for DQS output. Table 45: Miscellaneous FPGA Libraries Reference Guide ALU24A 24 Bit Ternary Adder/Subtractor ALU24B 24-bit Ternary Adder/Subtractor for 9x9 Mode ALU54A 54 Bit Ternary Adder/Subtractor ALU54B 54 Bit Ternary Adder/Subtractor for Highspeed BCINRD Dynamic Bank Controller InRD BCLVDSOB Dynamic Bank Controller LVDS CCU2C Carry-Chain DELAYF Delay DELAYG Delay DTR Digital temperature readout EXTREFB External Reference Clock 29 : Primitive Library - ECP5 Table 45: Miscellaneous (Continued) FPGA Libraries Reference Guide GSR Global Set/Reset IMIPI Special Primitive for MIPI Input Support INRDB Input Reference and Differential Buffer LVDSOB LVDS Output Buffer PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PUR Power Up Set/Reset SEDGA Soft Error Detect SGSR Synchronous Release Global Set/Reset Interface START Startup Controller USRMCLK Primitive to allow the user function to access the SPI PROM 30 : Primitive Library - LatticeECP/EC and LatticeXP Primitive Library - LatticeECP/EC and LatticeXP This library includes compatible FPGA primitives supported by the LatticeXP and LatticeECP/EC device families. Adders Subtractors Comparators Counters Loadable Counters Flip-Flops Input/Output Buffers Latches LatticeECP DSP Block LatticeXP and LatticeEC Memory Primitives Logic Gates Miscellaneous Logic Multiplexer Multipliers (Not DSP) PIC Cells PIC Flip-Flops (Input) PIC Flip-Flops (Output) PIC Latches (Input) Read Only memory Special Cells Clock/PLL Combinatorial Primitives Dual Data Rate Cells Miscellaneous References For further information, a variety of technical documents for the LatticeECP/ EC family and LatticeXP family are available on the Lattice Web site. FPGA Libraries Reference Guide TN1049 - LatticeECP/EC and LatticeXP sysCLOCK PLL Design and Usage Guide TN1050 - LatticeECP/EC and XP DDR Usage Guide TN1051 - Memory Usage Guide for LatticeECP/EC and LatticeXP Devices TN1052 - Estimating Power Using Power Calculator for LatticeECP/EC and LatticeXP Devices TN1053 - LatticeECP/EC sysCONFIG Usage Guide 31 : Primitive Library - LatticeECP/EC and LatticeXP TN1056 - LatticeECP/EC and LatticeXP sysIO Usage Guide TN1057 - LatticeECP sysDSP Usage Guide TN1082 - LatticeXP sysCONFIG Usage Guide Table 46: Adders Subtractors FADD2 2 Bit Fast Adder FSUB2 2 Bit Fast Subtractor (two's complement) FADSU2 2 Bit Fast Adder/Subtractor (two's complement) Table 47: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 48: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CD2 Combinational Logic for 2 Bit Down Counter CU2 Combinational Logic for 2 Bit Up Counter Table 49: Loadable Counters FPGA Libraries Reference Guide LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) 32 : Primitive Library - LatticeECP/EC and LatticeXP Table 49: Loadable Counters (Continued) FPGA Libraries Reference Guide LB4P3AX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB4P3AY 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB4P3BX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB4P3DX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB4P3IX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB4P3JX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear LD2P3AY 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD4P3AX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear LD4P3AY 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD4P3BX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD4P3DX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD4P3IX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD4P3JX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear 33 : Primitive Library - LatticeECP/EC and LatticeXP Table 49: Loadable Counters (Continued) LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU4P3AX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU4P3AY 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU4P3BX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU4P3DX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU4P3IX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU4P3JX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 50: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) 34 : Primitive Library - LatticeECP/EC and LatticeXP Table 50: Flip-Flops (Continued) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 51: Input/Output Buffers FPGA Libraries Reference Guide BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate and Pull-down BiDirectional BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate and Pull-up BiDirectional 35 : Primitive Library - LatticeECP/EC and LatticeXP Table 51: Input/Output Buffers BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB CMOS Input Buffer IBM CMOS Input Buffer IBMPD CMOS Input Buffer with Pull-down IBMPDS CMOS Input Buffer with Pull-down and Delay IBMPU CMOS Input Buffer with Pull-up IBMPUS CMOS Input Buffer with Pull-up and Delay IBMS CMOS Input Buffer with Delay IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBCO Output Complementary Buffer OBZ 6mA Sink 3mA Source Sinklim Output Buffer OBZPD 12mA Sink 6mA Source Slewlim Output Buffer OBZPU 12mA Sink 6mA Source Fast Output Buffer OBW 6mA Sink 3mA Source Sinklim Output Buffer with Tristate OLVDS LVDS Output Buffer Table 52: Latches FPGA Libraries Reference Guide FD1S1A Positive Level Data Latch with GSR Used for Clear FD1S1AY Positive Level Data Latch with GSR Used for Preset FD1S1B Positive Level Data Latch with Positive Level Asynchronous Preset FD1S1D Positive Level Data Latch with Positive Level Asynchronous Clear FD1S1I Positive Level Data Latch with Positive Level Synchronous Clear FD1S1J Positive Level Data Latch with Positive Level Synchronous Preset FL1S1A Positive Level Loadable Latch with Positive Select and GSR Used for Clear FL1S1AY Positive Level Loadable Latch with Positive Select and GSR Used for Preset FL1S1B Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Preset 36 : Primitive Library - LatticeECP/EC and LatticeXP Table 52: Latches (Continued) FL1S1D Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Clear FL1S1I Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Clear FL1S1J Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Preset Table 53: LatticeECP DSP Block MULT18X18 ECP 18X18 DSP Multiplier MULT18X18ADDSUB ECP 18X18 DSP Adder/Subtractor MULT18X18ADDSUBSUM ECP 18X18 DSP Adder/Subtractor/Sum MULT18X18MAC ECP 18X18 DSP MAC MULT36X36 ECP 36X36 DSP Multiplier MULT9X9 ECP 9X9 DSP Multiplier MULT9X9ADDSUB ECP 9X9 DSP Adder/Subtractor MULT9X9ADDSUBSUM ECP 9X9 DSP Adder/Subtractor/Sum MULT9X9MAC ECP 9X9 DSP MAC Table 54: LatticeXP and LatticeEC Memory Primitives DP8KA 8K Dual Port Block RAM DPR16X2B 16 Word by 2 Dual Port RAM (within PFU) PDP8KA 8K Pseudo Dual Port Block RAM SP8KA 8K Single Port Block RAM SPR16X2B 16 Word by 2 Single Port RAM (within PFU) Table 55: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate 37 : Primitive Library - LatticeECP/EC and LatticeXP Table 55: Logic Gates (Continued) ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR11 11 Input Exclusive OR Gate XOR2 2 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate Table 56: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 57: Multiplexer FPGA Libraries Reference Guide L6MUX21 2 to 1 Mux MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux 38 : Primitive Library - LatticeECP/EC and LatticeXP Table 57: Multiplexer MUX321 32-Input Mux within the PFU (8 Slices) MUX4 4-bit Multiplexer MUX41 4 to 1 Mux MUX81 8 to 1 Mux Table 58: Multipliers (Not DSP) MULT2 2X2 Multiplier PIC Cells Table 59: PIC Flip-Flops (Input) IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Table 60: PIC Flip-Flops (Output) FPGA Libraries Reference Guide OFE1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and Edge Clock (used in output PIC area only) OFE1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and Edge Clock (used in output PIC area only) OFE1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and Edge Clock (used in output PIC area only) OFE1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and Edge Clock (used in output PIC area only) 39 : Primitive Library - LatticeECP/EC and LatticeXP Table 60: PIC Flip-Flops (Output) OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) Table 61: PIC Latches (Input) IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Table 62: Read Only memory ROM16X1 16 Word by 1 Bit Read-Only Memory ROM32X1 32 Word by 1 Bit Read-Only Memory ROM64X1 64 Word by 1 Bit Read-Only Memory ROM128X1 128 Word by 1 Bit Read-Only Memory ROM256X1 256 Word by 1 Bit Read-Only Memory Special Cells Table 63: Clock/PLL DCS FPGA Libraries Reference Guide Dynamic Clock Selection Multiplexer 40 : Primitive Library - LatticeECP/EC and LatticeXP Table 63: Clock/PLL EPLLB Enhanced PLL EHXPLLB Enhanced High Performance with Dynamic Input Delay Control PLL Table 64: Combinatorial Primitives ORCALUT4 4-Input Look Up Table ORCALUT5 5-Input Look Up Table ORCALUT6 6-Input Look Up Table ORCALUT7 7-Input Look Up Table ORCALUT8 8-Input Look Up Table Table 65: Dual Data Rate Cells DQSBUFB DDR DQS Buffer used as DDR memory DQS generator DQSDLL DLL used as DDR memory DQS DLL IDDRXB DDRX Input Cell ODDRXB Output DDR Table 66: Miscellaneous FPGA Libraries Reference Guide CCU2 Carry Chain DELAY Delay GSR Global Set/Reset IBDDC Dynamic Delay JTAGB JTAG (Joint Test Action Group) Controller PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PUR Power Up Set/Reset SGSR Synchronous Release Global Set/Reset Interface STRTUP Startup Controller 41 : Primitive Library - LatticeECP2/M Primitive Library - LatticeECP2/M This library includes compatible FPGA primitives supported by the LatticeECP2/M (including the “S-Series” LatticeECP2S and LatticeECP2MS) device families. Adders/Subtractors Comparators Counters Loadable Counters Flip-Flops Input/Output Buffer LatticeECP2/M Memory Primitive Logic Gates Miscellaneous Logic Multiplexers PIC Cells PIC Flip-Flops (Input) PIC Flip-Flops (Output) PIC Latches (Input) Read-only Memory Special Cells Clock Manager/PLL/DLL Combinatorial Primitives Dual Data Rate Cells Miscellaneous References For further information, a variety of technical notes for the LatticeECP2/M family are available on the Lattice Web site. FPGA Libraries Reference Guide TN1102 - LatticeECP2/M sysIO Usage Guide TN1103 - LatticeECP2/M sysCLOCK PLL/DLL Design and Usage Guide TN1104 - LatticeECP2/M Memory Usage Guide TN1105 - LatticeECP2/M High-Speed I/O Interface TN1106 - LatticeECP2/M Power Estimation and Management TN1107 - LatticeECP2/M sysDSP Usage Guide TN1108 - LatticeECP2/M sysCONFIG Usage Guide TN1109 - LatticeECP2/M Configuration Encryption Usage Guide TN1113 - LatticeECP2/M Soft Error Detection (SED) Usage Guide TN1124 - LatticeECP2M SERDES/PCS Usage Guide 42 : Primitive Library - LatticeECP2/M Table 67: Adders/Subtractors FADD2B 2 Bit Fast Adders/Subtractors FADSU2 2 Bit Fast Adder/Subtractor (two's complement) FSUB2B 2 Bit Subtractor Table 68: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 69: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CD2 Combinational Logic for 2 Bit Down Counter CU2 Combinational Logic for 2 Bit Up Counter Table 70: Loadable Counters FPGA Libraries Reference Guide LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear 43 : Primitive Library - LatticeECP2/M Table 70: Loadable Counters (Continued) LD2P3AY 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 71: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) 44 : Primitive Library - LatticeECP2/M Table 71: Flip-Flops (Continued) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 72: Input/Output Buffer FPGA Libraries Reference Guide BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up 45 : Primitive Library - LatticeECP2/M Table 72: Input/Output Buffer (Continued) BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB CMOS Input Buffer IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBCO Output Complementary Buffer OBW Output Buffer with Tristate OBZ Output Buffer with Tristate OBZPD Output Buffer with Tristate and Pull-down OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 73: LatticeECP2/M Memory Primitive DP16KB True Dual Port Block RAM DPR16X4A Distributed Pseudo Dual Port RAM (within PFU) PDPW16KB Pseudo Dual Port Block RAM SP16KB Single Port Block RAM SPR16X4A Distributed Single Port RAM (within PFU) Table 74: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate 46 : Primitive Library - LatticeECP2/M Table 74: Logic Gates (Continued) OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR2 2 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate XOR11 11 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate Table 75: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 76: Multiplexers FPGA Libraries Reference Guide L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux 47 : Primitive Library - LatticeECP2/M Table 77: Multipliers in DSP Blocks MULT18X18ADDSUBB 18x18 Multiplier Add/Subtract Multipliers in DSP blocks MULT18X18ADDSUBSUMB 18x18 Multiplier Add/Subtract and SUM Multipliers in DSP blocks MULT18X18B 18x18 Multiplier in DSP blocks MULT18X18MACB 18x18 Multiplier Accumulate Multipliers in DSP blocks MULT36X36B 36x36 Multiplier Multipliers in DSP blocks MULT9X9ADDSUBB 9x9 Multiplier Add/Subtract Multipliers in DSP blocks MULT9X9ADDSUBSUMB 9x9 Multiplier Add/Subtract and SUM Multipliers in DSP blocks MULT9X9B 9x9 Multiplier Multipliers in DSP blocks PIC Cells Table 78: PIC Flip-Flops (Input) IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Table 79: PIC Flip-Flops (Output) FPGA Libraries Reference Guide OFE1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and Edge Clock (used in output PIC area only) OFE1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and Edge Clock (used in output PIC area only) OFE1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and Edge Clock (used in output PIC area only) 48 : Primitive Library - LatticeECP2/M Table 79: PIC Flip-Flops (Output) (Continued) OFE1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and Edge Clock (used in output PIC area only) OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) Table 80: PIC Latches (Input) IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Table 81: Read-only Memory FPGA Libraries Reference Guide ROM128X1 128 Word by 1 bit read-only memory ROM16X1 16 Word by 1 bit read-only memory ROM256X1 256 Word by 1 bit read-only memory ROM32X1 32 Word by 1 bit read-only memory ROM64X1 64 Word by 1 bit read-only memory 49 : Primitive Library - LatticeECP2/M Special Cells Table 82: Clock Manager/PLL/DLL CIDDLLA Clock Injection Delay Removal CLKDIVB Clock Divider DCS Dynamic Clock Selection Multiplexer DLLDELA Slave Delay EHXPLLD Complex PLL EPLLD Enhanced PLL OSCD Oscillator for configuration clock TRDLLA Time Reference Delay Table 83: Combinatorial Primitives ORCALUT4 4-Input Look Up Table ORCALUT5 5-Input Look Up Table ORCALUT6 6-Input Look Up Table ORCALUT7 7-Input Look Up Table ORCALUT8 8-Input Look Up Table Table 84: Dual Data Rate Cells FPGA Libraries Reference Guide DQSBUFC DQS Delay Function and Clock Polarity Selection Logic DQSDLL DLL Used as DDR Memory DQS DLL IDDRFXA DDR Generic Input with Full Clock Transfer (x1 Gearbox) IDDRMFX1A DDR Input and DQS to System Clock Transfer Registers with Full Clock Cycle Transfer IDDRMX1A DDR Input and DQS to System Clock Transfer Registers with Half Clock Cycle Transfer IDDRX2B DDR Generic Input with 2x Gearing Ratio IDDRXC DDR Generic Input ODDRMXA DDR Output Registers ODDRX2B DDR Generic Output with 2x Gearing Ratio ODDRXC DDR Generic Output 50 : Primitive Library - LatticeECP2/M Table 85: Miscellaneous FPGA Libraries Reference Guide CCU2B Carry-Chain DELAYB Dynamic Delay in PIO GSR Global Set/Reset JTAGC JTAG (Joint Test Action Group) Controller MULT2 2X2 Multiplier (not DSP) PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PUR Power Up Set/Reset SEDAA SED BASIC SGSR Synchronous Release Global Set/Reset Interface SPIM SPIM Primitive STRTUP Startup Controller 51 : Primitive Library - LatticeECP3 Primitive Library - LatticeECP3 This library includes compatible FPGA primitives supported by the LatticeECP3 device family. Adders/Subtractors Comparators Counters Loadable Counters Flip-Flops Input/Output Buffers LatticeECP3 Memory Primitives Logic Gates Miscellaneous Logic Multiplexer Multipliers in DSP Blocks PIC Cells PIC Flip-Flops (Input) PIC Flip-Flops (Output) PIC Latches (Input) Read-Only Memory Special Cells Clock Manager/PLL/DLL Combinatorial Primitives Dual Data Rate Cells Miscellaneous References For further information on individual primitives, a variety of technical notes for the LatticeECP3 family are available on the Lattice Web site. FPGA Libraries Reference Guide TN1177 - LatticeECP3 sysIO Usage Guide TN1178 - LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide TN1179 - LatticeECP3 Memory Usage Guide TN1180 - LatticeECP3 High-Speed I/O Interface TN1181 - Power Consumption and Management for LatticeECP3 Devices TN1182 - LatticeECP3 sysDSP Usage Guide TN1169 - LatticeECP3 sysCONFIG Usage Guide TN1184 - LatticeECP3 and ECP5 Soft Error Detection (SED) Usage Guide TN1176 - LatticeECP3 SERDES/PCS Usage Guide 52 : Primitive Library - LatticeECP3 Table 86: Adders/Subtractors FADD2B 2 Bit Fast Adders/Subtractors FADSU2 2 Bit Fast Adder/Subtractor (two's complement) FSUB2B 2 Bit Subtractor Table 87: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 88: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CD2 Combinational Logic for 2 Bit Down Counter CU2 Combinational Logic for 2 Bit Up Counter Table 89: Loadable Counters FPGA Libraries Reference Guide LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear 53 : Primitive Library - LatticeECP3 Table 89: Loadable Counters (Continued) LD2P3AY 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 90: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) 54 : Primitive Library - LatticeECP3 Table 90: Flip-Flops (Continued) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 91: Input/Output Buffers FPGA Libraries Reference Guide BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up 55 : Primitive Library - LatticeECP3 Table 91: Input/Output Buffers (Continued) BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB CMOS Input Buffer IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBCO Output Complementary Buffer OBZ Output Buffer with Tristate OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 92: LatticeECP3 Memory Primitives DP16KC True Dual Port Block RAM DPR16X4C Distributed Pseudo Dual Port RAM PDPW16KC Pseudo Dual Port Block RAM SP16KC Single Port Block RAM SPR16X4C Distributed Single Port RAM Table 93: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate 56 : Primitive Library - LatticeECP3 Table 93: Logic Gates (Continued) OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR2 2 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate XOR11 11 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate Table 94: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 95: Multiplexer FPGA Libraries Reference Guide L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux 57 : Primitive Library - LatticeECP3 Table 96: Multipliers in DSP Blocks MULT18X18C 18x18 Multiplier in DSP blocks MULT9X9C 9x9 Multiplier Multipliers in DSP blocks PIC Cells Table 97: PIC Flip-Flops (Input) IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Table 98: PIC Flip-Flops (Output) FPGA Libraries Reference Guide OFD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear. Used to Tri-State DDR/DDR2 OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) 58 : Primitive Library - LatticeECP3 Table 99: PIC Latches (Input) IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Table 100: Read-Only Memory ROM128X1A 128 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM16X1A 16 Word by 1 Bit Read-Only Memory ROM256X1A 256 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM32X1A 32 Word by 1 Bit Read-Only Memory ROM64X1A 64 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Special Cells Table 101: Clock Manager/PLL/DLL FPGA Libraries Reference Guide CIDDLLB Clock Injection Delay Removal CLKDIVB Clock Divider DCCA (For internal use only) Dynamic Quadrant Clock Enable/Disable DCS Dynamic Clock Selection Multiplexer DLLDELB Slave Delay EHXPLLF Complex PLL OSCF Oscillator for Configuration Clock TR1DLLB Time Reference DLL with Dynamic Delay Adjustment TRDLLB Time Reference DLL 59 : Primitive Library - LatticeECP3 Table 102: Combinatorial Primitives LUT4 4-Input Look Up Table LUT5 5-Input Look Up Table LUT6 6-Input Look Up Table LUT7 7-Input Look Up Table LUT8 8-Input Look Up Table Table 103: Dual Data Rate Cells FPGA Libraries Reference Guide DQSBUFD DDR DQS Buffer Used for DDR3_MEM and DDR3_MEMGEN DQSBUFE DDR DQS Buffer Used for DDR_GENX2 DQSBUFE1 DDR DQS Buffer Used for DDR_GENX2 DQSBUFF DDR DQS Buffer Used for DDR_MEM, DDR2_MEM, and DDR2_MEMGEN DQSBUFG DDR DQS Buffer Used for DDR_GENX1 DQSDLLB DQS DLL for DDR_MEM, DDR2_MEM, and DDR3_MEM ECLKSYNCA ECLK Stop Block IDDRX2D Input DDR for DDR3_MEM, DDR_GENX2, and DDR3_MEMGEN IDDRX2D1 Input DDR for DDR_GENX2 IDDRXD Input DDR for DDR_MEM, DDR2_MEM, DDR_GENX1, and DDR2_MEMGEN IDDRXD1 Input DDR for DDR_GENX1 ODDRTDQA Tri-State for DQ: DDR3_MEM and DDR_GENX2 ODDRTDQSA Tri-State for Single-Ended and Differential DQS: DDR_MEM, DDR2_MEM, and DDR3_MEM ODDRX2D Output DDR for DDR3_MEM and DDR_GENX2 ODDRX2DQSA Output for Differential DQS: DDR3_MEM ODDRXD Output DDR for DDR_MEM, DDR2_MEM, DDR_GENX1, and DDR2_MEMGEN ODDRXD1 Output DDR for DDR_GENX1 ODDRXDQSA Output for Single-Ended and Differential DQS: DDR_MEM, DDR2_MEM, and DDR2_MEMGEN 60 : Primitive Library - LatticeECP3 Table 104: Miscellaneous FPGA Libraries Reference Guide ALU24A 24 Bit Ternary Adder/Subtractor ALU54A 54 Bit Ternary Adder/Subtractor CCU2C Carry-Chain DELAYB Dynamic Delay in PIO DELAYC Fixed Delay in PIO GSR Global Set/Reset JTAGE JTAG (Joint Test Action Group) Controller MULT2 2X2 Multiplier (not DSP) PERREGA Persistent User Register PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PUR Power Up Set/Reset SEDCA Basic SED (Soft Error Detect) SGSR Synchronous Release Global Set/Reset Interface SPIM SPIM Primitive START Startup Controller 61 : Primitive Library - LatticeSC/M Primitive Library - LatticeSC/M This library includes compatible FPGA primitives supported by the LatticeSC and LatticeSCM device families. Adders/Subtractors Comparators Counters Loadable Counters Flip-Flops Input/Output Buffers Latches LatticeSC/M Memory Primitives Logic Gates Miscellaneous Logic Multiplexers PIC Cells PIC Flip-Flops (Input) PIC Flip-Flops (Output) PIC Flip-Flops (Latched) PIC Latches (Input) PIC Shift Registers Read-Only Memory Special Cells Clock Manager/PLL/DLL Dual Data Rate Cells Miscellaneous References For further information, a variety of technical documents for the LatticeSC/M family are available on the Lattice Web site. FPGA Libraries Reference Guide TN1080 - LatticeSC sysCONFIG Usage Guide TN1085 - LatticeSC MPI/System Bus TN1088 - LatticeSC PURESPEED I/O Usage Guide TN1094 - On-Chip Memory Usage Guide for LatticeSC Devices TN1096 - LatticeSC QDR-II SRAM Memory Interface User’s Guide TN1098 - LatticeSC sysCLOCK and PLL/DLL User’s Guide TN1099 - LatticeSC DDR/DDR2 SDRAM Memory Interface User’s Guide TN1101 - Power Calculations and Considerations for LatticeSC Devices 62 : Primitive Library - LatticeSC/M Table 105: Adders/Subtractors FADD2 2 Bit Fast Adder FSUB2 2 Bit Fast Subtractor (two's complement) Table 106: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 107: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CU2 Combinational Logic for 2 Bit Up Counter CD2 Combinational Logic for 2 Bit Down Counter Table 108: Loadable Counters FPGA Libraries Reference Guide LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LB4P3AX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB4P3AY 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset 63 : Primitive Library - LatticeSC/M Table 108: Loadable Counters (Continued) FPGA Libraries Reference Guide LB4P3BX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB4P3DX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB4P3IX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB4P3JX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear LD2P3AY 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD4P3AX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear LD4P3AY 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD4P3BX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD4P3DX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD4P3IX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD4P3JX 4 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset 64 : Primitive Library - LatticeSC/M Table 108: Loadable Counters (Continued) LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU4P3AX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU4P3AY 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU4P3BX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU4P3DX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU4P3IX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU4P3JX 4 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 109: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset 65 : Primitive Library - LatticeSC/M Table 109: Flip-Flops (Continued) FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 110: Input/Output Buffers FPGA Libraries Reference Guide BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB Input Buffer 66 : Primitive Library - LatticeSC/M Table 110: Input/Output Buffers (Continued) IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBW Output Buffer with Tristate OBZ Output Buffer with Tristate OBZPD Output Buffer with Tristate and Pull-down OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 111: Latches FD1S1A Positive Level Data Latch with GSR Used for Clear FD1S1AY Positive Level Data Latch with GSR Used for Preset FD1S1B Positive Level Data Latch with Positive Level Asynchronous Preset FD1S1D Positive Level Data Latch with Positive Level Asynchronous Clear FD1S1I Positive Level Data Latch with Positive Level Synchronous Clear FD1S1J Positive Level Data Latch with Positive Level Synchronous Preset FL1S1A Positive Level Loadable Latch with Positive Select and GSR Used for Clear FL1S1AY Positive Level Loadable Latch with Positive Select and GSR Used for Preset FL1S1B Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Preset FL1S1D Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Clear FL1S1I Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Clear FL1S1J Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Preset Table 112: LatticeSC/M Memory Primitives FPGA Libraries Reference Guide DP16KA 16K Dual Port Block RAM DPR16X2 16 Word by 2 Distributed Dual Port RAM (within PFU) 67 : Primitive Library - LatticeSC/M Table 112: LatticeSC/M Memory Primitives (Continued) FIFO16KA 16K FIFO PDP16KA 16K Pseudo Dual Port Block RAM SP16KA 16 Word by 16 Bit Single Port Block RAM SPR16X2 16 Word by 2 Distributed Single Port RAM (within PFU) Table 113: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR2 2 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate XOR11 11 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate 68 : Primitive Library - LatticeSC/M Table 114: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 115: Multiplexers L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux PIC Cells Table 116: PIC Flip-Flops (Input) FPGA Libraries Reference Guide IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) 69 : Primitive Library - LatticeSC/M Table 117: PIC Flip-Flops (Output) OFE1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and Edge Clock (used in output PIC area only) OFE1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and Edge Clock (used in output PIC area only) OFE1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and Edge Clock (used in output PIC area only) OFE1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and Edge Clock (used in output PIC area only) OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) Table 118: PIC Flip-Flops (Latched) FPGA Libraries Reference Guide ILF2P3BX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, and Positive Level Asynchronous Preset (used in input PIC area only) ILF2P3DX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, and Positive Level Asynchronous Clear (used in input PIC area only) ILF2P3IX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, and Positive Level Synchronous Clear (Clear overrides Enable) (used in input PIC area only) ILF2P3JX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, and Positive Level Synchronous Preset (Preset overrides Enable) (used in input PIC area only) 70 : Primitive Library - LatticeSC/M Table 119: PIC Latches (Input) IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Table 120: PIC Shift Registers ISRX1A Input 1-Bit Shift Register ISRX2A Input 2-Bit Shift Register ISRX4A Input 4-Bit Shift Register OSRX1A Output 1-Bit Shift Register OSRX2A Output 2-Bit Shift Register OSRX4A Output 4-Bit Shift Register Table 121: Read-Only Memory FPGA Libraries Reference Guide ROM16X1 16 Word by 1 bit read-only memory ROM32X1 32 Word by 1 bit read-only memory ROM32X4 32 Word by 4 bit read-only memory ROM64X1 64 Word by 1 bit read-only memory ROM128X1 128 Word by 1 bit read-only memory ROM256X1 256 Word by 1 bit read-only memory 71 : Primitive Library - LatticeSC/M Special Cells Table 122: Clock Manager/PLL/DLL CIDDLLA Clock Injection Delay Removal CIMDLLA Clock Injection Match CLKCNTL Clock Controller CLKDET Clock Detect CLKDIV Clock Divider DCS Dynamic Clock Selection Multiplexer EHXPLLA Enhanced High Performance with Dynamic Input Delay Control PLL OSCA Internal Oscillator SDCDLLA Single Delay Cell DLL TRDLLA Time Reference Delay Table 123: Dual Data Rate Cells IDDRA Input DDR IDDRX1A Input DDR IDDRX2A Input DDR IDDRX4A Input DDR ODDRA Output DDR ODDRXA Output DDR ODDRX2A Output DDR ODDRX4A Output DDR Table 124: Miscellaneous FPGA Libraries Reference Guide DELAY Delay GSR Global Set/Reset JTAGA JTAG Logic Control Circuit PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PUR Power Up Set/Reset PVTIOCTRL PVT Monitor Circuit Controller 72 : Primitive Library - LatticeSC/M Table 124: Miscellaneous (Continued) FPGA Libraries Reference Guide RDBK Readback Controller SGSR Synchronous Release Global Set/Reset Interface STRTUP Startup Controller TSALL Global Tristate Interface 73 : Primitive Library - LatticeXP2 Primitive Library - LatticeXP2 This library includes compatible FPGA primitives supported by the LatticeXP2 device family. Arithmetic Functions Comparators Counters Loadable Counters Flip-Flops Input/Output Buffers LatticeXP2 Memory Primitives Logic Gates Miscellaneous Logic Multiplexers Multipliers in DSP Blocks PIC Cells PIC Flip-Flops (Input) PIC Flip-Flops (Output) PIC Latches (Input) Read-Only Memory Special Cells Clock Manager/PLL/DLL Combinatorial Primitives Dual Data Rate Cells Miscellaneous References For further information, a variety of technical notes for the LatticeXP2 family are available on the Lattice web site. FPGA Libraries Reference Guide TN1142 - LatticeXP2 Configuration Encryption and Security Usage Guide TN1138 - LatticeXP2 High-Speed I/O Interface TN1137 - LatticeXP2 Memory Usage Guide TN1130 - LatticeXP2 Soft Error Detection (SED) Usage Guide TN1126 - LatticeXP2 sysCLOCK PLL Design and Usage Guide TN1141 - LatticeXP2 sysCONFIG Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide TN1136 - LatticeXP2 sysIO Usage Guide TN1139 - Power Estimation and Management for LatticeXP2 Devices 74 : Primitive Library - LatticeXP2 Table 125: Arithmetic Functions FADD2B 2 Bit Fast Adders/Subtractors FADSU2 2 Bit Fast Adder/Subtractor (two's complement) FSUB2B 2 Bit Subtractor MULT2 2X2 Multiplier (not DSP) Table 126: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 127: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CD2 Combinational Logic for 2 Bit Down Counter CU2 Combinational Logic for 2 Bit Up Counter Table 128: Loadable Counters FPGA Libraries Reference Guide LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear 75 : Primitive Library - LatticeXP2 Table 128: Loadable Counters (Continued) LD2P3AY 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 129: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) 76 : Primitive Library - LatticeXP2 Table 129: Flip-Flops (Continued) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 130: Input/Output Buffers FPGA Libraries Reference Guide BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up 77 : Primitive Library - LatticeXP2 Table 130: Input/Output Buffers (Continued) BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB CMOS Input Buffer IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBCO Output Complementary Buffer OBW Output Buffer with Tristate OBZ Output Buffer with Tristate OBZPD Output Buffer with Tristate and Pull-down OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 131: LatticeXP2 Memory Primitives DP16KB True Dual Port Block RAM DPR16X4A Distributed Pseudo Dual Port RAM (within PFU) DPR16X4B Distributed Pseudo Dual Port RAM (within PFU) PDPW16KB Pseudo Dual Port Block RAM SP16KB Single Port Block RAM SPR16X4A Distributed Single Port RAM (within PFU) SPR16X4B Distributed Single Port RAM (within PFU) SSPIA SSPI TAG Memory STFA Store to Flash Primitive Table 132: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate 78 : Primitive Library - LatticeXP2 Table 132: Logic Gates (Continued) ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR2 2 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate XOR11 11 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate Table 133: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 134: Multiplexers FPGA Libraries Reference Guide L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux 79 : Primitive Library - LatticeXP2 Table 134: Multiplexers (Continued) MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux Table 135: Multipliers in DSP Blocks FPGA Libraries Reference Guide MULT18X18ADDSUBB 18x18 Multiplier Add/Subtract Multipliers in DSP blocks MULT18X18ADDSUBSUMB 18x18 Multiplier Add/Subtract and SUM Multipliers in DSP blocks MULT18X18B 18x18 Multiplier in DSP blocks MULT18X18MACB 18x18 Multiplier Accumulate Multipliers in DSP blocks MULT36X36B 36x36 Multiplier Multipliers in DSP blocks MULT9X9ADDSUBB 9x9 Multiplier Add/Subtract Multipliers in DSP blocks MULT9X9ADDSUBSUMB 9x9 Multiplier Add/Subtract and SUM Multipliers in DSP blocks MULT9X9B 9x9 Multiplier Multipliers in DSP blocks 80 : Primitive Library - LatticeXP2 PIC Cells Table 136: PIC Flip-Flops (Input) IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Table 137: PIC Flip-Flops (Output) FPGA Libraries Reference Guide OFE1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and Edge Clock (used in output PIC area only) OFE1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and Edge Clock (used in output PIC area only) OFE1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and Edge Clock (used in output PIC area only) OFE1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and Edge Clock (used in output PIC area only) OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) 81 : Primitive Library - LatticeXP2 Table 138: PIC Latches (Input) IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Table 139: Read-Only Memory ROM16X1 16 Word by 1 bit read-only memory ROM32X1 32 Word by 1 bit read-only memory ROM64X1 64 Word by 1 bit read-only memory ROM128X1 128 Word by 1 bit read-only memory ROM256X1 256 Word by 1 bit read-only memory Special Cells Table 140: Clock Manager/PLL/DLL CLKDIVB Clock Divider DCS Dynamic Clock Selection Multiplexer EHXPLLE Complex PLL EHXPLLE1 Complex PLL EPLLD Enhanced PLL EPLLD1 Enhanced PLL OSCE Oscillator for configuration clock Table 141: Combinatorial Primitives FPGA Libraries Reference Guide ORCALUT4 4-Input Look Up Table ORCALUT5 5-Input Look Up Table ORCALUT6 6-Input Look Up Table 82 : Primitive Library - LatticeXP2 Table 141: Combinatorial Primitives (Continued) ORCALUT7 7-Input Look Up Table ORCALUT8 8-Input Look Up Table Table 142: Dual Data Rate Cells DQSBUFC DQS Delay Function and Clock Polarity Selection Logic DQSDLL DLL Used as DDR Memory DQS DLL IDDRFXA DDR Generic Input with Full Clock Transfer (x1 Gearbox) IDDRMFX1A DDR Input and DQS to System Clock Transfer Registers with Full Clock Cycle Transfer IDDRMX1A DDR Input and DQS to System Clock Transfer Registers with Half Clock Cycle Transfer IDDRX2B DDR Generic Input with 2x Gearing Ratio IDDRXC DDR Generic Input ODDRMXA DDR Output Registers ODDRX2B DDR Generic Output with 2x Gearing Ratio ODDRXC DDR Generic Output Table 143: Miscellaneous FPGA Libraries Reference Guide CCU2B Carry-Chain DELAYB Dynamic Delay in PIO GSR Global Set/Reset IOWAKEUPA XP2 Wake-up Controller JTAGE JTAG (Joint Test Action Group) Controller PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PUR Power Up Set/Reset SEDBA XP2 SED BASIC SEDBB XP2 SED BASIC for One Shot Mode SGSR Synchronous Release Global Set/Reset Interface SSPIA XP2 SSPI TAG Memory START Startup Controller STFA XP2 Store to Flash Primitive 83 : FPGA Libraries Reference Guide 84 : Primitive Library - MachXO and Platform Manager Primitive Library - MachXO and Platform Manager This library includes compatible primitives supported by the MachXO and Platform Manager devices. Adders/Subtractors Comparators Counters Loadable Counters Flip-Flops Input/Output Buffers Latches Logic Gates MachXO and Platform Manager Memory Primitives Miselleaneous Logic Multiplexers Multipliers Read-Only Memory Combinatorial Primitives Miscellaneous References For further information, a variety of technical notes for the MachXO family are available on the Lattice Web site. TN1086 - MachXO JTAG Programming and Configuration User’s Guide TN1087 - Minimizing System Interruption During Configuration Using TransFR Technology TN1089 - MachXO sysCLOCK PLL Design and Usage Guide TN1090 - Power Calculations and Considerations for MachXO Devices TN1091 - MachXO sysIO Usage Guide TN1092 - MachXO Memory Usage Guide TN1097 - MachXO Density Migration IEEE 1149.1 Boundary Scan Testability in Lattice Devices Table 144: Adders/Subtractors FPGA Libraries Reference Guide FADD2 2 Bit Fast Adder FSUB2 2 Bit Fast Subtractor (two’s complement) FADSU2 2 Bit Fast Adder/Subtractor (two’s complement) 85 : Primitive Library - MachXO and Platform Manager Table 145: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 146: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CD2 Combinational Logic for 2 Bit Down Counter CU2 Combinational Logic for 2 Bit Up Counter Table 147: Loadable Counters FPGA Libraries Reference Guide LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear LD2P3AY 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) 86 : Primitive Library - MachXO and Platform Manager Table 147: Loadable Counters (Continued) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 148: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear 87 : Primitive Library - MachXO and Platform Manager Table 148: Flip-Flops (Continued) FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 149: Input/Output Buffers FPGA Libraries Reference Guide BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB Input Buffer IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer 88 : Primitive Library - MachXO and Platform Manager Table 149: Input/Output Buffers OB Output Buffer OBW Output Buffer with Tristate OBZ Output Buffer with Tristate OBZPD Output Buffer with Tristate and Pull-down OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 150: Latches FD1S1A Positive Level Data Latch with GSR Used for Clear FD1S1AY Positive Level Data Latch with GSR Used for Preset FD1S1B Positive Level Data Latch with Positive Level Asynchronous Preset FD1S1D Positive Level Data Latch with Positive Level Asynchronous Clear FD1S1I Positive Level Data Latch with Positive Level Synchronous Clear FD1S1J Positive Level Data Latch with Positive Level Synchronous Preset FL1S1A Positive Level Loadable Latch with Positive Select and GSR Used for Clear FL1S1AY Positive Level Loadable Latch with Positive Select and GSR Used for Preset FL1S1B Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Preset FL1S1D Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Clear FL1S1I Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Clear FL1S1J Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Preset Table 151: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate 89 : Primitive Library - MachXO and Platform Manager Table 151: Logic Gates (Continued) ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR2 2 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate XOR11 11 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate Table 152: MachXO and Platform Manager Memory Primitives FPGA Libraries Reference Guide DP8KB 8K Dual Port Block RAM DPR16X2B 16 Word by 2 Dual Port RAM (within PFU) FIFO8KA 8K FIFO PDP8KB 8K Pseudo Dual Port Block RAM SP8KB 8 Word by 8 Bit Single Port Block RAM SPR16X2B 16 Word by 2 Bit Positive Edge Triggered Write Synchronous Single Port RAM Memory with Positive Write Enable and Positive Write Port Enable (1-Slice) 90 : Primitive Library - MachXO and Platform Manager Table 153: Miselleaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 154: Multiplexers L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux Table 155: Multipliers MULT2 2x2 Multiplier Table 156: Read-Only Memory FPGA Libraries Reference Guide ROM16X1 16 Word by 1 bit read-only memory ROM32X1 32 Word by 1 bit read-only memory ROM64X1 64 Word by 1 bit read-only memory ROM128X1 128 Word by 1 bit read-only memory ROM256X1 256 Word by 1 bit read-only memory 91 : Primitive Library - MachXO and Platform Manager Special Cells Table 157: Combinatorial Primitives ORCALUT4 4-Input Look Up Table ORCALUT5 5-Input Look Up Table ORCALUT6 6-Input Look Up Table ORCALUT7 7-Input Look Up Table ORCALUT8 8-Input Look Up Table Table 158: Miscellaneous FPGA Libraries Reference Guide CCU2 Carry Chain EHXPLLC Enhanced Extended Performance PLL GSR Global Set/Reset JTAGD JTAG (Joint Test Action Group) Controller OSCC Internal Oscillator PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PUR Power Up Set/Reset TSALL Global Tristate Interface 92 : Primitive Library - MachXO2 and Platform Manager 2 Primitive Library - MachXO2 and Platform Manager 2 This library includes compatible primitives supported by the MachXO2 device family. Adders/Subtractors Comparators Counters Bi-Directional Loadable Counters Loadable Down Counters Loadable Up Counters Flip-Flops Input/Output Buffer Latches Logic Gates PIC Cells Flip-Flops (Input) Flip-Flops (Output) PIC Latches (Input) MachXO2/Platform Manager 2 Memory Primitives Miscellaneous Logic Multiplexers Multipliers Read-Only Memory Special Cells Clock/PLL/DLL Combinatorial Primitives Dual Data Rate Cells Miscellaneous References For further information, a variety of technical notes for the MachXO2 family are available on the Lattice Web site. FPGA Libraries Reference Guide TN1198 - Power Estimation and Management for MachXO2 Device TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide TN1201 - Memory Usage Guide for MachXO2 Devices TN1202 - MachXO2 sysIO Usage Guide TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices 93 : Primitive Library - MachXO2 and Platform Manager 2 TN1204 - MachXO2 Programming and Configuration Usage Guide TN1205 - MachXO2 User Flash Memory and Hardened Control Functions TN1206 - MachXO2 Soft Error Detection (SED) Usage Guide Table 159: Adders/Subtractors FADD2B Fast 2 Bit Adder FSUB2B 2 Bit Subtractor FADSU2 2 Bit Fast Adder/Subtractor (two’s complement) Table 160: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 161: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CD2 Combinational Logic for 2 Bit Down Counter CU2 Combinational Logic for 2 Bit Up Counter Table 162: Bi-Directional Loadable Counters FPGA Libraries Reference Guide LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) 94 : Primitive Library - MachXO2 and Platform Manager 2 Table 163: Loadable Down Counters LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear LD2P3AY 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 164: Loadable Up Counters LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 165: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset 95 : Primitive Library - MachXO2 and Platform Manager 2 Table 165: Flip-Flops (Continued) FPGA Libraries Reference Guide FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset 96 : Primitive Library - MachXO2 and Platform Manager 2 Table 166: Input/Output Buffer BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB Input Buffer IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBCO Output Complementary Buffer OBZ Output Buffer with Tristate OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 167: Latches FPGA Libraries Reference Guide FD1S1A Positive Level Data Latch with GSR Used for Clear FD1S1AY Positive Level Data Latch with GSR Used for Preset FD1S1B Positive Level Data Latch with Positive Level Asynchronous Preset FD1S1D Positive Level Data Latch with Positive Level Asynchronous Clear FD1S1I Positive Level Data Latch with Positive Level Synchronous Clear FD1S1J Positive Level Data Latch with Positive Level Synchronous Preset FL1S1A Positive Level Loadable Latch with Positive Select and GSR Used for Clear FL1S1AY Positive Level Loadable Latch with Positive Select and GSR Used for Preset FL1S1B Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Preset 97 : Primitive Library - MachXO2 and Platform Manager 2 Table 167: Latches (Continued) FL1S1D Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Clear FL1S1I Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Clear FL1S1J Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Preset Table 168: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate XOR11 11 Input Exclusive OR Gate XOR2 2 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate 98 : Primitive Library - MachXO2 and Platform Manager 2 Table 168: Logic Gates (Continued) XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate PIC Cells Table 169: Flip-Flops (Input) IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Table 170: Flip-Flops (Output) OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) Table 171: PIC Latches (Input) FPGA Libraries Reference Guide IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) 99 : Primitive Library - MachXO2 and Platform Manager 2 Table 171: PIC Latches (Input) (Continued) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Table 172: MachXO2/Platform Manager 2 Memory Primitives DP8KC 8K True Dual Port Block RAM DPR16X4C Distributed Pseudo Dual Port RAM FIFO8KB 8K FIFO Block RAM PDPW8KC Pseudo Dual Port Block RAM SP8KC 8K Single Port Block RAM SPR16X4C Distributed Single Port RAM Table 173: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 174: Multiplexers L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux Table 175: Multipliers MULT2 FPGA Libraries Reference Guide 2x2 Multiplier 100 : Primitive Library - MachXO2 and Platform Manager 2 Table 176: Read-Only Memory ROM128X1A 128 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM16X1A 16 Word by 1 Bit Read-Only Memory ROM256X1A 256 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM32X1A 32 Word by 1 Bit Read-Only Memory ROM64X1A 64 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Special Cells Table 177: Clock/PLL/DLL CLKDIVC Clock Divider DCCA Dynamic Quadrant Clock Enable/Disable DCMA Dynamic Clock Mux DLLDELC Clock Shifting for ECLK or PCLK ECLKBRIDGECS ECLK Bridge Block Clock Select ECLKSYNCA ECLK Stop Block EHXPLLJ GPLL for MachXO2 OSCH Oscillator for MachXO2 PLLREFCS PLL Dynamic Reference Clock Switching Table 178: Combinatorial Primitives FPGA Libraries Reference Guide LUT4 4-Input Look Up Table LUT5 5-Input Look Up Table LUT6 6-Input Look Up Table LUT7 7-Input Look Up Table LUT8 8-Input Look Up Table 101 : Primitive Library - MachXO2 and Platform Manager 2 Table 179: Dual Data Rate Cells DQSBUFH DQS Circuit for DDR Memory DQSDLLC Master DLL for Generating Required Delay IDDRXE Input for Generic DDR X1 Using 1:2 Gearing IDDRX2E Input for Generic DDR X2 Using 1:4 Gearing IDDRX4B Input for Generic DDR X4 Using 1:8 Gearing IDDRDQSX1A Input for DDR1/2 Memory IDDRX71A 7:1 LVDS Input Supporting 1:7 Gearing ODDRXE Output for Generic DDR X1 Using 2:1 Gearing ODDRX2E Output for Generic DDR X2 Using 4:1 Gearing ODDRX4B Output for Generic DDR X4 Using 8:1 Gearing ODDRDQSX1A Output for DDR1/2 Memory ODDRX71A 7:1 LVDS Output TDDRA Tristate for DQ/DQS of PIC Cell Table 180: Miscellaneous FPGA Libraries Reference Guide BCINRD Dynamic Bank Controller InRD BCLVDSO Dynamic Bank Controller LVDS CCU2D Carry Chain CLKFBBUFA Dummy Feedback Delay Between PLL clk Output and PLL fb Port DELAYD Dynamic Delay for Bottom Bank DELAYE Fixed Delay in PIO EFB Embedded Function Block GSR Global Set/Reset INRDB Input Reference and Differential Buffer JTAGF JTAG (Joint Test Action Group) Controller LVDSOB LVDS Output Buffer PCNTR Power Controller PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PG Power Guard 102 : Primitive Library - MachXO2 and Platform Manager 2 Table 180: Miscellaneous (Continued) FPGA Libraries Reference Guide PUR Power Up Set/Reset SEDFA Soft Error Detect in Basic Mode SEDFB Soft Error Detect in One Shot Mode SGSR Synchronous Release Global Set/Reset Interface START Startup Controller TSALL Global Tristate Interface 103 : Primitive Library - MachXO3L Primitive Library - MachXO3L This library includes compatible primitives supported by the MachXO3L device family. Adders/Subtractors Comparators Counters Bi-Directional Loadable Counters Loadable Down Counters Loadable Up Counters Flip-Flops Input/Output Buffer Latches Logic Gates PIC Cells Flip-Flops (Input) Flip-Flops (Output) PIC Latches (Input) MachXO2 Memory Primitives Miscellaneous Logic Multiplexers Multipliers Read-Only Memory Special Cells Clock/PLL/DLL Combinatorial Primitives Dual Data Rate Cells Miscellaneous References For further information, a variety of technical notes for the MachXO3l family are available on the Lattice Web site. FPGA Libraries Reference Guide TN1281 - Implementing High-Speed Interfaces with MachXO3L Devices TN1291 - MachXO3L Hardware Checklist TN1279 - MachXO3L Programming and Configuration Usage Guide TN1292 - MachXO3L SED Usage Guide TN1282 - MachXO3L sysCLOCK PLL Design and Usage Guide TN1280 - MachXO3L sysIO Usage Guide 104 : Primitive Library - MachXO3L TN1290 - Memory Usage Guide for MachXO3L Devices TN1293 - Using Hardened Control Functions in MachXO3L Devices TN1294 - Using Hardened Control Functions in MachXO3L Devices Reference Guide Table 181: Adders/Subtractors FADD2B Fast 2 Bit Adder FSUB2B 2 Bit Subtractor FADSU2 2 Bit Fast Adder/Subtractor (two’s complement) Table 182: Comparators AGEB2 A Greater Than Or Equal To B (2 bit) ALEB2 A Less Than Or Equal To B (2 bit) ANEB2 A Not Equal To B (2 bit) Table 183: Counters CB2 Combinational Logic for 2-Bit Bidirectional Counter CD2 Combinational Logic for 2 Bit Down Counter CU2 Combinational Logic for 2 Bit Up Counter Table 184: Bi-Directional Loadable Counters LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear FPGA Libraries Reference Guide 105 : Primitive Library - MachXO3L Table 184: Bi-Directional Loadable Counters (Continued) LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 185: Loadable Down Counters LD2P3AX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable, GSR Used for Clear LD2P3AY 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable, GSR Used for Preset LD2P3BX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Preset LD2P3DX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Asynchronous Clear LD2P3IX 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LD2P3JX 2 Bit Positive Edge Triggered Loadable Down Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Table 186: Loadable Up Counters FPGA Libraries Reference Guide LU2P3AX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Clear LU2P3AY 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable, GSR Used for Preset LU2P3BX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Preset LU2P3DX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Asynchronous Clear LU2P3IX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) LU2P3JX 2 Bit Positive Edge Triggered Loadable Up Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) 106 : Primitive Library - MachXO3L Table 187: Flip-Flops FPGA Libraries Reference Guide FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Clear FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR used for Preset FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Preset FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR used for Clear FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) 107 : Primitive Library - MachXO3L Table 187: Flip-Flops (Continued) FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Clear FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR used for Preset Table 188: Input/Output Buffer BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-down BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional and Pull-up BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate BiDirectional in keepermode IB Input Buffer IBPD Input Buffer with Pull-down IBPU Input Buffer with Pull-up ILVDS LVDS Input Buffer OB Output Buffer OBCO Output Complementary Buffer OBZ Output Buffer with Tristate OBZPU Output Buffer with Tristate and Pull-up OLVDS LVDS Output Buffer Table 189: Latches FPGA Libraries Reference Guide FD1S1A Positive Level Data Latch with GSR Used for Clear FD1S1AY Positive Level Data Latch with GSR Used for Preset FD1S1B Positive Level Data Latch with Positive Level Asynchronous Preset FD1S1D Positive Level Data Latch with Positive Level Asynchronous Clear FD1S1I Positive Level Data Latch with Positive Level Synchronous Clear FD1S1J Positive Level Data Latch with Positive Level Synchronous Preset 108 : Primitive Library - MachXO3L Table 189: Latches (Continued) FL1S1A Positive Level Loadable Latch with Positive Select and GSR Used for Clear FL1S1AY Positive Level Loadable Latch with Positive Select and GSR Used for Preset FL1S1B Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Preset FL1S1D Positive Level Loadable Latch with Positive Select and Positive Level Asynchronous Clear FL1S1I Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Clear FL1S1J Positive Level Loadable Latch with Positive Select and Positive Level Synchronous Preset Table 190: Logic Gates FPGA Libraries Reference Guide AND2 2 Input AND Gate AND3 3 Input AND Gate AND4 4 Input AND Gate AND5 5 Input AND Gate ND2 2 Input NAND Gate ND3 3 Input NAND Gate ND4 4 Input NAND Gate ND5 5 Input NAND Gate OR2 2 Input OR Gate OR3 3 Input OR Gate OR4 4 Input OR Gate OR5 5 Input OR Gate NR2 2 Input NOR Gate NR3 3 Input NOR Gate NR4 4 Input NOR Gate NR5 5 Input NOR Gate XNOR2 2 Input Exclusive NOR Gate XNOR3 3 Input Exclusive NOR Gate XNOR4 4 Input Exclusive NOR Gate XNOR5 5 Input Exclusive NOR Gate 109 : Primitive Library - MachXO3L Table 190: Logic Gates (Continued) XOR11 11 Input Exclusive OR Gate XOR2 2 Input Exclusive OR Gate XOR21 21 Input Exclusive OR Gate XOR3 3 Input Exclusive OR Gate XOR4 4 Input Exclusive OR Gate XOR5 5 Input Exclusive OR Gate PIC Cells Table 191: Flip-Flops (Input) IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Table 192: Flip-Flops (Output) FPGA Libraries Reference Guide OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) 110 : Primitive Library - MachXO3L Table 193: PIC Latches (Input) IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Table 194: MachXO2 Memory Primitives DP8KC 8K True Dual Port Block RAM DPR16X4C Distributed Pseudo Dual Port RAM FIFO8KB 8K FIFO Block RAM PDPW8KC Pseudo Dual Port Block RAM SP8KC 8K Single Port Block RAM SPR16X4C Distributed Single Port RAM Table 195: Miscellaneous Logic INV Inverter VHI Logic High Generator VLO Logic Low Generator Table 196: Multiplexers FPGA Libraries Reference Guide L6MUX21 LUT-6 2 to 1 Multiplexer MUX161 16-Input Mux within the PFU (4 Slices) MUX21 2 to 1 Mux MUX321 32-Input Mux within the PFU (8 Slices) MUX41 4 to 1 Mux MUX81 8 to 1 Mux 111 : Primitive Library - MachXO3L Table 197: Multipliers MULT2 2x2 Multiplier Table 198: Read-Only Memory ROM128X1A 128 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM16X1A 16 Word by 1 Bit Read-Only Memory ROM256X1A 256 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs ROM32X1A 32 Word by 1 Bit Read-Only Memory ROM64X1A 64 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Special Cells Table 199: Clock/PLL/DLL CLKDIVC Clock Divider DCCA Dynamic Quadrant Clock Enable/Disable DCMA Dynamic Clock Mux DLLDELC Clock Shifting for ECLK or PCLK ECLKBRIDGECS ECLK Bridge Block Clock Select ECLKSYNCA ECLK Stop Block EHXPLLJ GPLL for MachXO2 OSCH Oscillator for MachXO2 PLLREFCS PLL Dynamic Reference Clock Switching Table 200: Combinatorial Primitives FPGA Libraries Reference Guide LUT4 4-Input Look Up Table LUT5 5-Input Look Up Table LUT6 6-Input Look Up Table LUT7 7-Input Look Up Table LUT8 8-Input Look Up Table 112 : Primitive Library - MachXO3L Table 201: Dual Data Rate Cells DQSDLLC Master DLL for Generating Required Delay IDDRXE Input for Generic DDR X1 Using 1:2 Gearing IDDRX2E Input for Generic DDR X2 Using 1:4 Gearing IDDRX71A 7:1 LVDS Input Supporting 1:7 Gearing ODDRXE Output for Generic DDR X1 Using 2:1 Gearing ODDRX2E Output for Generic DDR X2 Using 4:1 Gearing ODDRX71A 7:1 LVDS Output Table 202: Miscellaneous FPGA Libraries Reference Guide BCINRD Dynamic Bank Controller InRD BCLVDSO Dynamic Bank Controller LVDS CCU2D Carry Chain CLKFBBUFA Dummy Feedback Delay Between PLL clk Output and PLL fb Port DELAYD Dynamic Delay for Bottom Bank DELAYE Fixed Delay in PIO EFB Embedded Function Block GSR Global Set/Reset INRDB Input Reference and Differential Buffer JTAGF JTAG (Joint Test Action Group) Controller LVDSOB LVDS Output Buffer PCNTR Power Controller PFUMX 2-Input Mux within the PFU, C0 used for Selection with Positive Select PG Power Guard PUR Power Up Set/Reset SEDFA Soft Error Detect in Basic Mode SEDFB Soft Error Detect in One Shot Mode SGSR Synchronous Release Global Set/Reset Interface START Startup Controller TSALL Global Tristate Interface 113 : Alphanumeric Primitives List Alphanumeric Primitives List This section lists all the Lattice library primitives in alphanumeric order. A AGEB2 "A" Greater Than Or Equal To "B" Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A0, A1, B0, B1, CI OUTPUT: GE FPGA Libraries Reference Guide 114 : Alphanumeric Primitives List Description AGEB2 is a 2-bit comparator that can be cascaded together to build larger comparators. It has two 2-bit inputs and a carry-in input. The carry-in (CI) on the first stage should be tied HIGH. The compare-out (GE) output is HIGH if A[1:0] >= B[1:0] and LOW if A[1:0] < B[1:0]. To build larger comparators, tie the GE on the lower stage to CI on the upper stage. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ALEB2 "A" Less Than Or Equal To "B" Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A0, A1, B0, B1, CI FPGA Libraries Reference Guide 115 : Alphanumeric Primitives List OUTPUT: LE Description ALEB2 is a 2-bit comparator that can be cascaded together to build larger comparators. It has two 2-bit inputs and a carry-in input. The carry-in (CI) on the first stage should be tied HIGH. The compare-out (LE) output is HIGH if A[1:0] <= B[1:0] and LOW if A[1:0] > B[1:0]. To build larger comparators, tie the LE on the lower stage to CI on the upper stage. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ALU24A 24 Bit Ternary Adder/Subtractor Architectures Supported: ECP5 LatticeECP3 INPUTS: MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5, MA4, MA3, MA2, MA1, MA0, MB17, MB16, MB15, MB14, MB13, MB12, MB11, MB10, MB9, MB8, MB7, MB6, MB5, MB4, MB3, MB2, MB1, MB0, CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16, CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1, CIN0, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, FPGA Libraries Reference Guide 116 : Alphanumeric Primitives List CLK0, RST3, RST2, RST1, RST0, SIGNEDIA, SIGNEDIB, OPADDNSUB, OPCINSEL OUTPUTS: R23, R22, R21, R20, R19, R18, R17, R16, R15, R14, R13, R12, R11, R10, R9, R8, R7, R6, R5, R4, R3, R2, R1, R0 ATTRIBUTES: REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODE_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODE_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODE_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODE_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODE_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODE_1_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" FPGA Libraries Reference Guide 117 : Alphanumeric Primitives List ALU24A Attribute Description Table 203: Name Description REG_OUTPUT_CLK ALU register for output clock selection REG_OUTPUT_CLK ALU register for output clock enable selection REG_OUTPUT_RST ALU register for output reset selection REG_OPCODE_0_CLK OPCODE register clock selection REG_OPCODE_0_CE OPCODE register clock enable selection REG_OPCODE_0_RST OPCODE register reset selection REG_OPCODE_1_CLK OPCODE pipeline register clock selection REG_OPCODE_1_CE OPCODE pipeline register clock enable selection REG_OPCODE_1_RST OPCODE pipeline register reset selection GSR Global set reset selection RESETMODE Reset mode selection ALU24A Port Description Table 204: Input/Output Port Name Capture Name Type Size (Buses Only) Description I CLK0 CLK0 Bit N/A Clock Input I CLK1 CLK1 Bit N/A Clock Input I CLK2 CLK2 Bit N/A Clock Input I CLK3 CLK3 Bit N/A Clock Input I CE0 CE0 Bit N/A Clock Enable Input I CE1 CE1 Bit N/A Clock Enable Input I CE2 CE2 Bit N/A Clock Enable Input I CE3 CE3 Bit N/A Clock Enable Input I RST0 RST0 Bit N/A Reset Input I RST1 RST1 Bit N/A Reset Input I RST2 RST2 Bit N/A Reset Input I RST3 RST3 Bit N/A Reset Input I SIGNEDIA1 SIGNEDIA Bit N/A Input A Sign Selection I SIGNEDIB1 SIGNEDIB Bit N/A Input A Sign Selection FPGA Libraries Reference Guide 118 : Alphanumeric Primitives List Table 204: Input/Output Port Name Capture Name Type Size (Buses Only) Description I 1 MA MA[35:18] Bus 17:0 Input A from Multiplier I MB1 MB[35:18] Bus 17:0 Input B from Multiplier I CIN CIN[50:27] Bus 23:0 CIN Input I OPCINSEL OP5 Bit N/A CIN Select selects CIN (010) or GND (000) I OPADDNSUB OP7 Bit N/A Add/Subtract selection O R R[43:34] Bus 23:0 Output Notes: 1. A and B refer to the first and second multiplier of the slice and not the Ax and Bx inputs to multiplier x. Note The synthesis tool will not use this block to inference DSP function. ALU24B 24-bit Ternary Adder/Subtractor for 9x9 Mode Architectures Supported: FPGA Libraries Reference Guide ECP5 119 : Alphanumeric Primitives List INPUTS: MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5, MA4, MA3, MA2, MA1, MA0, MB17, MB16, MB15, MB14, MB13, MB12, MB11, MB10, MB9, MB8, MB7, MB6, MB5, MB4, MB3, MB2, MB1, MB0, CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16, CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1, CIN0, CBF23, CBF22, CBF21, CBF20, CBF19, CBF18, CBF17, CBF16, CBF15, CBF14, CBF13, CBF12, CBF11, CBF10, CBF9, CBF8, CBF7, CBF6, CBF5, CBF4, CBF3, CBF2, CBF1, CBF0, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SIGNEDIA, SIGNEDIB, OPADDNSUB, OPCINSEL OUTPUTS: R23, R22, R21, R20, R19, R18, R17, R16, R15, R14, R13, R12, R11, R10, R9, R8, R7, R6, R5, R4, R3, R2, R1, R0, CO23, CO22, CO21, CO20, CO19, CO18, CO17, CO16, CO15, CO14, CO13, CO12, CO11, CO10, CO9, CO8, CO7, CO6, CO5, CO4, CO3, CO2, CO1, CO0 ATTRIBUTES: REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODE_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODE_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODE_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODE_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODE_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODE_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTCFB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTCFB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTCFB_RST: "RST0" (default), "RST1", "RST2", "RST3" CLK0_DIV: "ENABLED" (default), "DISABLED" CLK1_DIV: "ENABLED" (default), "DISABLED" CLK2_DIV: "ENABLED" (default), "DISABLED" CLK3_DIV: "ENABLED" (default), "DISABLED" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" FPGA Libraries Reference Guide 120 : Alphanumeric Primitives List * When REG_INPUTCFB_CLK = NONE, then it means that the CFB ports are not used, and C -> Cr using the C0/C1_CLK attributes. * When REG_INPUTCFB_CLK != NONE, then the CFB ports are being used and CFB -> CO is using these attributes. C -> Cr is unregistered and a DRC can check to make sure C0/C1_CLK = NONE ALU24B Attribute Description Table 205: FPGA Libraries Reference Guide Attribute Name Values Default Value GUI Access REG_OUTPUT_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OUTPUT_CE CE0, CE1, CE2, CE3 CE0 Y REG_OUTPUT_RST RST0, RST1, RST2, RST3 RST0 Y REG_OPCODE_0_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OPCODE_0_CE CE0, CE1, CE2, CE3 CE0 Y REG_OPCODE_0_RST RST0, RST1, RST2, RST3 RST0 Y REG_OPCODE_1_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OPCODE_1_CE CE0, CE1, CE2, CE3 CE0 Y REG_OPCODE_1_RST RST0, RST1, RST2, RST3 RST0 Y REG_INPUTCFB_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_INPUTCFB_CE CE0, CE1, CE2, CE3 CE0 Y REG_INPUTCFB_RST RST0, RST1, RST2, RST3 RST0 Y CLK0_DIV ENABLED, DISABLED ENABLED Y CLK1_DIV ENABLED, DISABLED ENABLED Y CLK2_DIV ENABLED, DISABLED ENABLED Y CLK3_DIV ENABLED, DISABLED ENABLED Y RESETMODE SYNC, ASYNC SYNC Y GSR ENABLED, DISABLED ENABLED N 121 : Alphanumeric Primitives List ALU24B Port Description Table 206: Port Name I/O Description CE[3:0] I Clock Enable Inputs CLK[3:0] I Clock Input RST[3:0] I Reset inputs SIGNEDIA I Sign Bit for Input A SIGNEDIB I Sign Bit for Input B MA[17:0] I Input A MB[17:0] I Input B CFB[23:0] I C Input for Highspeed CIN[23:0] I Carry In Input OPADDNSUB I Add/Sub Selector OPCINSEL I CarryIn Selector R[23:0] O Sum CO[23:0] O Sum – Special Routing output used for Highspeed option ALU54A 54 Bit Ternary Adder/Subtractor Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP3 122 : Alphanumeric Primitives List INPUTS: A35, A34, A33, A32, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21, A20, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B35, B34, B33, B32, B31, B30, B29, B28, B27, B26, B25, B24, B23, B22, B21, B20, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, C53, C52, C51, C50, C49, C48, C47, C46, C45, C44, C43, C42, C41, C40, C39, C38, C37, C36, C35, C34, C33, C32, C31, C30, C29, C28, C27, C26, C25, C24, C23, C22, C21, C20, C19, C18, C17, C16, C15, C14, C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, C0, MA35, MA34, MA33, MA32, MA31, MA30, MA29, MA28, MA27, MA26, MA25, MA24, MA23, MA22, MA21, MA20, MA19, MA18, MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5, MA4, MA3, MA2, MA1, MA0, MB35, MB34, MB33, MB32, MB31, MB30, MB29, MB28, MB27, MB26, MB25, MB24, MB23, MB22, MB21, MB20, MB19, MB18, MB17, MB16, MB15, MB14, MB13, MB12, MB11, MB10, MB9, MB8, MB7, MB6, MB5, MB4, MB3, MB2, MB1, MB0, CIN53, CIN52, CIN51, CIN50, CIN49, CIN48, CIN47, CIN46, CIN45, CIN44, CIN43, CIN42, CIN41, CIN40, CIN39, CIN38, CIN37, CIN36, CIN35, CIN34, CIN33, CIN32, CIN31, CIN30, CIN29, CIN28, CIN27, CIN26, CIN25, CIN24, CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16, CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1, CIN0, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SIGNEDIA, SIGNEDIB, SIGNEDCIN, OP10, OP9, OP8, OP7, OP6, OP5, OP4, OP3, OP2, OP1, OP0 FPGA Libraries Reference Guide 123 : Alphanumeric Primitives List OUTPUTS: R53, R52, R51, R50, R49, R48, R47, R46, R45, R44, R43, R42, R41, R40, R39, R38, R37, R36, R35, R34, R33, R32, R31, R30, R29, R28, R27, R26, R25, R24, R23, R22, R21, R20, R19, R18, R17, R16, R15, R14, R13, R12, R11, R10, R9, R8, R7, R6, R5, R4, R3, R2, R1, R0, EQZ, EQZM, EQOM, EQPAT, EQPATB, OVER, UNDER, OVERUNDER, SIGNEDR ATTRIBUTES: REG_INPUTC0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTC0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTC0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTC1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTC1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTC1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEOP0_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEOP0_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODEOP0_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEOP1_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEOP0_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEOP0_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODEOP0_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEOP1_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEIN_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEIN_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODEIN_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEIN_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEIN_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODEIN_1_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 124 : Alphanumeric Primitives List REG_OUTPUT0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_FLAG_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_FLAG_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_FLAG_RST: "RST0" (default), "RST1", "RST2", "RST3" MCPAT_SOURCE: "STATIC" (default), "DYNAMIC" MASKPAT_SOURCE: "STATIC" (default), "DYNAMIC" MASK01: any 14-bit hexadecimal value (default: all zeros) MCPAT: any 14-bit hexadecimal value (default: all zeros) MASKPAT: any 14-bit hexadecimal value (default: all zeros) RNDPAT: any 14-bit hexadecimal value (default: all zeros) GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" MULT9_MODE: "DISABLED" (default), "ENABLED" FORCE_ZERO_BARREL_SHIFT: "DISABLED" (default), "ENABLED" LEGACY: "DISABLED" (default), "ENABLED" FPGA Libraries Reference Guide 125 : Alphanumeric Primitives List ALU54A Attribute Description Table 207: FPGA Libraries Reference Guide Name Description REG_INPUTC0_CLK Input C register selection for C[26:0] REG_INPUTC0_CE Input C clock enable selection for C[26:0] REG_INPUTC0_RST Input C reset selection for C[26:0] REG_INPUTC1_CLK Input C register selection for C[53:27] REG_INPUTC1_CE Input C clock enable selection for C[53:27] REG_INPUTC1_RST Input C reset selection for C[53:27] REG_OPCODEOP0_0_CLK OPCODE register clock selection for oper [0] REG_OPCODEOP0_0_CE OPCODE register clock enable selection for oper [3:0] REG_OPCODEOP0_0_RST OPCODE register reset selection for oper [3:0] REG_OPCODEOP1_0_CLK OPCODE register clock selection for oper [3:1] REG_OPCODEOP0_1_CLK OPCODE pipeline register clock selection for oper [3:1] REG_OPCODEOP0_1_CE OPCODE pipeline register clock enable selection for oper [3:0] REG_OPCODEOP0_1_RST OPCODE pipeline register reset selection for oper [3:0] REG_OPCODEOP1_1_CLK OPCODE pipeline register clock selection for oper [3:1] REG_OPCODEIN_0_CLK OPCODE input register clock for InA[1:0], InB[1:0], InC[2:0] REG_OPCODEIN_0_CE OPCODE input register clock enable for InA[1:0], InB[1:0], InC[2:0] REG_OPCODEIN_0_RST OPCODE input register reset for InA[1:0], InB[1:0], InC[2:0] REG_OPCODEIN_1_CLK OPCODE input pipeline register clock for InA[1:0], InB[1:0], InC[2:0] REG_OPCODEIN_1_CE OPCODE input pipeline register clock enable for InA[1:0], InB[1:0], InC[2:0] REG_OPCODEIN_1_RST OPCODE input pipeline register reset for InA[1:0], InB[1:0], InC[2:0] REG_OUTPUT0_CLK ALU register for LSB output 17:0 clock selection REG_OUTPUT0_CE ALU register for LSB output 17:0 clock enable selection REG_OUTPUT0_RST ALU register for LSB output 17:0 reset selection REG_OUTPUT1_CLK ALU register for MSB output 53:18 clock selection 126 : Alphanumeric Primitives List Table 207: Name Description REG_OUTPUT1_CE ALU register for MSB output 53:18 clock enable selection REG_OUTPUT1_RST ALU register for MSB output 53:18 reset selection REG_FLAG_CLK Flag register clock selection REG_FLAG_CE Flag register clock enable selection REG_FLAG_RST Flag pipeline register reset selection MASKPAT_SOURCE1 EQPAT/EQPATB source setting MCPAT_SOURCE1 MEM Cell Pattern source setting MASK01 Mask for EQZM/EQOM MASKPAT Mask for EQPAT/EQPATB MCPAT MEM Cell Pattern RNDPAT Rounding Pattern GSR Global set reset selection RESETMODE Reset mode selection MULT9_MODE Operation in Mult9 mode FORCE_ZERO_BARREL_SH Forces zeros to 18 MSB of shift for barrel shift IFT LEGACY Required to support LatticeECP2 backward compatibility Notes: 1. MASKPAT_SOURCE and MCPAT_SOURCE cannot be DYNAMIC at the same time since both use C[53:0]. There should be a DRC in the software to check this. ALU54A Port Description Table 208: Input/Output Port Name Capture Name Type Size (Buses Only) Description I CLK0 CLK0 Bit N/A Clock Input I CLK1 CLK1 Bit N/A Clock Input I CLK2 CLK2 Bit N/A Clock Input I CLK3 CLK3 Bit N/A Clock Input I CE0 CE0 Bit N/A Clock Enable Input I CE1 CE1 Bit N/A Clock Enable Input I CE2 CE2 Bit N/A Clock Enable Input I CE3 CE3 Bit N/A Clock Enable Input FPGA Libraries Reference Guide 127 : Alphanumeric Primitives List Table 208: Input/Output Port Name Capture Name Type Size (Buses Only) Description I RST0 RST0 Bit N/A Reset Input I RST1 RST1 Bit N/A Reset Input I RST2 RST2 Bit N/A Reset Input I RST3 RST3 Bit N/A Reset Input I SIGNEDIA1 SIGNEDIA Bit N/A Input A Sign Selection I SIGNEDIB1 SIGNEDIB Bit N/A Input A Sign Selection I A1 A Bus 35:0 Input A from Multiplier I B1 B Bus 35:0 Input B from Multiplier I C C Bus 53:0 C Input I MA1 MA Bus 35:0 Input A from Multiplier I MB1 MB Bus 35:0 Input B from Multiplier I CIN CIN Bus 53:0 CIN Input I OP OP Bus 10:0 Opcode for ALU Operation Selection I SIGNEDCIN SIGNEDCIN Bit N/A CIN Right Shift, Signed or Unsigned Control O R R Bus 53:0 Output O EQZ F[7] Bit N/A Equal to Zero O EQZM F[6] Bit N/A Equal to Zero with Mask O EQPOM F[5] Bit N/A Equal to One with Mask O EQPAT F[4] Bit N/A Equal to Pat with Mask O EQPATB F[3] Bit N/A Equal to Bit Inverted Pat with Mask O OVER F[2] Bit N/A Accumulator Overflow O UNDER F[1] Bit N/A Accumulator Underflow O OVERUNDER F[0] Bit N/A Either Over or Under Flow O SIGNEDR SIGNEDR Bit N/A Signed or Unsigned Output of ALU Notes: 1. A and B refer to the first and second multiplier of the slice and not the Ax and Bx inputs to multiplier x. FPGA Libraries Reference Guide 128 : Alphanumeric Primitives List ALU54B 54-bit Ternary Adder/Subtractor for Highspeed Architectures Supported: ECP5 INPUTS: A35, A34, A33, A32, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21, A20, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B35, B34, B33, B32, B31, B30, B29, B28, B27, B26, B25, B24, B23, B22, B21, B20, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, C53, C52, C51, C50, C49, C48, C47, C46, C45, C44, C43, C42, C41, C40, C39, C38, C37, C36, C35, C34, C33, C32, C31, C30, C29, C28, C27, C26, C25, C24, C23, C22, C21, C20, C19, C18, C17, C16, C15, C14, C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, C0, CFB53, CFB52, CFB51, CFB50, CFB49, CFB48, CFB47, CFB46, CFB45, CFB44, CFB43, CFB42, CFB41, CFB40, CFB39, CFB38, CFB37, CFB36, CFB35, CFB34, CFB33, CFB32, CFB31, CFB30, CFB29, CFB28, CFB27, CFB26, CFB25, CFB24, CFB23, CFB22, CFB21, CFB20, CFB19, CFB18, CFB17, CFB16, CFB15, CFB14, CFB13, CFB12, CFB11, CFB10, CFB9, CFB8, CFB7, CFB6, CFB5, CFB4, CFB3, CFB2, CFB1, CFB0, MA35, MA34, MA33, MA32, MA31, MA30, MA29, MA28, MA27, MA26, MA25, MA24, MA23, MA22, MA21, MA20, MA19, MA18, FPGA Libraries Reference Guide 129 : Alphanumeric Primitives List MA17, MA16, MA15, MA14, MA13, MA12, MA11, MA10, MA9, MA8, MA7, MA6, MA5, MA4, MA3, MA2, MA1, MA0, MB35, MB34, MB33, MB32, MB31, MB30, MB29, MB28, MB27, MB26, MB25, MB24, MB23, MB22, MB21, MB20, MB19, MB18, MB17, MB16, MB15, MB14, MB13, MB12, MB11, MB10, MB9, MB8, MB7, MB6, MB5, MB4, MB3, MB2, MB1, MB0, CIN53, CIN52, CIN51, CIN50, CIN49, CIN48, CIN47, CIN46, CIN45, CIN44, CIN43, CIN42, CIN41, CIN40, CIN39, CIN38, CIN37, CIN36, CIN35, CIN34, CIN33, CIN32, CIN31, CIN30, CIN29, CIN28, CIN27, CIN26, CIN25, CIN24, CIN23, CIN22, CIN21, CIN20, CIN19, CIN18, CIN17, CIN16, CIN15, CIN14, CIN13, CIN12, CIN11, CIN10, CIN9, CIN8, CIN7, CIN6, CIN5, CIN4, CIN3, CIN2, CIN1, CIN0, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SIGNEDIA, SIGNEDIB, SIGNEDCIN, OP10, OP9, OP8, OP7, OP6, OP5, OP4, OP3, OP2, OP1, OP0 OUTPUTS: R53, R52, R51, R50, R49, R48, R47, R46, R45, R44, R43, R42, R41, R40, R39, R38, R37, R36, R35, R34, R33, R32, R31, R30, R29, R28, R27, R26, R25, R24, R23, R22, R21, R20, R19, R18, R17, R16, R15, R14, R13, R12, R11, R10, R9, R8, R7, R6, R5, R4, R3, R2, R1, R0, CO53, CO52, CO51, CO50, CO49, CO48, CO47, CO46, CO45, CO44, CO43, CO42, CO41, CO40, CO39, CO38, CO37, CO36, CO35, CO34, CO33, CO32, CO31, CO30, CO29, CO28, CO27, CO26, CO25, CO24, CO23, CO22, CO21, CO20, CO19, CO18, CO17, CO16, CO15, CO14, CO13, CO12, CO11, CO10, CO9, CO8, CO7, CO6, CO5, CO4, CO3, CO2, CO1, CO0, EQZ, EQZM, EQOM, EQPAT, EQPATB, OVER, UNDER, OVERUNDER, SIGNEDR ATTRIBUTES: REG_INPUTC0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTC0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTC0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTC1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTC1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTC1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEOP0_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEOP0_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODEOP0_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEOP1_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEOP0_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEOP0_1_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 130 : Alphanumeric Primitives List REG_OPCODEOP0_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEOP1_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEIN_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEIN_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODEIN_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OPCODEIN_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OPCODEIN_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OPCODEIN_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_FLAG_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_FLAG_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_FLAG_RST: "RST0" (default), "RST1", "RST2", "RST3" MCPAT_SOURCE: "STATIC" (default), "DYNAMIC" MASKPAT_SOURCE: "STATIC" (default), "DYNAMIC" MASK01: any 14-bit hexadecimal value (default: all zeros) MCPAT: any 14-bit hexadecimal value (default: all zeros) MASKPAT: any 14-bit hexadecimal value (default: all zeros) RNDPAT: any 14-bit hexadecimal value (default: all zeros) REG_INPUTCFB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTCFB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTCFB_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 131 : Alphanumeric Primitives List CLK0_DIV: "ENABLED" (default), "DISABLED" CLK1_DIV: "ENABLED" (default), "DISABLED" CLK2_DIV: "ENABLED" (default), "DISABLED" CLK3_DIV: "ENABLED" (default), "DISABLED" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" MULT9_MODE: "DISABLED" (default), "ENABLED" FORCE_ZERO_BARREL_SHIFT: "DISABLED" (default), "ENABLED" LEGACY: "DISABLED" (default), "ENABLED" Notes: *REG_INPUT_C0 corresponds to the lower 27 bits of the C Input. *REG_INPUT_C1 corresponds to the upper 27 bits of the C Input. *REG_OUTPUT0* corresponds to [17:0] of R and REG_OUTPUT1_* corresponds to [53:18] of R. *When REG_INPUTCFB_CLK = NONE, then it means that the CFB ports are not used, and C -> Cr using the C0/C1_CLK attributes. *When REG_INPUTCFB_CLK != NONE, then the CFB ports are being used and CFB -> CO is using these attributes. C -> Cr is unregistered and a DRC can check to make sure C0/C1_CLK = NONE. FPGA Libraries Reference Guide 132 : Alphanumeric Primitives List ALU54B Attribute Description Table 209: FPGA Libraries Reference Guide Attribute Name Values Default Value GUI Access REG_INPUTC0_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_INPUTC0_CE CE0, CE1, CE2, CE3 CE0 Y REG_INPUTC0_RST RST0, RST1, RST2, RST3 RST0 Y REG_INPUTC1_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_INPUTC1_CE CE0, CE1, CE2, CE3 CE0 Y REG_INPUTC1_RST RST0, RST1, RST2, RST3 RST0 Y REG_OPCODEOP0_0_ CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OPCODEOP0_0_ CE CE0, CE1, CE2, CE3 CE0 Y REG_OPCODEOP0_0_ RST RST0, RST1, RST2, RST3 RST0 Y REG_OPCODEOP1_0_ CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OPCODEOP0_1_ CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OPCODEOP0_1_ CE CE0, CE1, CE2, CE3 CE0 Y REG_OPCODEOP0_1_ RST RST0, RST1, RST2, RST3 RST0 Y REG_OPCODEOP1_1_ CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OPCODEIN_0_CL K NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OPCODEIN_0_CE CE0, CE1, CE2, CE3 CE0 Y REG_OPCODEIN_0_RS RST0, RST1, RST2, T RST3 RST0 Y REG_OPCODEIN_1_CL K NONE Y REG_OPCODEIN_1_CE CE0, CE1, CE2, CE3 CE0 Y REG_OPCODEIN_1_RS RST0, RST1, RST2, T RST3 RST0 Y REG_OUTPUT0_CLK NONE Y NONE, CLK0, CLK1, CLK2, CLK3 NONE, CLK0, CLK1, CLK2, CLK3 133 : Alphanumeric Primitives List Table 209: FPGA Libraries Reference Guide Attribute Name Values Default Value GUI Access REG_OUTPUT0_CE CE0, CE1, CE2, CE3 CE0 Y REG_OUTPUT0_RST RST0, RST1, RST2, RST3 RST0 Y REG_OUTPUT1_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_OUTPUT1_CE CE0, CE1, CE2, CE3 CE0 Y REG_OUTPUT1_RST RST0, RST1, RST2, RST3 RST0 Y REG_FLAG_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_FLAG_CE CE0, CE1, CE2, CE3 CE0 Y REG_FLAG_RST RST0, RST1, RST2, RST3 RST0 Y MCPAT_SOURCE STATIC, DYNAMIC STATIC Y MASKPAT_SOURCE STATIC, DYNAMIC STATIC Y MASK01 0x00000000000000 to 0xFFFFFFFFFFFFFF 0x000000000 Y 00000 REG_INPUTCFB_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE Y REG_INPUTCFB_CE CE0, CE1, CE2, CE3 CE0 Y REG_INPUTCFB_RST RST0, RST1, RST2, RST3 RST0 Y CLK0_DIV ENABLED, DISABLED ENABLED Y CLK1_DIV ENABLED, DISABLED ENABLED Y CLK2_DIV ENABLED, DISABLED ENABLED Y CLK3_DIV ENABLED, DISABLED ENABLED Y MCPAT 0x00000000000000 to 0xFFFFFFFFFFFFFF 0x000000000 Y 00000 MASKPAT 0x00000000000000 to 0xFFFFFFFFFFFFFF 0x000000000 Y 00000 RNDPAT 0x00000000000000 to 0xFFFFFFFFFFFFFF 0x000000000 Y 00000 GSR ENABLED, DISABLED ENABLED N RESETMODE SYNC, ASYNC SYNC Y MULT9_MODE ENABLED, DISABLED DISABLED N 134 : Alphanumeric Primitives List Table 209: FPGA Libraries Reference Guide Attribute Name Values Default Value GUI Access FORCE_ZERO_BARRE L_SHIFT ENABLED, DISABLED DISABLED N LEGACY ENABLED, DISABLED DISABLED Y 135 : Alphanumeric Primitives List ALU24B Port Description Table 210: Port Name I/O Description CE[3:0] I Clock Enable Inputs CLK[3:0] I Clock Input RST[3:0] I Reset inputs SIGNEDIA I Sign Bit for Input A SIGNEDIB I Sign Bit for Input B SIGNEDCIN I Sign Bit for Carrin In Input A I Input A B I Input B C I Carry In Input/Highspeed Input CFB[23:0] I C Input for Highspeed MA[17:0] I Input A MB[17:0] I Input B CIN[23:0] I Carry In Input OP[10:0] I Opcode R[53:0] O Sum CO[53:0] O Sum – Special Routing output used for Highspeed option EQZ O Equal to Zero Flag EQZM O Equal to Zero with Mask Flag EQOM O Equal to One with Mask Flag EQPAT O Equal to Pattern with Mask Flag EQPATB O Equal to Bit Inverted Pattern with Mask Flag OVER O Accumulator Overflow UNDER O Accumulator Underflow OVERUNDER O Either Over on Underflow SIGNEDR O Sign Bit for Sum Output AND2 2 Input AND Gate Architectures Supported: FPGA Libraries Reference Guide 136 : ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 Alphanumeric Primitives List INPUTS: A, B OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. AND3 3 Input AND Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO 137 : MachXO2 MachXO3L Platform Manager Platform Manager 2 Alphanumeric Primitives List INPUTS: A, B, C OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. AND4 4 Input AND Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 Platform Manager Platform Manager 2 138 : Alphanumeric Primitives List INPUTS: A, B, C, D OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. AND5 5 Input AND Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D, E OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 139 : Alphanumeric Primitives List ANEB2 "A" Not Equal To "B" Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A0, A1, B0, B1, CI OUTPUT: NE Description ANEB2 is a 2-bit comparator that can be cascaded together to build larger comparators. It has two 2-bit inputs and a carry-in input. The carry-in (CI) on the first stage should be tied LOW. The compare-out (NE) output is LOW if A[1:0] = B[1:0] and HIGH otherwise. To build larger comparators, tie the NE on the lower stage to CI on the upper stage. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 140 : B BB CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate – BiDirectional Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: I, T OUTPUT: O IOPUT: B FPGA Libraries Reference Guide 141 : Truth Table Table 211: INPUTS OUTPUTS BIDIRECTIONAL I T O B X 1 U Z X 1 1 1 X 1 0 0 0 0 0 0 1 0 1 1 X = Don’t care U = Unknown When TSALL=0, O=U, B=Z For PU/PD buffers, when TSALL=0, O and B will be pulled up or pulled down, respectively. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. BBPD CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate and Pull-down – BiDirectional Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager 142 : Platform Manager 2 INPUTS: I, T OUTPUT: O IOPUT: B Truth Table Table 212: INPUTS OUTPUTS BIDIRECTIONAL I T O B X 1 U Pull0 X 1 1 1 X 1 0 0 0 0 0 0 1 0 1 1 X = Don’t care U = Unknown When TSALL=0, O=U, B=Z For PU/PD buffers, when TSALL=0, O and B will be pulled up or pulled down, respectively. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 143 : BBPU CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate and Pull-up – BiDirectional Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: I, T OUTPUT: O IOPUT: B FPGA Libraries Reference Guide 144 : Truth Table Table 213: INPUTS OUTPUTS BIDIRECTIONAL I T O B X 1 U Pull1 X 1 1 1 X 1 0 0 0 0 0 0 1 0 1 1 X = Don’t care U = Unknown When TSALL=0, O=U, B=Z For PU/PD buffers, when TSALL=0, O and B will be pulled up or pulled down, respectively. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. BBW CMOS Input 6mA Sink 3mA Source Sinklim Output Buffer with Tristate – BiDirectional in keepermode Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 145 : INPUTS: I, T OUTPUT: O IOPUT: B Truth Table Table 214: INPUTS OUTPUTS BIDIRECTIONAL I T O B 0 1 0 weak 0 1 1 1 weak 1 X = Don’t care U = Unknown Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. BCINRD Dynamic Bank Controller InRD Architectures Supported: FPGA Libraries Reference Guide ECP5 MachXO2 MachXO3L Platform Manager 2 146 : INPUT: INRDENI ATTRIBUTES: BANKID: 0 (default), 1, 2, 3, 4, 5 Description The dynamic bank controller is used to power down banks InRD (Input Referenced and Differential) and LVDS Outputs. The dynamic bank controller is represented with two primitives: BCINRD and BCLVDSO. The INRDENI input is the dynamic signal to enable and disable bank InRD. For more information, refer to the following technical note on the Lattice web site: TN1198 - Power Estimation and Management for MachXO2 Devices BCLVDSO Dynamic Bank Controller LVDS Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUT: LVDSENI Description The dynamic bank controller is used to power down banks InRD (Input Referenced and Differential) and LVDS Outputs. The dynamic bank controller is represented with two primitives: BCLVDSO and BCINRD. The LVDSENI input is the dynamic signal to enable and disable bank InRD. For more information, refer to the following technical note on the Lattice web site: FPGA Libraries Reference Guide 147 : TN1198 - Power Estimation and Management for MachXO2 Devices BCLVDSOB Bank Controller for LVDS Outut Buffers Architectures Supported: ECP5 INPUT: LVDSENI ATTRIBUTES: BANKID: 2 (default), 2, 3, 6, 7 Description The dynamic bank controller is used to power down banks InRD (Input Referenced and Differential) and LVDS outputs. The LVDSENI input is the dynamic signal to enable and disable LVDS outputs. FPGA Libraries Reference Guide 148 : C CB2 Combinational Logic for 2-Bit Bidirectional Counter Architectures Supported: LatticeECP3 LatticeXP2 LatticeSC/M LatticeECP2/M LatticeECP/EC LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: CI, PC0, PC1, CON OUTPUTS: CO, NC0, NC1 Description This primitive realizes the combinational logic needed to implement a 2-bit bidirectional counter by using ripple elements. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 149 : CCU2 Carry-Chain Architectures Supported LatticeECP/EC LatticeXP MachXO Platform Manager INPUT: CIN, A0, B0, C0, D0, A1, B1, C1, D1 OUTPUT: S0, S1, COUT0, COUT1 ATTRIBUTES: INIT0: hexadecimal value (default: 16’h0000) INIT1: hexadecimal value (default: 16’h0000) INJECT1_0: "YES" (default), "NO" INJECT1_1: "YES" (default), "NO" Note The attributes need to be defined when CCU2 is instantiated. CCU2B Carry-Chain Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeXP2 150 : INPUTS: A0, B0, C0, D0, A1, B1, C1, D1, CIN OUTPUTS: S0, S1, COUT ATTRIBUTES: INIT0: hexadecimal value (default: 16’h0000) INIT1: hexadecimal value (default: 16’h0000) INJECT1_0: "YES" (default), "NO" INJECT1_1: "YES" (default), "NO" Note The attributes need to be defined when CCU2B is instantiated. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. CCU2C Carry Chain Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP3 151 : INPUTS: CIN, A1, B1, C1, D1, A0, B0, C0, D0 OUTPUTS: S1, S0, COUT ATTRIBUTES: INIT0: hexadecimal value (default: 16’h0000) INIT1: hexadecimal value (default: 16’h0000) INJECT1_0: "YES" (default), "NO" INJECT1_1: "YES" (default), "NO" CCU2D Carry Chain Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 152 : INPUTS: CIN, A1, B1, C1, D1, A0, B0, C0, D0 OUTPUTS: S1, S0, COUT ATTRIBUTES: INIT0: hexadecimal value (default: 16’h0000) INIT1: hexadecimal value (default: 16’h0000) INJECT1_0: "YES" (default), "NO" INJECT1_1: "YES" (default), "NO" CD2 Combinational Logic for 2-Bit Down-Counter Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 153 : INPUTS: CI, PC0, PC1 OUTPUTS: CO, NC0, NC1 Description This primitive realizes the combinational logic needed to implement a 2-bit down-counter using ripple elements. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. CIDDLLA Clock Injection Delay Removal Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeSC/M 154 : INPUTS: CLKI, CLKFB, RSTN, ALUHOLD, SMIADDR9, SMIADDR8, SMIADDR7, SMIADDR6, SMIADDR5, SMIADDR4, SMIADDR3, SMIADDR2, SMIADDR1, SMIADDR0, SMIRD, SMIWR, SMICLK, SMIWDATA, SMIRSTN OUTPUTS: CLKOP, CLKOS, LOCK, SMIRDATA ATTRIBUTES: CLKOP_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_PHASE: 360 + (0, 11, 22, 45) (default: 360) CLKOS_FPHASE: 0 (default), 11, 22, 45 CLKOP_DUTY50: "DISABLED" (default), "ENABLED" CLKOS_DUTY50: "DISABLED" (default), "ENABLED" CLKI_DIV: 1 (default), 2, 4 CLKOS_DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" CLKOS_FDEL_ADJ: "DISABLED" (default), "ENABLED" ALU_LOCK_CNT: integers 3~15 (default: 3) ALU_UNLOCK_CNT: integers 3~15 (default: 3) GLITCH_TOLERANCE: integers 0~7 (default: 2 for LatticeECP2/M; 0 for LatticeSC/M) ALU_INIT_CNTVAL: 0 (default), 4, 8, 12, 16, 32, 48, 64, 72 LOCK_DELAY: integers 0~1000 (in ns) (default: 100) (LatticeSC/M only) SMI_OFFSET: 0x400~0x7FF (default: 12’h410) (LatticeSC/M only) MODULE_TYPE: "CIDDLLA" (LatticeSC/M only) IP_TYPE: "CIDDLLA" Description CIDLLA removes the clock tree delay, aligning the external feedback clock to the reference clock. It has a single output coming from the fourth delay block. It features include clock tree insertion removal, N*Tcyc=4*Tdel + Tinj, lock achieved starting from minimum delay, and when it goes through all delay stages, the minimum frequency is 1/(4*Tdel). Its requirements include external feedback only, that you must use all delay cells, a maximum frequency of 700MHz, and a minimum frequency of 100MHz. For more information, refer to the following technical notes on the Lattice web site: FPGA Libraries Reference Guide 155 : TN1098 - LatticeSC sysCLOCK and PLL/DLL User’s Guide TN1103 - LatticeECP2/M sysCLOCK PLL/DLL Design and Usage Guide CIDDLLB Clock Injection Delay Removal Architectures Supported: LatticeECP3 INPUTS: CLKI, CLKFB, RSTN, ALUHOLD, INCI, GRAYI5, GRAYI4, GRAYI3, GRAYI2, GRAYI1, GRAYI0 OUTPUTS: CLKOP, CLKOS, LOCK ATTRIBUTES: CLKOP_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_FPHASE: 0 (default), 11, 22, 33, 45, 56, 67, 78, 90, 101, 112, 123, 135, 146, 157, 169, 191, 202, 214, 225, 236, 247, 259, 281, 292, 304, 315, 326, 337, 349 CLKI_DIV: 1 (default), 2, 4 CLKOS_DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" ALU_LOCK_CNT: integers 3~15 (default: 3) ALU_UNLOCK_CNT: integers 3~15 (default: 3) GLITCH_TOLERANCE: integers 0~7 (default: 2) ALU_INIT_CNTVAL: integers 0~31 (default: 0) FPGA Libraries Reference Guide 156 : LOCK_DELAY: integers 0~1000 (in ns) (default: 100) CLKOP_DUTY50: "DISABLED" (default), "ENABLED" CLKOS_DUTY50: "DISABLED" (default), "ENABLED" DEL0_GRAY: "DISABLED" (default), "ENABLED" DEL1_GRAY: "DISABLED" (default), "ENABLED" DEL2_GRAY: "DISABLED" (default), "ENABLED" DEL3_GRAY: "DISABLED" (default), "ENABLED" DEL4_GRAY: "DISABLED" (default), "ENABLED" Description CIDDLLB specifies the Clock Injection Delay Removal operation mode for the general purpose DLL (GDLL). In this mode, the feedback connection is supported and the CLKFB is captured on the CIDDLLB primitive. Port Description Table 215: Port Name Optional Logical Capture Port Name ALUHOLD YES HOLD GRAYI[5:0] YES GRAY_IN[5:0] INCI YES INC_IN RSTN YES RSTN CLKFB NO CLKFB CLKI NO CLKI CLK90 YES CLK90 CLKOP NO CLKOP CLKOS YES CLKOS LOCK NO LOCK For more information, refer to the following technical note on the Lattice web site: FPGA Libraries Reference Guide TN1178 - LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide 157 : CIMDLLA Clock Injection Match Architectures Supported: LatticeSC/M INPUTS: CLKI, CLKFB, RSTN, ALUHOLD, UDDCNTL, SMIADDR9, SMIADDR8, SMIADDR7, SMIADDR6, SMIADDR5, SMIADDR4, SMIADDR3, SMIADDR2, SMIADDR1, SMIADDR0, SMIRD, SMIWR, SMICLK, SMIWDATA, SMIRSTN OUTPUTS: CLKOP, CLKOS, LOCK, DCNTL0, DCNTL1, DCNTL2, DCNTL3, DCNTL4, DCNTL5, DCNTL6, DCNTL7, DCNTL8, SMIRDATA ATTRIBUTES: CLKOS_FPHASE: 0 (default), 11, 22, 45 CLKOS_DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" ALU_LOCK_CNT: integers 3~15 (default: 3) ALU_UNLOCK_CNT: integers 3~15 (default: 3) GLITCH_TOLERANCE: integers 0~7 (default: 0) DCNTL_ADJVAL: integers -127~127 (default: 0) SMI_OFFSET: 0x400~0x7FF (default: 12’h410) FPGA Libraries Reference Guide 158 : LOCK_DELAY: integers 0~1000 (in ns) (default: 100) CLKOS_FDEL_ADJ: "DISABLED" (default), "ENABLED" MODULE_TYPE: "CIMDLLA" IP_TYPE: "CIMDLLA" Description CIMDLLA matches the clock injection to one delay cell. This allows other inputs to take the registered ALU outputs and negate the clock injection delay. Its features include single clock output, lock achieved starting from minimum delay, output control bits, and allowance for +/- delay on these output control bits. Its requirements include external feedback (CLKOP) only, a maximum frequency of 700MHz, a minimum frequency of100MHz, and a maximum delay compensation of 3.9ns. CLKCNTL Clock Controller Architectures Supported: LatticeSC/M INPUTS: D, CE, CLK OUTPUT: Q ATTRIBUTES: CLKMODE: "ECLK" (default), "SCLK" Description The CLKCNTL is the post-amble detect circuit required for the DQS input. The DQS generation will use the DELAY, TRDLLA and the CLKCNTL primitives. The CLKCNTL primitive’s instantiation rules allow the CLK input to be fed via secondary (local) routing paths, rather than constraining the routing to be via the Edge Clock tree. The Edge Clock tree is optimized for minimum skew rather than minimum delay. Although the Edge Clock delay is not a problem at the DDR/DDR2 clock frequencies originally targeted (300 MHz), the FPGA Libraries Reference Guide 159 : CLKCNTL is capable of operating at much higher frequencies (beyond 1 GHz). If the CLK input path utilizes the faster local routing resources, it is capable of properly gating an 800 MHz clock, as is required for testing of DDR3 memory devices. This requires changes to the mapper. The CLKMODE attribute is supported for the CLKCNTL primitive. The legal values are ECLK (default) and SCLK. CLKDET Clock Detect Architectures Supported: LatticeSC/M INPUTS: CLK, RST OUTPUT: Q Truth Table Table 216: INPUTS OUTPUTS CK RST Q X 1 0 0 1 X = Don’t care CLKDIV Clock Divider Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 160 : INPUTS: CLKI, LSR OUTPUTS: CLKO, ELSR ATTRIBUTES: DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" Description Clock divider. Refer to the following technical note on the Lattice web site for more details. TN1098 - LatticeSC sysCLOCK and PLL/DLL User’s Guide CLKDIVB Clock Divider Architectures Supported: LatticeECP2/M LatticeECP3 LatticeXP2 INPUTS: CLKI, RST, RELEASE OUTPUTS: CDIV1, CDIV2, CDIV4, CDIV8 FPGA Libraries Reference Guide 161 : ATTRIBUTES: GSR: "DISABLED" (default), "ENABLED" Description Clock divider. See the following table for port description. Table 217: Port Name I/O Definition RELEASE I Asserting the RELEASE signal releases the divided outputs, synchronous to selected input source. RST I Asserting the RST signal forces CDIV1 low synchronously, and forces CDIV2, CDIV4 and CDIV8 low asynchronously. De-asserting RST synchronously allows all outputs to toggle. CLKI I Input clock. CDIV1 O Divide by 1 output port. CDIV2 O Divide by 2 output port. CDIV4 O Divide by 4 output port. CDIV8 O Divide by 8 output port. Refer to the following technical notes on the Lattice web site for more details. TN1178 - LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide TN1126 - LatticeXP2 sysCLOCK PLL Design and Usage Guide TN1103 - LatticeECP2/M sysCLOCK PLL/DLL Design and Usage Guide CLKDIVC Clock Divider Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 162 : INPUTS: CLKI, RST, ALIGNWD OUTPUTS: CDIV1, CDIVX ATTRIBUTES: GSR: "DISABLED" (default), "ENABLED" DIV: 2.0 (default), 3.5, 4.0 Description A MachXO2/Platform Manager 2 device contains four CLKDIV with 1200 LUTs or more. The CLKDIV, or “clock divider” block, generates clock outputs one half, divided by three and a half or one quarter of the frequency of the input clock. It also generates an output clock of the same frequency as the input clock. All the outputs match input to output delay. CLKDIV takes its inputs from the outputs of ECLK muxes. The divided outputs of the CLKDIV drive the primary clock center muxes directly and are also available on CIB ports for distribution to routing or secondary high fan out nets. The figure below represents the block diagram of CLKDIV: FPGA Libraries Reference Guide 163 : The table below shows CLKDIVC IO description. Table 218: Port Name I/O Unused Nets Description RST I Tie low Asserting the RST signal asynchronously forces all outputs low. De-asserting RST synchronously allows all outputs to toggle. CLKI I Tie low Input clock. ALIGNWD I Tie low This signal is used for word alignment. CDIV1 O Dangle Divide by 1 output port. CDIVX O Dangle Divide by 2.0, 3.5, or 4.0 output port. Refer to the following technical note on the Lattice web site for more details. TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide CLKDIVF Clock Divider Architectures Supported: ECP5 INPUTS: CLKI, RST, ALIGNWD OUTPUTS: CDIVX ATTRIBUTES: GSR: "DISABLED" (default), "ENABLED" DIV: 2.0 (default) FPGA Libraries Reference Guide 164 : Description Clock divider. See the following table for port description. Table 219: Port Name I/O Unused Nets Description RST I Tie low Asynchronous, Active High Reset CLKI I Tie low Input clock. ALIGNWD I Tie low This signal is used for word alignment. CDIVX O Dangle Divide by output port. CLKFBBUFA Dummy Feedback Delay Between PLL clk Output and PLL fb Port Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUT: A OUTPUT: Z Description The CLKFBBUFA is the dummy feedback path from the PLL clk output to the PLL feedback port to cancel out clock path variation over PVT. The table below shows the IO description. Table 220: FPGA Libraries Reference Guide Port Name I/O Description A I Clock input coming from the PLL CLKOP output Z O Delayed output to the PLL fb port 165 : CU2 Combinational Logic for 2-Bit Up-Counter Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: CI, PC0, PC1 OUTPUTS: CO, NC0, NC1 Description This primitive realizes the combinational logic needed to implement a 2-bit upcounter using ripple elements. When CI=0, NC[0:1]=PC[0:1] and CO=0 When CI=1, NC[0:1]=PC[0:1]+1, and CO=1 if PC[0:1]=11 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 166 : D DCCA Dynamic Quadrant Clock Enable/Disable Architectures Supported: ECP5 MachXO2 MachXO3L Platform Manager 2 INPUTS: CLKI, CE OUTPUT: CLKO Description DCCA is the dynamic quadrant clock enable/disable primitive. In each quadrant, the dynamic quadrant clock enable/disable is available on the output of the center mux for the primary clocks CLK[5:0]. The dynamic quadrant clock enable/disable feature lets the internal logic control the quadrant primary clock network. When a clock network is disabled, all the logic fed by the clock network does not toggle, reducing the overall power consumption of the device. You need to instantiate a primitive (DCCA) in order to control the enable/disable function. The DCCA IO description is shown below. Table 221: FPGA Libraries Reference Guide Port Name I/O Unused Nets Description CLKI I Tie low Input clock CE I Tie high Clock enable CLKO O Dangle Output clock 167 : DCCA Usage with VHDL Library Instantiation library lattice; use lattice.components.all; Component Declaration component DCCA port (CLKI : in std_logic; CE : in std_logic; CLKO : out std_logic); end component; DCCA Instantiation I1: DCCA port map (CLKI => CLKI; CE => CE; CLKO => CLKO); end component; DCCA Usage with Verilog HDL Component Declaration module DCCA (CLKI, CE, CLKO); input CLKI; input CE; output CLKO; endmodule DCCA Instantiation DCCA I1 (.CLKI (CLKI), .CE (CE), .CLKO (CLKO)); For more information, refer to the following technical note on the Lattice web site: TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide DCMA Dynamic Clock Mux Architectures Supported: FPGA Libraries Reference Guide MachXO2 168 : MachXO3L Platform Manager 2 INPUTS: CLK0, CLK1, SEL OUTPUT: DCMOUT Description DCMA is a clock buffer incorporating a multiplexer function, whose output switches between the two clock inputs. It is not recommended that you route the PLL feedback signals through the multiplexer, because the PLL will loose lock. DCMA IO description is shown in the below table. Table 222: Port Name I/O Unused Nets Description CLK0 I Tie low Input clock CLKI I Tie low Input clock SEL I Tie low Clock select from CIB DCMOUT O Dangle Output from the primary clock mux DCMA Usage with VHDL Library Instantiation library lattice; use lattice.components.all; Component Declaration component DCMA port (CLK0 CLK1 SEL DCMOUT end component; : in : in : in :out std_logic; std_logic; std_logic; std_logic); DCMA Instantiation FPGA Libraries Reference Guide 169 : I1: DCMA port map (CLK0 => CLK0, CLK1 => CLK1, SEL => SEL, DCMOUT => DCMOUT); end component; DCMA Usage with Verilog HDL Component Declaration module DCMA (CLK0, CLK1, SEL, DCMOUT); input CLK0; input CLK1; input SEL; output DCMOUT; endmodule DCMA Instantiation DCMA I1 (.CLK0 (CLK0); .CLK1 (CLK1); .SEL (SEL); .DCMOUT (DCMOUT)); For additional information, see Lattice technical note on the web site: TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide DCS Dynamic Clock Selection Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 170 : INPUTS: CLK0 CLK1 SEL OUTPUT: DCSOUT ATTRIBUTES: DCSMODE: "NEG" (default), "POS", "HIGH_LOW", "HIGH_HIGH", "LOW_LOW", "LOW_HIGH","CLK0", "CLK1" Note For LatticeECP/EC, LatticeECP2/M, LatticeXP, and LatticeXP2 devices, the DCSMODE default has been changed from POS to NEG since ispLEVER 7.0 SP2. If your pre-7.0SP2 design included the DCS macro and you didn't specify the DCSMODE value, the design may behave differently in Diamond. To avoid the issue, you can manually set DCSMODE to POS in your old design. Description DCS is a global clock buffer incorporating a smart multiplexer function that takes two independent input clock sources and avoids glitches or runt pulses on the output clock, regardless of where the enable signal is toggled. Located in pairs at the center of each edge, there are eight DCS primitives per device. Table 223: Function Pins Input Clock Select SEL Primary Clock Input 0 CLK0 Primary Clock Input 1 CLK1 To Primary Clock Mid-Mux DCSOUT For each DCS: Inputs are from primary clocks at PLC routing block (one branch per DCS) Selects are from a routing block's LUT port (A0, B0, etc.) Outputs are connected to the DCS output sources of the feedline muxes The outputs of the DCS then reach primary clock distribution via the feedlines. The connections from CIB to DCS are shown in the table below. The selected CIB interfaces to a PIC and is located at the center of each bank and next to FPGA Libraries Reference Guide 171 : the mid-muxes. Note that the CIB to DCS connections are merged with the existing PIC-CIB connections at that CIB. It is up to the hardware designer to select the most convenient CIB. CIB to DCS Connections Table 224: CIB DCS C7 SEL CLK0(jclk0) CLK0 CLK1(jclk2) CLK1 DCSMODE Values Table 225: Attribute Name Description DCS MODE Output Value SEL=0 SEL=1 Rising edge triggered, latched state is high CLK0 CLK1 Falling edge triggered, latched state is low CLK0 Sel is active high, Disabled output is low DCS Fuse Settings 0 1 2 3 4 POS 1 0 0 0 0 CLK1 NEG 0 0 0 0 0 0 CLK1 HIGH_LOW 0 1 0 0 0 Sel is active high, Disabled output is high 1 CLK1 HIGH_HIGH 1 1 0 0 0 Sel is active low, Disabled output is low CLK0 0 LOW_LOW 0 0 1 0 0 Sel is active low, Disabled output is high CLK0 1 LOW_HIGH 1 0 1 0 0 Buffer for CLK0 CLK0 CLK0 CLK0 0 0 1 0 1 Buffer for CLK1 CLK1 CLK1 CLK1 0 1 0 1 0 For additional information, see Lattice technical notes on the web site: FPGA Libraries Reference Guide TN1178 - LatticeECP3 sysCLOCK and PLL/DLL Design and Usage Guide TN1098 - LatticeSC sysCLOCK and PLL/DLL User’s Guide TN1103 - LatticeECP2 sysCLOCK PLL/DLL Design and Usage Guide TN1126 - LatticeXP2 sysCLOCK PLL Design and Usage Guide 172 : TN1049 - LatticeECP/EC and LatticeXP sysCLOCK PLL Design and Usage Guide Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. DCSC Dynamic Clock Selection Architectures Supported: ECP5 INPUTS: CLK0 CLK1, SEL1, SEL0, MODESEL OUTPUT: DCSOUT ATTRIBUTES: DCSMODE: "NEG" (default), "POS", "HIGH_LOW", "HIGH_HIGH", "LOW_LOW", "LOW_HIGH","CLK0", "CLK1" Description DCS is a 2-to-1 clock mux. Two modes exist. The glitchless mode switches between two clock sources (CLK0 and CLK1). The other mode added allows switching between the two clock sources asynchronously, based on the Sel signals. The second mode can produce a glitch on the output clock (DCSOUT), since the Sel signals could be changed at the same time the input clocks switching. In the first mode (glitchless mode), there is a limitation on the circuit. If one of the clock sourcse is at a static H or L, the DCS will not make the switch. This is because the DCS has to look at the two sources to synchronize the switch in order to not produce a glitch. FPGA Libraries Reference Guide 173 : If the select inputs change from selecting one source (i.e. [01] to select CLK0), to selecting another source (i.e. [10] to select CLK1), where CLK1 is connected to GND, the user can cycle the select input from [10] -> [00] (a few cycles) -> [01] to allow the switch from active clock (CLK0) to GND without glitching the output. Alternatively, the user can select non-glitchless mode (MODESEL = 1), and make the switch on the inputs. This could also make the output DCSOUT to switch from active clock (CLK0) to GND, but it could create a glitch when it makes the switch. Table 226: Function Pins Input Clock Select 0 SEL0 Input Clock Select 1 SEL1 Primary Clock Input 0 CLK0 Primary Clock Input 1 CLK1 Selects glitchless ("0") or non-glitchless ("1") behavior MODESEL To Primary Clock Mid-Mux DCSOUT DCSMODE Values When MODESEL = 0 Attribute Name Operation Default Value DCSMODE See table below. These options are only available when operating “POS” in glitchless mode (CIB pin MODESEL=’0’). Affected Fuses Mode DCSMODE Attribute Table When CIB MODESEL=’0’ Attribute Description Name FPGA Libraries Reference Guide SEL[1:0] 2’b01 2’b10 2’b00 /2’b11 Attribute Value DCS Fuse Settings 0 1 2 3 4 5 6 7 8 174 : DCSMO Falling Edge Triggered DE Attributes Rising Edge Triggered Clk0 Clk1 0 NEG 0 0 0 0 0 0 0 0 0 Clk0 Clk1 1 POS 0 0 0 1 0 0 0 0 1 Disabled Output is Low, Clk0 Clk0 0 0 CLK0_LOW 0 0 1 0 0 0 0 1 0 Disabled Output is High, Clk0 1 1 CLK0_HIGH 0 0 1 1 0 0 0 1 1 Disabled Output is Low, 0 Clk0 Clk1 0 CLK1_LOW 0 1 0 0 0 0 1 0 0 Disabled Output is High, Clk0 1 Clk1 1 CLK1_HIGH 0 1 0 1 0 0 1 0 1 Clk0 Buffered Clk0 Clk0 0 CLK0 1 0 1 0 0 1 0 1 0 Clk1 Buffered Clk1 Clk1 1 CLK1 1 0 1 1 0 1 0 1 1 Tie Low 0 0 0 LOW 1 1 1 0 0 1 1 1 0 Tie High 1 1 1 HIGH 1 1 1 1 0 1 1 1 1 Clk0 Clk1 0 - x Clk0 MODESE Non-Glitchless L= “1” x x x x x x x x DDRDLLA 90 degree delay for the DQS Input during a memory interface or the clock input for a generic DDR interface Architectures Supported: ECP5 INPUTS: CLK, RST, UDDCNTLN, FREEZE OUTPUT: DDRDEL, LOCK, DCNTL7, DCNTL6, DCNTL5, DCNTL4, DCNTL3, DCNTL2, DCNTL1, DCNTL0 ATTRIBUTES: FORCE_MAX_DELAY: "NO" (default), "YES" FPGA Libraries Reference Guide 175 : LOCK_CYC: (For simulation only) Description The DDRDLL is used to generate a 90 degree delay for the DQS Input during a memory interface or the clock input for a generic DDR interface. There are two DDRDLL modules per half the device. The DDRDLL outputs delay codes that are used in the DQSBUF elements to delay the DQS input or in the DLLDEL module to delay the input clock. DDRDLL by default will generate 90-degrees, but the user may choose to generate 77, 88, 101 or 112 degrees as well. DDRDLLA Port Definition Table 227: Port Name I/O Definition CLK I Reference clock input to the DDRDLL. Should run at the same frequency as the clock to the delayed. RST I Reset Input to the DDRDLL UDDCNTLN I Update Control to update the delay code. When low the delay code out the DDRDLL is updated. Should not be active during a read or a write cycle. FREEZE I When FREEZE goes high, it glitchlessly turns off the DLL internal clock and ring oscillator output clock. When FREEZE goes low, turns it back on. DDRDEL O The delay codes from the DDRDLL to be used in DQSBUF or DLLDEL LOCK O Lock output to indicate the DDRDLL has valid delay output DCNTL[7:0] O The delay codes from the DDRDLL available for the user IP. DELAY Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 176 : INPUTS: A, DCNTL0, DCNTL1, DCNTL2, DCNTL3, DCNTL4, DCNTL5, DCNTL6, DCNTL7, DCNTL8 OUTPUT: Z Description Sets the input delay for an input. You can choose either dynamic delay or the static delay. For more usage, see related technical notes or contact technical support. Truth Table Table 228: INPUTS OUTPUTS A Z 0 0 1 1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 177 : DELAYB Dynamic Delay in PIO Architectures Supported: LatticeECP2/M LatticeECP3 LatticeXP2 INPUTS: A, DEL0, DEL1, DEL2, DEL3 OUTPUT: Z Description Data going to the DDR registers can be optionally delayed using the delay block. The DELAYB block receives a 4-bit delay value from the DLL. The user can also choose to implement a fixed delay value instead of using the delay generated by the DLL. The various fixed delay choices can be made in the IPexpress software tool. The DELAYB block can also be used to delay non-DDR inputs that use the input PIO register. DELAYB Port Definition Table 229: Port Name I/O Definition A I DDR input from sysIO buffer. DEL [0:3] I Delay inputs. Z O Output with delay. Refer to the following technical notes for more details: FPGA Libraries Reference Guide TN1180 - LatticeECP3 High-Speed I/O Interface TN1105 - LatticeECP2/M High-Speed I/O Interface TN1138 - LatticeXP2 High-Speed I/O Interface 178 : DELAYC Fixed Delay in PIO Architectures Supported: LatticeECP3 INPUT: A OUTPUT: Z DELAYC Port Definition Table 230: Port Name I/O Definition A I DDR input from sysIO buffer. Z O Output with delay. Refer to the following technical note for more details: TN1180 - LatticeECP3 High-Speed I/O Interface DELAYD Dynamic Delay for Bottom Bank Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 179 : INPUT: A, DEL4, DEL3, DEL2, DEL1, DEL0 OUTPUT: Z Description DELAYD is the dynamic delay for VPIC_RX, IOLA and IOLC cells in bottom side only. It can be used for x2, x4 and 7:1 applications. See the below table for its port description. Table 231: Port Name I/O Definition A I Data input from IO buffer DEL4, DEL3, DEL2, DEL1, DEL0 I Dynamic delay inputs from CIB Z O Output with delay Refer to the following technical note for more details: TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices DELAYE Fixed Delay in PIO Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 180 : INPUT: A OUTPUT: Z ATTRIBUTES: DEL_MODE: "SCLK_ZEROHOLD", "ECLK_ALIGNED", "ECLK_CENTERED", "SCLK_ALIGNED", "SCLK_CENTERED", "USER_DEFINED" (default) DEL_VALUE: "DELAY0" (default), "DELAY1", "DELAY2", ..., "DELAY31" Description DELAYE is the fix delay in PIO for all banks and all sides. It can be used for all IO registers and DDR types. See the below table for its IO port description. Table 232: Port Name I/O Definition A I DDR input from sysIO buffer Z O Output with delay Refer to the following technical note for more details: TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices DELAYF Delay Architectures Supported: FPGA Libraries Reference Guide ECP5 181 : INPUT: A, LOADIN, MOVE, DIRECTION OUTPUT: Z, CFLAG ATTRIBUTES: DEL_MODE: "SCLK_ZEROHOLD", "ECLK_ALIGNED", "ECLK_CENTERED", "SCLK_ALIGNED", "SCLK_CENTERED", "USER_DEFINED" (default) DEL_VALUE: "DELAY0" (default), "DELAY1", "DELAY2", ..., "DELAY31" Description By default DELAYF is configured to factory delay settings based on the clocking structure. The user can overwrite the DELAY setting using the MOVE and DIRECTION control inputs. The LOADN will reset the delay back to the default value. Table 233: Port Name I/O Definition A I Data input from pin or output register block LOADIN I “0” on LOADN will reset to default Delay setting MOVE I “Pulse” on MOVE will change delay setting. DIRECTION will be sampled at “falling edge” of MOVE. DIRECTION I “1” to decrease delay & “0” to increase delay Z O Delayed data to input register block or to pin CFLAG O Flag indicating the delay counter has reached max (when moving up) or min (when moving down) value. DELAYG Delay Architectures Supported: FPGA Libraries Reference Guide ECP5 182 : INPUT: A OUTPUT: Z ATTRIBUTES: DEL_MODE: "SCLK_ZEROHOLD", "ECLK_ALIGNED", "ECLK_CENTERED", "SCLK_ALIGNED", "SCLK_CENTERED", "USER_DEFINED" (default) DEL_VALUE: "DELAY0" (default), "DELAY1", "DELAY2", ..., "DELAY31" Description DELAYG is configured to factory delay settings based on the clocking structure. User cannot change the delay when using this module.. Table 234: Port Name I/O Definition A I Data input from pin or output register block. Z O Delayed data to input register block or to pin. DLLDELA Slave Delay Architectures Supported: LatticeECP2/M INPUTS: CLKI, DCNTL0, DCNTL1, DCNTL2, DCNTL3, DCNTL4, DCNTL5, DCNTL6, DCNTL7, DCNTL8 OUTPUT: CLKO FPGA Libraries Reference Guide 183 : Description The Slave Delay Line is designed to generate desired delay in DDR/SPI4 applications. The delay control inputs (DCNTL[8:0]) are fed from the general purpose DLL outputs. The following table shows its port description. Table 235: Name I/O Description CLKI I Clock input DCNTL[8:0] I Delay control bits CLKO O Clock output For more details such as application examples, refer to the following technical note on the Lattice web site: TN1103 - LatticeECP2 sysCLOCK PLL/DLL Design and Usage Guide DLLDELB Slave Delay Architectures Supported: LatticeECP3 INPUTS: CLKI, DCNTL5, DCNTL4, DCNTL3, DCNTL2, DCNTL1, DCNTL0 OUTPUT: CLKO FPGA Libraries Reference Guide 184 : Description DLLDELB is the LatticeECP3 slave delay line primitive. The DLLDELB port description is shown in the below table. Table 236: Port Name I/O Description CLKI I Clock input DCNTL0 I Control bit 0 (hard wired to DLL) DCNTL1 I Control bit 1 (hard wired to DLL) DCNTL2 I Control bit 2 (hard wired to DLL) DCNTL3 I Control bit 3 (hard wired to DLL) DCNTL4 I Control bit 4 (hard wired to DLL) DCNTL5 I Control bit 5 (hard wired to DLL) CLKO O Clock output DLLDELB Usage with VHDL COMPONENT DLLDELB PORT (CLKI : DCNTL0 : DCNTL1 : DCNTL2 : DCNTL3 : DCNTL4 : DCNTL5 : CLKO : END COMPONENT; IN IN IN IN IN IN IN OUT std_logic; std_logic; std_logic; std_logic; std_logic; std_logic; std_logic; std_logic); begin DLLDELAinst0: DLLDELB PORT MAP ( CLKI => DCNTL0 => DCNTL1 => DCNTL2 => DCNTL3 => DCNTL4 => DCNTL5 => CLKO => ); clkisig, dcntl0sig, dcntl1sig, dcntl2sig, dcntl3sig, dcntl4sig, dcntl5sig, clkosig For more details such as application examples, refer to the following technical note on the Lattice web site: FPGA Libraries Reference Guide TN1178 - LatticeECP3 sysCLOCK and PLL/DLL Design and Usage Guide 185 : DLLDELC Clock Shifting for ECLK or PCLK Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: CLKI, DQSDEL OUTPUT: CLKO ATTRIBUTES: DEL_ADJ: "PLUS" (default), MINUS DEL_VAL: integers 0~127 (PLUS), 1~128 (MINUS) (default: 0) Description DLLDELC is the generic input clock shifting using DQSDEL from DQSDLL. The DLLDELC port description is shown in the below table. Table 237: Port Name I/O Description CLKI I clk input from I/O buffer DQSDEL I Dynamic delay inputs from DQSDLLC CLKO O Clock output with delay For more details such as application examples, refer to the following technical note on the Lattice web site: TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices DLLDELD Slave Delay Architectures Supported: FPGA Libraries Reference Guide 186 : ECP5 INPUTS: A, DDRDEL, LOADN, MOVE, DIRECTION OUTPUT: Z, CFLAG Description DLLDELD is the delay element that receives code from DDRDLL for generic DDR. The DLLDELD port description is shown in the below table. Table 238: Port Name I/O Description A I Clock Input DDRDEL I Delay inputs from DDRDLL LOADN I Used to reset back to 90 degrees delay. MOVE I Pulse is required to change delay settings. The value on Direction will be sampled at the “falling edge” of MOVE. DIRECTION I Indicates delay direction. “1” to decrease delay & “0” to increase delay. CFLAG O Indicates the delay counter has reached max value when moving up or min value when moving down. Z O Delayed Clock output DP16KA 16K Dual Port Block RAM Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 187 : INPUTS: DIA0, DIA1, DIA2, DIA3, DIA4, DIA5, DIA6, DIA7, DIA8, DIA9, DIA10, DIA11, DIA12, DIA13, DIA14, DIA15, DIA16, DIA17, ADA0, ADA1, ADA2, ADA3, ADA4, ADA5, ADA6, ADA7, ADA8, ADA9, ADA10, ADA11, ADA12, ADA13, CEA, CLKA, WEA, CSA0, CSA1, CSA2, RSTA, DIB0, DIB1, DIB2, DIB3, DIB4, DIB5, DIB6, DIB7, DIB8, DIB9, DIB10, DIB11, DIB12, DIB13, DIB14, DIB15, DIB16, DIB17, ADB0, ADB1, ADB2, ADB3, ADB4, ADB5, ADB6, ADB7, ADB8, ADB9, ADB10, ADB11, ADB12, ADB13, CEB, CLKB, WEB, CSB0, CSB1, CSB2, RSTB OUTPUTS: DOA0, DOA1, DOA2, DOA3, DOA4, DOA5, DOA6, DOA7, DOA8, DOA9, DOA10, DOA11, DOA12, DOA13, DOA14, DOA15, DOA16, DOA17, DOB0, DOB1, DOB2, DOB3, DOB4, DOB5, DOB6, DOB7, DOB8, DOB9, DOB10, DOB11, DOB12, DOB13, DOB14, DOB15, DOB16, DOB17 ATTRIBUTES: DATA_WIDTH_A: 1, 2, 4, 9, 18 (default) DATA_WIDTH_B: 1, 2, 4, 9, 18 (default) REGMODE_A: "NOREG" (default), "OUTREG" REGMODE_B: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_A: any 3-bit binary value (default: 3’b000) CSDECODE_B: any 3-bit binary value (default: 3’b000) FPGA Libraries Reference Guide 188 : WRITEMODE_A: "NORMAL" (default), "WRITETHROUGH" WRITEMODE_B: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: (Verilog) 320'hXXX...X (80-bit hexadecimal value) (VHDL) 0xXXX...X (80-bit hexadecimal value) Default: all zeros Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1094 - On-Chip Memory Usage Guide for LatticeSC Devices DP16KB True Dual Port Block RAM Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: DIA0, DIA1, DIA2, DIA3, DIA4, DIA5, DIA6, DIA7, DIA8, DIA9, DIA10, DIA11, DIA12, DIA13, DIA14, DIA15, DIA16, DIA17, ADA0, ADA1, ADA2, ADA3, ADA4, ADA5, ADA6, ADA7, ADA8, ADA9, ADA10, ADA11, ADA12, ADA13, CEA, CLKA, WEA, CSA0, CSA1, CSA2, RSTA, DIB0, DIB1, FPGA Libraries Reference Guide 189 : DIB2, DIB3, DIB4, DIB5, DIB6, DIB7, DIB8, DIB9, DIB10, DIB11, DIB12, DIB13, DIB14, DIB15, DIB16, DIB17, ADB0, ADB1, ADB2, ADB3, ADB4, ADB5, ADB6, ADB7, ADB8, ADB9, ADB10, ADB11, ADB12, ADB13, CEB, CLKB, WEB, CSB0, CSB1, CSB2, RSTB OUTPUTS: DOA0, DOA1, DOA2, DOA3, DOA4, DOA5, DOA6, DOA7, DOA8, DOA9, DOA10, DOA11, DOA12, DOA13, DOA14, DOA15, DOA16, DOA17, DOB0, DOB1, DOB2, DOB3, DOB4, DOB5, DOB6, DOB7, DOB8, DOB9, DOB10, DOB11, DOB12, DOB13, DOB14, DOB15, DOB16, DOB17 ATTRIBUTES: DATA_WIDTH_A: 1, 2, 4, 9, 18 (default) DATA_WIDTH_B: 1, 2, 4, 9, 18 (default) REGMODE_A: "NOREG" (default), "OUTREG" REGMODE_B: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_A: any 3-bit binary value (default: 0b000) CSDECODE_B: any 3-bit binary value (default: 0b000) WRITEMODE_A: "NORMAL" (default), "WRITETHROUGH" WRITEMODE_B: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: 80-bit hexadecimal string (default: all zeros) Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1104 - LatticeECP2/M Memory Usage Guide DP16KC True Dual Port Block RAM Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 190 : INPUTS: DIA17, DIA16, DIA15, DIA14, DIA13, DIA12, DIA11, DIA10, DIA9, DIA8, DIA7, DIA6, DIA5, DIA4, DIA3, DIA2, DIA1, DIA0, ADA13, ADA12, ADA11, ADA10, ADA9, ADA8, ADA7, ADA6, ADA5, ADA4, ADA3, ADA2, ADA1, ADA0, CEA, OCEA, CLKA, WEA, CSA2, CSA1, CSA0, RSTA, DIB17, DIB16, DIB15, DIB14, DIB13, DIB12, DIB11, DIB10, DIB9, DIB8, DIB7, DIB6, DIB5, DIB4, DIB3, DIB2, DIB1, DIB0, ADB13, ADB12, ADB11, ADB10, ADB9, ADB8, ADB7, ADB6, ADB5, ADB4, ADB3, ADB2, ADB1, ADB0, CEB, OCEB, CLKB, WEB, CSB2, CSB1, CSB0, RSTB OUTPUTS: DOA17, DOA16, DOA15, DOA14, DOA13, DOA12, DOA11, DOA10, DOA9, DOA8, DOA7, DOA6, DOA5, DOA4, DOA3, DOA2, DOA1, DOA0, DOB17, DOB16, DOB15, DOB14, DOB13, DOB12, DOB11, DOB10, DOB9, DOB8, DOB7, DOB6, DOB5, DOB4, DOB3, DOB2, DOB1, DOB0 ATTRIBUTES: DATA_WIDTH_A: 1, 2, 4, 9, 18 (default) DATA_WIDTH_B: 1, 2, 4, 9, 18 (default) REGMODE_A: "NOREG" (default), "OUTREG" REGMODE_B: "NOREG" (default), "OUTREG" CSDECODE_A: any 3-bit binary value (default: all zeros) CSDECODE_B: any 3-bit binary value (default: all zeros) WRITEMODE_A: "NORMAL" (default), "WRITETHROUGH" FPGA Libraries Reference Guide 191 : WRITEMODE_B: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: "0xXXX....X" (80-bit hex string) (default: all zeros) Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1179 - LatticeECP3 Memory Usage Guide DP16KD True Dual Port Block RAM Architectures Supported: ECP5 INPUTS: ADA13, ADA12, ADA11, ADA10, ADA9, ADA8, ADA7, ADA6, ADA5, ADA4, ADA3, ADA2, ADA1, ADA0, DIA17, DIA16, DIA15, DIA14, DIA13, DIA12, DIA11, DIA10, DIA9, DIA8, DIA7, DIA6, DIA5, DIA4, DIA3, DIA2, DIA1, DIA0, CLKA, CEA, OCEA, RSTA, WEA, CSA2, CSA1, CSA0, ADB13, ADB12, ADB11, ADB10, ADB9, ADB8, ADB7, ADB6, ADB5, ADB4, ADB3, ADB2, ADB1, ADB0, DIB17, DIB16, DIB15, DIB14, DIB13, DIB12, DIB11, DIB10, DIB9, DIB8, DIB7, DIB6, DIB5, DIB4, DIB3, DIB2, DIB1, DIB0, CLKB, CEB, OCEB, RSTB. WEB, CSB2, CSB1, CSB0 FPGA Libraries Reference Guide 192 : OUTPUTS: DOA17, DOA16, DOA15, DOA14, DOA13, DOA12, DOA11, DOA10, DOA9, DOA8, DOA7, DOA6, DOA5, DOA4, DOA3, DOA2, DOA1, DOA0, DOB17, DOB16, DOB15, DOB14, DOB13, DOB12, DOB11, DOB10, DOB9, DOB8, DOB7, DOB6, DOB5, DOB4, DOB3, DOB2, DOB1, DOB0 ATTRIBUTES: DATA_WIDTH_A: 1, 2, 4, 9 (default) DATA_WIDTH_B: 1, 2, 4, 9 (default) REGMODE_A: "NOREG" (default), "OUTREG" REGMODE_B: "NOREG" (default), "OUTREG" CSDECODE_A: any 3-bit binary value (default: 3’b000) CSDECODE_B: any 3-bit binary value (default: 3’b000) WRITEMODE_A: "NORMAL" (default), "WRITETHROUGH", "READBEFORE" WRITEMODE_B: "NORMAL" (default), "WRITETHROUGH", "READBEFORE" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" ASYNC_RESET_RELEASE: "SYNC" (default), "ASYNC" INIT_DATA: "STATIC" (default), "DYNAMIC" INITVAL_00 to INITVAL_1F: (Verilog) 320'hXXX...X (80-bit hex value) (VHDL) 0xXXX...X (80-bit hex value) Default: all zeros DP8KA 8K Dual Port Block RAM Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeXP 193 : INPUTS: CEA, CLKA, WEA, CSA0, CSA1, CSA2, RSTA, CEB, CLKB, WEB, CSB0, CSB1, CSB2, RSTB, DIA0, DIA1, DIA2, DIA3, DIA4, DIA5, DIA6, DIA7, DIA8, DIA9, DIA10, DIA11, DIA12, DIA13, DIA14, DIA15, DIA16, DIA17, ADA0, ADA1, ADA2, ADA3, ADA4, ADA5, ADA6, ADA7, ADA8, ADA9, ADA10, ADA11, ADA12, DIB0, DIB1, DIB2, DIB3, DIB4, DIB5, DIB6, DIB7, DIB8, DIB9, DIB10, DIB11, DIB12, DIB13, DIB14, DIB15, DIB16, DIB17, ADB0, ADB1, ADB2, ADB3, ADB4, ADB5, ADB6, ADB7, ADB8, ADB9, ADB10, ADB11, ADB12 OUTPUTS: DOA0, DOA1, DOA2, DOA3, DOA4, DOA5, DOA6, DOA7, DOA8, DOA9, DOA10, DOA11, DOA12, DOA13, DOA14, DOA15, DOA16, DOA17, DOB0, DOB1, DOB2, DOB3, DOB4, DOB5, DOB6, DOB7, DOB8, DOB9, DOB10, DOB11, DOB12, DOB13, DOB14, DOB15, DOB16, DOB17 ATTRIBUTES: DATA_WIDTH_A: 1, 2, 4, 9, 18 (default) DATA_WIDTH_B: 1, 2, 4, 9, 18 (default) REGMODE_A: "NOREG" (default), "OUTREG" REGMODE_B: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_A: any 3-bit binary value (default: 111) FPGA Libraries Reference Guide 194 : CSDECODE_B: any 3-bit binary value (default: 111) WRITEMODE_A: "NORMAL" (default), "WRITETHROUGH" WRITEMODE_B: "NORMAL" (default), "WRITETHROUGH" INITVAL_00 to INITVAL_1F: (Verilog) 320'hXXX...X (80-bit hexadecimal value) (VHDL) 0xXXX...X (80-bit hexadecimal value) Default: all zeros Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1051 - Memory Usage Guide for LatticeECP/EC and LatticeXP Devices DP8KB 8K Dual Port Block RAM Architectures Supported: FPGA Libraries Reference Guide MachXO Platform Manager 195 : INPUTS: CEA, CLKA, WEA, CSA0, CSA1, CSA2, RSTA, CEB, CLKB, WEB, CSB0, CSB1, CSB2, RSTB, DIA0, DIA1, DIA2, DIA3, DIA4, DIA5, DIA6, DIA7, DIA8, DIA9, DIA10, DIA11, DIA12, DIA13, DIA14, DIA15, DIA16, DIA17, ADA0, ADA1, ADA2, ADA3, ADA4, ADA5, ADA6, ADA7, ADA8, ADA9, ADA10, ADA11, ADA12, DIB0, DIB1, DIB2, DIB3, DIB4, DIB5, DIB6, DIB7, DIB8, DIB9, DIB10, DIB11, DIB12, DIB13, DIB14, DIB15, DIB16, DIB17, ADB0, ADB1, ADB2, ADB3, ADB4, ADB5, ADB6, ADB7, ADB8, ADB9, ADB10, ADB11, ADB12 OUTPUTS: DOA0, DOA1, DOA2, DOA3, DOA4, DOA5, DOA6, DOA7, DOA8, DOA9, DOA10, DOA11, DOA12, DOA13, DOA14, DOA15, DOA16, DOA17, DOB0, DOB1, DOB2, DOB3, DOB4, DOB5, DOB6, DOB7, DOB8, DOB9, DOB10, DOB11, DOB12, DOB13, DOB14, DOB15, DOB16, DOB17 ATTRIBUTES: DATA_WIDTH_A: 1, 2, 4, 9, 18 (default) DATA_WIDTH_B: 1, 2, 4, 9, 18 (default) REGMODE_A: "NOREG" (default), "OUTREG" REGMODE_B: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_A: any 3-bit binary value (default: all zeros) CSDECODE_B: any 3-bit binary value (default: all zeros) WRITEMODE_A: "NORMAL" (default), "WRITETHROUGH" WRITEMODE_B: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_1F: (Verilog) 320'hXXX...X (80-bit hex value) (VHDL) 0xXXX...X (80-bit hex value) Default: all zeros Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1092 - MachXO Memory Usage Guide DP8KC 8K True Dual Port Block RAM Architectures Supported: FPGA Libraries Reference Guide MachXO2 196 : MachXO3L Platform Manager 2 INPUTS: CEA, CLKA, WEA, CSA2, CSA1, CSA0, RSTA, CEB, CLKB, WEB, CSB2, CSB1, CSB0, RSTB, DIA8, DIA7, DIA6, DIA5, DIA4, DIA3, DIA2, DIA1, DIA0, ADA12, ADA11, ADA10, ADA9, ADA8, ADA7, ADA6, ADA5, ADA4, ADA3, ADA2, ADA1, ADA0, DIB8, DIB7, DIB6, DIB5, DIB4, DIB3, DIB2, DIB1, DIB0, ADB12, ADB11, ADB10, ADB9, ADB8, ADB7, ADB6, ADB5, ADB4, ADB3, ADB2, ADB1, ADB0, OCEA, OCEB OUTPUTS: DOA8, DOA7, DOA6, DOA5, DOA4, DOA3, DOA2, DOA1, DOA0, DOB8, DOB7, DOB6, DOB5, DOB4, DOB3, DOB2, DOB1, DOB0 ATTRIBUTES: DATA_WIDTH_A: 1, 2, 4, 9 (default) DATA_WIDTH_B: 1, 2, 4, 9 (default) REGMODE_A: "NOREG" (default), "OUTREG" REGMODE_B: "NOREG" (default), "OUTREG" CSDECODE_A: any 3-bit binary value (default: 3’b000) CSDECODE_B: any 3-bit binary value (default: 3’b000) WRITEMODE_A: "NORMAL" (default), "WRITETHROUGH", "READBEFORE" FPGA Libraries Reference Guide 197 : WRITEMODE_B: "NORMAL" (default), "WRITETHROUGH", "READBEFORE" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" ASYNC_RESET_RELEASE: "SYNC" (default), "ASYNC" INIT_DATA: "STATIC" (default), "DYNAMIC" INITVAL_00 to INITVAL_1F: (Verilog) 320'hXXX...X (80-bit hex value) (VHDL) 0xXXX...X (80-bit hex value) Default: all zeros Description The following table describes the I/O ports of the DP8KC primitive. Table 239: Port Name I/O Definition CEA, CEB I Clock enable for port CLKA and CLKB OCEA, OCEB I Output clock enable for port A and B CLKA, CLKB I Clock for port A and B RSTA, RSTB I Reset for port A and B WEA, WEB I Write enable for port A and B CSA[2:0], CSB[2:0] I Chip select for port A and B DIA[8:0], DIB[8:0] I Input data port A and B (up to 9) ADA[12:0], ADB[12:0] I Address bus port A and B (up to 13) DOA[8:0], DOB[8:0] O Output data port A and B (up to 9) You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1201 - Memory Usage Guide for MachXO2 Devices DPR16X2 Distributed Dual Port RAM Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 198 : INPUTS: DI0, DI1, WAD0, WAD1, WAD2, WAD3, WRE, WPE, WCK, RAD0, RAD1, RAD2, RAD3 OUTPUTS: WDO0, WDO1, RDO0, RDO1 ATTRIBUTES: INITVAL: (Verilog) 64'hXXXXXXXX (16-bit hexadecimal value) (VHDL) 0xXXXXXXXX (16-bit hexadecimal value) Default: all zeros GSR: "ENABLED" (default), "DISABLED" Description The DPR16X2 symbol represents a 16-word by 2-bit distributed dual port RAM. You can refer to the following technical note on the Lattice web site for port definition, attribute definition and usage. TN1094 - On-Chip Memory Usage Guide for LatticeSC Devices DPR16X2B Distributed Dual Port RAM Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeXP MachXO Platform Manager 199 : INPUTS: DI0, DI1, WAD0, WAD1, WAD2, WAD3, WRE, WCK, RAD0, RAD1, RAD2, RAD3 OUTPUTS: WDO0, WDO1, RDO0, RDO1 ATTRIBUTES: INITVAL: (Verilog) 64'hXXXXXXXXXXXXXXXX (16-bit hexadecimal value) (VHDL) 0xXXXXXXXXXXXXXXXX (16-bit hexadecimal value) Default: all zeros Description You can refer to the following technical notes on the Lattice web site for port definition, attribute definition and usage. TN1051 - Memory Usage Guide for LatticeECP/EC and LatticeXP Devices TN1092 - MachXO Memory Usage Guide DPR16X4A Distributed Pseudo Dual Port RAM Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeXP2 200 : INPUTS: DI0, DI1, DI2, DI3, WCK, WRE, RAD0, RAD1, RAD2, RAD3, WAD0, WAD1, WAD2, WAD3 OUTPUTS: DO0, DO1, DO2, DO3 Description PFU-based distributed Pseudo Dual-port RAM primitive. See Memory Primitives Overview for individual port description. You can also refer to the following technical notes on the Lattice web site for port definition, attributes and usage. TN1104 - LatticeECP2/M Memory Usage Guide TN1137 - LatticeXP2 Memory Usage Guide DPR16X4B Distributed Pseudo Dual Port RAM Architectures Supported: LatticeXP2 INPUTS: WAD0, WAD1, WAD2, WAD3, DI0, DI1, DI2, DI3, WCK, WRE, RAD0, RAD1, RAD2, RAD3 OUTPUTS: DO0, DO1, DO2, DO3 ATTRIBUTES: FPGA Libraries Reference Guide 201 : INITVAL: (Verilog) "64'hXXXXXXXXXXXXXXXX" (16-bit hex string) (VHDL) "0xXXXXXXXXXXXXXXXX" (16-bit hex string) Default: all zeros Description PFU-based distributed Pseudo Dual-port RAM primitive. See Memory Primitives Overview for individual port description. You can also refer to the following technical note on the Lattice web site for port definition, attributes and usage. TN1137 - LatticeXP2 Memory Usage Guide DPR16X4C Distributed Pseudo Dual Port RAM Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: DI3, DI2, DI1, DI0, WAD3,WAD2,WAD1,WAD0, WCK, WRE, RAD3,RAD2,RAD1,RAD0 OUTPUTS: DO3, DO2, DO1, DO0 ATTRIBUTES: INITVAL: "0xXXXXXXXXXXXXXXXX" (16-bit hex string) (default: all zeros) Description PFU-based distributed Pseudo Dual-port RAM primitive. See Memory Primitives Overview for individual port description. FPGA Libraries Reference Guide 202 : You can also refer to the following technical notes on the Lattice web site for port definition, attributes and usage. TN1201 - Memory Usage Guide for MachXO2 Devices TN1179 - LatticeECP3 Memory Usage Guide DQSBUFB DDR DQS Buffer Used as DDR memory DQS generator Architectures Supported: LatticeECP/EC LatticeXP INPUTS: DQSI, CLK, READ, DQSDEL OUTPUTS: DQSO, DDRCLKPOL, DQSC, PRMBDET Description This cell is used to indicate how many DDR I/Os need to be tied together, aligning the placement of the DDR cell. The input goes to the clock and the output goes to the clock on the DDR cell. For more usage, see related technical notes or contact technical support. Refer to the following technical note on the Lattice web site for more details: TN1050 - LatticeECP/EC and LatticeXP DDR Usage Guide DQSBUFC DQS Delay Function and Clock Polarity Selection Logic Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeXP2 203 : INPUTS: DQSI, CLK, XCLK, READ, DQSDEL OUTPUTS: DQSO, DDRCLKPOL, DQSC, PRMBDET, DQSXFER, DATAVALID ATTRIBUTES: DQS_LI_DEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 4) DQS_LI_DEL_ADJ: "MINUS" (default), "PLUS" DQS_LO_DEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) DQS_LO_DEL_ADJ: "PLUS" (default), "MINUS" Description DQSBUFC implements the DQS delay and the DQS transition detector logic. The primitive is composed of the DQS Delay, the DQS Transition Detect and the DQSXFER block as shown in the following figure. This block inputs the DQS and delays it by 90 degrees. It also generates the DDR Clock Polarity and the DQSXFER signal. The preamble detect (PRMBDET) signal is generated from the DQSI input using a voltage divider circuit. DQSBUFC Function FPGA Libraries Reference Guide 204 : DQS Delay Block: The DQS Delay block receives the digital control delay line (DQSDEL) coming from one of the two DQSDLL blocks. These control signals are used to delay the DQSI by 90 degrees. DQSO is the delayed DQS and is connected to the clock input of the first set of DDR registers. DQS Transition Detect: The DQS Transition Detect block generates the DDR Clock Polarity signal based on the phase of the FPGA clock at the first DQS transition. The DDR READ control signal and FPGA CLK inputs to this coming and should be coming from the FPGA core. DQSXFER: This block generates the 90-degree phase shifted clock to for the DDR Write interface. The input to this block is the XCLK. The user can choose to connect this either to the edge clock or the FPGA clocks. The DQSXFER is routed using the DQSXFER tree to all the I/Os spanned by that DQS. Data Valid Module: The data valid module generates a DATAVALID signal. This signal indicates to the FPGA that valid data is transmitted out of the input DDR registers to the FPGA core. FPGA Libraries Reference Guide 205 : The following table describes DQSBUFC I/O ports. Table 240: Port Name I/O Definition DQSI I DQS strobe signal from memory. CLK I System CLK. READ I Read generated from the FPGA core. DQSDEL I DQS delay from the DQSDLL primitive. XCLK I Edge clock or system CLK. DQSO O Delayed DQS strobe signal, to the input capture register block. DQSC O DQS strobe signal before delay, going to the FPGA core logic. DDRCLKPOL O DDR clock polarity signal. PRMBDET O Preamble detect signal, going to the FPGA core logic. DQSXFER O 90 degree shifted clock going to the output DDR register block. DTATVALID O Signal indicating transmission of valid data to the FPGA core. READ Pulse Generation The READ signal to the DQSBUFC block is internally generated in the FPGA core. The READ signal goes high when the READ command to control the DDR-SDRAM is initially asserted. This precedes the DQS preamble by one cycle, yet may overlap the trailing bits of a prior read cycle. The DQS Detect circuitry of the LatticeECP2 device requires the falling edge of the READ signal to be placed within the preamble stage. The preamble state of the DQS can be detected using the CAS latency and the round trip delay for the signals between the FPGA and the memory device. Note that the internal FPGA core generates the READ pulse. The rise of the READ pulse should coincide with the initial READ command of the Read Burst and need to go low before the Preamble goes high. Refer to the following technical notes on the Lattice web site for more details: TN1105 - LatticeECP2/M High-Speed I/O Interface TN1138 - LatticeXP2 High-Speed I/O Interface DQSBUFD DDR DQS Buffer Used for DDR3_MEM and DDR3_MEMGEN Architectures Supported: FPGA Libraries Reference Guide 206 : LatticeECP3 INPUTS: DQSI, SCLK, READ, DQSDEL, ECLK, ECLKW, RST, DYNDELPOL, DYNDELAY6, DYNDELAY5, DYNDELAY4, DYNDELAY3, DYNDELAY2, DYNDELAY1, DYNDELAY0 OUTPUTS: DQSW, DDRCLKPOL, PRMBDET, DATAVALID, DDRLAT, ECLKDQSR, DQCLK0, DQCLK1 ATTRIBUTES: DYNDEL_TYPE: "NORMAL" (default), "SHIFTED" DYNDEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) DYNDEL_CNTL: "DYNAMIC" (default), "STATIC" (EA only) NRZMODE: "DISABLED" (default), "ENABLED" Description DQSBUFD is the DDR DQS buffer used for DDR3_MEM (DDR3 memory mode) and DDR3_MEMGEN. FPGA Libraries Reference Guide E and EA: DDR3_MEM and DDR3_MEMGEN (left/right) EA: DDR3_MEMGEN (top) – only input side 207 : The table below describes the I/O ports. Table 241: Signal I/O Description DQSI I DQS input coming from the pad. SCLK I System clock. READ I READ signal generated from the FPGA core. RST I Reset input. DQSDEL I Delay input from DQSDLL. ECLK I Edge clock. ECLKW I Edge clock used for the DDR write side. DYNDELAY[6:0] I From user logic to DLL ADW & write clock generation. DYNDELPOL I From user logic to DLL ADW & write clock generation. Will change the polarity of the clock depending on the clock frequency. DQSW O DQS write clock. DDRCLKPOL O DDR clock polarity signal. PRMBDET O The preamble detect signal generated from the DQS signal going to the CIB. DQSI biased to go high when DQSI is tri-state. DATAVALID O Signal indicating the transmission of valid data to the FPGA core. DDRLAT O DDR latch control to input logic. Used to guarantee IDDRX2 gearing by selectively enabling a D flip-flop in the data path. ECLKDQSR O Delay DQS used to capture the data. DQCLK0 O One clock edge, at half the frequency of ECLK, used in output gearing, 90 degree out of phase from DQCLK1. DQCLK1 O One clock edge, at the frequency of SCLK, used in output gearing. Refer to the following technical note on the Lattice web site for more details: TN1180 - LatticeECP3 High-Speed I/O Interface DQSBUFE DDR DQS Buffer Used for DDR_GENX2 Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 208 : INPUTS: ECLK, SCLK, ECLKW, RST, DYNDELPOL, DYNDELAY6, DYNDELAY5, DYNDELAY4, DYNDELAY3, DYNDELAY2, DYNDELAY1, DYNDELAY0 OUTPUTS: DQCLK0, DQCLK1, DDRCLKPOL, DDRLAT ATTRIBUTES: DYNDEL_TYPE: "NORMAL" (default), "SHIFTED" DYNDEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) DYNDEL_CNTL: "DYNAMIC" (default), "STATIC" Description DQSBUFE is the DDR DQS buffer used for DDR_GENX2 (DDR generic mode in X2 gearing). E: DDR_GENX2 (left/right/top) The table below describes the I/O ports. Table 242: Signal I/O Description SCLK I System clock. ECLK I Edge clock. ECLKW I Edge clock used for the DDR write side. RST I Reset input. DYNDELAY[6:0] I FPGA Libraries Reference Guide From user logic to DLL ADW & write clock generation. 209 : Table 242: Signal I/O Description DYNDELPOL I From user logic to DLL ADW & write clock generation. Will change the polarity of the clock depending on the clock frequency. DDRCLKPOL O DDR clock polarity signal. DDRLAT O DDR latch control to input logic. Used to guarantee IDDRX2 gearing by selectively enabling a D flip-flop in the data path. DQCLK0 O One clock edge, at half the frequency of ECLK, used in output gearing, 90 degree out of phase from DQCLK1. DQCLK1 O One clock edge, at half the frequency of SCLK, used in output gearing. Refer to the following technical note on the Lattice web site for more details: TN1180 - LatticeECP3 High-Speed I/O Interface DQSBUFE1 DDR DQS Buffer Used for DDR_GENX2 Architectures Supported: LatticeECP3 INPUTS: ECLKW, RST, DYNDELPOL, DYNDELAY6, DYNDELAY5, DYNDELAY4, DYNDELAY3, DYNDELAY2, DYNDELAY1, DYNDELAY0 OUTPUTS: DQCLK0, DQCLK1 FPGA Libraries Reference Guide 210 : ATTRIBUTES: DYNDEL_TYPE: "NORMAL" (default), "SHIFTED" DYNDEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) DYNDEL_CNTL: "DYNAMIC" (default), "STATIC" Description DQSBUFE1 is the DDR DQS buffer used for DDR_GENX2 (DDR generic mode in X2 gearing). EA: DDR_GENX2 (left/right) EA: DDR_GENX2 (top) The table below describes the I/O ports. Table 243: Signal I/O Description ECLKW I Edge clock used for the DDR write side. RST I Reset input. DYNDELAY[6:0] I From user logic to DLL ADW & write clock generation. DYNDELPOL I From user logic to DLL ADW & write clock generation. Will change the polarity of the clock depending on the clock frequency. DQCLK0 O One clock edge, at half the frequency of ECLK, used in output gearing, 90 degree out of phase from DQCLK1. DQCLK1 O One clock edge, at half the frequency of SCLK, used in output gearing. Refer to the following technical note on the Lattice web site for more details: TN1180 - LatticeECP3 High-Speed I/O Interface DQSBUFF DDR DQS Buffer Used for DDR_MEM, DDR2_MEM, and DDR2_MEMGEN Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 211 : INPUTS: DQSI, SCLK, READ, DQSDEL OUTPUTS: DQSW, DDRCLKPOL, PRMBDET, DATAVALID, ECLKDQSR, DQCLK1 Description DQSBUFF is the DDR DQS buffer used for DDR_MEM (DDR memory mode), DDR2_MEM (DDR2 memory mode), and DDR2_MEMGEN. E and EA: DDR_MEM, DDR2_MEM, and DDR2_MEMGEN (left/right/top) The table below describes the I/O ports. Table 244: FPGA Libraries Reference Guide Signal I/O Description DQSI I DQS input coming from the pad. SCLK I System clock. READ I READ signal generated from the FPGA core. DQSDEL I Delay input from DQSDLL. DQSW O DQS write clock. DDRCLKPOL O DDR clock polarity signal. PRMBDET O The preamble detect signal generated from the DQS signal going to the CIB. DQSI biased to go high when DQSI is tri-state. DATAVALID O Signal indicating the transmission of valid data to the FPGA core. ECLKDQSR O Delay DQS used to capture the data. DQCLK1 O One clock edge, at the frequency of SCLK, used in output gearing. 212 : Refer to the following technical note on the Lattice web site for more details: TN1180 - LatticeECP3 High-Speed I/O Interface DQSBUFG DDR DQS Buffer Used for DDR_GENX1 Architectures Supported: LatticeECP3 INPUTS: SCLK OUTPUT: DDRCLKPOL, DQCLK1 Description DQSBUFG is the DDR DQS buffer used for DDR_GENX1 (DDR generic mode in X1 gearing). E: DDR_GENX1 (left/right/top) EA: Not allowed because it is not required The table below describes the I/O ports. Table 245: Signal I/O Description SCLK I System clock. DDRCLKPOL O DDR clock polarity signal. DQCLK1 O One clock edge, at half the frequency of SCLK, used in output gearing. Refer to the following technical note on the Lattice web site for more details: FPGA Libraries Reference Guide TN1180 - LatticeECP3 High-Speed I/O Interface 213 : DQSBUFH DQS Circuit for DDR Memory Architectures Supported: MachXO2 Platform Manager 2 INPUTS: DQSI, SCLK, READ, READCLKSEL1, READCLKSEL0, RST, DQSDEL OUTPUTS: DDRCLKPOL, DQSR90, DQSW90, DATAVALID, BURSTDET ATTRIBUTES: DQS_LI_DEL_ADJ: "PLUS" (default), "MINUS" DQS_LI_DEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) DQS_LO_DEL_ADJ: "PLUS" (default), "MINUS" DQS_LO_DEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) LPDDR: "DISABLED" (default), "ENABLED" GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 214 : Description DQSBUFH is the DQS circuit for DDR memory. It generates the 90 degree shift for DQS, and the DDRCLKPOL signal. It is used for right side only. The table below describes the I/O ports. Table 246: Signal I/O Description DQSI I DQS signal from PIO. READ I Signal for DDR read mode, coming from soft IP. READCLKSEL1, READCLKSEL0 I Select read clock source and polarity control for READ pulse position control in T/4 precision. The four positions are the rising/falling edges of SCLK or DQSW90. The signals come from soft IP. SCLK I Clock from CIB. RST I RESET for this block. DQSDEL I DQS slave delay control from DQSDLLC. DDRCLKPOL O SCLK polarity control. DQSR90 O DQS phase shifted by 90 degree output. DQSW90 O SCLK phase shifted by 90 degree output. DATAVALID O Data valid signal for READ mode. BURSTDET O Burst detection signal, moved from soft IP to hardware implementation. Refer to the following technical note on the Lattice web site for more details: TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices DQSBUFM DQS Circuit for DDR Memory Architectures Supported: FPGA Libraries Reference Guide ECP5 215 : INPUTS: DQSI, SCLK, READ0, READ1, READCLKSEL0, READCLKSEL1, READCLKSEL2, DDRDEL, ECLK, SCLK, DYNDELAY0, DYNDELAY1, DYNDELAY2, DYNDELAY3, DYNDELAY4, DYNDELAY5, DYNDELAY6, DYNDELAY7, RST, PAUSE, RDLOADN, RDMOVE, RDDIRECTION, WRLOADN, WRMOVE, WRDIRECTION OUTPUTS: DWSR90, DQSW, DQSW270, RDPNTR0, RDPNTR1, RDPNTR2, WRPNTR0, WRPNTR1, WRPNTR2, DATAVALID, BURSTDET, RDCFLAG, WRCFLAG ATTRIBUTES: DQS_LI_DEL_ADJ: "PLUS" (default), "MINUS" DQS_LI_DEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) DQS_LO_DEL_ADJ: "PLUS" (default), "MINUS" DQS_LO_DEL_VAL: integers 0~63 (PLUS), 1~64 (MINUS) (default: 0) WRITE_LEVELING: Values: 0T, 1T (default: 0T) FPGA Libraries Reference Guide 216 : Description DQSBUFM element is used for DDR3 and DDR2 in X2 mode. Port Name I/O Description DQSI I DQS input from the DQS pin DDRDEL I Delay code from DDRDLL ECLK I Edge Clock SCLK I System Clock RST I Reset Input READ[1:0] I Read input width for DQSBUFM READCLKSEL0, I Read clock pulse selection DYNDELAY[7:0] I Dynamic Write leveling delay (only for DDR3) PAUSE I Pause input to stop the DQSW/DQSW270 during write leveling or DDRDLL delay code change. RDLOADN I Used to reset back to 90 degrees delay for Read Side DQS RDMOVE I Pulse is required to change delay settings. The value on Direction will be sampled at “falling edge” of MOVE. Used to change delay on the Read side DQS. RDDIRECTION I Indicates delay direction. “1” decrease delay count, “0” increase delay count. Used to change delay on the Read side DQS. RDCFLAG O Indicates the delay counter has reached max value for the Read side DQS delay. WRLOADN I Used to reset back to 90 degrees delay for Write Side DQS WRMOVE I Pulse is required to change delay settings. The value on Direction will be sampled at “falling edge” of MOVE. Used to change delay on the Write side DQS. WRDIRECTION I Indicates delay direction. “1” decrease delay count, “0” increase delay count. Used to change delay on the Write side DQS. WRCFLAG O Indicates the delay counter has reached max value for the Write side DQS delay. DQSR90 O 90 delay DQS used for Read DQSW270 O 90 delay clock used for DQ Write READCLKSEL1, READCLKSEL2 FPGA Libraries Reference Guide 217 : DQSW O Clock used for DQS Write RDPNTR[2:0] O Read Pointer for IFIFO module WRPNTR[2:0] O Write Pointer for IFIFO module DATAVALID O Signal indicating start of valid data BURSTDET O Burst Detect indicator DQSDLL DLL used as DDR memory DQS DLL Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeXP LatticeXP2 INPUTS: CLK, RST, UDDCNTL OUTPUTS: LOCK, DQSDEL ATTRIBUTES: LOCK_SENSITIVITY: "LOW" (default), "HIGH" Description DQS delay calibration DLL. The primitive generates a 90-degree phase shift required for the DQS signal and implements the on-chip DQSDLL. Only one DQSDLL should be instantiated for all the DDR implementations on one half of the device. The clock input to this DLL should be at the same frequency as the DDR interface. DLL generates the delay based on this clock frequency and the update control input to this block. The DLL updates the dynamic delay FPGA Libraries Reference Guide 218 : control to the DQS delay block when this update control (UDDCNTL) input is asserted. The active low signal on UDDCNTL updates the DQS phase alignment and should be initiated at the beginning of READ cycles. Table 247: Port Name I/O Definition CLK I System CLK should be at the frequency of the DDR interface from the FPGA core. RST I Resets the DQSDLL UDDCNTL I This is an active low port. It provides an update signal to the DLL that will update the dynamic delay. When held low, this signal will update the DQSDEL. LOCK O Indicates when the DLL is in phase. DQSDEL O The digital delay generated by the DLL, should be connected to the DQSBUF primitive. DQSDLL Configuration: By default, this DLL generates a 90-degree phase shift for the DQS strobe based on the frequency of the input reference clock to the DLL. The user can control the sensitivity to jitter by using the LOCK_SENSITIVITY attribute. This configuration bit can be programmed to be either “HIGH” or “LOW”. The DLL Lock Detect circuit has two modes of operation controlled by the LOCK_SENSITIVITY bit, which selects more or less sensitivity to jitter. If this DLL is operated at or above 150 MHz, it is recommended that the LOCK_SENSITIVITY bit be programmed “HIGH” (more sensitive). When running at or below 100 MHz, it is recommended that the bit be programmed “LOW” (more tolerant). For 133 MHz, the LOCK_SENSITIVITY bit can go either way. Refer to the following technical notes on the Lattice web site for more details TN1050 - LatticeECP/EC and LatticeXP DDR Usage Guide TN1105 - LatticeECP2/M High-Speed I/O Interface TN1138 - LatticeXP2 High-Speed I/O Interface DQSDLLB DQS DLL for DDR_MEM, DDR2_MEM, and DDR3_MEM Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 219 : INPUTS: CLK, RST, UDDCNTLN OUTPUTS: LOCK, DQSDEL ATTRIBUTES: LOCK_SENSITIVITY: "LOW" (default), "HIGH" Description DQSDLLB is the DLL used as DDR memory DQS DLL. E and EA: DDR_MEM, DDR2_MEM, and DDR3_MEM (left/right) The table below describes the I/O ports. Table 248: Signal I/O Description CLK I Clock from the CIB, coming from a PLL. The clock should run at the DDR memory frequency. RST I RESET input to the master DLL. UDDCNTLN I Update control generated from the core. DQSDEL O DQS delay generated by DQSDLL. LOCK O Lock output of the DQSDLL to the CIB. DQSDLLC Master DLL for Generating Required Delay Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 220 : INPUTS: CLK, RST, UDDCNTLN, FREEZE OUTPUTS: LOCK, DQSDEL ATTRIBUTES: DEL_ADJ: "PLUS" (default), MINUS DEL_VAL: integers 0~127 (PLUS), 1~128 (MINUS) (default: 0) LOCK_SENSITIVITY: "LOW" (default), "HIGH" FIN: value range supported by DLL (default: "100.0") FORCE_MAX_DELAY: "NO" (default), "YES" GSR: "ENABLED" (default), "DISABLED" Description DQSDLLC is the master DLL to generate required delay. See the table below for I/O port descriptions. Table 249: Signal I/O Description CLK I Clock from the CIB. RST I DLL reset control. UDDCNTLN I Hold/update control to delay code before adjustment. FREEZE I Signal used to freeze or release DLL input CLK. DQSDEL O DLL delay control code to slave delay cells, connected to DQSDEL of the DQSBUFH element. LOCK O DLL lock signal. DTR Digital Temperature Readout Architectures Supported: FPGA Libraries Reference Guide 221 : ECP5 INPUTS: START_PULSE OUTPUTS: DTR_OUT Description Digital Temperature Readout (or DTR) is an on board temperature sensing circuit that provides the junction temperature of the die while running. See the table below for I/O port descriptions. Table 250: Signal FPGA Libraries Reference Guide I/O Description START_PULSE I Pulse to instruct DTR to start capturing temperature. DTR_OUT 8 bit DTR output O 222 : E ECLKBRIDGECS ECLK Bridge Block Clock Select Architectures Supported: ECP5 MachXO2 MachXO3L Platform Manager 2 INPUTS: CLK0, CLKI, SEL OUTPUT: ECSOUT Description ECLK high speed bridge eases the design of high speed video or DDRX4 mode applications. It takes the high speed edge clocks sources from both sides (top and bottom). The bridge enhances the communication of ECLKs across the die. The bridge is supported for devices equal to or above 1200 LUTs. The table below describes the I/O ports of the ECLKBRIDGECS primitive. Table 251: Port I/O Unused Port Function CLK0 I Tie low Input clock to the edge bridge clock select. CLK1 I Tie low Input clock to the edge bridge clock select. SEL I Tie low From CIB, edge bridge clock select. ECSOUT O Dangle Output from edge bridge clock select. ECLKBRIDGECS Usage with VHDL Library Instantiation FPGA Libraries Reference Guide 223 : library lattice; use lattice.components.all; Component Declaration component ECLKBRIDGECS port (CLK0 : in std_logic; CLK1 : in std_logic; SEL : in std_logic; ECSOUT : out std_logic); end component; ECLKBRIDGECS Instantiation I1: ECLKBRIDGECS port map (CLK0 CLK1 SEL ECSOUT end component; => => => => CLK0; CLK1; SEL; ECSOUT); ECLKBRIDGECS Usage with Verilog HDL Component Declaration module ECLKBRIDGECS (CLK0, CLK1, SEL, ECSOUT); input CLK0; input CLK1; input SEL; output ECSOUT; endmodule ECLKBRIDGECS Instantiation ECLKBRIDGECS I1 (.CLK0 (CLK0), .CLK1 (CLK1), .SEL (SEL), .ECSOUT (ECSOUT)); For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide 224 : ECLKSYNCA ECLK Stop Block Architectures Supported: LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: ECLKI, STOP OUTPUT: ECLKO Description ECLKSYNCA is the optional ECLK synchronization for DDR_MEM (DDR memory mode), DDR2_MEM (DDR2 memory mode), and DDR3_MEM (DDR3 memory mode). E and EA: DDR_MEM, DDR2_MEM, and DDR3_MEM (left/right/top) The table below describes the I/O ports of the ECLKSYNCA primitive. Table 252: Port I/O Unused Port Function ECLKI I Tie low Edge clock input to the stop clock STOP I Tie low Control signal to stop the edge clock to synchronize the signals derived from ECLK ECLKO O Dangle Edge clock output from the stop clock ECLKSYNCA Usage with VHDL Library Instantiation library lattice; use lattice.components.all; Component Declaration component ECLKSYNCA port (ECLKI : in std_logic; FPGA Libraries Reference Guide 225 : STOP : in std_logic; ECLKO : out std_logic); end component; ECLKSYNCA Instantiation I1: ECLKSYNCA port map (ECLKI => ECLKI, STOP => STOP, ECLKO => ECLKO); end component; ECLKSYNCA Usage with Verilog HDL Component Declaration module ECLKSYNCA (ECLKI, input ECLKI; input STOP; output ECLKO; endmodule STOP, ECLKO); ECLKSYNCA Instantiation ECLKSYNCA I1 (.ECLKI (ECLKI); .STOP (STOP); .ECLKO (ECLKO)); For more information and usage, refer to the following technical notes on the Lattice web site. TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide TN1177 - LatticeECP3 sysIO Usage Guide ECLKSYNCB ECLK Stop Block Architectures Supported: ECP5 INPUTS: ECLKI, STOP OUTPUT: ECLKO FPGA Libraries Reference Guide 226 : Description ECLKSYNCB is the optional ECLK synchronization for DDR_MEM (DDR memory mode), DDR2_MEM (DDR2 memory mode), and DDR3_MEM (DDR3 memory mode). The ECP5 ECLKSYNC is similar to MachXO2 and LaticeECP3 (ECLKSYNA), however it has some added latency. Asserting the STOP control signal (from CIB) will stop the edge clock and synchronize the signals from ECLK used in high speed DDR mode applications such as DDR memory, generic DDR and 7:1 LVDS. The STOP signal is synchronized with ECLK when asserted. When the STOP signal is released, every clock toggling from the second rising edge clock & after will be output. The table below describes the I/O ports of the ECLKSYNCB primitive. Table 253: Port I/O Unused Port Function ECLKI I Tie low Edge clock input to the stop block STOP I Tie low Control signal to stop the edge clock ECLKO O Dangle Edge clock output from the stop block ECLKSYNCB Usage with VHDL Component Declaration component ECLKSYNCB port ( ECLKI : in std_logic; STOP : in std_logic; ECLKO : out std_logic); end component; ECLKSYNCB Instantiation I1: ECLKSYNCB port map ( ECLKI => ECLKI, STOP => STOP, ECLKO => ECLKO); end component; ECLKSYNCB Usage with Verilog HDL Component Declaration module ECLKSYNCB (ECLKI, STOP, ECLKO) input ECLKI; input STOP; output ECLKO; endmodule ECLKSYNCB Instantiation ECLKSYNCB I1 (.ECLKI (ECLKI), .STOP (STOP), .ECLKO (ECLKO)); FPGA Libraries Reference Guide 227 : EFB Embedded Function Block Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: WBCLKI, WBRSTI, WBCYCI, WBSTBI, WBWEI, WBADRI7, WBADRI6, WBADRI5, WBADRI4, WBADRI3, WBADRI2, WBADRI1, WBADRI0, WBDATI7, WBDATI6, WBDATI5, WBDATI4, WBDATI3, FPGA Libraries Reference Guide 228 : WBDATI2, WBDATI1, WBDATI0, PLL0DATI7, PLL0DATI6, PLL0DATI5, PLL0DATI4, PLL0DATI3, PLL0DATI2, PLL0DATI1, PLL0DATI0, PLL0ACKI, PLL1DATI7, PLL1DATI6, PLL1DATI5, PLL1DATI4, PLL1DATI3, PLL1DATI2, PLL1DATI1, PLL1DATI0, PLL1ACKI, I2C1SCLI, I2C1SDAI, I2C2SCLI, I2C2SDAI, SPISCKI, SPIMISOI, SPIMOSII, SPISCSN, TCCLKI, TCRSTN, TCIC, UFMSN OUTPUTS: WBDATO7, WBDATO6, WBDATO5, WBDATO4, WBDATO3, WBDATO2, WBDATO1, WBDATO0, WBACKO, PLLCLKO, PLLRSTO, PLL0STBO, PLL1STBO, PLLWEO, PLLADRO4, PLLADRO3, PLLADRO2, PLLADRO1, PLLADRO0, PLLDATO7, PLLDATO6, PLLDATO5, PLLDATO4, PLLDATO3, PLLDATO2, PLLDATO1, PLLDATO0, I2C1SCLO, I2C1SCLOEN, I2C1SDAO, I2C1SDAOEN, I2C2SCLO, I2C2SCLOEN, I2C2SDAO, I2C2SDAOEN, I2C1IRQO, I2C2IRQO, SPISCKO, SPISCKEN, SPIMISOO, SPIMISOEN, SPIMOSIO, SPIMOSIEN, SPIMCSN0, SPIMCSN1, SPIMCSN2, SPIMCSN3, SPIMCSN4, SPIMCSN5, SPIMCSN6, SPIMCSN7, SPICSNEN, SPIIRQO, TCINT, TCOC, WBCUFMIRQ, CFGWAKE, CFGSTDBY Description The EFB primitive has seven explicit interfaces: WISHBONE, SPI, I2C (Primary), I2C (Secondary), Timer/Counter, and two PLLs. DEV_DENSITY: MachXO2: "256L", "640L", "1200L", "2000L", "4000L", "7000L", "10000L", "640U", "1200U", "2000U", "4000U" MachXO3LF: "640L_121P", "1300L", "2100L", "4300L", "1300L_256P", "2100L_324P", "4300L_400P", "6900L" For detailed information regarding the GUI, interface, and usage regarding each EFB interface, refer to the following technical note on the Lattice web site: TN1205 - Using User Flash Memory and Hardened Control Functions in MachXO2 Devices EHXPLLA Enhanced High Performance with Dynamic Input Delay Control PLL Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 229 : INPUTS: SMIADDR9, SMIADDR8, SMIADDR7, SMIADDR6, SMIADDR5, SMIADDR4, SMIADDR3, SMIADDR2, SMIADDR1, SMIADDR0, SMIRD, SMIWR, SMICLK, SMIWDATA, SMIRSTN, CLKI, CLKFB, RSTN OUTPUTS: CLKOP, CLKOS, LOCK, CLKINTFB, SMIRDATA ATTRIBUTES: CLKI_DIV: integers 1~64 (default: 1) CLKFB_DIV: integers 1~64 (default: 1) CLKOP_DIV: integers 1~64 (default: 1) CLKOS_DIV: integers 1~64 (default: 1) CLKI_FDEL: 0 (default), 100, 200, ..., 700 CLKFB_FDEL: 0 (default), 100, 200, ..., 700 CLKOS_FDEL: 0 (default), 100, 200, ..., 700 CLKOP_MODE: "BYPASS" (default), "FDEL0", "VCO", "DIV" CLKOS_MODE: "BYPASS" (default), "FDEL", "VCO", "DIV" PHASEADJ: 0 (default), 45, 90, 135, 190, 225, 270, 315 GSR: "ENABLED" (default), "DISABLED" SMI_OFFSET: 0x400~0x7FF (default: 12’h410) LOCK_DELAY: integers 0~1000 (in ns) (default: 100) CLKOS_VCODEL: integers 0~31 (default: 0) FPGA Libraries Reference Guide 230 : MODULE_TYPE: "EHXPLLA" IP_TYPE: "EHXPLLA" Description The Enhanced Extended Performance PLL (EHXPLLA) includes all features available in the PLL. This primitive includes SMI access so that you may configure the PLL as you require. The EHXPLLA primitive can be created through IPexpress. Note that Some combination of legal values are not allowed, due to other system limitations, such as the frequency of operation. The following are descriptions of EHXPLLA port functions. Table 254: Port I/O Function CLKI I CLKI[1:3]: from CIBs CLKI[0]: dedicated clock input pin Frequency: 2~1000 MHz CLKFB I CLKFB[2,3]: from CIBs CLKFB[1]: dedicated external feedback pin CLKFB[0]: internal feedback from VCO output (CLKINTFB) Frequency: 2~1000 MHz CLKOP O PLL output clock – main clock output Frequency: 1.5625~1000 MHz CLKOS O PLL output clock – supplemental clock output Frequency: 1.5625~1000 MHz LOCK O PLL locked to CLK1 CLKINTFB O CLKFB internal feedback source from VCO output RSTN I Active low reset SMIADDR[9:0] I SMI address bus SMICLK I SMI clock signal SMIRSTN I SMI reset signal SMIRD I SMI read signal SMIWDATA I SMI write data input SMIWR I SMI write signal SMIRDATA O SMI read data output You can refer to the following technical note on the Lattice web site for more detailed description and usage. FPGA Libraries Reference Guide TN1098 - LatticeSC sysCLOCK PLL/DLL User's Guide 231 : EHXPLLB Enhanced High Performance with Dynamic Input Delay Control PLL Architectures Supported: LatticeECP/EC LatticeXP INPUTS: CLKI, CLKFB, RST, DDAMODE, DDAIZR, DDAILAG, DDAIDEL0, DDAIDEL1, DDAIDEL2 OUTPUTS: CLKOP, CLKOS, CLKOK, LOCK, DDAOZR, DDAOLAG, DDAODEL0, DDAODEL1, DDAODEL2 ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKI_DIV: (LatticeECP/EC) integers 1~16 (default: 1); (LatticeXP) integers 1~15 (default: 1) CLKFB_DIV: (LatticeECP/EC) integers 1~16 (default: 1); (LatticeXP) integers 1~15 (default: 1) CLKOP_DIV: (LatticeECP/EC) even integers 2~32 if CLKOS is not used; 2, 4, 8, 16, 32 is CLKOS is used. (Default: 8) (LatticeXP) even integers 2~30 if CLKOS is not used (default: 6); 2, 4, 8, 16 if CLKOS is used (default: 4). CLKOK_DIV: 2 (default), 4, 6, 8, ..., 126, 128 FDEL: integers -8~8 (default: 0) PHASEADJ: 0 (default), 45, 90, 135, 190, 225, 270, 315 DUTY: integers 1~7 (default: 4) DELAY_CNTL: "STATIC" (default), "DYNAMIC" FPGA Libraries Reference Guide 232 : Description The following are descriptions of EHXPLLB port functions. Table 255: Port I/O Function CLKI I Global clock input; frequency: 20~420 MHz. CLKFB I External feedback, internal feedback from CLKOP divider; frequency: 20~420 MHz. RST I "1" to reset M-divider. DDAMODE I DDA mode. "1": pin control (dynamic); "0": fuse control (static). DDAIZR I DDA delay zero. "1": delay = 0; "0": delay = on. DDAILAG I DDA lag/lead. "1": lag; "0": lead. DDAIDEL[0:2] I DDA delay. CLKOP O PLL output clock to clock tree (no phase shift); frequency: 20~420 MHz. CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed); frequency: 20~420 MHz. CLKOK O PLL output to clock tree (K divider, low speed, output); frequency: 0.156~210 MHz. LOCK O "1" indicates PLL LOCK to CLK_IN. DDAOZR O DDA delay zero output. DDAOLAG O DDA lag/lead output. DDAODEL[0:2] O DDA delay output. Dynamic Delay Adjustment The Dynamic Delay Adjustment is controlled by DDAMODE input. This feature is available in EHXPLLB primitive only. When the DDAMODE input is set to “1,” the delay control is done through the inputs, DDAIZR, DDAILAG and DDAIDEL(2:0). For this mode, the attribute “DELAY_CNTL” must be set to “DYNAMIC.” Equations for Generating Input and Output Frequency Ranges These values of fIN, fOUT, fVCO are the absolute frequency ranges for the PLL. The values of fINMIN, fINMAX, fOUTMIN, and fOUTMAX, are the calculated frequency ranges based on the divider settings. These calculated frequency ranges become the limits for the specific divider settings used in the design. fOUT = fIN * (N/M) fVCO = fOUT * V = fIN * (N/M) * V fIN = (fVCO /(V*N))*M FPGA Libraries Reference Guide 233 : Where M = CLKI DIV N = CLKFB DIV V = CLKOP DIV K = CLKOK DIV fINMIN = ((fVCOMIN /(V*N))*M, if below 33 * M round up to 33 * M fINMAX = (fVCOMAX/(V*N))*M, if above 420 round down to 420 fOUTMIN = fINMIN*(N/M), if below 33 * N round up to 33 * N fOUTMAX = fINMAX*(N/M), if above 420 round down to 420 fOUTKMIN = fOUTMIN /K fOUTKMAX = fOUTMAX /K You can refer to the following technical note on the Lattice web site for more detailed description and usage. TN1049 - LatticeECP/EC and LatticeXP sysCLOCK PLL Design and Usage Guide EHXPLLC Enhanced Extended Performance PLL Architectures Supported: MachXO Platform Manager INPUTS: CLKI, CLKFB, RST, DDAMODE, DDAIZR, DDAILAG, DDAIDEL0, DDAIDEL1, DDAIDEL2 FPGA Libraries Reference Guide 234 : OUTPUTS: CLKOP, CLKOS, CLKOK, LOCK, CLKINTFB ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKFB_DIV: integers 1~16 (default: 1) CLKI_DIV: integers 1~16 (default: 1) CLKOP_DIV: even integers 2~32 if CLKOS is not used; 2, 4, 8, 16, 32 if CLKOS is used. (Default: 8) CLKOK_DIV: 2 (default), 4, 6, 8, ..., 126, 128 DELAY_CNTL: "STATIC" (default), "DYNAMIC" FDEL: integers -8~8 (default: 0) PHASEADJ: 0 (default), 45, 90, 135, 190, 225, 270, 315 DUTY: integers 1~7 (default: 4) Description The EHXPLLC primitive is used for MachXO and Platform Manager PLL implementation. The definitions of the PLL I/O ports are shown in the following table. The EHXPLLC includes all features available in the MachXO or Platform Manager PLL. Table 256: FPGA Libraries Reference Guide Port I/O Function CLKI I General routing or dedicated global clock input pad. CLKFB I From general routing, clock tree, internal feedback from CLKOP or dedicated external feedback CLKFB Ipad. RST I "1" to reset PLL counters. CLKOP O PLL output clock to clock tree (no phase shift). CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed). CLKOK O PLL output to clock tree (CLKOK divider, low speed, output). LOCK O "1" indicates PLL LOCK to CLKI; asynchronous signal. CLKINTFB O Internal feedback source. CLKOP divider output before CLOCK TREE. DDAMODE I DDA mode. "1": pin control (dynamic); "0": fuse control (static). DDAIZR I DDA delay zero. "1": delay = 0; "0": delay = on. 235 : Table 256: Port I/O Function DDAILAG I DDA lag/lead. "1": lead; "0": lag. DDAIDEL[0:2] I DDA delay. You can refer to the following technical note on the Lattice web site for more detailed description and usage. TN1089 - MachXO sysCLOCK Design and Usage Guide EHXPLLD Complex PLL Architectures Supported: LatticeECP2/M INPUTS: CLKI, CLKFB, RST, RSTK, DDAMODE, DDAIZR, DDAILAG, DDAIDEL0, DDAIDEL1, DDAIDEL2, DPAMODE, DRPAI3, DRPAI2, DRPAI1, DRPAI0, DFPAI3, DFPAI2, DFPAI1, DFPAI0 OUTPUTS: CLKOP, CLKOK, CLKOS, LOCK, CLKINTFB ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKI_DIV: integers 1~64 (default: 1) CLKFB_DIV: integers 1~16 (default: 1) CLKOP_DIV: 2, 4, 8 (default), 16, 32, 48, 64, 80, 96, 112, 128 FPGA Libraries Reference Guide 236 : CLKOK_DIV: 2 (default), 4, 6, 8, ..., 126, 128 FDEL: integers -8~8 (default: 0) PHASEADJ: 0 (default), 22.5, 45, 67.5, 90, ..., 315, 337.5 DUTY: integers 2~14 (default: 8) PHASE_CNTL: "STATIC" (default), "DYNAMIC" DELAY_CNTL: "STATIC" (default), "DYNAMIC" PLLCAP: "DISABLED" (default), "ENABLED", "AUTO" CLKOP_BYPASS: "DISABLED" (default), "ENABLED" CLKOS_BYPASS: "DISABLED" (default), "ENABLED" CLKOK_BYPASS: "DISABLED" (default), "ENABLED" Description The ECP2 devices provide two type of PLLS: SPLL and GPLL. The SPLL is a baseline PLL. The GPLL includes all features of SPLL plus Dynamic Delay Adjustment. The primitive for the SPLL is EPLLD. The primitive for the GPLL are EPLLD and EHXPLLD. See the following table for GPLL and SPLL IO port description. Table 257: FPGA Libraries Reference Guide Port I/O Function CLKI I Input clock. CLKFB I Feedback clock. RST I PLL reset (connect to CNTRST port). High active reset. RSTK I Reset for K divider (connect to RESETK port). High active reset. CLKOP O PLL output clock (no phase shift). CLKOS O PLL output clock (phase shifted/duty cycle changed). CLKOK O PLL output to clock tree (no phase shift, low speed). LOCK O PLL LOCK to CLKI, asynchronous signal. Active high indicates PLL lock. CLKINTFB O Internal feedback source. CLKOP divider output before CLOCK TREE. DDAMODE I DDA mode. Active high indicates pin control (DYNAMIC) and active low indicates fuse control (STATIC). DDAIZR I DDA delay zero. Active high indicates “delay = 0” and active low indicates “delay= on.” 237 : Table 257: Port I/O Function DDAILAG I DDA lag/lead. Active high indicates “lead” and active low indicates “lag.” DDAIDEL[2:0] I DDA delay. DPAMODE I Dynamic phase adjust mode. Active high indicates pin control (DYNAMIC) and active low indicates fuse control (STATIC). DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting. DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting. You can refer to the following technical note on the Lattice web site for more detailed description and usage. TN1103 - LatticeECP2/M sysCLOCK PLL/DLL Design and Usage Guide EHXPLLE Complex PLL Architectures Supported: LatticeXP2 INPUTS: CLKI, CLKFB, RST, RSTK, WRDEL, DRPAI3, DRPAI2, DRPAI1, DRPAI0, DFPAI3, DFPAI2, DFPAI1, DFPAI0 OUTPUTS: CLKOP, CLKOK, CLKOK2, CLKOS, LOCK, CLKINTFB ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKFB_DIV: integers 1~64 (default: 1) FPGA Libraries Reference Guide 238 : CLKI_DIV: integers 1~64 (default: 1) CLKOP_DIV: 2, 4, 8 (default), 16, 32, 48, 64, 80, 96, 112, 128 CLKOK_DIV: 2 (default), 4, 6, ..., 126, 128 PHASE_CNTL: "STATIC" (default), "DYNAMIC" PHASEADJ: 0 (default), 22.5, 45, 67.5, 90, ..., 315, 337.5 DUTY: integers 2~14 (default: 8) CLKOP_BYPASS: "DISABLED" (default), "ENABLED" CLKOS_BYPASS: "DISABLED" (default), "ENABLED" CLKOK_BYPASS: "DISABLED" (default), "ENABLED" CLKOP_TRIM_POL: "FALLING" (default), "RISING" CLKOP_TRIM_DELAY: integers 0~7 (default: 0) CLKOS_TRIM_POL: "RISING" (default), "FALLING" CLKOS_TRIM_DELAY: integers 0~3 (default: 0) Description EHXPLLE and EPLLD are the two primitives defined for XP2 GPLL. The EPLLD is used for both ECP2 and XP2 to support design migration. See EPLLD for details on migration. It is recommended to use EPLLD for all PLL configurations except for configurations involving Duty Trim Options, CLKOK2 and the CLKOS Fine Delay Port (WRDEL). Those features are only supported by the EHXPLLE primitive. See the following table for port description. Table 258: FPGA Libraries Reference Guide Port I/O Function CLKI I Input clock. CLKFB I Feedback clock. RST I PLL reset (connect to CNTRST port). High active reset. RSTK I Reset for K divider (connect to RESETK port). High active reset. CLKOP O PLL output clock (no phase shift). CLKOS O PLL output clock (phase shifted/duty cycle changed). CLKOK O PLL output to clock tree (no phase shift, low speed). CLKOK2 O PLL output clock (no phase shift, CLKOP/3). 239 : Table 258: Port I/O Function LOCK O PLL LOCK to CLKI, asynchronous signal. Active high indicates PLL lock. CLKINTFB O Internal feedback source. CLKOP divider output before CLOCK TREE. WRDEL I Fine delay adjust (0 = no delay; 1 = ~70ps). DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting. DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting. DDAMODE I DDA mode. Active high indicates pin control (DYNAMIC) and active low indicates fuse control (STATIC). You can refer to the following technical note on the Lattice web site for more detailed description and usage. TN1126 - LatticeXP2 sysCLOCK PLL Design and Usage Guide EHXPLLE1 Complex PLL Architectures Supported: LatticeXP2 INPUTS: CLKI, CLKFB, RST, RSTK, WRDEL, DRPAI3, DRPAI2, DRPAI1, DRPAI0, DFPAI3, DFPAI2, DFPAI1, DFPAI0, PWD OUTPUTS: CLKOP, CLKOK, CLKOK2, CLKOS, LOCK, CLKINTFB ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") FPGA Libraries Reference Guide 240 : CLKFB_DIV: integers 1~64 (default: 1) CLKI_DIV: integers 1~64 (default: 1) CLKOP_DIV: 2, 4, 8 (default), 16, 32, 48, 64, 80, 96, 112, 128 CLKOK_DIV: 2 (default), 4, 6, ..., 126, 128 PHASE_CNTL: "STATIC" (default), "DYNAMIC" PHASEADJ: 0 (default), 22.5, 45, 67.5, 90, ..., 315, 337.5 DUTY: integers 2~14 (default: 8) CLKOP_BYPASS: "DISABLED" (default), "ENABLED" CLKOS_BYPASS: "DISABLED" (default), "ENABLED" CLKOK_BYPASS: "DISABLED" (default), "ENABLED" CLKOP_TRIM_POL: "FALLING" (default), "RISING" CLKOP_TRIM_DELAY: integers 0~7 (default: 0) CLKOS_TRIM_POL: "RISING" (default), "FALLING" CLKOS_TRIM_DELAY: integers 0~3 (default: 0) Description The following are descriptions of EHXPLLE1 port functions. Table 259: FPGA Libraries Reference Guide Port I/O Function CLKI I Input clock. CLKFB I Feedback clock. RST I PLL reset (connect to CNTRST port). High active reset. RSTK I Reset for K divider (connect to RESETK port). High active reset. WRDEL I Fine delay adjust (0 = no delay; 1 = ~70ps). DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting. DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting. DDAMODE I DDA mode. Active high indicates pin control (DYNAMIC) and active low indicates fuse control (STATIC). PWD I Dynamic power down signal. CLKOP O PLL output clock (no phase shift). CLKOS O PLL output clock (phase shifted/duty cycle changed). 241 : Table 259: Port I/O Function CLKOK O PLL output to clock tree (no phase shift, low speed). CLKOK2 O PLL output clock (no phase shift, CLKOP/3). LOCK O PLL LOCK to CLKI, asynchronous signal. Active high indicates PLL lock. CLKINTFB O Internal feedback source. CLKOP divider output before CLOCK TREE. You can refer to the following technical note on the Lattice web site for more detailed description and usage. TN1126 - LatticeXP2 sysCLOCK PLL Design and Usage Guide EHXPLLF Complex PLL Architectures Supported: LatticeECP3 INPUTS: CLKI, CLKFB, RST, RSTK, DRPAI3, DRPAI2, DRPAI1, DRPAI0, DFPAI3, DFPAI2, DFPAI1, DFPAI0, FDA3, FDA2, FDA1, FDA0, WRDEL OUTPUTS: CLKOP, CLKOS, CLKOK, CLKOK2, LOCK, CLKINTFB ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKI_DIV: integers 1~64 (default: 1) FPGA Libraries Reference Guide 242 : CLKFB_DIV: integers 1~64 (default: 1) CLKOP_DIV: 2, 4, 8 (default), 16, 32, 48, 64, 80, 96,112, 128 CLKOK_DIV: 2 (default), 4, 6, 8, ...,126,128 PHASEADJ: 0 (default), 22.5, 45, 67.5, 90, ..., 315, 337.5 DUTY: integers 2~14 (default: 8) PHASE_DELAY_CNTL: "STATIC" (default), "DYNAMIC" CLKOP_BYPASS: "DISABLED" (default), "ENABLED" CLKOS_BYPASS: "DISABLED" (default), "ENABLED" CLKOK_BYPASS: "DISABLED" (default), "ENABLED" CLKOP_TRIM_POL: "RISING" (default), "FALLING" CLKOP_TRIM_DELAY: integers 0~7 (default: 0) CLKOS_TRIM_POL: "RISING" (default), "FALLING" CLKOS_TRIM_DELAY: integers 0~3 (default: 0) DELAY_VAL: integers 0~15 (default: 0) DELAY_PWD: "DISABLED" (default), "ENABLED" CLKOK_INPUT: "CLKOP" (default), "CLKOS" Description EHXPLLF and EPLLD are the two primitives defined for the LatticeECP3 GPLL. The EPLLD primitive is used for both ECP3 and XP2 for design migration. For the ECP3 new configurations, only EHXPLLF will be supported. The following table describes EHXPLLF IO port functions. Table 260: FPGA Libraries Reference Guide Port I/O Function CLKI I Input clock. CLKFB I Feedback clock. RST I PLL reset (connect to CNTRST port). High active reset. RSTK I Reset for K divider (connect to RESETK port). High active reset. CLKOP O PLL output clock (no phase shift). CLKOS O PLL output clock (phase shifted/duty cycle changed). 243 : Table 260: Port I/O Function CLKOK O PLL output clock (no phase shift, low speed). CLKOK2 O PLL output clock (no phase shift, CLKOP/3). LOCK O PLL LOCK to CLKI, asynchronous signal. Active high indicates PLL lock. CLKINTFB O Internal feedback source. CLKOP divider output before CLOCK TREE. WRDEL I Dynamic CLKOS single step fine delay adjust (0 = no delay; 1 = ~70ps). FDA[3:0] I Dynamic CLKOS 16 step fine delay adjustment on CLKOS (each increment is ~125ps). DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting. DFPAI[3:0] I Dynamic duty cycle, falling edge setting. You can refer to the following technical note on the Lattice web site for EHXPLLF port definition, attribute definition, and usage. TN1178 - LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide EHXPLLJ GPLL for MachXO2 and Platform Manager 2 Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 244 : INPUTS: CLKI, CLKFB, PHASESEL1, PHASESEL0, PHASEDIR, PHASESTEP, LOADREG, STDBY, PLLWAKESYNC, RST, RESETM, RESETC, RESETD, ENCLKOP, ENCLKOS, ENCLKOS2, ENCLKOS3, PLLCLK, PLLRST, PLLSTB, PLLWE, PLLDATI7, PLLDATI6, PLLDATI5, PLLDATI4, PLLDATI3, PLLDATI2, PLLDATI1, PLLDATI0, PLLADDR4, PLLADDR3, PLLADDR2, PLLADDR1, PLLADDR0 OUTPUTS: CLKOP, CLKOS, CLKOS2, CLKOS3, LOCK, INTLOCK, REFCLK, CLKINTFB, DPHSRC, PLLDATO7, PLLDATO6, PLLDATO5, PLLDATO4, PLLDATO3, PLLDATO2, PLLDATO1, PLLDATO0, PLLACK ATTRIBUTES: The EHXPLLJ primitive utilizes many attributes that allow the configuration of the PLL through source constraints. The following table details these attributes: Table 261: Attribute Type Allowed Values Default Description FREQ_PIN_CLKI String 10 to 400 100 CLKI frequency (MHz) FREQ_PIN_CLKOP String 3.125 to 400 100 CLKOP frequency (MHz) CLKOP_FTOL String 0.0, 0.1, 0.2, 0.5, 1.0, 0.0 2.0, 5.0, 10.0 CLKOP_AFREQ String FREQ_PIN_CLKOS String FPGA Libraries Reference Guide 0.024 to 400 CLKOP frequency tolerance - CLKOP actual frequency (MHz) 100 CLKOS frequency (MHz) 245 : Table 261: Attribute Type Allowed Values Default CLKOS_FTOL String 0.0, 0.1, 0.2, 0.5, 1.0, 0.0 2.0, 5.0, 10.0 CLKOS_AFREQ String FREQUENCY_PIN_CLKOS2 String 0.024 to 400 CLKOS2_FTOL String 0.0, 0.1, 0.2, 0.5, 1.0, 0.0 2.0, 5.0, 10.0 CLKOS2_AFREQ String FREQUENCY_PIN_CLKOS3 String 0.024 to 400 CLKOS3_FTOL String 0.0, 0.1, 0.2, 0.5, 1.0, 0.0 2.0, 5.0, 10.0 CLKOS3_AFREQ String CLKI_DIV Integer CLKFB_DIV Description CLKOS frequency tolerance - CLKOS actual frequency (MHz) 100 CLKOS2 frequency (MHz) CLKOS2 frequency tolerance - CLKOS2 actual frequency (MHz) 100 CLKOS3 frequency (MHz) CLKOS3 frequency tolerance - CLKOS3 actual frequency (MHz) 1 to 128 1 CLKI divider setting Integer 1 to 128 1 CLKFB divider setting CLKOP_DIV Integer 1 to 128 8 CLKOP divider setting CLKOS_DIV Integer 1 to 128 8 CLKOS divider setting CLKOS2_ DIV Integer 1 to 128 8 CLKOS2 divider setting CLKOS3_ DIV Integer 1 to 128 8 CLKOS3 divider setting CLOCK_ENABLE_PORTS Boolean ENABLED, DISABLED DISABLED Clock enable ports CLKOP_ENABLE Boolean ENABLED, DISABLED ENABLED CLKOP enable CLKOS_ENABLE Boolean ENABLED, DISABLED ENABLED CLKOS enable CLKOS2_ENABLE Boolean ENABLED, DISABLED ENABLED CLKOS2 enable CLKOS3_ENABLE Boolean ENABLED, DISABLED ENABLED CLKOS3 enable VCO_BYPASS_A0 Boolean ENABLE, DISABLED DISABLED VCO bypass A0 VCO_BYPASS_B0 Boolean ENABLE, DISABLED DISABLED VCO bypass B0 VCO_BYPASS_C0 Boolean ENABLE, DISABLED DISABLED VCO bypass C0 VCO_BYPASS_D0 Boolean ENABLE, DISABLED DISABLED VCO bypass D0 FPGA Libraries Reference Guide 246 : Table 261: Attribute Type Allowed Values Default Description CLKOP _PHASEADJ String 0, 45, 90, 135, 180, 225, 270, 315 0 CLKOP desired phase shift selection (O) in static mode CLKOS_PHASEADJ String 0, 45, 90, 135, 180, 225, 270, 315 0 CLKOS desired phase shift selection (O) in static mode CLKOS2_PHASEADJ String 0, 45, 90, 135, 180, 225, 270, 315 0 CLKOS2 desired phase shift selection (O) in static mode CLKOS3_PHASEADJ String 0, 45, 90, 135, 180, 225, 270, 315 0 CLKOS3 desired phase shift selection (O) in static mode CLKOP_CPHASE Integer 0 to 127 N/A CLKOP coarse phase adjust CLKOS_CPHASE Integer 0 to 127 N/A CLKOS coarse phase adjust CLKOS2_CPHASE Integer 0 to 127 N/A CLKOS2 coarse phase adjust CLKOS3_CPHASE Integer 0 to 127 N/A CLKOS3 coarse phase adjust CLKOP_FPHASE Integer 0 to 7 N/A CLKOP fine phase adjust CLKOS_FPHASE Integer 0 to 7 N/A CLKOS fine phase adjust CLKOS2_FPHASE Integer 0 to 7 N/A CLKOS2 fine phase adjust CLKOS3_FPHASE Integer 0 to 7 N/A CLKOS3 fine phase adjust FEEDBK_PATH String CLKOP, CLKOS, CLKOS2, CLKOS3, INT_DIVA, INT_DIVB, INT_DIVC, INT_DIVD, USERCLOCK CLKOP Feedback mode KVCO Integer 0 to 7 0 VCO gain - Kvco LPF_CAPACITOR Integer 0 to 3 0 LPF capacitor LPF_RESISTOR Integer 0 to 127 0 LPF resistor ICP_CURRENT Integer 0 to 31 0 ICP current FRACN_ENABLE Boolean ENABLE, DISABLED DISABLED Fractional-N divider enable FRACN_DIV Integer 0 to 65535 0 Fractional-N divider FRACN_ORDER Integer 0 to 3 0 Fractional-N noise shaping order CLKOP_TRIM_POL String RISING, FALLING RISING CLKOP duty trim polarity CLKOP_TRIM_DELAY Integer 0, 1, 2, 4 0 CLKOP duty trim polarity delay CLKOS_TRIM_POL String RISING, FALLING RISING CLKOS duty trim polarity CLKOS_TRIM_DELAY Integer 0, 1, 2, 4 0 CLKOS duty trim polarity delay FPGA Libraries Reference Guide 247 : Table 261: Attribute Type Allowed Values Default PLL_EXPERT Boolean ENABLE, DISABLED DISABLED PLL_USE_WB Boolean ENABLE, DISABLED DISABLED PREDIVIDER_MUXA1 Integer 0 to 3 0 PREDIVIDER_MUXB1 Integer 0 to 3 0 PREDIVIDER_MUXC1 Integer 0 to 3 0 PREDIVIDER_MUXD1 Integer 0 to 3 0 OUTDIVIDER_MUXA2 String DIVA, REFCLK DIVA OUTDIVIDER_MUXB2 String DIVB, REFCLK DIVB OUTDIVIDER_MUXC2 String DIVC, REFCLK DIVC OUTDIVIDER_MUXD2 String DIVD, REFCLK DIVD FREQ_LOCK_ACCURACY Integer 0 to 3 0 PLL_LOCK_MODE Integer 0 to 7 0 PLL_LOCK_DELAY Integer 1600, 800, 400, 200 (in ns) 200 GMC_GAIN Integer 0 to 7 0 GM/C gain GMC_TEST Integer 0 to 15 14 GM/C test mode MFG1_TEST Integer 0 to 7 0 MFG2_TEST Integer 0 to 7 0 MFG_FORCE_VFILTER Integer 0, 1 0 MFG_ICP_TEST Integer 0, 1 0 MFG_ EN_UP Integer 0, 1 0 MFG_ FLOAT_ICP Integer 0, 1 0 MFG_GMC_PRESET Integer 0, 1 0 MFG_LF_PRESET Integer 0, 1 0 MFG_GMC_RESET Integer 0, 1 0 MFG_LF_RESET Integer 0, 1 0 MFG_LF_RESGRND Integer 0, 1 0 MFG_ GMCREF_SEL Integer 0 to 3 2 MFG_EN_FILTEROPAMP Integer 0, 1 1 STDBY_ENABLE Boolean ENABLED, DISABLED DISABLED FPGA Libraries Reference Guide Description 248 : Table 261: Attribute Type Allowed Values Default REFIN_RESET Boolean ENABLED, DISABLED DISABLED SYNC_ENABLE Boolean ENABLED, DISABLED DISABLED INT_LOCK_STICKY Boolean ENABLED, DISABLED DISABLED DPHASE_SOURCE Boolean ENABLED, DISABLED DISABLED INTFB_WAKE Boolean ENABLED, DISABLED DISABLED PLLRST_ENA Boolean ENABLED, DISABLED DISABLED MRST_ENA Boolean ENABLED, DISABLED DISABLED DCRST_ENA Boolean ENABLED, DISABLED DISABLED DDRST_ENA Boolean ENABLED, DISABLED DISABLED Description Description EHXPLLJ is the GPLL primitive for MachXO2 and Platform Manager 2. A wrapper will be used around the primitive for configurations without the dynamic control or other ports. The EHXPLLJ primitive uses a single reference clock input. For detailed information, refer to the following technical note on the Lattice web site. TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide EHXPLLL GPLL for ECP5 Architectures Supported: FPGA Libraries Reference Guide ECP5 249 : INPUTS: CLKI, CLKFB, PHASESEL1, PHASESEL0, PHASEDIR, PHASESTEP, PHASELOADREG, STDBY, PLLWAKESYNC, RST, ENCLKOP, ENCLKOS, ENCLKOS2, ENCLKOS3 OUTPUTS: CLKOP, CLKOS, CLKOS2, CLKOS3, LOCK, INTLOCK, REFCLK, CLKINTFB ATTRIBUTES: The following table details EHXPLLL attributes. Table 262: Attribute Name Type FREQUENCY_PI N_CLKI NC Range Default Value Description 100 CLKI Frequency (MHz) FREQUENCY_PI N_CLKOP CLKOP Actual Frequency (MHz) FREQUENCY_PI N_CLKOS CLKOS Actual Frequency (MHz) FREQUENCY_PI N_CLKOS2 CLKOS2 Actual Frequency (MHz) FREQUENCY_PI N_CLKOS3 CLKOS3 Actual Frequency (MHz) CLKI_DIV C, S 1 – 128 1 CLKI Divider Setting CLKFB_DIV C, S 1 – 80 1 CLKFB Divider Setting CLKOP_DIV C, S 1 – 128 8 CLKOP Divider Setting CLKOS_DIV C, S 1 – 128 8 CLKOS Divider Setting CLKOS2_ DIV C, S 1 – 128 8 CLKOS2 Divider Setting FPGA Libraries Reference Guide 250 : Table 262: Attribute Name Type Range Default Value Description CLKOS3_ DIV C, S 1 – 128 8 CLKOS3 Divider Setting CLKOP_ENABLE C, S ENABLED, ENABLED DISABLED CLKOP Enable CLKOS_ENABLE C, S ENABLED, DISABLED DISABLED CLKOS Enable CLKOS2_ENABL E C, S ENABLED, DISABLED DISABLED CLKOS2 Enable CLKOS3_ENABL E C, S ENABLED, DISABLED DISABLED CLKOS3 Enable CLKOP_CPHASE C, S 0 – 127 N/A CLKOP Coarse Phase adj CLKOS_CPHASE C, S 0 – 127 N/A CLKOS Coarse Phase adj. CLKOS2_CPHAS E C, S 0 – 127 N/A CLKOS2 Coarse Phase adj. CLKOS3_CPHAS E C, S 0 – 127 N/A CLKOS3 Coarse Phase adj. CLKOP_FPHASE C, S 0–7 N/A CLKOP Fine Phase adj. CLKOS_FPHASE C, S 0–7 N/A CLKOS Fine Phase adj. CLKOS2_FPHAS E C, S 0–7 N/A CLKOS2 Fine Phase adj. CLKOS3_FPHAS E C, S 0–7 N/A CLKOS3 Fine Phase adj. FEEDBK_PATH C, S CLKOP, CLKOP CLKOS, CLKOS2, CLKOS3, INT_OP, INT_OS, INT_OS2, INT_OS3, USERCLO CK Feedback Mode KVCO C 0–7 0 VCO Gain - Kvco LPF_CAPACITOR C 0–3 0 LPF Capacitor LPF_RESISTOR C 0 – 127 0 LPF Resistor ICP_CURRENT C 0 – 31 0 ICP Current CLKOP_TRIM_PO C L RISING, FALLING RISING CLKOP Duty Trim Polarity CLKOP_TRIM_DE C LAY 0, 1, 2, 4 0 CLKOP Duty Trim Polarity Multiplier FPGA Libraries Reference Guide 251 : Table 262: Attribute Name Type Range Default Value Description CLKOS_TRIM_PO C L RISING, FALLING RISING CLKOS Duty Trim Polarity CLKOS_TRIM_DE C LAY 0, 1, 2, 4 0 CLKOS Duty Trim Polarity Multiplier OUTDIVIDER_MU C, S XA DIVA, REFCLK DIVA OUTDIVIDER_MUXA OUTDIVIDER_MU C, S XB DIVB, REFCLK DIVB OUTDIVIDER_MUXB OUTDIVIDER_MU C, S XC DIVC, REFCLK DIVC OUTDIVIDER_MUXC OUTDIVIDER_MU C, S XD DIVD, REFCLK DIVD OUTDIVIDER_MUXD FREQ_LOCK_AC CURACY C 0–3 0 FREQ_LOCK_ACCURAC Y PLL_LOCK_MOD E C, S 0–7 0 PLL_LOCK_MODE PLL_LOCK_DELA S Y 1600, 800, 400, 200 ns 200 PLL_LOCK_DELAY MFG_GMC_GAIN C 0–7 0 GM/C Gain MFG_GMC_TEST C 0 – 15 14 GM/C Test Mode MFG1_TEST C 0–7 0 MFG1_TEST MFG2_TEST C 0–7 0 MFG2_TEST MFG_FORCE_VFI C LTER 0–1 0 MFG_FORCE_VFILTER MFG_ICP_TEST C 0–1 0 MFG_ICP_TEST MFG_ EN_UP C 0–1 0 MFG_EN_UP7 MFG_ FLOAT_ICP C 0–1 0 MFG_FLOAT_ICP MFG_GMC_PRES C ET 0–1 0 MFG_GMC_PRESET MFG_LF_PRESE T C 0–1 0 MFG_LF_PRESET MFG_GMC_RESE C T 0–1 0 MFG_GMC_RESET MFG_LF_RESET C 0–1 0 MFG_LF_RESET MFG_LF_RESGR ND C 0–1 0 MFG_LF_RESGRND FPGA Libraries Reference Guide 252 : Table 262: Attribute Name Type Range Default Value Description MFG_ GMCREF_SEL C 0–3 2 MFG_ GMCREF_SEL MFG_EN_FILTER OPAMP C 0–1 1 MFG_EN_FILTEROPAMP STDBY_ENABLE C ENABLED, DISABLED DISABLED STDBY_ENABLE REFIN_RESET S ENABLED, DISABLED DISABLED REFIN_RESET SYNC_ENABLE S ENABLED, DISABLED DISABLED SYNC_ENABLE INT_LOCK_STICK S Y ENABLED, ENABLED DISABLED INT_LOCK_STICKY DPHASE_SOURC C, S E ENABLED, DISABLED DISABLED DPHASE_SOURCE PLLRST_ENA C, S ENABLED, DISABLED DISABLED Enable PLL Reset INTFB_WAKE C ENABLED, DISABLED DISABLED Internal Feedback on Wakeup MFG_VCO_NORE C SET 0–1 0 Disable VCO reset in STDBY mode MFG_STDBY_AN ALOGON C 0–1 0 Enable analog bias in STDBY mode MFG_NO_PLLRE SET C 0–1 0 Disable pll_rst_n in STDBY mode Description EHXPLLL is the GPLL primitive for ECP5. The following are descriptions of EHXPLLL port functions. Table 263: FPGA Libraries Reference Guide Port I/O Function CLKI I Input Clock to PLL. CLKI2 I Muxed Input Clock to PLL. SEL I Select Clock CLKFB I Feedback Clock. PHASESEL[1:0] I Select the output affected by Dynamic Phase adjustment. 253 : Table 263: Port I/O Function PHASEDIR I Dynamic Phase adjustment direction. PHASESTEP I Dynamic Phase adjustment step. PHASELOADREG I Load dynamic phase adjustment values into PLL. CLKOP O PLL main output clock. CLKOS O PLL output clock. CLKOS2 O PLL output clock. CLKOS3 O PLL output clock. LOCK O PLL LOCK to CLKI, Asynchronous signal. Active high indicates PLL lock. STDBY I Standby signal to power down the PLL. RST I Resets the whole PLL. ENCLKOP I Enable PLL output CLKOP ENCLKOS I Enable PLL output CLKOS ENCLKOS2 I Enable PLL output CLKOS2 ENCLKOS3 I Enable PLL output CLKOS3 EPLLB Enhanced PLL Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeXP 254 : INPUTS: CLKI, RST, CLKFB OUTPUTS: CLKOP, LOCK ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKI_DIV: (LatticeECP/EC) integers 1~16 (default: 1); (LatticeXP) integers 1~15 (default: 1) CLKFB_DIV: (LatticeECP/EC) integers 1~16 (default: 1); (LatticeXP) integers 1~15 (default: 1) CLKOP_DIV: (LatticeECP/EC) even integers 2~32 if CLKOS is not used; 2, 4, 8, 16, 32 is CLKOS is used. (Default: 8) (LatticeXP) even integers 2~30 if CLKOS is not used (default: 6); 2, 4, 8, 16 if CLKOS is used (default: 4). FDEL: integers -8~8 (default: 0) WAKE_ON_LOCK: "OFF" (default), "ON" FB_MODE: "CLOCKTREE" (default), "INTERNAL", "EXTERNAL" LOCK_CYC: integer (default: 2) Description The following are descriptions of EPLLB port functions. Table 264: FPGA Libraries Reference Guide Port I/O Function CLKI I Global clock input; frequency: 20~420 MHz. RST I PLL reset. CLKFB I External feedback, internal feedback from CLKOP divider; frequency: 20~420 MHz. CLKOP O PLL output clock to clock tree (no phase shift); frequency: 20~420 MHz. LOCK O "1" indicates PLL LOCK to CLK_IN. 255 : You can refer to the following technical note on the Lattice web site for more detailed description and usage. TN1049 - LatticeECP/EC and LatticeXP sysCLOCK PLL Design and Usage Guide EPLLD Enhanced PLL Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: CLKI, CLKFB, RST, RSTK, DPAMODE, DRPAI3, DRPAI2, DRPAI1, DRPAI0, DFPAI3, DFPAI2, DFPAI1, DFPAI0 OUTPUTS: CLKOP, CLKOS, CLKOK, LOCK, CLKINTFB ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKI_DIV: integers 1~64 (default: 1) CLKFB_DIV: integers 1~64 (default: 1) CLKOP_DIV: 2, 4, 8 (default), 16, 32, 48, 64, 80, 96,112, 128 CLKOK_DIV: 2 (default), 4, 6, 8, ..., 126, 128 PHASEADJ: 0 (default), 22.5, 45, 67.5, 90, ..., 315, 337.5 DUTY: integers 2~14 (default: 8) PHASE_CNTL: "STATIC" (default), "DYNAMIC" PLLCAP: "DISABLED" (default), "ENABLED", "AUTO" FPGA Libraries Reference Guide 256 : CLKOP_BYPASS: "DISABLED" (default), "ENABLED" CLKOS_BYPASS: "DISABLED" (default), "ENABLED" CLKOK_BYPASS: "DISABLED" (default), "ENABLED" PLLTYPE: "AUTO" (default), "SPLL", "GPLL" Description The following are descriptions of EPLLD port functions. Table 265: Port I/O Function CLKI I Input clock. CLKFB I Feedback clock. RST I PLL reset (connected to the CNTRST port). High active reset. RSTK I Reset for K divider (connected to the RESETK port). High active reset. DPAMODE I Dynamic phase adjust mode. Active high indicates pin control (DYNAMIC) and active low indicates fuse control (STATIC). DRPAI[3:0] I Dynamic coarse phase shift; rise edge setting. DFPAI[3:0] I Dynamic coarse phase shift; falling edge setting. CLKOP O PLL output clock (no phase shift). CLKOS O PLL output clock (phase shifted/duty cycle changed). CLKOK O PLL output to clock tree (no phase shift, low speed). LOCK O PLL LOCK to CLKI, asynchronous signal. Active high indicates PLL lock. CLKINTFB O Internal feedback source. CLKOP divider output before CLOCK TREE. The EPLLD primitive can be used for design migration between LatticeECP2 and LatticeXP2, which can be divided into four situations: Design Migration From LatticeECP2 to LatticeXP2 (EPLLD Configurations): FPGA Libraries Reference Guide EPLLD Configurations without Dynamic Phase & Duty Options: The LatticeECP2 PLL configuration migrates to LatticeXP2 without any changes. EPLLD Configurations with Dynamic Phase & Duty Options: The LatticeECP2 PLL configuration has DPAMODE port in the top-level port list. To migrate this configuration to LatticeXP2, the user has to tie the DPAMODE port to GND. 257 : Design Migration From LatticeECP2 to LatticeXP2 (EHXPLLD Configurations): This configuration cannot be migrated to LatticeXP2 because LatticeXP2 does not support Delay Adjust. Design Migration From LatticeXP2 to LatticeECP2 (EPLLD Configurations): EPLLD Configurations without Dynamic Phase & Duty Options: The LatticeXP2 PLL configuration migrates to LatticeECP2 without any changes. EPLLD Configurations with Dynamic Phase & Duty Options (No Duty Trim): The LatticeXP2 PLL configuration has no DPAMODE port in the top-level port list. Two options for migration: a. Regenerate the PLL configuration for LatticeECP2. b. Modify the LatticeXP2 PLL configuration to bring the DPAMODE to top-level port list. Design Migration From LatticeXP2 to LatticeECP2 (EHXPLLE Configurations): This configuration cannot be migrated to LatticeECP2 because LatticeECP2 does not support Duty Trim Options, CLKOK2 and the CLKOS Fine Delay Port (WRDEL). You can refer to the following technical notes on the Lattice web site for more detailed description and usage. TN1103 - LatticeECP2 sysCLOCK PLL/DLL Design and Usage Guide TN1126 - LatticeXP2 sysCLOCK PLL Design and Usage Guide EPLLD1 Enhanced PLL Architectures Supported: FPGA Libraries Reference Guide LatticeXP2 258 : INPUTS: CLKI, CLKFB, RST, RSTK, DPAMODE, DRPAI3, DRPAI2, DRPAI1, DRPAI0, DFPAI3, DFPAI2, DFPAI1, DFPAI0, PWD OUTPUTS: CLKOP, CLKOS, CLKOK, LOCK, CLKINTFB ATTRIBUTES: FIN: 20.0000~420.0000 (in MHz) (default: "100.0000") CLKI_DIV: integers 1~64 (default: 1) CLKFB_DIV: integers 1~64 (default: 1) CLKOP_DIV: 2, 4, 8 (default), 16, 32, 48, 64, 80, 96,112, 128 CLKOK_DIV: 2 (default), 4, 6, 8, ..., 126, 128 PHASEADJ: 0 (default), 22.5, 45, 67.5, 90, ..., 315, 337.5 DUTY: integers 2~14 (default: 8) PHASE_CNTL: "STATIC" (default), "DYNAMIC" PLLCAP: "DISABLED" (default), "ENABLED", "AUTO" CLKOP_BYPASS: "DISABLED" (default), "ENABLED" CLKOS_BYPASS: "DISABLED" (default), "ENABLED" CLKOK_BYPASS: "DISABLED" (default), "ENABLED" PLLTYPE: "AUTO" (default), "SPLL", "GPLL" Description The following are descriptions of EPLLD1 port functions. Table 266: FPGA Libraries Reference Guide Port I/O Function CLKI I Input clock. CLKFB I Feedback clock. RST I PLL reset (connected to the CNTRST port). High active reset. RSTK I Reset for K divider (connected to the RESETK port). High active reset. DPAMODE I Dynamic phase adjust mode. Active high indicates pin control (DYNAMIC) and active low indicates fuse control (STATIC). DRPAI[3:0] I Dynamic coarse phase shift; rise edge setting. DFPAI[3:0] I Dynamic coarse phase shift; falling edge setting. 259 : Table 266: Port I/O Function PWD I Dynamic power down signal. CLKOP O PLL output clock (no phase shift). CLKOS O PLL output clock (phase shifted/duty cycle changed). CLKOK O PLL output to clock tree (no phase shift, low speed). LOCK O PLL LOCK to CLKI, asynchronous signal. Active high indicates PLL lock. CLKINTFB O Internal feedback source. CLKOP divider output before CLOCK TREE. You can refer to the following technical note on the Lattice web site for more detailed description and usage. TN1126 - LatticeXP2 sysCLOCK PLL Design and Usage Guide EXTREFB Reference clock input buffer primitive for the dedicated external clock inputs to the Serdes TxPLL Architectures Supported: ECP5 INPUTS: REFCLK_p, REFCLK_n OUTPUTS: REFCLKO FPGA Libraries Reference Guide 260 : The table below describes the I/O ports of the EXTREFA primitive. Table 267: Port I/O Function REFCLKP I External reference clock positive input port. REFCLKN I External reference clock negative input port REFCLKO O Single-ended clock signal to be connected to PCS PLL inputs. Description The EXTREFB module takes the differential external reference clock pins (refclkp/n) and sends out a single-ended clock signal to the SerDes TxPLL. The EXTREFB can only connect to SerDes TxPLL in the same DCUA, or to SerDes TxPLL in the complementary sharing DCUA. FPGA Libraries Reference Guide 261 : F FADD2 2 Bit Fast Adder Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP MachXO Platform Manager INPUTS: A1, A0, B1, B0, CI OUTPUTS: COUT1, COUT0, S1, S0 Description FADD2 is a 2-bit adder. It has a carry-in input (CI) and two 2-bit input (A0, A1 and B0, B1). The FADD2 produces a 2-bit sum output (S0, S1) along with a 2bit carry-out output (COUT1, COUT). Example pin functions: Table 268: FPGA Libraries Reference Guide Function Pins input A1, A0, B1, B0 output S1, S0 carry-in input CI 262 : Table 268: Function Pins carry-out output (Bit-0) COUT0 carry-out output (Bit-1) COUT1 Truth Table Table 269: INPUTS OUTPUTS A0 A1 B0 B1 CI S0 COUT0 S1 COUT1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FADD2B Fast 2 Bit Adder Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeECP3 LatticeXP2 MachXO2 MachXO3L Platform Manager 2 263 : INPUTS: A0, A1, B0, B1, CI OUTPUTS: COUT, S0, S1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FADSU2 2 Bit Fast Adder/Subtractor (two's complement) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 264 : INPUTS: A0, A1, B0, B1, BCI, CON OUTPUTS: BCO, S0, S1 Description FADSU2 is a 2 bit adder/subtractor. When the control signal (CON) is high FADSU2 functions as a 2 bit adder with a carry-in input (BCI) and two 2 bit inputs (A0:A1 and B0:B1), producing a 2 bit SUM output (S0:S1) along with a carry-out output (BCO). When the control signal (CON) is low, FADSU2 functions as a 2 bit two's complement subtractor with a borrow-in input (BCI) and two 2 bit inputs (A0:A1 and B0:B1), producing a 2 bit two's complement output of A minus B (S0:S1) along with a borrow-out output (BCO). Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1P3AX Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 265 : MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, SP, CK OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 270: INPUTS OUTPUTS D SP CK Q X 0 X Q 0 1 0 1 1 1 X = Don’t care When GSR=0, Q=0 (D=SP=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 266 : FD1P3AY Positive Edge Triggered D Flip-Flop with Positive Level Enable, GSR Used for Preset Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, SP, CK OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 267 : Truth Table Table 271: INPUTS OUTPUTS D SP CK Q X 0 X Q 0 1 0 1 1 1 X = Don’t care When GSR=0, Q=1 (D=SP=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Preset Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 268 : INPUTS: D, SP, CK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 272: INPUTS OUTPUTS D SP CK PD Q X 0 X 0 Q X X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide ECP5 269 : LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, SP, CK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 273: INPUTS OUTPUTS D SP CK CD Q X 0 X 0 Q X X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SP=CK=CD=X) FPGA Libraries Reference Guide 270 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, SP, CK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 271 : Truth Table Table 274: INPUTS OUTPUTS D SP CK CD Q X 0 X 0 Q X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SP=CK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset and Positive Level Enable (Preset overrides Enable) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 272 : INPUTS: D, SP, CK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 275: INPUTS OUTPUTS D SP CK PD Q X 0 X 0 Q X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S1A Positive Level Data Latch with GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC 273 : LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 276: INPUTS OUTPUTS D CK Q X 0 Q 0 1 0 1 1 1 X = Don’t care When GSR=0, Q=0 (D=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 274 : FD1S1AY Positive Level Data Latch with GSR Used for Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 277: INPUTS OUTPUTS D CK Q X 0 Q 0 1 0 1 1 1 X = Don’t care When GSR=0, Q=1 (D=CK=X) FPGA Libraries Reference Guide 275 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S1B Positive Level Data Latch with Positive Level Asynchronous Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 276 : Truth Table Table 278: INPUTS OUTPUTS D CK PD Q X 0 0 Q X X 1 1 0 1 0 0 1 1 0 1 X= Don’t care When GSR=0, Q=1 (D=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S1D Positive Level Data Latch with Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 277 : INPUTS: D, CK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 279: INPUTS OUTPUTS D CK CD Q X 0 0 Q X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=CK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S1I Positive Level Data Latch with Positive Level Synchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC 278 : LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 280: INPUTS OUTPUTS D CK CD Q X 0 0 Q X 1 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=CK=CD=X) FPGA Libraries Reference Guide 279 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S1J Positive Level Data Latch with Positive Level Synchronous Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 280 : Truth Table Table 281: INPUTS OUTPUTS D CK PD Q X 0 0 Q X 1 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 281 : INPUTS: D, CK OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 282: INPUTS D OUTPUTS CK Q 0 0 1 1 X = Don’t care When GSR=0, Q=0 (D=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S3AY Positive Edge Triggered D Flip-Flop, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 282 : LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 283: INPUTS D OUTPUTS CK Q 0 0 1 1 X = Don’t care When GSR=0, Q=1 (D=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 283 : FD1S3BX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Preset Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 284 : Truth Table Table 284: INPUTS OUTPUTS D CK PD Q X X 1 1 0 0 0 1 X 1 X = Don’t care When GSR=0, Q=1 (D=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S3DX Positive Edge Triggered D Flip-Flop with Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 285 : INPUTS: D, CK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 285: INPUTS OUTPUTS D CK CD Q X X 1 0 0 0 0 1 0 1 X = Don’t care When GSR=0, Q=0 (D=CK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC 286 : LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 286: INPUTS D OUTPUTS CK CD Q X 1 0 0 0 0 1 0 1 X = Don’t care When GSR=0, Q=0 (D=CK=CD=X) FPGA Libraries Reference Guide 287 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FD1S3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D, CK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 288 : Truth Table Table 287: INPUTS D OUTPUTS CK PD Q X 1 1 0 0 0 1 X 1 X = Don’t care When GSR=0, Q=1 (D=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FIFO16KA 16K FIFO Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 289 : INPUTS: DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, DI18, DI19, DI20, DI21, DI22, DI23, DI24, DI25, DI26, DI27, DI28, DI29, DI30, DI31, DI32, DI33, DI34, DI35, FULLI, CSW0, CSW1, EMPTYI, CSR0, CSR1, WE, RE, CLKW, CLKR, RST, RPRST OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17, DO18, DO19, DO20, DO21, DO22, DO23, DO24, DO25, DO26, DO27, DO28, DO29, DO30, DO31, DO32, DO33, DO34, DO35, EF, AEF, AFF, FF ATTRIBUTES: DATA_WIDTH_W: 1, 2, 4, 9, 18 (default), 36 DATA_WIDTH_R: 1, 2, 4, 9, 18 (default), 36 REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 2-bit binary value (default: 2’b00) CSDECODE_R: any 2-bit binary value (default: 2’b00) GSR: "DISABLED" (default), "ENABLED" AEPOINTER: any 15-bit binary value (default: all zeros) AEPOINTER1: any 15-bit binary value (default: all zeros) AFPOINTER: any 15-bit binary value (default: all zeros) AFPOINTER1: any 15-bit binary value (default: all zeros) FULLPOINTER: any 15-bit binary value (default: all zeros) FULLPOINTER1: any 15-bit binary value (default: all zeros) Description You can refer to the following technical note on the Lattice web site on details of EBR port definition, attribute definition and usage. TN1094 - On-Chip Memory Usage Guide for LatticeSC Devices FIFO8KA 8K FIFO Architectures Supported: FPGA Libraries Reference Guide MachXO 290 : Platform Manager INPUTS: DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, DI18, DI19, DI20, DI21, DI22, DI23, DI24, DI25, DI26, DI27, DI28, DI29, DI30, DI31, DI32, DI33, DI34, DI35, FULLI, CSW0, CSW1, EMPTYI, CSR0, CSR1, WE, RE, CLKW, CLKR, RST, RPRST OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17, DO18, DO19, DO20, DO21, DO22, DO23, DO24, DO25, DO26, DO27, DO28, DO29, DO30, DO31, DO32, DO33, DO34, DO35, EF, AEF, AFF, FF ATTRIBUTES: DATA_WIDTH_W: 1, 2, 4, 9, 18 (default), 36 DATA_WIDTH_R: 1, 2, 4, 9, 18 (default), 36 REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 2-bit binary value (default: 2’b00) CSDECODE_R: any 2-bit binary value (default: 2’b00) AEPOINTER: any 14-bit binary value (default: all zeros) AEPOINTER1: any 14-bit binary value (default: all zeros) AFPOINTER: any 14-bit binary value (default: all zeros) FPGA Libraries Reference Guide 291 : AFPOINTER1: any 14-bit binary value (default: all zeros) FULLPOINTER: any 14-bit binary value (default: all zeros) FULLPOINTER1: any 14-bit binary value (default: all zeros) GSR: "DISABLED" (default), "ENABLED" Description You can refer to the following technical note on the Lattice web site on detailed information and usage. TN1092 - MachXO Memory Usage Guide FIFO8KB 8K FIFO Block RAM Architecture Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: DI17, DI16, DI15, DI14, DI13, DI12, DI11, DI10, DI9, DI8, DI7, DI6, DI5, DI4, DI3, DI2, DI1, DI0, FULLI, CSW1, CSW0, EMPTYI, CSR1, CSR0, ORE, WE, RE, CLKW, CLKR, RST, RPRST OUTPUTS: DO17, DO16, DO15, DO14, DO13, DO12, DO11, DO10, DO9, DO8, DO7, DO6, DO5, DO4, DO3, DO2, DO1, DO0, EF, AEF, AFF, FF FPGA Libraries Reference Guide 292 : ATTRIBUTES: DATA_WIDTH_W: 1, 2, 4, 9, 18 (default) DATA_WIDTH_R: 1, 2, 4, 9, 18 (default) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 2-bit binary value (default: zeros) CSDECODE_R: any 2-bit binary value (default: zeros) GSR: "DISABLED" (default), "ENABLED" RESETMODE: "ASYNC" (default), "SYNC" ASYNC_RESET_RELEASE: "SYNC" (default), "ASYNC" AEPOINTER: any 14-bit binary value (default: all zeros) AEPOINTER1: any 14-bit binary value (default: all zeros) AFPOINTER: any 14-bit binary value (default: all zeros) AFPOINTER1: any 14-bit binary value (default: all zeros) FULLPOINTER: any 14-bit binary value (default: all zeros) FULLPOINTER1: any 14-bit binary value (default: all zeros) Description The following table describes the I/O ports of the FIFO8KB primitive. Table 288: FPGA Libraries Reference Guide Port Name I/O Definition DI[17:0] I Write data (up to 18) CLKW I Write clock WE I Write clock enable RST I Reset write pointers FULLI I Chip select write CSW[1:0] I Chip select write CLKR I Read clock RE I Read clock enable ORE I Read output clock enable EMPTYI I Chip select read 293 : Table 288: Port Name I/O Definition CSR[1:0] I Chip select read RPRST I Reset read pointers DO[17:0] O Read data (up to 18) AFF O Almost full flag FF O Full flag AEF O Almost empty flag EF O Empty flag You can refer to the following technical note on the Lattice web site on detailed information and usage. TN1201 - Memory Usage Guide for MachXO2 Devices FL1P3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 294 : INPUTS: D0, D1, SP, CK, SD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 289: INPUTS OUTPUTS D0 D1 SP SD CK Q X X 0 X X Q 0 X 1 0 0 1 X 1 0 1 X 0 1 1 0 X 1 1 1 1 X = Don’t care When GSR=0, Q=1 (D0=D1=SP=SD=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 295 : FL1P3AZ Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, and Positive Level Enable, GSR Used for Clear Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, SP, CK, SD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 296 : Truth Table Table 290: INPUTS OUTPUTS D0 D1 SP SD CK Q X X 0 X X Q 0 X 1 0 0 1 X 1 0 1 X 0 1 1 0 X 1 1 1 1 X = Don’t care When GSR=0, Q=0 (D0=D1=SP=SD=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FL1P3BX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Preset, and Positive Level Enable Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 297 : INPUTS: D0, D1, SP, CK, SD, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 291: INPUTS OUTPUTS D0 D1 SP SD CK PD Q X X 0 X X 0 Q X X X X X 1 1 0 X 1 0 0 0 1 X 1 0 X 1 X 0 1 1 0 0 X 1 1 1 X 1 X = Don’t care When GSR=0, Q=1 (D0=D1=SP=SD=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 298 : FL1P3DX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Asynchronous Clear, and Positive Level Enable Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, SP, CK, SD, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 299 : Truth Table Table 292: INPUTS OUTPUTS D0 D1 SP SD CK CD Q X X 0 X X 0 Q X X X X X 1 0 0 X 1 0 X 0 1 X 1 0 0 1 X 0 1 1 X 0 X 1 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D0=D1=SP=SD=CK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FL1P3IY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Clear, and Positive Level Enable (Clear overrides Enable) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager 300 : Platform Manager 2 INPUTS: D0, D1, SP, SD, CK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 293: INPUTS OUTPUTS D0 D1 SP SD CK CD Q X X 0 X X 0 Q X X X X 1 0 0 X 1 0 X 0 1 X 1 0 0 1 X 0 1 1 X 0 X 1 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D0=D1=SP=SD=CK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 301 : FL1P3JY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, Positive Level Data Select, Positive Level Synchronous Preset, and Positive Level Enable (Preset overrides Enable) Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, SP, CK, SD, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 302 : Truth Table Table 294: INPUTS OUTPUTS D0 D1 SP SD CK PD Q X X 0 X X 0 Q X X X X 1 1 0 X 1 0 0 0 1 X 1 0 X 1 X 0 1 1 0 0 X 1 1 1 X 1 X = Don’t care When GSR=0, Q=1 (D0=D1=SP=SD=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FL1S1A Positive Level Loadable Latch with Positive Select, GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 303 : INPUTS: D0, D1, CK, SD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 295: INPUTS OUTPUTS D0 D1 SD CK Q 0 X 0 1 0 1 X 0 1 1 X 0 1 1 0 X 1 1 1 1 X = Don’t care When GSR=0, Q=0 (D0=D1=SD=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FL1S1AY Positive Level Loadable Latch with Positive Select, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC 304 : LatticeSC/M LatticeXP MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CK, SD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 296: INPUTS OUTPUTS D0 D1 SD CK Q 0 X 0 1 0 1 X 0 1 1 X 0 1 1 0 X 1 1 1 1 X = Don’t care When GSR=0, Q=1 (D0=D1=SD=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 305 : FL1S1B Positive Level Loadable Latch with Positive Level Data Select and Positive Level Asynchronous Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 Platform Manager Platform Manager 2 INPUTS: D0, D1, CK, SD, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 306 : Truth Table Table 297: INPUTS OUTPUTS D0 D1 SD CK PD Q X X X 0 0 Q X X X X 1 1 0 X 0 1 0 0 1 X 0 1 X 1 X 0 1 1 0 0 X 1 1 1 X 1 X= Don’t care When GSR=0, Q=1 (D0=D1=SD=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FL1S1D Positive Level Loadable Latch with Positive Level Data Select and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 Platform Manager Platform Manager 2 307 : INPUTS: D0, D1, CK, SD, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 298: INPUTS OUTPUTS D0 D1 SD CK CD Q X X X 0 0 Q X X X X 1 0 0 X 0 1 X 0 1 X 0 1 0 1 X 0 1 1 X 0 X 1 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D0=D1=SD=CK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 308 : FL1S1I Positive Level Loadable Latch with Positive Level Data Select and Positive Level Synchronous Clear Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 Platform Manager Platform Manager 2 INPUTS: D0, D1, CK, SD, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 309 : Truth Table Table 299: INPUTS OUTPUTS D0 D1 SD CK CD Q X X X 0 0 Q X X X 1 1 0 0 X 0 1 X 0 1 X 0 1 0 1 X 0 1 1 X 0 X 1 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D0=D1=SD=CK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FL1S1J Positive Level Loadable Latch with Positive Level Data Select and Positive Level Synchronous Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP MachXO MachXO2 Platform Manager Platform Manager 2 310 : INPUTS: D0, D1, CK, SD, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 300: INPUTS OUTPUTS D0 D1 SD CK PD Q X X X 0 0 Q X X X 1 1 1 0 X 0 1 0 0 1 X 0 1 X 1 X 0 1 1 0 0 X 1 1 1 X 1 X = Don’t care When GSR=0, Q=1 (D0=D1=SD=CK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 311 : FL1S3AX Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR Used for Clear Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CK, SD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 312 : Truth Table Table 301: INPUTS OUTPUTS D0 D1 SD CK Q 0 X 0 0 1 X 0 1 X 0 1 0 X 1 1 1 X = Don’t care When GSR=0, Q=0 (D0=D1=SD=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FL1S3AY Positive Edge Triggered D Flip-Flop with 2 Input Data Mux, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 313 : INPUTS: D0, D1, CK, SD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 302: INPUTS OUTPUTS D0 D1 SD CK Q 0 X 0 0 1 X 0 1 X 0 1 0 X 1 1 1 X = Don’t care When GSR=0, Q=1 (D0=D1=SD=CK=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FSUB2 2 Bit Fast Subtractor (two's complement) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M 314 : LatticeXP MachXO Platform Manager INPUTS: A1, A0, B1, B0, BI OUTPUTS: BOUT1, BOUT0, S1, S0 Description FSUB2 is a 2-bit two’s complement subtractor. It has a borrow-in input (BI) and two 2-bit input (A0, A1 and B0, B1). The FSUB2 produces a 2-bit difference output (S0, S1) along with a 2-bit borrow-out output (BOUT1, BOUT). Example pin functions: Table 303: FPGA Libraries Reference Guide Function Pins input A1, A0, B1, B0 output S1, S0 borrow-in input BI borrow-out output (Bit-0) BOUT0 borrow-out output (Bit-1) BOUT1 315 : Truth Table Table 304: INPUTS OUTPUTS A0 A1 B0 B1 BI S0 BOUT0 S1 BOUT1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 Note BI and BO are inverse from standard two's complement behavior. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FSUB2B 2 Bit Subtractor Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeECP3 LatticeXP2 MachXO2 MachXO3L Platform Manager 2 316 : INPUTS: A0, A1, B0, B1, BI OUTPUTS: BOUT, S0, S1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 317 : G GSR Global Set/Reset Interface Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUT: GSR Description GSR is used to reset or set all register elements in your design. The GSR component can be connected to a net from an input buffer or an internally generated net. It is active LOW and when pulsed will set or reset all flip-flops, latches, registers, and counters to the same state as the local set or reset functionality. It is not necessary to connect signals for GSR to any register elements explicitly. The function will be implicitly connected globally. The functionality of FPGA Libraries Reference Guide 318 : the GSR for sequential cells without a local set or reset are described in the appropriate library help page. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 319 : I IB Input Buffer Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUT: I OUTPUT: O Truth Table Table 305: INPUTS OUTPUTS I O 1 1 0 0 Z U U = Unknown FPGA Libraries Reference Guide 320 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. IBDDC Dynamic Delay Architectures Supported: LatticeECP/EC LatticeXP INPUTS: I, DC3, DC2, DC1, DC0 OUTPUT: O Description The IBDDC primitive is used to control the input delay dynamically. See the below table for the I/O description. Table 306: Port Name I/O Definition I Input Input DC[3:0] Input Dynamic delay control O Output Output IBM CMOS Input Buffer Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeXP 321 : INPUT: I OUTPUT: O Truth Table Table 307: INPUTS OUTPUTS I O 1 1 0 0 Z U U = Unknown IBMPD CMOS Input Buffer with Pull-down Architectures Supported: LatticeECP/EC LatticeXP INPUT: I OUTPUT: O FPGA Libraries Reference Guide 322 : Truth Table Table 308: INPUTS OUTPUTS I O 1 1 0 0 Z 0 IBMPDS CMOS Input Buffer with Pull-down and Delay Architectures Supported: LatticeECP/EC LatticeXP INPUT: I OUTPUT: O Truth Table Table 309: INPUTS OUTPUTS I O 1 1 0 0 Z 0 IBMPU CMOS Input Buffer with Pull-up Architectures Supported: FPGA Libraries Reference Guide 323 : LatticeECP/EC LatticeXP INPUT: I OUTPUT: O Truth Table Table 310: INPUTS OUTPUTS I O 1 1 0 0 Z 1 IBMPUS CMOS Input Buffer with Pull-up and Delay Architectures Supported: LatticeECP/EC LatticeXP INPUT: I OUTPUT: O FPGA Libraries Reference Guide 324 : Truth Table Table 311: INPUTS OUTPUTS I O 1 1 0 0 Z 1 IBMS CMOS Input Buffer with Delay Architectures Supported: LatticeECP/EC LatticeXP INPUT: I OUTPUT: O Truth Table Table 312: INPUTS OUTPUTS I O 1 1 0 0 Z U U = Unknown FPGA Libraries Reference Guide 325 : IBPD Input Buffer with Pull-down Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUT: I OUTPUT: O Truth Table Table 313: INPUTS OUTPUTS I O 1 1 0 0 Z 0 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 326 : IBPU Input Buffer with Pull-up Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUT: I OUTPUT: O Truth Table Table 314: INPUTS OUTPUTS I O 1 1 0 0 Z 1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 327 : IDDRA Input DDR Architectures Supported: LatticeSC/M INPUTS: D, CLK, RST, RUNAIL, RSTAIL OUTPUTS: QA, QB, UPDATE, LOCK Description Double Data Rate input logic. The following symbolic diagram shows the flipflop structure of this primitive. For more usage, see related technical notes or contact technical support. IDDRDQSX1A Input for DDR1/2 Memory Architectures Supported: FPGA Libraries Reference Guide MachXO2 328 : Platform Manager 2 INPUTS: D, DQSR90, DDRCLKPOL, SCLK, RST OUTPUTS: Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description IDDR supports two clock domains (right side only). IDDRDQSX1A is the input for DDR1/2 memory. It is used for right bank only. See the following table for port description of the IDDRDQSX1A primitive. Table 315: Port Name I/O Definition D I DDR input from sysIO buffer. DQSR90 I Shifted DQS input for read. DDRCLKPOL I DQS clock polarity. This signal is used to connect to the DDRCLKPOL output of DQSBUFH. SCLK I System clock. RST I RESET to this block from CIB. Q0 O Data at the positive edge of the clock. Q1 O Data at the negative edge of the clock. For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices 329 : IDDRFXA DDR Generic Input with Full Clock Transfer (x1 Gearbox) Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: D, CLK1, CLK2, RST, CE OUTPUTS: QA, QB Description This primitive inputs DDR data at both edges of clock CLK1 and generates two streams of data aligned to clock CLK2. CLK1 is used to register the DDR registers and the first set of synchronization registers. CLK2 is used by the third stage of registers. Both CLK1 and CLK2 should be clocked by the FPGA clock. The LatticeECP2/M Family Data Sheet explains the input register block in more detail. Note that LSR is only for second stage register/latch. For supporting DDR modes configured for bidirectional use, software will tie LSR LOW for input registers. The default for LSR is HIGH. See the following table for port description of the IDDRFXA primitive. Table 316: FPGA Libraries Reference Guide Port Name I/O Definition D I DDR data CLK1 I Clock connected to the FPGA clock CLK2 I Clock connected to the FPGA clock CE I Clock enable signal RST I Signal used to reset the DDR register QA O Data at the positive edge of the CLK QB O Data at the negative edge of the CLK 330 : For more usage, see related technical notes or contact technical support. IDDRMFX1A DDR Input and DQS to System Clock Transfer Registers with Full Clock Cycle Transfer Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: D, ECLK, CLK1, CLK2, RST, CE, DDRCLKPOL OUTPUTS: QA, QB Description This primitive implements a full clock cycle transfer as compared the to the IDDRMX1A primitive that will only implement a half clock cycle transfer. The DDR registers are designed to use edge clock routing on the I/O side and the primary clock on the FPGA side. The ECLK input is used to connect to the DQS strobe coming from the DQS delay block (DQSBUFC primitive). The CLK1 and CLK2 inputs should be connected to the slow system (FPGA) clock. DDRCLKPOL is an input from the DQS Clock Polarity tree. This signal is generated by the DQS Transition detect circuit in the hardware. Note that the DDRCLKPOL input to IDDRMFX1A should be connected to the DDRCLKPOL output of DQSBUFC. LSR is only for second stage register/ latch. For supporting DDR modes configured for bidirectional use, software will tie LSR LOW for input registers. The default for LSR is HIGH. FPGA Libraries Reference Guide 331 : See the following table for port description of the IDDRMFX1A primitive. Table 317: Port Name I/O Definition D I DDR data. ECLK I The phase shifted DQS should be connected to this input. RST I Reset. CLK1 I Slow FPGA CLK. CLK2 I Slow FPGA CLK. CE I Clock enable. DDRCLKPOL I DDR clock polarity signal. QA O Data at the positive edge of the CLK. QB O Data at the negative edge of the CLK. For more usage, see related technical notes or contact technical support. IDDRMX1A DDR Input and DQS to System Clock Transfer Registers with Half Clock Cycle Transfer Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: D, ECLK, SCLK, RST, CE, DDRCLKPOL OUTPUTS: QA, QB FPGA Libraries Reference Guide 332 : Description This primitive implements the input register block. The DDR registers are designed to use edge clock routing on the I/O side and the primary clock on the FPGA side. The ECLK input is used to connect to the DQS strobe coming from the DQS delay block (DQSBUFC primitive). The SCLK input should be connected to the system (FPGA) clock. DDRCLKPOL is an input from the DQS Clock Polarity tree. This signal is generated by the DQS Transition detect circuit in the hardware. The DDRCLKPOL signal is used to choose the polarity of the SCLK to the synchronization registers. Note that the DDRCLKPOL input to IDDRMX1A should be connected to the DDRCLKPOL output of DQSBUFC. LSR is only for second stage register/ latch. For supporting DDR modes configured for bidirectional use, software will tie LSR LOW for input registers. The default for LSR is HIGH. See the following table for port description of the IDDRMX1A primitive. Table 318: Port Name I/O Definition D I DDR data. ECLK I The phase shifted DQS should be connected to this input. RST I Reset. SCLK I System CLK. CE I Clock enable. DDRCLKPOL I DDR clock polarity signal. QA O Data at the positive edge of the CLK. QB O Data at the negative edge of the CLK. For more usage, see related technical notes or contact technical support. IDDRX1A Input DDR Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 333 : INPUTS: D, ECLK, SCLK, RST, RUNAIL, RSTAIL OUTPUTS: QA, QB, UPDATE, LOCK Description Double Data Rate input logic. The input register block captures DDR input data using edge clock to primary clock domain transfer. It can also be set to perform the same functions as in the shift mode. The following symbolic diagram shows the flip-flop structure of this primitive. For more usage, see related technical notes or contact technical support. IDDRX2A Input DDR Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 334 : INPUTS: D, ECLK, SCLK, RST, RUNAIL, RSTAIL OUTPUTS: QA0, QA1, QB0, QB1, UPDATE, LOCK Description Double Data Rate input logic. The input register block captures DDR input data using edge clock to primary clock domain transfer. It can also be set to perform the same functions as in the shift mode. The following symbolic diagram shows the flip-flop structure of this primitive. For more usage, see related technical notes or contact technical support. IDDRX2B DDR Generic Input with 2x Gearing Ratio Architectures Supported: FPGA Libraries Reference Guide 335 : LatticeECP2/M LatticeXP2 INPUTS: D, ECLK, SCLK, CE, RST OUTPUTS: QA0, QA1, QB0, QB1 Description This primitive is used when a gearing function is required. This primitive inputs DDR data at both edges of the edge and generates four streams of data. The DDR registers and the first set of synchronization registers are clocked by the ECLK input of the primitive, which should be connected to the fast ECLK. SCLK is used to clock the third stage of registers and should be connected to the FPGA clock. This primitive outputs four streams of data. Two of these data streams are generated using the complementary PIO registers. Note that LSR is only for second stage register/latch. For supporting DDR modes configured for bidirectional use, software will tie LSR LOW for input registers. The default for LSR is HIGH. See the following table for port description of the IDDRX2B primitive. IDDRX2B Ports Table 319: Port Name I/O Definition D I DDR data ECLK I Clock connected to the fast edge clock SCLK I Clock connected to the FPGA clock CE I Clock enable signal RST I Signal used to reset the DDR register QA0, QA1 O Data at the positive edge of the CLK QB0, QB1 O Data at the negative edge of the CLK For more usage, see related technical notes or contact technical support. FPGA Libraries Reference Guide 336 : IDDRX2D Input DDR for DDR3_MEM, DDR_GENX2, and DDR3_MEMGEN Architectures Supported: LatticeECP3 INPUTS: D, SCLK, ECLKDQSR, ECLK, DDRLAT, DDRCLKPOL OUTPUTS: QA0, QA1, QB0, QB1 ATTRIBUTES: (EA only) SCLKLATENCY: 1 (default), 2 Description IDDRX2D is the input DDR for DDR3_MEM, DDR_GENX2 (DDR generic mode in X2 gearing), and DDR3_MEMGEN. E: DDR_GENX2 (left/right/top) E and EA: DDR3_MEM (left/right) E and EA: DDR3_MEMGEN (left/right/top) See the below table for its port description. Table 320: FPGA Libraries Reference Guide Signal I/O Description D I DDR input from sysIO buffer. ECLK I Edge clock. Goes to the second stage of DDR registers. SCLK I System clock. Clock used to transfer from the ECLK to the SCLK domain. SCLK = 1/2 ECLK rate. Goes to the third stage of registers. 337 : Table 320: Signal I/O Description ECLKDQSR I Phase shifted DQS in case of DDR memory interface. Edge clock for generic DDR interfaces. Connects to DQSBUF. For EA devices, ECLKDQSR should be used only for the DQS strobe. DDRCLKPOL I DDR clock polarity signal. DDRLAT I DDR latch control to input logic. Used to guarantee IDDRX2 gearing by selectively enabling a D flip-flop in the data path. QA0 O Data at the positive edge of the clock (IPA). QA1 O Data at the positive edge of the clock (IPB). QB0 O Data at the negative edge of the clock (INA). QB1 O Data at the negative edge of the clock (INB). For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide IDDRX2D1 Input DDR for DDR_GENX2 Architectures Supported: LatticeECP3 INPUTS: D, SCLK, ECLK OUTPUTS: QA0, QA1, QB0, QB1 ATTRIBUTES: FPGA Libraries Reference Guide 338 : (EA only) DR_CONFIG: "DISABLED" (default), "ENABLED" Description IDDRX2D1 is the input DDR for DDR_GENX2 (DDR generic mode in X2 gearing). EA: DDR_GENX2 (left/right/top) See the below table for its port description. Table 321: Signal I/O Description D I DDR input from sysIO buffer. ECLK I Edge clock. Goes to the first and second stage of DDR registers. SCLK I System clock. Clock used to transfer from the ECLK to the SCLK domain. SCLK = 1/2 ECLK rate. Goes to the third stage of registers. QA0 O Data at the positive edge of the clock (IPA). QA1 O Data at the positive edge of the clock (IPB). QB0 O Data at the negative edge of the clock (INA). QB1 O Data at the negative edge of the clock (INB). For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide IDDRX2DQA This primitive is used to implement DDR2 memory input interface at higher speeds and DDR3 memory interface. Architectures Supported: FPGA Libraries Reference Guide ECP5 339 : INPUTS: RST, D, DQSR90, SCLK, ECLK, RDPNTR2, RDPNTR1, RDPNTR0, WRPNTR2, WRPNTR1, WRPNTR0, OUTPUTS: Q0, Q1, Q3, QWL See the following table for port description of the IDDRX1DQA primitive. Table 322: Port Name I/O Definition D I DDR Data input RST I Reset to DDR registers DQSR90 I DQS clock Input ECLK I Fast edge clock SCLK I Primary clock input (divide by 2 of ECLK) RDPNTR[2:0] I Read Pointer from the DQSBUF module used to transfer data to ECLK WRPNTR[2:0] I Write Pointer from the DQSBUF module used to transfer data to ECLK Q0, Q2 O Data at positive edge of DQS Q1, Q3 O Data at negative edge of DQS QWL O Data output used for Write Leveling IDDRX2E Input for Generic DDR X2 Using 1:4 Gearing Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 340 : INPUTS: D, ECLK, SCLK, RST, ALIGNWD OUTPUTS: Q0, Q1, Q2, Q3 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description IDDRX2E is the input for generic DDR X2 using 1:4 gearing. It uses the VPIC_RX hardware cell. It is used for bottom bank only. See the below table for port description. Table 323: Signal I/O Description D I DDR input from sysIO buffer. ECLK I Clock connected to the high speed edge clock tree. SCLK I Clock connected to the system clock. RST I RESET to this block from CIB. ALIGNWD I Data alignment signal used for word alignment. Each operation shifts word alignment by 1 bit. Q0, Q2 O Data available at the same edge of the clock. Q1, Q3 O Data available at the same edge of the clock. For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices 341 : IDDRX2F Generic input DDR Primitive Architectures Supported: ECP5 INPUTS: D, SCLK, RST, ECLK, ALIGNWD OUTPUTS: Q0, Q1, Q2, Q3 Description This primitive is used for Generic X1 IDDR implementation. The following table gives the port description of the IDDRX2F primitive. Table 324: Port Name I/O Definition D I DDR Data input. SCLK I Primary clock input (divide by 2 of ECLK). RST I Reset to DDR registers. ECLK I Fast Edge clock. ALIGNWD I This signal is used for Word alignment. It will shift word by one bit. Q0, Q2 O Data at positive edge of input ECLK. Q1, Q3 O Data at negative edge of input ECLK. IDDRX4A Input DDR Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 342 : INPUTS: D, ECLK, SCLK, RST, RUNAIL, RSTAIL OUTPUTS: QA0, QA1, QA2, QA3, QB0, QB1, QB2, QB3, UPDATE, LOCK Description Double Data Rate input logic. The input register block captures DDR input data using edge clock to primary clock domain transfer. It can also be set to perform the same functions as in the shift mode. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 343 : For more information, see related technical notes or contact technical support. IDDRX4B Input for Generic DDR X4 Using 1:8 Gearing Architectures Supported: FPGA Libraries Reference Guide MachXO2 Platform Manager 2 344 : INPUTS: D, ECLK, SCLK, RST, ALIGNWD OUTPUTS: Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description IDDRX4B is the input for generic DDR X4 using 1:8 gearing. It uses the VPIC_RX hardware cell. It is used for bottom bank only. See the below table for IDDRX4B I/O description. Table 325: Signal I/O Description D I DDR input from sysIO buffer. ECLK I Clock connected to the high speed edge clock tree. SCLK I Clock connected to the system clock. RST I RESET to this block from CIB. ALIGNWD I Data alignment signal used for word alignment. Each operation shifts alignment by 1 bit. Q0, Q2, Q4, Q6 O Data available at the same edge of the clock. Q1, Q3, Q5, Q7 O Data available at the same edge of the clock. For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices 345 : IDDRX71A 7:1 LVDS Input Supporting 1:7 Gearing Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: D, ECLK, SCLK, RST, ALIGNWD OUTPUTS: Q0, Q1, Q2, Q3, Q4, Q5, Q6 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description IDDRX71A is the 7:1 LVDS input supporting 1:7 gearing. It is used for bottom bank only. IDDRX71A includes the SLIP circuitry. See the below table for IDDRX71A I/O description. Table 326: FPGA Libraries Reference Guide Signal I/O Description D I DDR input from sysIO buffer. ECLK I Edge clock. SCLK I Clock connected to the system clock. RST I RESET for this block. 346 : Table 326: Signal I/O Description ALIGNWD I Data alignment signal used for 7:1 LVDS. Each operation shifts alignment by 2 bits. Q0, Q1, Q2, Q3, Q4, Q5, Q6 O 1:7 LVDS output signals. For more information and usage, refer to the following technical note on the Lattice web site. TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices IDDR71B 7:1 LVDS Input Supporting 1:7 Gearing Architectures Supported: ECP5 INPUTS: D, ECLK, SCLK, RST, ALIGNWD OUTPUTS: Q0, Q1, Q2, Q3, Q4, Q5, Q6 Description This primitive is used for 7:1 LVDS Input side implementation See the below table for IDDR71B I/O description. Table 327: FPGA Libraries Reference Guide Signal I/O Description D I DDR data input ECLK I Edge clock. SCLK I Primary clock. (Divide by 3.5 of ECLK) 347 : Table 327: Signal I/O Description RST I Reset to DDR registers ALIGNWD I This signal is used for word alignment. It will shift word by 1 bit. Q0, Q1, Q2, Q3, Q4, Q5, Q6 O 7 bits of output data. IDDRXB Input DDR Architectures Supported: LatticeECP/EC LatticeXP INPUTS: D, ECLK, LSR, SCLK, CE, DDRCLKPOL OUTPUTS: QA, QB ATTRIBUTES: REGSET: "RESET" (default), "SET" Description Double Data Rate input logic with half cycle clock domain transfer for the negative edge captured data (both edges of captured data enter core with positive edge flip-flops. For more information, see related technical notes or contact technical support. FPGA Libraries Reference Guide 348 : IDDRXC DDR Generic Input Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: D, CLK, RST, CE OUTPUTS: QA, QB Description This primitive inputs the DDR data at both edges of the edge and generates two streams of data. CLK of this module can be connected to either the edge clock or the primary FPGA clock. Note that the DDRCLKPOL input to IDDRXC should be connected to the DDRCLKPOL output of DQSBUFC. LSR is only for second stage register/ latch. To support DDR modes configured for bidirectional use, software will tie LSR LOW for input registers. The default for LSR is HIGH. See the following table for port description of the IDDRXC primitive. Table 328: Port Name I/O Definition D I DDR input from sysIO buffer CLK I Clock from the CIB RST I RESET to this block from CIB CE I Clock enable signal QA O Data at the positive edge of the CLK QB O Data at the negative edge of the CLK For more usage, see related technical notes or contact technical support. FPGA Libraries Reference Guide 349 : IDDRXD Input DDR for DDR_MEM, DDR2_MEM, DDR_GENX1, and DDR2_MEMGEN Architectures Supported: LatticeECP3 INPUTS: D, SCLK, ECLKDQSR, DDRCLKPOL OUTPUTS: QA, QB ATTRIBUTES: (EA only) SCLKLATENCY: 1 (default), 2 Description IDDRXD is the input DDR for DDR_MEM, DDR2_MEM, DDR_GENX1 (DDR generic mode in X1 gearing), and DDR2_MEMGEN. E: DDR_MEM, DDR2_MEM, DDR_GENX1, and DDR2_MEMGEN (left/ right/top) EA: DDR_MEM, DDR2_MEM, and DDR2_MEMGEN (left/right/top) See the below table for its port description. Table 329: Signal I/O Description D I DDR input from sysIO buffer. SCLK I System clock. ECLKDQSR I Phase shifted DQS in case of DDR memory interface. Connects to DQSBUF. For EA devices, ECLKDQSR should be used only for the DQS strobe. FPGA Libraries Reference Guide DDRCLKPOL I DDR clock polarity signal. QA O Data at the positive edge of the clock (mapped to IPB). QB O Data at the negative edge of the clock (mapped to INB). 350 : For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide IDDRXD1 Input DDR for DDR_GENX1 Architectures Supported: LatticeECP3 INPUTS: D, SCLK OUTPUTS: QA, QB Description IDDRXD1 is the input DDR for DDR_GENX1 (DDR generic mode in X1 gearing). EA: DDR_GENX1 (left/right/top) See the below table for its port description. Table 330: Signal I/O Description D I DDR input from sysIO buffer. SCLK I System clock. QA O Data at the positive edge of the clock (mapped to IPB). QB O Data at the negative edge of the clock (mapped to INB). For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1177 - LatticeECP3 sysIO Usage Guide 351 : IDDRXE Input for Generic DDR X1 Using 1:2 Gearing Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SCLK, RST OUTPUTS: Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description IDDRXE is the input for generic DDR X1 using 1:2 gearing. It uses the mPIC (base pic) or PIC (memory pic) hardware cell. It is used for all sides. See the below table for port description. Table 331: Signal I/O Description D I DDR input from sysIO buffer SCLK I Clock connected to the system clock RST I RESET for this block Q0 O Data at the positive edge of the clock Q1 O Data at the negative edge of the clock For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices 352 : IDDRX1F Generic input DDR Primitive Architectures Supported: ECP5 INPUTS: D, SCLK, RST OUTPUTS: Q0, Q1 Description This primitive is used for Generic X1 IDDR implementation. The following table gives the port description of the IDDRX1F primitive. Table 332: Port Name I/O Definition D I DDR Data input. SCLK I Primary clock input. RST I Reset to DDR registers. Q0 O Data at positive edge of clock. Q1 O Data at negative edge of clock. IFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in input PIC area only) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP 353 : LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SP, SCLK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 333: INPUTS OUTPUTS D SP SCLK PD Q X 0 X 0 Q X X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=SCLK=PD=X) FPGA Libraries Reference Guide 354 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. IFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in input PIC area only) Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SP, SCLK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 355 : Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 334: INPUTS OUTPUTS D SP SCLK CD Q X 0 X 0 Q X X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SP=SCLK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. IFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable, and System Clock (Clear overrides Enable) (used in input PIC area only) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L 356 : Platform Manager 2 INPUTS: D, SP, SCLK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 335: INPUTS OUTPUTS D SP SCLK CD Q X 0 X 0 Q X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SP=SCLK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 357 : IFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable, and System Clock (Preset overrides Enable) (used in input PIC area only) Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SP, SCLK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. FPGA Libraries Reference Guide 358 : Truth Table Table 336: INPUTS OUTPUTS D SP SCLK PD Q X 0 X 0 Q X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=SCLK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. IFS1S1B Positive Level Data Latch with Positive Level Asynchronous Preset and System Clock (used in input PIC area only) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 359 : INPUTS: D, SCLK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 337: INPUTS OUTPUTS D SCLK PD Q X 0 0 Q X X 1 1 0 1 0 0 1 1 0 1 X= Don’t care When GSR=0, Q=1 (D=SCLK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 360 : IFS1S1D Positive Level Data Latch with Positive Level Asynchronous Clear and System Clock (used in input PIC area only) Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SCLK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. FPGA Libraries Reference Guide 361 : Truth Table Table 338: INPUTS OUTPUTS D SCLK CD Q X 0 0 Q X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SCLK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. IFS1S1I Positive Level Data Latch with Positive Level Synchronous Clear and System Clock (used in input PIC area only) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 362 : INPUTS: D, SCLK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 339: INPUTS OUTPUTS D SCLK CD Q X 0 0 Q X 1 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SCLK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 363 : IFS1S1J Positive Level Data Latch with Positive Level Synchronous Preset and System Clock (used in input PIC area only) Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SCLK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. FPGA Libraries Reference Guide 364 : Truth Table Table 340: INPUTS OUTPUTS D SCLK PD Q X 0 0 Q X 1 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SCLK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. ILF2P3BX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, and Positive Level Asynchronous Preset (used in input PIC area only) Architectures Supported: LatticeSC/M INPUTS: D, SP, ECLK, SCLK, PD OUTPUT: Q FPGA Libraries Reference Guide 365 : Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 341: INPUTS OUTPUTS D SP ECLK SCLK PD LATCH_Q Q X X X X 1 LATCH_Q 1 X 0 1 X 0 LATCH_Q Q 0 X 0 B 0 0 Q 1 X 0 B 0 1 Q X 1 1 0 0 0 X 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 X = Don’t care LATCH_Q = Output data from latch B = Not rising edge When GSR=0, Q=1 (D=SP=ECLK=SCLK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. ILF2P3DX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, and Positive Level Asynchronous Clear (used in input PIC area only) Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 366 : INPUTS: D, SP, ECLK, SCLK, CD OUTPUT: Q Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 342: INPUTS OUTPUTS D SP ECLK SCLK CD LATCH_Q Q X X X X 1 LATCH_Q 0 X 0 1 X 0 LATCH_Q Q 0 X 0 B 0 0 Q 1 X 0 B 0 1 Q X 1 1 0 0 0 X 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 X = Don’t care LATCH_Q = Output data from latch B = Not rising edge When GSR=0, Q=0 (D=SP=ECLK=SCLK=CD=X) FPGA Libraries Reference Guide 367 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. ILF2P3IX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, with Positive Level Synchronous Clear and Positive Level Enable (Clear overrides Enable) (used in input PIC area only) Architectures Supported: LatticeSC/M INPUTS: D, SP, ECLK, SCLK, CD OUTPUT: Q Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. FPGA Libraries Reference Guide 368 : Truth Table Table 343: INPUTS OUTPUTS D SP ECLK X X X X 0 1 0 X 1 SCLK CD LATCH_Q Q 1 LATCH_Q 0 X 0 LATCH_Q Q 0 B 0 0 Q X 0 B 0 1 Q X 1 1 0 0 0 X 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 X = Don’t care LATCH_Q = Output data from latch B = Not rising edge When GSR = 0, Q = 0 (D = SP = ECLK = SCLK = CD = X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. ILF2P3JX Negative Level Edge Clocked (ECLK) Latch, Feeding Positive Edge Triggered System Clocked (SCLK) Flip-Flop, and Positive Level Synchronous Preset (Preset overrides Enable) (used in input PIC area only) Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 369 : INPUTS: D, SP, ECLK, SCLK, PD OUTPUT: Q Description This primitive must be paired with an input or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 344: INPUTS OUTPUTS D SP ECLK X X X X 0 1 0 X 1 SCLK PD LATCH_Q Q 1 LATCH_Q 1 X 0 LATCH_Q Q 0 B 0 0 Q X 0 B 0 1 Q X 1 1 0 0 0 X 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 X = Don’t care LATCH_Q = Output data from latch B = Not rising edge When GSR = 0, Q = 1 (D = SP = ECLK = SCLK = PD = X) FPGA Libraries Reference Guide 370 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. ILVDS LVDS Input Buffer Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, AN OUTPUT: Z FPGA Libraries Reference Guide 371 : Truth Table Table 345: INPUTS OUTPUTS A AN Z 0 1 0 1 0 1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. IMIPI Special Primitive for MIPI Input Support Architectures Supported: ECP5 INPUTS:A, AN, HSSEL OUTPUT: OHSLS, OLS The IMIPI I/O description is shown below. Table 346: FPGA Libraries Reference Guide Port Name I/O Description A I PAD C Input AN I PAD D Input 372 : Table 346: Port Name I/O Description HSSEL I High Speed Select Signal. This is shared with the Tristate input of the buffer. HSSEL=1: High Speed mode, 100 ohm differential termination is on. PADC logic select differential signal to IOL for gearing. HS_SEL=0: Low Speed mode, 100 ohm termination is turned off. OHSLS selected as ratioed lvcmos input buffer from I input (PADC), OLS selected as lvcmos input from IN input (PADD). OHSLS O High Speed or Low Speed Output depending on HSSEL OLS O Low speed output. Description Primitive used when implementing MIPI interface. INRDB Input Reference and Differential Buffer Architectures Supported: ECP5 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, E OUTPUT: Q FPGA Libraries Reference Guide 373 : Description The INRDB primitive is used to support post-PAR simulation of Dynamic Bank Controller. The Dynamic Bank Controller signals to the IO are hardwired and cannot be changed for the simulation, so the INRDB and LVDSOB primitives are defined to support the simulation. For more information, refer to the following technical note on the Lattice web site: TN1198 - Power Estimation and Management for MachXO2 Device INV Inverter Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUT: A OUTPUT: Z Note It is possible that this primitive will be optimized away. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 374 : IOWAKEUPA XP2 Wake-up Controller Architectures Supported: LatticeXP2 INPUT: UWKUP Description LatticeXP2 Wake-up controller. ISRX1A Input 1-Bit Shift Register Architectures Supported: LatticeSC/M INPUTS: D, CLK, RST, RSTAIL, RUNAIL OUTPUTS: Q, UPDATE, LOCK Description Shift register input logic that uses adaptive FF to capture input data. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 375 : ISRX2A Input 2-Bit Shift Register Architectures Supported: LatticeSC/M INPUTS: D, ECLK, SCLK, RST, RSTAIL, RUNAIL OUTPUTS: Q0, Q1, UPDATE, LOCK Description Shift register input logic that allows clock domain transfer from edge clock to primary clock and parallel transfer to the core of incoming serial data. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 376 : ISRX4A Input 4-Bit Shift Register Architectures Supported: LatticeSC/M INPUTS: D, ECLK, SCLK, RST, RSTAIL, RUNAIL OUTPUTS: Q0, Q1, Q2, Q3, UPDATE, LOCK Description Shift register input logic that allows clock domain transfer from edge clock to primary clock and parallel transfer to the core of incoming serial data. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 377 : FPGA Libraries Reference Guide 378 : J JTAGA JTAG (Joint Test Action Group) Controller Architectures Supported: LatticeSC/M INPUTS: TCK, TMS, TDI, PSROUT1, PSROUT2, PSROUT3, JTDO1, JTDO2, JTDO3, JTDO4, JTDO5, JTDO6, JTDO7, JTDO8 OUTPUTS: TDO, TRESET, PSRSFTN, PSRCAP, PSRENABLE1, PSRENABLE2, PSRENABLE3, SCANENABLE1, SCANENABLE2, SCANENABLE3, SCANENABLE4, SCANENABLE5, SCANENABLE6, SCANENABLE7, SCANENABLE8, SCANI, JTCK, JTDI, JSHIFT, JUPDATE, JRSTN, JCE1, JCE2, JCE3, JCE4, JCE5, JCE6, JCE7, JCE8, JRTI1, JRTI2, JRTI3, JRTI4, JRTI5, JRTI6, JRTI7, JRTI8 FPGA Libraries Reference Guide 379 : Description The JTAGA primitive provides the control and interconnect circuit used by the boundary scan function. This function allows the testing of increasingly complex ICs and IC packages. The LatticeSC/M device has enhanced its interface capability to the PLC array with increased scan chain connectivity and tap state machine flags such as shift capture update, reset, run test idle. Example pin functions: Table 347: Pins I/O Function Description TCK I interface pins TMS I TDI I Test clock (TCK), Test mode select (TMS), Test data in (TDI) and Test data out (TDO) are four interface pins for this primitive. The TDI, TMS and TCK pins are connected to the dedicated IO pads on the device. TDO O PSROUT[1:3] JTDO[1:8] I user boundary scan-ring outputs These are the outputs of the last registers of the user scan rings to the boundary scan block. Inputs to the boundary scan macro are based on the instruction loaded. TRESET O reset Active high output of the boundary scan macro to the routing. The output is high when the boundary scan macro is in test logic reset state. PSRSFTN O shift_not data register Active low output of the boundary scan macro. The output is low when the boundary scan macro is in the shift data state and the programmable scan ring instructions are loaded. PSRCAP O capture data register Active high output of the boundary scan macro. The output is high when the boundary scan macro is in the capture data state and the programmable scan ring instructions are loaded. PSRENABLE[1: O 3] SCANENABLE[ 1:8] enable flag Active high outputs of the boundary scan macro to the routing. The output equals a high upon update of the specific instructions, PLC_SCAN_RING[1:3] and SCAN[1:8], respectively. SCANI O scan in Private pin used for testing of the system bus that multiplexes the TDI and SCANOUT[11:14]. JTCK O test clock The boundary scan clock which is output from the boundary scan macro to the scan rings. JTDI O test data in The output of the boundary scan macro from where the test data is output to the scan rings. JSHIFT O shift data register Active high output of the boundary scan macro. The output is high when the boundary scan macro is in the shift data state and the scan instructions are loaded. JUPDATE O update data register Active high output of the boundary scan macro. The output is high when the boundary scan macro is in the update data state and when the PLC_SCAN_RING or SCAN instructions are loaded. I FPGA Libraries Reference Guide 380 : Table 347: Pins I/O Function Description JRSTN O reset_not Active low output of the boundary scan macro to the routing. The output is low when the boundary scan macro is in test logic reset state. JCE[1:8] O clock enable Active high output of the boundary scan macro to the routing. The output is high when the boundary scan macro is in the SHIFT or CAPTURE state during the SCAN[1:8] instructions, respectively. JRTI[1:8] O run test idle Active high output of the boundary scan macro. The output is high when the boundary scan macro is in the run test idle state and during the SCAN[1:8] instructions. JTAGB JTAG (Joint Test Action Group) Controller Architectures Supported: LatticeECP/EC LatticeXP INPUTS: TCK, TMS, TDI, JTDO1, JTDO2 OUTPUTS: TDO, JTCK, JTDI, JSHIFT, JUPDATE, JRSTN, JCE1, JCE2, JRTI1, JRTI2 ATTRIBUTES: ER1: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 381 : ER2: "ENABLED" (default), "DISABLED" Description Table 348: Signal I/O Description TCK I Test Clock, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TCK pin. Clocks registers and TAP Controller. TMS I Test Mode Select, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TMS pin. Controls state machine switching for TAP Controller. TDI I Test Data Input, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TDI pin. JTDO[2:1] I JTAG Test Data Output one (scans output bus entering JTAG block), for internal logic to control non-disruptive re-configuration through JTAG port, JTAG serial interface to the device. Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO1. If ER2 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO2. TDO O Test Data Output, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly to the pad of device TDO pin JTCK O JTAG Test Clock (connects to TCK), for internal logic to control non-disruptive reconfiguration through JTAG port. Signal is coming from TCK input and going into the FPGA fabric. JTDI O JTAG Test Data Input, for internal logic to control non-disruptive re-configuration through JTAG port. Signal is coming from TDI input and going into the FPGA fabric. JSHIFT O JTAG Shift. Signal goes high when TAP Controller State is Shift-DR. JUPDATE O JTAG Update. Signal goes high when TAP controller state is Update-DR. JRSTN O JTAG Reset (active low). Signal goes low when TAP controller state is Test-Logic-Reset. FPGA Libraries Reference Guide 382 : Table 348: Signal I/O Description JCE[2:1] O JTAG Clock Enable one (BS is to boundary scan ring (L2). Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JCE1 will go high when TAP controller is in Capture-DR or Shift-DR states. If ER2 instruction is shifted into the JTAG instruction register, JCE2 will go high when TAP controller is in Capture-DR or Shift-DR states. JRTI[2:1] O JTAG Run-Test/Idle. Lattice supports two private JTAG instructions ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JRTI1 will go high when TAP controller is in Run-Test/Idle state. If ER2 instruction is shifted into the JTAG instruction register, JRTI2 will go high when TAP controller is in Run-Test/Idle state. JTAGC JTAG (Joint Test Action Group) Controller Architectures Supported: LatticeECP2/M INPUTS: TCK, TMS, TDI, ITCK, ITMS, ITDI, IJTAGEN, JTDO1, JTDO2 FPGA Libraries Reference Guide 383 : OUTPUTS: TDO, ITDO, JTDI, JTCK, JRTI1, JRTI2, JSHIFT, JUPDATE, JRSTN, JCE1, JCE2 Note The internal JTAG mode is not supported. The ITCK, ITMS, ITDI, and ITDO ports are non-operations and hence do not use them. The IJTAGEN port should always be tied to VCC. ATTRIBUTES: ER1: "ENABLED" (default), "DISABLED" ER2: "ENABLED" (default), "DISABLED" Description Table 349: Signal I/O Description TCK I Test Clock, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TCK pin. Clocks registers and TAP Controller. TMS I Test Mode Select, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TMS pin. Controls state machine switching for TAP Controller. TDI I Test Data Input, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TDI pin. ITCK I Internal Test Clock for internal logic to control non-disruptive re-configuration through JTAG port, comes from configuration block CIB. ITMS I Internal Test Mode Select, for internal logic to control non-disruptive re-configuration through JTAG port, comes from configuration block CIB. ITDI I Internal Test Data Input, for internal logic to control non-disruptive re-configuration through JTAG port, comes from configuration block CIB. IJTAGEN I Internal JTAG Enable (active low), for internal logic to control non-disruptive reconfiguration through JTAG port, comes from configuration block CIB. JTDO[2:1] I JTAG Test Data Output one (scans output bus entering JTAG block), for internal logic to control non-disruptive re-configuration through JTAG port, JTAG serial interface to the device. Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO1. If ER2 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO2. TDO O Test Data Output, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly to the pad of device TDO pin. FPGA Libraries Reference Guide 384 : Table 349: Signal I/O Description ITDO O Internal Test Data Output for internal logic to control non-disruptive re-configuration through JTAG port, comes from configuration block CIB. JTDI O JTAG Test Data Input, for internal logic to control non-disruptive re-configuration through JTAG port Signal is coming from TDI input and going into the FPGA fabric. JTCK O JTAG Test Clock (connects to TCK), for internal logic to control non-disruptive reconfiguration through JTAG port Signal is coming from TCK input and going into the FPGA fabric. JRTI[2:1] O JTAG Run-Test/Idle. Lattice supports two private JTAG instructions ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JRTI1 will go high when TAP controller is in Run-Test/Idle state. If ER2 instruction is shifted into the JTAG instruction register, JRTI2 will go high when TAP controller is in Run-Test/Idle state. JSHIFT O JTAG Shift. Signal goes high when TAP Controller State is Shift-DR. JUPDATE O JTAG Update. Signal goes high when TAP controller state is Update-DR. JRSTN O JTAG Reset (active low). Signal goes low when TAP controller state is Test-Logic-Reset. JCE[2:1] O JTAG Clock Enable one (BS is to boundary scan ring (L2). Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JCE1 will go high when TAP controller is in Capture-DR or Shift-DR states. If ER2 instruction is shifted into the JTAG instruction register, JCE2 will go high when TAP controller is in Capture-DR or Shift-DR states. JTAGD JTAG (Joint Test Action Group) Controller Architectures Supported: FPGA Libraries Reference Guide MachXO Platform Manager 385 : INPUTS: TCK, TMS, TDI, JTDO1, JTDO2 OUTPUTS: TDO, JTDI, JTCK, JRTI1, JRTI2, JSHIFT, JUPDATE, JRST, JCE1, JCE2 ATTRIBUTES: ER1: "ENABLED" (default), "DISABLED" ER2: "ENABLED" (default), "DISABLED" Description Table 350: Signal I/O Description TCK I Test Clock, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TCK pin Clocks registers and TAP Controller TMS I Test Mode Select, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TMS pin Controls state machine switching for TAP Controller TDI I Test Data Input, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TDI pin JTDO[2:1] I JTAG Test Data Output one (scans output bus entering JTAG block), for internal logic to control non-disruptive re-configuration through JTAG port, JTAG serial interface to the device. Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO1. If ER2 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO2. FPGA Libraries Reference Guide 386 : Table 350: Signal I/O Description TDO O Test Data Output, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly to the pad of device TDO pin JTDI O JTAG Test Data Input, for internal logic to control non-disruptive re-configuration through JTAG port Signal is coming from TDI input and going into the FPGA fabric. JTCK O JTAG Test Clock (connects to TCK), for internal logic to control non-disruptive reconfiguration through JTAG port Signal is coming from TCK input and going into the FPGA fabric. JRTI[2:1] O JTAG Run-Test/Idle Lattice supports two private JTAG instructions ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JRTI1 will go high when TAP controller is in Run-Test/Idle state. If ER2 instruction is shifted into the JTAG instruction register, JRTI2 will go high when TAP controller is in Run-Test/Idle state. JSHIFT O JTAG Shift Signal goes high when TAP Controller State is Shift-DR. JUPDATE O JTAG Update Signal goes high when TAP controller state is Update-DR. JRST O JTAG Reset (active high) Signal goes high when TAP controller state is Test-Logic-Reset. JCE[2:1] O JTAG Clock Enable one (BS is to boundary scan ring (L2). Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JCE1 will go high when TAP controller is in Capture-DR or Shift-DR states. If ER2 instruction is shifted into the JTAG instruction register, JCE2 will go high when TAP controller is in Capture-DR or Shift-DR states. JTAGE JTAG (Joint Test Action Group) Controller Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 LatticeXP2 387 : INPUTS: TCK, TMS, TDI, JTDO1, JTDO2 OUTPUTS: TDO, JTCK, JTDI, JSHIFT, JUPDATE, JRSTN, JCE1, JCE2, JRTI1, JRTI2 ATTRIBUTES: ER1: "ENABLED" (default), "DISABLED" ER2: "ENABLED" (default), "DISABLED" Description Table 351: Signal I/O Description TCK I Test Clock, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TCK pin. Clocks registers and TAP Controller. TMS I Test Mode Select, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TMS pin. Controls state machine switching for TAP Controller. TDI I Test Data Input, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TDI pin. JTDO[2:1] I JTAG Test Data Output one (scans output bus entering JTAG block), for internal logic to control non-disruptive re-configuration through JTAG port, JTAG serial interface to the device. Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO1. If ER2 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO2. FPGA Libraries Reference Guide 388 : Table 351: Signal I/O Description TDO O Test Data Output, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly to the pad of device TDO pin. JTDI O JTAG Test Data Input, for internal logic to control non-disruptive re-configuration through JTAG port Signal is coming from TDI input and going into the FPGA fabric. JTCK O JTAG Test Clock (connects to TCK), for internal logic to control non-disruptive reconfiguration through JTAG port Signal is coming from TCK input and going into the FPGA fabric. JRTI[2:1] O JTAG Run-Test/Idle. Lattice supports two private JTAG instructions ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JRTI1 will go high when TAP controller is in Run-Test/Idle state. If ER2 instruction is shifted into the JTAG instruction register, JRTI2 will go high when TAP controller is in Run-Test/Idle state. JSHIFT O JTAG Shift. Signal goes high when TAP Controller State is Shift-DR. JRSTN O JTAG Reset (active low) Signal goes low when TAP controller state is Test-Logic-Reset. JUPDATE O JTAG Update. Signal goes high when TAP controller state is Update-DR. JCE[2:1] O JTAG Clock Enable one (BS is to boundary scan ring (L2). Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JCE1 will go high when TAP controller is in Capture-DR or Shift-DR states. If ER2 instruction is shifted into the JTAG instruction register, JCE2 will go high when TAP controller is in Capture-DR or Shift-DR states. JTAGF JTAG (Joint Test Action Group) Controller Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 389 : INPUTS: TCK, TMS, TDI, JTDO1, JTDO2 OUTPUTS: TDO, JTDI, JTCK, JRTI1, JRTI2, JSHIFT, JUPDATE, JRSTN, JCE1, JCE2 ATTRIBUTES: ER1: "ENABLED" (default), "DISABLED" ER2: "ENABLED" (default), "DISABLED" Description The JTAGF primitive is used to provide access to internal JTAG signals from within the FPGA fabric. This is used for some cores, such as REVEAL, and other purposes. It is not a component an ordinary user would normally use directly. Table 352: Signal I/O Description TCK I Test Clock, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TCK pin. Clocks registers and TAP Controller. TMS I Test Mode Select, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TMS pin. Controls state machine switching for TAP Controller. TDI I Test Data Input, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly from the pad of device TDI pin. FPGA Libraries Reference Guide 390 : Table 352: Signal I/O Description JTDO[2:1] I JTAG Test Data Output one (scans output bus entering JTAG block), for internal logic to control non-disruptive re-configuration through JTAG port, JTAG serial interface to the device. Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO1. If ER2 instruction is shifted into the JTAG instruction register, TDO output will come from JTDO2. TDO O Test Data Output, one of the pins for the Test Access Port (TAP), JTAG serial interface to the device, connected directly to the pad of device TDO pin. JTDI O JTAG Test Data Input, for internal logic to control non-disruptive re-configuration through JTAG port Signal is coming from TDI input and going into the FPGA fabric. JTCK O JTAG Test Clock (connects to TCK), for internal logic to control non-disruptive reconfiguration through JTAG port Signal is coming from TCK input and going into the FPGA fabric. JRTI[2:1] O JTAG Run-Test/Idle. Lattice supports two private JTAG instructions ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JRTI1 will go high when TAP controller is in Run-Test/Idle state. If ER2 instruction is shifted into the JTAG instruction register, JRTI2 will go high when TAP controller is in Run-Test/Idle state. JSHIFT O JTAG Shift. Signal goes high when TAP Controller State is Shift-DR. JRSTN O JTAG Reset (active low) Signal goes low when TAP controller state is Test-Logic-Reset. JUPDATE O JTAG Update. Signal goes high when TAP controller state is Update-DR. JCE[2:1] O JTAG Clock Enable one (BS is to boundary scan ring (L2). Lattice supports two private JTAG instructions, ER1 (0x32) and ER2 (0x38). If ER1 instruction is shifted into the JTAG instruction register, JCE1 will go high when TAP controller is in Capture-DR or Shift-DR states. If ER2 instruction is shifted into the JTAG instruction register, JCE2 will go high when TAP controller is in Capture-DR or Shift-DR states. FPGA Libraries Reference Guide 391 : L L6MUX21 2 to 1 Mux Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, SD OUTPUT: Z FPGA Libraries Reference Guide 392 : Truth Table Table 353: INPUTS OUTPUTS D0 D1 SD Z 0 X 0 0 1 X 0 1 X 0 1 0 X 1 1 1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LB2P3AX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 393 : INPUTS: D0, D1, CI, SP, CK, SD, CON OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 394 : Truth Table Table 354: INPUTS OUTPUTS D[0:1] SD CI SP D[0:1] 1 0 D[0:1] 1 X CK CON CO Q[0:1] 1 1 0 D[0:1] 1 1 1 * D[0:1] 0 0 X X 1 0 Q[0:1] X X 0 0 X 1 0 Q[0:1] X X 1 0 X 1 * Q[0:1] X 0 1 1 1 * count+1 D[0:1] 1 1 1 0 1 D[0:1] D[0:1] 1 0 1 0 ** D[0:1] X 0 1 X X 0 1 Q[0:1] X X 1 0 X 0 1 Q[0:1] X X 0 0 X 0 ** Q[0:1] X 0 0 1 0 ** count-1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON•CI, Q[0:1]=0 (D[0:1]=SP=CK=SD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LB2P3AY 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M 395 : LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, CON OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 396 : Truth Table Table 355: INPUTS OUTPUTS D[0:1] SD CI SP D[0:1] 1 0 D[0:1] 1 X CK CON CO Q[0:1] 1 1 0 D[0:1] 1 1 1 * D[0:1] 0 0 X X 1 0 Q[0:1] X X 0 0 X 1 0 Q[0:1] X X 1 0 X 1 * Q[0:1] X 0 1 1 1 * count+1 D[0:1] 1 1 1 0 1 D[0:1] D[0:1] 1 0 1 0 ** D[0:1] X 0 1 X X 0 1 Q[0:1] X X 1 0 X 0 1 Q[0:1] X X 0 0 X 0 ** Q[0:1] X 0 0 1 0 ** count-1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, Q[0:1]=1, CO=!CON+CI (D[0:1]=SP=CK=SD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LB2P3BX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M 397 : LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, PD, CON OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 398 : Truth Table Table 356: INPUTS OUTPUTS D[0:1] SD CI SP CK CON PD CO Q[0:1] X X 0 X X 1 1 0 1 X X 1 X X 1 1 1 1 D[0:1] 1 0 1 1 0 0 D[0:1] D[0:1] 1 1 1 1 0 * D[0:1] X 0 0 X X 1 0 0 Q[0:1] X X 0 0 X 1 0 0 Q[0:1] X X 1 0 X 1 0 * Q[0:1] X 0 1 1 1 0 * count+1 X X X X 0 1 1 1 D[0:1] 1 1 1 0 0 1 D[0:1] D[0:1] 1 0 1 0 0 ** D[0:1] X 0 1 X X 0 0 1 Q[0:1] X X 1 0 X 0 0 1 Q[0:1] X X 0 0 X 0 0 ** Q[0:1] X 0 0 1 0 0 ** count-1 X X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON+CI, Q[0:1]=1 (D[0:1]=SP=CK=SD=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LB2P3DX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC 399 : LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, CD, CON OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 400 : Truth Table Table 357: INPUTS OUTPUTS D[0:1] SD CI SP CK CON CD CO Q[0:1] X X X X X 1 1 0 0 D[0:1] 1 0 1 1 0 0 D[0:1] D[0:1] 1 1 1 1 0 * D[0:1] X 0 0 X X 1 0 0 Q[0:1] X X 0 0 X 1 0 0 Q[0:1] X X 1 0 X 1 0 * Q[0:1] X 0 1 1 1 0 * count+1 X X 0 X X 0 1 0 0 X X 1 X X 0 1 1 0 D[0:1] 1 1 1 0 0 1 D[0:1] D[0:1] 1 0 1 0 0 ** D[0:1] X 0 1 X X 0 0 1 Q[0:1] X X 1 0 X 0 0 1 Q[0:1] X X 0 0 X 0 0 ** Q[0:1] X 0 0 1 0 0 ** count-1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON"CI, Q[0:1]=0 (D[0:1]=SP=CK=SD=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LB2P3IX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) Architectures Supported: FPGA Libraries Reference Guide 401 : LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, CD, CON OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 402 : Truth Table Table 358: INPUTS OUTPUTS D[0:1] SD CI SP X X X D[0:1] 1 D[0:1] CK CON CD CO Q[0:1] X 1 1 0 0 0 1 1 0 0 D[0:1] 1 1 1 1 0 * D[0:1] X 0 0 X X 1 0 0 Q[0:1] X X 0 0 X 1 0 0 Q[0:1] X X 1 0 X 1 0 * Q[0:1] X 0 1 1 1 0 * count+1 X X 0 X 0 1 0 0 X X 1 X 0 1 1 0 D[0:1] 1 1 1 0 0 1 D[0:1] D[0:1] 1 0 1 0 0 ** D[0:1] X 0 1 X X 0 0 1 Q[0:1] X X 1 0 X 0 0 1 Q[0:1] X X 0 0 X 0 0 ** Q[0:1] X 0 0 1 0 0 ** count-1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON"CI, Q[0:1]=0 (D[0:1]=SP=CK=SD=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LB2P3JX 2 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Architectures Supported: FPGA Libraries Reference Guide 403 : LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, PD, CON OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 404 : Truth Table Table 359: INPUTS OUTPUTS D[0:1] SD CI SP X X 0 X X D[0:1] CK CON PD CO Q[0:1] X 1 1 0 1 1 X 1 1 1 1 1 0 1 1 0 0 D[0:1] D[0:1] 1 1 1 1 0 * D[0:1] X 0 0 X X 1 0 0 Q[0:1] X X 0 0 X 1 0 0 Q[0:1] X X 1 0 X 1 0 * Q[0:1] X 0 1 1 1 0 * count+1 X X X X 0 1 1 1 D[0:1] 1 1 1 0 0 1 D[0:1] D[0:1] 1 0 1 0 0 ** D[0:1] X 0 1 X X 0 0 1 Q[0:1] X X 1 0 X 0 0 1 Q[0:1] X X 0 0 X 0 0 ** Q[0:1] X 0 0 1 0 0 ** count-1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON+CI, Q[0:1]=1 (D[0:1]=SP=CK=SD=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LB4P3AX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC 405 : LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CON OUTPUTS: CO, Q0, Q1, Q2, Q3 Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 406 : Truth Table Table 360: INPUTS OUTPUTS D[0:3] SD CI SP D[0:3] 1 0 D[0:3] 1 X CK CON CO Q[0:3] 1 1 0 D[0:3] 1 1 1 * D[0:3] 0 0 X X 1 0 Q[0:3] X X 0 0 X 1 0 Q[0:3] X X 1 0 X 1 * Q[0:3] X 0 1 1 1 * count+1 D[0:3] 1 1 1 0 1 D[0:3] D[0:3] 1 0 1 0 ** D[0:3] X 0 1 X X 0 1 Q[0:3] X X 1 0 X 0 1 Q[0:3] X X 0 0 X 0 ** Q[0:3] X 0 0 1 0 ** count-1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON•CI, Q[0:3]=0 (D[0:3]=SP=CK=SD=X) LB4P3AY 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 407 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CON OUTPUTS: CO, Q0, Q1, Q2, Q3 Note When CON = 0, CI and CO are active LOW Truth Table Table 361: INPUTS OUTPUTS D[0:3] SD CI SP D[0:3] 1 0 D[0:3] 1 X CK CON CO Q[0:3] 1 1 0 D[0:3] 1 1 1 * D[0:3] 0 0 X X 1 0 Q[0:3] X X 0 0 X 1 0 Q[0:3] X X 1 0 X 1 * Q[0:3] X 0 1 1 1 * count+1 D[0:3] 1 1 1 0 1 D[0:3] D[0:3] 1 0 1 0 ** D[0:3] X 0 1 X X 0 1 Q[0:3] X X 1 0 X 0 1 Q[0:3] X X 0 0 X 0 ** Q[0:3] X 0 0 1 0 ** count-1 X = Don’t care FPGA Libraries Reference Guide 408 : When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, Q[0:3]=1, CO=!CON+CI (D[0:3]=SP=CK=SD=X) LB4P3BX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, PD, CON OUTPUTS: CO, Q0, Q1, Q2, Q3 Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 409 : Truth Table Table 362: INPUTS OUTPUTS D[0:3] SD CI SP CK CON PD CO Q[0:3] X X 0 X X 1 1 0 1 X X 1 X X 1 1 1 1 D[0:3] 1 0 1 1 0 0 D[0:3] D[0:3] 1 1 1 1 0 * D[0:3] X 0 0 X X 1 0 0 Q[0:3] X X 0 0 X 1 0 0 Q[0:3] X X 1 0 X 1 0 * Q[0:3] X 0 1 1 1 0 * count+1 X X X X 0 1 1 1 D[0:3] 1 1 1 0 0 1 D[0:3] D[0:3] 1 0 1 0 0 ** D[0:3] X 0 1 X X 0 0 1 Q[0:3] X X 1 0 X 0 0 1 Q[0:3] X X 0 0 X 0 0 ** Q[0:3] X 0 0 1 0 0 ** count-1 X X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON+CI, Q[0:3]=1 (D[0:3]=SP=CK=SD=PD=X) LB4P3DX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 410 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CD, CON OUTPUTS: CO, Q0, Q1, Q2, Q3 Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 411 : Truth Table Table 363: INPUTS OUTPUTS D[0:3] SD CI SP CK CON CD CO Q[0:3] X X X X X 1 1 0 0 D[0:3] 1 0 1 1 0 0 D[0:3] D[0:3] 1 1 1 1 0 * D[0:3] X 0 0 X X 1 0 0 Q[0:3] X X 0 0 X 1 0 0 Q[0:3] X X 1 0 X 1 0 * Q[0:3] X 0 1 1 1 0 * count+1 X X 0 X X 0 1 0 0 X X 1 X X 0 1 1 0 D[0:3] 1 1 1 0 0 1 D[0:3] D[0:3] 1 0 1 0 0 ** D[0:3] X 0 1 X X 0 0 1 Q[0:3] X X 1 0 X 0 0 1 Q[0:3] X X 0 0 X 0 0 ** Q[0:3] X 0 0 1 0 0 ** count-1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON"CI, Q[0:3]=0 (D[0:3]=SP=CK=SD=CD=X) LB4P3IX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 412 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CD, CON OUTPUTS: CO, Q0, Q1, Q2, Q3 Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 413 : Truth Table Table 364: INPUTS OUTPUTS D[0:3] SD CI SP X X X D[0:3] 1 D[0:3] CK CON CD CO Q[0:3] X 1 1 0 0 0 1 1 0 0 D[0:3] 1 1 1 1 0 * D[0:3] X 0 0 X X 1 0 0 Q[0:3] X X 0 0 X 1 0 0 Q[0:3] X X 1 0 X 1 0 * Q[0:3] X 0 1 1 1 0 * count+1 X X 0 X 0 1 0 0 X X 1 X 0 1 1 0 D[0:3] 1 1 1 0 0 1 D[0:3] D[0:3] 1 0 1 0 0 ** D[0:3] X 0 1 X X 0 0 1 Q[0:3] X X 1 0 X 0 0 1 Q[0:3] X X 0 0 X 0 0 ** Q[0:3] X 0 0 1 0 0 ** count-1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON"CI, Q[0:3]=0 (D[0:3]=SP=CK=SD=CD=X) LB4P3JX 4 Bit Positive Edge Triggered Loadable Bidirectional Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 414 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, PD, CON OUTPUTS: CO, Q0, Q1, Q2, Q3 Note When CON = 0, CI and CO are active LOW FPGA Libraries Reference Guide 415 : Truth Table Table 365: INPUTS OUTPUTS D[0:3] SD CI SP X X 0 X X D[0:3] CK CON PD CO Q[0:3] X 1 1 0 1 1 X 1 1 1 1 1 0 1 1 0 0 D[0:3] D[0:3] 1 1 1 1 0 * D[0:3] X 0 0 X X 1 0 0 Q[0:3] X X 0 0 X 1 0 0 Q[0:3] X X 1 0 X 1 0 * Q[0:3] X 0 1 1 1 0 * count+1 X X X X 0 1 1 1 D[0:3] 1 1 1 0 0 1 D[0:3] D[0:3] 1 0 1 0 0 ** D[0:3] X 0 1 X X 0 0 1 Q[0:3] X X 1 0 X 0 0 1 Q[0:3] X X 0 0 X 0 0 ** Q[0:3] X 0 0 1 0 0 ** count-1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=!CON+CI, Q[0:3]=1 (D[0:3]=SP=CK=SD=PD=X) LD2P3AX 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable, GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP 416 : LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note CI and CO are active LOW FPGA Libraries Reference Guide 417 : Truth Table Table 366: INPUTS OUTPUTS D[0:1] SD CI SP D[0:1] 1 1 D[0:1] 1 X CK CO Q[0:1] 1 1 D[0:1] 0 1 * D[0:1] 0 1 X X 1 Q[0:1] X X 1 0 X 1 Q[0:1] X X 0 0 X * Q[0:1] X 0 0 1 * count-1 X = Don’t care When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=CI, Q[0:1]=0 (D[0:1]=SP=CK=SD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LD2P3AY 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 418 : INPUTS: D0, D1, CI, SP, CK, SD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note CI and CO are active LOW Truth Table Table 367: INPUTS OUTPUTS D[0:1] SD CI SP D[0:1] 1 1 D[0:1] 1 X CK CO Q[0:1] 1 1 D[0:1] 0 1 * D[0:1] 0 1 X X 1 Q[0:1] X X 1 0 X 1 Q[0:1] X X 0 0 X * Q[0:1] X 0 0 1 * count-1 X = Don’t care When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=1, Q[0:1]=1 (D[0:1]=CI=SP=CK=SD=X) FPGA Libraries Reference Guide 419 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LD2P3BX 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Asynchronous Preset Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, PD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: FPGA Libraries Reference Guide 420 : GSR: "ENABLED" (default), "DISABLED" Note CI and CO are active LOW Truth Table Table 368: INPUTS OUTPUTS D[0:1] SD CI SP CK PD CO Q[0:1] X X X X X 1 1 1 D[0:1] 1 1 1 0 1 D[0:1] D[0:1] 1 0 1 0 * D[0:1] X 0 1 X X 0 1 Q[0:1] X X 1 0 X 0 1 Q[0:1] X X 0 0 X 0 * Q[0:1] X 0 0 1 0 * count-1 X = Don’t care When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=1, Q[0:1]=1 (D[0:1]=SP=CK=SD=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LD2P3DX 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 421 : MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note CI and CO are active LOW FPGA Libraries Reference Guide 422 : Truth Table Table 369: INPUTS OUTPUTS D[0:1] SD CI SP CK CD CO Q[0:1] X X 0 X X 1 0 0 X X 1 X X 1 1 0 D[0:1] 1 1 1 0 1 D[0:1] D[0:1] 1 0 1 0 * D[0:1] X 0 1 X X 0 1 Q[0:1] X X 1 0 X 0 1 Q[0:1] X X 0 0 X 0 * Q[0:1] X 0 0 1 0 * count-1 X = Don’t care When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=CI, Q[0:1]=0 (D[0:1]=SP=CK=SD=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LD2P3IX 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 423 : MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note CI and CO are active LOW Truth Table Table 370: INPUTS OUTPUTS D[0:1] SD CI SP X X 0 X X D[0:1] CK CD CO Q[0:1] X 1 0 0 1 X 1 1 0 1 1 1 0 1 D[0:1] D[0:1] 1 0 1 0 * D[0:1] X 0 1 X X 0 1 Q[0:1] X X 1 0 X 0 1 Q[0:1] X X 0 0 X 0 * Q[0:1] X 0 0 1 0 * count-1 X = Don’t care FPGA Libraries Reference Guide 424 : When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=CI, Q[0:1]=0 (D[0:1]=SP=CK=SD=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LD2P3JX 2 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, PD OUTPUTS: CO, Q0, Q1 FPGA Libraries Reference Guide 425 : ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note CI and CO are active LOW Truth Table Table 371: INPUTS OUTPUTS D[0:1] SD CI SP X X X D[0:1] 1 D[0:1] CK PD CO Q[0:1] X 1 1 1 1 1 0 1 D[0:1] 1 0 1 0 * D[0:1] X 0 1 X X 0 1 Q[0:1] X X 1 0 X 0 1 Q[0:1] X X 0 0 X 0 * Q[0:1] X 0 0 1 0 * count-1 X = Don’t care When Q[0:1] is 00, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=1, Q[0:1]=1 (D[0:1]=SP=CK=SD=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LD4P3AX 4 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable, GSR Used for Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 426 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD OUTPUTS: CO, Q0, Q1, Q2, Q3 Note CI and CO are active LOW Truth Table Table 372: INPUTS OUTPUTS D[0:3] SD CI SP D[0:3] 1 1 D[0:3] 1 X CK CO Q[0:3] 1 1 D[0:3] 0 1 * D[0:3] 0 1 X X 1 Q[0:3] X X 1 0 X 1 Q[0:3] X X 0 0 X * Q[0:3] X 0 0 1 * count-1 X = Don’t care When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=CI, Q[0:3]=0 (D[0:3]=SP=CK=SD=X) FPGA Libraries Reference Guide 427 : LD4P3AY 4 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable, GSR Used for Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD OUTPUTS: CO, Q0, Q1, Q2, Q3 Note CI and CO are active LOW FPGA Libraries Reference Guide 428 : Truth Table Table 373: INPUTS OUTPUTS D[0:3] SD CI SP D[0:3] 1 1 D[0:3] 1 X CK CO Q[0:3] 1 1 D[0:3] 0 1 * D[0:3] 0 1 X X 1 Q[0:3] X X 1 0 X 1 Q[0:3] X X 0 0 X * Q[0:3] X 0 0 1 * count-1 X = Don’t care When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=1, Q[0:3]=1 (D[0:3]=CI=SP=CK=SD=X) LD4P3BX 4 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Asynchronous Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, PD FPGA Libraries Reference Guide 429 : OUTPUTS: CO, Q0, Q1, Q2, Q3 Note CI and CO are active LOW Truth Table Table 374: INPUTS OUTPUTS D[0:3] SD CI SP CK PD CO Q[0:3] X X X X X 1 1 1 D[0:3] 1 1 1 0 1 D[0:3] D[0:3] 1 0 1 0 * D[0:3] X 0 1 X X 0 1 Q[0:3] X X 1 0 X 0 1 Q[0:3] X X 0 0 X 0 * Q[0:3] X 0 0 1 0 * count-1 X = Don’t care When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=1, Q[0:3]=1 (D[0:3]=SP=CK=SD=PD=X) LD4P3DX 4 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 430 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1, Q2, Q3 Note CI and CO are active LOW Truth Table Table 375: INPUTS OUTPUTS D[0:3] SD CI SP CK CD CO Q[0:3] X X 0 X X 1 0 0 X X 1 X X 1 1 0 D[0:3] 1 1 1 0 1 D[0:3] D[0:3] 1 0 1 0 * D[0:3] X 0 1 X X 0 1 Q[0:3] X X 1 0 X 0 1 Q[0:3] X X 0 0 X 0 * Q[0:3] X 0 0 1 0 * count-1 X = Don’t care When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=CI, Q[0:3]=0 (D[0:3]=SP=CK=SD=CD=X) FPGA Libraries Reference Guide 431 : LD4P3IX 4 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1, Q2, Q3 Note CI and CO are active LOW FPGA Libraries Reference Guide 432 : Truth Table Table 376: INPUTS OUTPUTS D[0:3] SD CI SP X X 0 X X D[0:3] CK CD CO Q[0:3] X 1 0 0 1 X 1 1 0 1 1 1 0 1 D[0:3] D[0:3] 1 0 1 0 * D[0:3] X 0 1 X X 0 1 Q[0:3] X X 1 0 X 0 1 Q[0:3] X X 0 0 X 0 * Q[0:3] X 0 0 1 0 * count-1 X = Don’t care When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=CI, Q[0:3]=0 (D[0:3]=SP=CK=SD=CD=X) LD4P3JX 4 Bit Positive Edge Triggered Loadable Down-Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 433 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, PD OUTPUTS: CO, Q0, Q1, Q2, Q3 Note CI and CO are active LOW Truth Table Table 377: INPUTS OUTPUTS D[0:3] SD CI SP X X X D[0:3] 1 D[0:3] CK PD CO Q[0:3] X 1 1 1 1 1 0 1 D[0:3] 1 0 1 0 * D[0:3] X 0 1 X X 0 1 Q[0:3] X X 1 0 X 0 1 Q[0:3] X X 0 0 X 0 * Q[0:3] X 0 0 1 0 * count-1 X = Don’t care When Q[0:3] is 0000, CO will be 0; otherwise, CO will be 1 When GSR=0, CO=1, Q[0:3]=1 (D[0:3]=SP=CK=SD=PD=X) FPGA Libraries Reference Guide 434 : LU2P3AX 2 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable, GSR Used for Clear Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 435 : Truth Table Table 378: INPUTS OUTPUTS D[0:1] SD CI SP D[0:1] 1 0 D[0:1] 1 X CK CO Q[0:1] 1 0 D[0:1] 1 1 * D[0:1] 0 0 X X 0 Q[0:1] X X 0 0 X 0 Q[0:1] X X 1 0 X * Q[0:1] X 0 1 1 * count+1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=0, Q[0:1]=0 (D[0:1]=SP=CK=SD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LU2P3AY 2 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable, GSR Used for Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 436 : INPUTS: D0, D1, CI, SP, CK, SD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 379: INPUTS OUTPUTS D[0:1] SD CI SP D[0:1] 1 0 D[0:1] 1 X CK CO Q[0:1] 1 0 D[0:1] 1 1 * D[0:1] 0 0 X X 0 Q[0:1] X X 0 0 X 0 Q[0:1] X X 1 0 X * Q[0:1] X 0 1 1 * count+1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=CI, Q[0:1]=1 (D[0:1]=CI=SP=CK=SD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 437 : LU2P3BX 2 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Asynchronous Preset Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, PD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 438 : Truth Table Table 380: INPUTS OUTPUTS D[0:1] SD CI SP CK PD CO Q[0:1] X X 0 X X 1 0 1 X X 1 X X 1 1 1 D[0:1] 1 0 1 0 0 D[0:1] D[0:1] 1 1 1 0 * D[0:1] X 0 0 X X 0 0 Q[0:1] X X 0 0 X 0 0 Q[0:1] X X 1 0 X 0 * Q[0:1] X 0 1 1 0 * count+1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=CI, Q[0:1]=1 (D[0:1]=SP=CK=SD=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LU2P3DX 2 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L 439 : Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 381: INPUTS OUTPUTS D[0:1] SD CI SP CK CD CO Q[0:1] X X X X X 1 0 0 D[0:1] 1 0 1 0 0 D[0:1] D[0:1] 1 1 1 0 * D[0:1] X 0 0 X X 0 0 Q[0:1] X X 0 0 X 0 0 Q[0:1] X X 1 0 X 0 * Q[0:1] X 0 1 1 0 * count+1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=0, Q[0:1]=0 (D[0:1]=SP=CK=SD=CD=X) FPGA Libraries Reference Guide 440 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LU2P3IX 2 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 441 : Truth Table Table 382: INPUTS OUTPUTS D[0:1] SD CI SP X X X D[0:1] 1 D[0:1] CK CD CO Q[0:1] X 1 0 0 0 1 0 0 D[0:1] 1 1 1 0 * D[0:1] X 0 0 X X 0 0 Q[0:1] X X 0 0 X 0 0 Q[0:1] X X 1 0 X 0 * Q[0:1] X 0 1 1 0 * count+1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=0, Q[0:1]=0 (D[0:1]=SP=CK=SD=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LU2P3JX 2 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L 442 : Platform Manager Platform Manager 2 INPUTS: D0, D1, CI, SP, CK, SD, PD OUTPUTS: CO, Q0, Q1 ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Truth Table Table 383: INPUTS OUTPUTS D[0:1] SD CI SP X X 0 X X D[0:1] CK PD CO Q[0:1] X 1 0 1 1 X 1 1 1 1 0 1 0 0 D[0:1] D[0:1] 1 1 1 0 * D[0:1] X 0 0 X X 0 0 Q[0:1] X X 0 0 X 0 0 Q[0:1] X X 1 0 X 0 * Q[0:1] X 0 1 1 0 * count+1 X = Don’t care When Q[0:1] is 11, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=CI, Q[0:1]=1 (D[0:1]=SP=CK=SD=PD=X) FPGA Libraries Reference Guide 443 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. LU4P3AX 4 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable, GSR Used for Clear Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD OUTPUTS: CO, Q0, Q1, Q2, Q3 FPGA Libraries Reference Guide 444 : Truth Table Table 384: INPUTS OUTPUTS D[0:3] SD CI SP D[0:3] 1 0 D[0:3] 1 X CK CO Q[0:3] 1 0 D[0:3] 1 1 * D[0:3] 0 0 X X 0 Q[0:3] X X 0 0 X 0 Q[0:3] X X 1 0 X * Q[0:3] X 0 1 1 * count+1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=0, Q[0:3]=0 (D[0:3]=SP=CK=SD=X) LU4P3AY 4 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable, GSR Used for Preset Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD FPGA Libraries Reference Guide 445 : OUTPUTS: CO, Q0, Q1, Q2, Q3 Truth Table Table 385: INPUTS OUTPUTS D[0:3] SD CI SP D[0:3] 1 0 D[0:3] 1 X CK CO Q[0:3] 1 0 D[0:3] 1 1 * D[0:3] 0 0 X X 0 Q[0:3] X X 0 0 X 0 Q[0:3] X X 1 0 X * Q[0:3] X 0 1 1 * count+1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=CI, Q[0:3]=1 (D[0:3]=CI=SP=CK=SD=X) LU4P3BX 4 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Asynchronous Preset Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 446 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, PD OUTPUTS: CO, Q0, Q1, Q2, Q3 Truth Table Table 386: INPUTS OUTPUTS D[0:3] SD CI SP CK PD CO Q[0:3] X X 0 X X 1 0 1 X X 1 X X 1 1 1 D[0:3] 1 0 1 0 0 D[0:3] D[0:3] 1 1 1 0 * D[0:3] X 0 0 X X 0 0 Q[0:3] X X 0 0 X 0 0 Q[0:3] X X 1 0 X 0 * Q[0:3] X 0 1 1 0 * count+1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=CI, Q[0:3]=1 (D[0:3]=SP=CK=SD=PD=X) LU4P3DX 4 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Asynchronous Clear Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeSC/M LatticeXP 447 : INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1, Q2, Q3 Truth Table Table 387: INPUTS OUTPUTS D[0:3] SD CI SP CK CD CO Q[0:3] X X X X X 1 0 0 D[0:3] 1 0 1 0 0 D[0:3] D[0:3] 1 1 1 0 * D[0:3] X 0 0 X X 0 0 Q[0:3] X X 0 0 X 0 0 Q[0:3] X X 1 0 X 0 * Q[0:3] X 0 1 1 0 * count+1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=0, Q[0:3]=0 (D[0:3]=SP=CK=SD=CD=X) LU4P3IX 4 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Synchronous Clear (Clear overrides Enable) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC 448 : LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, CD OUTPUTS: CO, Q0, Q1, Q2, Q3 Truth Table Table 388: INPUTS OUTPUTS D[0:3] SD CI SP X X X D[0:3] 1 D[0:3] CK CD CO Q[0:3] X 1 0 0 0 1 0 0 D[0:3] 1 1 1 0 * D[0:3] X 0 0 X X 0 0 Q[0:3] X X 0 0 X 0 0 Q[0:3] X X 1 0 X 0 * Q[0:3] X 0 1 1 0 * count+1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=0, Q[0:3]=0 (D[0:3]=SP=CK=SD=CD=X) FPGA Libraries Reference Guide 449 : LU4P3JX 4 Bit Positive Edge Triggered Loadable Up-Counter with Positive Clock Enable and Positive Level Synchronous Preset (Preset overrides Enable) Architectures Supported: LatticeECP/EC LatticeSC/M LatticeXP INPUTS: D0, D1, D2, D3, CI, SP, CK, SD, PD OUTPUTS: CO, Q0, Q1, Q2, Q3 FPGA Libraries Reference Guide 450 : Truth Table Table 389: INPUTS OUTPUTS D[0:3] SD CI SP X X 0 X X D[0:3] CK PD CO Q[0:3] X 1 0 1 1 X 1 1 1 1 0 1 0 0 D[0:3] D[0:3] 1 1 1 0 * D[0:3] X 0 0 X X 0 0 Q[0:3] X X 0 0 X 0 0 Q[0:3] X X 1 0 X 0 * Q[0:3] X 0 1 1 0 * count+1 X = Don’t care When Q[0:3] is 1111, CO will be 1; otherwise, CO will be 0 When GSR=0, CO=CI, Q[0:3]=1 (D[0:3]=SP=CK=SD=PD=X) LUT4 4-Input Look Up Table Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: A, B, C, D FPGA Libraries Reference Guide 451 : OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 16'h0000) Description LUT4 defines the programmed state of a LUT4 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT4 programming. The contents of the look up table are addressed by the 4 input pins to access 1 of 16 locations. The programming of the LUT4 (that is, the 0 or 1 value of each memory location within the LUT4) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For example, hex value BF80 produces these 16 memory locations and values: 1011 1111 1000 0000 Memory location 0 (D=0, C=0, B=0, A=0) contains a 0, memory location 2 (D=0, C=0, B=1, A=0) contains a 0. Memory location 15 (D=1, C=1, B=1, A=1) contains a 1, etc. The LUT4 may encode the Boolean logic for any Boolean expression of 4 input variables. For example, if the required expression was: Z = (D*C) + (B*!A) then the INIT value can be derived from the truth table resulting from the expression: D 0 0 0 0 C 0 0 0 0 B 0 0 1 1 A 0 1 0 1 : : : : : Z 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 : : : : 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 : : : : 0 0 1 0 1 1 0 0 : 1 1 1 0 1 : 1 1 1 1 0 : 1 FPGA Libraries Reference Guide 452 : 1 1 1 1 : 1 INIT = F444 (16) LUT4 Usage with Verilog HDL // LUT4 module instantiation LUT4 #(.init (16'hF444)) I1 ( .A (A), .B (B), .C (C), .D (D), .Z (Q[0]) ); LUT4 Usage with VHDL -- LUT4 component instantiation I1 : LUT4 Generic Map (INIT=>b"1111_0100_0100_0100") Port Map ( A=>A, B=>B, C=>C, D=>D, Z=>N_1 ); LUT5 5-Input Look Up Table Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: A, B, C, D, E OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 32'h00000000) FPGA Libraries Reference Guide 453 : Description LUT5 defines the programmed state of a LUT5 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT5 programming. The contents of the look up table are addressed by the 5 input pins to access 1 of 32 locations. The programming of the LUT5 (that is, the 0 or 1 value of each memory location within the LUT5) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the LUT4 topic. LUT6 6-Input Look Up Table Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: A, B, C, D, E, F OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 64'h0000000000000000) FPGA Libraries Reference Guide 454 : Description LUT6 defines the programmed state of a LUT6 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT6 programming. The contents of the look up table are addressed by the 6 input pins to access 1 of 64 locations. The programming of the LUT6 (that is, the 0 or 1 value of each memory location within the LUT6) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the LUT4 topic. LUT7 7-Input Look Up Table Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: A, B, C, D, E, F, G OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 128'00000000000000000000000000000000) FPGA Libraries Reference Guide 455 : Description LUT7 defines the programmed state of a LUT7 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT7 programming. The contents of the look up table are addressed by the 7 input pins to access 1 of 128 locations. The programming of the LUT7 (that is, the 0 or 1 value of each memory location within the LUT7) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the LUT4 topic. LUT8 8-Input Look Up Table Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: A, B, C, D, E, F, G, H OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 256'h000000000000000000000000000000000000000000000000000000000 0000000) FPGA Libraries Reference Guide 456 : Description LUT8 defines the programmed state of a LUT8 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT8 programming. The contents of the look up table are addressed by the 8 input pins to access 1 of 256 locations. The programming of the LUT8 (that is, the 0 or 1 value of each memory location within the LUT8) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the LUT4 topic. LVDSOB LVDS Output Buffer Architectures Supported: ECP5 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, E OUTPUT: Q Description The LVDSOB primitive is used to support post-PAR simulation of Dynamic Bank Controller. The Dynamic Bank Controller signals to the IO are hardwired and cannot be changed for the simulation, so the LVDSOB and INRDB primitives are defined to support the simulation. For more information, refer to the following technical note on the Lattice web site: FPGA Libraries Reference Guide TN1198 - Power Estimation and Management for MachXO2 Device 457 : M MULT18X18 DSP Multiplier Architectures Supported: LatticeECP (DSP Blocks Only) INPUTS: A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDAB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0 ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 458 : REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A: "FALSE" (default), "TRUE" SHIFT_IN_B: "FALSE" (default), "TRUE" GSR: "ENABLED" (default), "DISABLED" Description LatticeECP DSP Block Multiplier. MULT18X18 is a combinational signed 18bit by 18-bit multiplier used in the DSP block. The value represented in the 18bit input A is multiplied by the value represented in the 18-bit input B. Output P is the 36-bit product of A and B. MULT18X18 may be represented as either unsigned or two's complement signed. The primitive consists of three types of optional pipeline registers: FPGA Libraries Reference Guide Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration 459 : Output registers, located before leaving the block, and registering the mode-specific output. There are 12 register controls signals that enter the DSP block: CLK[0:3], CE0[0:3], and RST[0:3]. Each incoming signal also has the option of being tied high, tied low, or inverted. These 12 control signals are used to control the register banks in the DSP block. Dynamic control signals must match the register pipelining of the datapath. To facilitate this, the following bank control for each individual dynamic signal's input register and pipeline register (total 8 signals x 2 registers / signal = 16 registers) is as follows: Bypass or no-bypass of the registers. Clock is selected from CLK[0:3], one of four sources available to the DSP block. Clock enable is selected from CE0[0:3], one of four sources available to the DSP block. Reset is selected from RST[0:3], one of four sources available to the DSP block. You can turn registers off or on via attribute settings. For example, setting REG_INPUTA_CLK= "CLK0" means the input A register is used, and the clock drive A register is coming from CLK0 of the DSP block. Setting REG_INPUTA_CE= "CE1" means input A register CE control is coming from CE1 of the DSP block. Setting REG_INPUTA_RST= "RST3" means input A register reset control is coming from RST3 of the DSP block. If REG_INPUT_A_CLK="NONE", this means the input A register is bypassed, therefore, REG_INPUT_A_RST or REG_INPUT_A_CE becomes irrelevant. In case you want to use the register but do not care about the clock enable (CE), then this pin needs to be tied to VCC (always enabled). In this case you could set REG_INPUT_A_CE="CE3", then tie CE3 of the to VCC. If you want to use the register but do not care about the reset (RST), then this pin must to be tied to GND (always do not reset). In this case, you you could set REG_INPUT_A_RST="RST2", then tie RST2 of the to GND. SIGNEDAB is a pin which controls whether the multiplier performs the signed or unsigned operation. It applied to both operand A and B. It can be tied to VCC (signed) or GROUND (unsigned). There are also two delay registers associated with this control pin, in order to match with incoming data. Setting REG_SIGNEDAB_0_CLK= "CLK0 | CLK1 | CLK2 | CLK3"will turn on the pipeline register for SIGNEDAB. Setting REG_SIGNEDAB_0_CLK= "NONE" will turn off the first pipeline register for SIGNEDAB. Setting REG_SIGNEDAB_1_CLK= "NONE" will turn off the second pipeline register for SIGNEDAB. Input registers receive operand values from a serial shift chain or routing input. There is separate control for A and B operands. When in shift chain mode, multiplier operands may be bypassed using the bank bypass feature. The shift chain supports one chain of two 18-bit operands or two chains of two 9-bit operands. GSR "DISABLED" attribute disables the asynchronous global set reset input when in user mode. FPGA Libraries Reference Guide 460 : You can refer to the following technical note on the Lattice web site for more details. TN1057 - LatticeECP sysDSP Usage Guide MULT18X18 pin functions: Table 390: Function Pins input data A and B A[17:0], B[17:0]0 signed input SIGNEDAB clock enable CE[0:3] clock input CLK[0:3] reset RST[0:3] shifted input A and B (from previous stage) SRIA[17:0], SRIB[17:0] shifted output A and B (from previous stage) SROA[17:0], SROB[17:0] output product data P[35:0] MULT18X18ADDSUB ECP DSP Adder/Subtractor Architectures Supported: FPGA Libraries Reference Guide LatticeECP (DSP Blocks Only) 461 : INPUTS: A017, A016, A015, A014, A013, A012, A011, A010, A09, A08, A07, A06, A05, A04, A03, A02, A01, A00, A117, A116, A115, A114, A113, A112, A111, A110, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, B017, B016, B015, B014, B013, B012, B011, B010, B09, B08, B07, B06, B05, B04, B03, B02, B01, B00, B117, B116, B115, B114, B113, B112, B111, B110, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, SIGNEDAB, ADDNSUB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM36, SUM35, SUM34, SUM33, SUM32, SUM31, SUM30, SUM29, SUM28, SUM27, SUM26, SUM25, SUM24, SUM23, SUM22, SUM21, SUM20, SUM19, SUM18, SUM17, SUM16, SUM15, SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 462 : REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB01_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 463 : REG_ADDNSUB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A0: "FALSE" (default), "TRUE" SHIFT_IN_B0: "FALSE" (default), "TRUE" SHIFT_IN_A1: "FALSE" (default), "TRUE" SHIFT_IN_B1: "FALSE" (default), "TRUE" GSR: "ENABLED" (default), "DISABLED" Description LatticeECP Block Adder/Subtractor. MULT18X18ADDSUB can be configured to either add or subtract its inputs, adding or subtracting the inputs from two multiplier products. The add/subtract control is either configured as a static HIGH (Vcc), LOW (GND). In Lattice Diamond, the static settings are implemented by setting Vcc or GND in the CIB ISB. The primitive consists of three types of optional pipeline registers: Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks and attributes. You can also refer to the following technical note on the Lattice web site for more details. TN1057 - LatticeECP sysDSP Usage Guide MULT18X18ADDSUB pin functions: Table 391: FPGA Libraries Reference Guide Function Pins input data A and B A0|1[17:0], B0|1[17:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB add/subtract (0 = add, 1 = subtract) ADDNSUB clock enable CE[0:3] clock input CLK[0:3] reset RST[0:3] shifted input A and B (from previous stage) SRIA[17:0], SRIB[17:0] 464 : Table 391: Function Pins shifted output A and B (from previous stage) SROA[17:0], SROB[17:0] output product sum data SUM[36:0] MULT18X18ADDSUBB DSP Multiplier Add/Subtract Architectures Supported: LatticeECP2/M LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 INPUTS: A017, A016, A015, A014, A013, A012, A011, A010, A09, A08, A07, A06, A05, A04, A03, A02, A01, A00, A117, A116, A115, A114, A113, A112, A111, A110, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, B017, B016, B015, B014, B013, B012, B011, B010, B09, B08, B07, B06, B05, B04, B03, B02, B01, B00, B117, B116, B115, B114, B113, B112, B111, B110, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, SIGNEDA, SIGNEDB, SOURCEA0, SOURCEA1, SOURCEB0, SOURCEB1, ADDNSUB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, FPGA Libraries Reference Guide 465 : SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM36, SUM35, SUM34, SUM33, SUM32, SUM31, SUM30, SUM29, SUM28, SUM27, SUM26, SUM25, SUM24, SUM23, SUM22, SUM21, SUM20, SUM19, SUM18, SUM17, SUM16, SUM15, SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 466 : REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. FPGA Libraries Reference Guide TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide 467 : MULT18X18ADDSUBSUM ECP DSP Adder/Subtractor/Sum Architectures Supported: LatticeECP (DSP Blocks Only) INPUTS: A017, A016, A015, A014, A013, A012, A011, A010, A09, A08, A07, A06, A05, A04, A03, A02, A01, A00, A117, A116, A115, A114, A113, A112, A111, A110, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, A217, A216, A215, A214, A213, A212, A211, A210, A29, A28, A27, A26, A25, A24, A23, A22, A21, A20, A317, A316, A315, A314, A313, A312, A311, A310, A39, A38, A37, A36, A35, A34, A33, A32, A31, A30, B017, B016, B015, B014, B013, B012, B011, B010, B09, B08, B07, B06, B05, B04, B03, B02, B01, B00, B117, B116, B115, B114, B113, B112, B111, B110, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, B217, B216, B215, B214, B213, B212, B211, B210, B29, B28, B27, B26, B25, B24, B23, B22, B21, B20, B317, B316, B315, B314, B313, B312, B311, B310, B39, B38, B37, B36, B35, B34, B33, B32, B31, B30, SIGNEDAB, ADDNSUB1, ADDNSUB3, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 FPGA Libraries Reference Guide 468 : OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM37, SUM36, SUM35, SUM34, SUM33, SUM32, SUM31, SUM30, SUM29, SUM28, SUM27, SUM26, SUM25, SUM24, SUM23, SUM22, SUM21, SUM20, SUM19, SUM18, SUM17, SUM16, SUM15, SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB2_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 469 : REG_INPUTB3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE0_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE1_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB1_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB1_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB1_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB1_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 470 : REG_ADDNSUB3_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB3_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A0: "FALSE" (default), "TRUE" SHIFT_IN_B0: "FALSE" (default), "TRUE" SHIFT_IN_A1: "FALSE" (default), "TRUE" SHIFT_IN_B1: "FALSE" (default), "TRUE" SHIFT_IN_A2: "FALSE" (default), "TRUE" SHIFT_IN_B2: "FALSE" (default), "TRUE" SHIFT_IN_A3: "FALSE" (default), "TRUE" SHIFT_IN_B3: "FALSE" (default), "TRUE" GSR: "ENABLED" (default), "DISABLED" Description LatticeECP DSP Block Adder/Subtractor. MULT18X18ADDSUBSUM can be configured to either add or subtract its inputs, adding or subtracting the inputs from two multiplier products. The add/subtract control is either configured as a static HIGH (Vcc), LOW (GND), or as dynamic control signals ADDNSUB1 and ADDNSUB3. In Lattice Diamond, the static settings are implemented by setting ADDNSUB1 and ADDNSUB3 signal to Vcc or GND in the CIB ISB. The primitive consists of three types of optional pipeline registers: Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks and attributes. Refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1057 - LatticeECP sysDSP Usage Guide 471 : MULT18X18ADDSUBSUM pin functions: Table 392: Function Pins input data A and B A0|1|2|3[17:0], B0|1|2|3[17:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB add/subtract (0 = add, 1 = subtract) ADDNSUB1, ADDNSUB3 clock enable CE[0:3] clock input CLK[0:3] reset RST[0:3] shifted input A and B (from previous stage) SRIA[17:0], SRIB[17:0] shifted output A and B (from previous stage) SROA[17:0], SROB[17:0] output product sum data SUM[37:0] MULT18X18ADDSUBSUMB DSP Multiplier Add/Subtract/Sum Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 472 : INPUTS: A017, A016, A015, A014, A013, A012, A011, A010, A09, A08, A07, A06, A05, A04, A03, A02, A01, A00, A117, A116, A115, A114, A113, A112, A111, A110, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, A217, A216, A215, A214, A213, A212, A211, A210, A29, A28, A27, A26, A25, A24, A23, A22, A21, A20, A317, A316, A315, A314, A313, A312, A311, A310, A39, A38, A37, A36, A35, A34, A33, A32, A31, A30, B017, B016, B015, B014, B013, B012, B011, B010, B09, B08, B07, B06, B05, B04, B03, B02, B01, B00, B117, B116, B115, B114, B113, B112, B111, B110, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, B217, B216, B215, B214, B213, B212, B211, B210, B29, B28, B27, B26, B25, B24, B23, B22, B21, B20, B317, B316, B315, B314, B313, B312, B311, B310, B39, B38, B37, B36, B35, B34, B33, B32, B31, B30, SIGNEDA, SIGNEDB, ADDNSUB1, ADDNSUB3, SOURCEA0, SOURCEA1, SOURCEA2, SOURCEA3, SOURCEB0, SOURCEB1, SOURCEB2, SOURCEB3, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM37, SUM36, SUM35, SUM34, SUM33, SUM32, SUM31, SUM30, SUM29, SUM28, SUM27, SUM26, SUM25, SUM24, SUM23, SUM22, SUM21, SUM20, FPGA Libraries Reference Guide 473 : SUM19, SUM18, SUM17, SUM16, SUM15, SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB3_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 474 : REG_PIPELINE0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 475 : REG_ADDNSUB1_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB1_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB1_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB1_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB3_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB3_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_1_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide MULT18X18B DSP Multiplier Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 476 : INPUTS: A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDA, SIGNEDB, SOURCEA, SOURCEB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0 ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 477 : REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide MULT18X18C DSP Multiplier Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP3 478 : INPUTS: A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDA, SIGNEDB, SOURCEA, SOURCEB, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ROA17, ROA16, ROA15, ROA14, ROA13, ROA12, ROA11, ROA10, ROA9, ROA8, ROA7, ROA6, ROA5, ROA4, ROA3, ROA2, ROA1, ROA0, ROB17, ROB16, ROB15, ROB14, ROB13, ROB12, ROB11, ROB10, ROB9, ROB8, ROB7, ROB6, ROB5, ROB4, ROB3, ROB2, ROB1, ROB0, P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0, SIGNEDP ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 479 : REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" CAS_MATCH_REG: "FALSE" (default), "TRUE" MULT_BYPASS: "DISABLED" (default), "ENABLED" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" MULT18X18C Port Description Table 393: I/O Port Name Capture Name Type Size (Buses Only) Description I A A Bus 17:0 A input I B B Bus 17:0 B input I SRIA SRIA Bus 17:0 Shift input A I SRIB SRIB Bus 17:0 Shift input B I SIGNEDA SIGNEDA Bit N/A Input A sign selection I SIGNEDB SIGNEDB Bit N/A Input B sign selection I SOURCEA SOURCEA Bit N/A Source A selection I SOURCEB SOURCEB Bit N/A Source B selection I CLK0 CLK0 Bit N/A Clock Input I CLK1 CLK1 Bit N/A Clock Input I CLK2 CLK2 Bit N/A Clock Input I CLK3 CLK3 Bit N/A Clock Input I CE0 CE0 Bit N/A Clock Enable Input I CE1 CE1 Bit N/A Clock Enable Input I CE2 CE2 Bit N/A Clock Enable Input I CE3 CE3 Bit N/A Clock Enable Input I RST0 RST0 Bit N/A Reset Input I RST1 RST1 Bit N/A Reset Input I RST2 RST2 Bit N/A Reset Input FPGA Libraries Reference Guide 480 : Table 393: I/O Port Name Capture Name Type Size (Buses Only) Description I RST3 RST3 Bit N/A Reset Input O P P Bus 35:0 Product O SROA SROA Bus 17:0 Shift A Output O SROB SROB Bus 17:0 Shift B Output O ROA ROA Bus 17:0 Registered Output A from Multiplier O ROB ROB Bus 17:0 Registered Output B from Multiplier O SIGNEDP SIGNEDP Bit N/A Output Sign Bit (result of SignedA or SignedB) MULT18X18C Attribute Description Table 394: Name Value Default Description REG_INPUTA_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input A clock selection REG_INPUTA_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input A clock enable selection REG_INPUTA_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input A reset selection REG_INPUTB_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input B clock selection REG_INPUTB_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input B clock enable selection REG_INPUTB_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input B reset selection REG_PIPELINE_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Pipeline clock selection REG_PIPELINE_CE "CE0", "CE1", "CE2", "CE3" "CE0" Pipeline clock enable selection REG_PIPELINE_RST "RST0", "RST1", "RST2", "RST3" "RST0" Pipeline reset selection REG_OUTPUT_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Output clock selection REG_OUTPUT_CE "CE0", "CE1", "CE2", "CE3" "CE0" Output clock enable selection REG_OUTPUT_RST "RST0", "RST1", "RST2", "RST3" "RST0" Output reset selection FPGA Libraries Reference Guide 481 : Table 394: Name Value Default Description CAS_MATCH_REG "FALSE", "TRUE" "FALSE" Cascade match register option MULT_BYPASS "DISABLED", "ENABLED" "ENABLED" Multiplier bypass option RESETMODE "SYNC", "ASYNC" "SYNC" Global set reset selection GSR "ENABLED", "DISABLED" "ENABLED" Reset mode selection Note: The multipliers linked by SROA/SRIA or SROB/SRIB pin pair can only be implemented in a continuous shift chain with multipliers placed next to each other. However, the length of the shift chain is limited on each DSP row and different depending on the device selected. For example, with the LatticeECP3-35 device, each DSP row has 32 MULT18s. So for the shift chained MULT18, it can support a continuous chain of length 32 for MULT18. If a chain is more than 32 MULT18s, you have to employ SRO/A,B pin pair for connecting the 32nd and 33rd MULT18s for implementing the chain in two DSP rows. But this capability is only limited to port A on SRO side in LatticeECP3. That is to say, only SROA is allowed to connect to A,B input pin of another MULT18, but not SROB. So if a chain is linked by SROB/SRIB pin pair, the length cannot exceed 32 for the LatticeECP3-35 device. MULT18X18D DSP Multiplier Architectures Supported: FPGA Libraries Reference Guide ECP5 482 : INPUTS: A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, C17, C16, C15, C14, C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, C0, SIGNEDA, SIGNEDB, SOURCEA, SOURCEB, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ROA17, ROA16, ROA15, ROA14, ROA13, ROA12, ROA11, ROA10, ROA9, ROA8, ROA7, ROA6, ROA5, ROA4, ROA3, ROA2, ROA1, ROA0, ROB17, ROB16, ROB15, ROB14, ROB13, ROB12, ROB11, ROB10, ROB9, ROB8, ROB7, ROB6, ROB5, ROB4, ROB3, ROB2, ROB1, ROB0, ROC17, ROC16, ROC15, ROC14, ROC13, ROC12, ROC11, ROC10, ROC9, ROC8, ROC7, ROC6, ROC5, ROC4, ROC3, ROC2, ROC1, ROC, 0P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0, SIGNEDP ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 483 : REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTC_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTC_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTC_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" CLK0_DIV: “ENABLED” (default) “DISABLED” CLK1_DIV: “ENABLED” (default) “DISABLED” CLK2_DIV: “ENABLED” (default) “DISABLED” CLK3_DIV: “ENABLED” (default) “DISABLED” CAS_MATCH_REG: "FALSE" (default), "TRUE" MULT_BYPASS: "DISABLED" (default), "ENABLED" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" SOURCEB_MODE"B_SHIFT" (default),"C_SHIFT","B_C_DYNAMIC","HIGHSPEED" FPGA Libraries Reference Guide 484 : MULT18X18D Port Description Table 395: I/O Port Name Capture Name Type Size (Buses Only) Description I A A Bus 17:0 A input I B B Bus 17:0 B input I C C Bus 17:0 C input I SRIA SRIA Bus 17:0 Shift input A I SRIB SRIB Bus 17:0 Shift input B I SIGNEDA SIGNEDA Bit N/A Input A sign selection I SIGNEDB SIGNEDB Bit N/A Input B sign selection I SOURCEA SOURCEA Bit N/A Source A selection I SOURCEB SOURCEB Bit N/A Source B selection I CLK0 CLK0 Bit N/A Clock Input I CLK1 CLK1 Bit N/A Clock Input I CLK2 CLK2 Bit N/A Clock Input I CLK3 CLK3 Bit N/A Clock Input I CE0 CE0 Bit N/A Clock Enable Input I CE1 CE1 Bit N/A Clock Enable Input I CE2 CE2 Bit N/A Clock Enable Input I CE3 CE3 Bit N/A Clock Enable Input I RST0 RST0 Bit N/A Reset Input I RST1 RST1 Bit N/A Reset Input I RST2 RST2 Bit N/A Reset Input I RST3 RST3 Bit N/A Reset Input O P P Bus 35:0 Product O SROA SROA Bus 17:0 Shift A Output O SROB SROB Bus 17:0 Shift B Output O ROA ROA Bus 17:0 Registered Output A from Multiplier O ROB ROB Bus 17:0 Registered Output B from Multiplier O ROC ROC Bus 17:0 Registered Output C from Multiplier O SIGNEDP SIGNEDP Bit N/A Output Sign Bit (result of SignedA or SignedB) FPGA Libraries Reference Guide 485 : MULT18X18D Attribute Description Table 396: Name Value Default Description REG_INPUTA_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input A clock selection REG_INPUTA_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input A clock enable selection REG_INPUTA_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input A reset selection REG_INPUTB_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input B clock selection REG_INPUTB_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input B clock enable selection REG_INPUTB_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input B reset selection REG_INPUTC_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input C clock selection REG_INPUTC_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input C clock enable selection REG_INPUTC_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input C reset selection REG_PIPELINE_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Pipeline clock selection REG_PIPELINE_CE "CE0", "CE1", "CE2", "CE3" "CE0" Pipeline clock enable selection REG_PIPELINE_RST "RST0", "RST1", "RST2", "RST3" "RST0" Pipeline reset selection REG_OUTPUT_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Output clock selection REG_OUTPUT_CE "CE0", "CE1", "CE2", "CE3" "CE0" Output clock enable selection REG_OUTPUT_RST "RST0", "RST1", "RST2", "RST3" "RST0" Output reset selection CLK0_DIV “ENABLED”, “DISABLED” "ENABLED" CLK0 divider setting. CLK1_DIV “ENABLED”, “DISABLED” "ENABLED" CLK1 divider setting. CLK2_DIV “ENABLED”, “DISABLED” "ENABLED" CLK2 divider setting. CLK3_DIV “ENABLED”, “DISABLED” "ENABLED" CLK3 divider setting. HIGHSPEED_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" NONE" High speed clock setting. CAS_MATCH_REG "FALSE", "TRUE" "FALSE" Cascade match register option FPGA Libraries Reference Guide 486 : Table 396: Name Value Default Description SOURCEB_MODE "B_SHIFT", "C_SHIFT", "B_C_DYNAMIC", "HIGHSPEED" "B_SHIFT" SOURCEB mode. MULT_BYPASS "DISABLED", "ENABLED" "ENABLED" Multiplier bypass option RESETMODE "SYNC", "ASYNC" "SYNC" Global set reset selection GSR "ENABLED", "DISABLED" "ENABLED" Reset mode selection MULT18X18MAC ECP DSP Multiplier Accumulate Architectures Supported: LatticeECP (DSP Blocks Only) INPUTS: A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, ADDNSUB, SIGNEDAB, ACCUMSLOAD, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 FPGA Libraries Reference Guide 487 : OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ACCUM51, ACCUM50, ACCUM49, ACCUM48, ACCUM47, ACCUM46, ACCUM45, ACCUM44, ACCUM43, ACCUM42, ACCUM41, ACCUM40, ACCUM39, ACCUM38, ACCUM37, ACCUM36, ACCUM35, ACCUM34, ACCUM33, ACCUM32, ACCUM31, ACCUM30, ACCUM29, ACCUM28, ACCUM27, ACCUM26, ACCUM25, ACCUM24, ACCUM23, ACCUM22, ACCUM21, ACCUM20, ACCUM19, ACCUM18, ACCUM17, ACCUM16, ACCUM15, ACCUM14, ACCUM13, ACCUM12, ACCUM11, ACCUM10, ACCUM9, ACCUM8, ACCUM7, ACCUM6, ACCUM5, ACCUM4, ACCUM3, ACCUM2, ACCUM1, ACCUM0, OVERFLOW ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 488 : REG_ACCUMSLOAD_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ACCUMSLOAD_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ACCUMSLOAD_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ACCUMSLOAD_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ACCUMSLOAD_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ACCUMSLOAD_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A: "FALSE" (default), "TRUE" SHIFT_IN_B: "FALSE" (default), "TRUE" GSR: "ENABLED" (default), "DISABLED" Description MULT18X18MAC supports operand bit widths for 18X18 multiplication and accumulates the output up to 52 bits. The DSP block includes optional registers for the input and intermediate pipeline stage. Pipeline stages may be set using a pipeline attribute. The output registers are required for the accumulator. Signed and unsigned arithmetic are supported. The OVERFLOW bit is also provided when the accumulated results are in the overflow condition. ACCUMSLOAD determines the mode of operation for either loading the multiplier product or to accumulate. The primitive consists of three types of optional pipeline registers: Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks and attributes. Refer to the following technical note on the Lattice web site. TN1057 - LatticeECP sysDSP Usage Guide MULT18X18MAC pin functions: Table 397: FPGA Libraries Reference Guide Function Pins input data A and B A[17:0], B[17:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB 489 : Table 397: Function Pins add/subtract (0 = add, 1 = subtract) ADDNSUB Accumulate (HIGH) /Load (LOW) Mode ACCUMSLOAD clock enable CE[0:3] clock input CLK[0:3] clock reset RST[0:3] shifted input A and B (from previous stage) SRIA[17:0], SRIB[17:0] shifted output A and B (from previous stage) SROA[17:0], SROB[17:0] output data ACCUM[51:0] overflow OVERFLOW MULT18X18MACB DSP Multiplier Accumulate Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 490 : INPUTS: A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, ADDNSUB, SIGNEDA, SIGNEDB, ACCUMSLOAD, SOURCEA, SOURCEB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, LD51, LD50, LD49, LD48, LD47, LD46, LD45, LD44, LD43, LD42, LD41, LD40, LD39, LD38, LD37, LD36, LD35, LD34, LD33, LD32, LD31, LD30, LD29, LD28, LD27, LD26, LD25, LD24, LD23, LD22, LD21, LD20, LD19, LD18, LD17, LD16, LD15, LD14, LD13, LD12, LD11, LD10, LD9, LD8, LD7, LD6, LD5, LD4, LD3, LD2, LD1, LD0, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ACCUM51, ACCUM50, ACCUM49, ACCUM48, ACCUM47, ACCUM46, ACCUM45, ACCUM44, ACCUM43, ACCUM42, ACCUM41, ACCUM40, ACCUM39, ACCUM38, ACCUM37, ACCUM36, ACCUM35, ACCUM34, ACCUM33, ACCUM32, ACCUM31, ACCUM30, ACCUM29, ACCUM28, ACCUM27, ACCUM26, ACCUM25, ACCUM24, ACCUM23, ACCUM22, ACCUM21, ACCUM20, ACCUM19, ACCUM18, ACCUM17, ACCUM16, ACCUM15, ACCUM14, ACCUM13, ACCUM12, ACCUM11, ACCUM10, ACCUM9, ACCUM8, ACCUM7, ACCUM6, ACCUM5, ACCUM4, ACCUM3, ACCUM2, ACCUM1, ACCUM0, OVERFLOW ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 491 : REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ACCUMSLOAD_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ACCUMSLOAD_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ACCUMSLOAD_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ACCUMSLOAD_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ACCUMSLOAD_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ACCUMSLOAD_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 492 : GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide MULT2 2x2 Multiplier Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A0, A1, A2, A3, B0, B1, B2, B3, CI OUTPUTS: P0, P1, CO FPGA Libraries Reference Guide 493 : Description MULT2 is a 2x2 multiplier. This primitive is useful for implementing an array multiplier using a dedicated carry chain. With this unique configuration, the two separate “and” inputs can be added together to perform the add and shift operations within a single slice. MULT2 must be cascaded together when performing the multiply function. Here are descriptions of the MULT2 pins: Table 398: Function Pins multiplicand A0, A1, A2, A3 multiplier B0, B1, B2, B3 carry in CI carry out CO output P0, P1 The equations for this primitive are shown in the table below: Table 399: Equations CO_int, P0 = A0*B0 + A1*B1 + CI CO, P1 = A2*B2 + A3*B3 + CO_int CO_int and P0 are the carry-out and sum of a full adder with inputs (A0 AND B0), (A1 AND B1), and CI. CO and P1 are the carry-out and sum of a full adder with inputs (A2 AND B2), (A3 AND B3), and CO_int. Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide TN1057 - LatticeECP sysDSP Usage Guide Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. MULT36X36 ECP DSP Multiplier Architectures Supported: FPGA Libraries Reference Guide 494 : LatticeECP (DSP Blocks Only) INPUTS: A35, A34, A33, A32, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21, A20, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B35, B34, B33, B32, B31, B30, B29, B28, B27, B26, B25, B24, B23, B22, B21, B20, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDAB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3 OUTPUTS: P71, P70, P69, P68, P67, P66, P65, P64, P63, P62, P61, P60, P59, P58, P57, P56, P55, P54, P53, P52, P51, P50, P49, P48, P47, P46, P45, P44, P43, P42, P41, P40, P39, P38, P37, P36, P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0 ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 495 : REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description LatticeECP Block Multiplier. MULT36X36 is a combinational signed 36-bit by 36-bit multiplier used in the DSP block. The value represented in the 36-bit input A is multiplied by the value represented in the 36-bit input B. Output P is the 72-bit product of A and B. MULT36X36 may be represented as either unsigned or two's complement signed. The primitive consists of three types of optional pipeline registers: Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks and attributes. Input registers receive operand values from a serial shift chain or routing input. There is separate control for A and B operands. When in shift chain mode, multiplier operands may be bypassed using the bank bypass feature. The shift chain supports one chain of two 18-bit operands or two chains of two 9-bit operands. GSR "DISABLED" attribute disables the asynchronous global set reset input when in user mode. Refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1057 - LatticeECP sysDSP Usage Guide 496 : MULT36X36 pin functions: Table 400: Function Pins input data A and B A[35:0], B[35:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB clock enable CE[0:3] clock input CLK[0:3] clock reset RST[0:3] output data P[71:0] MULT36X36B DSP Multiplier Architectures Supported: LatticeECP2/M LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 INPUTS: A35, A34, A33, A32, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21, A20, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0, B35, B34, B33, B32, B31, B30, B29, B28, FPGA Libraries Reference Guide 497 : B27, B26, B25, B24, B23, B22, B21, B20, B19, B18, B17, B16, B15, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDA, SIGNEDB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3 OUTPUTS: P71, P70, P69, P68, P67, P66, P65, P64, P63, P62, P61, P60, P59, P58, P57, P56, P55, P54, P53, P52, P51, P50, P49, P48, P47, P46, P45, P44, P43, P42, P41, P40, P39, P38, P37, P36, P35, P34, P33, P32, P31, P30, P29, P28, P27, P26, P25, P24, P23, P22, P21, P20, P19, P18, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0 ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 498 : REG_SIGNEDB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide MULT9X9 ECP DSP Multiplier Architectures Supported: LatticeECP (DSP Blocks Only) INPUTS: A8, A7, A6, A5, A4, A3, A2, A1, A0, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDAB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0 FPGA Libraries Reference Guide 499 : ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A: "FALSE" (default), "TRUE" SHIFT_IN_B: "FALSE" (default), "TRUE" GSR: "ENABLED" (default), "DISABLED" Description LatticeECP DSP Block Multiplier. MULT9X9 is a combinational signed 9-bit by 9-bit multiplier used in the DSP block. The value represented in the 9-bit input A is multiplied by the value represented in the 9-bit input B. Output P is the 18-bit product of A and B. MULT9X9 may be represented as either unsigned or two's complement signed. The primitive consists of three types of optional pipeline registers: FPGA Libraries Reference Guide 500 : Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks and attributes. Refer to the following technical note on the Lattice web site. TN1057 - LatticeECP sysDSP Usage Guide MULT9X9 pin functions: Table 401: Function Pins input data A and B A[8:0], B[8:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB clock enable CE[0:3] clock input CLK[0:3] reset RST[0:3] shifted input A and B (from previous stage) SRIA[8:0], SRIB[8:0] shifted output A and B (from previous stage) SROA[8:0], SROB[8:0] output product data P[17:0] MULT9X9ADDSUB ECP DSP Multiplier Add/Subtract Architectures Supported: FPGA Libraries Reference Guide LatticeECP (DSP Blocks Only) 501 : INPUTS: A08, A07, A06, A05, A04, A03, A02, A01, A00, A18, A17, A16, A15, A14, A13, A12, A11, A10, B08, B07, B06, B05, B04, B03, B02, B01, B00, B18, B17, B16, B15, B14, B13, B12, B11, B10, SIGNEDAB, ADDNSUB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM18, SUM17, SUM16, SUM15, SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" FPGA Libraries Reference Guide 502 : REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A0: "FALSE" (default), "TRUE" SHIFT_IN_B0: "FALSE" (default), "TRUE" SHIFT_IN_A1: "FALSE" (default), "TRUE" SHIFT_IN_B1: "FALSE" (default), "TRUE" FPGA Libraries Reference Guide 503 : GSR: "ENABLED" (default), "DISABLED" Description LatticeECP DSP Block Adder/Subtractor. MULT18X18ADDSUB can be configured to either add or subtract its inputs, adding or subtracting the inputs from two multiplier products. The add/subtract control is either configured as a static HIGH (Vcc), LOW (GND), or as dynamic control signals ADDNSUB1 and ADDNSUB3. In Lattice Diamond, the static settings are implemented by setting ADDNSUB1 and ADDNSUB3 signal to Vcc or GND in the CIB ISB. The primitive consists of three types of optional pipeline registers: Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks and attributes. Refer to the following technical note on the Lattice web site. TN1057 - LatticeECP sysDSP Usage Guide MULT9X9ADDSUB pin functions: Table 402: Function Pins input data A and B A0|1[8:0], B0|1[8:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB add/subtract (0 = add, 1 = subtract) ADDNSUB clock enable CE[0:3] clock input CLK[0:3] reset RST[0:3] shifted input A and B (from previous stage) SRIA[8:0], SRIB[8:0] shifted output A and B (from previous stage) SROA[8:0], SROB[8:0] output product sum data SUM[18:0] MULT9X9ADDSUBB DSP Multiplier Add/Subtract Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M 504 : LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 INPUTS: A08, A07, A06, A05, A04, A03, A02, A01, A00, A18, A17, A16, A15, A14, A13, A12, A11, A10, B08, B07, B06, B05, B04, B03, B02, B01, B00, B18, B17, B16, B15, B14, B13, B12, B11, B10, SIGNEDA, SIGNEDB, ADDNSUB, SOURCEA0, SOURCEA1, SOURCEB0, SOURCEB1, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM18, SUM17, SUM16, SUM15, SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 505 : REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 506 : REG_SIGNEDB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide MULT9X9ADDSUBSUM ECP DSP Adder/Subtractor/Sum Architectures Supported: FPGA Libraries Reference Guide LatticeECP (DSP Blocks Only) 507 : INPUTS: A08, A07, A06, A05, A04, A03, A02, A01, A00, A18, A17, A16, A15, A14, A13, A12, A11, A10, A28, A27, A26, A25, A24, A23, A22, A21, A20, A38, A37, A36, A35, A34, A33, A32, A31, A30, B08, B07, B06, B05, B04, B03, B02, B01, B00, B18, B17, B16, B15, B14, B13, B12, B11, B10, B28, B27, B26, B25, B24, B23, B22, B21, B20, B38, B37, B36, B35, B34, B33, B32, B31, B30, SIGNEDAB, ADDNSUB1, ADDNSUB3, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM19, SUM18, SUM17, SUM16, SUM15, SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 508 : REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE0_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE1_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 509 : REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB1_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB1_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB1_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB1_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB3_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB3_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A0: "FALSE" (default), "TRUE" SHIFT_IN_B0: "FALSE" (default), "TRUE" SHIFT_IN_A1: "FALSE" (default), "TRUE" SHIFT_IN_B1: "FALSE" (default), "TRUE" SHIFT_IN_A2: "FALSE" (default), "TRUE" FPGA Libraries Reference Guide 510 : SHIFT_IN_B2: "FALSE" (default), "TRUE" SHIFT_IN_A3: "FALSE" (default), "TRUE" SHIFT_IN_B3: "FALSE" (default), "TRUE" GSR: "ENABLED" (default), "DISABLED" Description LatticeECP DSP Block Adder/Subtractor. MULT9X9ADDSUBSUM can be configured to either add or subtract its inputs, adding or subtracting the inputs from two multiplier products. The add/subtract control is either configured as a static HIGH (Vcc), LOW (GND), or as dynamic control signals ADDNSUB1 and ADDNSUB3. In Lattice Diamond, the static settings are implemented by setting ADDNSUB1 and ADDNSUB3 signal to Vcc or GND in the CIB ISB. The primitive consists of three types of optional pipeline registers: Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks and attributes. Refer to the following technical note on the Lattice web site. TN1057 - LatticeECP sysDSP Usage Guide MULT9X9ADDSUBSUM pin functions: Table 403: FPGA Libraries Reference Guide Function Pins input data A and B A0|1|2|3[8:0], B0|1|2|3[8:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB add/subtract (0 = add, 1 = subtract) ADDNSUB1, ADDNSUB3 clock enable CE[0:3] clock input CLK[0:3] reset RST[0:3] shifted input A and B (from previous stage) SRIA[8:0], SRIB[8:0] shifted output A and B (from previous stage) SROA[8:0], SROB[8:0] output product sum data SUM[19:0] 511 : MULT9X9ADDSUBSUMB DSP Multiplier Add/Subtract/Sum Architectures Supported: LatticeECP2/M LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 INPUTS: A08, A07, A06, A05, A04, A03, A02, A01, A00, A18, A17, A16, A15, A14, A13, A12, A11, A10, A28, A27, A26, A25, A24, A23, A22, A21, A20, A38, A37, A36, A35, A34, A33, A32, A31, A30, B08, B07, B06, B05, B04, B03, B02, B01, B00, B18, B17, B16, B15, B14, B13, B12, B11, B10, B28, B27, B26, B25, B24, B23, B22, B21, B20, B38, B37, B36, B35, B34, B33, B32, B31, B30, SIGNEDA, SIGNEDB, ADDNSUB1, ADDNSUB3, SOURCEA0, SOURCEA1, SOURCEA2, SOURCEA3, SOURCEB0, SOURCEB1, SOURCEB2, SOURCEB3, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, SUM19, SUM18, SUM17, SUM16, SUM15, FPGA Libraries Reference Guide 512 : SUM14, SUM13, SUM12, SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0 ATTRIBUTES: REG_INPUTA0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTA3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 513 : REG_PIPELINE0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE2_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE2_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE2_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE3_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE3_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE3_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB1_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" FPGA Libraries Reference Guide 514 : REG_ADDNSUB1_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB1_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB1_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB1_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB3_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ADDNSUB3_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ADDNSUB3_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ADDNSUB3_1_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide MULT9X9B DSP Multiplier Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeECP3 (for LatticeECP2/M backward compatibility only) LatticeXP2 515 : INPUTS: A8, A7, A6, A5, A4, A3, A2, A1, A0, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDA, SIGNEDB, SOURCEA, SOURCEB, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0 ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 516 : REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDB_RST: "RST0" (default), "RST1", "RST2", "RST3" GSR: "ENABLED" (default), "DISABLED" Description Refer to the following technical notes on the Lattice web site. TN1182 - LatticeECP3 sysDSP Usage Guide TN1107 - LatticeECP2/M sysDSP Usage Guide TN1140 - LatticeXP2 sysDSP Usage Guide MULT9X9C DSP Multiplier Architectures Supported: ECP5 LatticeECP3 INPUTS: A8, A7, A6, A5, A4, A3, A2, A1, A0, B8, B7, B6, B5, B4, B3, B2, B1, B0, SIGNEDA, SIGNEDB, SOURCEA, SOURCEB, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SRIA8, SRIA7, FPGA Libraries Reference Guide 517 : SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ROA8, ROA7, ROA6, ROA5, ROA4, ROA3, ROA2, ROA1, ROA0, ROB8, ROB7, ROB6, ROB5, ROB4, ROB3, ROB2, ROB1, ROB0, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0, SIGNEDP ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" CAS_MATCH_REG: "FALSE" (default), "TRUE" MULT_BYPASS: "DISABLED" (default), "ENABLED" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" MULT9X9C Port Description Table 404: I/O Port Name Capture Name Type Size (Buses Only) Description I A A[8:0] Bus 8:0 A input I B B[8:0] Bus 8:0 B input I SRIA SRIA[8:0] Bus 8:0 Shift input A FPGA Libraries Reference Guide 518 : Table 404: I/O Port Name Capture Name Type Size (Buses Only) Description I SRIB SRIB[8:0] Bus 8:0 Shift input B I SIGNEDA SIGNEDA Bit N/A Input A sign selection I SIGNEDB SIGNEDB Bit N/A Input B sign selection I SOURCEA SOURCEA Bit N/A Source A selection I SOURCEB SOURCEB Bit N/A Source B selection I CLK0 CLK0 Bit N/A Clock Input I CLK1 CLK1 Bit N/A Clock Input I CLK2 CLK2 Bit N/A Clock Input I CLK3 CLK3 Bit N/A Clock Input I CE0 CE0 Bit N/A Clock Enable Input I CE1 CE1 Bit N/A Clock Enable Input I CE2 CE2 Bit N/A Clock Enable Input I CE3 CE3 Bit N/A Clock Enable Input I RST0 RST0 Bit N/A Reset Input I RST1 RST1 Bit N/A Reset Input I RST2 RST2 Bit N/A Reset Input I RST3 RST3 Bit N/A Reset Input O P P[17:0] Bus 17:0 Product O SROA SROA[8:0] Bus 8:0 Shift A Output O SROB SROB[8:0] Bus 8:0 Shift B Output O ROA ROA[8:0] Bus 8:0 Registered Output A from Multiplier O ROB ROB[8:0] Bus 8:0 Registered Output B from Multiplier O SIGNEDP SIGNEDP Bit N/A Output Sign Bit (result of SignedA or SignedB) MULT9X9C Attribute Description Table 405: Name Value Default Description REG_INPUTA_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input A clock selection REG_INPUTA_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input A clock enable selection FPGA Libraries Reference Guide 519 : Table 405: Name Value Default Description REG_INPUTA_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input A reset selection REG_INPUTB_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input B clock selection REG_INPUTB_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input B clock enable selection REG_INPUTB_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input B reset selection REG_PIPELINE_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Pipeline clock selection REG_PIPELINE_CE "CE0", "CE1", "CE2", "CE3" "CE0" Pipeline clock enable selection REG_PIPELINE_RST "RST0", "RST1", "RST2", "RST3" "RST0" Pipeline reset selection REG_OUTPUT_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Output clock selection REG_OUTPUT_CE "CE0", "CE1", "CE2", "CE3" "CE0" Output clock enable selection REG_OUTPUT_RST "RST0", "RST1", "RST2", "RST3" "RST0" Output reset selection CAS_MATCH_REG "FALSE", "TRUE" "FALSE" Cascade match register option MULT_BYPASS "DISABLED", "ENABLED" "ENABLED" Multiplier bypass option RESETMODE "SYNC", "ASYNC" "SYNC" Global set reset selection GSR "ENABLED", "DISABLED" "ENABLED" Reset mode selection MULT9X9D DSP Multiplier Architectures Supported: FPGA Libraries Reference Guide ECP5 520 : INPUTS: A8, A7, A6, A5, A4, A3, A2, A1, A0, B8, B7, B6, B5, B4, B3, B2, B1, B0, C8, C7, C6, C5, C4, C3, C2, C1, C0, SIGNEDA, SIGNEDB, SOURCEA, SOURCEB, CE3, CE2, CE1, CE0, CLK3, CLK2, CLK1, CLK0, RST3, RST2, RST1, RST0, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ROA8, ROA7, ROA6, ROA5, ROA4, ROA3, ROA2, ROA1, ROA0, ROB8, ROB7, ROB6, ROB5, ROB4, ROB3, ROB2, ROB1, ROB0, ROC8, ROC7, ROC6, ROC5, ROC4, ROC3, ROC2, ROC1, ROC0, P17, P16, P15, P14, P13, P12, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, P0, SIGNEDP ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 521 : REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTC_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTC_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTC_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" CLK0_DIV: “ENABLED” (default) “DISABLED” CLK1_DIV: “ENABLED” (default) “DISABLED” CLK2_DIV: “ENABLED” (default) “DISABLED” CLK3_DIV: “ENABLED” (default) “DISABLED” CAS_MATCH_REG: "FALSE" (default), "TRUE" MULT_BYPASS: "DISABLED" (default), "ENABLED" GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" SOURCEB_MODE"B_SHIFT" (default),"C_SHIFT","B_C_DYNAMIC","HIGHSPEED" MULT9X9D Port Description Table 406: I/O Port Name Capture Name Type Size (Buses Only) Description I A A[8:0] Bus 8:0 A input I B B[8:0] Bus 8:0 B input I C C[8:0] Bus 8:0 C input I SRIA SRIA[8:0] Bus 8:0 Shift input A I SRIB SRIB[8:0] Bus 8:0 Shift input B I SIGNEDA SIGNEDA Bit N/A Input A sign selection FPGA Libraries Reference Guide 522 : Table 406: I/O Port Name Capture Name Type Size (Buses Only) Description I SIGNEDB SIGNEDB Bit N/A Input B sign selection I SOURCEA SOURCEA Bit N/A Source A selection I SOURCEB SOURCEB Bit N/A Source B selection I CLK0 CLK0 Bit N/A Clock Input I CLK1 CLK1 Bit N/A Clock Input I CLK2 CLK2 Bit N/A Clock Input I CLK3 CLK3 Bit N/A Clock Input I CE0 CE0 Bit N/A Clock Enable Input I CE1 CE1 Bit N/A Clock Enable Input I CE2 CE2 Bit N/A Clock Enable Input I CE3 CE3 Bit N/A Clock Enable Input I RST0 RST0 Bit N/A Reset Input I RST1 RST1 Bit N/A Reset Input I RST2 RST2 Bit N/A Reset Input I RST3 RST3 Bit N/A Reset Input O P P[17:0] Bus 17:0 Product O SROA SROA[8:0] Bus 8:0 Shift A Output O SROB SROB[8:0] Bus 8:0 Shift B Output O SROC SROC[8:0] Bus 8:0 Shift C Output O ROA ROA[8:0] Bus 8:0 Registered Output A from Multiplier O ROB ROB[8:0] Bus 8:0 Registered Output B from Multiplier O SIGNEDP SIGNEDP Bit N/A Output Sign Bit (result of SignedA or SignedB) MULT9X9D Attribute Description Table 407: Name Value Default Description REG_INPUTA_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input A clock selection REG_INPUTA_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input A clock enable selection FPGA Libraries Reference Guide 523 : Table 407: Name Value Default Description REG_INPUTA_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input A reset selection REG_INPUTB_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input B clock selection REG_INPUTB_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input B clock enable selection REG_INPUTB_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input B reset selection REG_INPUTC_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Input C clock selection REG_INPUTC_CE "CE0", "CE1", "CE2", "CE3" "CE0" Input C clock enable selection REG_INPUTC_RST "RST0", "RST1", "RST2", "RST3" "RST0" Input C reset selection REG_PIPELINE_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Pipeline clock selection REG_PIPELINE_CE "CE0", "CE1", "CE2", "CE3" "CE0" Pipeline clock enable selection REG_PIPELINE_RST "RST0", "RST1", "RST2", "RST3" "RST0" Pipeline reset selection REG_OUTPUT_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" "NONE" Output clock selection REG_OUTPUT_CE "CE0", "CE1", "CE2", "CE3" "CE0" Output clock enable selection REG_OUTPUT_RST "RST0", "RST1", "RST2", "RST3" "RST0" Output reset selection CLK0_DIV “ENABLED”, “DISABLED” "ENABLED" CLK0 divider setting. CLK1_DIV “ENABLED”, “DISABLED” "ENABLED" CLK1 divider setting. CLK2_DIV “ENABLED”, “DISABLED” "ENABLED" CLK2 divider setting. CLK3_DIV “ENABLED”, “DISABLED” "ENABLED" CLK3 divider setting. HIGHSPEED_CLK "NONE", "CLK0", "CLK1", "CLK2", "CLK3" NONE" High speed clock setting. CAS_MATCH_REG "FALSE", "TRUE" "FALSE" Cascade match register option SOURCEB_MODE "B_SHIFT", "C_SHIFT", "B_C_DYNAMIC", "HIGHSPEED" "B_SHIFT" SOURCEB mode. MULT_BYPASS "DISABLED", "ENABLED" "ENABLED" Multiplier bypass option RESETMODE "SYNC", "ASYNC" "SYNC" Global set reset selection GSR "ENABLED", "DISABLED" "ENABLED" Reset mode selection FPGA Libraries Reference Guide 524 : MULT9X9MAC ECP DSP Multiplier Architectures Supported: LatticeECP (DSP Blocks Only) INPUTS: A8, A7, A6, A5, A4, A3, A2, A1, A0, B8, B7, B6, B5, B4, B3, B2, B1, B0, ADDNSUB, SIGNEDAB, ACCUMSLOAD, CE0, CE1, CE2, CE3, CLK0, CLK1, CLK2, CLK3, RST0, RST1, RST2, RST3, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0 OUTPUTS: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, ACCUM33, ACCUM32, ACCUM31, ACCUM30, ACCUM29, ACCUM28, ACCUM27, ACCUM26, ACCUM25, ACCUM24, ACCUM23, ACCUM22, ACCUM21, ACCUM20, ACCUM19, ACCUM18, ACCUM17, ACCUM16, ACCUM15, ACCUM14, ACCUM13, ACCUM12, ACCUM11, ACCUM10, ACCUM9, ACCUM8, ACCUM7, ACCUM6, ACCUM5, ACCUM4, ACCUM3, ACCUM2, ACCUM1, ACCUM0, OVERFLOW ATTRIBUTES: REG_INPUTA_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTA_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_INPUTA_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_INPUTB_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_INPUTB_CE: "CE0" (default), "CE1", "CE2", "CE3" FPGA Libraries Reference Guide 525 : REG_INPUTB_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_PIPELINE_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_PIPELINE_CE: "CE0" (default), "CE1", "CE1", "CE3" REG_PIPELINE_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_OUTPUT_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_OUTPUT_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_OUTPUT_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_SIGNEDAB_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_SIGNEDAB_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_SIGNEDAB_1_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ACCUMSLOAD_0_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ACCUMSLOAD_0_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ACCUMSLOAD_0_RST: "RST0" (default), "RST1", "RST2", "RST3" REG_ACCUMSLOAD_1_CLK: "NONE" (default), "CLK0", "CLK1", "CLK2", "CLK3" REG_ACCUMSLOAD_1_CE: "CE0" (default), "CE1", "CE2", "CE3" REG_ACCUMSLOAD_1_RST: "RST0" (default), "RST1", "RST2", "RST3" SHIFT_IN_A: "FALSE" (default), "TRUE" SHIFT_IN_B: "FALSE" (default), "TRUE" GSR: "ENABLED" (default), "DISABLED" Description MULT9X9MAC supports operand bit widths for 9X9 multiplication and accumulates the output up to 34 bits. The DSP block includes optional registers for the input and intermediate pipeline stage. Pipeline stages may be set using a pipeline attribute. The output registers are required for the accumulator. Signed and unsigned arithmetic are supported. The FPGA Libraries Reference Guide 526 : OVERFLOW bit is also provided when the accumulated results are in the overflow condition. ACCUMSLOAD determines the mode of operation for either loading the multiplier product or to accumulate. The primitive consists of three types of optional pipeline registers: Input registers, located before the multipliers and registering the operands Multiplier pipeline registers, located after the multipliers and product registration Output registers, located before leaving the block, and registering the mode-specific output. See the description of MULT18X18 for more information on control signals for DSP blocks. Refer to the following technical note on the Lattice web site. TN1057 - LatticeECP sysDSP Usage Guide MULT9X9MAC pin functions: Table 408: Function Pins input data A and B A[8:0], B[8:0] signed input (0 = unsigned, 1 = signed) SIGNEDAB add/subtract (0 = add, 1 = subtract) ADDNSUB Accumulate (HIGH) /Load (LOW) Mode ACCUMSLOAD clock enable CE[0:3] clock input CLK[0:3] reset RST[0:3] shifted input A and B (from previous stage) SRIA[8:0], SRIB[8:0] shifted output A and B (from previous stage) SROA[8:0], SROB[8:0] output data ACCUM[33:0] overflow OVERFLOW MUX161 16-Input Mux within the PFU (4 Slices) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M 527 : LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, SD1, SD2, SD3, SD4 OUTPUT: Z Description For more usage, see related technical notes or contact technical support. FPGA Libraries Reference Guide 528 : Truth Table Table 409: INPUTS OUTPUTS INPUTS OUTPUTS SD[4:1] Z SD[4:1] Z 0000 D0 1000 D8 0001 D1 1001 D9 0010 D2 1010 D10 0011 D3 1011 D11 0100 D4 1100 D12 0101 D5 1101 D13 0110 D6 1110 D14 0111 D7 1111 D15 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. MUX21 2-to-1 Mux Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 529 : INPUTS: D0, D1, SD OUTPUT: Z Description For more usage, see related technical notes or contact technical support. Truth Table Table 410: INPUTS OUTPUTS D0 D1 SD Z 0 X 0 0 1 X 0 1 X 0 1 0 X 1 1 1 X = Don’t care Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. MUX321 32-Input Mux within the PFU (8 Slices) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M 530 : LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, SD1, SD2, SD3, SD4, SD5 OUTPUT: Z Description For more usage, see related technical notes or contact technical support. FPGA Libraries Reference Guide 531 : Truth Table Table 411: INPUTS OUTPUTS INPUTS OUTPUTS SD[5:1] Z SD[5:1] Z 00000 D0 10000 D16 00001 D1 10001 D17 00010 D2 10010 D18 00011 D3 10011 D19 00100 D4 10100 D20 00101 D5 10101 D21 00110 D6 10110 D22 00111 D7 10111 D23 01000 D8 11000 D24 01001 D9 11001 D25 01010 D10 11010 D26 01011 D11 11011 D27 01100 D12 11100 D28 01101 D13 11101 D29 01110 D14 11110 D30 01111 D15 11111 D31 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. MUX4 4-bit Multiplexer Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeXP 532 : INPUTS: D0, D1, D2, D3, SD1, SD2 OUTPUT: Z Description For more usage, see related technical notes or contact technical support. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. MUX41 4 to 1 Mux Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 533 : INPUTS: D0, D1, D2, D3, SD1, SD2 OUTPUT: Z Description For more usage, see related technical notes or contact technical support. Truth Table Table 412: INPUTS OUTPUTS D0 D1 D2 D3 SD1 SD2 Z 0 X X X 0 0 0 1 X X X 0 0 1 X 0 X X 1 0 0 X 1 X X 1 0 1 X X 0 X 0 1 0 X X 1 X 0 1 1 X X X 0 1 1 0 X X X 1 1 1 1 X = Don’t care Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. MUX81 8 to 1 Mux Architectures Supported: FPGA Libraries Reference Guide 534 : ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: D0, D1, D2, D3, D4, D5, D6, D7, SD1, SD2, SD3 OUTPUT: Z Description For more usage, see related technical notes or contact technical support. Truth Table Table 413: INPUTS OUTPUTS D0 D1 D2 D3 D4 D5 D6 D7 SD[1:3] Z 0 X X X X X X X 000 0 1 X X X X X X X 000 1 X 0 X X X X X X 100 0 FPGA Libraries Reference Guide 535 : Table 413: INPUTS OUTPUTS X 1 X X X X X X 100 1 X X 0 X X X X X 010 0 X X 1 X X X X X 010 1 X X X 0 X X X X 110 0 X X X 1 X X X X 110 1 X X X X 0 X X X 001 0 X X X X 1 X X X 001 1 X X X X X 0 X X 101 0 X X X X X 1 X X 101 1 X X X X X X 0 X 011 0 X X X X X X 1 X 011 1 X X X X X X X 0 111 0 X X X X X X X 1 111 1 X = Don’t care Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 536 : N ND2 2 Input NAND Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ND3 3 Input NAND Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 537 : LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ND4 4 Input NAND Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 538 : MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ND5 5 Input NAND Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 Platform Manager Platform Manager 2 539 : INPUTS: A, B, C, D, E OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. NR2 2 Input NOR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 540 : NR3 3 Input NOR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. NR4 4 Input NOR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M 541 : LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. NR5 5 Input NOR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager 542 : Platform Manager 2 INPUTS: A, B, C, D, E OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 543 : O OB Output Buffer Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUT: I OUTPUT: O Truth Table Table 414: INPUTS OUTPUTS I O 1 1 0 0 Z U U = Unknown FPGA Libraries Reference Guide 544 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OBCO Output Complementary Buffer Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUT: I OUTPUTS: OT, OC Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OBW Output Buffer with Tristate Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC 545 : LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: I, T OUTPUT: O Truth Table Table 415: INPUTS OUTPUTS I T O 0 1 weak 0 1 1 weak 1 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OBZ Output Buffer with Tristate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M 546 : LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: I, T OUTPUT: O Truth Table Table 416: INPUTS OUTPUTS I T O X 1 Z 0 0 0 1 0 1 X = Don’t care When TSALL=0, O=Z Note For PU/PD buffers, when TSALL=0, O will be pulled up or pulled down, respectively. The letters PU (PD) in the buffer name indicate that a pull-up (pulldown) primitive is available. This is used to generate a logic high level (low level) for nodes that may be floating. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 547 : OBZPD Output Buffer with Tristate and Pull-down Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: I, T OUTPUT: O Truth Table Table 417: INPUTS OUTPUTS I T O X 1 Z 0 0 0 1 0 1 X = Don’t care When TSALL=0, O=Z Note For PU/PD buffers, when TSALL=0, O will be pulled up or pulled down, respectively. The letters PU (PD) in the buffer name indicate that a pull-up (pulldown) primitive is available. This is used to generate a logic high level (low level) for nodes that may be floating. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 548 : OBZPU Output Buffer with Tristate and Pull-up Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: I, T OUTPUT: O Truth Table Table 418: INPUTS OUTPUTS I T O X 1 Z 0 0 0 1 0 1 X = Don’t care When TSALL=0, O=Z FPGA Libraries Reference Guide 549 : Note For PU/PD buffers, when TSALL=0, O will be pulled up or pulled down, respectively. The letters PU (PD) in the buffer name indicate that a pull-up (pulldown) primitive is available. This is used to generate a logic high level (low level) for nodes that may be floating. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ODDRA Output DDR Architectures Supported: LatticeSC/M INPUTS: DA, DB, CLK, RST OUTPUT: Q Description Output DDR data (positive edge and negative edge data) to the buffer. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 550 : ODDRDQSX1A Output for DDR1/2 Memory Architectures Supported: MachXO2 Platform Manager 2 INPUTS: DQSW90, SCLK, D0, D1, RST OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description ODDRDQSX1A is the output for DDR1/2 memory using the PIC hardware cell. It is used for right side only. See the below table for the port description. Table 419: Signal I/O Description DQSW90 I Shifts the DQS signal by 90 degree, from DQSBUFH SCLK I Clock from the CIB D0 I Data A primary phase of data (first out) D1 I Data B secondary phase of data (second out) RST I RESET to this block from the CIB Q O DDR output data For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices 551 : ODDRMXA DDR Output Registers Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: CLK, DA, DB, RST, DQSXFER OUTPUT: Q Description The ODDRMXA primitive implements the output register for both write and tristate functions. This primitive is used to output DDR data and DQS strobe to the memory. All DDR output tristate functions are also implemented using this primitive. The following table provides description of all I/O ports associated with the ODDRMXA primitive. Table 420: Port Name I/O Definition CLK I System CLK or ECLK DA I Data at the negative edge of the clock DB I Data at the positive edge of the clock RST I Reset DQSXFER I 90-degree phase shifted clock coming from the DQSBUFC block Q O DDR data to the memory Notes: FPGA Libraries Reference Guide RST should be held low during DDR Write operation. By default the software will implement CE High and RST low. 552 : DDR output and tristate registers do not have CE support. RST is available for tristate DDRX mode (while reading). LSR will default to set when used in tristate mode. When asserting reset during DDR writes, it is important to know that it resets only the flip-flops but not the latches. For more usage, see related technical notes or contact technical support. ODDRTDQA Tri-State for DQ: DDR3_MEM and DDR_GENX2 Architectures Supported: LatticeECP3 INPUTS: TA, SCLK, DQCLK1, DQCLK0 OUTPUT: Q Description ODDRTDQA is the tri-state for DQ used for DDR3_MEM (DDR3 memory mode) and DDR_GENX2. E and EA: DDR3_MEM and DDR_GENX2 (left/right) See the below table for the port description. Table 421: FPGA Libraries Reference Guide Signal I/O Description TA I Tri-state input. SCLK I System clock. DQCLK0 I One clock edge, at the frequency of SCLK, used in output gearing, 90 degree out of phase from DQCLK1. DQCLK1 I One clock edge, at the frequency of SCLK, used in output gearing. Q O Tri-state output. 553 : For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide ODDRTDQSA Tri-State for Single-Ended and Differential DQS: DDR_MEM, DDR2_MEM, and DDR3_MEM Architectures Supported: LatticeECP3 INPUTS: TA, SCLK, DQSTCLK, DQSW, DB OUTPUT: Q Description ODDRTDQSA is the tri-state for single-ended and differential DQS, used in DDR_MEM (DDR memory mode), DDR2_MEM (DDR2 memory mode), and DDR3_MEM (DDR3 memory mode). E and EA: DDR_MEM and DDR2_MEM (left/right/top) E and EA: DDR3_MEM (left/right) See the below table for the port description. Table 422: FPGA Libraries Reference Guide Signal I/O Description TA I Tri-state input SCLK I System clock DQSW I DQS write clock DQSTCLK I DQS tri-state clock DB I Data input (ONEGB) Q O DQS tri-state output 554 : For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide ODDRXA Output DDR Architectures Supported: LatticeSC/M INPUTS: DA, DB, CLK, RST OUTPUT: Q Description Output DDR data with half cycle clock domain transfer. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 555 : ODDRXB Output DDR Architectures Supported: LatticeECP/EC LatticeXP INPUTS: DA, DB, CLK, LSR OUTPUT: Q ATTRIBUTES: REGSET: "RESET" (default), "SET" Description Output DDR data with half cycle clock domain transfer. ODDRXC DDR Generic Output Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeXP2 556 : INPUTS: DA, DB, CLK, RST OUTPUT: Q Description This DDR output module inputs two data streams and multiplexes them together to generate a single stream of data going to the sysIO™ buffer. CLK to this module can be connected to the edge clock or to the FPGA clock. This primitive is also used when DDR function is required for the tristate signal. See the following table for port description. Table 423: Port Name I/O Definition DA I Data at the negative edge of the clock DB I Data at the positive edge of the clock CLK I Clock from CIB RST I Reset signal Q O DDR data to the memory Notes: LSR should be held low during DDR Write operation. By default, the software will be implemented with CE High and LSR low. DDR output and tristate registers do not have CE support. LSR is available for the tristate DDRX mode (while reading). The LSR will default to set when used in the tristate mode. CE and LSR support is available for the regular (non-DDR) output mode. When asserting reset during DDR writes, it is important to keep in mind that this would only reset the flip-flops but not the latches. For more usage, see related technical notes or contact technical support. ODDRXD Output DDR for DDR_MEM, DDR2_MEM, DDR_GENX1, and DDR2_MEMGEN Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 557 : INPUTS: SCLK, DA, DB, DQCLK1 OUTPUT: Q ATTRIBUTES: (EA only) MEMMODE: "DISABLED" (default), "ENABLED" Description ODDRXD is the output DDR for DDR_MEM (DDR memory mode), DDR2_MEM (DDR2 memory mode), DDR_GENX1 (DDR generic mode in X1 gearing), and DDR2_MEMGEN. E and EA: DDR_MEM, DDR2_MEM, and DDR2_MEMGEN (left/right/top) E: DDR_GENX1 (left/right/top) The port information is described in the below table. Table 424: Signal I/O Description SCLK I System clock. DA I Data at the positive edge of the clock (OPOSA). DB I Data at the negative edge of the clock (ONEGB). DQCLK1 I One clock edge, at the frequency of SCLK, used in output gearing. Q O DDR data output. For more information and usage, refer to the following technical note on the Lattice web site. FPGA Libraries Reference Guide TN1177 - LatticeECP3 sysIO Usage Guide 558 : ODDRXD1 Output DDR for DDR_GENX1 Architectures Supported: LatticeECP3 INPUTS: SCLK, DA, DB OUTPUT: Q Description ODDRXD1 is the output DDR for DDR_GENX1 (DDR generic mode in X1 gearing). EA: DDR_GENX1 (left/right/top) The port information is described in the below table. Table 425: Signal I/O Description SCLK I System clock DA I Data at the positive edge of the clock (OPOSA) DB I Data at the negative edge of the clock (ONEGB) Q O DDR data output For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide ODDRXDQSA Output for Single-Ended and Differential DQS: DDR_MEM, DDR2_MEM, and DDR2_MEMGEN Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 559 : INPUTS: SCLK, DA, DQSW, DQCLK1 OUTPUTS: Q, DQSTCLK ATTRIBUTES: (EA only) MEMMODE: "DISABLED" (default), "ENABLED" Description ODDRXDQSA is the output for single-ended and differential DQS, used for DDR_MEM (DDR memory mode), DDR2_MEM (DDR2 memory mode), and DDR2_MEMGEN. E and EA: DDR_MEM, DDR2_MEM, and DDR2_MEMGEN (left/right/top) See the below table for the port description. Table 426: Signal I/O Description SCLK I System clock. DA I Data input (OPOSA). DQSW I DQS write clock. DQCLK1 I One clock edge, at the frequency of SCLK, used in output gearing. Q O DQS data output. DQSTCLK O DQS Tri-state clock. For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide ODDRXE Output for Generic DDR X1 Using 2:1 Gearing Architectures Supported: FPGA Libraries Reference Guide 560 : MachXO2 MachXO3L Platform Manager 2 INPUTS: D0, D1, SCLK, RST OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description ODDRXE is the output for generic DDR X1 using 2:1 gearing. It uses the mPIC or PIC hardware cell. It is used for all sides. The port information is described in the below table. Table 427: Signal I/O Description D0 I Data A primary phase of data (first out) D1 I Data B secondary phase of data (second out) SCLK I Clock from the CIB RST I RESET to this block from the CIB Q O DDR output data For more information and usage, refer to the following technical note on the Lattice web site. TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices ODDRX1F Generic X1 ODDR implementation Architectures Supported: FPGA Libraries Reference Guide 561 : ECP5 INPUTS: D0, D1, SCLK, RST OUTPUTS: Q Description This primitive is used for Generic X1 ODDR implementation. The following table gives the port description. Table 428: Signal I/O Description D0 I Data input ODDR (first to be sent out) D1 I Data input ODDR (second to be sent out) SCLK I SCLK input RST I Reset input Q O DDR data output on both edges of SCLK ODDRX2A Output DDR Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 562 : INPUTS: DA0, DA1, DB0, DB1, ECLK, SCLK, RST OUTPUTS: Q, UPDATE Description Outputs DDR data to the buffer through the shift register and clock domain transfer from primary clock to edge clock. The following symbolic diagram shows the flip-flop structure of this primitive. The pos_update and neg_update pins are select pins of the MUXes' internal signals which go out as UPDATE signals depending upon the value of the UPDT parameter. FPGA Libraries Reference Guide 563 : ODDRX2B DDR Generic Output with 2x Gearing Ratio Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: DA0, DB0, DA1, DB1, ECLK, SCLK, RST OUTPUT: Q Description This DDR output module can be used when a gearbox function is required. This primitive inputs four data streams and multiplexed them together to generate a single stream of data going to the sysIO buffer. DDR registers of the complementary PIO is used when using this mode. The complementary PIO register can no longer be used to perform the DDR function. There are two clocks going to this primitive. ECLK is connected to the faster edge clock, while SCLK is connected to the slower FPGA clock. The DDR data output of this primitive is aligned to the faster edge clock. Note that LSR should be held low during DDR Write operation. By default, the software will be implemented CE High and LSR low. The following table lists port names and descriptions for the ODDRX2B primitive. Table 429: FPGA Libraries Reference Guide Port Name I/O Definition DA0, DB0 I Data at the negative edge of the clock DA1, DB1 I Data at the positive edge of the clock ECLK I Clock connected to the faster edge clock 564 : Table 429: Port Name I/O Definition SCLK I Clock connected to the slower edge clock RST I Reset Q O DDR data output For more usage, see related technical notes or contact technical support. ODDRX2D Output DDR for DDR3_MEM and DDR_GENX2 Architectures Supported: LatticeECP3 INPUTS: SCLK, DA1, DB1, DA0, DB0, DQCLK1, DQCLK0 OUTPUT: Q ATTRIBUTES: ISI_CAL: "BYPASS" (default), "DEL1", "DEL2", "DEL3", "DEL4", "DEL5", "DEL6", "DEL7" (EA only) MEMMODE: "DISABLED" (default), "ENABLED" Description ODDRX2D is the output DDR for DDR3_MEM (DDR3 memory mode) and DDR_GENX2 (DDR generic mode in X2 gearing). FPGA Libraries Reference Guide E and EA: DDR3_MEM and DDR_GENX2 (left/right) 565 : The below table describes the port information. Table 430: Signal I/O Description SCLK I System clock. DA0 I First data at the positive edge of the clock (OPOSA). DA1 I First data at the negative edge of the clock (OPOSB). DB0 I Second data at the positive edge of the clock (ONEGA). DB1 I Second data at the negative edge of the clock (ONEGB). DQCLK0 I One clock edge, at half the frequency of ECLK, used in output gearing, 90 degree out of phase from DQCLK1. DQCLK1 I One clock edge, at half the frequency of ECLK, used in output gearing. Q O DDR data output. For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide ODDRX2DQA Memory Output DDR Primitive for DQ outputs Architectures Supported: ECP5 INPUTS: D0, D1, D2, D3, RST, SCLK, ECLK, DQSW270 OUTPUTS: Q FPGA Libraries Reference Guide 566 : Description The following table gives the port description. Table 431: Signal I/O Description D0, D1, D2, I D3 Data input to the ODDR RST I Reset input ECLK I Fast Edge clock output DQSW270 I Clock that is 270 degrees ahead of the clock used to generate the DQS output. SCLK I SCLK input Q O DDR data output on both edges of DQSW270 ODDRX2E Output for Generic DDR X2 Using 4:1 Gearing Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: D0, D1, D2, D3, ECLK, SCLK, RST OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" FPGA Libraries Reference Guide 567 : Description ODDRX2E is the output for generic DDR X2 using 4:1 gearing. It uses the VPIC_TX hardware cell. It is used for top bank only. See the below table for port information. Table 432: Signal I/O Description D0, D2 I Data at the same edge of the clock D1, D3 I Data at the same edge of the clock ECLK I Edge clock SCLK I Clock from the CIB RST I RESET to this block from the CIB Q O DDR output data For more information and usage, refer to the following technical note on the Lattice web site. TN1203 - Implementing High-Speed Interfaces with MachXO2 Devices ODDRX2F Generic X2 ODDR implementation Architectures Supported: ECP5 INPUTS: D0, D1, D2, D3, ECLK, SCLK, RST OUTPUTS: Q Description This primitive is used for Generic X2 ODDR implementation. FPGA Libraries Reference Guide 568 : The following table gives the port description. Table 433: Signal I/O Description D0, D2 I Data input to the ODDR (sent out on the same edge) D1, D3 I Data input to the ODDR (sent out on the same edge) ECLK I ECLK input (2x speed of SCLK) SCLK I SCLK input RST I Reset input Q O DDR data output on both edges of ECLK ODDRX2DQSA Output for Differential DQS: DDR3_MEM Architectures Supported: LatticeECP3 INPUTS: SCLK, DB1, DB0, DQCLK1, DQCLK0, DQSW OUTPUTS: Q, DQSTCLK ATTRIBUTES: ISI_CAL: "BYPASS" (default), "DEL1", "DEL2", "DEL3", "DEL4", "DEL5", "DEL6", "DEL7" (EA only) MEMMODE: "DISABLED" (default), "ENABLED" Description ODDRX2DQSA is the output for differential DQS used for DDR3_MEM (DDR3 memory mode). FPGA Libraries Reference Guide E and EA: DDR3_MEM (left/right) 569 : See the below table for the port description. Table 434: Signal I/O Description SCLK I System clock. DB0 I Data input (OPOSA). DB1 I Data input (OPOSB). DQSW I DQS write clock. DQCLK0 I One clock edge, at half the frequency of ECLK, used in output gearing, 90 degree out of phase from DQCLK1. DQCLK1 I One clock edge, at half the frequency of SCLK, used in output gearing. Q O DDR data output. DQSTCLK O DQS Tri-state clock. For more information and usage, refer to the following technical note on the Lattice web site. TN1177 - LatticeECP3 sysIO Usage Guide ODDRX2DQSB Memory Output DDR Primitive for DQS Output Architectures Supported: ECP5 INPUTS: D0, D1, D2, D3, RST, SCLK, ECLK, DQSW OUTPUTS: Q FPGA Libraries Reference Guide 570 : Description The following table gives the port description. Table 435: Signal I/O Description D0, D1, D2, I D3 Data input to the ODDR RST I Reset input ECLK I ECLK input DQSW I DQSW includes write leveling phase shift from ECLK SCLK I SCLK input Q O DDR data output on both edges of DQSW ODDRX4A Output DDR Architectures Supported: LatticeSC/M INPUTS: DA0, DA1, DA2, DA3, DB0, DB1, DB2, DB3, ECLK, SCLK, RST OUTPUTS: Q, UPDATE ATTRIBUTES: LSRMODE: "LOCAL" (default), "EDGE" FPGA Libraries Reference Guide 571 : UPDT: "POS" (default), "NEG" REGSET: "RESET" (default), "SET" Description Outputs DDR data to the buffer through the shift register and clock domain transfer from primary clock to edge clock. The following symbolic diagram shows the flip-flop structure of this primitive. ODDRX4B Output for Generic DDR X4 Using 8:1 Gearing Architectures Supported: FPGA Libraries Reference Guide MachXO2 572 : Platform Manager 2 INPUTS: D0, D1, D2, D3, D4, D5, D6, D7, ECLK, SCLK, RST OUTPUTS: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description ODDRX4B is the output for generic DDR X4 using 8:1 gearing. It uses the VPIC_TX hardware cell. It is used for top bank only. See the below table for the port description. Table 436: Signal I/O Description D0, D2, D4, D6 I Data at the same edge of the clock D1, D3, D5, D7 I Data at the same edge of the clock ECLK I Edge clock SCLK I Clock from the CIB RST I RESET to this block from the CIB Q O DDR output data ODDRX71A 7:1 LVDS Output Architectures Supported: FPGA Libraries Reference Guide 573 : MachXO2 MachXO3L Platform Manager 2 INPUTS: ECLK, SCLK, D0, D1, D2, D3, D4, D5, D6, RST OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Description ODDRX71A is the 7:1 LVDS output that supports 7:1 gearing. It is used for top bank only. See the below table for the port description. Table 437: Signal I/O Description ECLK I Edge clock SCLK I Clock connected to the system clock D0, D1, D2, D3, D4, D5, D6 I Data available for 7:1 muxing RST I RESET for this block Q O 7:1 LVDS signal output ODDR71B 7:1 LVDS ODDR implementation Architectures Supported: FPGA Libraries Reference Guide ECP5 574 : INPUTS: D0, D1, D2, D3, D4, D5, D6, ECLK, SCLK, RST OUTPUT: Q Description This primitive is used for 7:1 LVDS ODDR implementation. Table 438: Signal I/O Description ECLK I ECLK input (3.5x speed of SCLK) SCLK I SCLK input D0, D1, D2, D3, D4, D5, D6 I Data input to the ODDR RST I Reset input Q O DDR data output on both edges of ECLK OFD1S3AX Positive Edge Triggered D Flip-Flop, GSR Used for Clear. Used to TriState DDR/DDR2 Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 575 : INPUTS: D, SCLK OUTPUT: Q ATTRIBUTES: GSR: "DISABLED" (default), "ENABLED" Description OFD1S3AX is a primitive used to implement DDR and DDR2 DQ tri-state. This primitive is functionally equivalent to the FD1S3AX primitive. OFE1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and Edge Clock (used in output PIC area only) Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 INPUTS: D, SP, ECLK, PD FPGA Libraries Reference Guide 576 : OUTPUT: Q Note This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 439: INPUTS OUTPUTS D SP ECLK PD Q X 0 X 0 Q X X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=ECLK=PD=X) OFE1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and Edge Clock (used in output PIC area only) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 577 : INPUTS: D, SP, ECLK, CD OUTPUT: Q Note This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 440: INPUTS OUTPUTS D SP ECLK CD Q X 0 X 0 Q X X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SP=ECLK=CD=X) OFE1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and Edge Clock (used in output PIC area only) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M 578 : LatticeSC/M LatticeXP LatticeXP2 INPUTS: D, SP, ECLK, CD OUTPUT: Q Note: This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 441: INPUTS OUTPUTS D SP ECLK CD Q X 0 X 0 Q X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SP=ECLK=CD=X) FPGA Libraries Reference Guide 579 : OFE1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and Edge Clock (used in output PIC area only) Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 INPUTS: D, SP, ECLK, PD OUTPUT: Q Note This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. FPGA Libraries Reference Guide 580 : Truth Table Table 442: INPUTS OUTPUTS D SP ECLK PD Q X 0 X 0 Q X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=ECLK=PD=X) OFS1P3BX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Preset, and System Clock (used in output PIC area only) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 581 : INPUTS: D, SP, SCLK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 443: INPUTS OUTPUTS D SP SCLK PD Q X 0 X 0 Q X X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=SCLK=PD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OFS1P3DX Positive Edge Triggered D Flip-Flop with Positive Level Enable, Positive Level Asynchronous Clear, and System Clock (used in output PIC area only) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M 582 : LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SP, SCLK, CD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 444: INPUTS OUTPUTS D SP SCLK CD Q X 0 X 0 Q X X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care FPGA Libraries Reference Guide 583 : When GSR=0, Q=0 (D=SP=SCLK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OFS1P3IX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Clear, Positive Level Enable (Clear overrides Enable), and System Clock (used in output PIC area only) Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SP, SCLK, CD OUTPUT: Q ATTRIBUTES: FPGA Libraries Reference Guide 584 : GSR: "ENABLED" (default), "DISABLED" Note This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 445: INPUTS OUTPUTS D SP SCLK CD Q X 0 X 0 Q X X 1 0 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=0 (D=SP=SCLK=CD=X) Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OFS1P3JX Positive Edge Triggered D Flip-Flop with Positive Level Synchronous Preset, Positive Level Enable (Preset overrides Enable), and System Clock (used in output PIC area only) Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 585 : MachXO2 MachXO3L Platform Manager 2 INPUTS: D, SP, SCLK, PD OUTPUT: Q ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" Note This primitive must be paired with an output or bidirectional buffer. The mapper automatically assigns the primitive and its buffer to the same PIC. Use the PIN or LOC properties, or the LOCATE COMP preference, on the buffer per normal use, but not on this primitive. Truth Table Table 446: INPUTS OUTPUTS D SP SCLK PD Q X 0 X 0 Q X X 1 1 0 1 0 0 1 1 0 1 X = Don’t care When GSR=0, Q=1 (D=SP=SCLK=PD=X) FPGA Libraries Reference Guide 586 : Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OLVDS LVDS Output Buffer Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUT: A OUTPUTS: Z, ZN FPGA Libraries Reference Guide 587 : Truth Table Table 447: INPUTS OUPUTS A Z ZN 0 0 1 1 1 0 Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OR2 2 Input OR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B FPGA Libraries Reference Guide 588 : OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OR3 3 Input OR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 589 : OR4 4 Input OR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OR5 5 Input OR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 590 : LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D, E OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ORCALUT4 4-Input Look Up Table Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeXP LatticeXP2 MachXO Platform Manager 591 : INPUTS: A, B, C, D OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 16'h0000) Description ORCALUT4 defines the programmed state of a LUT4 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT4 programming. The contents of the look up table are addressed by the 4 input pins to access 1 of 16 locations. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. The programming of the ORCALUT4 (that is, the 0 or 1 value of each memory location within the LUT4) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For example, hex value BF80 produces these 16 memory locations and values: 1011 1111 1000 0000 Memory location 0 (D=0, C=0, B=0, A=0) contains a 0, memory location 2 (D=0, C=0, B=1, A=0) contains a 0. Memory location 15 (D=1, C=1, B=1, A=1) contains a 1, etc. The ORCALUT4 may encode the Boolean logic for any Boolean expression of 4 input variables. For example, if the required expression was: Z = (D*C) + (B*!A) then the INIT value can be derived from the truth table resulting from the expression: D C B A : Z FPGA Libraries Reference Guide 592 : 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 : : : : 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 : : : : 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 : : : : 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 : : : : 1 1 1 1 INIT = F444 (16) Adding INIT to HDL INIT can be used as an HDL attribute. The following examples demonstrate how to use INIT with the ORCALUT4 primitive in your Verilog or VHDL source. INIT takes binary value in HDL. Verilog Example // synopsys translate_off // parameter definition defparam I1.init = 16'hF444 ; // synopsys translate_on // ORCALUT4 module instantiation ORCALUT4 I1 (.A(A), .B (B), .C(C), .D(D), .Z(Q[0])) /* synthesis init = "16'hF444" */; VHDL Example -- component definition component ORCALUT4 port ( A,B,C,D: In std_logic; Z: Out std_logic ); end component; -- attribute definition attribute INIT: string; attribute INIT of I1: label is "1000000000000000";--Z=A*B*C*D ... -- ORCALUT4 component instantiation I1 : ORCALUT4 FPGA Libraries Reference Guide 593 : Port Map ( A=>A, B=>B, C=>C, D=>D, Z=>N_1 ); For generic examples of how to use HDL attributes, see “Adding FPGA Attributes to HDL” in online Help. ORCALUT5 5-Input Look Up Table Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: A, B, C, D, E OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 32'h0000_0000) Description ORCALUT5 defines the programmed state of a LUT5 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT5 programming. The contents of the look up table are addressed by the 5 input pins to access 1 of 32 locations. The programming of the ORCALUT5 (that is, the 0 or 1 value of each memory location within the LUT5) is determined by the value assigned with INIT. The FPGA Libraries Reference Guide 594 : value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the ORCALUT4 topic. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ORCALUT6 6-Input Look Up Table Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: A, B, C, D, E, F OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 64'h0000_0000_0000_0000) Description ORCALUT6 defines the programmed state of a LUT6 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT6 programming. The contents of the look up table are addressed by the 6 input pins to access 1 of 64 locations. FPGA Libraries Reference Guide 595 : The programming of the ORCALUT6 (that is, the 0 or 1 value of each memory location within the LUT6) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the ORCALUT4 topic. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ORCALUT7 7-Input Look Up Table Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: A, B, C, D, E, F, G OUTPUT: Z ATTRIBUTES: INIT: hexadecimal value (default: 128'h0000_0000_0000_0000_0000_0000_0000_0000) FPGA Libraries Reference Guide 596 : Description ORCALUT7 defines the programmed state of a LUT7 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT7 programming. The contents of the look up table are addressed by the 7 input pins to access 1 of 128 locations. The programming of the ORCALUT7 (that is, the 0 or 1 value of each memory location within the LUT7) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the ORCALUT4 topic. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. ORCALUT8 8-Input Look Up Table Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: A, B, C, D, E, F, G, H OUTPUT: Z FPGA Libraries Reference Guide 597 : ATTRIBUTES: INIT: hexadecimal value (default: 256'h0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_00 00_0000_0000_0000_0000) Description ORCALUT8 defines the programmed state of a LUT8 primitive of a Slice. While this primitive is typically targeted by logic synthesis tools, it can also be instantiated in HDL source for intimate control over LUT8 programming. The contents of the look up table are addressed by the 8 input pins to access 1 of 256 locations. The programming of the ORCALUT8 (that is, the 0 or 1 value of each memory location within the LUT8) is determined by the value assigned with INIT. The value is expressed in hexadecimal code. Highest memory locations are in the most significant hex digit, the lowest in the least significant digit. For more information on INIT attribute usage, see the ORCALUT4 topic. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OSCA Internal Oscillator Architectures Supported: LatticeSC/M OUTPUT: OSC ATTRIBUTES: DIV: 1 (default), 2, 4, 8, 16, 32, 64, 128 Description The OSCA is the source of the internal clock for configuration. After configuration this oscillator is disabled by default. If needed, it can be enabled by instantiating the OSCA or the Sysbus (with sys_clk_sel=OSC option). OSCA may be used as a general-purpose clock to drive FPGA logic. FPGA Libraries Reference Guide 598 : The internal clock frequency can be one of eight values: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, or 1/128 of the oscillator frequency (about 128 MHz). During startup, the clock divider is set to 1/128 (about 1 MHz). During initialization, it is set to 1/8 (about 16 MHz). After initialization, if OSCA is enabled, it is set to the user-specified value. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OSCC Internal Oscillator Architectures Supported: MachXO Platform Manager OUTPUT: OSC Description OSCC is a dedicated oscillator in the MachXO and Platform Manager device and the source of the internal clock for configuration. The oscillator frequency range is 18 to 26 MHz. The output of the oscillator can also be routed as an input clock to the clock tree. The oscillator frequency output can be further divided by internal logic (user logic) for lower frequencies, if desired. The oscillator is powered down when not in use. The example below illustrates proper usage for instantiating the OSCC primitive in VHDL. COMPONENT OSCC PORT (OSC:OUT std_logic); END COMPONENT; begin OSCInst0: OSCC PORT MAP ( OSC => osc_int FPGA Libraries Reference Guide 599 : ); Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OSCD Oscillator for Configuration Clock Architectures Supported: LatticeECP2/M OUTPUT: CFGCLK ATTRIBUTES: NOM_FREQ: 2.5 (default), 4.3, 5.4, 6.9, 8.1, 9.2, 10.0, 13.0, 15.0, 20.0, 26.0, 30.0, 34.0, 41.0, 45.0, 55.0, 60.0, 130.0 (in MHz) Description OSCD is the primitive name of the ECP2/M oscillator. The internal oscillator is the source of the internal clock for configuration and is nominally running at 130 MHz. The oscillator is configurable by the user. During configuration, the internal clock frequency is selected with bits 5-0 in configuration control register 0. The default frequency is 2.5 MHz, where the default values of bits 5-0 are all zeros. IO description and attribute descriptions are shown in the following tables. OSCD Port Definition Table 448: Port Name I/O Description CFGCLK Output Oscillator clock output OSCD Usage with VHDL COMPONENT OSCD -- synthesis translate_off GENERIC(NOM_FREQ: string:= "2.5"); -- synthesis translate_on PORT (CFGCLK: OUT std_logic); FPGA Libraries Reference Guide 600 : END COMPONENT; attribute NOM_FREQ : string; attribute NOM_FREQ of OSCins0 : label is "2.5"; begin OSCInst0: OSCD -- synthesis translate_off GENERIC MAP (NOM_FREQ => "2.5") -- synthesis translate_on PORT MAP ( CFGCLK => osc_int); OSCD Usage with Verilog HDL module OSC_TOP(OSC_CLK); output OSC_CLK; OSCD OSCinst0 (.CFGCLK(OSC_CLK)); defparam OSCinst0.NOM_FREQ = "2.5"; endmodule Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OSCE Oscillator for Configuration Clock Architectures Supported: LatticeXP2 OUTPUT: OSC ATTRIBUTES: NOM_FREQ: 2.5 (default), 3.1, 4.3, 5.4, 6.9, 8.1, 9.2, 10.0, 13.0, 15.0, 20.0, 26.0, 32.0, 40.0, 54.0, 80.0, 163.0 (in MHz) FPGA Libraries Reference Guide 601 : Description OSCE is the primitive name of the XP2 oscillator. The internal oscillator is the source of the internal clock and is configurable by the user. During configuration, the internal clock frequency is selected with bits 5-0 in configuration control register 0. The default frequency is 2.5 MHz, where the default values of bits 5-0 are all zeros. IO description and attribute descriptions are shown in the following tables. OSCE Port Definition Table 449: Port Name I/O Description OSC Output Oscillator clock output OSCE Usage with VHDL COMPONENT OSCE -- synthesis translate_off GENERIC (NOM_FREQ: string := "2.5"); -- synthesis translate_on PORT (OSC :OUT std_logic); END COMPONENT; attribute NOM_FREQ : string; attribute NOM_FREQ of OSCinst0 : label is "2.5"; begin OSCInst0: OSCE -- synthesis translate_off GENERIC MAP ( NOM_FREQ => "2.5" ) -- synthesis translate_on PORT MAP ( OSC => osc_int ); Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. OSCF Oscillator for Configuration Clock Architectures Supported: FPGA Libraries Reference Guide 602 : LatticeECP3 OUTPUT: OSC ATTRIBUTES: NOM_FREQ: 2.5 (default), 4.3, 5.4, 6.9, 8.1, 9.2, 10.0, 13.0, 15.0, 20.0, 26.0, 30.0, 34.0, 41.0, 45.0, 55.0, 60.0, 130.0 (in MHz) Description OSCF is the primitive name of the LatticeECP3 oscillator. The internal oscillator is the source of the internal clock and is configurable by the user. During configuration, the internal clock frequency is selected with bits 5-0 in configuration control register 0. The default frequency is 2.5 MHz, where the default values of bits 5-0 are all zeros. IO description and attribute descriptions are shown in the following tables. OSCF Port Definition Table 450: Port Name I/O Description OSC Output Oscillator clock output OSCF Usage with VHDL COMPONENT OSCF -- synthesis translate_off GENERIC (NOM_FREQ: string := -- synthesis translate_on PORT (OSC: OUT std_logic); END COMPONENT; "2.5"); attribute NOM_FREQ : string; attribute NOM_FREQ of OSCinst0 : label is "2.5"; begin OSCInst0: OSCF -- synthesis translate_off GENERIC MAP ( NOM_FREQ => "2.5" ) -- synthesis translate_on FPGA Libraries Reference Guide 603 : PORT MAP ( OSC => osc_int ); OSCG Oscillator for ECP5 Architectures Supported: ECP5 OUTPUT: OSC ATTRIBUTES: DIV: See table below for OSCG user clock frequency values. The default Divide Ratio value is 128. Base frequency is 310 MHz. Table 451: User Clock Frequency Values Divide Ratio Frequency Divide (Ftyp) (MHz) Ratio Frequency (Ftyp) (MHz) Divide Ratio Frequency (Ftyp) (MHz) Divide Ratio Frequency (Ftyp) (MHz) 2 155.0 18 17.2 36 8.6 72 4.3 3 103.3 19 16.3 38 8.2 76 4.1 4 77.5 20 15.5 40 7.8 80 3.9 5 62.0 21 14.8 42 7.4 84 3.7 6 51.7 22 14.1 44 7.0 88 3.5 7 44.3 23 13.5 46 6.7 92 3.4 8 38.8 24 12.9 48 6.5 96 3.2 9 34.4 25 12.4 50 6.2 100 3.1 10 31.0 26 11.9 52 6.0 104 3.0 11 28.2 27 11.5 54 5.7 108 2.9 12 25.8 28 11.1 56 5.5 112 2.8 13 23.8 29 10.7 58 5.3 116 2.7 14 22.1 30 10.3 60 5.2 120 2.6 15 20.7 31 10.0 62 5.0 124 2.5 FPGA Libraries Reference Guide 604 : Table 451: User Clock Frequency Values (Continued) Divide Ratio Frequency Divide (Ftyp) (MHz) Ratio Frequency (Ftyp) (MHz) Divide Ratio Frequency (Ftyp) (MHz) Divide Ratio Frequency (Ftyp) (MHz) 16 19.4 32 9.7 64 4.8 128 2.4 17 18.2 34 9.1 68 4.6 See the I/O port description in the below table. Table 452: Port Name I/O Description OSC Output Oscillator clock output Description The OSCG element performs multiple functions on the ECP5 device. It is used for configuration, soft error detect (SED), as well as optionally in user mode. In user mode, the OSCG element has the following features: It permits a design to be fully self-clocked, as long as the quality of the OSCG element's silicon-based oscillator is adequate, and provides performance superior to a "roll-your-own" user-created implementation. If it's unused it can be turned off for power savings. It has a direct connection to primary clock routing through the left midmux. It can be configured for operation at a wide range of frequencies via configuration bits. The bandgap controller can't be shut off in ECP5 so there is no need for any caveats for BGOFF. The one feature available to the user is the user-mode OSCG oscillator frunction. The OSCG provides an internal clock source to user designs. OSCG Usage with VHDL COMPONENT OSCG -- synthesis translate_off GENERIC (DIV: integer := 128); -- synthesis translate_on PORT ( OSC : OUT std_logic); END COMPONENT; attribute DIV : integer; attribute DIV of OSCinst0 : label is 128; begin OSCInst0: OSCG -- synthesis translate_off FPGA Libraries Reference Guide 605 : GENERIC MAP (DIV => 128) -- synthesis translate_on PORT MAP (OSC => OSC); OSCG Usage with Verilog module OSC_TOP(OSC_CLK); output OSC_CLK; OSCD OSCinst0 (.CFGCLK(OSC_CLK)); defparam OSCinst0.NOM_FREQ = "2.5"; endmodule OSCH Oscillator for MachXO2/Platform Manager 2 Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUT: STDBY OUTPUT: OSC, SEDSTDBY ATTRIBUTES: NOM_FREQ: 2.08 (default), 2.15, 2.22, 2.29, 2.38, 2.46, 2.56, 2.66, 2.77, 2.89, 3.02, 3.17, …, 19.0, 20.46, 22.17, 24.18, 26.6, 29.56, 33.25, 38.0, 44.33, 53.2, 66.5, 88.67, 133.0 (in MHz) Description OSCH is the primitive name of the MachXO2/Platform Manager 2 oscillator. See the IO port description in the below table. Table 453: FPGA Libraries Reference Guide Port Name I/O Description STDBY Input Standby – power down oscillator OSC Output Oscillator clock output SEDSTDBY Output Standby – power down SED clock 606 : By default, the internal oscillator will be enabled even if the user does not have it instantiated in the design. User can disable the internal oscillator by instantiating it in the design and using the STDBY port. This port can be connected to a user signal or an I/O pin. The user must insure that the oscillator is not turned off when it is needed for operations such as WISHBONE bus operations, SPI or I2C configuration, SPI or I2C user mode operation, SPI or I2C background Flash updates or SED. OSCH Usage with VHDL COMPONENT OSCH -- synthesis translate_off GENERIC (NOM_FREQ: string := "2.56"); -- synthesis translate_on PORT (STDBY : IN std_logic; OSC : OUT std_logic; SEDSTDBY: OUT std_logic); END COMPONENT; attribute NOM_FREQ : string; attribute NOM_FREQ of OSCinst0 : label is "2.56"; begin OSCInst0: OSCH -- synthesis translate_off GENERIC MAP ( NOM_FREQ => "2.5" ) -- synthesis translate_on PORT MAP (STDBY => stdby, OSC => osc_int, SEDSTDBY => stdby_sed ); For more information, refer to the following technical note on the Lattice web site: TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide OSHX2A Memory Output DDR Primitive for Address and Command Architectures Supported: FPGA Libraries Reference Guide ECP5 607 : INPUT: DO, D1, SCLK, ECLK, RST OUTPUT: Q Description This primitive is used to generate the CS_N output for DDR2, DDR3, DDR3L & LPDDR memory interface. The I/O port description are given in the following table. Table 454: Port Name I/O Description DO, D1 I Data input ECLK I ECLK input (2x speed of SCLK) SCLK I SCLK input RST I Reset input Q O Address and command input OSRX1A Output 1-Bit Shift Register Architectures Supported: LatticeSC/M INPUTS: D, CLK, RST FPGA Libraries Reference Guide 608 : OUTPUT: Q ATTRIBUTES: REGSET: "RESET" (default), "SET" Description Outputs data through the shift register to the output data. The following symbolic diagram shows the flip-flop structure of this primitive. OSRX2A Output 2-Bit Shift Register Architectures Supported: LatticeSC/M INPUTS: D0, D1, ECLK, SCLK, RST OUTPUTS: Q, UPDATE Description Outputs data through the shift register to the output data. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 609 : OSRX4A Output 4-Bit Shift Register Architectures Supported: LatticeSC/M INPUTS: D0, D1, D2, D3, ECLK, SCLK, RST OUTPUTS: Q, UPDATE Description Outputs data through the shift register to the output data. The following symbolic diagram shows the flip-flop structure of this primitive. FPGA Libraries Reference Guide 610 : FPGA Libraries Reference Guide 611 : P PCNTR Power Controller Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: CLK, USERTIMEOUT, USERSTDBY, CLRFLAG, CFGWAKE, CFGSTDBY OUTPUTS: STOP, STDBY, SFLAG ATTRIBUTES: STDBYOPT: "USER_CFG" (default), "USER", "CFG" TIMEOUT: "BYPASS" (default), "USER", "COUNTER" WAKEUP: "USER_CFG" (default), "USER", "CFG" POROFF: "FALSE" (default), "TRUE" BGOFF: "FALSE" (default), "TRUE" Description PCNTR is the MachXO2/Platform Manager 2 power controller primitive. For more information, refer to the following technical note on the Lattice web site: FPGA Libraries Reference Guide TN1198 - Power Estimation and Management for MachXO2 Device 612 : PDP16KA 16K Pseudo Dual Port Block RAM Architectures Supported: LatticeSC/M INPUTS: DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, DI18, DI19, DI20, DI21, DI22, DI23, DI24, DI25, DI26, DI27, DI28, DI29, DI30, DI31, DI32, DI33, DI34, DI35, ADW0, ADW1, ADW2, ADW3, ADW4, ADW5, ADW6, ADW7, ADW8, ADW9, ADW10, ADW11, ADW12, ADW13, CEW, CLKW, WE, CSW0, CSW1, CSW2, ADR0, ADR1, ADR2, ADR3, ADR4, ADR5, ADR6, ADR7, ADR8, ADR9, ADR10, ADR11, ADR12, ADR13, CER, CLKR, CSR0, CSR1, CSR2, RST OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17, DO18, DO19, DO20, DO21, DO22, DO23, DO24, DO25, DO26, DO27, DO28, DO29, DO30, DO31, DO32, DO33, DO34, DO35 ATTRIBUTES: DATA_WIDTH_W: 1, 2, 4, 9, 18 (default), 36 DATA_WIDTH_R: 1, 2, 4, 9, 18 (default), 36 REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 3-bit binary value (default: 3’b000) CSDECODE_R: any 3-bit binary value (default: 3’b000) FPGA Libraries Reference Guide 613 : GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: (Verilog) 320'hXXX...X (80-bit hexadecimal value) (VHDL) 0xXXX...X (80-bit hexadecimal value) Default: all zeros Description You can refer to the following technical note on the Lattice web site on details of EBR port definition, attribute definition and usage. TN1094 - On-Chip Memory Usage Guide for LatticeSC Devices Note When the write data width (DATA_WIDTH_W) is set to 36, the WE port is invalid, that is, it has no effect on the data output. PDP8KA 8K Pseudo Dual Port Block RAM Architectures Supported: LatticeECP/EC LatticeXP INPUTS: CEW, CLKW, CSW0, CSW1, CSW2, WE, CER, CLKR, CSR0, CSR1, CSR2, RST, DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, DI18, DI19, DI20, DI21, DI22, DI23, DI24, DI25, DI26, DI27, DI28, DI29, DI30, DI31, DI32, DI33, DI34, DI35, ADW0, ADW1, ADW2, ADW3, ADW4, ADW5, ADW6, ADW7, ADW8, ADW9, FPGA Libraries Reference Guide 614 : ADW10, ADW11, ADW12, ADR0, ADR1, ADR2, ADR3, ADR4, ADR5, ADR6, ADR7, ADR8, ADR9, ADR10, ADR11, ADR12 OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17, DO18, DO19, DO20, DO21, DO22, DO23, DO24, DO25, DO26, DO27, DO28, DO29, DO30, DO31, DO32, DO33, DO34, DO35 ATTRIBUTES (LatticeXP/EC): DATA_WIDTH_W: 1, 2, 4, 9, 18, 36 (default) DATA_WIDTH_R: 1, 2, 4, 9, 18, 36 (default) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 3-bit binary value (default: 111) CSDECODE_R: any 3-bit binary value (default: 111) GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_1F: (Verilog) 320'hXXX...X (80-bit hexadecimal value) (VHDL) 0xXXX...X (80-bit hexadecimal value) Default: all zeros Description You can refer to the following technical note on the Lattice web site on details of EBR port definition, attribute definition and usage. TN1051 - Memory Usage Guide for LatticeECP/EC and LatticeXP Devices PDP8KB 8K Pseudo Dual Port Block RAM Architectures Supported: FPGA Libraries Reference Guide MachXO Platform Manager 615 : INPUTS: CEW, CLKW, CSW0, CSW1, CSW2, WE, CER, CLKR, CSR0, CSR1, CSR2, RST, DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, DI18, DI19, DI20, DI21, DI22, DI23, DI24, DI25, DI26, DI27, DI28, DI29, DI30, DI31, DI32, DI33, DI34, DI35, ADW0, ADW1, ADW2, ADW3, ADW4, ADW5, ADW6, ADW7, ADW8, ADW9, ADW10, ADW11, ADW12, ADR0, ADR1, ADR2, ADR3, ADR4, ADR5, ADR6, ADR7, ADR8, ADR9, ADR10, ADR11, ADR12 OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17, DO18, DO19, DO20, DO21, DO22, DO23, DO24, DO25, DO26, DO27, DO28, DO29, DO30, DO31, DO32, DO33, DO34, DO35 ATTRIBUTES: DATA_WIDTH_W: 1, 2, 4, 9, 18 (default), 36 DATA_WIDTH_R: 1, 2, 4, 9, 18 (default), 36 REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 3-bit binary value (default: 3’b000) CSDECODE_R: any 3-bit binary value (default: 3’b000) GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_1F: (Verilog) "320'hXXX...X" (80-bit hex string) (VHDL) "0xXXX...X" (80-bit hex string) Default: all zeros FPGA Libraries Reference Guide 616 : Description You can refer to the following technical note on the Lattice web site on details of EBR port definition, attribute definition and usage. TN1092 - MachXO Memory Usage Guide PDPW16KB Pseudo Dual Port Block RAM Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, DI18, DI19, DI20, DI21, DI22, DI23, DI24, DI25, DI26, DI27, DI28, DI29, DI30, DI31, DI32, DI33, DI34, DI35, ADW0, ADW1, ADW2, ADW3, ADW4, ADW5, ADW6, ADW7, ADW8, BE0, BE1, BE2, BE3, CEW, CLKW, CSW0, CSW1, CSW2, ADR0, ADR1, ADR2, ADR3, ADR4, ADR5, ADR6, ADR7, ADR8, ADR9, ADR10, ADR11, ADR12, ADR13, CER, CLKR, CSR0, CSR1, CSR2, RST OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17, DO18, DO19, DO20, DO21, DO22, DO23, DO24, DO25, DO26, DO27, DO28, DO29, DO30, DO31, DO32, DO33, DO34, DO35 ATTRIBUTES: DATA_WIDTH_W: 1, 2, 4, 9, 18, 36 (default) FPGA Libraries Reference Guide 617 : DATA_WIDTH_R: 1, 2, 4, 9, 18, 36 (default) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 3-bit binary value (default: 0b000) CSDECODE_R: any 3-bit binary value (default: 0b000) GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: "0xXXX...X" (80-bit hex string) (default: all zeros) Description You can refer to the following technical notes on the Lattice web site on details of EBR port definition, attribute definition and usage. TN1104 - LatticeECP2/M Memory Usage Guide TN1137 - LatticeXP2 Memory Usage Guide PDPW16KC Pseudo Dual Port Block RAM Architectures Supported: LatticeECP3 INPUTS: DI35, DI34, DI33, DI32, DI31, DI30, DI29, DI28, DI27, DI26, DI25, DI24, DI23, DI22, DI21, DI20, DI19, DI18, DI17, DI16, DI15, DI14, DI13, DI12, DI11, DI10, DI9, DI8, DI7, DI6, DI5, DI4, DI3, DI2, DI1, DI0, ADW8, ADW7, ADW6, ADW5, ADW4, ADW3, ADW2, ADW1, ADW0, BE3, BE2, BE1, BE0, CEW, CLKW, CSW2, CSW1, CSW0, ADR13, ADR12, ADR11, ADR10, FPGA Libraries Reference Guide 618 : ADR9, ADR8, ADR7, ADR6, ADR5, ADR4, ADR3, ADR2, ADR1, ADR0, CER, CLKR, CSR2, CSR1, CSR0, RST OUTPUTS: DO35, DO34, DO33, DO32, DO31, DO30, DO29, DO28, DO27, DO26, DO25, DO24, DO23, DO22, DO21, DO20, DO19, DO18, DO17, DO16, DO15, DO14, DO13, DO12, DO11, DO10, DO9, DO8, DO7, DO6, DO5, DO4, DO3, DO2, DO1, DO0 ATTRIBUTES: DATA_WIDTH_W: 1, 2, 4, 9, 18, 36 (default) DATA_WIDTH_R: 1, 2, 4, 9, 18 (default), 36 REGMODE: "NOREG" (default), "OUTREG" CSDECODE_W: any 3-bit binary value (default: all zeros) CSDECODE_R: any 3-bit binary value (default: all zeros) GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: "0xXXX...X" (80-bit hex string) (default: all zeros) Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1179 - LatticeECP3 Memory Usage Guide PDPW16KD Pseudo Dual Port RAM Architectures Supported: FPGA Libraries Reference Guide ECP5 619 : INPUTS: DI35, DI34, DI33, DI32, DI31, DI30, DI29, DI28, DI27, DI26, DI25, DI24, DI23, DI22, DI21, DI20, DI19, DI18, DI17, DI16, DI15, DI14, DI13, DI12, DI11, DI10, DI9, DI8, DI7, DI6, DI5, DI4, DI3, DI2, DI1, DI0, ADW8, ADW7, ADW6, ADW5, ADW4, ADW3, ADW2, ADW1, ADW0, ADR8, ADR7, ADR6, ADR5, ADR4, ADR3, ADR2, ADR1, ADR0, BE3, BE2, BE1, BE0, CEW, CLKW, CSW2, CSW1, CSW0, ADR13, ADR12, ADR11, ADR10, ADR9, ADR8, ADR7, ADR6, ADR5, ADR4, ADR3, ADR2, ADR1, ADR0, CER, CLKR, CSR2, CSR1, CSR0, OCER, RST OUTPUTS: DO35, DO34, DO33, DO32, DO31, DO30, DO29, DO28, DO27, DO26, DO25, DO24, DO23, DO22, DO21, DO20, DO19, DO18, DO17, DO16, DO15, DO14, DO13, DO12, DO11, DO10, DO9, DO8, DO7, DO6, DO5, DO4, DO3, DO2, DO1, DO0 ATTRIBUTES: The following table lists PDPW16KD Attributes: Figure 1: Description Attribute Name Read Port Data Width Write Port Data Width Enable Output Registers FPGA Libraries Reference Guide Attribute Type Value Default Value DATA_WIDTH C _R 1, 2, 4, 9, 18, 36 36 DATA_WIDTH C _W 36 36 REGMODE NOREG, OUTREG NOREG C 620 : Figure 1: Description Attribute Name Attribute Type Value Default Value Enable GSR GSR C ENABLED, DISABLED ENABLED Reset Mode RESETMODE C ASYNC, SYNC SYNC Reset Release ASYNC_RES C ET_RELEASE ASYNC, SYNC SYNC Memory File Format C BINARY, HEX, ADDRESSE DHEX Chip Select Decode for Port A CSDECODE_ W C 0b000 Chip Select Decode for Port B CSDECODE_ R C 0b000 Init Value INITVAL_00… C INITVAL_3F MEM_LPC_FILE MEM_LPC_FI Core Only LE MEM_INIT_FILE MEM_INIT_FI LE Core Only Defines if the memory file can be updated INIT_DATA C STATIC, DYNAMIC STATIC Enable Output ClockEn OCER C ENABLE, DISABLE WID DISABLE Core Only PDPW8KC Pseudo Dual Port Block RAM Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 621 : INPUTS: DI17, DI16, DI15, DI14, DI13, DI12, DI11, DI10, DI9, DI8, DI7, DI6, DI5, DI4, DI3, DI2, DI1, DI0, ADW8, ADW7, ADW6, ADW5, ADW4, ADW3, ADW2, ADW1, ADW0, BE1, BE0, CEW, CLKW, CSW2, CSW1, CSW0, ADR12, ADR11, ADR10, ADR9, ADR8, ADR7, ADR6, ADR5, ADR4, ADR3, ADR2, ADR1, ADR0, CER, CLKR, CSR2, CSR1, CSR0, RST, OCER OUTPUTS: DO17, DO16, DO15, DO14, DO13, DO12, DO11, DO10, DO9, DO8, DO7, DO6 DO5, DO4, DO3, DO2, DO1, DO0 ATTRIBUTES: DATA_WIDTH_W: 18 (default) DATA_WIDTH_R: 1, 2, 4, 9, 18 (default: 9) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE_W: any 3-bit binary value (default: all zeros) CSDECODE_R: any 3-bit binary value (default: all zeros) GSR: "ENABLED" (default), "DISABLED" RESETMODE: "SYNC" (default), "ASYNC" ASYNC_RESET_RELEASE: "SYNC" (default), "ASYNC" INIT_DATA: "STATIC" (default), "DYNAMIC" FPGA Libraries Reference Guide 622 : INITVAL_00 to INITVAL_1F: (Verilog) "320'hXXX...X" (80-bit hex string) (VHDL) "0xXXX...X" (80-bit hex string) Default: all zeros Description The following table describes the I/O ports of the PDPW8KC primitive. Table 455: Port Name I/O Definition CLKR I Read clock CLKW I Write clock RST I Reset CSW[1:0] I Chip select write CSR[1:0] I Chip select read CER I Read clock enable CEW I Write clock enable OCER I Read output clock enable BE[1:0] I Byte enable DI[17:0] I Write data (up to 18) ADW[8:0] I Write address (up to 9) ADR[12:0] I Read address (up to 13) DO[17:0] O Read data (up to 18) You can refer to the following technical note on the Lattice web site on details of EBR port definition, attribute definition and usage. TN1201 - Memory Usage Guide for MachXO2 Devices PERREGA Persistent User Register Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 623 : INPUTS: D15, D14, D13, D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1, D0 OUTPUTS: Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0 Description The PERREGA primitive enables you to use 16-bit registers to store information when the device goes into the configuration mode. The data on these registers will stay intact during the reconfiguration and be available for use after then. For example, you can use these registers to capture the last pattern that causes an error to reboot from the golden source when using SED. These latches are available through the internal CIB. The below table describes the I/O ports of the PERREGA primitive. Table 456: Signal Type Description Function D[15:0] CIB Input Parallel Data In Provides parallel data from the FPGA fabric for the latch. Q[15:0] CIB Output Parallel Data Out Provides parallel data to the FPGA fabric for the latch. PROGRAMN Control Signal High to Low Edge on the PROGRAMN pin Latch in the data from D[15:0]. DONE Internal Signal Done signal Prohibits multiple latching due to transitional glitches on the LE CIB or PROGRAMN pin. PFUMX 2-Input Mux within the PFU, C0 Used for Selection with Positive Select Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager 624 : Platform Manager 2 INPUTS: ALUT, BLUT, C0 OUTPUT: Z Truth Table Table 457: INPUTS OUTPUTS BLUT ALUT C0 Z X 1 1 1 X 0 1 0 1 X 0 1 0 X 0 0 X = Don’t care Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. PG Power Guard Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 625 : INPUTS: D, E OUTPUT: Q Description In the power guard mode, the receiver input is disconnected from the pad and held low with a weak pull down. The pad can be toggling and no receiver power will be used. Power guard is enabled on a bank by bank basis. Each bank has a CIB input signal to enable power guard. In addition, each PIO has individually programmable bit control to disable or enable the power guard capability. PG is the power guard primitive for MachXO2/Platform Manager 2 devices. You can generate a primitive for a group of I/O pins and then connect it in the design. The PG primitive D port must be connected to the IO pin. You are required to connect the enable input of the primitive to the signal that is used to activate the power guard function. Only one enable signal can be used for all I/Os within an individual I/O bank using power guard. An individual I/O pin is only allowed to connect to one PG primitive module but there could be more than one PG module active in a single I/O bank. Once an I/O signal is connected to the power guard primitive, the software sets the individually programmable bit for that PIO to enable power guard. The default setting for this bit is to disable the power guard function for a PIO. The following table describes the IO ports of the PG primitive. Table 458: Port Name I/O Description D I This is the signal coming from an input or I/O pad. This pin cannot have any fanout—only connects between pad and PG. E I This is the “ENABLE” input that is tied to BIE (Block Input Enable). When E=0, Q is connected to D. When E=1, Q is isolated from D. Q FPGA Libraries Reference Guide O This is the output of the power guard that drives towards the core. When E=0, the output Q is driven by the input D. 626 : For more information, refer to the following technical note on the Lattice web site: TN1198 - Power Estimation and Management for MachXO2 Device PLLREFCS PLL Dynamic Reference Clock Switching Architectures Supported: ECP5 MachXO2 MachXO3L Platform Manager 2 INPUTS: CLK0, CLK1, SEL OUTPUT: PLLCSOUT Description The PLLREFCS primitive is used to support the dynamic reference clock switching using the SEL signal. This primitive does not require a wrapper. You only need to instantiate the PLLREFCS primitive if you want to select between two different reference clocks in your application. If you only use one reference clock for the PLL, the software will automatically make the correct connections. The following table describes the I/O ports of the PLLREFCS primitive. Table 459: FPGA Libraries Reference Guide Port Name I/O Description CLK0, CLK1 I There are two clock input MUXES (8 inputs each) which are labeled as REFCLK1 and REFCLK2. CLK0 is the output of REFCLK1. CLK1 is the output of REFCLK2. SEL I Selects which signal goes to the input clock MUX. PLLCSOUT O 627 : For more information, refer to the following technical note on the Lattice web site: TN1199 - MachXO2 sysCLOCK PLL Design and Usage Guide PRADD18A 18-bit PreAdder/Shift Architectures Supported: ECP5 INPUTS: PA17, PA16, PA15, PA14, PA13, PA12, PA11, PA10, PA9, PA8, PA7, PA6, PA5, PA4, PA3, PA2, PA1, PA0, PB17, PB16, PB15, PB14, PB13, PB12, PB11, PB10, PB9, PB8, PB7, PB6, PB5, PB4, PB3, PB2, PB1, PB0, SRIA17, SRIA16, SRIA15, SRIA14, SRIA13, SRIA12, SRIA11, SRIA10, SRIA9, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB17, SRIB16, SRIB15, SRIB14, SRIB13, SRIB12, SRIB11, SRIB10, SRIB9, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0, C17, C16, C15, C14, C13, C12, C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1, C0, SOURCEA, OPPRE, CLK3, CLK2, CLK1, CLK0, CE3, CE2, CE1, CE0, RST3, RST2, RST1, RST0 OUTPUT: SROA17, SROA16, SROA15, SROA14, SROA13, SROA12, SROA11, SROA10, SROA9, SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB17, SROB16, SROB15, SROB14, SROB13, SROB12, SROB11, SROB10, SROB9, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, PO17, PO16, PO15, PO14, PO13, PO12, PO11, PO10, PO9, PO8, PO7, PO6, PO5, PO4, PO3, PO2, PO1, PO0 FPGA Libraries Reference Guide 628 : ATTRIBUTES: The attributes of PRADD18A are identical to the attributes of PRADD9A. Description The following table describes the I/O ports of the PRADD18A primitive. Table 460: Port Name I/O Description CE[3:0] I Clock Enable Inputs CLK[3:0] I Clock Inputs RST[3:0] I Reset Inputs SOURCEA I Source Selector for Pre-adder Input A PA[17:0] I Pre-adder Parallel Input A PB[17:0] I Pre-adder Parallel Input B SRIA[17:0] I Pre-adder Shift Input A SRIB[17:0] I Pre-adder Shift Input A, backward direction C[17:0] I Input used for high-speed option SROA[17:0] O Pre-adder Shift Output A SROB[17:0] O Pre-adder Shift Output B PO[17:0] O Pre-adder Addition Output OPPRE I Opcode for PreAdder PRADD9A 9-bit PreAdder/Shift Architectures Supported: FPGA Libraries Reference Guide ECP5 629 : INPUTS: PA8, PA7, PA6, PA5, PA4, PA3, PA2, PA1, PA0, PB8, PB7, PB6, PB5, PB4, PB3, PB2, PB1, PB0, SRIA8, SRIA7, SRIA6, SRIA5, SRIA4, SRIA3, SRIA2, SRIA1, SRIA0, SRIB8, SRIB7, SRIB6, SRIB5, SRIB4, SRIB3, SRIB2, SRIB1, SRIB0, C8, C7, C6, C5, C4, C3, C2, C1, C0, SOURCEA, OPPRE, CLK3, CLK2, CLK1, CLK0, CE3, CE2, CE1, CE0, RST3, RST2, RST1, RST0 OUTPUT: SROA8, SROA7, SROA6, SROA5, SROA4, SROA3, SROA2, SROA1, SROA0, SROB8, SROB7, SROB6, SROB5, SROB4, SROB3, SROB2, SROB1, SROB0, PO8, PO7, PO6, PO5, PO4, PO3, PO2, PO1, PO0 ATTRIBUTES The following table describes the attributes for PRADD9A primitive. Table 461: FPGA Libraries Reference Guide Attribute Name Values Default Value REG_INPUTA_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE REG_INPUTA_CE CE0, CE1, CE2, CE3 CE0 REG_INPUTA_RST RST0, RST1, RST2, RST3 RST0 REG_INPUTB_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE REG_INPUTB_CE CE0, CE1, CE2, CE3 CE0 REG_INPUTB_RST RST0, RST1, RST2, RST3 RST0 REG_INPUTC_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE REG_INPUTC_CE CE0, CE1, CE2, CE3 CE0 REG_INPUTC_RST RST0, RST1, RST2, RST3 RST0 REG_OPPRE_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE 630 : Table 461: Attribute Name Values Default Value REG_OPPRE_CE CE0, CE1, CE2, CE3 CE0 REG_OPPRE_RST RST0, RST1, RST2, RST3 RST0 CLK0_DIV ENABLED, DISABLED ENABLED CLK1_DIV ENABLED, DISABLED ENABLED CLK2_DIV ENABLED, DISABLED ENABLED CLK3_DIV ENABLED, DISABLED ENABLED HIGHSPEED_CLK NONE, CLK0, CLK1, CLK2, CLK3 NONE GSR ENABLED, DISABLED ENABLED CAS_MATCH_REG TRUE, FALSE FALSE SOURCEA_MODE A_SHIFT, C_SHIFT, A_C_DYNAMIC, HIGHSPEED A_SHIFT SOURCEB_MODE SHIFT, PARALLEL, INTERNAL SHIFT FB_MUX SHIFT, SHIFT_BYPASS, DISABLED SHIFT RESETMODE SYNC, ASYNC SYNC PRADD_LOC 0, 1 0 SYMMETRY_MODE DIRECT, INTERNAL DIRECT PRADD_LOC = 0 indicates left location; 1 indicates the right location *Symmetry_MODE: DIRECT = MUX_PA0 set to 1. INTERNAL = MUX_PA0 set to 0. *For 1D FIR Filter operation, Symmetry_Mode will be set to INTERNAL. Left leg of PreAdder will get input from Reg 12 output and the right leg will get input from Reg 13 output. *For 2D FIR Filter operation, Symmetry_Mode will be set to DIRECT. Left leg of PreAdder will get the direct input from MUIA0 and the right leg of the PreAdder will get MUIA0 delayed by 2 clock cycles (Reg 12 and Reg 13). In this mode, external MUIB0 port will not be used. Also, SOURCEB_MODE must also be set to INTERNAL. FPGA Libraries Reference Guide 631 : Details of SOURCEA_MODE Attribute Table 462: IPExpress Operation SOURCEA_M ODE Attribute SOURCEA Port Mc1_pa_mux3 Mc1_pa_mux4 Shift A_SHIFT 1 00 01 A A_SHIFT 0 00 00 C C_SHIFT 0 01 00 A/C Dynamic A_C_DYNAMI C Live 10 00 HighspeedAC HIGHSPEED 0 11 00 Dynamic Shift/A A_SHIFT Live 00 10 Dynamic Shift/C C_SHIFT Live 01 10 Details of SOURCEB_MODE Attribute Table 463: SOURCEB_MODE Attribute Operation (mc1_pa_b0 mux) SHIFT SRIB coming from the adjacent PREADDER on the right PARALLEL PB INTERNAL Output of Reg. 12 Details of FB_MUX Attribute Table 464: FPGA Libraries Reference Guide FB_MUX Attribute Operation (MUX_FB0) SHIFT Output of Reg. 16 SHIFT_BYPASS Output of Reg. 15 DISABLED For placer only (PreAdder on the left side) 632 : Description The following table describes the I/O ports of the PRADD9A primitive. Table 465: Port Name I/O Description CE[3:0] I Clock Enable Inputs CLK[3:0] I Clock Inputs RST[3:0] I Reset Inputs SOURCEA I Source Selector for Pre-adder Input A PA[8:0] I Pre-adder Parallel Input A PB[8:0] I Pre-adder Parallel Input B SRIA[8:0] I Pre-adder Shift Input A SRIB[8:0] I Pre-adder Shift Input A, backward direction C[8:0] I Input used for high-speed option SROA[8:0] O Pre-adder Shift Output A SROB[8:0] O Pre-adder Shift Output B PO[8:0] O Pre-adder Addition Output OPPRE I Opcode for PreAdder PUR Power Up Set/Reset Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 633 : INPUT: PUR ATTRIBUTES: RST_PULSE: integer (default: 1) Description PUR is used to reset or set all register elements in your design upon device configuration/startup. The PUR component can be connected to a net from an input buffer or an internally generated net. It is active LOW and when pulsed will set or reset all register bits to the same state as the local set or reset functionality. It is not necessary to connect signals for PUR to any register elements explicitly. The function will be implicitly connected globally. PVTIOCTRL PVT Monitor Circuit Controller Architectures Supported: LatticeSC/M INPUT: UPDATE Description The PVTIOCTRL primitive is used to generate a signal to control the PVT (Process, Voltage, and Temperature) monitor circuit. When UPDATE is 1, the PVT monitor circuit output will be updated. When UPDATE is 0, the last value of the PVT monitor circuit output is latched in. FPGA Libraries Reference Guide 634 : R RDBK Readback Controller Architectures Supported: LatticeSC/M INPUTS: RDCFGN, FFRDCFG, FFRDCFGCLK OUTPUT: RDDATA Description RDBK is used to read back the configuration data and optionally the state of the PFU outputs. RDBK can be done while the FPGA is in normal system operation. To use RDBK, select options in the bit stream generator within the place and route tool. You can choose the option to prohibit readback, allow a single readback, or allow unrestricted readback. For more information on RDBK, refer to applicable technical notes or contact technical support. RDCFGN: A high-to-low transition on this input initiates a readback operation. This pin must remain low during the readback operation. RDDATA: Readback data is available at this output, which in turn is connected to the same pad as that used by TDO for boundary scan. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 635 : ROM128X1 128 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: AD0, AD1, AD2, AD3, AD4, AD5, AD6 OUTPUT: DO0 ATTRIBUTES: INITVAL: (Verilog) 128'hXXX...X (32-bit hex string for LatticeECP2 and LatticeXP2; 32-bit hex value for other devices) (VHDL) 0xXXX...X (32-bit hex string for LatticeECP2 and LatticeXP2; 32-bit hex value for other devices) Default: all zeros Description The ROM128X1 symbol represents a 128 word by1-bit read-only memory. This ROM can be used to implement a ORCALUT7 in a design. The read operation is asynchronous and is always active. The memory is always being read. The INITVAL=<value> attribute is used to initialize the ROM. The <value> should consist of 128 one-bit binary or 32 hexadecimal data written into the FPGA Libraries Reference Guide 636 : ROM from the highest address to the lowest address. For example, if the following attribute is specified: INITVAL=0x0123456789ABCDEF0123456789ABCDEF (in hex) or INITVAL=0000000100100011010001010110011110001001101010111100110 111101111000000010010001101000101011001111000100110101011110011 0111101111 (in binary) it implies that the above data is loaded sequentially from location 127 to 0 (where location 127 would contain value 0 and location 0 value 1). Truth Table Table 466: INPUTS OUTPUTS AD[5:0] DO0 AD[5:0] MEM[AD[5:0]] OPERATION Read MEM[AD[5:0]] ROM128X1A 128 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: AD6, AD5, AD4, AD3, AD2, AD1, AD0 FPGA Libraries Reference Guide 637 : OUTPUT: DO0 ATTRIBUTES: INITVAL: (Verilog) 128'hXXX...X (32-bit hexadecimal value) (VHDL) 0xXXX...X (32-bit hexadecimal value) Default: all zeros Description PFU based distributed 128 Word by 1 Bit ROM primitive. See Memory Primitives Overview for individual port description. You can refer to the following technical notes on the Lattice web site for port definition, attribute definition and usage. TN1201 - Memory Usage Guide for MachXO2 Devices TN1179 - LatticeECP3 Memory Usage Guide ROM16X1 16 Word by 1 Bit Read-Only Memory Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: AD0, AD1, AD2, AD3 OUTPUT: DO0 ATTRIBUTES: FPGA Libraries Reference Guide 638 : INITVAL: (Verilog) 16'hXXXX (4-bit hex string for LatticeECP2 and LatticeXP2; 4-bit hex value for other devices) (VHDL) 0xXXXX (4-bit hex string for LatticeECP2 and LatticeXP2; 4-bit hex value for other devices) Default: all zeros Description The ROM16X1 symbol represents a 16 word by 1 bit read-only memory. This ROM can be used to implement a ORCALUT4 in a design. The read operation is asynchronous and is always active. The memory is always being read. The INITVAL=<value> attribute is used to initialize the ROM. The <value> should consist of 16 one-bit binary or 4 hexadecimal data written into the ROM from the highest address to the lowest address. For example, if the following attribute is specified: INITVAL=0xF30A (in hex) or INITVAL=1111001100001010 (in binary) it implies that the above data is loaded sequentially from location 15 to 0 (where location 15 would contain value 1 and location 0 value 0). Truth Table Table 467: INPUTS OUTPUTS AD[3:0] DO0 AD[3:0] MEM[AD[3:0]] OPERATION Read MEM[AD[3:0]] ROM16X1A 16 Word by 1 Bit Read-Only Memory Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 639 : INPUTS: AD3, AD2, AD1, AD0 OUTPUT: DO0 ATTRIBUTES: INITVAL: (Verilog) 16'hXXXX (4-bit hexadecimal value) (VHDL) 0xXXXX (4-bit hexadecimal value) Default: all zeros Description PFU based distributed 16 Word by 1 Bit ROM primitive. See Memory Primitives Overview for individual port description. You can refer to the following technical notes on the Lattice web site for port definition, attribute definition, and usage. TN1201 - Memory Usage Guide for MachXO2 Devices TN1179 - LatticeECP3 Memory Usage Guide ROM256X1 256 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 MachXO Platform Manager 640 : INPUTS: AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7 OUTPUT: DO0 ATTRIBUTES: INITVAL: (Verilog) 256'hXXX...X (64-bit hex string for LatticeECP2 and LatticeXP2; 64-bit hex value for other devices) (VHDL) 0xXXX...X (64-bit hex string for LatticeECP2 and LatticeXP2; 64-bit hex value for other devices) Default: all zeros Description The ROM256X1 symbol represents a 256 word by1-bit read-only memory. This ROM can be used to implement a ORCALUT8 in a design. The read operation is asynchronous and is always active. The memory is always being read. The INITVAL=<value> attribute is used to initialize the ROM. The <value> should consist of 256 one-bit binary or 64 hexadecimal data written into the ROM from the highest address to the lowest address. For example, if the following attribute is specified: INITVAL=0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF 0123456789ABCDEF (in hex) or INITVAL=0000000100100011010001010110011110001001101010111100110 111101111000000010010001101000101011001111000100110101011110011 011110111100000001001000110100010101100111100010011010101111001 101111011110000000100100011010001010110011110001001101010111100 110111101111 (in binary) it implies that the above data is loaded sequentially from location 255 to 0 (where location 255 would contain value 0 and location 0 value 1). FPGA Libraries Reference Guide 641 : Truth Table Table 468: INPUTS OUTPUTS AD[5:0] DO0 AD[5:0] MEM[AD[5:0]] OPERATION Read MEM[AD[5:0]] ROM256X1A 256 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: AD7, AD6, AD5, AD4, AD3, AD2, AD1, AD0 OUTPUTS: DO0 ATTRIBUTES: INITVAL: (Verilog) 256'hXXX...X (64-bit hexadecimal value) (VHDL) 0xXXX...X (64-bit hexadecimal value) Default: all zeros Description PFU based distributed 256 Word by 1 Bit ROM primitive. See Memory Primitives Overview for individual port description. FPGA Libraries Reference Guide 642 : You can refer to the following technical notes on the Lattice web site for port definition, attribute definition, and usage. TN1201 - Memory Usage Guide for MachXO2 Devices TN1179 - LatticeECP3 Memory Usage Guide ROM32X1 32 Word by 1 Bit Read-Only Memory Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: AD0, AD1, AD2, AD3, AD4 OUTPUT: DO0 ATTRIBUTES: INITVAL: (Verilog) 32'hXXXXXXXX (8-bit hex string for LatticeECP2 and LatticeXP2; 8-bit hex value for other devices) (VHDL) 0xXXXXXXXX (8-bit hex string for LatticeECP2 and LatticeXP2; 8-bit hex value for other devices) Default: all zeros FPGA Libraries Reference Guide 643 : Description The ROM32X1 symbol represents a 32 word by 1 bit read-only memory. This ROM can be used to implement a ORCALUT5 in a design. The read operation is asynchronous and is always active. The memory is always being read. The INITVAL=<value> attribute is used to initialize the ROM. The <value> should consist of 32 one-bit binary or 8 hexadecimal data written into the ROM from the highest address to the lowest address. For example, if the following attribute is specified: INITVAL=0xF30A1234 (in hex) or INITVAL=11110011000010100001001000110100 (in binary) it implies that the above data is loaded sequentially from location 31 to 0 (where location 31 would contain value 1 and location 0 value 0). Truth Table Table 469: INPUTS OUTPUTS AD[4:0] DO0 AD[4:0] MEM[AD[4:0]] OPERATION Read MEM[AD[4:0]] ROM32X1A 32 Word by 1 Bit Read-Only Memory Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 644 : INPUTS: AD4, AD3, AD2, AD1, AD0 OUTPUT: DO0 ATTRIBUTES: INITVAL: (Verilog) 32'hXXXXXXXX (8-bit hexadecimal value) (VHDL) 0xXXXXXXXX (8-bit hexadecimal value) Default: all zeros Description PFU based distributed 32 Word by 1 Bit ROM primitive. See Memory Primitives Overview for individual port description. You can refer to the following technical notes on the Lattice web site for port definition, attribute definition, and usage. TN1201 - Memory Usage Guide for MachXO2 Devices TN1179 - LatticeECP3 Memory Usage Guide ROM32X4 32 Word by 4 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M 645 : INPUTS: AD0, AD1, AD2, AD3, AD4, CK OUTPUTS: DO0, DO1, DO2, DO3, QDO0, QDO1, QDO2, QDO3 ATTRIBUTES: INITVAL: (Verilog) 128'hXXX...X (32-bit hexadecimal value) (VHDL) 0xXXX...X (32-bit hexadecimal value) Default: all zeros Description The ROM32X4 symbol represents a 32 word by 4 bit read-only memory. The read operation is asynchronous and is always active. The memory is always being read. This ROM also has registered data outputs (QDO[0:3]), which are registered on the rising edge of the clock. The INITVAL=<value> attribute is used to initialize the ROM. The <value> should consist of 32 four-bit binary or 32 hexadecimal data written into the ROM from the highest address to the lowest address. For example, if the following attribute is specified: INITVAL=0x0123456789ABCDEF0123456789ABCDEF (in hex) or INITVAL=0000000100100011010001010110011110001001101010111100110 111101111000000010010001101000101011001111000100110101011110011 0111101111 (in binary) it implies that the above data is loaded sequentially from location 127 to 0 (where location 127 would contain value 0 and location 0 value 1). FPGA Libraries Reference Guide 646 : Truth Table Table 470: INPUTS OUTPUTS OPERATION AD[4:0] CK DO[3:0] QDO[3:0] AD[4:0] X MEM[AD[4:0]] QDO[3:0] Read MEM[AD[4:0]] MEM[AD[4:0]] MEM[AD[4:0]] MEM[AD[4:0]] Register data outputs AD[4:0] X = Don’t care When GSR=0, QDO[3:0]=0 ROM64X1 64 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M LatticeXP LatticeXP2 MachXO Platform Manager INPUTS: AD0, AD1, AD2, AD3, AD4, AD5 OUTPUT: DO0 ATTRIBUTES: FPGA Libraries Reference Guide 647 : INITVAL: (Verilog) 64'hXXXXXXXXXXXXXXXX (16-bit hex string for LatticeECP2 and LatticeXP2; 16-bit hex value for other devices) (VHDL) 0xXXXXXXXXXXXXXXXX (16-bit hex string for LatticeECP2 and LatticeXP2; 16-bit hex value for other devices) Default: all zeros Description The ROM64X1 symbol represents a 64 word by 1-bit read-only memory. This ROM can be used to implement a ORCALUT6 in a design. The read operation is asynchronous and is always active. The memory is always being read. The INITVAL=<value> attribute is used to initialize the ROM. The <value> should consist of 64 one-bit binary or 16 hexadecimal data written into the ROM from the highest address to the lowest address. For example, if the following attribute is specified: INITVAL=0x0123456789ABCDEF (in hex) or INITVAL=0000000100100011010001010110011110001001101010111100110 111101111 (in binary) it implies that the above data is loaded sequentially from location 63 to 0 (where location 63 would contain value 0 and location 0 value 1). Truth Table Table 471: INPUTS OUTPUTS AD[5:0] DO0 AD[5:0] MEM[AD[5:0]] OPERATION Read MEM[AD[5:0]] ROM64X1A 64 Word by 1 Bit Positive Edge Triggered Read-Only Memory with Registered Data Outputs Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 648 : INPUTS: AD5, AD4, AD3, AD2, AD1, AD0 OUTPUT: DO0 ATTRIBUTES: INITVAL: (Verilog) 64'hXXXXXXXXXXXXXXXX (16-bit hexadecimal value) (VHDL) 0xXXXXXXXXXXXXXXXX (16-bit hexadecimal value) Default: all zeros Description PFU based distributed 64 Word by 1 Bit ROM primitive. See Memory Primitives Overview for individual port description. You can also refer to the following technical notes on the Lattice web site for port definition, attribute definition, and usage. FPGA Libraries Reference Guide TN1201 - Memory Usage Guide for MachXO2 Devices TN1179 - LatticeECP3 Memory Usage Guide 649 : S SDCDLLA Single Delay Cell DLL Architectures Supported: LatticeSC/M INPUTS: CLKI, CLKFB, RSTN, ALUHOLD, UDDCNTL, SMIADDR9, SMIADDR8, SMIADDR7, SMIADDR6, SMIADDR5, SMIADDR4, SMIADDR3, SMIADDR2, SMIADDR1, SMIADDR0, SMIRD, SMIWR, SMICLK, SMIWDATA, SMIRSTN OUTPUTS: CLKOP, CLKOS, LOCK, DCNTL0, DCNTL1, DCNTL2, DCNTL3, DCNTL4, DCNTL5, DCNTL6, DCNTL7, DCNTL8, SMIRDATA ATTRIBUTES: CLKOS_FPHASE: 0 (default), 11, 22, 45 CLKI_DIV: 1 (default), 2, 4 CLKOS_DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" CLKOS_FDEL_ADJ: "DISABLED" (default), "ENABLED’ ALU_LOCK_CNT: integers 3~15 (default: 3) FPGA Libraries Reference Guide 650 : ALU_UNLOCK_CNT: integers 3~15 (default: 3) GLITCH_TOLERANCE: integers 0~7 (default: 0) DCNTL_ADJVAL: integers -127~127 (default: 0) ALU_INIT_CNTVAL: 0, 4, 8, 12, 16, 32, 48, 64, 72 (default: 0) LOCK_DELAY: integers 0~1000 (in ns) (default: 100) SMI_OFFSET: 0x400~0x7FF (default: 12'h410) MODULE_TYPE: "SDCDLLA" IP_TYPE: "SDCDLLA" Description The single delay cell corrects for clock injection and enables the 9-bit ALU output. The primitive features a single clock output, lock achieved starting from minimum delay, output control bits, and allows +/- delay on output control bits. Its requirements are a maximum frequency of 700 MHz and a minimum frequency of 300 MHz. SEDAA SED (Soft Error Detect) Basic Architectures Supported: LatticeECP2/M INPUTS: SEDENABLE, SEDSTART, SEDFRCERR OUTPUTS: SEDERR, SEDDONE, SEDINPROG, SEDCLKOUT ATTRIBUTES: OSC_DIV: 1 (default), 2, 4, 8, 16, 32, 64, 128, 256 CHECKALWAYS: "DISABLED" (default), "ENABLED" FPGA Libraries Reference Guide 651 : MCCLK_FREQ: "2.5" (default), "4.3", "5.4", "6.9", "8.1", "9.2", "10.0", "13", "15", "20", "26", "30", "34", "41", "45", "55", "60", "130" DEV_DENSITY: (ECP2) "35K" (default), "6K", "12K", "20K", "50K", "70K" DEV_DENSITY: (ECP2M) "M35K" (default), "M20K", "M50K", "M70K", "M100K" ENCRYPTION: "OFF" (default), "ON" Description SEDAA is the basic SED primitive for LatticeECP2 devices. Soft errors occur when high-energy charged particles alter the stored charge in a memory cell in an electronic circuit. There are customer selectable software features in Lattice Diamond to support Soft Error Detect (SED) IP features. This is only applicable to devices that support SED in their architecture. This primitive should be instantiated in the user’s source code in VHDL or Verilog. See the following table for port definition. Table 472: Port Name I/O Description SEDSTART I Error detection start (sampled at positive clock edge). SEDENABLE I SED enable (a Low clears the SED). SEDFRCERR I Force an SED error flag (e.g. for testing), active high. SEDINPROG O SED cycle is in progress, asserts high. SEDDONE O SED cycle is complete, asserts high. SEDERR O SED error flag, asserts high. SEDCLKOUT O Optional clock output. You can refer to the following technical note on the Lattice web site for more information and usage. TN1113 - LatticeECP2/M Soft Error Detection (SED) Usage Guide SEDBA Basic SED (Soft Error Detect) Architectures Supported: FPGA Libraries Reference Guide LatticeXP2 652 : INPUTS: SEDENABLE, SEDSTART, SEDFRCERRN OUTPUTS: SEDERR, SEDDONE, SEDINPROG, SEDCLKOUT ATTRIBUTES: OSC_DIV: 1 (default), 2, 4, 8, 16, 32, 64, 128, 256 CHECKALWAYS: "DISABLED" (default), "ENABLED" MCCLK_FREQ: "3.1" (default), "2.5", "4.3", "5.4", "6.9", "8.1", "9.2", "10.0", "13", "15", "26", "32", "40", "54" DEV_DENSITY: "17K" (default), "5K", "8K", "30K", "40K" BOOT_OPTION: "INTERNAL" (default), "EXTERNAL" Description SEDBA is the basic soft error detect (SED) primitive for LatticeXP2 devices. Soft errors occur when high-energy charged particles alter the stored charge in a memory cell in an electronic circuit. There are customer selectable software features in Lattice Diamond to support SED IP features. This is only applicable to devices that support SED in their architecture. LatticeXP2 devices have built-in SED circuitry to detect soft errors. The SED primitive should be instantiated in user's VHDL or Verilog source code. There are two types of LatticeXP2 modules: Basic SED (SEDBA) and One Shot SED (SEDBB). See the following table for port description Table 473: FPGA Libraries Reference Guide Port Name I/O Description SEDSTART I Error detection start (sampled at positive clock edge). SEDENABLE I SED enable (a Low clears the SED). SEDFRCERRN I Force an SED error flag (e.g. for testing), active low. SEDINPROG O SED cycle is in progress, asserts high. SEDDONE O SED cycle is complete, asserts high. 653 : Table 473: Port Name I/O Description SEDERR O SED error flag, asserts high. SEDCLKOUT O Optional clock output. You can refer to the following technical note on the Lattice web site for more information and usage. TN1130 - LatticeXP2 Soft Error Detection (SED) Usage Guide SEDBB One Shot SED (Soft Error Detect) Architectures Supported: LatticeXP2 OUTPUTS: SEDERR, SEDDONE, SEDINPROG Description SEDBB is the one shot soft error detect (SED) primitive for LatticeXP2 devices. Soft errors occur when high-energy charged particles alter the stored charge in a memory cell in an electronic circuit. There are customer selectable software features in Lattice Diamond to support SED IP features. This is only applicable to devices that support SED in their architecture. LatticeXP2 devices have built-in SED circuitry to detect soft errors. The SED primitive should be instantiated in user's VHDL or Verilog source code. There are two types of LatticeXP2 modules: Basic SED (SEDBA) and One Shot SED (SEDBB). See the following table for port description. Table 474: FPGA Libraries Reference Guide Port Name I/O Description SEDINPROG O SED cycle is in progress, asserts high. SEDDONE O SED cycle is complete, asserts high. SEDERR O SED error flag, asserts high. 654 : You can refer to the following technical note on the Lattice web site for more information and usage. TN1130 - LatticeXP2 Soft Error Detection (SED) Usage Guide SEDCA Basic SED (Soft Error Detect) Architectures Supported: LatticeECP3 INPUTS: SEDENABLE, SEDSTART, SEDFRCERR OUTPUTS: SEDERR, SEDDONE, SEDINPROG, SEDCLKOUT ATTRIBUTES: OSC_DIV: 1 (default), 2, 4, 8, 16, 32, 64, 128, 256 CHECKALWAYS: "DISABLED" (default), "ENABLED" MCCLK_FREQ: "2.5" (default), "4.3", "5.4", "6.9", "8.1", "9.2", "10.0", "13", "15", "20", "26", "30", "34", "41", "45", "55", "60", "130" DEV_DENSITY: "95K" (default) Description SEDCA is the basic Soft Error Detect primitive. Basic SED runs on all bits only. It checks the CRC for all the bitstreams that include both “Care” and “Don’t Care” bits. See the following table for port definition. Table 475: FPGA Libraries Reference Guide Port Name I/O Description SEDENABLE I SED enable (a Low clears the SED). SEDSTART I Error detection start (sampled at positive clock edge). 655 : Table 475: Port Name I/O Description SEDFRCERR I Force an SED error flag (e.g. for testing), active high. SEDINPROG O SED cycle is in progress, asserts High. SEDDONE O SED cycle is complete, asserts High. SEDERR O SED error flag, asserts High. SEDCLKOUT O Optional clock output. You can refer to the following technical note on the Lattice web site for more information and usage. TN1184 - LatticeECP3 Soft Error Detection (SED) Usage Guide SEDFA Soft Error Detect in Basic Mode Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: SEDSTDBY, SEDENABLE, SEDSTART, SEDFRCERR OUTPUTS: SEDERR, SEDDONE, SEDINPROG, SEDCLKOUT ATTRIBUTES: SED_CLK_FREQ: "2.08", "2.15", "2.22", "2.29", "2.38", "2.46", "2.56", "2.66", "2.77", "2.89", "3.02", "3.17", "3.33", "3.5" (default), "3.69", "3.91", "4.16", "4.29", "4.43", "4.59", "4.75", "4.93", "5.12", "5.32", "5.54", "5.78", "6.05", "6.33", "6.65", "7", "7.39", "7.82", "8.31", "8.58", "8.87", "9.17", "9.5", "9.85", "10.23", "10.64", "11.08", "11.57", "12.09", "12.67", "13.3", "14", "14.78", "15.65", "16.63", "17.73", "19", "20.46", "22.17", "24.18", "26.6", "29.56", "33.25", "38", "44.33", "53.2", "66.5", "88.67", "133" FPGA Libraries Reference Guide 656 : CHECKALWAYS: "DISABLED" (default), "ENABLED" DEV_DENSITY: MachXO2: "256L", "640L", "1200L", "2000L", "4000L", "7000L", "10000L", "640U", "1200U", "2000U", "4000U" MachXO3L: "640L_121P", "1300L", "2100L", "4300L", "1300L_256P", "2100L_324P", "4300L_400P", "6900L" Description The Soft-Error Detect (SED) circuitry provides a method for the device to check its configuration data for soft-errors. SEDFA is used for SED basic mode. See the following table for port description. Table 476: Port Name I/O Description SEDSTDBY I SED standby. SEDENABLE I SED enable (a Low clears the SED). SEDSTART I Error detection start (sampled at positive clock edge). SEDFRCERR I Force an SED error flag (e.g. for testing), active high. SEDINPROG O SED cycle is in progress, asserts High. SEDDONE O SED cycle is complete, asserts High. SEDERR O SED error flag, asserts High. SEDCLKOUT O Optional clock output. You can refer to the following technical note on the Lattice web site for more information and usage. TN1206 - MachXO2 Soft Error Detection (SED) Usage Guide SEDFB Soft Error Detect in One Shot Mode Architectures Supported: FPGA Libraries Reference Guide MachXO2 MachXO3L Platform Manager 2 657 : OUTPUTS: SEDERR, SEDDONE, SEDINPROG, SEDCLKOUT Description The Soft-Error Detect (SED) circuitry provides a method for the device to check its configuration data for soft-errors. SEDFB is used for One Shot SED mode. See the following table for port description. Table 477: Port Name I/O Description SEDINPROG O SED cycle is in progress, asserts High. SEDDONE O SED cycle is complete, asserts High. SEDERR O SED error flag, asserts High. SEDCLKOUT O Optional clock output. You can refer to the following technical note on the Lattice web site for more information and usage. TN1206 - MachXO2 Soft Error Detection (SED) Usage Guide SEDGA Soft Error Detect Architectures Supported: ECP5 INPUTS: SEDENABLE, SEDSTART, SEDFRCERR FPGA Libraries Reference Guide 658 : OUTPUTS: SEDERR, SEDDONE, SEDINPROG, SEDCLKOUT Description The Soft-Error Detect (SED) circuitry provides a method for the device to check its configuration data for soft-errors. See the following table for port description. Table 478: Port Name I/O Description SEDENABLE I SED enable (a Low clears the SED). SEDSTART I Error detection start (sampled at positive clock edge). SEDFRCERR I Force an SED error flag (e.g. for testing), active high. SEDINPROG O SED cycle is in progress, asserts High. SEDDONE O SED cycle is complete, asserts High. SEDERR O SED error flag, asserts High. SEDCLKOUT O Optional clock output. You can refer to the following technical note on the Lattice web site for more information and usage. TN1268 - ECP5 Soft Error Detection (SED) Usage Guide SGSR Synchronous Release Global Set/Reset Interface Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO2 MachXO3L Platform Manager 2 659 : INPUTS: GSR, CLK Description SGSR is used to reset or set all register elements in your design. The SGSR component can be connected to a net from an input buffer or an internally generated net. It is active LOW and when pulsed will set or reset all flip-flops, latches, registers, and counters to the same state as the local set or reset functionality. When input GSR is HIGH, the global signal is released at the positive edge of the clock (CLK). It is not necessary to connect signals for SGSR to any register elements explicitly. The function will be implicitly connected globally. The functionality of the SGSR for sequential cells without a local set or reset are described in the appropriate library help page. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. SP16KA 16K Single Port Block RAM Architectures Supported: LatticeSC/M INPUTS: DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, AD8, AD9, AD10, AD11, AD12, AD13, CE, CLK, WE, CS0, CS1, CS2, RST FPGA Libraries Reference Guide 660 : OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17 ATTRIBUTES: DATA_WIDTH: 1, 2, 4, 9, 18 (default) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE: any 3-bit binary value (default: 3’b000) WRITEMODE: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: (Verilog) 320'hXXX...X (80-bit hexadecimal value) (VHDL) 0xXXX...X (80-bit hexadecimal value) Default: all zeros Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1094 - On-Chip Memory Usage Guide for LatticeSC Devices SP16KB Single Port Block RAM Architectures Supported: LatticeECP2/M LatticeXP2 INPUTS: DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, AD8, AD9, AD10, AD11, AD12, AD13, CE, CLK, WE, CS0, CS1, CS2, RST FPGA Libraries Reference Guide 661 : OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17 ATTRIBUTES: DATA_WIDTH:1, 2, 4, 9, 18 (default) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE: any 3-bit binary value (default: 0b000) WRITEMODE: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: "0xXXX...X" (80-bit hex string) (default: all zeros) Description Single Port Block RAM primitive. See Memory Primitives Overview for more information. You can also refer to the following technical notes on the Lattice web site for port definition, attributes and usage. TN1104 - LatticeECP2/M Memory Usage Guide TN1137 - LatticeXP2 Memory Usage Guide SP16KC Single Port Block RAM Architectures Supported: FPGA Libraries Reference Guide LatticeECP3 662 : INPUTS: DI17, DI16, DI15, DI14, DI13, DI12, DI11, DI10, DI9, DI8, DI7, DI6, DI5, DI4, DI3, DI2, DI1, DI0, AD13, AD12, AD11, AD10, AD9, AD8, AD7, AD6, AD5, AD4, AD3, AD2, AD1, AD0, CE, OCE, CLK, WE, CS2, CS1, CS0, RST OUTPUTS: DO17, DO16, DO15, DO14, DO13, DO12, DO11, DO10, DO9, DO8, DO7, DO6, DO5, DO4, DO3, DO2, DO1, DO0 ATTRIBUTES: DATA_WIDTH: 1, 2, 4, 9, 18 (default) REGMODE: "NOREG" (default), "OUTREG" CSDECODE: any 3-bit binary string (default: "0b000") WRITEMODE: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_3F: "0xXXX...X" (80-bit hex string) (default: all zeros) Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1179 - LatticeECP3 Memory Usage Guide SP8KA 8K Single Port Block RAM Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeXP 663 : INPUTS: CE, CLK, WE, CS0, CS1, CS2, RST, DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, AD8, AD9, AD10, AD11, AD12 OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17 ATTRIBUTES: REGMODE: "NOREG" (default), "OUTREG" GSR: "DISABLED" (default), "ENABLED" WRITEMODE: "NORMAL" (default), "WRITETHROUGH" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE: any 3-bit binary value (default: 111) DATA_WIDTH: 1, 2, 4, 9, 18 (default) INITVAL_00 to INITVAL_1F: (Verilog) 320'hXXX...X (80-bit hexadecimal value) (VHDL) 0xXXX...X (80-bit hexadecimal value) Default: all zeros Description You can refer to the following technical note on the Lattice web site for EBR port definition, attribute definition and usage. TN1051 - Memory Usage Guide for LatticeECP/EC and LatticeXP Devices SP8KB 8K Single Port Block RAM Architectures Supported: FPGA Libraries Reference Guide MachXO Platform Manager 664 : INPUTS: CE, CLK, WE, CS0, CS1, CS2, RST, DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, AD8, AD9, AD10, AD11, AD12 OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17 ATTRIBUTES: DATA_WIDTH: 1, 2, 4, 9, 18 (default) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE: any 3-bit binary value (default: 3’b000) WRITEMODE: "NORMAL" (default), "WRITETHROUGH" GSR: "DISABLED" (default), "ENABLED" INITVAL_00 to INITVAL_1F: (Verilog) "320'hXXX...X" (80-bit hex string) (VHDL) "0xXXX...X" (80-bit hex string) Default: all zeros Description 8K Single Port Block RAM primitive. See Memory Primitives Overview for more information. You can also refer to the following technical note on the Lattice web site for port definition, attributes and usage. FPGA Libraries Reference Guide TN1092 - MachXO Memory Usage Guide 665 : SP8KC 8K Single Port Block RAM Architectures Supported: MachXO2 MachXO3L Platform Manager 2 INPUTS: CE, OCE, CLK, WE, CS0, CS1, CS2, RST, DI0, DI1, DI2, DI3, DI4, DI5, DI6, DI7, DI8, DI9, DI10, DI11, DI12, DI13, DI14, DI15, DI16, DI17, AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, AD8, AD9, AD10, AD11, AD12 OUTPUTS: DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7, DO8, DO9, DO10, DO11, DO12, DO13, DO14, DO15, DO16, DO17 ATTRIBUTES: DATA_WIDTH: 1, 2, 4, 9 (default) REGMODE: "NOREG" (default), "OUTREG" RESETMODE: "SYNC" (default), "ASYNC" CSDECODE: any 3-bit binary value (default: all zeros) WRITEMODE: "NORMAL" (default), "WRITETHROUGH", "READBEFOREWRITE" GSR: "ENABLED" (default), "DISABLED" INIT_DATA: "STATIC" (default), "DYNAMIC" INITVAL_00 to INITVAL_1F: (Verilog) "320'hXXX...X" (80-bit hex string) (VHDL) "0xXXX...X" (80-bit hex string) Default: all zeros FPGA Libraries Reference Guide 666 : Description 8K Single Port Block RAM primitive. See the below table for I/O port description. Table 479: Port Name I/O Definition CLK I Clock CE I Clock enable OCE I Output clock enable AD[12:0] I Address bus DI[8:0] I Input data WE I Write enable CS[2:0] I Chip select RST I Reset DO[8:0] O Output data You can also refer to the following technical note on the Lattice web site for port definition, attributes and usage. TN1201 - Memory Usage Guide for MachXO2 Devices SPIM SPIM Primitive Distributed RAM Architectures Supported: LatticeECP2/M LatticeECP3 INPUTS: SEL, A0, A1, A2, A3, A4, A5, A6, A7 Description Some devices have a built-in SPI CIB interface that is embedded into the hardware. The SPI CIB interface allows the user to control the dual-boot flash support based on the user’s logic. Users can interface with this hardwired SPI controller through the use of the SPIM primitive. The SPIM primitive have 9 FPGA Libraries Reference Guide 667 : input ports only. The SEL line indicates which SPI Flash device to boot from and the signals [A0..A7] indicate the address from where the device will reboot during reconfiguration. For further information on SPIm Mode, refer to the following technical notes on the Lattice web site: TN1169 - LatticeECP3 sysCONFIG Usage Guide TN1108 - LatticeECP2/M sysCONFIG Usage Guide SPR16X2 Distributed Single Port RAM Architectures Supported: LatticeSC/M INPUTS: AD0, AD1, AD2, AD3, DI0, DI1, CK, WRE, WPE OUTPUTS: DO0, DO1 ATTRIBUTES: INITVAL: (Verilog) 64'hXXXXXXXXXXXXXXXX (16-bit hexadecimal value) (VHDL) 0xXXXXXXXXXXXXXXXX (16-bit hexadecimal value) Default: all zeros GSR: "ENABLED" (default), "DISABLED" Description The SPR16X2 symbol represents a 16 word by 2 bit asynchronous single port RAM. It has two data inputs DI[1:0], a positive Write Enable (WRE), one positive Write Port Enables (WPE), and one set of address inputs. FPGA Libraries Reference Guide 668 : The WRE and WPE must be HIGH for the rising clock edge if the write to the RAM is occurring on the falling edge. The data is written into the locations specified by the write address lines AD[3:0] on the next negative clock (CK) edge. The data read operation is always performed asynchronously, with the memory contents specified by the address inputs AD[3:0] output on the data output signals DO[1:0]. In other words, the read operation is asynchronous and is always active. The write operation is synchronous and only occurs when there is a falling edge of the clock and the write enables are high prior to that falling edge. If desired, the contents of the SPR16X2 can be assigned an initial value, which is loaded into the RAM during configuration. The INITVAL=<value> attribute is used to assign the initial value. The <value> should consist of 16 hexadecimal data written into the RAM from the highest address to the lowest address. For example, if the following attribute is specified: INITVAL=0x0123012301230123 (in hex) it implies that the above data is loaded sequentially from location FH to 0H (where FH would contain the 0 and 0H the 3). If no INITVAL attribute is specified, the RAM is initialized with zeros on configuration. If the INITVAL is specified as a hex string of 16 values, the values should not be greater than 3, since 3 is setting both memory locations to 1. If a value greater than 3 is used for synthesis or mapping, only the last two (least significant) bits are used for initialization by the mapper.For example, INITVAL=0x00000000ffffffff is equivalent to INITVAL=0x0000000033333333 for mapping purposes, since the first two bits of the "f" are ignored. You can refer to the following technical note on the Lattice web site for more information and usage. TN1094 - On-Chip Memory Usage Guide for LatticeSC Devices SPR16X2B 16 Word by 2 Bit Positive Edge Triggered Write Synchronous Single Port RAM Memory with Positive Write Enable and Positive Write Port Enable (1-Slice) Architectures Supported: FPGA Libraries Reference Guide LatticeECP/EC LatticeXP MachXO 669 : Platform Manager INPUTS: DI0, DI1, AD0, AD1, AD2, AD3, WRE, CK OUTPUTS: DO0, DO1 ATTRIBUTES: INITVAL: (Verilog) 64'hXXXXXXXXXXXXXXXX (16-bit hexadecimal value) (VHDL) 0xXXXXXXXXXXXXXXXX (16-bit hexadecimal value) Default: all zeros Description Refer to SPR16X2 for functionality. You can also refer to the following technical notes on the Lattice web site for EBR port definition, attribute definition, and use. TN1051 - Memory Usage Guide for LatticeECP/EC and LatticeXP Devices TN1092 - MachXO Memory Usage Guide SPR16X4A Distributed Single Port RAM Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeXP2 670 : INPUTS: DI0, DI1, DI2, DI3, AD0, AD1, AD2, AD3, CK, WRE OUTPUTS: DO0, DO1, DO2, DO3 Description PFU based distributed pseudo single port RAM primitive. See Memory Primitives Overview for more information. You can also refer to the following technical notes on the Lattice web site for port definition, attributes, and use. TN1104 - LatticeECP2/M Memory Usage Guide TN1137 - LatticeXP2 Memory Usage Guide SPR16X4B Distributed Single Port RAM Architectures Supported: LatticeXP2 INPUTS: DI0, DI1, DI2, DI3, AD0, AD1, AD2, AD3, CK, WRE OUTPUTS: DO0, DO1, DO2, DO3 ATTRIBUTES: INITVAL: (Verilog) "64'hXXXXXXXXXXXXXXXX" (16-bit hex string) (VHDL) "0xXXXXXXXXXXXXXXXX" (16-bit hex string) Default: all zeros FPGA Libraries Reference Guide 671 : Description PFU based distributed pseudo single port RAM primitive. See Memory Primitives Overview for more information. You can also refer to the following technical note on the Lattice web site for port definition, attributes, and use. TN1137 - LatticeXP2 Memory Usage Guide SPR16X4C Distributed Single Port RAM Architectures Supported: ECP5 LatticeECP3 MachXO2 MachXO3L Platform Manager 2 INPUTS: DI3, DI2, DI1, DI0, AD3, AD2, AD1, AD0, CK, WRE OUTPUTS: DO3, DO2, DO1, DO0 ATTRIBUTES: INITVAL: "0xXXXXXXXXXXXXXXXX" (16-bit hex string) (default: all zeros) Description PFU based distributed Single Port RAM primitive. See Memory Primitives Overview for individual port description. You can also refer to the following technical notes on the Lattice web site for port definition, attribute definition, and use. FPGA Libraries Reference Guide TN1201 - Memory Usage Guide for MachXO2 Devices TN1179 - LatticeECP3 Memory Usage Guide 672 : SSPIA SSPI TAG Memory Architectures Supported: LatticeXP2 INPUTS: SI, CLK, CS OUTPUT: SO ATTRIBUTES: TAG_INITSIZE: 448, 632, 768, 2184 (default), 2488, 2640, 3384, 3608 TAG_INITIALIZATION: "DISABLED" (default), "ENABLED" TAG_INITVAL_00 to TAG_INITVAL_0C: "0xXXX...X" (80-bit hex string) (default: all zeros) Description Implements the dedicated “TAG Memory” block, which is a one page FLASH non-volatile memory accessible by the hardwired Serial Peripheral Interface port or the JTAG port. This stand-alone TAG memory is ideal for scratch pad memory for mission critical data, board serialization, board revision log and programmed pattern identification. The XP2 family of devices provides dedicated TAG memory ranging from 632 to 3384 bits depending on device density. The user can read and write to the TAG memory either through the SPI port (External Slave SPI) or the CIB interface (Internal Slave SPI) by setting the SLAVE_SPI_PORT attribute. The software default for access to the Tag memory is the CIB interface. The TAG memory initialization file format is similar to that of EBR. FPGA Libraries Reference Guide The TAG interface through the SPI port (External Slave SPI): When the TAG interface is set for the SPI port, four SPI pins will be reserved for the TAG access through the SPI port. The TAG interface through the CIB interface (Internal Slave SPI): When the TAG interface is set for the CIB interface, the user can select any four general purpose IO pins to access the TAG memory using the SPI commands. The four SPI pins on each XP2 device are considered general purpose IOs if they are not reserved using SLAVE_SPI_PORT attribute. 673 : SSPIA Port Description Table 480: Port Name I/O Description SI I Data input CLK I Clock CS I Chip select SO O Data output You can refer to LatticeXP2 technical notes on the Lattice web site for more details. START Startup Controller Architectures Supported: ECP5 LatticeECP3 LatticeXP2 MachXO2 MachXO3L Platform Manager 2 INPUT: STARTCLK Description This primitive determines the user clock for the Wake up sequence. You can instantiate this module in your HDL source to tie a specific user clock to be used in the wake-up sequence instead of the TCK (JTAG), BCLK (SDM), or MCLK/CCLK (sysCONFIG). START Usage with Verilog HDL module START (STARTCLK); input STARTCLK; endmodule FPGA Libraries Reference Guide 674 : START Usage with VHDL COMPONENT START PORT( STARTCLK ); END COMPONENT; : IN STD_ULOGIC STFA Store to Flash Primitive Architectures Supported: LatticeXP2 INPUT: STOREN OUTPUTS: UFMFAIL, UFMBUSYN Description The LatticeXP2 store-to-flash primitive is for user flash module (UFM) operations. The main function of a UFM is to protect the user data from being lost when the system is powered OFF. The user data in the UFM will be used by the system for initialization when the power comes back. To emulate the UFM capability, the users can use the EBR (shadow flash) memory configurations and then transfer the data to UFM through Store-to-Flash operation. The store-to-flash operation is a single-command-two-operation process. When the store-to-flash operation is initiated, an erase-UFM-Flash CIB signal will be enabled to erase the Flash, followed by the transfer-to-flash operation. Once the transfer is done, the flash controller will send a transferdone signal back to the user logic. During the Store-to-Flash operation, the EBR's are not accessible. There is no difference between regular EBR RAM configuration and shadow flash (UFM) EBR RAM configuration in Lattice Diamond GUI. The presence of a STFA primitive in the design determines EBR RAM configuration. Due to a silicon limitation, the user cannot use the Store-to-Flash operation if the SED is operating in an Always mode. Only one STFA instance in the design is allowed. FPGA Libraries Reference Guide 675 : STFA Port Description Table 481: Port Name Corresponding Hardware Port Name I/O Description STOREN storecmdn I Initiates to store the EBR content to Flash UFMFAIL ufm_fail O Store to Flash operation failed UFMBUSYN fl_busyn O Tells the user whether the FLASH is in busy state or not You can refer to LatticeXP2 technical notes on the Lattice web site for more information. STRTUP Startup Controller Architectures Supported: LatticeECP/EC LatticeECP2/M LatticeSC/M INPUT: UCLK Description After configuration, the FPGA enters the start-up phase, which is the transition between the configuration and operational states. Normally, the relative timing of the following three events is triggered by the configuration clock (CCLK): DONE going high, release of the set/reset of internal FFs, and activation of user I/Os. The three events can also be triggered by a user clock, UCLK. This allows the start-up to be synchronized by a known system clock. For more detailed information refer to an available data book or contact technical support. Another set of bitstream options for the STRTUP block allows the DONE pin to be held low and then released to be used with either CCLK or UCLK to control the release of the set/reset of internal FFs and the activation of user I/ Os. This allows the synchronization of the start-up of multiple FPGAs. FPGA Libraries Reference Guide 676 : UCLK: User defined clock to trigger DONE going high, release of set/reset of internal FFs, and activation of user I/Os. Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in Schematic Editor. FPGA Libraries Reference Guide 677 : T TDDRA Tristate for DQ/DQS of PIC Cell Architectures Supported: MachXO2 Platform Manager 2 INPUTS: DQSW90, SCLK, TD, RST OUTPUT: TQ ATTRIBUTES: GSR: "ENABLED" (default), "DISABLED" DQSW90_INVERT: "DISABLED" (default), "ENABLED" Description TDDRA is the tristate for DQ/DQS of the PIC cell. It is used for right side only. See the below table for the port description. Table 482: FPGA Libraries Reference Guide Signal I/O Description DQSW90 I Shifts the DQS signal by 90 degree SCLK I Clock from the CIB TD I Tristate signal RST I RESET to this block from the CIB TQ O Tristate output for DQ 678 : TR1DLLB Time Reference DLL with Dynamic Delay Adjustment Architectures Supported: LatticeECP3 INPUTS: CLKI, RSTN, ALUHOLD, UDDCNTL, DELADJPOL, DELVAL4, DELVAL3, DELVAL2, DELVAL1, DELVAL0 OUTPUTS: CLKOP, CLKOS, LOCK, INCO, DIFF, GRAYO5, GRAYO4, GRAYO3, GRAYO2, GRAYO1, GRAYO0, DCNTL5, DCNTL4, DCNTL3, DCNTL2, DCNTL1, DCNTL0; ATTRIBUTES: CLKOP_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_FPHASE: 0, 11, 22, 33, 45, 56, 67, 78, 90, 101 (default), 112, 123, 135, 146, 157, 169, 191, 202, 214, 225, 236, 247, 259, 281, 292, 304, 315, 326, 337, 349 CLKOS_DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" CLKOS_FPHASE _ADJVAL: integers -20~20 (default: 0) ALU_LOCK_CNT: integers 3~15 (default: 3) ALU_UNLOCK_CNT: integers 3~15 (default: 3) GLITCH_TOLERANCE: integers 0~7 (default: 2) LOCK_DELAY: integers 0~1000 (in ns) (default: 100) CLKOP_DUTY50: "DISABLED" (default), "ENABLED" FPGA Libraries Reference Guide 679 : CLKOS_DUTY50: "DISABLED" (default), "ENABLED" Description TRDLLB specifies the Time Reference operation mode for the general purpose DLL (GDLL). It supports the 1G SPI4.2 interface. The feedback connection is not required for this mode and hence the CLKFB is not captured on the TRDLLB primitive. In this mode, the CLKFB should be tied to GND. Port Description Table 483: Port Name Optional Logical Capture Port Name ALUHOLD YES HOLD RSTN YES RSTN UDDCNTL YES UDDCNTL CLKI NO CLKI CLKOP YES CLKOP CLKOS YES CLKOS LOCK NO LOCK GRAYO[5:0] YES GRAY_OUT[5:0] INCO YES INC_OUT DIFF YES DIFF DCNTL[5:0] NO DCNTL[5:0] DELADJPOL YES DELADJPOL DELVAL[4:0] YES DELVAL[4:0] For more information, refer to the following technical note on the Lattice web site: TN1178 - LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide TRDLLA Time Reference Delay Architectures Supported: FPGA Libraries Reference Guide LatticeECP2/M LatticeSC/M 680 : INPUTS: CLKI, RSTN, ALUHOLD, UDDCNTL, SMIADDR9, SMIADDR8, SMIADDR7, SMIADDR6, SMIADDR5, SMIADDR4, SMIADDR3, SMIADDR2, SMIADDR1, SMIADDR0, SMIRD, SMIWR, SMICLK, SMIWDATA, SMIRSTN OUTPUTS: CLKOP, CLKOS, LOCK, DCNTL0, DCNTL1, DCNTL2, DCNTL3, DCNTL4, DCNTL5, DCNTL6, DCNTL7, DCNTL8, SMIRDATA ATTRIBUTES: CLKOP_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_PHASE: (0, 90, 180, 270, 360) + (0, 11, 22, 45) (default: 0) CLKOS_FPHASE: 0 (default), 11, 22, 45 CLKOP_DUTY50: "DISABLED" (default), "ENABLED" CLKOS_DUTY50: "DISABLED" (default), "ENABLED" CLKOS_DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" CLKOS_FDEL_ADJ: "DISABLED" (default), "ENABLED" CLKOS_FPHASE _ADJVAL: integers -127~127 (default: 0) ALU_LOCK_CNT: integers 3~15 (default: 3) ALU_UNLOCK_CNT: integers 3~15 (default: 3) GLITCH_TOLERANCE: integers 0~7 (default: 2 for LatticeECP2/M, 0 for LatticeSC/M) LOCK_DELAY: integers 0~1000 (in ns) (default: 100) FPGA Libraries Reference Guide 681 : (LatticeSC/M only) DCNTL_ADJVAL: integers -127~127 (default: 0) (LatticeSC/M only) SMI_OFFSET: 0x400~0x7FF (default: 12'h410) (LatticeSC/M only) MODULE_TYPE: "TRDLLA" (LatticeSC/M only) IP_TYPE: "TRDLLA" Description TRDLLA will generate four phases of the clock, 0, 90, 180, 270 degrees, along with the control setting used to generate these phases. This mode features registered control bit output with separate enable, addition and subtraction on the outgoing control bits, lock achieved starting from minimum delay which guarantees lock to first harmonic (fundamental frequency), and four available output phases (0, 90, 180, 270) degrees. This requires internal feedback only, a maximum frequency 700MHz, and a minimum frequency 100MHz. For more information, see the following technical notes on the Lattice web site: TN1098 - LatticeSC sysCLOCK and PLL/DLL User’s Guide TN1103 - LatticeECP2 sysCLOCK PLL Design and Usage Guide TRDLLB Time Reference DLL Architectures Supported: LatticeECP3 INPUTS: CLKI, RSTN, ALUHOLD, UDDCNTL OUTPUTS: CLKOP, CLKOS, LOCK, INCO, DIFF, GRAYO5, GRAYO4, GRAYO3, GRAYO2, GRAYO1, GRAYO0, DCNTL5, DCNTL4, DCNTL3, DCNTL2, DCNTL1, DCNTL0 FPGA Libraries Reference Guide 682 : ATTRIBUTES: CLKOP_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_PHASE: 0 (default), 90, 180, 270, 360 CLKOS_FPHASE: 0, 11, 22, 33, 45, 56, 67, 78, 90, 101 (default), 112, 123, 135, 146, 157, 169, 191, 202, 214, 225, 236, 247, 259, 281, 292, 304, 315, 326, 337, 349 CLKOS_DIV: 1 (default), 2, 4 GSR: "DISABLED" (default), "ENABLED" CLKOS_FPHASE _ADJVAL: integers -20~20 (default: 0) ALU_LOCK_CNT: integers 3~15 (default: 3) ALU_UNLOCK_CNT: integers 3~15 (default: 3) GLITCH_TOLERANCE: integers 0~7 (default: 2) LOCK_DELAY: integers 0~1000 (in ns) (default: 100) CLKOP_DUTY50: "DISABLED" (default), "ENABLED" CLKOS_DUTY50: "DISABLED" (default), "ENABLED" Description TRDLLB specifies the Time Reference operation mode for the general purpose DLL (GDLL). The feedback connection is not required for this mode and hence the CLKFB is not captured on the TRDLLB primitive. In this mode, the CLKFB should be tied to GND. FPGA Libraries Reference Guide 683 : Port Description Table 484: Port Name Optional Logical Capture Port Name ALUHOLD YES HOLD RSTN YES RSTN UDDCNTL YES UDDCNTL CLKI NO CLKI CLKOP YES CLKOP CLKOS YES CLKOS LOCK NO LOCK GRAYO[5:0] YES GRAY_OUT[5:0] INCO YES INC_OUT DIFF YES DIFF DCNTL[5:0] NO DCNTL[5:0] For more information, refer to the following technical note on the Lattice web site: TN1178 - LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide TSALL Global Tristate Interface Architectures Supported: FPGA Libraries Reference Guide LatticeSC/M MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 684 : INPUT: TSALL (TSALLN for LatticeSC/M) Description TSALL is used to tristate buffers in your design. The TSALL component is connected to a net to drive all output and bidirectional buffers into a HIGH impedance state when active LOW. It is not necessary to connect signals to buffers explicitly. The function will be implicitly connected globally. Note The TSALL component may be driven by general FPGA logic or by the read- configuration block. In the latter case, the TSALL block must be driven by a buffer located at the RDCGFN pin. When locating the TSALL to the RDCFGN, you must do this by explicitly designating “RDCFGN” in the attribute. Check with customer support or with FAEs for more details. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. TSHX2DQA Generates the tristate control for DQ data output for DDR2 and DDR3 memory Architectures Supported: ECP5 INPUTS: T0, T1, SCLK, DQSW270, RST OUTPUT: Q FPGA Libraries Reference Guide 685 : Description This primitive is used to generate the tristate control for DQ data output for DDR2 and DDR3 memory. Table 485: Signal I/O Description T0, T1 I Tristate input ECLK I ECLK input (2x speed of SCLK) DQSW270 I Clock that is 90 degree ahead of clock used to generate the DQS output SCLK I SLCK input RST I Reset input Q O Tristate output TSHX2DQSA Generates the tristate control for DQS output Architectures Supported: ECP5 INPUTS: T0, T1, SCLK, DQSW, ECLK, RST OUTPUT: Q Description This primitive is used to generate the tristate control for DQS output. Table 486: FPGA Libraries Reference Guide Signal I/O Description T0, T1 I Tristate input ECLK I ECLK input (2x speed of SCLK) 686 : Table 486: FPGA Libraries Reference Guide Signal I/O Description DQSW I DQSW includes write leveling phase shift from ECLK SCLK I SLCK input RST I Reset input Q O Tristate output 687 : U USRMCLK Allows User Function to Access SPI PROM Architectures Supported: ECP5 INPUTS: USRMCLKI, USRMCLKTS Description A primitive to allow the user function to access the SPI PROM. It has two inputs. This feature allows the user to tie a specific user clock to be used as MCLK. Without this instantiation the device will use the CFG MCLK as MCLK. This primitive can only be instantiated if the device is in MSPI mode. DRC error will be issued if this primitive be instantiated in any mode other than MSPI, The table below describes the ipnputs of the USRMCLK primitive. Table 487: Port I/O Function USRMCLKI I User defined MCLK. USRMCLKTS I FPGA Libraries Reference Guide User defined MCLK tri-state. 688 : V VHI Logic High Generator Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 OUTPUT: Z Note It is possible that this primitive will be optimized by the back-end tool before place and route. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. VLO Logic Low Generator Architectures Supported: FPGA Libraries Reference Guide ECP5 689 : LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 Platform Manager Platform Manager 2 OUTPUT: Z Note It is possible that this primitive will be optimized by the back-end tool before place and route. This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 690 : X XNOR2 2-Input Exclusive NOR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. XNOR3 3-Input Exclusive NOR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 691 : LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. XNOR4 4-Input Exclusive NOR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 692 : MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. XNOR5 5-Input Exclusive NOR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 693 : INPUTS: A, B, C, D, E OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. XOR11 11-Input Exclusive OR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D, E, F, G, H, I, J, K FPGA Libraries Reference Guide 694 : OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. XOR2 2-Input Exclusive OR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 695 : XOR21 21-Input Exclusive OR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 696 : XOR3 3-Input Exclusive OR Gate Architectures Supported: ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. XOR4 4-Input Exclusive OR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M 697 : LatticeXP LatticeXP2 MachXO MachXO2 MachXO3L Platform Manager Platform Manager 2 INPUTS: A, B, C, D OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. XOR5 5-Input Exclusive OR Gate Architectures Supported: FPGA Libraries Reference Guide ECP5 LatticeECP/EC LatticeECP2/M LatticeECP3 LatticeSC/M LatticeXP LatticeXP2 MachXO MachXO2 Platform Manager Platform Manager 2 698 : INPUTS: A, B, C, D, E OUTPUT: Z Note This primitive is also available as a schematic symbol. You can add it to your schematic using the Add > Symbol command in the Schematic Editor. FPGA Libraries Reference Guide 699 : Primitive-Specific HDL Attributes Primitive-Specific HDL Attributes The following is a comprehensive list of HDL attributes that are commonly set automatically during module generation and are associated with specific primitives. We list these attributes here mainly for purposes of identification. In almost all cases, it is not recommended that any of these attributes be edited manually. They should appear in your source as a result of module generation in IPexpress only. There are many interdependencies that exist between certain related attributes and their valid values on an architecture or device basis. These interdependencies make it impractical to simply edit the source HDL. If you were to do so, its very likely an invalid value may result in a failure in your design. List of Primitive-Specific HDL Attributes The below table lists all the primitive-specific attributes in alphabetic order. Table 488: Attribute AEPOINTER Type Allowed Values Default Description Binary (LatticeSCM) 15-bit binary value; All zeros Specifies the Almost Empty Flag Pointer. AEPOINTER1 refers to the Almost Empty Flag Pointer 1. All zeros Specifies the Almost Full Flag Pointer. AFPOINTER1 refers to the Almost Full Flag Pointer 1. (MachXO/Platform Manager) 14-bit binary value AFPOINTER Binary (LatticeSCM) 15-bit binary value; (MachXO/Platform Manager) 14-bit binary value ALU_INIT_CNTVAL Integer (LatticeECP3) 0 to 31; 0 (Others) 0, 4, 8, 12, 16, 32, 48, 64, 72 (0 = DISABLED) Specifies the minimum number of delay taps that ALU will count for. This forces the ALU to count for a minimum number of delay taps before it can find lock, and prevents the DLL finding lock at the minimum possible delay setting and then “falling off the end” of the delay chain if the input clock has jitter. Used in all clock injection cancellation modes where the lock point is not predictable. ALU_LOCK_CNT Integer 3 to 15 3 Specifies the Lock Count Cycles. Attached to a DLL-type primitive. ALU_UNLOCK_CNT Integer 3 to 15 3 Specifies the Unlock Count Cycles. Attached to a DLL-type primitive. SYNC, ASYNC SYNC Specifies reset release when the reset mode is ASYNC. ASYNC_RESET_REL String EASE FPGA Libraries Reference Guide 700 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description BANKID Integer 0, 1, 2, 3, 4, 5 0 Specifies the ID of the bank that enables dynamic InRD control for the BCINRD primitive. BGOFF Boolean TRUE, FALSE FALSE Turns on or off Bandgap when in standby. BOOT_OPTION String INTERNAL, EXTERNAL INTERNAL Specifies device boot from external SPI flash or internal flash. CAS_MATCH_REG Boolean TRUE, FALSE FALSE Specifies the Cascade Match Register option. Attached to DSP primitives such as MULT9X9C and MULT18X18C. CHECKALWAYS Boolean ENABLED, DISABLED DISABLED When set to ENABLED, makes the SED (Soft Error Detect) run automatically every time upon power up and after device configuration. The software will set signals from the SED IP that puts it in an “Always Running” state. CLKFB_DIV Integer Vary 1 Specifies the CLKFB N Divider setting. Attached to a PLL-type primitive (such as EHXPLLB). CLKFB_FDEL Integer 0, 100, 200, ..., 700 0 Specifies the CLKFB Fine Delay setting for the EHXPLLA primitive. CLKI_DIV Integer Vary 1 Specifies the CLKI M Divider setting. Attached to a PLL or DLL primitive (such as EHXPLLB and CIDDLLA). CLKI_FDEL Integer 0, 100, 200, ..., 700 0 Specifies the CLKI Fine Delay setting for the EHXPLLA primitive. CLKMODE String ECLK, SCLK ECLK Specifies the edge clock or system clock for the CLKCNTL primitive. CLKOK_BYPASS Boolean ENABLED, DISABLED DISABLED Enables or disables the GPLL clock bypass feature. When enabled, this feature allows the input reference clock (CLK) to bypass the PLL and directly drive CLKOP, CLKOS, and CLKOK. If CLKOP is used for bypass, the PLL is no longer functional and cannot be used as a PLL. The CLKOS and CLKOK can be used for bypass without affecting the operation of the loop. IPexpress includes selections for CLKOP, CLKOS, and CLKOK bypass. CLKOK_DIV Integer Even integers from 2 to 128 2 Specifies the CLKOK K Divider setting. Attached to a PLL-type primitive (such as EHXPLLB). FPGA Libraries Reference Guide 701 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description CLKOK_INPUT String CLKOP, CLKOS CLKOP Specifies the CLKOK divider input. Attached to a PLL-type primitive. (such as EHXPLLF). CLKOP_BYPASS Boolean ENABLED, DISABLED DISABLED Enables or disables the GPLL clock bypass feature. When enabled, this feature allows the input reference clock (CLK) to bypass the PLL and directly drive CLKOP, CLKOS, and CLKOK. If CLKOP is used for bypass, the PLL is no longer functional and cannot be used as a PLL. The CLKOS and CLKOK can be used for bypass without affecting the operation of the loop. IPexpress includes selections for CLKOP, CLKOS, and CLKOK bypass. CLKOP_DIV Integer Vary 1 or 8 Specifies the CLKOP V Divider setting. Attached to a PLL-type primitive (such as EHXPLLB). Note: CLKOP_DIV value must be calculated to maximize the FVCO within the specified range based on CLKI_DIV and CLKFB_DIV values for optimum performance. CLKOP_DUTY50 Boolean ENABLED, DISABLED DISABLED Enables or disables the CLKOP Duty Cycle. Attached to a PLL-type primitive (such as EHXPLLA). CLKOP_MODE String BYPASS, FDEL0, VCO, DIV BYPASS Specifies the CLKOP Select for the EHXPLLA primitive. CLKOP_PHASE Integer 0, 90, 180, 270, 360 0 Specifies the CLKOP Phase setting. Attached to a DLL-type primitive (such as TRDLLA). CLKOP_TRIM_DELA Y Integer 0 to 7 0 Specifies the CLKOP Duty Trim Polarity Delay. Attached to a PLLtype primitive. CLKOP_TRIM_POL String FALLING, RISING FALLING for LatticeXP2; Specifies the CLKOP Duty Trim Polarity. Attached to a PLL-type primitive. RISING for LatticeECP3 FPGA Libraries Reference Guide 702 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description CLKOS_BYPASS Boolean ENABLED, DISABLED DISABLED Enables or disables the GPLL clock bypass feature. When enabled, this feature allows the input reference clock (CLK) to bypass the PLL and directly drive CLKOP, CLKOS, and CLKOK. If CLKOP is used for bypass, the PLL is no longer functional and cannot be used as a PLL. The CLKOS and CLKOK can be used for bypass without affecting the operation of the loop. IPexpress includes selections for CLKOP, CLKOS, and CLKOK bypass. CLKOS_DIV Integer 1, 2, 4 for DLL primitives; 1 Specifies the CLKOS Divider setting. Attached to a PLL- or DLL-type primitive (such as EHXPLLA and CIDDLLA). 1 to 64 for PLL primitives CLKOS_DUTY50 Boolean ENABLED, DISABLED DISABLED Enables or disables the CLKOS Duty Cycle. Attached to a PLL-type primitive (such as EHXPLLA). CLKOS_FDEL Integer 0, 100, 200, ..., 700 0 Specifies the CLKOS Fine Delay setting for the EHXPLLA primitive. CLKOS_FDEL_ADJ Boolean ENABLED, DISABLED DISABLED Specifies the CLKOS DEL Manual Setting Adjust Value. Attached to a DLL-type primitive (such as TRDLLA). CLKOS_FPHASE Integer Vary 0 Specifies the CLKOS Fine Phase setting. Attached to a DLL-type primitive (such as TRDLLA). CLKOS_FPHASE _ADJVAL Integer -20 to 20 0 Specifies the CLKOS Fine Phase Adjust Value. Attached to a DLL-type primitive (such as TRDLLA). CLKOS_MODE String BYPASS, FDEL, VCO, BYPASS DIV Specifies the CLKOS Select for the EHXPLLA primitive. CLKOS_PHASE Integer Vary 0 Specifies the CLKOS Phase setting. Attached to a DLL-type primitive (such as TRDLLA). CLKOS_TRIM_DELA Y Integer 0 to 3 0 Specifies the CLKOS Duty Trim Polarity Delay. Attached to a PLLtype primitive. CLKOS_TRIM_POL String RISING, FALLING RISING Specifies the CLKOS Duty Trim Polarity Delay. Attached to a PLLtype primitive. CLKOS_VCODEL Integer 0 to 31 0 Specifies the CLKOS VCO Delay setting for the EHXPLLA primitive. FPGA Libraries Reference Guide 703 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description CRUDIV Integer 1.0, 2.0, 3.5, 4.0, 5.0 5.0 Sets the divider setting for the DIVCLK output. CSDECODE Binary 2- or 3-bit binary value Vary Attached to a single-port block RAM primitive. The CSDECODE value determines the decoding value of CS[2:0]. A value set to “000” means that the memory is selected if CS[2:0]=1’B000. DATA_WIDTH Integer 1, 2, 4, 9, 18 for 9, 18, or 36 DATA_WIDTH, DATA_WIDTH_A, and DATA_WIDTH_B; Specifies the Data Word Width. Attached to a memory type primitive. 1, 2, 4, 9, 18, 36 for DATA_WIDTH_R and DATA_WIDTH_W DCNTL_ADJVAL Integer -127 to 127 0 Specifies the Adjust Delay Control. Attached to a DLL-type primitive. DCSMODE String NEG, POS, HIGH_LOW, HIGH_HIGH, LOW_LOW, LOW_HIGH, CLK0, CLK1 NEG Sets the particular mode for the DCS primitive. Refer to DCSMODE Values for more information. DEL_ADJ String PLUS, MINUS PLUS Specifies the delay adjustment sign bit. DEL_VAL Integer 0 to 127 if DEL_ADJ=PLUS; 0 Specifies the delay adjustment offset. 1 to 128 if DEL_ADJ=MINUS DEL[0,1,2,3,4]_GRAY Boolean ENABLED, DISABLED DISABLED Specifies gray in for DEL0, DEL1, DEL2, DEL3, and DEL4. Attached to a DLL-type primitive. DEL_MODE String SCLK_ZEROHOLD, ECLK_ALIGNED, ECLK_CENTERED, SCLK_ALIGNED, SCLK_CENTERED, USER_DEFINED USER_DEFINE D Controls whether the fixed delay value is dependent on a certain interface or user-defined delay value. DEL_VALUE String DELAY0, DELAY1, DELAY0 DELAY2, ..., DELAY31 FPGA Libraries Reference Guide Specifies user-defined delay value. 704 : Primitive-Specific HDL Attributes Table 488: Attribute DELAY_CNTL Type Allowed Values Default Description String DYNAMIC, STATIC STATIC Specifies the Delay Control mode. Attached to a PLL-type primitive (such as EHXPLLB). The DYNAMIC mode switches delay control between DYNAMIC and STATIC depending upon the input logic of the DDAMODE pin. In the STATIC mode, delay inputs are ignored. DELAY_PWD Boolean ENABLED, DISABLED DISABLED Enables or disables the CLKOS Fine Delay Powerdown. Attached to a PLL-type primitive. When set to ENABLED, the f_fdelay_pwd fuse will be set to HIGH to disable the fine delay circuitry for power saving. When set to DISABLED, the f_fdelay_pwd fuse will be set to LOW to enable the fine delay circuitry. DELAY_VAL Integer 0 to 15 0 Specifies the CLKOS Fine Delay Value. Attached to a PLL-type primitive. DEV_DENSITY String Vary Vary Specifies the device density. DIV Integer 1, 2, 4 (1:off) for the CLKDIV primitive; 1 or 2 or 2.0 Specifies the Divider setting. Vary Adjusts the sign delay offset direction for input DDR. For DQSBUFH, it adjusts the sign bit for the READ delay. 2.0, 3.5, 4.0 for the CLKDIVC primitive; 1, 2, 4, 8, 16, 32, 64, 128 for the OSCA primitive DQS_LI_DEL_ADJ String PLUS, MINUS DQS_LI_DEL_VAL Integer 0 to 63 or 0 to 127 if Vary DQS_LI_DEL_ADJ=P LUS; Specifies the delay value for input DDR. 1 to 64 or 1 to 128 if DQS_LI_DEL_ADJ =MINUS DQS_LO_DEL_ADJ String FPGA Libraries Reference Guide PLUS, MINUS PLUS Adjusts the sign delay offset direction for output DDR. For DQSBUFH, it adjusts the sign bit for the WRITE delay. 705 : Primitive-Specific HDL Attributes Table 488: Attribute DQS_LO_DEL_VAL Type Allowed Values Default Description Integer 0 to 63 or 0 to 127 if DQS_LO_DEL_ADJ= PLUS; 0 Specifies the delay value for output DDR. 1 to 64 or 1 to 128 if DQS_LO_DEL_ADJ= MINUS DQSW90_INVERT String DISABLED, ENABLED DISABLED Selects the clock polarity for the second FF of the tristate cell for the DQS pin. Only used for the DQS during DDR write. DR_CONFIG String DISABLED, ENABLED DISABLED Indicates whether the primitive is used for data recovery configuration or not. If it is for data recovery configuration then the correct GBB timing will be set. This attribute is required for mapper and is not required for simulation. DUTY Integer Vary 4 or 8 Specifies the duty cycle floating point percentage value. Used to control the duty cycle modes of PLL primitives such as EHXPLLB. DYNDEL_CNTL String STATIC, DYNAMIC DYNAMIC Enables the static or dynamic delay. Attached to a DQSBUF primitive (such as DQSBUFB). DYNDEL_TYPE String NORMAL, SHIFTED NORMAL Specifies the value of the Static Delay input to the write portion of the DQSBUFD or DQSBUFE module that controls the clock inversion. NORMAL: 0-degree phase shift; SHIFTED: 180-degree phase shift through clock inversion. DYNDEL_VAL Integer 0 to 127 0 Specifies the value of the Static Delay input to the write portion of the DQSBUFD or DQSBUFE module. ENCRYPTION String ON, OFF OFF Specifies the encryption feature. ER1, ER2 Boolean ENABLED, DISABLED ENABLED Lattice supports two private JTAG instructions ER1 (0x32) and ER2 (0x38). If the ER1 instruction is shifted into the JTAG instruction register, JRTI1 will go high when the TAP controller is in the Run-Test/Idle state. If the ER2 instruction is shifted into the JTAG instruction register, JRTI2 will go high when the TAP controller is in the Run-Test/Idle state. FPGA Libraries Reference Guide 706 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description FB_MODE String INTERNAL, CLOCKTREE, EXTERNAL CLOCKTREE Defines PLL clock resources in the feedback mode. FDEL Integer -8 to 8 0 Specifies the fine delay adjust setting. Attached to a PLL-type primitive (such as EHXPLLB). FIN Real Vary (in MHz) 100.0 Specifies the input frequency (MHz) designation for a PLL/DLL primitive (such as EHXPLLB, DQSDLLC). YES, NO NO Used to bypasses the DLL-locking procedure at low frequency. FORCE_MAX_DELAY Boolean When FIN 30 MHz (pending PDE result), the software sets this attribute to YES. Then DQSDLL will not go through the locking procedure but will be locked to the maximum delay steps. FORCE_ZERO_BAR REL_SHIFT Boolean ENABLED, DISABLED DISABLED When set to ENABLED, forces zeros to 18 MSB of shift for barrel shift. Attached to the ALU54A primitive. FWFT Boolean ENABLED, DISABLED DISABLED First word fall through. FULLPOINTER Binary (LatticeSC/M) 15-bit binary value; All zeros Specifies the Full Flag Pointer. Attached to a FIFO primitive (such as FIFO8KA). FULLPOINTER1 refers to the Full Flag Pointer 1. (MachXO/Platform Manager) 14-bit binary value GEARING_MODE String X2, X4 X2 Sets gearing mode required. GLITCH_TOLERANC E Integer 0 to 7 2 Specifies the Programmable Glitch Tolerance. Attached to a DLL-type primitive. GSR Boolean ENABLED, DISABLED Vary Enables or disables the Global Set/ Reset (GSR) for all registered primitives. Applicable to registers, PLLs, and memories such as SP8KA, DP8KA and the like. INIT Hexadeci mal Hex value or string All zeros Initializes the look-up table values. INIT is required to specify the lookup table values for the LUT primitives (ORCALUT4, 5, 6, 7, or 8). See ORCALUT4 for more information on INIT attribute usage. FPGA Libraries Reference Guide 707 : Primitive-Specific HDL Attributes Table 488: Attribute INIT_DATA Type Allowed Values Default Description String STATIC, DYNAMIC STATIC Defines whether or not the memory file can be updated. STATIC – Memory values are stored in the User Flash Memory (UFM) or bitstream but can be shared and can not be updated. DYNAMIC– Memory values are stored in the UFM and can be updated by user logic knowing the EBR address locations. INITVAL Hexadeci mal Hex value or string All zeros Specifies the initialization value for RAM type primitives (such as SPR16X2 and DPR16X2). These primitives carry prescribed initialization values, for example, DPR16X2 has an initialization value of 0x0000000000000000. INJECT Boolean YES, NO YES This injection attribute is not a user selection. It is for software use only. Attached to a Carry Chain primitive. IP_TYPE String EHXPLLA, CIDDLLA, CIMDLLA, TRDLLA, SDCDLLA Vary This attribute is not a user selection. It is for software use only. Attached to a PLL- or DLL-type primitive. ISI_CAL String BYPASS, DEL1, DEL2, DEL3, DEL4, DEL5, DEL6, DEL7 BYPASS Sets the ISI correction values in the ODDRX2D and ODDRX2DQSA blocks. JTAG_FLASH_PRGR Boolean M ENABLED, DISABLED ENABLED When set to ENABLED, enables the use of the ispJTAG interface to program or write to Flash devices. Refer to TN1100 - SPI Serial Flash Programming Using ispJTAG in LatticeSC Devices on the Lattice Web site for more information. LEGACY Boolean ENABLED, DISABLED DISABLED This attribute is required to support LatticeECP2 to LatticeECP3 mapping. Attached to the ALU54A primitive. LOCK_CYC Integer Integer value 2 This lock cycle attribute is not a user selection. It is for software use only. Attached to a PLL- or DLL-type primitive. FPGA Libraries Reference Guide 708 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description LOCK_DELAY Integer 0 to 1000 (in ns) 100 This is a PLL-lock time attribute used for simulation. If you wish to enter other than the default value of 100 ns, it can be done by adding this attribute in the DEFPARAM section of the code generated by IPexpress. You can also set this attribute in the Spreadsheet view. LOCK_SENSITIVITY String HIGH, LOW LOW This DLL configuration attribute selects greater or less sensitivity to the jitter. Note: There is a known issue for the LatticeXP family. The DQSDLL attribute LOCK_SENSITIVITY will always be set to LOW even if you attempt to set it to HIGH. Devices impacted are LFXP20E/C, LFXP15E/ C, LFXP10E/C, LFXP6E/C and LFXP3E/C. LPDDR String ENABLED, DISABLED DISABLED Turns the LPDDR feature on or off. LSRMODE String EDGE, LOCAL LOCAL Attached to DDR and ISR primitives (such as IDDRA and ISRX1A), this attribute takes the EDGE and LOCAL mode options, which allows you to choose Local Set Reset or the Edge Set Reset. MASK_ADDR Hexadeci mal Any 4-bit hex value All zeros Specifies the starting mask address for the “care bits” mask. Attached to a SED-type primitive. MASK01 Hexadeci mal Any 14-bit hex value All zeros Specifies the mask for EQZM/ EQOM. Attached to the ALU54A primitive. MASKPAT Hexadeci mal Any 14-bit hex value All zeros Specifies the mask for EQPAT/ EQPATB. Attached to the ALU54A primitive. MASKPAT_SOURCE String STATIC, DYNAMIC STATIC Specifies the EQPAT/EQPATB source setting. Attached to the ALU54A primitive. MASKPAT_SOURCE and MCPAT_SOURCE cannot be DYANMIC at the same time. MCCLK_FREQ String Vary 2.5 or 3.1 Controls the master clock frequency. MCPAT Hexadeci mal Any 14-bit hex value All zeros Specifies the MEM Cell Pattern. Attached to the ALU54A primitive. FPGA Libraries Reference Guide 709 : Primitive-Specific HDL Attributes Table 488: Attribute MCPAT_SOURCE Type Allowed Values Default Description String STATIC, DYNAMIC STATIC Specifies the MEM Cell Pattern source setting. Attached to the ALU54A primitive. MASKPAT_SOURCE and MCPAT_SOURCE cannot be DYANMIC at the same time. MEMMODE String DISABLED, ENABLED DISABLED Indicates the memory mode or generic mode. MODULE_TYPE String EHXPLLA, CIDDLLA, CIMDLLA, TRDLLA, SDCDLLA Vary This attribute is not a user selection. It is for software use only. Attached to a PLL- or DLL-type primitive. MULT_BYPASS Boolean ENABLED, DISABLED DISABLED Enables or disables Multiplier Output Bypass. Attached to DSP primitives such as MULT9X9C and MULT18X18C. MULT9_MODE Boolean ENABLED, DISABLED DISABLED Enables or disables the operation in the Mult9 mode. Attached to the ALU54A primitive. NOM_FREQ Real Vary Vary Specifies the nominal frequency (in MHz) for oscillator primitives. NRZMODE String DISABLED, ENABLED DISABLED Specifies NRZMODE for DDR3_MEM mode for the DQSBUFD primitive. OSC_DIV Integer 1, 2, 4, 8, 16, 32, 64, 128, 256 1 Used for the Soft Error Detect (SED). As an attribute for the internal oscillator, OSC_DIV specifies the divisor of the CCLK frequency to be used in the SED module or corresponding primitives. PHASE_CNTL String DYNAMIC, STATIC STATIC Specifies the Phase Adjustment Select mode. When this is set to DYNAMIC, the Phase Adjustment Select control switches between Dynamic and Static depending upon the input logic of the DPAMODE pin. If the attribute is set to STATIC, Dynamic Phase Adjustment Select inputs are ignored. PHASE_DELAY_CNT String L DYNAMIC, STATIC STATIC Specifies the CLKOS Phase and Duty Control/Duty Trimming mode. Attached to a PLL-type primitive. PHASE_SHIFT 45, 57, 68, 79, 90, 101, 112, 123, 135 90 Phase shift value used. This is required for Simulation. Integer DRC Check: This should match the PHASE_SHIFT value set in the DDRDLLA. FPGA Libraries Reference Guide 710 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description PHASEADJ Real Vary 0 Specifies the Coarse Phase Shift setting. Attached to a PLL-type primitive (such as EHXPLLB). PLLCAP String ENABLED, DISABLED, AUTO DISABLED Enables or disables the external capacitor pin. Attached to a PLL-type primitive. This attribute value will be usedand updated by MPAR. MPAR converts AUTO to DISABLED or ENABLED as per the placement. This attribute has no impact on the simulation. PLLTYPE String AUTO, SPLL, GPLL AUTO Specifies the PLL configuration mode. Applicable only for the EPLLD primitive. This attribute value will be used by MPAR. It has no impact on simulation or bit generation. POROFF Boolean TRUE, FALSE FALSE Turns on or off POR when in standby. REG_<RegisterType> String _<RegisterName> Vary Vary This attribute applies to DSP block multipliers to enable various registers, such as Input Registers, Pipeline Registers, Output Registers, Signed Registers, Signed Pipeline Registers, and Accumulator Load Pipeline Registers. Attribute value is the register name. For clocks, you can also assign “NONE” to the attribute. Refer to appropriate DSP User Guide on the Lattice Web site for more details. REGMODE String NOREG, OUTREG NOREG Specifies the register mode for pipelining. REGSET String SET, RESET RESET Sets the output to either SET or RESET for input and output DDR and shift register elements. RESETMODE String ASYNC, SYNC Vary Specifies the reset type. This attribute is attached to a block RAMtype primitive that has a memory size smaller than 9 bits. When set to SYNC, the memory reset is synchronized with the clock. When set to ASYNC, the memory reset is asynchronous to the clock. RNDPAT Hexadeci mal Any 14-bit hex value All zeros Specifies the Rounding Pattern. Attached to the ALU54A primitive. RST_PULSE Integer Integer value 1 Specifies the required reset pulse length. Attached to the Power Up Reset (PUR) primitive. FPGA Libraries Reference Guide 711 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description SCLKLATENCY Integer 1, 2 (on the top only 1 is valid) 1 Adjusts SCLK latency. For simulation only. SED_CLK_FREQ String 3.5 2.08, 2.15, 2.22, 2.29, 2.38, 2.46, 2.56, 2.66, 2.77, 2.89, 3.02, 3.17, 3.33, 3.5, 3.69, 3.91, 4.16, 4.29, 4.43, 4.59, 4.75, 4.93, 5.12, 5.32, 5.54, 5.78, 6.05, 6.33, 6.65, 7, 7.39, 7.82, 8.31, 8.58, 8.87, 9.17, 9.5, 9.85, 10.23, 10.64, 11.08, 11.57, 12.09, 12.67, 13.3, 14, 14.78, 15.65, 16.63, 17.73, 19, 20.46, 22.17, 24.18, 26.6, 29.56, 33.25, 38, 44.33, 53.2, 66.5, 88.67, 133 Specifies the SED clock frequency. SHIFT_IN Boolean TRUE, FALSE FALSE Specifies shift for data. Attached to a DSP multiplier primitive. SMI_OFFSET Hexadeci mal Hex value 0x410, 12’h410 Specifies Serial Management Interface offset. Attached to a PLL or DLL primitive. STDBYOPT String USER, CFG, USER_CFG USER_CFG Specifies the entry option for entry signals. ENABLED, DISABLED DISABLED Attached to the SSPIA primitive. 448, 632, 768, 2184, 2488, 2640, 3384, 3608 2184 TAG_INITIALIZATION Boolean TAG_INITSIZE Integer FPGA Libraries Reference Guide When this attribute is set to DISABLED, the TAG configuration will be generated without an initialization file, and TAG_INITVAL_* will be all zeros. When this is set to ENABLED, the TAG configuration will be generated with an initialization file, and TAG_INITVAL_* will contain the initialization data. Any uninitialized byte word will default to 00000000 (software default). Specifies the TAG Memory size. Attached to the SSPIA primitive. 712 : Primitive-Specific HDL Attributes Table 488: Attribute Type Allowed Values Default Description TAG_INITVAL Hexadeci mal Any 80-bit hex value All zeros Specifies the TAG initialization value. The 80-bit hex string corresponds to the 320 TAG bits. Attached to the SSPIA primitive. TIMEOUT String BYPASS, USER, COUNTER BYPASS Specifies the stop to standby delay. UPDT String POS, NEG POS Attached to a DDR-type primitive (such as ODDRX4A), the UPDT attribute takes the POS and NEG options, which allows you to update block output. WAIT_FOR_EDGE Boolean ENABLED, DISABLED ENABLED Wait for edge. WAKE_ON_LOCK Boolean ON, OFF ON, OFF This is a legacy attribute and not supported for new configurations. Attached to a PLL-type primitive. WAKEUP String USER, CFG, USER_CFG USER_CFG Specifies the wake option for wake signals. There are three options. USER: In this case, MAP checks for the connection to the USERSTDBY pin only. If the pin is not driven by a signal that can be toggled, MAP issues error with DRC for this case only. CFG: In this case, MAP checks for JTAG, I2C, and SLAVE_SPI. If all are disabled, MAP errors out with config mode error. USER_CFG: In this case, MAP checks the USERSTDBY pin connection and JTAG, I2C, and SLAVE_SPI. Map errors out only when the USERSTDBY pin is not driven by live signal and all settings are disabled. WRITEMODE WRITE_LEVELING String String NORMAL, WRITETHROUGH, READBEFORE NORMAL 0T, 1T, 2T 2T Specifies Read/Write mode. Attached to a dual- and single-port RAM primitive. WRITEMODE_A and WRITEMODE_B are used for dualport RAM primitives and refer to the A and B ports. Sets the Write Leveling. 0T: for DDR2, or DDR3 without WL. 1T: For DDR3 with 1T. 2T: for DDR3 with 2T range. FPGA Libraries Reference Guide 713