PIC32MX330/350/370/430/450/470 Data Sheet

PIC32MX330/350/370/430/450/470
32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM)
with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
Operating Conditions: 2.3V to 3.6V
Timers/Output Compare/Input Capture
• -40ºC to +105ºC (DC to 80 MHz)
• -40ºC to +85ºC (DC to 100 MHz)
• 0ºC to +70ºC (DC to 120 MHz)
• Five General Purpose Timers:
- Five 16-bit and up to two 32-bit Timers/Counters
• Five Output Compare (OC) modules
• Five Input Capture (IC) modules
• Peripheral Pin Select (PPS) to allow function remap
• Real-Time Clock and Calendar (RTCC) module
Core: 120 MHz/150 DMIPS MIPS32® M4K®
• MIPS16e® mode for up to 40% smaller code size
• Code-efficient (C and Assembly) architecture
• Single-cycle (MAC) 32x16 and two-cycle 32x32 multiply
Clock Management
•
•
•
•
•
0.9% internal oscillator
Programmable PLLs and oscillator clock sources
Fail-Safe Clock Monitor (FSCM)
Independent Watchdog Timer
Fast wake-up and start-up
Power Management
• Low-power management modes (Sleep and Idle)
• Integrated Power-on Reset, Brown-out Reset, and High
Voltage Detect
• 0.5 mA/MHz dynamic current (typical)
• 50 μA IPD current (typical)
Audio/Graphics/Touch HMI Features
•
•
•
•
External graphics interface with up to 34 PMP pins
Audio data communication: I2S, LJ, RJ, USB
Audio data control interface: SPI and I2C
Audio data master clock:
- Generation of fractional clock frequencies
- Can be synchronized with USB clock
- Can be tuned in run-time
• Charge Time Measurement Unit (CTMU):
- Supports mTouch™ capacitive touch sensing
- Provides high-resolution time measurement (1 ns)
Advanced Analog Features
• ADC Module:
- 10-bit 1 Msps rate with one Sample and Hold (S&H)
- Up to 28 analog inputs
- Can operate during Sleep mode
• Flexible and independent ADC trigger sources
• On-chip temperature measurement capability
• Comparators:
- Two dual-input Comparator modules
- Programmable references with 32 voltage points
Communication Interfaces
• USB 2.0-compliant Full-speed OTG controller
• Up to five UART modules (20 Mbps):
- LIN 1.2 protocols and IrDA® support
• Two 4-wire SPI modules (25 Mbps)
• Two I2C modules (up to 1 Mbaud) with SMBus support
• PPS to allow function remap
• Parallel Master Port (PMP)
Direct Memory Access (DMA)
• Four channels of hardware DMA with automatic data
size detection
• 32-bit Programmable Cyclic Redundancy Check (CRC)
• Two additional channels dedicated to USB
Input/Output
• 15 mA or 12 mA source/sink for standard VOH/VOL and
up to 22 mA for non-standard VOH1
• 5V-tolerant pins
• Selectable open drain, pull-ups, and pull-downs
• External interrupts on all I/O pins
Qualification and Class B Support
• AEC-Q100 REVG (Grade 2 -40ºC to +105ºC) planned
• Class B Safety Library, IEC 60730
Debugger Development Support
•
•
•
•
In-circuit and in-application programming
4-wire MIPS® Enhanced JTAG interface
Unlimited program and six complex data breakpoints
IEEE 1149.2-compatible (JTAG) boundary scan
Packages
Type
QFN
Pin Count
64
64
I/O Pins (up to)
53
53
Contact/Lead Pitch
0.50
0.50
Dimensions
9x9x0.9
10x10x1
Note: All dimensions are in millimeters (mm) unless specified.
 2012-2015 Microchip Technology Inc.
TQFP
100
85
0.40
12x12x1
VTLA
100
85
0.50
14x14x1
124
85
0.50
9x9x0.9
DS60001185E-page 1
PIC32MX330/350/370/430/450/470
TABLE 1:
PIC32MX330/350/370/430/450/470 CONTROLLER FAMILY FEATURES
Program Memory (KB)(1)
Data Memory (KB)
Remappable Pins
Timers/Capture/Compare(2)
UART
SPI/I2S
External Interrupts(3)
10-bit 1 Msps ADC (Channels)
Analog Comparators
USB On-The-Go (OTG)
CTMU
I2C
PMP
RTCC
DMA Channels
(Programmable/Dedicated)
I/O Pins
JTAG
Trace
64+12
16
37
5/5/5
4
2/2
5
28
2
N
Y
2
Y
Y
4/0
53
Y
N
64+12
16
54
5/5/5
5
2/2
5
28
2
N
Y
2
Y
Y
4/0
85
Y
Y
128+12
32
37
5/5/5
4
2/2
5
28
2
N
Y
2
Y
Y
4/0
53
Y
N
128+12
32
54
5/5/5
5
2/2
5
28
2
N
Y
2
Y
Y
4/0
85
Y
Y
256+12
64
37
5/5/5
4
2/2
5
28
2
N
Y
2
Y
Y
4/0
53
Y
N
256+12
64
54
5/5/5
5
2/2
5
28
2
N
Y
2
Y
Y
4/0
85
Y
Y
512+12
128
37
5/5/5
4
2/2
5
28
2
N
Y
2
Y
Y
4/0
53
Y
N
512+12
128
54
5/5/5
5
2/2
5
28
2
N
Y
2
Y
Y
4/0
85
Y
Y
64+12
16
34
5/5/5
4
2/2
5
28
2
Y
Y
2
Y
Y
4/2
49
Y
N
64+12
16
51
5/5/5
5
2/2
5
28
2
Y
Y
2
Y
Y
4/2
81
Y
Y
128+12
32
34
5/5/5
4
2/2
5
28
2
Y
Y
2
Y
Y
4/2
49
Y
N
128+12
32
51
5/5/5
5
2/2
5
28
2
Y
Y
2
Y
Y
4/2
81
Y
Y
256+12
64
34
5/5/5
4
2/2
5
28
2
Y
Y
2
Y
Y
4/2
49
Y
N
256+12
64
51
5/5/5
5
2/2
5
28
2
Y
Y
2
Y
Y
4/2
81
Y
Y
512+12
128
34
5/5/5
4
2/2
5
28
2
Y
Y
2
Y
Y
4/2
49
Y
N
512+12
128
51
5/5/5
5
2/2
5
28
2
Y
Y
2
Y
Y
4/2
81
Y
Y
Pins
QFN,
TQFP
Device
Packages
Remappable Peripherals
PIC32MX330F064H
64
100
TQFP
124
VTLA
64
QFN,
TQFP
100
TQFP
124
VTLA
64
QFN,
TQFP
100
TQFP
124
VTLA
64
QFN,
TQFP
100
TQFP
124
VTLA
64
QFN,
TQFP
100
TQFP
124
VTLA
64
QFN,
TQFP
100
TQFP
124
VTLA
64
QFN,
TQFP
100
TQFP
124
VTLA
64
QFN,
TQFP
100
TQFP
124
VTLA
PIC32MX330F064L
PIC32MX350F128H
PIC32MX350F128L
PIC32MX350F256H
PIC32MX350F256L
PIC32MX370F512H
PIC32MX370F512L
PIC32MX430F064H
PIC32MX430F064L
PIC32MX450F128H
PIC32MX450F128L
PIC32MX450F256H
PIC32MX450F256L
PIC32MX470F512H
PIC32MX470F512L
Note
1:
2:
3:
All devices feature 12 KB of Boot Flash memory.
Four out of five timers are remappable.
Four out of five external interrupts are remappable.
DS60001185E-page 2
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
Device Pin Tables
TABLE 2:
PIN NAMES FOR 64-PIN DEVICES
64-PIN QFN(1,2,3,4) AND TQFP(1,2,3) (TOP VIEW)
PIC32MX330F064H
PIC32MX350F128H
PIC32MX350F256H
PIC32MX370F512H
64
1
64
1
QFN(4)
Pin #
Full Pin Name
TQFP
Pin #
Full Pin Name
1
AN22/RPE5/PMD5/RE5
33
RPF3/RF3
2
AN23/PMD6/RE6
34
RPF2/RF2
3
AN27/PMD7/RE7
35
RPF6/SCK1/INT0/RF6
4
AN16/C1IND/RPG6/SCK2/PMA5/RG6
36
SDA1/RG3
5
AN17/C1INC/RPG7/PMA4/RG7
37
SCL1/RG2
6
AN18/C2IND/RPG8/PMA3/RG8
38
VDD
7
MCLR
39
OSC1/CLKI/RC12
8
AN19/C2INC/RPG9/PMA2/RG9
40
OSC2/CLKO/RC15
9
VSS
41
VSS
10
VDD
42
RPD8/RTCC/RD8
11
AN5/C1INA/RPB5/RB5
43
RPD9/RD9
12
AN4/C1INB/RB4
44
RPD10/PMCS2/RD10
13
PGED3/AN3/C2INA/RPB3/RB3
45
RPD11/PMCS1/RD11
14
PGEC3/AN2/C2INB/RPB2/CTED13/RB2
46
RPD0/RD0
15
PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1
47
SOSCI/RPC13/RC13
16
PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0
48
SOSCO/RPC14/T1CK/RC14
17
PGEC2/AN6/RPB6/RB6
49
AN24/RPD1/RD1
18
PGED2/AN7/RPB7/CTED3//RB7
50
AN25/RPD2/RD2
19
AVDD
51
AN26/RPD3/RD3
20
AVSS
52
RPD4/PMWR/RD4
21
AN8/RPB8/CTED10//RB8
53
RPD5/PMRD/RD5
22
AN9/RPB9/CTED4/PMA7/RB9
54
RD6
23
TMS/CVREFOUT/AN10/RPB10/CTED11//PMA13/RB10
55
RD7
24
TDO/AN11/PMA12/RB11
56
VCAP
25
VSS
57
VDD
26
VDD
58
RPF0/RF0
27
TCK/AN12/PMA11/RB12
59
RPF1/RF1
28
TDI/AN13/PMA10/RB13
60
PMD0/RE0
29
AN14/RPB14/CTED5/PMA1/RB14
61
PMD1/RE1
30
AN15/RPB15/OCFB/CTED6/PMA0/RB15
62
AN20/PMD2/RE2
31
RPF4/SDA2/PMA9/RF4
63
RPE3/CTPLS/PMD3/RE3
32
RPF5/SCL2/PMA8/RF5
64
AN21/PMD4/RE4
Note
1:
2:
3:
4:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.
RPF6 (pin 35) is only available for output functions.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 3
PIC32MX330/350/370/430/450/470
TABLE 3:
PIN NAMES FOR 64-PIN DEVICES
64-PIN QFN(1,2,3,4) AND TQFP(1,2,3) (TOP VIEW)
PIC32MX430F064H
PIC32MX450F128H
PIC32MX450F256H
PIC32MX470F512H
64
1
64
1
TQFP
QFN
Pin #
Full Pin Name
Pin #
Full Pin Name
1
AN22/RPE5/PMD5/RE5
33
USBID/RPF3/RF3
2
AN23/PMD6/RE6
34
VBUS
3
AN27/PMD7/RE7
35
VUSB3V3
4
AN16/C1IND/RPG6/SCK2/PMA5/RG6
36
D-
5
AN17/C1INC/RPG7/PMA4/RG7
37
D+
6
AN18/C2IND/RPG8/PMA3/RG8
38
VDD
7
MCLR
39
OSC1/CLKI/RC12
8
AN19/C2INC/RPG9/PMA2/RG9
40
OSC2/CLKO/RC15
9
VSS
41
VSS
10
VDD
42
RPD8/RTCC/RD8
11
AN5/C1INA/RPB5/VBUSON/RB5
43
RPD9/SDA1/RD9
12
AN4/C1INB/RB4
44
RPD10/SCL1/PMCS2/RD10
13
PGED3/AN3/C2INA/RPB3/RB3
45
RPD11/PMCS1/RD11
14
PGEC3/AN2/C2INB/RPB2/CTED13/RB2
46
RPD0/INT0/RD0
15
PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1
47
SOSCI/RPC13/RC13
SOSCO/RPC14/T1CK/RC14
16
PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0
48
17
PGEC2/AN6/RPB6/RB6
49
AN24/RPD1/RD1
18
PGED2/AN7/RPB7/CTED3//RB7
50
AN25/RPD2/SCK1/RD2
19
AVDD
51
AN26/RPD3/RD3
20
AVSS
52
RPD4/PMWR/RD4
21
AN8/RPB8/CTED10//RB8
53
RPD5/PMRD/RD5
22
AN9/RPB9/CTED4/PMA7/RB9
54
RD6
23
TMS/CVREFOUT/AN10/RPB10/CTED11//PMA13/RB10
55
RD7
24
TDO/AN11/PMA12/RB11
56
VCAP
25
VSS
57
VDD
26
VDD
58
RPF0/RF0
27
TCK/AN12/PMA11/RB12
59
RPF1/RF1
28
TDI/AN13/PMA10/RB13
60
PMD0/RE0
29
AN14/RPB14/CTED5/PMA1/RB14
61
PMD1/RE1
30
AN15/RPB15/OCFB/CTED6/PMA0/RB15
62
AN20/PMD2/RE2
31
RPF4/SDA2/PMA9/RF4
63
RPE3/CTPLS/PMD3/RE3
32
RPF5/SCL2/PMA8/RF5
64
AN21/PMD4/RE4
Note
1:
2:
3:
4:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.
RPF6 (pin 35) is only available for output functions.
DS60001185E-page 4
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 4:
PIN NAMES FOR 100-PIN DEVICES
100-PIN TQFP (TOP VIEW)(1,2,3)
PIC32MX330F064L
PIC32MX350F128L
PIC32MX350F256L
PIC32MX370F512L
100
1
Pin #
Full Pin Name
Pin #
Full Pin Name
1
RG15
36
VSS
2
VDD
37
VDD
3
AN22/RPE5/PMD5/RE5
38
TCK/CTED2/RA1
4
AN23/PMD6/RE6
39
RPF13/RF13
RPF12/RF12
5
AN27/PMD7/RE7
40
6
RPC1/RC1
41
AN12/PMA11/RB12
7
RPC2/RC2
42
AN13/PMA10/RB13
8
RPC3/RC3
43
AN14/RPB14/CTED5/PMA1/RB14
9
RPC4/CTED7/RC4
44
AN15/RPB15/OCFB/CTED6/PMA0/RB15
10
AN16/C1IND/RPG6/SCK2/PMA5/RG6
45
VSS
11
AN17/C1INC/RPG7/PMA4/RG7
46
VDD
12
AN18/C2IND/RPG8/PMA3/RG8
47
RPD14/RD14
13
MCLR
48
RPD15/RD15
14
AN19/C2INC/RPG9/PMA2/RG9
49
RPF4/PMA9/RF4
15
VSS
50
RPF5/PMA8/RF5
16
VDD
51
RPF3/RF3
17
TMS/CTED1/RA0
52
RPF2/RF2
18
RPE8/RE8
53
RPF8/RF8
19
RPE9/RE9
54
RPF7/RF7
20
AN5/C1INA/RPB5/RB5
55
RPF6/SCK1/INT0/RF6
21
AN4/C1INB/RB4
56
SDA1/RG3
22
PGED3/AN3/C2INA/RPB3/RB3
57
SCL1/RG2
23
PGEC3/AN2/C2INB/RPB2/CTED13/RB2
58
SCL2/RA2
24
PGEC1/AN1/RPB1/CTED12/RB1
59
SDA2/RA3
25
PGED1/AN0/RPB0/RB0
60
TDI/CTED9/RA4
26
PGEC2/AN6/RPB6/RB6
61
TDO/RA5
27
PGED2/AN7/RPB7/CTED3/RB7
62
VDD
28
VREF-/CVREF-/PMA7/RA9
63
OSC1/CLKI/RC12
29
VREF+/CVREF+/PMA6/RA10
64
OSC2/CLKO/RC15
30
AVDD
65
VSS
31
AVSS
66
RPA14/RA14
32
AN8/RPB8/CTED10/RB8
67
RPA15/RA15
33
AN9/RPB9/CTED4/RB9
68
RPD8/RTCC/RD8
34
CVREFOUT/AN10/RPB10/CTED11PMA13/RB10
69
RPD9/RD9
35
AN11/PMA12/RB11
70
RPD10/PMCS2/RD10
Note
1:
2:
3:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF7 (pin 54) is only remappable for input functions.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 5
PIC32MX330/350/370/430/450/470
TABLE 4:
PIN NAMES FOR 100-PIN DEVICES (CONTINUED)
100-PIN TQFP (TOP VIEW)(1,2,3)
PIC32MX330F064L
PIC32MX350F128L
PIC32MX350F256L
PIC32MX370F512L
100
1
Pin #
Full Pin Name
Pin #
Full Pin Name
71
RPD11/PMCS1/RD11
86
VDD
72
RPD0/RD0
87
RPF0/PMD11/RF0
73
SOSCI/RPC13/RC13
88
RPF1/PMD10/RF1
74
SOSCO/RPC14/T1CK/RC14
89
RPG1/PMD9/RG1
75
VSS
90
RPG0/PMD8/RG0
76
AN24/RPD1/RD1
91
TRCLK/RA6
77
AN25/RPD2/RD2
92
TRD3/CTED8/RA7
78
AN26/RPD3/RD3
93
PMD0/RE0
79
RPD12/PMD12/RD12
94
PMD1/RE1
80
PMD13/RD13
95
TRD2/RG14
81
RPD4/PMWR/RD4
96
TRD1/RG12
82
RPD5/PMRD/RD5
97
TRD0/RG13
83
PMD14/RD6
98
AN20/PMD2/RE2
84
PMD15/RD7
99
RPE3/CTPLS/PMD3/RE3
85
VCAP
100
AN21/PMD4/RE4
Note
1:
2:
3:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF7 (pin 54) is only remappable for input functions.
DS60001185E-page 6
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 5:
PIN NAMES FOR 100-PIN DEVICES
100-PIN TQFP (TOP VIEW)(1,2,3)
PIC32MX430F064L
PIC32MX450F128L
PIC32MX450F256L
PIC32MX470F512L
100
1
Pin #
Full Pin Name
Pin #
Full Pin Name
1
RG15
36
VSS
2
VDD
37
VDD
3
AN22/RPE5/PMD5/RE5
38
TCK/CTED2/RA1
4
AN23/PMD6/RE6
39
RPF13/RF13
RPF12/RF12
5
AN27/PMD7/RE7
40
6
RPC1/RC1
41
AN12/PMA11/RB12
7
RPC2/RC2
42
AN13/PMA10/RB13
8
RPC3/RC3
43
AN14/RPB14/CTED5/PMA1/RB14
9
RPC4/CTED7/RC4
44
AN15/RPB15/OCFB/CTED6/PMA0/RB15
10
AN16/C1IND/RPG6/SCK2/PMA5/RG6
45
VSS
11
AN17/C1INC/RPG7/PMA4/RG7
46
VDD
12
AN18/C2IND/RPG8/PMA3/RG8
47
RPD14/RD14
13
MCLR
48
RPD15/RD15
14
AN19/C2INC/RPG9/PMA2/RG9
49
RPF4/PMA9/RF4
15
VSS
50
RPF5/PMA8/RF5
16
VDD
51
USBID/RPF3/RF3
17
TMS/CTED1/RA0
52
RPF2/RF2
18
RPE8/RE8
53
RPF8/RF8
19
RPE9/RE9
54
VBUS
20
AN5/C1INA/RPB5/VBUSON/RB5
55
VUSB3V3
21
AN4/C1INB/RB4
56
D-
22
PGED3/AN3/C2INA/RPB3/RB3
57
D+
23
PGEC3/AN2/C2INB/RPB2/CTED13/RB2
58
SCL2/RA2
24
PGEC1/AN1/RPB1/CTED12/RB1
59
SDA2/RA3
25
PGED1/AN0/RPB0/RB0
60
TDI/CTED9/RA4
26
PGEC2/AN6/RPB6/RB6
61
TDO/RA5
27
PGED2/AN7/RPB7/CTED3/RB7
62
VDD
28
VREF-/CVREF-/PMA7/RA9
63
OSC1/CLKI/RC12
29
VREF+/CVREF+/PMA6/RA10
64
OSC2/CLKO/RC15
30
AVDD
65
VSS
31
AVSS
66
SCL1/RPA14/RA14
32
AN8/RPB8/CTED10/RB8
67
SDA1/RPA15/RA15
33
AN9/RPB9/CTED4/RB9
68
RPD8/RTCC/RD8
34
CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10
69
RPD9/RD9
35
AN11/PMA12/RB11
70
RPD10/SCK1/PMCS2/RD10
Note
1:
2:
3:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF7 (pin 54) is only remappable for input functions.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 7
PIC32MX330/350/370/430/450/470
TABLE 5:
PIN NAMES FOR 100-PIN DEVICES (CONTINUED)
100-PIN TQFP (TOP VIEW)(1,2,3)
PIC32MX430F064L
PIC32MX450F128L
PIC32MX450F256L
PIC32MX470F512L
100
1
Pin #
Full Pin Name
Pin #
Full Pin Name
71
RPD11/PMCS1/RD11
86
VDD
72
RPD0/INT0/RD0
87
RPF0/PMD11/RF0
73
SOSCI/RPC13/RC13
88
RPF1/PMD10/RF1
74
SOSCO/RPC14/T1CK/RC14
89
RPG1/PMD9/RG1
75
VSS
90
RPG0/PMD8/RG0
76
AN24/RPD1/RD1
91
TRCLK/RA6
77
AN25/RPD2/RD2
92
TRD3/CTED8/RA7
78
AN26/RPD3/RD3
93
PMD0/RE0
79
RPD12/PMD12/RD12
94
PMD1/RE1
80
PMD13/RD13
95
TRD2/RG14
81
RPD4/PMWR/RD4
96
TRD1/RG12
82
RPD5/PMRD/RD5
97
TRD0/RG13
83
PMD14/RD6
98
AN20/CTPLS/PMD2/RE2
84
PMD15/RD7
99
RPE3/PMD3/RE3
85
VCAP
100
AN21/PMD4/RE4
Note
1:
2:
3:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF7 (pin 54) is only remappable for input functions.
DS60001185E-page 8
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 6:
PIN NAMES FOR 124-PIN DEVICES
124-PIN VTLA (BOTTOM VIEW)(1,2,3,4,5)
PIC32MX330F064L
PIC32MX350F128L
PIC32MX350F256L
PIC32MX370F512L
A34
A17
B13
B1
Full Pin Name
B56
Conductive
Thermal Pad
B41
A51
A1
A68
Polarity Indicator
Package
Bump #
B29
Package
Bump #
Full Pin Name
A1
No Connect
A38
A2
RG15
A39
SDA1/RG3
SCL2/RA2
A3
VSS
A40
TDI/CTED9/RA4
A4
AN23/PMD6/RE6
A41
VDD
A5
RPC1/RC1
A42
OSC2/CLKO/RC15
A6
RPC3/RC3
A43
VSS
A7
AN16/C1IND/RPG6/SCK2/PMA5/RG6
A44
RPA15/RA15
A8
AN18/C2IND/RPG8/PMA3/RG8
A45
RPD9/RD9
A9
AN19/C2INC/RPG9/PMA2/RG9
A46
RPD11/PMCS1/RD11
A10
VDD
A47
SOSCI/RPC13/RC13
A11
RPE8/RE8
A48
VDD
A12
AN5/C1INA/RPB5/RB5
A49
No Connect
A13
PGED3/AN3/C2INA/RPB3/RB3
A50
No Connect
A14
VDD
A51
No Connect
A15
PGEC1/AN1/RPB1/CTED12/RB1
A52
AN24/RPD1/RD1
A16
No Connect
A53
AN26/RPD3/RD3
A17
No Connect
A54
PMD13/RD13
A18
No Connect
A55
RPD5/PMRD/RD5
A19
No Connect
A56
PMD15/RD7
A20
PGEC2/AN6/RPB6/RB6
A57
No Connect
A21
VREF-/CVREF-/PMA7/RA9
A58
No Connect
A22
AVDD
A59
VDD
A23
AN8/RPB8/CTED10/RB8
A60
RPF1/PMD10/RF1
A24
CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10
A61
RPG0/PMD8/RG0
TRD3/CTED8/RA7
A25
VSS
A62
A26
TCK/CTED2/RA1
A63
VSS
A27
RPF12/RF12
A64
PMD1/RE1
A28
AN13/PMA10/RB13
A65
TRD1/RG12
A29
AN15/RPB15/OCFB/CTED6/PMA0/RB15
A66
AN20/PMD2/RE2
A30
VDD
A67
AN21/PMD4/RE4
A31
RPD15/RD15
A68
No Connect
A32
RPF5/PMA8/RF5
B1
VDD
A33
No Connect
B2
AN22/RPE5/PMD5/RE5
A34
No Connect
B3
AN27/PMD7/RE7
A35
RPF3/RF3
B4
RPC2/RC2
A36
RPF2/RF2
B5
RPC4/CTED7/RC4
A37
RPF7/RF7
B6
AN17/C1INC/RPG7/PMA4/RG7
Note
1:
2:
3:
4:
5:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF7 (bump A37) is only remappable for input functions.
Shaded package bumps are 5V tolerant.
It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the
package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 9
PIC32MX330/350/370/430/450/470
TABLE 6:
PIN NAMES FOR 124-PIN DEVICES (CONTINUED)
124-PIN VTLA (BOTTOM VIEW)(1,2,3,4,5)
PIC32MX330F064L
PIC32MX350F128L
PIC32MX350F256L
PIC32MX370F512L
A34
A17
B1
Full Pin Name
Conductive
Thermal Pad
B41
B56
A51
A1
A68
Polarity Indicator
Package
Bump #
B29
B13
Package
Bump #
Full Pin Name
B7
MCLR
B32
SDA2/RA3
B8
VSS
B33
TDO/RA5
B9
TMS/CTED1/RA0
B34
OSC1/CLKI/RC12
B10
RPE9/RE9
B35
No Connect
B11
AN4/C1INB/RB4
B36
RPA14/RA14
B12
VSS
B37
RPD8/RTCC/RD8
B13
PGEC3/AN2/C2INB/RPB2/CTED13/RB2
B38
RPD10/PMCS2/RD10
B14
PGED1/AN0/RPB0/RB0
B39
RPD0/RD0
B15
No Connect
B40
SOSCO/RPC14/T1CK/RC14
B16
PGED2/AN7/RPB7/CTED3/RB7
B41
VSS
B17
VREF+/CVREF+/PMA6/RA10
B42
AN25/RPD2/RD2
B18
AVSS
B43
RPD12/PMD12/RD12
B19
AN9/RPB9/CTED4/RB9
B44
RPD4/PMWR/RD4
B20
AN11/PMA12/RB11
B45
PMD14/RD6
No Connect
B21
VDD
B46
B22
RPF13/RF13
B47
No Connect
B23
AN12/PMA11/RB12
B48
VCAP
B24
AN14/RPB14/CTED5/PMA1/RB14
B49
RPF0/PMD11/RF0
B25
VSS
B50
RPG1/PMD9/RG1
B26
RPD14/RD14
B51
TRCLK/RA6
PMD0/RE0
B27
RPF4/PMA9/RF4
B52
B28
No Connect
B53
VDD
B29
RPF8/RF8
B54
TRD2/RG14
B30
RPF6/SCKI/INT0/RF6
B55
TRD0/RG13
B31
SCL1/RG2
B56
RPE3/CTPLS/PMD3/RE3
Note
1:
2:
3:
4:
5:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF7 (bump A37) is only remappable for input functions.
Shaded package bumps are 5V tolerant.
It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the
package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.
DS60001185E-page 10
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 7:
PIN NAMES FOR 124-PIN DEVICES
124-PIN VTLA (BOTTOM VIEW)(1,2,3,4,5)
PIC32MX430F064L
PIC32MX450F128L
PIC32MX450F256L
PIC32MX470F512L
A34
A17
B13
B1
Full Pin Name
B56
Conductive
Thermal Pad
B41
A51
A1
A68
Polarity Indicator
Package
Bump #
B29
Package
Bump #
Full Pin Name
A1
No Connect
A38
D-
A2
RG15
A39
SCL2/RA2
A3
VSS
A40
TDI/CTED9/RA4
A4
AN23/PMD6/RE6
A41
VDD
A5
RPC1/RC1
A42
OSC2/CLKO/RC15
A6
RPC3/RC3
A43
VSS
A7
AN16/C1IND/RPG6/SCK2/PMA5/RG6
A44
SDA1/RPA15/RA15
A8
AN18/C2IND/RPG8/PMA3/RG8
A45
RPD9/RD9
A9
AN19/C2INC/RPG9/PMA2/RG9
A46
RPD11/PMCS1/RD11
A10
VDD
A47
SOSCI/RPC13/RC13
A11
RPE8/RE8
A48
VDD
A12
AN5/C1INA/RPB5/VBUSON/RB5
A49
No Connect
A13
PGED3/AN3/C2INA/RPB3/RB3
A50
No Connect
A14
VDD
A51
No Connect
A15
PGEC1/AN1/RPB1/CTED12/RB1
A52
AN24/RPD1/RD1
A16
No Connect
A53
AN26/RPD3/RD3
A17
No Connect
A54
PMD13/RD13
A18
No Connect
A55
RPD5/PMRD/RD5
A19
No Connect
A56
PMD15/RD7
A20
PGEC2/AN6/RPB6/RB6
A57
No Connect
A21
VREF-/CVREF-/PMA7/RA9
A58
No Connect
A22
AVDD
A59
VDD
A23
AN8/RPB8/CTED10/RB8
A60
RPF1/PMD10/RF1
A24
CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10
A61
RPG0/PMD8/RG0
A25
VSS
A62
TRD3/CTED8/RA7
A26
TCK/CTED2/RA1
A63
VSS
A27
RPF12/RF12
A64
PMD1/RE1
A28
AN13/PMA10/RB13
A65
TRD1/RG12
A29
AN15/RPB15/OCFB/CTED6/PMA0/RB15
A66
AN20/PMD2/RE2
A30
VDD
A67
AN21/PMD4/RE4
A31
RPD15/RD15
A68
No Connect
A32
RPF5/PMA8/RF5
B1
VDD
A33
No Connect
B2
AN22/RPE5/PMD5/RE5
A34
No Connect
B3
AN27/PMD7/RE7
A35
USBID/RPF3/RF3
B4
RPC2/RC2
A36
RPF2/RF2
B5
RPC4/CTED7/RC4
A37
VBUS
B6
AN17/C1INC/RPG7/PMA4/RG7
Note
1:
2:
3:
4:
5:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF3 (bump A35) is only available for input mapping and only when USBID is not used.
Shaded package bumps are 5V tolerant.
It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the
package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 11
PIC32MX330/350/370/430/450/470
TABLE 7:
PIN NAMES FOR 124-PIN DEVICES (CONTINUED)
124-PIN VTLA (BOTTOM VIEW)(1,2,3,4,5)
PIC32MX430F064L
PIC32MX450F128L
PIC32MX450F256L
PIC32MX470F512L
A34
A17
B1
Full Pin Name
Conductive
Thermal Pad
B41
B56
A51
A1
A68
Polarity Indicator
Package
Bump #
B29
B13
Package
Bump #
Full Pin Name
B7
MCLR
B32
B8
VSS
B33
SDA2/RA3
TDO/RA5
B9
TMS/CTED1/RA0
B34
OSC1/CLKI/RC12
B10
RPE9/RE9
B35
No Connect
B11
AN4/C1INB/RB4
B36
SCL1/RPA14/RA14
B12
VSS
B37
RPD8/RTCC/RD8
B13
PGEC3/AN2/C2INB/RPB2/CTED13/RB2
B38
RPD10/SCK1/PMCS2/RD10
B14
PGED1/AN0/RPB0/RB0
B39
RPD0/INT0/RD0
B15
No Connect
B40
SOSCO/RPC14/T1CK/RC14
B16
PGED2/AN7/RPB7/CTED3/RB7
B41
VSS
B17
VREF+/CVREF+/PMA6/RA10
B42
AN25/RPD2/RD2
B18
AVSS
B43
RPD12/PMD12/RD12
B19
AN9/RPB9/CTED4/RB9
B44
RPD4/PMWR/RD4
B20
AN11/PMA12/RB11
B45
PMD14/RD6
B21
VDD
B46
No Connect
B22
RPF13/RF13
B47
No Connect
B23
AN12/PMA11/RB12
B48
VCAP
B24
AN14/RPB14/CTED5/PMA1/RB14
B49
RPF0/PMD11/RF0
B25
VSS
B50
RPG1/PMD9/RG1
B26
RPD14/RD14
B51
TRCLK/RA6
B27
RPF4/PMA9/RF4
B52
PMD0/RE0
B28
No Connect
B53
VDD
B29
RPF8/RF8
B54
TRD2/RG14
B30
VUSB3V3
B55
TRD0/RG13
B31
D+
B56
RPE3/CTPLS/PMD3/RE3
Note
1:
2:
3:
4:
5:
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin
Select” for restrictions.
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O
Ports” for more information.
RPF3 (bump A35) is only available for input mapping and only when USBID is not used.
Shaded package bumps are 5V tolerant.
It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the
package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.
DS60001185E-page 12
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
Table of Contents
1.0 Device Overview ........................................................................................................................................................................ 17
2.0 Guidelines for Getting Started with 32-bit MCUs........................................................................................................................ 27
3.0 CPU............................................................................................................................................................................................ 33
4.0 Memory Organization ................................................................................................................................................................. 37
5.0 Flash Program Memory.............................................................................................................................................................. 51
6.0 Resets ........................................................................................................................................................................................ 57
7.0 Interrupt Controller ..................................................................................................................................................................... 61
8.0 Oscillator Configuration .............................................................................................................................................................. 71
9.0 Prefetch Cache........................................................................................................................................................................... 81
10.0 Direct Memory Access (DMA) Controller ................................................................................................................................... 91
11.0 USB On-The-Go (OTG)............................................................................................................................................................ 111
12.0 I/O Ports ................................................................................................................................................................................... 135
13.0 Timer1 ...................................................................................................................................................................................... 165
14.0 Timer2/3, Timer4/5 ................................................................................................................................................................... 169
15.0 Watchdog Timer (WDT) ........................................................................................................................................................... 175
16.0 Input Capture............................................................................................................................................................................ 179
17.0 Output Compare....................................................................................................................................................................... 183
18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 187
19.0 Inter-Integrated Circuit (I2C) ..................................................................................................................................................... 195
20.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 203
21.0 Parallel Master Port (PMP)....................................................................................................................................................... 211
22.0 Real-Time Clock and Calendar (RTCC)................................................................................................................................... 221
23.0 10-bit Analog-to-Digital Converter (ADC) ................................................................................................................................. 231
24.0 Comparator .............................................................................................................................................................................. 241
25.0 Comparator Voltage Reference (CVREF) ................................................................................................................................. 245
26.0 Charge Time Measurement Unit (CTMU) ............................................................................................................................... 249
27.0 Power-Saving Features ........................................................................................................................................................... 255
28.0 Special Features ...................................................................................................................................................................... 259
29.0 Instruction Set .......................................................................................................................................................................... 271
30.0 Development Support............................................................................................................................................................... 273
31.0 Electrical Characteristics .......................................................................................................................................................... 277
32.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 327
33.0 Packaging Information.............................................................................................................................................................. 331
The Microchip Web Site ..................................................................................................................................................................... 357
Customer Change Notification Service .............................................................................................................................................. 357
Customer Support .............................................................................................................................................................................. 357
Product Identification System ............................................................................................................................................................ 358
 2012-2015 Microchip Technology Inc.
DS60001185E-page 13
PIC32MX330/350/370/430/450/470
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at [email protected]. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
DS60001185E-page 14
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
Referenced Sources
This device data sheet is based on the following
individual sections of the “PIC32 Family Reference
Manual”. These documents should be considered as
the general reference for the operation of a particular
module or device feature.
Note:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
To access the following documents, refer
to the Documentation > Reference
Manuals section of the Microchip PIC32
website: http://www.microchip.com/pic32.
Section 1. “Introduction” (DS60001127)
Section 2. “CPU” (DS60001113)
Section 3. “Memory Organization” (DS60001115)
Section 4. “Prefetch Cache” (DS60001119)
Section 5. “Flash Program Memory” (DS60001121)
Section 6. “Oscillator Configuration” (DS60001112)
Section 7. “Resets” (DS60001118)
Section 8. “Interrupt Controller” (DS60001108)
Section 9. “Watchdog Timer and Power-up Timer” (DS60001114)
Section 10. “Power-Saving Features” (DS60001130)
Section 12. “I/O Ports” (DS60001120)
Section 13. “Parallel Master Port (PMP)” (DS60001128)
Section 14. “Timers” (DS60001105)
Section 15. “Input Capture” (DS60001122)
Section 16. “Output Compare” (DS60001111)
Section 17. “10-bit Analog-to-Digital Converter (ADC)” (DS60001104)
Section 19. “Comparator” (DS60001110)
Section 20. “Comparator Voltage Reference (CVREF)” (DS60001109)
Section 21. “Universal Asynchronous Receiver Transmitter (UART)” (DS60001107)
Section 23. “Serial Peripheral Interface (SPI)” (DS60001106)
Section 24. “Inter-Integrated Circuit (I2C)” (DS60001116)
Section 27. “USB On-The-Go (OTG)” (DS60001126)
Section 29. “Real-Time Clock and Calendar (RTCC)” (DS60001125)
Section 31. “Direct Memory Access (DMA) Controller” (DS60001117)
Section 32. “Configuration” (DS60001124)
Section 33. “Programming and Diagnostics” (DS60001129)
Section 37. “Charge Time Measurement Unit (CTMU)” (DS60001167)
 2012-2015 Microchip Technology Inc.
DS60001185E-page 15
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 16
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
1.0
Note:
This document contains device-specific information for
PIC32MX330/350/370/430/450/470 devices.
DEVICE OVERVIEW
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the documents listed in the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
FIGURE 1-1:
Figure 1-1 illustrates a general block diagram of the
core and peripheral modules in the PIC32MX330/350/
370/430/450/470 family of devices.
Table 1-1 lists the functions of the various pins shown
in the pinout diagrams.
PIC32MX330/350/370/430/450/470 BLOCK DIAGRAM
VCAP
OSC2/CLKO
OSC1/CLKI
OSC/SOSC
Oscillators
Power-up
Timer
FRC/LPRC
Oscillators
Voltage
Regulator
Oscillator
Start-up Timer
PLL
PLL-USB
Watchdog
Timer
USBCLK
SYSCLK
Timing
Generation
MCLR
Power-on
Reset
Precision
Band Gap
Reference
DIVIDERS
VDD, VSS
Brown-out
Reset
PBCLK
Peripheral Bus Clocked by SYSCLK
CTMU
PORTA/CNA
USB
EJTAG
PORTC/CNC
®
MIPS32
PORTD/CND
DMAC
CPU Core
DS
32
PORTE/CNE
32
INT
M4K®
IS
32
ICD
32
32
32
32
Bus Matrix
PORTF/CNF
PORTG/CNG
32
Cache & Prefetch
Module
32
PWM
OC1-5
IC1-5
32
SPI1,2
I2C1,2
PMP
10-bit ADC
Data RAM
Peripheral Bridge
UART1-5
Remappable
Pins
128
128-bit wide
Program Flash Memory
Note:
32
Peripheral Bus Clocked by PBCLK
Timer1-5
Priority
Interrupt
Controller
JTAG
BSCAN
PORTB/CNB
RTCC
Flash
Controller
Comparators
1-2
Not all features are available on all devices. Refer to TABLE 1: “PIC32MX330/350/370/430/450/470 Controller
Family Features” for the list of features by device.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 17
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS
Pin Number
Pin
Type
Buffer
Type
B14
I
Analog
A15
I
Analog
23
B13
I
Analog
13
22
A13
I
Analog
12
21
B11
I
Analog
AN5
11
20
A12
I
Analog
AN6
17
26
A20
I
Analog
AN7
18
27
B16
I
Analog
AN8
21
32
A23
I
Analog
AN9
22
33
B19
I
Analog
AN10
23
34
A24
I
Analog
AN11
24
35
B20
I
Analog
AN12
27
41
B23
I
Analog
AN13
28
42
A28
I
Analog
AN14
29
43
B24
I
Analog
AN15
30
44
A29
I
Analog
AN16
4
10
A7
I
Analog
AN17
5
11
B6
I
Analog
AN18
6
12
A8
I
Analog
AN19
8
14
A9
I
Analog
AN20
62
98
A66
I
Analog
AN21
64
100
A67
I
Analog
AN22
1
3
B2
I
Analog
64-pin
QFN/
TQFP
100-pin
TQFP
124-pin
VTLA
AN0
16
25
AN1
15
24
AN2
14
AN3
AN4
Pin Name
Description
Analog input channels.
AN23
2
4
A4
I
Analog
AN24
49
76
A52
I
Analog
AN25
50
77
B42
I
Analog
AN26
51
78
A53
I
Analog
AN27
3
5
B3
I
Analog
CLKI
39
63
B34
I
ST/CMOS
External clock source input. Always associated with
OSC1 pin function.
CLKO
40
64
A42
O
—
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions
as CLKO in RC and EC modes. Always associated
with the OSC2 pin function.
OSC1
39
63
B34
I
ST/CMOS
Oscillator crystal input. ST buffer when configured in
RC mode; CMOS otherwise.
OSC2
40
64
A42
O
—
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions
as CLKO in RC and EC modes.
SOSCI
47
73
A47
I
ST/CMOS
32.768 kHz low-power oscillator crystal input; CMOS
otherwise.
48
74
B40
O
—
SOSCO
Legend:
Note 1:
2:
3:
32.768 kHz low-power oscillator crystal output.
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
DS60001185E-page 18
P = Power
I = Input
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
Pin
Type
Buffer
Type
PPS
I
ST
PPS
I
ST
PPS
PPS
I
ST
PPS
PPS
PPS
I
ST
PPS
PPS
PPS
I
ST
OC1
PPS
PPS
PPS
O
ST
Output Compare Output 1
OC2
PPS
PPS
PPS
O
ST
Output Compare Output 2
OC3
PPS
PPS
PPS
O
ST
Output Compare Output 3
OC4
PPS
PPS
PPS
O
ST
Output Compare Output 4
OC5
PPS
PPS
PPS
O
ST
Output Compare Output 5
OCFA
PPS
PPS
PPS
I
ST
Output Compare Fault A Input
OCFB
30
44
A29
I
ST
Output Compare Fault B Input
I
ST
External Interrupt 0
64-pin
QFN/
TQFP
100-pin
TQFP
124-pin
VTLA
IC1
PPS
PPS
IC2
PPS
PPS
IC3
PPS
IC4
IC5
Pin Name
INT0
35(1), 46(2) 55(1), 72(2) B30(1), B39(2)
Description
Capture Input 1-5
INT1
PPS
PPS
PPS
I
ST
External Interrupt 1
INT2
PPS
PPS
PPS
I
ST
External Interrupt 2
INT3
PPS
PPS
PPS
I
ST
External Interrupt 3
INT4
PPS
PPS
PPS
I
ST
External Interrupt 4
RA0
—
17
B9
I/O
ST
RA1
—
38
A26
I/O
ST
RA2
—
58
A39
I/O
ST
RA3
—
59
B32
I/O
ST
RA4
—
60
A40
I/O
ST
RA5
—
61
B33
I/O
ST
RA6
—
91
B51
I/O
ST
RA7
—
92
A62
I/O
ST
RA9
—
28
A21
I/O
ST
RA10
—
29
B17
I/O
ST
RA14
—
66
B36
I/O
ST
RA15
—
67
A44
I/O
ST
Legend:
Note 1:
2:
3:
PORTA is a bidirectional I/O port
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
 2012-2015 Microchip Technology Inc.
P = Power
I = Input
DS60001185E-page 19
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
Pin
Type
Buffer
Type
B14
I/O
ST
A15
I/O
ST
23
B13
I/O
ST
13
22
A13
I/O
ST
12
21
B11
I/O
ST
RB5
11
20
A12
I/O
ST
RB6
17
26
A20
I/O
ST
RB7
18
27
B16
I/O
ST
RB8
21
32
A23
I/O
ST
RB9
22
33
B19
I/O
ST
RB10
23
34
A24
I/O
ST
RB11
24
35
B20
I/O
ST
RB12
27
41
B23
I/O
ST
RB13
28
42
A28
I/O
ST
RB14
29
43
B24
I/O
ST
RB15
30
44
A29
I/O
ST
RC1
—
6
A5
I/O
ST
RC2
—
7
B4
I/O
ST
RC3
—
8
A6
I/O
ST
64-pin
QFN/
TQFP
100-pin
TQFP
124-pin
VTLA
RB0
16
25
RB1
15
24
RB2
14
RB3
RB4
Pin Name
RC4
—
9
B5
I/O
ST
RC12
39
63
B34
I/O
ST
RC13
47
73
A47
I/O
ST
RC14
48
74
B40
I/O
ST
RC15
40
64
A42
I/O
ST
RD0
46
72
B39
I/O
ST
RD1
49
76
A52
I/O
ST
RD2
50
77
B42
I/O
ST
RD3
51
78
A53
I/O
ST
RD4
52
81
B44
I/O
ST
RD5
53
82
A55
I/O
ST
RD6
54
83
B45
I/O
ST
RD7
55
84
A56
I/O
ST
RD8
42
68
B37
I/O
ST
RD9
43
69
A45
I/O
ST
RD10
44
70
B38
I/O
ST
RD11
45
71
A46
I/O
ST
RD12
—
79
B43
I/O
ST
RD13
—
80
A54
I/O
ST
RD14
—
47
B26
I/O
ST
RD15
—
48
A31
I/O
ST
Legend:
Note 1:
2:
3:
Description
PORTB is a bidirectional I/O port
PORTC is a bidirectional I/O port
PORTD is a bidirectional I/O port
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
DS60001185E-page 20
P = Power
I = Input
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
Pin
Type
Buffer
Type
B52
I/O
ST
A64
I/O
ST
A66
I/O
ST
99
B56
I/O
ST
100
A67
I/O
ST
3
B2
I/O
ST
2
4
A4
I/O
ST
3
5
B3
I/O
ST
RE8
—
18
A11
I/O
ST
RE9
—
19
B10
I/O
ST
RF0
58
87
B49
I/O
ST
RF1
59
88
A60
I/O
ST
RF2
34(1)
52
A36
I/O
ST
RF3
33
51
A35
I/O
ST
RF4
31
49
B27
I/O
ST
RF5
32
50
A32
I/O
ST
RF6
35(1)
55(1)
B30(1)
I/O
ST
RF7
—
54(1)
A37(1)
I/O
ST
RF8
—
53
B29
I/O
ST
RF12
—
40
A27
I/O
ST
RF13
—
39
B22
I/O
ST
RG0
—
90
A61
I/O
ST
64-pin
QFN/
TQFP
100-pin
TQFP
124-pin
VTLA
RE0
60
93
RE1
61
94
RE2
62
98
RE3
63
RE4
64
RE5
1
RE6
RE7
Pin Name
RG1
—
89
B50
I/O
ST
RG2
37(1)
57(1)
B31
I/O
ST
RG3
36
(1)
(1)
A38
I/O
ST
RG6
4
A7
I/O
ST
RG7
5
11
B6
I/O
ST
RG8
6
12
A8
I/O
ST
RG9
8
14
A9
I/O
ST
RG12
—
96
A65
I/O
ST
RG13
—
97
B55
I/O
ST
RG14
—
95
B54
I/O
ST
RG15
—
1
A2
I/O
ST
56
10
Description
PORTE is a bidirectional I/O port
PORTF is a bidirectional I/O port
PORTG is a bidirectional I/O port
T1CK
48
74
B40
I
ST
Timer1 External Clock Input
T2CK
PPS
PPS
PPS
I
ST
Timer2 External Clock Input
T3CK
PPS
PPS
PPS
I
ST
Timer3 External Clock Input
T4CK
PPS
PPS
PPS
I
ST
Timer4 External Clock Input
T5CK
PPS
PPS
PPS
I
ST
Timer5 External Clock Input
Legend:
Note 1:
2:
3:
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
 2012-2015 Microchip Technology Inc.
P = Power
I = Input
DS60001185E-page 21
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
Pin
Type
Buffer
Type
PPS
I
ST
UART1 Clear to Send
PPS
O
—
UART1 Ready to Send
PPS
I
ST
UART1 Receive
PPS
PPS
O
—
UART1 Transmit
PPS
PPS
I
ST
UART2 Clear to Send
UART2 Ready to Send
64-pin
QFN/
TQFP
100-pin
TQFP
U1CTS
PPS
PPS
U1RTS
PPS
PPS
U1RX
PPS
PPS
U1TX
PPS
U2CTS
PPS
Pin Name
124-pin
VTLA
Description
U2RTS
PPS
PPS
PPS
O
—
U2RX
PPS
PPS
PPS
I
ST
UART2 Receive
U2TX
PPS
PPS
PPS
O
—
UART2 Transmit
U3CTS
PPS
PPS
PPS
I
ST
UART3 Clear to Send
UART3 Ready to Send
U3RTS
PPS
PPS
PPS
O
—
U3RX
PPS
PPS
PPS
I
ST
UART3 Receive
U3TX
PPS
PPS
PPS
O
—
UART3 Transmit
U4CTS
PPS
PPS
PPS
I
ST
UART4 Clear to Send
UART4 Ready to Send
U4RTS
PPS
PPS
PPS
O
—
U4RX
PPS
PPS
PPS
I
ST
UART4 Receive
U4TX
PPS
PPS
PPS
O
—
UART4 Transmit
U5CTS(3)
PPS
PPS
PPS
I
ST
UART5 Clear to Send
U5RTS(3)
PPS
PPS
PPS
O
—
UART5 Ready to Send
U5RX(3)
PPS
PPS
PPS
I
ST
UART5 Receive
PPS
PPS
PPS
UART5 Transmit
U5TX
(3)
SCK1
35(1), 50(2) 55(1), 70(2) B30(1), B38(2)
O
—
I/O
ST
Synchronous Serial Clock Input/Output for SPI1
SDI1
PPS
PPS
PPS
O
—
SPI1 Data In
SDO1
PPS
PPS
PPS
I/O
ST
SPI1 Data Out
SS1
PPS
PPS
PPS
I/O
—
SPI1 Slave Synchronization for Frame Pulse I/O
4
10
A7
I/O
ST
Synchronous Serial Clock Input/Output for SPI2
SDI2
PPS
PPS
PPS
O
—
SPI2 Data In
SDO2
PPS
PPS
PPS
I/O
ST
SPI2 Data Out
PPS
PPS
PPS
I/O
—
SPI2 Slave Synchronization for Frame Pulse I/O
I/O
ST
Synchronous Serial Clock Input/Output for I2C1
SCK2
SS2
SCL1
37(1), 44(2) 57(1), 66(2) B31(1), B36(2)
(1),
43(2)
56(1),
67(2)
A38(1),
A44(2)
I/O
ST
Synchronous Serial Data Input/Output for I2C1
SCL2
32
58
A39
I/O
ST
Synchronous Serial Clock Input/Output for I2C2
SDA2
31
59
B32
I/O
ST
Synchronous Serial Data Input/Output for I2C2
TMS
23
17
B9
I
ST
JTAG Test Mode Select Pin
TCK
27
38
A26
I
ST
JTAG Test Clock Input Pin
TDI
28
60
A40
I
—
JTAG Test Clock Input Pin
TDO
24
61
B33
O
—
JTAG Test Clock Output Pin
RTCC
42
68
B37
O
—
Real-Time Clock Alarm Output
SDA1
Legend:
Note 1:
2:
3:
36
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
DS60001185E-page 22
P = Power
I = Input
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
Pin Name
64-pin
QFN/
TQFP
100-pin
TQFP
124-pin
VTLA
Pin
Type
Buffer
Type
Description
CVREF-
15
28
A21
I
Analog
CVREF+
16
29
B17
I
Analog
Comparator Voltage Reference (Low)
Comparator Voltage Reference (High)
CVREFOUT
23
34
A24
I
Analog
Comparator Voltage Reference (Output)
C1INA
11
20
A12
I
Analog
C1INB
12
21
B11
I
Analog
C1INC
5
11
B6
I
Analog
C1IND
4
10
A7
I
Analog
C2INA
13
22
A13
I
Analog
C2INB
14
23
B13
I
Analog
C2INC
8
14
A9
I
Analog
Comparator 1 Inputs
Comparator 2 Inputs
C2IND
6
12
A8
I
Analog
C1OUT
PPS
PPS
PPS
O
—
Comparator 1 Output
C2OUT
PPS
PPS
PPS
O
—
Comparator 2 Output
PMALL
30
44
A29
O
TTL/ST
Parallel Master Port Address Latch Enable Low Byte
PMALH
29
43
B24
O
TTL/ST
Parallel Master Port Address Latch Enable High Byte
PMA0
30
44
A29
O
TTL/ST
Parallel Master Port Address bit 0 Input (Buffered
Slave modes) and Output (Master modes)
PMA1
29
43
B24
O
TTL/ST
Parallel Master Port Address bit 0 Input (Buffered
Slave modes) and Output (Master modes)
PMA2
8
14
A9
O
TTL/ST
PMA3
6
12
A8
O
TTL/ST
PMA4
5
11
B6
O
TTL/ST
PMA5
4
10
A7
O
TTL/ST
PMA6
16
29
B17
O
TTL/ST
PMA7
22
28
A21
O
TTL/ST
PMA8
32
50
A32
O
TTL/ST
PMA9
31
49
B27
O
TTL/ST
PMA10
28
42
A28
O
TTL/ST
PMA11
27
41
B23
O
TTL/ST
PMA12
24
35
B20
O
TTL/ST
PMA13
23
34
A24
O
TTL/ST
PMA14
45
71
A46
O
TTL/ST
PMA15
44
70
B38
O
TTL/ST
PMCS1
45
71
A46
O
TTL/ST
PMCS2
44
70
B38
O
TTL/ST
PMD0
60
93
B52
I/O
TTL/ST
PMD1
61
94
A64
I/O
TTL/ST
PMD2
62
98
A66
I/O
TTL/ST
Legend:
Note 1:
2:
3:
Parallel Master Port data (Demultiplexed Master
mode) or Address/Data (Multiplexed Master modes)
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
 2012-2015 Microchip Technology Inc.
P = Power
I = Input
DS60001185E-page 23
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
Pin Name
64-pin
QFN/
TQFP
100-pin
TQFP
124-pin
VTLA
Pin
Type
Buffer
Type
Description
PMD3
63
99
B56
I/O
TTL/ST
PMD4
64
100
A67
I/O
TTL/ST
PMD5
1
3
B2
I/O
TTL/ST
PMD6
2
4
A4
I/O
TTL/ST
PMD7
3
5
B3
I/O
TTL/ST
PMD8
—
90
A61
I/O
TTL/ST
PMD9
—
89
B50
I/O
TTL/ST
PMD10
—
88
A60
I/O
TTL/ST
PMD11
—
87
B49
I/O
TTL/ST
PMD12
—
79
B43
I/O
TTL/ST
PMD13
—
80
A54
I/O
TTL/ST
PMD14
—
83
B45
I/O
TTL/ST
PMD15
—
84
A56
I/O
TTL/ST
PMRD
53
82
A55
O
—
Parallel Master Port Read Strobe
PMWR
52
81
B44
O
—
Parallel Master Port Write Strobe
VBUS(2)
34
54
A37
I
Analog
Parallel Master Port Data (Demultiplexed Master
mode) or Address/Data (Multiplexed Master modes)
USB Bus Power Monitor
—
USB internal transceiver supply. If the USB module is
not used, this pin must be connected to VDD.
O
—
USB Host and OTG bus power control Output
I/O
Analog
USB D+
I/O
Analog
USB D-
A35
I
ST
USB OTG ID Detect
25
B14
I/O
ST
Data I/O pin for Programming/Debugging
Communication Channel 1
15
24
A15
I
ST
Clock Input pin for Programming/Debugging
Communication Channel 1
PGED2
18
27
B16
I/O
ST
Data I/O Pin for Programming/Debugging
Communication Channel 2
PGEC2
17
26
A20
I
ST
Clock Input Pin for Programming/Debugging
Communication Channel 2
PGED3
13
22
A13
I/O
ST
Data I/O Pin for Programming/Debugging
Communication Channel 3
PGEC3
14
23
B13
I
ST
Clock Input Pin for Programming/Debugging
Communication Channel 3
VUSB3V3(2)
35
55
B30
VBUSON(2)
11
20
A12
D+(2)
37
57
B31
D-(2)
36
56
A38
USBID(2)
33
51
PGED1
16
PGEC1
P
TRCLK
—
91
B51
O
—
Trace clock
TRD0
—
97
B55
O
—
Trace Data bit 0
TRD1
—
96
A65
O
—
Trace Data bit 1
TRD2
—
95
B54
O
—
Trace Data bit 2
TRD3
—
92
A62
O
—
Trace Data bit 3
CTED1
—
17
B9
I
ST
CTMU External Edge Input 1
CTED2
—
38
A26
I
ST
CTMU External Edge Input 2
CTED3
18
27
B16
I
ST
CTMU External Edge Input 3
Legend:
Note 1:
2:
3:
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
DS60001185E-page 24
P = Power
I = Input
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 1-1:
PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
Pin
Type
Buffer
Type
B19
I
ST
CTMU External Edge Input 4
B24
I
ST
CTMU External Edge Input 5
A29
I
ST
CTMU External Edge Input 6
64-pin
QFN/
TQFP
100-pin
TQFP
124-pin
VTLA
CTED4
22
33
CTED5
29
43
CTED6
30
44
Pin Name
Description
CTED7
—
9
B5
I
ST
CTMU External Edge Input 7
CTED8
—
92
A62
I
ST
CTMU External Edge Input 8
CTED9
—
60
A40
I
ST
CTMU External Edge Input 9
CTED10
21
32
A23
I
ST
CTMU External Edge Input 10
CTED11
23
34
A24
I
ST
CTMU External Edge Input 11
CTED12
15
24
A15
I
ST
CTMU External Edge Input 12
CTED13
14
23
B13
I
ST
CTMU External Edge Input 13
MCLR
7
13
B7
I/P
ST
Master Clear (Reset) input. This pin is an active-low
Reset to the device.
AVDD
19
30
A22
P
P
Positive supply for analog modules. This pin must be
connected at all times.
AVSS
20
31
B18
P
P
Ground reference for analog modules
P
—
Positive supply for peripheral logic and I/O pins
P
—
Capacitor for Internal Voltage Regulator
P
—
Ground reference for logic and I/O pins
VDD
VCAP
VSS
B1, A10, A14,
10, 26, 38, 2, 16, 37,
B21, A30,
57
46, 62, 86
A41, A48,
A59, B53
56
9, 25, 41
85
B48
A3, B8, B12,
15, 36, 45,
A25, B25,
65, 75
A43, B41,
A63
VREF+
16
29
B17
I
Analog
Analog Voltage Reference (High) Input
VREF-
15
28
A21
I
Analog
Analog Voltage Reference (Low) Input
Legend:
Note 1:
2:
3:
CMOS = CMOS compatible input or output
Analog = Analog input
ST = Schmitt Trigger input with CMOS levels
O = Output
TTL = TTL input buffer
This pin is only available on devices without a USB module.
This pin is only available on devices with a USB module.
This pin is not available on 64-pin devices.
 2012-2015 Microchip Technology Inc.
P = Power
I = Input
DS60001185E-page 25
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 26
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
2.0
Note:
2.1
GUIDELINES FOR GETTING
STARTED WITH 32-BIT MCUS
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the documents listed in the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
Basic Connection Requirements
Getting started with the PIC32MX330/350/370/430/
450/470 family of 32-bit Microcontrollers (MCUs)
requires attention to a minimal set of device pin
connections before proceeding with development. The
following is a list of pin names, which must always be
connected:
• All VDD and VSS pins (see 2.2 “Decoupling
Capacitors”)
• All AVDD and AVSS pins, even if the ADC module is
not used (see 2.2 “Decoupling Capacitors”)
• VCAP pin (see 2.3 “Capacitor on Internal Voltage
Regulator (Vcap)”)
• MCLR pin (see 2.4 “Master Clear (MCLR) Pin”)
• PGECx/PGEDx pins, used for In-Circuit Serial
Programming (ICSP™) and debugging purposes
(see 2.5 “ICSP Pins”)
• OSC1 and OSC2 pins, when external oscillator
source is used (see 2.8 “External Oscillator Pins”)
The following pins may be required:
VREF+/VREF- pins, used when external voltage
reference for the ADC module is implemented.
Note:
The AVDD and AVSS pins must be
connected, regardless of ADC use and
the ADC voltage reference source.
 2012-2015 Microchip Technology Inc.
2.2
Decoupling Capacitors
The use of decoupling capacitors on power supply
pins, such as VDD, VSS, AVDD and AVSS is required.
See Figure 2-1.
Consider the following criteria when using decoupling
capacitors:
• Value and type of capacitor: A value of 0.1 µF
(100 nF), 10-20V is recommended. The capacitor
should be a low Equivalent Series Resistance
(low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is
further recommended that ceramic capacitors be
used.
• Placement on the printed circuit board: The
decoupling capacitors should be placed as close
to the pins as possible. It is recommended that
the capacitors be placed on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is within onequarter inch (6 mm) in length.
• Handling high frequency noise: If the board is
experiencing high frequency noise, upward of
tens of MHz, add a second ceramic-type capacitor
in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 µF to 0.001 µF. Place this
second capacitor next to the primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible.
For example, 0.1 µF in parallel with 0.001 µF.
• Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum thereby reducing PCB track inductance.
DS60001185E-page 27
PIC32MX330/350/370/430/450/470
RECOMMENDED
MINIMUM CONNECTION
Tantalum or
ceramic 10 µF
ESR  3(3)
R1
MCLR
C
VSS
VCAP
R
VDD
VDD
0.1 µF
Ceramic
VUSB3V3(1)
PIC32
VDD
VSS
Connect(2)
0.1 µF
Ceramic
0.1 µF
Ceramic
VSS
VDD
AVSS
0.1 µF
Ceramic
AVDD
VDD
VSS
0.1 µF
Ceramic
L1(2)
Note
1:
If the USB module is not used, this pin must be
connected to VDD.
2:
As an option, instead of a hard-wired connection, an
inductor (L1) can be substituted between VDD and
AVDD to improve ADC noise rejection. The inductor
impedance should be less than 3 and the inductor
capacity greater than 10 mA.

Where:
F CNV
f = -------------2
1
f = ---------------------- 2 LC 
(i.e., ADC conversion rate/2)
1 -
L =  --------------------  2f C 
1:
2.2.1
2.3.1
Master Clear (MCLR) Pin
The MCLR
functions:
pin
provides
two
specific
device
• Device Reset
• Device programming and debugging
Pulling The MCLR pin low generates a device Reset.
Figure 2-2 illustrates a typical MCLR circuit. During
device programming and debugging, the resistance
and capacitance that can be added to the pin must
be considered. Device programmers and debuggers
drive the MCLR pin. Consequently, specific voltage
levels (VIH and VIL) and fast signal transitions must
not be adversely affected. Therefore, specific values
of R and C will need to be adjusted based on the
application and PCB requirements.
For example, as illustrated in Figure 2-2, it is
recommended that the capacitor C, be isolated from
the MCLR pin during programming and debugging
operations.
Place the components illustrated in Figure 2-2 within
one-quarter inch (6 mm) from the MCLR pin.
FIGURE 2-2:
EXAMPLE OF MCLR PIN
CONNECTIONS
VDD
R
0.1 µF(2)
10k
C
R1(1)
1 k
MCLR
PIC32
2
Aluminum or electrolytic capacitors should not be
used. ESR  3 from -40ºC to 125ºC @ SYSCLK
frequency (i.e., MIPS).
Note
1
5
4
2
3
6
Capacitor on Internal Voltage
Regulator (VCAP)
VDD
VSS
NC
PGECx(3)
PGEDx(3)
1:
470 R1  1 will limit any current flowing into
MCLR from the external capacitor C, in the event of
MCLR pin breakdown, due to Electrostatic Discharge
(ESD) or Electrical Overstress (EOS). Ensure that the
MCLR pin VIH and VIL specifications are met without
interfering with the Debug/Programmer tools.
2:
The capacitor can be sized to prevent unintentional
Resets from brief glitches or to extend the device
Reset period during POR.
3:
No pull-ups or bypass capacitors are allowed on
active debug/program PGECx/PGEDx pins.
BULK CAPACITORS
The use of a bulk capacitor is recommended to improve
power supply stability. Typical values range from 4.7 µF
to 47 µF. This capacitor should be located as close to
the device as possible.
2.3
2.4
ICSP™
FIGURE 2-1:
INTERNAL REGULATOR MODE
A low-ESR (3 ohm) capacitor is required on the VCAP
pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to
VDD, and must have a CEFC capacitor, with at least a
6V rating, connected to ground. The type can be
ceramic or tantalum. Refer to Section 31.0 “Electrical
Characteristics” for additional information on CEFC
specifications.
DS60001185E-page 28
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
2.5
ICSP Pins
2.7
Trace
The PGECx and PGEDx pins are used for In-Circuit
Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length
between the ICSP connector and the ICSP pins on the
device as short as possible. If the ICSP connector is
expected to experience an ESD event, a series resistor
is recommended, with the value in the range of a few
tens of Ohms, not to exceed 100 Ohms.
The trace pins can be connected to a hardware
trace-enabled programmer to provide a compressed
real-time instruction trace. When used for trace, the
TRD3, TRD2, TRD1, TRD0 and TRCLK pins should
be dedicated for this use. The trace hardware
requires a 22 Ohm series resistor between the trace
pins and the trace connector.
Pull-up resistors, series diodes and capacitors on the
PGECx and PGEDx pins are not recommended as they
will interfere with the programmer/debugger communications to the device. If such discrete components are
an application requirement, they should be removed
from the circuit during programming and debugging.
Alternatively, refer to the AC/DC characteristics and
timing requirements information in the respective
device Flash programming specification for information
on capacitive loading limits and pin input voltage high
(VIH) and input low (VIL) requirements.
2.8
Ensure that the “Communication Channel Select” (i.e.,
PGECx/PGEDx pins) programmed into the device
matches the physical connections for the ICSP to
MPLAB® ICD 3 or MPLAB REAL ICE™.
For more information on ICD 3 and REAL ICE
connection requirements, refer to the following
documents that are available on the Microchip web
site.
• “Using MPLAB® ICD 3” (poster) DS50001765
• “MPLAB® ICD 3 Design Advisory” DS50001764
• “MPLAB® REAL ICE™ In-Circuit Debugger
User’s Guide” DS50001616
• “Using MPLAB® REAL ICE™ Emulator” (poster)
DS50001749
2.6
JTAG
The TMS, TDO, TDI and TCK pins are used for testing
and debugging according to the Joint Test Action
Group (JTAG) standard. It is recommended to keep the
trace length between the JTAG connector and the
JTAG pins on the device as short as possible. If the
JTAG connector is expected to experience an ESD
event, a series resistor is recommended, with the value
in the range of a few tens of Ohms, not to exceed 100
Ohms.
External Oscillator Pins
Many MCUs have options for at least two oscillators: a
high-frequency primary oscillator and a low-frequency
secondary oscillator (refer to Section 8.0 “Oscillator
Configuration” for details).
The oscillator circuit should be placed on the same side
of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The
load capacitors should be placed next to the oscillator
itself, on the same side of the board. Use a grounded
copper pour around the oscillator circuit to isolate them
from surrounding circuits. The grounded copper pour
should be routed directly to the MCU ground. Do not
run any signal traces or power traces inside the ground
pour. Also, if using a two-sided board, avoid any traces
on the other side of the board where the crystal is
placed. A suggested layout is illustrated in Figure 2-3.
FIGURE 2-3:
SUGGESTED OSCILLATOR
CIRCUIT PLACEMENT
Oscillator
Secondary
Guard Trace
Guard Ring
Main Oscillator
Pull-up resistors, series diodes and capacitors on the
TMS, TDO, TDI and TCK pins are not recommended
as they will interfere with the programmer/debugger
communications to the device. If such discrete components are an application requirement, they should be
removed from the circuit during programming and
debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the
respective device Flash programming specification for
information on capacitive loading limits and pin input
voltage high (VIH) and input low (VIL) requirements.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 29
PIC32MX330/350/370/430/450/470
FIGURE 2-4:
The following example assumptions are used to
calculate the Primary Oscillator loading capacitor
values:
Circuit A
Typical XT
(4-10 MHz)
C1
• CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
• COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
• C1 and C2 = XTAL manufacturing recommended
loading capacitance
• Estimated PCB stray capacitance, (i.e.,12 mm
length) = 2.5 pF
1M
OSC2
EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR
CALCULATION
Circuit B
= {( [5 + 15][5 + 15] ) / [5 + 15 + 15 + 5] } + 2.5 pF
C1
Therefore:
= {( [CIN + C1] * [COUT + C2] ) / [CIN + C1 + C2 + COUT] }
+ estimated oscillator PCB stray capacitance
OSC1
Typical HS
(10-25 MHz)
Crystal manufacturer recommended: C1 = C2 = 15 pF
CLOAD
PRIMARY CRYSTAL
OSCILLATOR CIRCUIT
RECOMMENDATIONS
C2
CRYSTAL OSCILLATOR DESIGN
CONSIDERATION
C2
2.8.1
= {( [20][20]) / [40] } + 2.5
= 10 + 2.5 = 12.5 pF
OSC2
Rounded to the nearest standard value or 13 pF in this example for
Primary Oscillator crystals “C1” and “C2”.
Circuit C
The following tips are used to increase oscillator gain,
(i.e., to increase peak-to-peak oscillator signal):
Note:
2.8.1.1
Do not add excessive gain such that the
oscillator signal is clipped, flat on top of
the sine wave. If so, you need to reduce
the gain or add a series resistor, RS, as
shown in circuit “C” in Figure 2-4. Failure
to do so will stress and age the crystal,
which can result in an early failure. Adjust
the gain to trim the max peak-to-peak to
~VDD-0.6V. When measuring the oscillator signal you must use a FET scope
probe or a probe with  1.5 pF or the
scope probe itself will unduly change the
gain and peak-to-peak levels.
C2
Typical XT/HS
(4-25 MHz)
C1
• Select a crystal with a lower “minimum” power drive
rating
• Select an crystal oscillator with a lower XTAL
manufacturing “ESR” rating.
• Add a parallel resistor across the crystal. The smaller
the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
• C1 and C2 values also affect the gain of the oscillator.
The lower the values, the higher the gain.
• C2/C1 ratio also affects gain. To increase the gain,
make C1 slightly smaller than C2, which will also help
start-up performance.
OSC1
Rs
1M
OSC2
OSC1
Circuit D
Not Recommended
1M
Rs
OSC1
OSC2
Circuit E
Not Recommended
Additional Microchip References
• AN588 “PICmicro® Microcontroller Oscillator
Design Guide”
• AN826 “Crystal Oscillator Basics and Crystal
Selection for rfPIC™ and PICmicro® Devices”
• AN849 “Basic PICmicro® Oscillator Design”
DS60001185E-page 30
Rs
1M
OSC2
OSC1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
2.9
Unused I/Os
2.10
Unused I/O pins should not be allowed to float as
inputs. They can be configured as outputs and driven
to a logic-low state.
Typical Application Connection
Examples
Examples of typical application connections are shown
in Figure 2-5, Figure 2-6, and Figure 2-7.
Alternatively, inputs can be reserved by connecting the
pin to VSS through a 1k to 10k resistor and configuring
the pin as an input.
FIGURE 2-5:
CAPACITIVE TOUCH SENSING WITH GRAPHICS APPLICATION
PIC32MX430F064L
Current Source
To AN6
To AN7
To AN8
To AN9
To AN11
To AN0
CTMU
AN0
AN1
ADC
R1
R1
R1
R1
C1
C2
C3
C4
C5
To AN1
Read the Touch Sensors
Microchip
mTouch™
Library
R1
R2
R2
R2
R2
R2
C1
C2
C3
C4
C5
R3
R3
R3
R3
R3
C1
C2
C3
C4
C5
AN9
To AN5
Process Samples
AN11
User
Application
Display Data
Microchip
Graphics
Library
FIGURE 2-6:
USB
Host
Parallel
Master
Port
LCD Controller
PMD<7:0>
Display
Controller
Frame
Buffer
PMWR
LCD
Panel
AUDIO PLAYBACK APPLICATION
PMD<7:0>
USB
PMP
Display
PMWR
PIC32MX450F256L
I2S
SPI
Stereo Headphones
3
REFCLKO
3
Audio
Codec
Speaker
3
MMC SD
SDI
 2012-2015 Microchip Technology Inc.
DS60001185E-page 31
PIC32MX330/350/370/430/450/470
FIGURE 2-7:
LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH
PROJECTED CAPACITIVE TOUCH
PIC32MX430F064L
CTMU
ADC
ANx
Microchip mTouch™
GFX Libraries
DMA
LCD Display
Projected Capacitive
Touch Overlay
PMP
SRAM
DS60001185E-page 32
External Frame Buffer
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
3.0
Note:
CPU
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 2. “CPU”
(DS60001113), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32). Resources
for the MIPS32® M4K® Processor Core
are available at http://www.imgtec.com.
The the MIPS32® M4K® Processor Core is the heart of
the PIC32MX330/350/370/430/450/470 device processor. The CPU fetches instructions, decodes each
instruction, fetches source operands, executes each
instruction and writes the results of instruction
execution to the proper destinations.
3.1
Features
• 5-stage pipeline
• 32-bit address and data paths
• MIPS32® Enhanced Architecture (Release 2):
- Multiply-accumulate and multiply-subtract
instructions
- Targeted multiply instruction
- Zero/One detect instructions
- WAIT instruction
- Conditional move instructions (MOVN, MOVZ)
- Vectored interrupts
- Programmable exception vector base
- Atomic interrupt enable/disable
- GPR shadow registers to minimize latency
for interrupt handlers
- Bit field manipulation instructions
FIGURE 3-1:
• MIPS16e® Code Compression:
- 16-bit encoding of 32-bit instructions to
improve code density
- Special PC-relative instructions for efficient
loading of addresses and constants
- SAVE and RESTORE macro instructions for
setting up and tearing down stack frames
within subroutines
- Improved support for handling 8 and 16-bit
data types
• Simple Fixed Mapping Translation (FMT)
Mechanism:
• Simple Dual Bus Interface:
- Independent 32-bit address and data buses
- Transactions can be aborted to improve
interrupt latency
• Autonomous Multiply/Divide Unit (MDU):
- Maximum issue rate of one 32x16 multiply
per clock
- Maximum issue rate of one 32x32 multiply
every other clock
- Early-in iterative divide. Minimum 11 and
maximum 33 clock latency (dividend (rs) sign
extension-dependent)
• Power Control:
- Minimum frequency: 0 MHz
- Low-Power mode (triggered by WAIT instruction)
- Extensive use of local gated clocks
• EJTAG Debug and Instruction Trace:
- Support for single stepping
- Virtual instruction and data address/value
- Breakpoints
MIPS32® M4K® PROCESSOR CORE BLOCK DIAGRAM
CPU
EJTAG
MDU
TAP
Execution Core
(RF/ALU/Shift)
System
Co-processor
 2012-2015 Microchip Technology Inc.
FMT
Bus Interface
Off-chip Debug Interface
Dual Bus Interface
Bus Matrix
Power
Management
DS60001185E-page 33
PIC32MX330/350/370/430/450/470
3.2
3.2.2
Architecture Overview
The MIPS32® M4K® processor core contains several
logic blocks working together in parallel, providing an
efficient high-performance computing engine. The
following blocks are included with the core:
•
•
•
•
•
•
•
•
Execution Unit
Multiply/Divide Unit (MDU)
System Control Coprocessor (CP0)
Fixed Mapping Translation (FMT)
Dual Internal Bus interfaces
Power Management
MIPS16e® Support
Enhanced JTAG (EJTAG) Controller
3.2.1
EXECUTION UNIT
The MIPS32® M4K® processor core execution unit
implements a load/store architecture with single-cycle
ALU operations (logical, shift, add, subtract) and an
autonomous multiply/divide unit. The core contains
thirty-two 32-bit General Purpose Registers (GPRs)
used for integer operations and address calculation.
One additional register file shadow set (containing
thirty-two registers) is added to minimize context
switching overhead during interrupt/exception processing. The register file consists of two read ports and one
write port and is fully bypassed to minimize operation
latency in the pipeline.
The execution unit includes:
• 32-bit adder used for calculating the data address
• Address unit for calculating the next instruction
address
• Logic for branch determination and branch target
address calculation
• Load aligner
• Bypass multiplexers used to avoid stalls when
executing instruction streams where data
producing instructions are followed closely by
consumers of their results
• Leading Zero/One detect unit for implementing
the CLZ and CLO instructions
• Arithmetic Logic Unit (ALU) for performing bitwise
logical operations
• Shifter and store aligner
TABLE 3-1:
MULTIPLY/DIVIDE UNIT (MDU)
The MIPS32® M4K® processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline
for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and
does not stall when the IU pipeline stalls. This allows
MDU operations to be partially masked by system stalls
and/or other integer unit instructions.
The high-performance MDU consists of a 32x16 booth
recoded multiplier, result/accumulation registers (HI
and LO), a divide state machine, and the necessary
multiplexers and control logic. The first number shown
(‘32’ of 32x16) represents the rs operand. The second
number (‘16’ of 32x16) represents the rt operand. The
PIC32 core only checks the value of the latter (rt) operand to determine how many times the operation must
pass through the multiplier. The 16x16 and 32x16
operations pass through the multiplier once. A 32x32
operation passes through the multiplier twice.
The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations.
The multiply operand size is automatically determined
by logic built into the MDU.
Divide operations are implemented with a simple 1 bit
per clock iterative algorithm. An early-in detection
checks the sign extension of the dividend (rs) operand.
If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit
wide rs, 15 iterations are skipped and for a 24-bit wide
rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active
causes an IU pipeline stall until the divide operation is
completed.
Table 3-1 lists the repeat rate (peak issue rate of cycles
until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32
core multiply and divide instructions. The approximate
latency and repeat rates are listed in terms of pipeline
clocks.
MIPS32® M4K® PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/
DIVIDE UNIT LATENCIES AND REPEAT RATES
Op code
MULT/MULTU, MADD/MADDU,
MSUB/MSUBU
MUL
DIV/DIVU
DS60001185E-page 34
Operand Size (mul rt) (div rs)
Latency
Repeat Rate
16 bits
32 bits
16 bits
32 bits
8 bits
16 bits
24 bits
32 bits
1
2
2
3
12
19
26
33
1
2
1
2
11
18
25
32
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
The MIPS architecture defines that the result of a
multiply or divide operation be placed in the HI and LO
registers. Using the Move-From-HI (MFHI) and MoveFrom-LO (MFLO) instructions, these values can be
transferred to the General Purpose Register file.
In addition to the HI/LO targeted operations, the
MIPS32® architecture also defines a multiply instruction,
MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By
avoiding the explicit MFLO instruction required when
using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive
operations is increased.
SYSTEM CONTROL 
COPROCESSOR (CP0)
3.2.3
In the MIPS architecture, CP0 is responsible for the
virtual-to-physical address translation, the exception
control system, the processor’s diagnostics capability,
the operating modes (Kernel, User and Debug) and
whether interrupts are enabled or disabled. Configuration information, such as presence of options like
MIPS16e®, is also available by accessing the CP0
registers, listed in Table 3-2.
Two other instructions, Multiply-Add (MADD) and
Multiply-Subtract (MSUB), are used to perform the
multiply-accumulate and multiply-subtract operations.
The MADD instruction multiplies two numbers and then
adds the product to the current contents of the HI and
LO registers. Similarly, the MSUB instruction multiplies
two operands and then subtracts the product from the
HI and LO registers. The MADD and MSUB operations
are commonly used in DSP algorithms.
TABLE 3-2:
Register
Number
0-6
COPROCESSOR 0 REGISTERS
Register
Name
Function
Reserved
Reserved in the PIC32MX330/350/370/430/450/470 family core.
7
8
HWREna
BadVAddr(1)
Enables access via the RDHWR instruction to selected hardware registers.
Reports the address for the most recent address-related exception.
9
10
Count(1)
Reserved
Processor cycle count.
Reserved in the PIC32MX330/350/370/430/450/470 family core.
11
12
Compare(1)
Status(1)
Timer interrupt control.
Processor status and control.
12
12
IntCtl(1)
SRSCtl(1)
Interrupt system status and control.
Shadow register set status and control.
12
13
SRSMap(1)
Cause(1)
Provides mapping from vectored interrupt to a shadow set.
Cause of last general exception.
14
15
EPC(1)
PRId
Program counter at last exception.
Processor identification and revision.
15
16
EBASE
Config
Exception vector base register.
Configuration register.
16
16
Config1
Config2
Configuration register 1.
Configuration register 2.
16
17-22
Config3
Reserved
Configuration register 3.
Reserved in the PIC32MX330/350/370/430/450/470 family core.
23
24
Debug(2)
DEPC(2)
Debug control and exception status.
Program counter at last debug exception.
Reserved
ErrorEPC(1)
Reserved in the PIC32MX330/350/370/430/450/470 family core.
Program counter at last error.
25-29
30
31
Note 1:
2:
DESAVE(2)
Debug handler scratchpad register.
Registers used in exception processing.
Registers used during debug.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 35
PIC32MX330/350/370/430/450/470
Coprocessor 0 also contains the logic for identifying
and managing exceptions. Exceptions can be caused
by a variety of sources, including alignment errors in
data, external events or program errors. Table 3-3 lists
the exception types in order of priority.
TABLE 3-3:
MIPS32® M4K® PROCESSOR CORE EXCEPTION TYPES
Exception
Description
Reset
Assertion MCLR or a Power-on Reset (POR).
DSS
DINT
NMI
EJTAG debug single step.
EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the
EjtagBrk bit in the ECR register.
Assertion of NMI signal.
Interrupt
DIB
Assertion of unmasked hardware or software interrupt signal.
EJTAG debug hardware instruction break matched.
AdEL
IBE
Fetch address alignment error. Fetch reference to protected address.
Instruction fetch bus error.
DBp
Sys
EJTAG breakpoint (execution of SDBBP instruction).
Execution of SYSCALL instruction.
Bp
RI
Execution of BREAK instruction.
Execution of a reserved instruction.
CpU
CEU
Execution of a coprocessor instruction for a coprocessor that is not enabled.
Execution of a CorExtend instruction when CorExtend is not enabled.
Ov
Tr
Execution of an arithmetic instruction that overflowed.
Execution of a trap (when trap condition is true).
DDBL/DDBS
AdEL
EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
Load address alignment error. Load reference to protected address.
AdES
DBE
Store address alignment error. Store to protected address.
Load or store bus error.
DDBL
EJTAG data hardware breakpoint matched in load data compare.
3.3
Power Management
®
The MIPS M4K® processor core offers a number of
power management features, including low-power
design, active power management and power-down
modes of operation. The core is a static design that
supports slowing or Halting the clocks, which reduces
system power consumption during Idle periods.
3.3.1
INSTRUCTION-CONTROLLED
POWER MANAGEMENT
The mechanism for invoking Power-Down mode is
through execution of the WAIT instruction. For more
information on power management, see Section 27.0
“Power-Saving Features”.
3.3.2
LOCAL CLOCK GATING
The majority of the power consumed by the
PIC32MX330/350/370/430/450/470 family core is in
the clock tree and clocking registers. The PIC32MX
family uses extensive use of local gated-clocks to
reduce this dynamic power consumption.
DS60001185E-page 36
3.4
EJTAG Debug Support
The MIPS® M4K® processor core provides for an
Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition
to standard User mode and Kernel modes of operation,
the M4K® core provides a Debug mode that is entered
after a debug exception (derived from a hardware
breakpoint, single-step exception, etc.) is taken and
continues until a Debug Exception Return (DERET)
instruction is executed. During this time, the processor
executes the debug exception handler routine.
The EJTAG interface operates through the Test Access
Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the
standard JTAG instructions, special instructions
defined in the EJTAG specification define which
registers are selected and how they are used.
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
4.0
Note:
MEMORY ORGANIZATION
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/
470 family of devices. It is not intended to
be
a
comprehensive
reference
source.For detailed information, refer to
Section 3. “Memory Organization”
(DS60001115), which is available from
the Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
PIC32MX330/350/370/430/450/470 microcontrollers
provide 4 GB of unified virtual memory address space.
All memory regions, including program, data memory,
SFRs and Configuration registers, reside in this
address space at their respective unique addresses.
The program and data memories can be optionally partitioned into user and kernel memories. In addition, the
data memory can be made executable, allowing
PIC32MX330/350/370/430/450/470 devices to execute
from data memory.
4.1
Memory Layout
PIC32MX330/350/370/430/450/470 microcontrollers
implement two address schemes: virtual and physical.
All hardware resources, such as program memory,
data memory and peripherals, are located at their
respective physical addresses. Virtual addresses are
exclusively used by the CPU to fetch and execute
instructions as well as access peripherals. Physical
addresses are used by bus master peripherals, such as
DMA and the Flash controller, that access memory
independently of the CPU.
The memory maps for the PIC32MX330/350/370/430/
450/470 devices are illustrated in Figure 4-1 through
Figure 4-4.
Key features include:
• 32-bit native data width
• Separate User (KUSEG) and Kernel (KSEG0/
KSEG1) mode address space
• Flexible program Flash memory partitioning
• Flexible data RAM partitioning for data and
program space
• Separate boot Flash memory for protected code
• Robust bus exception handling to intercept 
runaway code
• Simple memory mapping with Fixed Mapping
Translation (FMT) unit
• Cacheable (KSEG0) and non-cacheable (KSEG1)
address regions
 2012-2015 Microchip Technology Inc.
DS60001185E-page 37
PIC32MX330/350/370/430/450/470
FIGURE 4-1:
MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY
Virtual
Memory Map(1)
0xFFFFFFFF
0xBFC03000
0xBFC02FFF
0xBFC02FF0
Physical
Memory Map(1)
0xFFFFFFFF
Reserved
Device
Configuration
Registers
0xBFC02FEF
Boot Flash
0xBFC00000
0xBF900000
Reserved
SFRs
0xBF800000
0xBD010000
Reserved
KSEG1
0xBF8FFFFF
Reserved
0xBD00FFFF
Program Flash(2)
0xBD000000
0xA0004000
Reserved
0xA0003FFF
RAM(2)
0xA0000000
0x9FC03000
0x9FC02FFF
0x9FC02FF0
0x1FC03000
Device
Configuration
Registers
Reserved
Device
Configuration
Registers
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x1FC00000
0x9FC02FEF
Boot Flash
Reserved
0x9FC00000
0x1F900000
Reserved
0x9D010000
0x9D00FFFF
KSEG0
0x1F8FFFFF
Program Flash(2)
SFRs
0x1F800000
Reserved
0x9D000000
0x80004000
0x1D010000
Reserved
0x1D00FFFF
Program Flash(2)
0x1D000000
0x80003FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
DS60001185E-page 38
Reserved
Reserved
RAM(2)
0x00004000
0x00003FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool
documentation for information).
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 4-2:
MEMORY MAP FOR DEVICES WITH 128 KB OF PROGRAM MEMORY
Virtual
Memory Map(1)
0xFFFFFFFF
0xBFC03000
0xBFC02FFF
0xBFC02FF0
Physical
Memory Map(1)
0xFFFFFFFF
Reserved
Device
Configuration
Registers
0xBFC02FEF
Boot Flash
0xBFC00000
0xBF900000
Reserved
SFRs
0xBF800000
0xBD020000
Reserved
KSEG1
0xBF8FFFFF
Reserved
0xBD01FFFF
Program Flash(2)
0xBD000000
0xA0008000
Reserved
0xA0007FFF
RAM(2)
0xA0000000
0x9FC03000
0x9FC02FFF
0x9FC02FF0
0x1FC03000
Device
Configuration
Registers
Reserved
Device
Configuration
Registers
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
Reserved
0x9D020000
0x9D01FFFF
KSEG0
0x1F8FFFFF
Program Flash(2)
SFRs
0x1F800000
Reserved
0x9D000000
0x80008000
0x1D020000
Reserved
0x1D01FFFF
Program Flash(2)
0x1D000000
0x80007FFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
Reserved
Reserved
RAM(2)
0x00008000
0x00007FFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool
documentation for information).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 39
PIC32MX330/350/370/430/450/470
FIGURE 4-3:
MEMORY MAP FOR DEVICES WITH 256 KB OF PROGRAM MEMORY
Virtual
Memory Map(1)
0xFFFFFFFF
0xBFC03000
0xBFC02FFF
0xBFC02FF0
Physical
Memory Map(1)
0xFFFFFFFF
Reserved
Device
Configuration
Registers
0xBFC02FEF
Boot Flash
0xBFC00000
0xBF900000
Reserved
SFRs
0xBF800000
0xBD040000
Reserved
KSEG1
0xBF8FFFFF
Reserved
0xBD03FFFF
Program Flash(2)
0xBD000000
0xA0010000
Reserved
0xA000FFFF
RAM(2)
0xA0000000
0x9FC03000
0x9FC02FFF
0x9FC02FF0
0x1FC03000
Device
Configuration
Registers
Reserved
Device
Configuration
Registers
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x1FC00000
0x9FC02FEF
Boot Flash
Reserved
0x9FC00000
0x1F900000
Reserved
0x9D040000
0x9D03FFFF
KSEG0
0x1F8FFFFF
Program Flash(2)
SFRs
0x1F800000
Reserved
0x9D000000
0x80010000
0x1D040000
Reserved
0x1D03FFFF
Program Flash(2)
0x1D000000
0x8000FFFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
DS60001185E-page 40
Reserved
Reserved
RAM(2)
0x00010000
0x0000FFFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool
documentation for information).
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 4-4:
MEMORY MAP FOR DEVICES WITH 512 KB OF PROGRAM MEMORY
Virtual
Memory Map(1)
0xFFFFFFFF
0xBFC03000
0xBFC02FFF
0xBFC02FF0
Physical
Memory Map(1)
0xFFFFFFFF
Reserved
Device
Configuration
Registers
0xBFC02FEF
Boot Flash
0xBFC00000
0xBF900000
Reserved
SFRs
0xBF800000
0xBD080000
Reserved
KSEG1
0xBF8FFFFF
Reserved
0xBD07FFFF
Program Flash(2)
0xBD000000
0xA0020000
Reserved
0xA001FFFF
RAM(2)
0xA0000000
0x9FC03000
0x9FC02FFF
0x9FC02FF0
0x1FC03000
Device
Configuration
Registers
Reserved
Device
Configuration
Registers
0x1FC02FFF
0x1FC02FF0
0x1FC02FEF
Boot Flash
0x9FC02FEF
0x1FC00000
Boot Flash
Reserved
0x9FC00000
0x1F900000
Reserved
0x9D080000
0x9D07FFFF
KSEG0
0x1F8FFFFF
Program Flash(2)
SFRs
0x1F800000
Reserved
0x9D000000
0x80020000
0x1D080000
Reserved
0x1D07FFFF
Program Flash(2)
0x1D000000
0x8001FFFF
RAM(2)
0x80000000
0x00000000
Note 1:
2:
Reserved
Reserved
RAM(2)
0x00020000
0x0001FFFF
0x00000000
Memory areas are not shown to scale.
The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initialization code provided by end-user development tools (refer to the specific development tool
documentation for information).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 41
PIC32MX330/350/370/430/450/470
TABLE 4-1:
SFR MEMORY MAP
Virtual Address
Peripheral
Base
Offset
Start
Watchdog Timer
0x0000
RTCC
0x0200
Timer1-5
0x0600
Input Capture 1-5
0x2000
Output Compare 1-5
0x3000
IC1 and IC2
0x5000
SPI1 and SPI2
0x5800
UART1 and UART2
0x6000
PMP
ADC
0xBF80
0x7000
0x9000
CVREF
0x9800
Comparator
0xA000
CTMU
0xA200
Oscillator
0xF000
Device and Revision ID
0xF200
Flash Controller
0xF400
Reset
0xF600
PPS
0xFA04
Interrupts
0x1000
Bus Matrix
0x2000
DMA
Prefetch
0xBF88
0x3000
0x4000
USB
0x5050
PORTA-PORTG
0x6000
Configuration
DS60001185E-page 42
0xBFC0
0x2FF0
 2012-2015 Microchip Technology Inc.
Bus Matrix Registers
BMXCON(1)
2010 BMXDKPBA(1)
2030 BMXDUPBA(1)
2040 BMXDRMSZ
2050 BMXPUPBA(1)
2060
BMXPFMSZ
2070 BMXBOOTSZ
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
31:16
—
—
—
—
—
BMXCHEDMA
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
BMXWSDRM
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
15:0
31:16
15:0
16/0
BMXERRIXI BMXERRICD BMXERRDMA BMXERRDS BMXERRIS 041F
BMXARB<2:0>
—
0047
—
—
0000
0000
0000
0000
—
—
—
—
—
—
0000
0000
xxxx
BMXDRMSZ<31:0>
15:0
15:0
17/1
BMXDUPBA<15:0>
31:16
31:16
18/2
BMXDUDBA<15:0>
15:0
31:16
19/3
BMXDKPBA<15:0>
15:0
31:16
20/4
xxxx
—
—
—
—
—
—
—
—
—
—
BMXPUPBA<15:0>
BMXPFMSZ<31:0>
—
—
BMXPUPBA<19:16>
0000
0000
xxxx
xxxx
BMXBOOTSZ<31:0>
0000
0000
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more information.
DS60001185E-page 43
PIC32MX330/350/370/430/450/470
2020 BMXDUDBA(1)
Bits
All
Resets
2000
BUS MATRIX REGISTER MAP
Bit Range
Register
Name
TABLE 4-2:
Virtual Address
(BF88_#)
 2012-2015 Microchip Technology Inc.
4.2
PIC32MX330/350/370/430/450/470
REGISTER 4-1:
Bit
Range
BMXCON: BUS MATRIX CONFIGURATION REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
R/W-1
U-0
U-0
—
—
31:24
23:16
15:8
7:0
—
—
—
—
—
BMX
CHEDMA
U-0
U-0
U-0
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
BMX
ERRICD
BMX
ERRDMA
BMX
ERRDS
BMX
ERRIS
U-0
—
—
—
BMX
ERRIXI
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
R/W-1
U-0
U-0
U-0
R/W-0
R/W-0
R/W-1
—
BMX
WSDRM
—
—
—
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
BMXARB<2:0>
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
bit 31-27 Unimplemented: Read as ‘0’
bit 26
BMXCHEDMA: BMX PFM Cacheability for DMA Accesses bit
1 = Enable program Flash memory (data) cacheability for DMA accesses (requires cache to have data caching enabled)
0 = Disable program Flash memory (data) cacheability for DMA accesses
(hits are still read from the cache, but misses do not update the cache)
bit 25-21 Unimplemented: Read as ‘0’
bit 20
BMXERRIXI: Enable Bus Error from IXI bit
1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus
0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19
BMXERRICD: Enable Bus Error from ICD Debug Unit bit
1 = Enable bus error exceptions for unmapped address accesses initiated from ICD
0 = Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18
BMXERRDMA: Bus Error from DMA bit
1 = Enable bus error exceptions for unmapped address accesses initiated from DMA
0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17
BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access
0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16
BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access
0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access
bit 15-7 Unimplemented: Read as ‘0’
bit 6
BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
1 = Data RAM accesses from CPU have one wait state for address setup
0 = Data RAM accesses from CPU have zero wait states for address setup
bit 5-3
Unimplemented: Read as ‘0’
bit 2-0
BMXARB<2:0>: Bus Matrix Arbitration Mode bits
111 = Reserved (using these configuration modes will produce undefined behavior)
•
•
•
011 = Reserved (using these configuration modes will produce undefined behavior)
010 = Arbitration Mode 2
001 = Arbitration Mode 1 (default)
000 = Arbitration Mode 0
DS60001185E-page 44
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 4-2:
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
—
—
—
R/W-0
R/W-0
R/W-0
Bit
Bit
28/20/12/4 27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R-0
R-0
R-0
R-0
R-0
BMXDKPBA<15:8>
R-0
7:0
BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER
R-0
R-0
R-0
R-0
BMXDKPBA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-10 BMXDKPBA<15:10>: DRM Kernel Program Base Address bits
When non-zero, this value selects the relative base address for kernel program space in RAM
bit 9-0
BMXDKPBA<9:0>: Read-Only bits
Value is always ‘0’, which forces 1 KB increments
Note 1:
At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel
mode data usage.
The value in this register must be less than or equal to BMXDRMSZ.
2:
 2012-2015 Microchip Technology Inc.
DS60001185E-page 45
PIC32MX330/350/370/430/450/470
REGISTER 4-3:
Bit
Range
31:24
23:16
15:8
7:0
BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
Bit
Bit
28/20/12/4 27/19/11/3
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
BMXDUDBA<15:8>
R-0
R-0
BMXDUDBA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits
When non-zero, the value selects the relative base address for User mode data space in RAM, the value
must be greater than BMXDKPBA.
bit 9-0
BMXDUDBA<9:0>: Read-Only bits
Value is always ‘0’, which forces 1 KB increments
Note 1:
At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel
mode data usage.
The value in this register must be less than or equal to BMXDRMSZ.
2:
DS60001185E-page 46
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 4-4:
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
—
—
—
R/W-0
R/W-0
R/W-0
Bit
Bit
28/20/12/4 27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R-0
R-0
R-0
R-0
R-0
BMXDUPBA<15:8>
R-0
7:0
BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER
R-0
R-0
R-0
R-0
BMXDUPBA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits
When non-zero, the value selects the relative base address for User mode program space in RAM,
BMXDUPBA must be greater than BMXDUDBA.
bit 9-0
BMXDUPBA<9:0>: Read-Only bits
Value is always ‘0’, which forces 1 KB increments
Note 1:
At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel
mode data usage.
The value in this register must be less than or equal to BMXDRMSZ.
2:
 2012-2015 Microchip Technology Inc.
DS60001185E-page 47
PIC32MX330/350/370/430/450/470
REGISTER 4-5:
Bit
Range
31:24
23:16
15:8
7:0
BMXDRMSZ: DATA RAM SIZE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R
R
R
R
R
R
Bit
Bit
28/20/12/4 27/19/11/3
R
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R
R
R
R
R
R
R
R
R
R
R
R
R
BMXDRMSZ<31:24>
R
R
BMXDRMSZ<23:16>
R
R
R
R
R
R
R
R
BMXDRMSZ<15:8>
R
R
BMXDRMSZ<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits
Static value that indicates the size of the Data RAM in bytes:
0x00004000 = Device has 16 KB RAM
0x00008000 = Device has 32 KB RAM
0x00010000 = Device has 64 KB RAM
0x00020000 = Device has 128 KB RAM
REGISTER 4-6:
Bit
Range
31:24
23:16
15:8
7:0
x = Bit is unknown
BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS
REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
Bit
Bit
28/20/12/4 27/19/11/3
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R-0
R-0
R-0
BMXPUPBA<19:16>
R/W-0
R-0
R-0
R-0
R-0
R-0
R-0
BMXPUPBA<15:8>
R-0
R-0
BMXPUPBA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-20 Unimplemented: Read as ‘0’
bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits
bit 10-0
BMXPUPBA<10:0>: Read-Only bits
Value is always ‘0’, which forces 2 KB increments
Note 1:
At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel
mode data usage.
The value in this register must be less than or equal to BMXPFMSZ.
2:
DS60001185E-page 48
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 4-7:
Bit
Range
31:24
23:16
15:8
7:0
BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R
R
R
Bit
Bit
28/20/12/4 27/19/11/3
R
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R
R
R
R
R
R
R
R
R
R
R
R
R
BMXPFMSZ<31:24>
R
R
R
R
R
BMXPFMSZ<23:16>
R
R
R
R
R
BMXPFMSZ<15:8>
R
R
R
R
R
BMXPFMSZ<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits
Static value that indicates the size of the PFM in bytes:
0x00010000 = Device has 64 KB Flash
0x00020000 = Device has 128 KB Flash
0x00040000 = Device has 256 KB Flash
0x00080000 = Device has 512 KB Flash
REGISTER 4-8:
Bit
Range
31:24
23:16
15:8
7:0
x = Bit is unknown
BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R
R
R
Bit
Bit
28/20/12/4 27/19/11/3
R
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R
R
R
R
R
R
R
R
R
R
R
R
R
BMXBOOTSZ<31:24>
R
R
R
R
R
R
R
R
BMXBOOTSZ<23:16>
R
R
BMXBOOTSZ<15:8>
R
R
R
R
R
BMXBOOTSZ<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
x = Bit is unknown
BMXBOOTSZ<31:0>: Boot Flash Memory (BFM) Size bits
Static value that indicates the size of the Boot PFM in bytes:
0x00003000 = Device has 12 KB Boot Flash
 2012-2015 Microchip Technology Inc.
DS60001185E-page 49
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 50
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
5.0
Note:
FLASH PROGRAM MEMORY
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/
470 family of devices. It is not intended to
be a comprehensive reference source. To
complement the information in this data
sheet, refer to Section 5. “Flash
Program
Memory”
(DS60001121),
which
is
available
from
the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
PIC32MX330/350/370/430/450/470 devices contain an
internal Flash program memory for executing user
code. There are three methods by which the user can
program this memory:
• Run-Time Self-Programming (RTSP)
• EJTAG Programming
• In-Circuit Serial Programming™ (ICSP™)
RTSP is performed by software executing from either
Flash or RAM memory. Information about RTSP
techniques is available in Section 5. “Flash Program
Memory” (DS60001121) in the “PIC32 Family
Reference Manual”.
EJTAG is performed using the EJTAG port of the
device and an EJTAG capable programmer.
ICSP is performed using a serial data connection to the
device and allows much faster programming times than
RTSP.
The EJTAG and ICSP methods are described in the
“PIC32
Flash
Programming
Specification”
(DS60001145), which can be downloaded from the
Microchip web site.
Note:
 2012-2015 Microchip Technology Inc.
On PIC32MX330/350/370/430/450/470
devices, the Flash page size is 4 KB and
the row size is 512 bytes (1024 IW and
128 IW, respectively).
DS60001185E-page 51
Control Registers
Virtual Address
(BF80_#)
TABLE 5-1:
FLASH CONTROLLER REGISTER MAP
F400 NVMCON(1)
F410
NVMKEY
F420
NVMADDR(1)
F430
NVMDATA
F440
NVMSRC
ADDR
Legend:
Note 1:
31/15
30/14
29/13
31:16
—
—
—
15:0
31:16
WR
WREN
WRERR
15:0
31:16
15:0
31:16
15:0
31:16
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LVDERR LVDSTAT
18/2
17/1
16/0
—
—
—
NVMOP<3:0>
NVMKEY<31:0>
NVMADDR<31:0>
NVMDATA<31:0>
NVMSRCADDR<31:0>
15:0
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more
information.
All Resets
Bit Range
Register
Name
Bits
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 52
5.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 5-1:
Bit
Range
NVMCON: PROGRAMMING CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
31:24
23:16
15:8
7:0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R-0
R-0
R-0
U-0
U-0
U-0
WR
WREN
WRERR(1)
U-0
U-0
U-0
U-0
—
—
—
—
Legend:
R = Readable bit
-n = Value at POR
LVDERR(1) LVDSTAT(1)
W = Writable bit
‘1’ = Bit is set
R/W-0
—
—
—
R/W-0
R/W-0
R/W-0
NVMOP<3:0>
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
WR: Write Control bit
This bit is writable when WREN = 1 and the unlock sequence is followed.
1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
0 = Flash operation complete or inactive
bit 14
WREN: Write Enable bit
1 = Enable writes to WR bit and enables LVD circuit
0 = Disable writes to WR bit and disables LVD circuit
This is the only bit in this register reset by a device Reset.
bit 13
WRERR: Write Error bit(1)
This bit is read-only and is automatically set by hardware.
1 = Program or erase sequence did not complete successfully
0 = Program or erase sequence completed normally
bit 12
LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled)(1)
This bit is read-only and is automatically set by hardware.
1 = Low-voltage detected (possible data corruption, if WRERR is set)
0 = Voltage level is acceptable for programming
bit 11
LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled)(1)
This bit is read-only and is automatically set, and cleared, by hardware.
1 = Low-voltage event active
0 = Low-voltage event NOT active
bit 10-4 Unimplemented: Read as ‘0’
bit 3-0
NVMOP<3:0>: NVM Operation bits
These bits are writable when WREN = 0.
1111 = Reserved
•
•
•
0111 = Reserved
0110 = No operation
0101 = Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
0010 = No operation
0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected
0000 = No operation
Note 1:
This bit is cleared by setting NVMOP = 0000, and initiating a Flash operation (i.e., WR).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 53
PIC32MX330/350/370/430/450/470
REGISTER 5-2:
Bit
Range
31:24
23:16
15:8
7:0
NVMKEY: PROGRAMMING UNLOCK REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
W-0
W-0
W-0
Bit
Bit
28/20/12/4 27/19/11/3
W-0
W-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
NVMKEY<31:24>
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
NVMKEY<23:16>
W-0
NVMKEY<15:8>
W-0
W-0
W-0
W-0
W-0
NVMKEY<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
Note:
NVMKEY<31:0>: Unlock Register bits
These bits are write-only, and read as ‘0’ on any read
This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.
REGISTER 5-3:
Bit
Range
31:24
23:16
15:8
7:0
x = Bit is unknown
NVMADDR: FLASH ADDRESS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-0
R/W-0
R/W-0
Bit
Bit
28/20/12/4 27/19/11/3
R/W-0
R/W-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMADDR<31:24>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMADDR<23:16>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMADDR<15:8>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMADDR<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
x = Bit is unknown
NVMADDR<31:0>: Flash Address bits
Bulk/Chip/PFM Erase: Address is ignored
Page Erase: Address identifies the page to erase
Row Program: Address identifies the row to program
Word Program: Address identifies the word to program
DS60001185E-page 54
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 5-4:
Bit
Range
31:24
23:16
15:8
7:0
NVMDATA: FLASH PROGRAM DATA REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-0
R/W-0
R/W-0
Bit
Bit
28/20/12/4 27/19/11/3
R/W-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMDATA<31:24>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMDATA<23:16>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMDATA<15:8>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMDATA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
Note:
NVMDATA<31:0>: Flash Programming Data bits
The bits in this register are only reset by a Power-on Reset (POR).
REGISTER 5-5:
Bit
Range
31:24
23:16
15:8
7:0
x = Bit is unknown
NVMSRCADDR: SOURCE DATA ADDRESS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit
Bit
28/20/12/4 27/19/11/3
R/W-0
R/W-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMSRCADDR<31:24>
R/W-0
R/W-0
NVMSRCADDR<23:16>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NVMSRCADDR<15:8>
R/W-0
R/W-0
NVMSRCADDR<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
x = Bit is unknown
NVMSRCADDR<31:0>: Source Data Address bits
The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits
(NVMCON<3:0>) are set to perform row programming.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 55
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 56
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
6.0
Note:
RESETS
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 7. “Resets”
(DS60001118), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
FIGURE 6-1:
The Reset module combines all Reset sources and
controls the device Master Reset signal, SYSRST. The
following is a list of device Reset sources:
•
•
•
•
•
•
•
POR: Power-on Reset
MCLR: Master Clear Reset pin
SWR: Software Reset
WDTR: Watchdog Timer Reset
BOR: Brown-out Reset
CMR: Configuration Mismatch Reset
HVDR: High Voltage Detect Reset
A simplified block diagram of the Reset module is
illustrated in Figure 6-1.
SYSTEM RESET BLOCK DIAGRAM
MCLR
Glitch Filter
Sleep or Idle
WDTR
WDT
Time-out
Voltage
Regulator
Enabled
Power-up
Timer
VDD
MCLR
POR
SYSRST
VDD Rise
Detect
Configuration
Mismatch
Reset
Brown-out
Reset
Brown-out
Reset
Software Reset
BOR
CMR
SWR
VCAP
HVD Detect
and Reset
 2012-2015 Microchip Technology Inc.
HVDR
DS60001185E-page 57
Reset Control Registers
Virtual Address
(BF80_#)
Register
Name(1)
TABLE 6-1:
F600
RCON
Legend:
1:
2:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
31:16
—
—
HVDR
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
CMR
—
VREGS
—
23/7
22/6
21/5
—
—
—
—
—
—
—
—
EXTR
—
SWR
—
—
—
WDTO
—
SLEEP
—
IDLE
—
BOR
—
POR
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
20/4
19/3
18/2
17/1
16/0
All Resets
Bit Range
Bits
F610 RSWRST
Note
SYSTEM CONTROL REGISTER MAP
0000
xxxx(2)
0000
SWRST 0000
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.
PIC32MX330/350/370/430/450/470
DS60001185E-page 58
6.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 6-1:
Bit
Range
31:24
23:16
15:8
7:0
RCON: RESET CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
U-0
U-0
R/W-0
U-0
—
—
HVDR
—
U-0
U-0
U-0
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0, HS
R/W-0
—
—
—
—
—
—
CMR
VREGS
R/W-0, HS
R/W-0, HS
U-0
R/W-0, HS
R/W-0, HS
R/W-0, HS
EXTR
SWR
—
WDTO
SLEEP
IDLE
R/W-1, HS
(1)
R/W-1, HS
(1)
Legend:
R = Readable bit
-n = Value at POR
HS = Set by hardware
W = Writable bit
‘1’ = Bit is set
BOR
POR
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-30 Unimplemented: Read as ‘0’
bit 29
HVDR: High Voltage Detect Reset Flag bit
1 = High Voltage Detect (HVD) Reset has occurred
0 = HVD Reset has not occurred
bit 28-10 Unimplemented: Read as ‘0’
bit 9
CMR: Configuration Mismatch Reset Flag bit
1 = Configuration mismatch Reset has occurred
0 = Configuration mismatch Reset has not occurred
bit 8
VREGS: Voltage Regulator Standby Enable bit
1 = Regulator is enabled and is on during Sleep mode
0 = Regulator is disabled and is off during Sleep mode
bit 7
EXTR: External Reset (MCLR) Pin Flag bit
1 = Master Clear (pin) Reset has occurred
0 = Master Clear (pin) Reset has not occurred
bit 6
SWR: Software Reset Flag bit
1 = Software Reset was executed
0 = Software Reset as not executed
bit 5
Unimplemented: Read as ‘0’
bit 4
WDTO: Watchdog Timer Time-out Flag bit
1 = WDT Time-out has occurred
0 = WDT Time-out has not occurred
bit 3
SLEEP: Wake From Sleep Flag bit
1 = Device was in Sleep mode
0 = Device was not in Sleep mode
bit 2
IDLE: Wake From Idle Flag bit
1 = Device was in Idle mode
0 = Device was not in Idle mode
bit 1
BOR: Brown-out Reset Flag bit(1)
1 = Brown-out Reset has occurred
0 = Brown-out Reset has not occurred
bit 0
POR: Power-on Reset Flag bit(1)
1 = Power-on Reset has occurred
0 = Power-on Reset has not occurred
Note 1:
User software must clear this bit to view next detection.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 59
PIC32MX330/350/370/430/450/470
REGISTER 6-2:
Bit
Range
31:24
23:16
15:8
7:0
RSWRST: SOFTWARE RESET REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
Bit
Bit
28/20/12/4 27/19/11/3
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
Legend:
HC = Cleared by hardware
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
—
W-0, HC
(1)
SWRST
x = Bit is unknown
bit 31-1
Unimplemented: Read as ‘0’
bit 0
SWRST: Software Reset Trigger bit(1)
1 = Enable software Reset event
0 = No effect
Note 1:
The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section
6. “Oscillator” (DS60001112) in the “PIC32 Family Reference Manual” for details.
DS60001185E-page 60
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
7.0
Note:
INTERRUPT CONTROLLER
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 8. “Interrupt Controller” (DS60001108), which is available
from the Documentation > Reference
Manual section of the Microchip PIC32
web site (www.microchip.com/pic32).
PIC32MX330/350/370/430/450/470 devices generate
interrupt requests in response to interrupt events from
peripheral modules. The interrupt control module exists
externally to the CPU logic and prioritizes the interrupt
events before presenting them to the CPU.
•
•
•
•
•
•
•
•
•
•
•
interrupt
Up to 76 interrupt sources
Up to 46 interrupt vectors
Single and multi-vector mode operations
Five external interrupts with edge polarity control
Interrupt proximity timer
Seven user-selectable priority levels for each
vector
Four user-selectable subpriority levels within each
priority
Dedicated shadow set configurable for any priority level
(see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in
28.0 “Special Features” for more information)
Software can generate any interrupt
User-configurable interrupt vector table location
User-configurable interrupt vector spacing
INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM
Interrupt Requests
FIGURE 7-1:
The PIC32MX330/350/370/430/450/470
module includes the following features:
Vector Number
Interrupt Controller
 2012-2015 Microchip Technology Inc.
Priority Level
CPU Core
Shadow Set Number
DS60001185E-page 61
PIC32MX330/350/370/430/450/470
TABLE 7-1:
INTERRUPT IRQ, VECTOR AND BIT LOCATION
Interrupt Source(1)
IRQ #
Vector
#
Interrupt Bit Location
Flag
Enable
Priority
Sub-priority
Persistent
Interrupt
Highest Natural Order Priority
CT – Core Timer Interrupt
0
0
IFS0<0>
IEC0<0>
IPC0<4:2>
IPC0<1:0>
No
CS0 – Core Software Interrupt 0
1
1
IFS0<1>
IEC0<1>
IPC0<12:10>
IPC0<9:8>
No
CS1 – Core Software Interrupt 1
2
2
IFS0<2>
IEC0<2>
IPC0<20:18>
IPC0<17:16>
No
INT0 – External Interrupt
3
3
IFS0<3>
IEC0<3>
IPC0<28:26>
IPC0<25:24>
No
T1 – Timer1
4
4
IFS0<4>
IEC0<4>
IPC1<4:2>
IPC1<1:0>
No
IC1E – Input Capture 1 Error
5
5
IFS0<5>
IEC0<5>
IPC1<12:10>
IPC1<9:8>
Yes
IC1 – Input Capture 1
6
5
IFS0<6>
IEC0<6>
IPC1<12:10>
IPC1<9:8>
Yes
OC1 – Output Compare 1
7
6
IFS0<7>
IEC0<7>
IPC1<20:18>
IPC1<17:16>
No
INT1 – External Interrupt 1
8
7
IFS0<8>
IEC0<8>
IPC1<28:26>
IPC1<25:24>
No
T2 – Timer2
9
8
IFS0<9>
IEC0<9>
IPC2<4:2>
IPC2<1:0>
No
IC2E – Input Capture 2
10
9
IFS0<10>
IEC0<10>
IPC2<12:10>
IPC2<9:8>
Yes
Yes
IC2 – Input Capture 2
11
9
IFS0<11>
IEC0<11>
IPC2<12:10>
IPC2<9:8>
OC2 – Output Compare 2
12
10
IFS0<12>
IEC0<12>
IPC2<20:18>
IPC2<17:16>
No
INT2 – External Interrupt 2
13
11
IFS0<13>
IEC0<13>
IPC2<28:26>
IPC2<25:24>
No
T3 – Timer3
14
12
IFS0<14>
IEC0<14>
IPC3<4:2>
IPC3<1:0>
No
IC3E – Input Capture 3
15
13
IFS0<15>
IEC0<15>
IPC3<12:10>
IPC3<9:8>
Yes
Yes
IC3 – Input Capture 3
16
13
IFS0<16>
IEC0<16>
IPC3<12:10>
IPC3<9:8>
OC3 – Output Compare 3
17
14
IFS0<17>
IEC0<17>
IPC3<20:18>
IPC3<17:16>
No
INT3 – External Interrupt 3
18
15
IFS0<18>
IEC0<18>
IPC3<28:26>
IPC3<25:24>
No
T4 – Timer4
19
16
IFS0<19>
IEC0<19>
IPC4<4:2>
IPC4<1:0>
No
IC4E – Input Capture 4 Error
20
17
IFS0<20>
IEC0<20>
IPC4<12:10>
IPC4<9:8>
Yes
IC4 – Input Capture 4
21
17
IFS0<21>
IEC0<21>
IPC4<12:10>
IPC4<9:8>
Yes
OC4 – Output Compare 4
22
18
IFS0<22>
IEC0<22>
IPC4<20:18>
IPC4<17:16>
No
INT4 – External Interrupt 4
23
19
IFS0<23>
IEC0<23>
IPC4<28:26>
IPC4<25:24>
No
T5 – Timer5
24
20
IFS0<24>
IEC0<24>
IPC5<4:2>
IPC5<1:0>
No
IC5E – Input Capture 5 Error
25
21
IFS0<25>
IEC0<25>
IPC5<12:10>
IPC5<9:8>
Yes
IC5 – Input Capture 5
26
21
IFS0<26>
IEC0<26>
IPC5<12:10>
IPC5<9:8>
Yes
OC5 – Output Compare 5
27
22
IFS0<27>
IEC0<27>
IPC5<20:18>
IPC5<17:16>
No
AD1 – ADC1 Convert done
28
23
IFS0<28>
IEC0<28>
IPC5<28:26>
IPC5<25:24>
Yes
FSCM – Fail-Safe Clock Monitor
29
24
IFS0<29>
IEC0<29>
IPC6<4:2>
IPC6<1:0>
No
RTCC – Real-Time Clock and Calendar
30
25
IFS0<30>
IEC0<30>
IPC6<12:10>
IPC6<9:8>
No
FCE – Flash Control Event
31
26
IFS0<31>
IEC0<31>
IPC6<20:18>
IPC6<17:16>
No
CMP1 – Comparator Interrupt
32
27
IFS1<0>
IEC1<0>
IPC6<28:26>
IPC6<25:24>
No
CMP2 – Comparator Interrupt
33
28
IFS1<1>
IEC1<1>
IPC7<4:2>
IPC7<1:0>
No
USB – USB Interrupts
34
29
IFS1<2>
IEC1<2>
IPC7<12:10>
IPC7<9:8>
Yes
Yes
SPI1E – SPI1 Fault
35
30
IFS1<3>
IEC1<3>
IPC7<20:18>
IPC7<17:16>
SPI1RX – SPI1 Receive Done
36
30
IFS1<4>
IEC1<4>
IPC7<20:18>
IPC7<17:16>
Yes
SPI1TX – SPI1 Transfer Done
37
30
IFS1<5>
IEC1<5>
IPC7<20:18>
IPC7<17:16>
Yes
U1E – UART1 Fault
38
31
IFS1<6>
IEC1<6>
IPC7<28:26>
IPC7<25:24>
Yes
U1RX – UART1 Receive Done
39
31
IFS1<7>
IEC1<7>
IPC7<28:26>
IPC7<25:24>
Yes
U1TX – UART1 Transfer Done
40
31
IFS1<8>
IEC1<8>
IPC7<28:26>
IPC7<25:24>
Yes
I2C1B – I2C1 Bus Collision Event
41
32
IFS1<9>
IEC1<9>
IPC8<4:2>
IPC8<1:0>
Yes
I2C1S – I2C1 Slave Event
42
32
IFS1<10>
IEC1<10>
IPC8<4:2>
IPC8<1:0>
Yes
I2C1M – I2C1 Master Event
43
32
IFS1<11>
IEC1<11>
IPC8<4:2>
IPC8<1:0>
Yes
CNA – PORTA Input Change Interrupt
44
33
IFS1<12>
IEC1<12>
IPC8<12:10>
IPC8<9:8>
Yes
Note 1:
Not all interrupt sources are available on all devices. See TABLE 1: “PIC32MX330/350/370/430/450/470 Controller
Family Features” for the list of available peripherals.
DS60001185E-page 62
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 7-1:
INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)
Interrupt Source(1)
IRQ #
Vector
#
Interrupt Bit Location
Flag
Enable
Priority
Sub-priority
Persistent
Interrupt
CNB – PORTB Input Change Interrupt
45
33
IFS1<13>
IEC1<13>
IPC8<12:10>
IPC8<9:8>
Yes
CNC – PORTC Input Change Interrupt
46
33
IFS1<14>
IEC1<14>
IPC8<12:10>
IPC8<9:8>
Yes
CND – PORTD Input Change Interrupt
47
33
IFS1<15>
IEC1<15>
IPC8<12:10>
IPC8<9:8>
Yes
CNE – PORTE Input Change Interrupt
48
33
IFS1<16>
IEC1<16>
IPC8<12:10>
IPC8<9:8>
Yes
CNF – PORTF Input Change Interrupt
49
33
IFS1<17>
IEC1<17>
IPC8<12:10>
IPC8<9:8>
Yes
CNG – PORTG Input Change Interrupt
50
33
IFS1<18>
IEC1<18>
IPC8<12:10>
IPC8<9:8>
Yes
PMP – Parallel Master Port
51
34
IFS1<19>
IEC1<19>
IPC8<20:18>
IPC8<17:16>
Yes
Yes
PMPE – Parallel Master Port Error
52
34
IFS1<20>
IEC1<20>
IPC8<20:18>
IPC8<17:16>
SPI2E – SPI2 Fault
53
35
IFS1<21>
IEC1<21>
IPC8<28:26>
IPC8<25:24>
Yes
SPI2RX – SPI2 Receive Done
54
35
IFS1<22>
IEC1<22>
IPC8<28:26>
IPC8<25:24>
Yes
SPI2TX – SPI2 Transfer Done
55
35
IFS1<23>
IEC1<23>
IPC8<28:26>
IPC8<25:24>
Yes
U2E – UART2 Error
56
36
IFS1<24>
IEC1<24>
IPC9<4:2>
IPC9<1:0>
Yes
U2RX – UART2 Receiver
57
36
IFS1<25>
IEC1<25>
IPC9<4:2>
IPC9<1:0>
Yes
U2TX – UART2 Transmitter
58
36
IFS1<26>
IEC1<26>
IPC9<4:2>
IPC9<1:0>
Yes
I2C2B – I2C2 Bus Collision Event
59
37
IFS1<27>
IEC1<27>
IPC9<12:10>
IPC9<9:8>
Yes
I2C2S – I2C2 Slave Event
60
37
IFS1<28>
IEC1<28>
IPC9<12:10>
IPC9<9:8>
Yes
I2C2M – I2C2 Master Event
61
37
IFS1<29>
IEC1<29>
IPC9<12:10>
IPC9<9:8>
Yes
U3E – UART3 Error
62
38
IFS1<30>
IEC1<30>
IPC9<20:18>
IPC9<17:16>
Yes
U3RX – UART3 Receiver
63
38
IFS1<31>
IEC1<31>
IPC9<20:18>
IPC9<17:16>
Yes
U3TX – UART3 Transmitter
64
38
IFS2<0>
IEC2<0>
IPC9<20:18>
IPC9<17:16>
Yes
U4E – UART4 Error
65
39
IFS2<1>
IEC2<1>
IPC9<28:26>
IPC9<25:24>
Yes
U4RX – UART4 Receiver
66
39
IFS2<2>
IEC2<2>
IPC9<28:26>
IPC9<25:24>
Yes
U4TX – UART4 Transmitter
67
39
IFS2<3>
IEC2<3>
IPC9<28:26>
IPC9<25:24>
Yes
U5E – UART5 Error
68
40
IFS2<4>
IEC2<4>
IPC10<4:2>
IPC10<1:0>
Yes
U5RX – UART5 Receiver
69
40
IFS2<5>
IEC2<5>
IPC10<4:2>
IPC10<1:0>
Yes
U5TX – UART5 Transmitter
70
40
IFS2<6>
IEC2<6>
IPC10<4:2>
IPC10<1:0>
Yes
CTMU – CTMU Event
71
41
IFS2<7>
IEC2<7>
IPC10<12:10>
IPC10<9:8>
Yes
DMA0 – DMA Channel 0
72
42
IFS2<8>
IEC2<8>
IPC10<20:18>
IPC10<17:16>
No
DMA1 – DMA Channel 1
73
43
IFS2<9>
IEC2<9>
IPC10<28:26>
IPC10<25:24>
No
DMA2 – DMA Channel 2
74
44
IFS2<10>
IEC2<10>
IPC11<4:2>
IPC11<1:0>
No
DMA3 – DMA Channel 3
75
45
IFS2<11>
IEC2<11>
IPC11<12:10>
IPC11<9:8>
No
Lowest Natural Order Priority
Note 1:
Not all interrupt sources are available on all devices. See TABLE 1: “PIC32MX330/350/370/430/450/470 Controller
Family Features” for the list of available peripherals.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 63
Interrupts Control Registers
Virtual Address
(BF88_#)
Register
Name
TABLE 7-2:
1000
INTCON
1010
INTSTAT
INTERRUPT REGISTER MAP
1020
IPTMR
1030
IFS0
1040
IFS1
1050
IFS2
1060
IEC0
1070
IEC1
1080
IEC2
1090
IPC0
 2012-2015 Microchip Technology Inc.
10A0
IPC1
10B0
IPC2
10C0
IPC3
10D0
IPC4
10E0
IPC5
31/15
30/14
29/13
28/12
27/11
26/10
31:16
—
—
15:0
—
—
—
—
—
—
—
MVEC
—
31:16
—
15:0
—
—
—
—
—
—
—
—
—
25/9
24/8
23/7
22/6
21/5
—
—
—
—
—
—
—
—
—
—
INT4EP
INT3EP
—
—
—
—
—
—
TPC<2:0>
—
—
—
SRIPL<2:0>
31:16
19/3
18/2
17/1
16/0
—
—
SS0
0000
INT2EP INT1EP INT0EP 0000
—
—
—
—
VEC<5:0>
0000
0000
0000
IPTMR<31:0>
15:0
0000
31:16
FCEIF
RTCCIF
FSCMIF
AD1IF
OC5IF
IC5IF
IC5EIF
T5IF
INT4IF
OC4IF
IC4IF
IC4EIF
T4IF
INT3IF
OC3IF
IC3IF
0000
15:0
IC3EIF
T3IF
INT2IF
OC2IF
IC2IF
IC2EIF
T2IF
INT1IF
OC1IF
IC1IF
IC1EIF
T1IF
INT0IF
CS1IF
CS0IF
CTIF
0000
31:16
U3RXIF
U3EIF
I2C2MIF
I2C2SIF
I2C2BIF
U2TXIF
U2RXIF
U2EIF
SPI2EIF
PMPEIF
PMPIF
CNGIF
CNFIF
CNEIF
0000
15:0
CNDIF
CNCIF
CNBIF
CNAIF
I2C1MIF
I2C1SIF
I2C1BIF
U1TXIF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
DMA3IF
DMA2IF
DMA1IF
DMA0IF
CTMUIF
U5TXIF(1)
U5RXIF(1)
U5EIF(1)
U4TXIF
U4RXIF
U4EIF
31:16
FCEIE
RTCCIE
FSCMIE
AD1IE
OC5IE
IC5IE
IC5EIE
T5IE
INT4IE
OC4IE
IC4IE
IC4EIE
T4IE
INT3IE
OC3IE
IC3IE
0000
15:0
IC3EIE
T3IE
INT2IE
OC2IE
IC2IE
IC2EIE
T2IE
INT1IE
OC1IE
IC1IE
IC1EIE
T1IE
INT0IE
CS1IE
CS0IE
CTIE
0000
31:16 U3RXIE
U3EIE
I2C2MIE
I2C2SIE
I2C2BIE
U2TXIE
U2RXIE
U2EIE
SPI2EIE
PMPEIE
PMPIE
CNGIE
CNFIE
CNEIE
0000
15:0
CNDIE
CNCIE
CNBIE
CNAIE
I2C1MIE
I2C1SIE
I2C1BIE
U1TXIE
31:16
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
DMA3IE
DMA2IE
DMA1IE
DMA0IE
CTMUIE
31:16
—
—
—
INT0IP<2:0>
INT0IS<1:0>
—
—
—
CS1IP<2:0>
CS1IS<1:0>
0000
15:0
—
—
—
CS0IP<2:0>
CS0IS<1:0>
—
—
—
CTIP<2:0>
CTIS<1:0>
0000
31:16
—
—
—
INT1IP<2:0>
INT1IS<1:0>
—
—
—
OC1IP<2:0>
OC1IS<1:0>
0000
15:0
—
—
—
IC1IP<2:0>
IC1IS<1:0>
—
—
—
T1IP<2:0>
T1IS<1:0>
0000
31:16
—
—
—
INT2IP<2:0>
INT2IS<1:0>
—
—
—
OC2IP<2:0>
OC2IS<1:0>
0000
15:0
—
—
—
IC2IP<2:0>
IC2IS<1:0>
—
—
—
T2IP<2:0>
T2IS<1:0>
0000
31:16
—
—
—
INT3IP<2:0>
INT3IS<1:0>
—
—
—
OC3IP<2:0>
OC3IS<1:0>
0000
15:0
—
—
—
IC3IP<2:0>
IC3IS<1:0>
—
—
—
T3IP<2:0>
T3IS<1:0>
0000
31:16
—
—
—
INT4IP<2:0>
INT4IS<1:0>
—
—
—
OC4IP<2:0>
OC4IS<1:0>
0000
15:0
—
—
—
IC4IP<2:0>
IC4IS<1:0>
—
—
—
T4IP<2:0>
T4IS<1:0>
0000
31:16
—
—
—
AD1IP<2:0>
AD1IS<1:0>
—
—
—
OC5IP<2:0>
OC5IS<1:0>
0000
15:0
—
—
—
IC5IP<2:0>
IC5IS<1:0>
—
—
—
T5IP<2:0>
T5IS<1:0>
0000
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note
This bit is only available on 100-pin devices.
This bit is only implemented on devices with a USB module.
1:
2:
20/4
All
Resets
Bit Range
Bits
SPI2TXIF SPI2RXIF
U1RXIF
U1EIF
SPI2TXIE SPI2RXIE
U1RXIE
SPI1TXIF
U1EIE
SPI1TXIE
—
—
U5TXIE(1) U5RXIE(1)
SPI1RXIF SPI1EIF USBIF(2) CMP2IF CMP1IF 0000
—
0000
U3TXIF 0000
SPI1RXIE SPI1EIE USBIE(2) CMP2IE CMP1IE 0000
—
—
—
—
U5EIE(1)
U4TXIE
U4RXIE
U4EIE
—
0000
U3TXIE 0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 64
7.1
Virtual Address
(BF88_#)
Register
Name
10F0
IPC6
INTERRUPT REGISTER MAP (CONTINUED)
1100
IPC7
1110
IPC8
1120
IPC9
IPC10
1140
IPC11
30/14
29/13
28/12
27/11
31:16
—
—
—
CMP1IP<2:0>
15:0
—
—
—
RTCCIP<2:0>
31:16
—
—
—
15:0
—
—
31:16
—
15:0
23/7
22/6
21/5
CMP1IS<1:0>
—
—
—
FCEIP<2:0>
FCEIS<1:0>
0000
RTCCIS<1:0>
—
—
—
FSCMIP<2:0>
FSCMIS<1:0>
0000
U1IP<2:0>
U1IS<1:0>
—
—
—
SPI1IP<2:0>
SPI1IS<1:0>
0000
—
USBIP<2:0>(2)
USBIS<1:0>(2)
—
—
—
CMP2IP<2:0>
CMP2IS<1:0>
0000
—
—
SPI2IP<2:0>
SPI2IS<1:0>
—
—
—
PMPIP<2:0>
PMPIS<1:0>
0000
—
—
—
CNIP<2:0>
CNIS<1:0>
—
—
—
I2C1IP<2:0>
I2C1IS<1:0>
0000
31:16
—
—
—
U4IP<2:0>
U4IS<1:0>
—
—
—
U3IP<2:0>
U3IS<1:0>
0000
15:0
—
—
—
I2C2IP<2:0>
I2C2IS<1:0>
—
—
—
U2IP<2:0>
U2IS<1:0>
0000
31:16
—
—
—
DMA1IP<2:0>
DMA1IS<1:0>
—
—
—
DMA0IP<2:0>
DMA0IS<1:0>
0000
15:0
—
—
—
CTMUIP<2:0>
CTMUIS<1:0>
—
—
—
U5IP<2:0>
U5IS<1:0>
0000
31:16
—
—
—
—
—
—
—
—
—
0000
15:0
—
—
—
DMA3IS<1:0>
—
—
—
—
—
DMA3IP<2:0>
26/10
—
25/9
24/8
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note
This bit is only available on 100-pin devices.
This bit is only implemented on devices with a USB module.
1:
2:
20/4
—
19/3
—
DMA2IP<2:0>
18/2
—
17/1
16/0
—
DMA2IS<1:0>
0000
DS60001185E-page 65
PIC32MX330/350/370/430/450/470
1130
31/15
All
Resets
Bits
Bit Range
 2012-2015 Microchip Technology Inc.
TABLE 7-2:
PIC32MX330/350/370/430/450/470
REGISTER 7-1:
Bit
Range
31:24
23:16
15:8
7:0
INTCON: INTERRUPT CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
Bit
Bit
28/20/12/4 27/19/11/3
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
—
—
—
—
—
—
—
SS0
U-0
U-0
U-0
R/W-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
MVEC
—
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
TPC<2:0>
R/W-0
R/W-0
—
—
—
INT4EP
INT3EP
INT2EP
INT1EP
INT0EP
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-17 Unimplemented: Read as ‘0’
bit 16
SS0: Single Vector Shadow Register Set bit
1 = Single vector is presented with a shadow register set
0 = Single vector is not presented with a shadow register set
bit 15-13 Unimplemented: Read as ‘0’
bit 12
MVEC: Multi Vector Configuration bit
1 = Interrupt controller configured for multi vectored mode
0 = Interrupt controller configured for single vectored mode
bit 11
bit 10-8
bit 7-5
bit 4
bit 3
bit 2
bit 1
bit 0
Unimplemented: Read as ‘0’
TPC<2:0>: Interrupt Proximity Timer Control bits
111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
001 = Interrupts of group priority 1 start the Interrupt Proximity timer
000 = Disables Interrupt Proximity timer
Unimplemented: Read as ‘0’
INT4EP: External Interrupt 4 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
INT3EP: External Interrupt 3 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
INT2EP: External Interrupt 2 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
INT1EP: External Interrupt 1 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
INT0EP: External Interrupt 0 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
DS60001185E-page 66
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 7-2:
Bit
Range
31:24
23:16
15:8
7:0
INTSTAT: INTERRUPT STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
—
—
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
SRIPL<2:0>(1)
R/W-0
R/W-0
R/W-0
VEC<5:0>(1)
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-11 Unimplemented: Read as ‘0’
bit 10-8
SRIPL<2:0>: Requested Priority Level bits(1)
111-000 = The priority level of the latest interrupt presented to the CPU
bit 7-6
bit 5-0
Unimplemented: Read as ‘0’
VEC<5:0>: Interrupt Vector bits(1)
11111-00000 = The interrupt vector that is presented to the CPU
Note 1:
This value should only be used when the interrupt controller is configured for Single Vector mode.
REGISTER 7-3:
Bit
Range
31:24
23:16
15:8
7:0
IPTMR: INTERRUPT PROXIMITY TIMER REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IPTMR<31:24>
R/W-0
IPTMR<23:16>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IPTMR<15:8>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IPTMR<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
x = Bit is unknown
IPTMR<31:0>: Interrupt Proximity Timer Reload bits
Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by
an interrupt event.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 67
PIC32MX330/350/370/430/450/470
REGISTER 7-4:
Bit
Range
31:24
23:16
15:8
7:0
IFSx: INTERRUPT FLAG STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IFS31
IFS30
IFS29
R/W-0
R/W-0
R/W-0
IFS28
IFS27
IFS26
IFS25
IFS24
R/W-0
R/W-0
R/W-0
R/W-0
IFS23
IFS22
IFS21
R/W-0
IFS20
IFS19
IFS18
IFS17
IFS16
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IFS15
IFS14
IFS13
IFS12
IFS11
IFS10
IFS9
IFS8
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IFS7
IFS6
IFS5
IFS4
IFS3
IFS2
IFS1
IFS0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
Note:
IFS31-IFS0: Interrupt Flag Status bits
1 = Interrupt request has occurred
0 = No interrupt request has occurred
This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit
definitions.
REGISTER 7-5:
Bit
Range
31:24
23:16
15:8
7:0
x = Bit is unknown
Bit
31/23/15/7
IECx: INTERRUPT ENABLE CONTROL REGISTER
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IEC31
IEC30
IEC29
IEC28
IEC27
IEC26
IEC25
IEC24
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IEC23
IEC22
IEC21
IEC20
IEC19
IEC18
IEC17
IEC16
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IEC15
IEC14
IEC13
IEC12
IEC11
IEC10
IEC9
IEC8
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
IEC7
IEC6
IEC5
IEC4
IEC3
IEC2
IEC1
IEC0
Legend:
R = Readable bit
-n = Value at POR
bit 31-0
Note:
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
IEC31-IEC0: Interrupt Enable bits
1 = Interrupt is enabled
0 = Interrupt is disabled
This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit
definitions.
DS60001185E-page 68
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 7-6:
Bit
Range
IPCx: INTERRUPT PRIORITY CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
—
—
—
U-0
U-0
U-0
—
—
—
U-0
U-0
U-0
—
—
—
U-0
U-0
U-0
—
—
—
31:24
23:16
15:8
7:0
Legend:
R = Readable bit
-n = Value at POR
Bit
Bit
28/20/12/4 27/19/11/3
W = Writable bit
‘1’ = Bit is set
R/W-0
R/W-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
IP3<2:0>
R/W-0
R/W-0
IS3<1:0>
R/W-0
IP2<2:0>
R/W-0
R/W-0
R/W-0
IP0<2:0>
R/W-0
IS2<1:0>
R/W-0
IP1<2:0>
R/W-0
R/W-0
R/W-0
R/W-0
IS1<1:0>
R/W-0
R/W-0
R/W-0
IS0<1:0>
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-29 Unimplemented: Read as ‘0’
bit 28-26 IP3<2:0>: Interrupt Priority bits
111 = Interrupt priority is 7
•
•
•
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled
bit 25-24 IS3<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpriority is 0
bit 23-21 Unimplemented: Read as ‘0’
bit 20-18 IP2<2:0>: Interrupt Priority bits
111 = Interrupt priority is 7
•
•
•
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled
bit 17-16 IS2<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpriority is 0
bit 15-13 Unimplemented: Read as ‘0’
bit 12-10 IP1<2:0>: Interrupt Priority bits
111 = Interrupt priority is 7
•
•
•
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled
Note:
This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit
definitions.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 69
PIC32MX330/350/370/430/450/470
REGISTER 7-6:
bit 9-8
bit 7-5
bit 4-2
IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)
IS1<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpriority is 0
Unimplemented: Read as ‘0’
IP0<2:0>: Interrupt Priority bits
111 = Interrupt priority is 7
•
•
•
bit 1-0
Note:
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled
IS0<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpriority is 0
This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit
definitions.
DS60001185E-page 70
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
8.0
Note:
OSCILLATOR
CONFIGURATION
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/
470 family of devices. It is not intended to
be a comprehensive reference source. To
complement the information in this data
sheet, refer to Section 6. “Oscillator
Configuration” (DS60001112), which is
available from the Documentation >
Reference Manual section of the
Microchip
PIC32
web
site
(www.microchip.com/pic32).
The PIC32MX330/350/370/430/450/470 oscillator
system has the following modules and features:
• A Total of four external and internal oscillator
options as clock sources
• On-Chip PLL with user-selectable input divider,
multiplier and output divider to boost operating
frequency on select internal and external
oscillator sources
• On-Chip user-selectable divisor postscaler on
select oscillator sources
• Software-controllable switching between 
various clock sources
• A Fail-Safe Clock Monitor (FSCM) that detects
clock failure and permits safe application recovery
or shutdown
• Dedicated On-Chip PLL for USB peripheral
A block diagram of the oscillator system is provided in
Figure 8-1.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 71
PIC32MX330/350/370/430/450/470
FIGURE 8-1:
PIC32MX330/350/370/430/450/470 FAMILY CLOCK DIAGRAM
USB PLL(5)
USB Clock (48 MHz)
div x
UFIN
div 2
PLL x24
UFRCEN
UFIN 4 MHz
UPLLIDIV<2:0>
UPLLEN 96 MHz
ROTRIM<8:0>
(M)
REFCLKI
POSC
FRC
LPRC
SOSC
PBCLK
SYSCLK
FVCO
System PLL
4 MHz FIN 5 MHz
FIN
div x
PLL
REFCLKO
M 
 2   N + --------512
To SPI
RODIV<14:0>
(N)
ROSEL<3:0>
FPLLIDIV<2:0>
COSC<2:0>
OE
PLLMULT<2:0>
div y
XTPLL, HSPLL,
ECPLL, FRCPLL
PLLODIV<2:0>
Primary Oscillator
(POSC)
OSC1
C1(3)
RF(2)
XTAL
RP(1)
RS(1)
C2(3)
OSC2(4)
POSC (XT, HS, EC)
To Internal
Logic
Enable
FRC
div 16
div 2
PBDIV<1:0>
CPU and Select Peripherals
Postscaler
SYSCLK
FRCDIV
FRCDIV<2:0>
TUN<5:0>
LPRC
Oscillator
PBCLK (TPB)
FRC/16
To ADC
FRC
Oscillator
8 MHz typical
Peripherals
Postscaler
div x
31.25 kHz typical
LPRC
Secondary Oscillator (SOSC)
SOSCO
32.768 kHz
SOSC
SOSCEN and FSOSCEN
Clock Control Logic
Fail-Safe
Clock
Monitor
SOSCI
FSCM INT
FSCM Event
NOSC<2:0>
COSC<2:0>
OSWEN
FSCMEN<1:0>
WDT, PWRT
Timer1, RTCC
Notes:
1.
2.
3.
4.
5.
A series resistor, RS, may be required for AT strip cut crystals or eliminate clipping. Alternately, to increase oscillator circuit gain,
add a parallel resistor, RP, with a value of 1 M
The internal feedback resistor, RF, is typically in the range of 2 M to 10 M
Refer to Section 6. “Oscillator Configuration” (DS60001112) in the “PIC32 Family Reference Manual” for help in determining the
best oscillator components.
PBCLK out is available on the OSC2 pin in certain clock modes.
USB PLL is available on PIC32MX4XX devices only.
DS60001185E-page 72
 2012-2015 Microchip Technology Inc.
Oscillator Control Registers
TABLE 8-1:
Virtual Address
(BF80_#)
OSCILLATOR CONTROL REGISTER MAP
31/15
30/14
29/13
28/12
27/11
25/9
24/8
F000 OSCCON
31:16
15:0
—
—
—
F010 OSCTUN
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
SIDL
OE
RSLP
—
DIVSWEN
ACTIVE
F020 REFOCON
Legend:
Note 1:
2:
3:
—
15:0
ON
21/5
20/4
19/3
—
SOSCRDY PBDIVRDY
PBDIV<1:0>
CLKLOCK ULOCK(4) SLOCK
SLPEN
CF
—
—
—
ROTRIM<8:0>
—
22/6
—
—
—
18/2
17/1
16/0
PLLMULT<2:0>
x1xx(2)
UFRCEN(4) SOSCEN OSWEN xxxx(2)
—
—
—
TUN<5:0>
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
0000
RODIV<14:0>
31:16
15:0
FRCDIV<2:0>
NOSC<2:0>
—
23/7
—
—
—
—
—
—
—
—
0000
0000
0000
ROSEL<3:0>
0000
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.
This bit is only available on devices with a USB module.
DS60001185E-page 73
PIC32MX330/350/370/430/450/470
F030 REFOTRIM
31:16
PLLODIV<2:0>
COSC<2:0>
26/10
All Resets
Bit Range
Bits
Register
Name(1)
 2012-2015 Microchip Technology Inc.
8.1
PIC32MX330/350/370/430/450/470
REGISTER 8-1:
Bit
Range
31:24
23:16
15:8
7:0
OSCCON: OSCILLATOR CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
R/W-y
—
—
U-0
—
U-0
R-0
R/W-y
R-0
Bit
26/18/10/2
R/W-y
R/W-0
PLLODIV<2:0>
R-1
SOSCRDY PBDIVRDY
—
Bit
Bit
28/20/12/4 27/19/11/3
R-0
R/W-y
R-0
Bit
24/16/8/0
R/W-0
R/W-1
FRCDIV<2:0>
R/W-y
R/W-y
PBDIV<1:0>
COSC<2:0>
Bit
25/17/9/1
R/W-y
R/W-y
PLLMULT<2:0>
U-0
R/W-y
—
R/W-y
R/W-y
NOSC<2:0>
R/W-0
R-0
R-0
R/W-0
R/W-0
R/W-0
R/W-y
R/W-0
CLKLOCK
ULOCK(1)
SLOCK
SLPEN
CF
UFRCEN(1)
SOSCEN
OSWEN
Legend:
R = Readable bit
-n = Value at POR
y = Value set from Configuration bits on POR
W = Writable bit
U = Unimplemented bit, read as ‘0’
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-30 Unimplemented: Read as ‘0’
bit 29-27 PLLODIV<2:0>: Output Divider for PLL
111 = PLL output divided by 256
110 = PLL output divided by 64
101 = PLL output divided by 32
100 = PLL output divided by 16
011 = PLL output divided by 8
010 = PLL output divided by 4
001 = PLL output divided by 2
000 = PLL output divided by 1
bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
111 = FRC divided by 256
110 = FRC divided by 64
101 = FRC divided by 32
100 = FRC divided by 16
011 = FRC divided by 8
010 = FRC divided by 4
001 = FRC divided by 2 (default setting)
000 = FRC divided by 1
bit 23
Unimplemented: Read as ‘0’
bit 22
SOSCRDY: Secondary Oscillator (SOSC) Ready Indicator bit
1 = Indicates that the Secondary Oscillator is running and is stable
0 = Secondary Oscillator is still warming up or is turned off
bit 21
PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
1 = PBDIV<1:0> bits can be written
0 = PBDIV<1:0> bits cannot be written
bit 20-19 PBDIV<1:0>: Peripheral Bus Clock (PBCLK) Divisor bits
11 = PBCLK is SYSCLK divided by 8 (default)
10 = PBCLK is SYSCLK divided by 4
01 = PBCLK is SYSCLK divided by 2
00 = PBCLK is SYSCLK divided by 1
Note 1:
Note:
This bit is available on PIC32MX4XX devices only.
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the
“PIC32 Family Reference Manual” for details.
DS60001185E-page 74
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 8-1:
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)
bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits
111 = Clock is multiplied by 24
110 = Clock is multiplied by 21
101 = Clock is multiplied by 20
100 = Clock is multiplied by 19
011 = Clock is multiplied by 18
010 = Clock is multiplied by 17
001 = Clock is multiplied by 16
000 = Clock is multiplied by 15
bit 15
Unimplemented: Read as ‘0’
bit 14-12 COSC<2:0>: Current Oscillator Selection bits
111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
110 = Internal Fast RC (FRC) Oscillator divided by 16
101 = Internal Low-Power RC (LPRC) Oscillator
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator (POSC) with PLL module (XTPLL, HSPLL or ECPLL)
010 = Primary Oscillator (POSC) (XT, HS or EC)
001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
000 = Internal Fast RC (FRC) Oscillator
bit 11
Unimplemented: Read as ‘0’
bit 10-8 NOSC<2:0>: New Oscillator Selection bits
111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
110 = Internal Fast RC Oscillator (FRC) divided by 16
101 = Internal Low-Power RC (LPRC) Oscillator
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
010 = Primary Oscillator (XT, HS or EC)
001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
000 = Internal Fast Internal RC Oscillator (FRC)
On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).
CLKLOCK: Clock Selection Lock Enable bit
If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):
1 = Clock and PLL selections are locked
0 = Clock and PLL selections are not locked and may be modified
bit 7
bit 6
bit 5
bit 4
bit 3
Note
If clock switching and monitoring is enabled (FCKSM<1:0> = 0x):
Clock and PLL selections are never locked and may be modified.
ULOCK: USB PLL Lock Status bit(1)
1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or
USB PLL is disabled
SLOCK: PLL Lock Status bit
1 = PLL module is in lock or PLL module start-up timer is satisfied
0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
SLPEN: Sleep Mode Enable bit
1 = Device will enter Sleep mode when a WAIT instruction is executed
0 = Device will enter Idle mode when a WAIT instruction is executed
CF: Clock Fail Detect bit
1 = FSCM has detected a clock failure
0 = No clock failure has been detected
1: This bit is available on PIC32MX4XX devices only.
Note:
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the
“PIC32 Family Reference Manual” for details.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 75
PIC32MX330/350/370/430/450/470
REGISTER 8-1:
bit 2
bit 1
bit 0
Note 1:
Note:
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)
UFRCEN: USB FRC Clock Enable bit(1)
1 = Enable FRC as the clock source for the USB clock source
0 = Use the Primary Oscillator or USB PLL as the USB clock source
SOSCEN: Secondary Oscillator (SOSC) Enable bit
1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator
OSWEN: Oscillator Switch Enable bit
1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
0 = Oscillator switch is complete
This bit is available on PIC32MX4XX devices only.
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the
“PIC32 Family Reference Manual” for details.
DS60001185E-page 76
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 8-2:
Bit
Range
31:24
23:16
15:8
7:0
OSCTUN: FRC TUNING REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
R-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
R-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
TUN<5:0>(1)
Legend:
y = Value set from Configuration bits on POR
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-6
Unimplemented: Read as ‘0’
bit 5-0
TUN<5:0>: FRC Oscillator Tuning bits(1)
100000 = Center frequency -12.5%
100001 =
•
•
•
111111 =
000000 = Center frequency. Oscillator runs at minimal frequency (8 MHz)
000001 =
•
•
•
011110 =
011111 = Center frequency +12.5%
x = Bit is unknown
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the
FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither
characterized nor tested.
Note:
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the
“PIC32 Family Reference Manual” for details.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 77
PIC32MX330/350/370/430/450/470
REGISTER 8-3:
Bit
Range
31:24
23:16
15:8
7:0
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
R/W-0
RODIV<14:8>
R/W-0
R/W-0
R/W-0
R/W-0
RODIV<7:0>
R/W-0
U-0
R/W-0
R/W-0
ON
—
SIDL
OE
U-0
U-0
U-0
U-0
—
—
—
—
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
R/W-0, HC
R-0, HS, HC
—
DIVSWEN
ACTIVE
R/W-0
R/W-0
R/W-0
(1,3)
(3)
R/W-0
RSLP
(2)
R/W-0
(1)
ROSEL<3:0>
Legend:
R = Readable bit
HC = Hardware Clearable HS = Hardware Settable
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31
Unimplemented: Read as ‘0’
bit 30-16 RODIV<14:0>: Reference Clock Divider bits(1,3)
This value selects the Reference Clock Divider bits. See Figure 8-1 for more information.
bit 15
ON: Output Enable bit
1 = Reference Oscillator Module is enabled
0 = Reference Oscillator Module is disabled
Unimplemented: Read as ‘0’
bit 14
bit 13
SIDL: Peripheral Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12
OE: Reference Clock Output Enable bit
1 = Reference clock is driven out on REFCLKO pin
0 = Reference clock is not driven out on REFCLKO pin
RSLP: Reference Oscillator Module Run in Sleep bit(2)
1 = Reference Oscillator Module output continues to run in Sleep
0 = Reference Oscillator Module output is disabled in Sleep
bit 11
bit 10
bit 9
Unimplemented: Read as ‘0’
DIVSWEN: Divider Switch Enable bit
1 = Divider switch is in progress
0 = Divider switch is complete
bit 8
ACTIVE: Reference Clock Request Status bit
1 = Reference clock request is active
0 = Reference clock request is not active
Unimplemented: Read as ‘0’
bit 7-4
Note 1:
2:
3:
The ROSEL and RODIV bits should not be written while the ACTIVE bit is ‘1’, as undefined behavior may
result.
This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
While the ON bit is set to ‘1’, writes to these bits do not take effect until the DIVSWEN bit is also set to ‘1’.
DS60001185E-page 78
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 8-3:
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)
bit 3-0
ROSEL<3:0>: Reference Clock Source Select bits(1)
1111 = Reserved; do not use
•
•
•
1001 = Reserved; do not use
1000 = REFCLKI
0111 = System PLL output
0110 = USB PLL output
0101 = SOSC
0100 = LPRC
0011 = FRC
0010 = POSC
0001 = PBCLK
0000 = SYSCLK
Note 1:
The ROSEL and RODIV bits should not be written while the ACTIVE bit is ‘1’, as undefined behavior may
result.
This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
While the ON bit is set to ‘1’, writes to these bits do not take effect until the DIVSWEN bit is also set to ‘1’.
2:
3:
 2012-2015 Microchip Technology Inc.
DS60001185E-page 79
PIC32MX330/350/370/430/450/470
REGISTER 8-4:
Bit
Range
31:24
23:16
15:8
7:0
REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
ROTRIM<0>
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
ROTRIM<8:1>
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
Legend:
y = Value set from Configuration bits on POR
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits
111111111 = 511/512 divisor added to RODIV value
111111110 = 510/512 divisor added to RODIV value
•
•
•
100000000 = 256/512 divisor added to RODIV value
•
•
•
000000010 = 2/512 divisor added to RODIV value
000000001 = 1/512 divisor added to RODIV value
000000000 = 0/512 divisor added to RODIV value
bit 22-0
Note:
Unimplemented: Read as ‘0’
While the ON bit (REFOCON<15>) is ‘1’, writes to this register do not take effect until the DIVSWEN bit is
also set to ‘1’.
DS60001185E-page 80
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
9.0
PREFETCH CACHE
Note:
9.1
•
•
•
•
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 4. “Prefetch
Cache” (DS60001119), which is available
from the Documentation > Reference
Manual section of the Microchip PIC32
web site (www.microchip.com/pic32).
•
•
•
•
Prefetch cache increases performance for applications
executing out of the cacheable program Flash memory
regions by implementing instruction caching, constant
data caching and instruction prefetching.
FIGURE 9-1:
16 fully associative lockable cache lines
16-byte cache lines
Up to four cache lines allocated to data
Two cache lines with address mask to hold
repeated instructions
Pseudo LRU replacement policy
All cache lines are software writable
16-byte parallel memory fetch
Predictive instruction prefetch
A simplified block diagram of the Prefetch Cache
module is illustrated in Figure 9-1.
PREFETCH CACHE MODULE BLOCK DIAGRAM
CTRL
FSM
Cache Line
Tag Logic
CTRL
BMX/CPU
BMX/CPU
Features
Bus Control
Cache Control
Prefetch Control
Cache
Line
Address
Encode
Hit LRU
Miss LRU
RDATA
Hit Logic
Prefetch
Prefetch
CTRL
RDATA
PFM
 2012-2015 Microchip Technology Inc.
DS60001185E-page 81
Control Registers
Virtual Address
(BF88_#)
TABLE 9-1:
4010 CHEACC(1)
(1)
4020 CHETAG
4030 CHEMSK(1)
4040
CHEW0
4050
CHEW1
4060
CHEW2
4070
CHEW3
CHELRU
4090
40A0
CHEHIT
CHEMIS
 2012-2015 Microchip Technology Inc.
40C0 CHEPFABT
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
—
—
—
—
—
—
—
—
—
—
—
—
31:16 CHEWEN
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
15:0
—
31:16 LTAGBOOT
—
—
—
—
—
15:0
23/7
22/6
—
—
DCSZ<1:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LMASK<15:5>
—
31:16
31:16
31:16
31:16
31:16
15:0
31:16
—
—
—
—
—
18/2
17/1
—
—
—
—
—
—
CHEIDX<3:0>
16/0
—
CHECOH 0000
PFMWS<2:0>
0007
—
—
—
—
—
—
—
—
—
—
—
0000
00xx
LTAG<23:16>
LVALID
LLOCK
LTYPE
—
xxx0
xxx2
—
—
—
—
—
—
0000
—
—
xxxx
—
—
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
CHEW3<31:0>
15:0
15:0
—
—
PREFEN<1:0>
19/3
CHEW2<31:0>
15:0
31:16
20/4
CHEW1<31:0>
15:0
15:0
21/5
CHEW0<31:0>
15:0
31:16
24/8
LTAG<15:4>
15:0
31:16
25/9
All Resets
Register
Name
Bit Range
Bits
4000 CHECON(1)
4080
PREFETCH REGISTER MAP
xxxx
CHELRU<24:16>
CHELRU<15:0>
CHEHIT<31:0>
CHEMIS<31:0>
CHEPFABT<31:0>
15:0
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more
information.
0000
0000
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
PIC32MX330/350/370/430/450/470
DS60001185E-page 82
9.2
PIC32MX330/350/370/430/450/470
REGISTER 9-1:
Bit
Range
31:24
23:16
15:8
7:0
CHECON: CACHE CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
—
—
—
—
—
—
—
CHECOH
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
—
—
—
—
—
—
U-0
U-0
R/W-0
R/W-0
U-0
R/W-1
—
—
PREFEN<1:0>
—
DCSZ<1:0>
R/W-1
R/W-1
PFMWS<2:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-17 Unimplemented: Write ‘0’; ignore read
bit 16
CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
1 = Invalidate all data and instruction lines
0 = Invalidate all data lnes and instruction lines that are not locked
bit 15-10 Unimplemented: Write ‘0’; ignore read
bit 9-8
DCSZ<1:0>: Data Cache Size in Lines bits
11 = Enable data caching with a size of 4 Lines
10 = Enable data caching with a size of 2 Lines
01 = Enable data caching with a size of 1 Line
00 = Disable data caching
Changing these bits induce all lines to be reinitialized to the “invalid” state.
bit 7-6
Unimplemented: Write ‘0’; ignore read
bit 5-4
PREFEN<1:0>: Predictive Prefetch Enable bits
11 = Enable predictive prefetch for both cacheable and non-cacheable regions
10 = Enable predictive prefetch for non-cacheable regions only
01 = Enable predictive prefetch for cacheable regions only
00 = Disable predictive prefetch
bit 3
Unimplemented: Write ‘0’; ignore read
bit 2-0
PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits
111 = Seven Wait states
110 = Six Wait states
101 = Five Wait states
100 = Four Wait states
011 = Three Wait states
010 = Two Wait states
001 = One Wait state
000 = Zero Wait state
 2012-2015 Microchip Technology Inc.
DS60001185E-page 83
PIC32MX330/350/370/430/450/470
REGISTER 9-2:
Bit
Range
31:24
23:16
15:8
7:0
CHEACC: CACHE ACCESS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
CHEWEN
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
—
CHEIDX<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31
x = Bit is unknown
CHEWEN: Cache Access Enable bits for registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and
CHEW3
1 = The cache line selected by CHEIDX<3:0> is writeable
0 = The cache line selected by CHEIDX<3:0> is not writeable
bit 30-4 Unimplemented: Write ‘0’; ignore read
bit 3-0
CHEIDX<3:0>: Cache Line Index bits
The value selects the cache line for reading or writing.
DS60001185E-page 84
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 9-3:
Bit
Range
31:24
23:16
15:8
7:0
CHETAG: CACHE TAG REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
LTAGBOOT
—
—
—
—
—
—
—
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
LTAG<19:12>
R/W-x
LTAG<11:4>
R/W-x
R/W-x
R/W-x
R/W-x
LTAG<3:0>
R/W-0
R/W-0
R/W-1
U-0
LVALID
LLOCK
LTYPE
—
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31
x = Bit is unknown
LTAGBOOT: Line TAG Address Boot bit
1 = The line is in the 0x1D000000 (physical) area of memory
0 = The line is in the 0x1FC00000 (physical) area of memory
bit 30-24 Unimplemented: Write ‘0’; ignore read
bit 23-4
LTAG<19:0>: Line TAG Address bits
LTAG<19:0> bits are compared against physical address to determine a hit. Because its address range and
position of PFM in kernel space and user space, the LTAG PFM address is identical for virtual addresses,
(system) physical addresses, and PFM physical addresses.
bit 3
LVALID: Line Valid bit
1 = The line is valid and is compared to the physical address for hit detection
0 = The line is not valid and is not compared to the physical address for hit detection
bit 2
LLOCK: Line Lock bit
1 = The line is locked and will not be replaced
0 = The line is not locked and can be replaced
bit 1
LTYPE: Line Type bit
1 = The line caches instruction words
0 = The line caches data words
bit 0
Unimplemented: Write ‘0’; ignore read
 2012-2015 Microchip Technology Inc.
DS60001185E-page 85
PIC32MX330/350/370/430/450/470
REGISTER 9-4:
Bit
Range
31:24
23:16
15:8
7:0
CHEMSK: CACHE TAG MASK REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
LMASK<10:3>
R/W-0
R/W-0
R/W-0
LMASK<2:0>
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Write ‘0’; ignore read
bit 15-5
LMASK<10:0>: Line Mask bits
1 = Enables mask logic to force a match on the corresponding bit position in the LTAG<19:0> bits
(CHETAG<23:4>) and the physical address.
0 = Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B. 
Disables mask logic.
bit 4-0
Unimplemented: Write ‘0’; ignore read
REGISTER 9-5:
Bit
Range
31:24
23:16
15:8
7:0
CHEW0: CACHE WORD 0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW0<31:24>
R/W-x
R/W-x
CHEW0<23:16>
R/W-x
CHEW0<15:8>
R/W-x
CHEW0<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHEW0<31:0>: Word 0 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>)
Readable only if the device is not code-protected.
DS60001185E-page 86
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 9-6:
Bit
Range
31:24
23:16
15:8
7:0
CHEW1: CACHE WORD 1
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-x
R/W-x
R/W-x
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW1<31:24>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW1<23:16>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW1<15:8>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW1<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHEW1<31:0>: Word 1 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>)
Readable only if the device is not code-protected.
REGISTER 9-7:
Bit
Range
31:24
23:16
15:8
7:0
CHEW2: CACHE WORD 2
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW2<31:24>
R/W-x
R/W-x
CHEW2<23:16>
R/W-x
CHEW2<15:8>
R/W-x
CHEW2<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHEW2<31:0>: Word 2 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>)
Readable only if the device is not code-protected.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 87
PIC32MX330/350/370/430/450/470
REGISTER 9-8:
Bit
Range
31:24
23:16
15:8
7:0
CHEW3: CACHE WORD 3
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-x
R/W-x
R/W-x
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW3<31:24>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW3<23:16>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW3<15:8>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEW3<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHEW3<31:0>: Word 3 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>)
Readable only if the device is not code-protected.
Note:
This register is a window into the cache data array and is readable only if the device is not code-protected.
REGISTER 9-9:
Bit
Range
31:24
23:16
15:8
7:0
CHELRU: CACHE LRU REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
Bit
Bit
Bit
29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
R-0
—
—
—
—
—
—
—
CHELRU<24>
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
CHELRU<23:16>
R-0
R-0
R-0
R-0
R-0
CHELRU<15:8>
R-0
R-0
R-0
R-0
R-0
CHELRU<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-25 Unimplemented: Write ‘0’; ignore read
bit 24-0
CHELRU<24:0>: Cache Least Recently Used State Encoding bits
Indicates the pseudo-LRU state of the cache.
DS60001185E-page 88
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 9-10:
Bit
Range
31:24
23:16
15:8
7:0
CHEHIT: CACHE HIT STATISTICS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-x
R/W-x
R/W-x
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEHIT<31:24>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEHIT<23:16>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEHIT<15:8>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEHIT<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHEHIT<31:0>: Cache Hit Count bits
Incremented each time the processor issues an instruction fetch or load that hits the prefetch cache from a
cacheable region. Non-cacheable accesses do not modify this value.
REGISTER 9-11:
Bit
Range
31:24
23:16
15:8
7:0
CHEMIS: CACHE MISS STATISTICS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEMIS<31:24>
R/W-x
R/W-x
CHEMIS<23:16>
R/W-x
CHEMIS<15:8>
R/W-x
CHEMIS<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHEMIS<31:0>: Cache Miss Count bits
Incremented each time the processor issues an instruction fetch from a cacheable region that misses the
prefetch cache. Non-cacheable accesses do not modify this value.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 89
PIC32MX330/350/370/430/450/470
REGISTER 9-12:
Bit
Range
31:24
23:16
15:8
7:0
CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-x
R/W-x
R/W-x
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEPFABT<31:24>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEPFABT<23:16>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEPFABT<15:8>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
CHEPFABT<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits
Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load
or store.
DS60001185E-page 90
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
10.0
Note:
DIRECT MEMORY ACCESS
(DMA) CONTROLLER
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 31. “Direct Memory
Access
(DMA)
Controller”
(DS60001117), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
The PIC32 Direct Memory Access (DMA) controller is a
bus master module useful for data transfers between
different devices without CPU intervention. The source
and destination of a DMA transfer can be any of the
memory mapped modules existent in the PIC32 (such
as Peripheral Bus (PBUS) devices: SPI, UART, PMP,
etc.) or memory itself.
Following are some of the key features of the DMA
controller module:
• Four identical channels, each featuring:
- Auto-increment source and destination
address registers
- Source and destination pointers
- Memory to memory and memory to
peripheral transfers
• Automatic word-size detection:
- Transfer granularity, down to byte level
- Bytes need not be word-aligned at source
and destination
FIGURE 10-1:
INT Controller
Peripheral Bus
• Fixed priority channel arbitration
• Flexible DMA channel operating modes:
- Manual (software) or automatic (interrupt)
DMA requests
- One-Shot or Auto-Repeat Block Transfer
modes
- Channel-to-channel chaining
• Flexible DMA requests:
- A DMA request can be selected from any of
the peripheral interrupt sources
- Each channel can select any (appropriate)
observable interrupt as its DMA request
source
- A DMA transfer abort can be selected from
any of the peripheral interrupt sources
- Pattern (data) match transfer termination
• Multiple DMA channel status interrupts:
- DMA channel block transfer complete
- Source empty or half empty
- Destination full or half full
- DMA transfer aborted due to an external
event
- Invalid DMA address generated
• DMA debug support features:
- Most recent address accessed by a DMA
channel
- Most recent DMA channel to transfer data
• CRC Generation module:
- CRC module can be assigned to any of the
available channels
- CRC module is highly configurable
DMA BLOCK DIAGRAM
System IRQ
Address Decoder
SE
Channel 0 Control
I0
Channel 1 Control
I1
L
Y
Bus Interface
Device Bus + Bus Arbitration
I2
Global Control
(DMACON)
Channel n Control
In
L
SE
Channel Priority
Arbitration
 2012-2015 Microchip Technology Inc.
DS60001185E-page 91
Control Registers
3000 DMACON
3010 DMASTAT
3020 DMAADDR
—
—
ON
—
—
—
—
—
15:0
31:16
—
—
—
All Resets
Bit Range
—
15:0
31:16
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
—
—
RDWR
SUSPEND DMABUSY
—
—
—
—
DMACH<2:0>
0000
0000
0000
DMA CRC REGISTER MAP
Bits
Register
Name(1)
Virtual Address
(BF88_#)
31:16
28/12
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
3030 DCRCCON
3040 DCRCDATA
 2012-2015 Microchip Technology Inc.
3050 DCRCXOR
Note 1:
29/13
DMAADDR<31:0>
15:0
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 10-2:
Legend:
30/14
31/15
30/14
31:16
—
—
15:0
31:16
—
—
15:0
31:16
29/13
28/12
BYTO<1:0>
—
27/11
WBO
26/10
25/9
24/8
—
—
BITO
PLEN<4:0>
23/7
—
CRCEN
DCRCDATA<31:0>
DCRCXOR<31:0>
15:0
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
22/6
21/5
20/4
19/3
18/2
—
—
—
—
—
—
—
CRCAPP CRCTYP
17/1
16/0
—
—
CRCCH<2:0>
All Resets
Note 1:
31/15
Bit Range
Legend:
DMA GLOBAL REGISTER MAP
Bits
Register
Name(1)
Virtual Address
(BF88_#)
TABLE 10-1:
0000
0000
0000
0000
0000
0000
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 92
10.1
Virtual Address
(BF88_#)
3060 DCH0CON
3070 DCH0ECON
3080
DCH0INT
3090 DCH0SSA
30B0 DCH0SSIZ
30C0 DCH0DSIZ
30D0 DCH0SPTR
30E0 DCH0DPTR
30F0 DCH0CSIZ
3100 DCH0CPTR
3110 DCH0DAT
3120 DCH1CON
3130 DCH1ECON
DCH1INT
DS60001185E-page 93
3150 DCH1SSA
3160 DCH1DSA
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
—
24/8
23/7
22/6
21/5
20/4
19/3
—
—
All Resets
Bit Range
31:16
31/15
18/2
17/1
16/0
—
—
—
0000
CHPRI<1:0>
0000
00FF
—
—
—
—
—
—
—
—
—
—
15:0 CHBUSY
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
CHCHNS
—
CHEN
CHAED
CHCHN
CHAEN
—
CHAIRQ<7:0>
CHEDET
15:0
31:16
—
—
—
CHSIRQ<7:0>
—
—
—
—
—
CFORCE CABORT
CHSDIE CHSHIE
PATEN
CHDDIE
SIRQEN
CHDHIE
AIRQEN
CHBCIE
—
CHCCIE
—
CHTAIE
—
FFF8
CHERIE 0000
—
—
—
—
—
—
—
CHSDIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF 0000
0000
15:0
31:16
—
CHSHIF
CHSSA<31:0>
15:0
31:16
0000
0000
CHDSA<31:0>
15:0
31:16
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
15:0
31:16
—
—
—
—
15:0
31:16
—
—
—
15:0
31:16
—
—
15:0
31:16
—
—
—
—
—
—
—
—
—
0000
0000
CHSSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
CHDSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
CHSPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
CHDPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
CHCSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
CHCPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CHPDAT<7:0>
—
—
—
—
—
0000
0000
15:0 CHBUSY
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
CHCHNS
—
CHEN
CHAED
CHCHN
CHAEN
—
CHAIRQ<7:0>
CHEDET
15:0
31:16
—
—
—
CHSIRQ<7:0>
—
—
—
—
—
CFORCE CABORT
CHSDIE CHSHIE
PATEN
CHDDIE
SIRQEN
CHDHIE
AIRQEN
CHBCIE
—
CHCCIE
—
CHTAIE
—
FFF8
CHERIE 0000
—
—
—
—
—
—
—
CHSDIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF 0000
0000
15:0
31:16
15:0
31:16
—
—
—
CHSSA<31:0>
CHDSA<31:0>
15:0
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
CHSHIF
CHPRI<1:0>
0000
00FF
0000
0000
0000
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
30A0 DCH0DSA
3140
DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP
Bits
Register
Name(1)
 2012-2015 Microchip Technology Inc.
TABLE 10-3:
Virtual Address
(BF88_#)
3180 DCH1DSIZ
3190 DCH1SPTR
31A0 DCH1DPTR
31B0 DCH1CSIZ
31C0 DCH1CPTR
31D0 DCH1DAT
31E0 DCH2CON
31F0 DCH2ECON
DCH2INT
3210 DCH2SSA
3220 DCH2DSA
 2012-2015 Microchip Technology Inc.
3230 DCH2SSIZ
3240 DCH2DSIZ
3250 DCH2SPTR
3260 DCH2DPTR
3270 DCH2CSIZ
31/15
30/14
29/13
28/12
27/11
26/10
25/9
31:16
15:0
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
24/8
23/7
—
—
CHSSIZ<15:0>
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
0000
0000
—
—
CHSPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
CHDPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
CHCSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
CHCPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CHPDAT<7:0>
—
—
—
—
—
0000
0000
15:0 CHBUSY
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
CHCHNS
—
CHEN
CHAED
CHCHN
CHAEN
—
CHAIRQ<7:0>
CHEDET
15:0
31:16
—
—
—
CHSIRQ<7:0>
—
—
—
—
—
CFORCE CABORT
CHSDIE CHSHIE
PATEN
CHDDIE
SIRQEN
CHDHIE
AIRQEN
CHBCIE
—
CHCCIE
—
CHTAIE
—
FFF8
CHERIE 0000
—
—
—
—
—
—
—
CHSDIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF 0000
0000
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
15:0
31:16
—
—
—
—
15:0
31:16
—
—
—
15:0
31:16
—
—
15:0
31:16
—
—
15:0
31:16
—
CHSHIF
CHPRI<1:0>
CHSSA<31:0>
15:0
31:16
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
15:0
31:16
—
—
—
—
—
0000
00FF
0000
0000
CHDSA<31:0>
15:0
31:16
15:0
—
22/6
CHDSIZ<15:0>
—
—
15:0
31:16
—
All Resets
Bit Range
Register
Name(1)
Bits
3170 DCH1SSIZ
3200
DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)
—
—
—
—
—
—
—
0000
0000
CHSSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
CHDSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
CHSPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
CHDPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
CHCSIZ<15:0>
0000
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 94
TABLE 10-3:
Virtual Address
(BF88_#)
3280 DCH2CPTR
3290 DCH2DAT
32A0 DCH3CON
32B0 DCH3ECON
DCH3INT
32D0 DCH3SSA
32E0 DCH3DSA
32F0 DCH3SSIZ
3300 DCH3DSIZ
3310 DCH3SPTR
3320 DCH3DPTR
3330 DCH3CSIZ
3340 DCH3CPTR
3350 DCH3DAT
Legend:
DS60001185E-page 95
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
—
—
—
—
—
—
—
15:0
All Resets
Bit Range
31:16
31/15
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
CHPRI<1:0>
0000
00FF
CHCPTR<15:0>
0000
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
15:0 CHBUSY
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
CHCHNS
—
CHEN
CHAED
CHCHN
CHAEN
—
CHAIRQ<7:0>
CHEDET
15:0
31:16
—
—
—
CHSIRQ<7:0>
—
—
—
—
—
CFORCE CABORT
CHSDIE CHSHIE
PATEN
CHDDIE
SIRQEN
CHDHIE
AIRQEN
CHBCIE
—
CHCCIE
—
CHTAIE
—
FFF8
CHERIE 0000
—
—
—
—
—
—
—
CHSDIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF 0000
0000
15:0
31:16
—
—
0000
CHPDAT<7:0>
CHSHIF
—
—
0000
CHSSA<31:0>
15:0
31:16
0000
0000
CHDSA<31:0>
15:0
31:16
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
15:0
31:16
—
—
—
—
15:0
31:16
—
—
—
15:0
31:16
—
—
—
0000
—
—
—
—
—
—
—
0000
0000
CHSSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
CHDSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
CHSPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
CHDPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
CHCSIZ<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
—
CHCPTR<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
15:0
—
—
—
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
—
CHPDAT<7:0>
0000
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
32C0
DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)
Bits
Register
Name(1)
 2012-2015 Microchip Technology Inc.
TABLE 10-3:
PIC32MX330/350/370/430/450/470
REGISTER 10-1:
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
U-0
DMACON: DMA CONTROLLER CONTROL REGISTER
Bit
Bit
30/22/14/6 29/21/13/5
U-0
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
U-0
R/W-0
R/W-0
U-0
U-0
U-0
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
ON
SUSPEND DMABUSY(1)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: DMA On bit(1)
1 = DMA module is enabled
0 = DMA module is disabled
bit 14-13 Unimplemented: Read as ‘0’
bit 12
SUSPEND: DMA Suspend bit
1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
0 = DMA operates normally
bit 11
DMABUSY: DMA Module Busy bit(1)
1 = DMA module is active
0 = DMA module is disabled and not actively transferring data
bit 10-0
Unimplemented: Read as ‘0’
Note 1:
When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
DS60001185E-page 96
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 10-2:
Bit
Range
31:24
23:16
15:8
7:0
DMASTAT: DMA STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
R-0
R-0
R-0
R-0
—
—
—
—
RDWR
DMACH<2:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-4 Unimplemented: Read as ‘0’
bit 3
RDWR: Read/Write Status bit
1 = Last DMA bus access was a read
0 = Last DMA bus access was a write
bit 2-0
DMACH<2:0>: DMA Channel bits
These bits contain the value of the most recent active DMA channel.
REGISTER 10-3:
Bit
Range
31:24
23:16
15:8
7:0
DMAADDR: DMA ADDRESS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R-0
R-0
R-0
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
DMAADDR<31:24>
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
DMAADDR<23:16>
R-0
R-0
DMAADDR<15:8>
R-0
R-0
R-0
R-0
R-0
DMAADDR<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 DMAADDR<31:0>: DMA Module Address bits
These bits contain the address of the most recent DMA access.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 97
PIC32MX330/350/370/430/450/470
REGISTER 10-4:
Bit
Range
31:24
23:16
15:8
7:0
DCRCCON: DMA CRC CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
U-0
U-0
R/W-0
R/W-0
BYTO<1:0>
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
U-0
U-0
R/W-0
(1)
Bit
24/16/8/0
R/W-0
(1)
—
—
WBO
—
—
BITO
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
R/W-0
R/W-0
R/W-0
U-0
U-0
PLEN<4:0>
CRCEN
CRCAPP(1)
CRCTYP
—
—
R/W-0
CRCCH<2:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-30 Unimplemented: Read as ‘0’
bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order
per half-word)
10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per
half-word)
01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
00 = No swapping (i.e., source byte order)
bit 27
WBO: CRC Write Byte Order Selection bit(1)
1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
0 = Source data is written to the destination unaltered
bit 26-25 Unimplemented: Read as ‘0’
bit 24
BITO: CRC Bit Order Selection bit(1)
When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):
1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)
When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):
1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)
bit 23-13 Unimplemented: Read as ‘0’
bit 12-8
PLEN<4:0>: Polynomial Length bits(1)
When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):
These bits are unused.
When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):
Denotes the length of the polynomial – 1.
bit 7
CRCEN: CRC Enable bit
1 = CRC module is enabled and channel transfers are routed through the CRC module
0 = CRC module is disabled and channel transfers proceed normally
Note 1:
When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.
DS60001185E-page 98
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 10-4:
DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)
bit 6
CRCAPP: CRC Append Mode bit(1)
1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer
completes the DMA writes the calculated CRC value to the location given by CHxDSA
0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the
destination
bit 5
CRCTYP: CRC Type Selection bit
1 = The CRC module will calculate an IP header checksum
0 = The CRC module will calculate a LFSR CRC
bit 4-3
Unimplemented: Read as ‘0’
bit 2-0
CRCCH<2:0>: CRC Channel Select bits
111 = CRC is assigned to Channel 7
110 = CRC is assigned to Channel 6
101 = CRC is assigned to Channel 5
100 = CRC is assigned to Channel 4
011 = CRC is assigned to Channel 3
010 = CRC is assigned to Channel 2
001 = CRC is assigned to Channel 1
000 = CRC is assigned to Channel 0
Note 1:
When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 99
PIC32MX330/350/370/430/450/470
REGISTER 10-5:
Bit
Range
31:24
23:16
15:8
7:0
DCRCDATA: DMA CRC DATA REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-0
R/W-0
R/W-0
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
DCRCDATA<31:24>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
DCRCDATA<23:16>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
DCRCDATA<15:8>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
DCRCDATA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 DCRCDATA<31:0>: CRC Data Register bits
Writing to this register will seed the CRC generator. Reading from this register will return the current value of
the CRC. Bits greater than PLEN will return ‘0’ on any read.
When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):
Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always ‘0’. Data written
to this register is converted and read back in 1’s complement form (i.e., current IP header checksum value).
When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):
Bits greater than PLEN will return ‘0’ on any read.
REGISTER 10-6:
Bit
Range
31:24
23:16
15:8
7:0
DCRCXOR: DMA CRCXOR ENABLE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
DCRCXOR<31:24>
R/W-0
R/W-0
DCRCXOR<23:16>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
DCRCXOR<15:8>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
DCRCXOR<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits
When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):
This register is unused.
When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):
1 = Enable the XOR input to the Shift register
0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in
the register
DS60001185E-page 100
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 10-7:
Bit
Range
31:24
23:16
15:8
7:0
DCHxCON: DMA CHANNEL ‘x’ CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
CHBUSY
—
—
—
—
—
—
CHCHNS(1)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
R-0
CHEN(2)
CHAED
CHCHN
CHAEN
—
CHEDET
CHPRI<1:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
CHBUSY: Channel Busy bit
1 = Channel is active or has been enabled
0 = Channel is inactive or has been disabled
bit 14-9
Unimplemented: Read as ‘0’
bit 8
CHCHNS: Chain Channel Selection bit(1)
1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)
bit 7
CHEN: Channel Enable bit(2)
1 = Channel is enabled
0 = Channel is disabled
bit 6
CHAED: Channel Allow Events If Disabled bit
1 = Channel start/abort events will be registered, even if the channel is disabled
0 = Channel start/abort events will be ignored if the channel is disabled
bit
CHCHN: Channel Chain Enable bit
1 = Allow channel to be chained
0 = Do not allow channel to be chained
bit 4
CHAEN: Channel Automatic Enable bit
1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
0 = Channel is disabled on block transfer complete
bit 3
Unimplemented: Read as ‘0’
bit 2
CHEDET: Channel Event Detected bit
1 = An event has been detected
0 = No events have been detected
bit 1-0
CHPRI<1:0>: Channel Priority bits
11 = Channel has priority 3 (highest)
10 = Channel has priority 2
01 = Channel has priority 1
00 = Channel has priority 0
Note 1:
2:
The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if
available on the device variant) to see when the channel is suspended, as it may take some clock cycles
to complete a current transaction before the channel is suspended.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 101
PIC32MX330/350/370/430/450/470
REGISTER 10-8:
Bit
Range
31:24
23:16
DCHxECON: DMA CHANNEL ‘x’ EVENT CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
(1)
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
CHAIRQ<7:0>
15:8
R/W-1
CHSIRQ<7:0>(1)
7:0
S-0
S-0
R/W-0
R/W-0
R/W-0
U-0
U-0
U-0
CFORCE
CABORT
PATEN
SIRQEN
AIRQEN
—
—
—
Legend:
R = Readable bit
-n = Value at POR
S = Settable bit
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-24 Unimplemented: Read as ‘0’
bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits(1)
11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
•
•
•
bit 15-8
00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
CHSIRQ<7:0>: Channel Transfer Start IRQ bits(1)
11111111 = Interrupt 255 will initiate a DMA transfer
•
•
•
bit 2-0
00000001 = Interrupt 1 will initiate a DMA transfer
00000000 = Interrupt 0 will initiate a DMA transfer
CFORCE: DMA Forced Transfer bit
1 = A DMA transfer is forced to begin when this bit is written to a ‘1’
0 = This bit always reads ‘0’
CABORT: DMA Abort Transfer bit
1 = A DMA transfer is aborted when this bit is written to a ‘1’
0 = This bit always reads ‘0’
PATEN: Channel Pattern Match Abort Enable bit
1 = Abort transfer and clear CHEN on pattern match
0 = Pattern match is disabled
SIRQEN: Channel Start IRQ Enable bit
1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
0 = Interrupt number CHSIRQ is ignored and does not start a transfer
AIRQEN: Channel Abort IRQ Enable bit
1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
Unimplemented: Read as ‘0’
Note 1:
See Table 7-1: “Interrupt IRQ, Vector and Bit Location” for the list of available interrupt IRQ sources.
bit 7
bit 6
bit 5
bit 4
bit 3
DS60001185E-page 102
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 10-9:
Bit
Range
31:24
23:16
15:8
7:0
DCHxINT: DMA CHANNEL ‘x’ INTERRUPT CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHSDIE
CHSHIE
CHDDIE
CHDHIE
CHBCIE
CHCCIE
CHTAIE
CHERIE
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHSDIF
CHSHIF
CHDDIF
CHDHIF
CHBCIF
CHCCIF
CHTAIF
CHERIF
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-24 Unimplemented: Read as ‘0’
bit 23
CHSDIE: Channel Source Done Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 22
CHSHIE: Channel Source Half Empty Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 21
CHDDIE: Channel Destination Done Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 20
CHDHIE: Channel Destination Half Full Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 19
CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 18
CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 17
CHTAIE: Channel Transfer Abort Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 16
CHERIE: Channel Address Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 15-8
Unimplemented: Read as ‘0’
bit 7
CHSDIF: Channel Source Done Interrupt Flag bit
1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
0 = No interrupt is pending
bit 6
CHSHIF: Channel Source Half Empty Interrupt Flag bit
1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
0 = No interrupt is pending
bit 5
CHDDIF: Channel Destination Done Interrupt Flag bit
1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
0 = No interrupt is pending
 2012-2015 Microchip Technology Inc.
DS60001185E-page 103
PIC32MX330/350/370/430/450/470
REGISTER 10-9:
DCHxINT: DMA CHANNEL ‘x’ INTERRUPT CONTROL REGISTER (CONTINUED)
bit 4
CHDHIF: Channel Destination Half Full Interrupt Flag bit
1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
0 = No interrupt is pending
bit 3
CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a
pattern match event occurs
0 = No interrupt is pending
bit 2
CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
0 = No interrupt is pending
bit 1
CHTAIF: Channel Transfer Abort Interrupt Flag bit
1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
0 = No interrupt is pending
bit 0
CHERIF: Channel Address Error Interrupt Flag bit
1 = A channel address error has been detected 
Either the source or the destination address is invalid.
0 = No interrupt is pending
DS60001185E-page 104
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 10-10: DCHxSSA: DMA CHANNEL ‘x’ SOURCE START ADDRESS REGISTER
Bit Range
Bit
31/23/15/7
Bit
30/22/14/6
R/W-0
R/W-0
31:24
Bit
Bit
Bit
Bit
29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2
R/W-0
R/W-0
R/W-0
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHSSA<31:24>
R/W-0
23:16
R/W-0
R/W-0
R/W-0
R/W-0
CHSSA<23:16>
R/W-0
15:8
R/W-0
R/W-0
R/W-0
R/W-0
CHSSA<15:8>
R/W-0
7:0
R/W-0
R/W-0
R/W-0
R/W-0
CHSSA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-0
x = Bit is unknown
CHSSA<31:0> Channel Source Start Address bits
Channel source start address.
Note: This must be the physical address of the source.
REGISTER 10-11: DCHxDSA: DMA CHANNEL ‘x’ DESTINATION START ADDRESS REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHDSA<31:24>
R/W-0
R/W-0
CHDSA<23:16>
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHDSA<15:8>
R/W-0
CHDSA<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits
Channel destination start address.
Note: This must be the physical address of the destination.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 105
PIC32MX330/350/370/430/450/470
REGISTER 10-12: DCHxSSIZ: DMA CHANNEL ‘x’ SOURCE SIZE REGISTER
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHSSIZ<15:8>
7:0
R/W-0
CHSSIZ<7:0>
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-0
CHSSIZ<15:0>: Channel Source Size bits
1111111111111111 = 65,535 byte source size
•
•
•
0000000000000010 = 2 byte source size
0000000000000001 = 1 byte source size
0000000000000000 = 65,536 byte source size
REGISTER 10-13: DCHxDSIZ: DMA CHANNEL ‘x’ DESTINATION SIZE REGISTER
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHDSIZ<15:8>
7:0
R/W-0
CHDSIZ<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits
1111111111111111 = 65,535 byte destination size
•
•
•
0000000000000010 = 2 byte destination size
0000000000000001 = 1 byte destination size
0000000000000000 = 65,536 byte destination size
DS60001185E-page 106
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 10-14: DCHxSPTR: DMA CHANNEL ‘x’ SOURCE POINTER REGISTER
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
CHSPTR<15:8>
7:0
R-0
R-0
CHSPTR<7:0>
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-0
CHSPTR<15:0>: Channel Source Pointer bits
1111111111111111 = Points to byte 65,535 of the source
•
•
•
0000000000000001 = Points to byte 1 of the source
0000000000000000 = Points to byte 0 of the source
When in Pattern Detect mode, this register is reset on a pattern detect.
Note:
REGISTER 10-15: DCHxDPTR: DMA CHANNEL ‘x’ DESTINATION POINTER REGISTER
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
CHDPTR<15:8>
7:0
R-0
R-0
CHDPTR<7:0>
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-0
CHDPTR<15:0>: Channel Destination Pointer bits
1111111111111111 = Points to byte 65,535 of the destination
•
•
•
0000000000000001 = Points to byte 1 of the destination
0000000000000000 = Points to byte 0 of the destination
 2012-2015 Microchip Technology Inc.
DS60001185E-page 107
PIC32MX330/350/370/430/450/470
REGISTER 10-16: DCHxCSIZ: DMA CHANNEL ‘x’ CELL-SIZE REGISTER
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHCSIZ<15:8>
7:0
R/W-0
CHCSIZ<7:0>
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-0
CHCSIZ<15:0>: Channel Cell-Size bits
1111111111111111 = 65,535 bytes transferred on an event
•
•
•
0000000000000010 = 2 bytes transferred on an event
0000000000000001= 1 byte transferred on an event
0000000000000000 = 65,536 bytes transferred on an event
REGISTER 10-17: DCHxCPTR: DMA CHANNEL ‘x’ CELL POINTER REGISTER
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
CHCPTR<15:8>
7:0
R-0
R-0
CHCPTR<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-0 CHCPTR<7:0>: Channel Cell Progress Pointer bits
1111111111111111 = 65,535 bytes have been transferred since the last event
•
•
•
0000000000000001 = 1 byte has been transferred since the last event
0000000000000000 = 0 bytes have been transferred since the last event
Note:
When in Pattern Detect mode, this register is reset on a pattern detect.
DS60001185E-page 108
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 10-18: DCHxDAT: DMA CHANNEL ‘x’ PATTERN DATA REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CHPDAT<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7-0
CHPDAT<7:0>: Channel Data Register bits
Pattern Terminate mode:
Data to be matched must be stored in this register to allow terminate on match.
All other modes:
Unused.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 109
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 110
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
11.0
Note:
USB ON-THE-GO (OTG)
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 27. “USB On-TheGo (OTG)” (DS60001126), which is available from the Documentation > Reference
Manual section of the Microchip PIC32
web site (www.microchip.com/pic32).
The Universal Serial Bus (USB) module contains
analog and digital components to provide a USB 2.0
full-speed and low-speed embedded host, full-speed
device or OTG implementation with a minimum of
external components. This module in Host mode is
intended for use as an embedded host and therefore
does not implement a UHCI or OHCI controller.
The USB module consists of the clock generator, the
USB voltage comparators, the transceiver, the Serial
Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register
interface. A block diagram of the PIC32 USB OTG
module is presented in Figure 11-1.
The PIC32 USB module includes the following
features:
•
•
•
•
•
•
•
•
•
USB Full-speed support for host and device
Low-speed host support
USB OTG support
Integrated signaling resistors
Integrated analog comparators for VBUS
monitoring
Integrated USB transceiver
Transaction handshaking performed by hardware
Endpoint buffering anywhere in system RAM
Integrated DMA to access system RAM and Flash
Note:
The implementation and use of the USB
specifications, and other third party
specifications or technologies, may
require licensing; including, but not limited
to, USB Implementers Forum, Inc. (also
referred to as USB-IF). The user is fully
responsible
for
investigating
and
satisfying any applicable licensing
obligations.
The clock generator provides the 48 MHz clock
required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on
the VBUS pin to determine the state of the bus. The
transceiver provides the analog translation between
the USB bus and the digital logic. The SIE is a state
machine that transfers data to and from the endpoint
buffers and generates the hardware protocol for data
transfers. The USB DMA controller transfers data
between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the
need for external signaling components. The register
interface allows the CPU to configure and
communicate with the module.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 111
PIC32MX330/350/370/430/450/470
FIGURE 11-1:
PIC32MX430/450/470 USB INTERFACE DIAGRAM
USBEN
FRC
Oscillator
8 MHz Typical
USB Suspend
CPU Clock Not POSC
Sleep
TUN<5:0>(3)
Primary Oscillator
(POSC)
Div x
OSC1
UPLLIDIV
USB Suspend
OSC2
(PB Out)(1)
UFIN(4)
PLL
Div 2
UPLLEN(5)
(5)
UFRCEN(2)
To Clock Generator for Core and Peripherals
Sleep or Idle
USB Module
SRP Charge
Bus
SRP Discharge
USB
Voltage
Comparators
48 MHz USB Clock(6)
Full Speed Pull-up
D+
Registers
and
Control
Interface
Host Pull-down
SIE
Transceiver
Low Speed Pull-up
DDMA
System
RAM
Host Pull-down
ID Pull-up
ID(7)
VBUSON(7)
Transceiver Power 3.3V
VUSB3V3
Note 1:
2:
3:
4:
5:
6:
7:
PB clock is only available on this pin for select EC modes.
This bit field is contained in the OSCCON register.
This bit field is contained in the OSCTRM register.
USB PLL UFIN requirements: 4 MHz.
This bit field is contained in the DEVCFG2 register.
A 48 MHz clock is required for proper USB operation.
Pins can be used as GPIO when the USB module is disabled.
DS60001185E-page 112
 2012-2015 Microchip Technology Inc.
Control Registers
Register
Name(1)
TABLE 11-1:
Virtual Address
(BF88_#)
5040
U1OTGIR(2)
5050
U1OTGIE
5060
U1OTGSTAT(3)
5070
U1OTGCON
5080
U1PWRC
5200
U1IR(2)
5210
U1IE
5230
U1EIE
U1STAT(3)
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
22/6
21/5
—
—
31:16
—
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
IDIF
—
T1MSECIF LSTATEIF
—
—
ACTVIF
—
SESVDIF SESENDIF
—
—
—
—
VBUSVDIF 0000
—
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
IDIE
—
T1MSECIE LSTATEIE
—
—
ACTVIE
—
SESVDIE SESENDIE
—
—
—
—
VBUSVDIE 0000
—
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
ID
—
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
UACTPND(4)
—
15:0
—
—
—
—
—
—
—
—
STALLIF
31:16
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
STALLIE
31:16
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
BTSEF
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
19/3
18/2
17/1
—
—
—
SESVD
—
DPPULUP DMPULUP DPPULDWN DMPULDWN VBUSON
—
—
—
—
—
—
—
—
—
0000
0000
OTGEN
—
VBUSCHG
—
VBUSDIS
—
0000
0000
USUSPEND USBPWR
—
—
0000
0000
—
—
DS60001185E-page 113
SOFIF
UERRIF
—
—
—
—
IDLEIE
TRNIE
SOFIE
UERRIE
—
—
—
—
—
BMXEF
DMAEF
BTOEF
—
—
—
—
—
BTSEE
BMXEE
DMAEE
BTOEE
—
—
—
—
—
—
—
—
EOFEE
—
—
—
—
—
—
—
—
ENDPT<3:0>
—
—
—
DIR
—
PPBI
—
—
—
—
—
JSTATE
SE0
PKTDIS
TOKBUSY
USBRST
—
ATTACHIE RESUMEIE
5260
U1ADDR
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LSPDEN
—
—
5270
U1BDTP1
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
DFN8EF CRC16EF
—
—
DFN8EE CRC16EE
—
CRC5EF
EOFEF
—
CRC5EE
URSTIF 0000
DETACHIF 0000
—
URSTIE
0000
0000
DETACHIE 0000
—
0000
PIDEF
0000
0000
—
0000
0000
PIDEE
—
0000
0000
—
—
—
—
0000
0000
PPBRST
USBEN
SOFEN
0000
0000
—
—
—
0000
0000
—
—
—
—
0000
0000
HOSTEN RESUME
—
DEVADDR<6:0>
—
BDTPTRL<15:9>
0000
VBUSVD
—
TRNIF
—
—
—
—
IDLEIF
—
16/0
SESEND
—
USLPGRD USBBUSY
—
—
ATTACHIF RESUMEIF
U1CON
2:
3:
4:
—
LSTATE
—
5250
Legend:
Note 1:
20/4
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See
Section 12.2 “CLR, SET, and INV Registers” for more information.
This register does not have associated SET and INV registers.
This register does not have associated CLR, SET and INV registers.
Reset value for this bit is undefined.
PIC32MX330/350/370/430/450/470
U1EIR(2)
23/7
All Resets
Bits
5220
5240
USB REGISTER MAP
Bit Range
 2012-2015 Microchip Technology Inc.
11.1
Virtual Address
(BF88_#)
Register
Name(1)
Bit Range
USB REGISTER MAP (CONTINUED)
5280
U1FRML(3)
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
FRML<7:0>
—
—
—
0000
0000
5290
U1FRMH(3)
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
FRMH<2:0>
—
0000
0000
52A0
U1TOK
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
PID<3:0>
—
—
—
—
EP<3:0>
—
0000
0000
52B0
U1SOF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNT<7:0>
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
BDTPTRH<23:16>
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
BDTPTRU<31:24>
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
UTEYE
—
UOEMON
—
—
—
USBSIDL
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LSPD
—
RETRYDIS
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
52C0
52D0
U1BDTP2
U1BDTP3
 2012-2015 Microchip Technology Inc.
52E0
U1CNFG1
5300
U1EP0
5310
U1EP1
5320
U1EP2
5330
U1EP3
5340
U1EP4
5350
U1EP5
5360
U1EP6
5370
U1EP7
5380
U1EP8
Legend:
Note 1:
2:
3:
4:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
—
—
18/2
17/1
16/0
All Resets
Bits
UASUSPND 0000
—
0000
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See
Section 12.2 “CLR, SET, and INV Registers” for more information.
This register does not have associated SET and INV registers.
This register does not have associated CLR, SET and INV registers.
Reset value for this bit is undefined.
PIC32MX330/350/370/430/450/470
DS60001185E-page 114
TABLE 11-1:
Register
Name(1)
Bit Range
USB REGISTER MAP (CONTINUED)
Virtual Address
(BF88_#)
5390
U1EP9
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
EPTXEN
—
EPSTALL
—
EPHSHK
0000
0000
53A0
U1EP10
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
EPTXEN
—
EPSTALL
—
EPHSHK
0000
0000
53B0
U1EP11
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
EPTXEN
—
EPSTALL
—
EPHSHK
0000
0000
53C0
U1EP12
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
EPTXEN
—
EPSTALL
—
EPHSHK
0000
0000
53D0
U1EP13
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
EPTXEN
—
EPSTALL
—
EPHSHK
0000
0000
53E0
U1EP14
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
53F0
U1EP15
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
—
—
EPTXEN
—
EPSTALL
—
EPHSHK
—
0000
0000
15:0
—
—
—
—
—
—
—
—
—
—
—
EPCONDIS EPRXEN
EPTXEN
EPSTALL
EPHSHK
0000
Bits
2:
3:
4:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
—
19/3
—
18/2
17/1
16/0
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See
Section 12.2 “CLR, SET, and INV Registers” for more information.
This register does not have associated SET and INV registers.
This register does not have associated CLR, SET and INV registers.
Reset value for this bit is undefined.
DS60001185E-page 115
PIC32MX330/350/370/430/450/470
Legend:
Note 1:
31/15
All Resets
 2012-2015 Microchip Technology Inc.
TABLE 11-1:
PIC32MX330/350/370/430/450/470
REGISTER 11-1:
Bit
Range
31:24
23:16
15:8
7:0
U1OTGIR: USB OTG INTERRUPT STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
U-0
R/WC-0, HS
IDIF
T1MSECIF
LSTATEIF
ACTVIF
SESVDIF
SESENDIF
—
VBUSVDIF
Legend:
WC = Write ‘1’ to clear
HS = Hardware Settable bit
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
IDIF: ID State Change Indicator bit
1 = Change in ID state is detected
0 = No change in ID state is detected
bit 6
T1MSECIF: 1 Millisecond Timer bit
1 = 1 millisecond timer has expired
0 = 1 millisecond timer has not expired
bit 5
LSTATEIF: Line State Stable Indicator bit
1 = USB line state has been stable for 1millisecond, but different from last time
0 = USB line state has not been stable for 1 millisecond
bit 4
ACTVIF: Bus Activity Indicator bit
1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
0 = Activity has not been detected
bit 3
SESVDIF: Session Valid Change Indicator bit
1 = VBUS voltage has dropped below the session end level
0 = VBUS voltage has not dropped below the session end level
bit 2
SESENDIF: B-Device VBUS Change Indicator bit
1 = A change on the session end input was detected
0 = No change on the session end input was detected
bit 1
Unimplemented: Read as ‘0’
bit 0
VBUSVDIF: A-Device VBUS Change Indicator bit
1 = Change on the session valid input is detected
0 = No change on the session valid input is detected
DS60001185E-page 116
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-2:
Bit
Range
31:24
23:16
15:8
7:0
U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
R/W-0
IDIE
T1MSECIE
LSTATEIE
ACTVIE
SESVDIE
SESENDIE
—
VBUSVDIE
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
IDIE: ID Interrupt Enable bit
1 = ID interrupt is enabled
0 = ID interrupt is disabled
bit 6
T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
1 = 1 millisecond timer interrupt is enabled
0 = 1 millisecond timer interrupt is disabled
bit 5
LSTATEIE: Line State Interrupt Enable bit
1 = Line state interrupt is enabled
0 = Line state interrupt is disabled
bit 4
ACTVIE: Bus Activity Interrupt Enable bit
1 = ACTIVITY interrupt is enabled
0 = ACTIVITY interrupt is disabled
bit 3
SESVDIE: Session Valid Interrupt Enable bit
1 = Session valid interrupt is enabled
0 = Session valid interrupt is disabled
bit 2
SESENDIE: B-Session End Interrupt Enable bit
1 = B-session end interrupt is enabled
0 = B-session end interrupt is disabled
bit 1
Unimplemented: Read as ‘0’
bit 0
VBUSVDIE: A-VBUS Valid Interrupt Enable bit
1 = A-VBUS valid interrupt is enabled
0 = A-VBUS valid interrupt is disabled
 2012-2015 Microchip Technology Inc.
DS60001185E-page 117
PIC32MX330/350/370/430/450/470
REGISTER 11-3:
Bit
Range
31:24
23:16
15:8
7:0
U1OTGSTAT: USB OTG STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
U-0
R-0
U-0
R-0
R-0
U-0
R-0
ID
—
LSTATE
—
SESVD
SESEND
—
VBUSVD
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
ID: ID Pin State Indicator bit
1 = No cable is attached or a Type-B cable has been plugged into the USB receptacle
0 = A Type-A cable has been plugged into the USB receptacle
bit 6
Unimplemented: Read as ‘0’
bit 5
LSTATE: Line State Stable Indicator bit
1 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms
0 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms
bit 4
Unimplemented: Read as ‘0’
bit 3
SESVD: Session Valid Indicator bit
1 = VBUS voltage is above Session Valid on the A or B device
0 = VBUS voltage is below Session Valid on the A or B device
bit 2
SESEND: B-Device Session End Indicator bit
1 = VBUS voltage is below Session Valid on the B device
0 = VBUS voltage is above Session Valid on the B device
bit 1
Unimplemented: Read as ‘0’
bit 0
VBUSVD: A-Device VBUS Valid Indicator bit
1 = VBUS voltage is above Session Valid on the A device
0 = VBUS voltage is below Session Valid on the A device
DS60001185E-page 118
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-4:
Bit
Range
31:24
23:16
15:8
7:0
U1OTGCON: USB OTG CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
VBUSON
OTGEN
VBUSCHG
VBUSDIS
DPPULUP DMPULUP DPPULDWN DMPULDWN
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
DPPULUP: D+ Pull-Up Enable bit
1 = D+ data line pull-up resistor is enabled
0 = D+ data line pull-up resistor is disabled
bit 6
DMPULUP: D- Pull-Up Enable bit
1 = D- data line pull-up resistor is enabled
0 = D- data line pull-up resistor is disabled
bit 5
DPPULDWN: D+ Pull-Down Enable bit
1 = D+ data line pull-down resistor is enabled
0 = D+ data line pull-down resistor is disabled
bit 4
DMPULDWN: D- Pull-Down Enable bit
1 = D- data line pull-down resistor is enabled
0 = D- data line pull-down resistor is disabled
bit 3
VBUSON: VBUS Power-on bit
1 = VBUS line is powered
0 = VBUS line is not powered
bit 2
OTGEN: OTG Functionality Enable bit
1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control
bit 1
VBUSCHG: VBUS Charge Enable bit
1 = VBUS line is charged through a pull-up resistor
0 = VBUS line is not charged through a resistor
bit 0
VBUSDIS: VBUS Discharge Enable bit
1 = VBUS line is discharged through a pull-down resistor
0 = VBUS line is not discharged through a resistor
 2012-2015 Microchip Technology Inc.
DS60001185E-page 119
PIC32MX330/350/370/430/450/470
REGISTER 11-5:
U1PWRC: USB POWER CONTROL REGISTER
Bit
Bit
Range 31/23/15/7
31:24
23:16
15:8
7:0
U-0
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
U-0
U-0
R/W-0
R/W-0
U-0
R/W-0
R/W-0
UACTPND
—
—
USLPGRD USBBUSY(1)
—
USUSPEND USBPWR
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
UACTPND: USB Activity Pending bit
1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
0 = An interrupt is not pending
bit 6-5
Unimplemented: Read as ‘0’
bit 4
USLPGRD: USB Sleep Entry Guard bit
1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
0 = USB module does not block Sleep entry
bit 3
USBBUSY: USB Module Busy bit(1)
1 = USB module is active or disabled, but not ready to be enabled
0 = USB module is not active and is ready to be enabled
Note:
When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all
USB module registers produce undefined results.
bit 2
Unimplemented: Read as ‘0’
bit 1
USUSPEND: USB Suspend Mode bit
1 = USB module is placed in Suspend mode
(The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
0 = USB module operates normally
bit 0
USBPWR: USB Operation Enable bit
1 = USB module is turned on
0 = USB module is disabled
(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power
consumption.)
DS60001185E-page 120
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-6:
Bit
Bit
Range 31/23/15/7
31:24
23:16
15:8
7:0
U1IR: USB INTERRUPT REGISTER
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
Bit
28/20/12/4 27/19/11/3 26/18/10/2
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
—
—
—
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R-0
R/WC-0, HS
(5)
IDLEIF
TRNIF(3)
SOFIF
UERRIF(4)
STALLIF
ATTACHIF(1) RESUMEIF(2)
Legend:
R = Readable bit
-n = Value at POR
WC = Write ‘1’ to clear
W = Writable bit
‘1’ = Bit is set
URSTIF
DETACHIF(6)
HS = Hardware Settable bit
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
STALLIF: STALL Handshake Interrupt bit
1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
0 = STALL handshake has not been sent
ATTACHIF: Peripheral Attach Interrupt bit(1)
1 = Peripheral attachment was detected by the USB module
0 = Peripheral attachment was not detected
RESUMEIF: Resume Interrupt bit(2)
1 = K-State is observed on the D+ or D- pin for 2.5 µs
0 = K-State is not observed
IDLEIF: Idle Detect Interrupt bit
1 = Idle condition detected (constant Idle state of 3 ms or more)
0 = No Idle condition detected
TRNIF: Token Processing Complete Interrupt bit(3)
1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information
0 = Processing of current token not complete
SOFIF: SOF Token Interrupt bit
1 = SOF token received by the peripheral or the SOF threshold reached by the host
0 = SOF token was not received nor threshold reached
UERRIF: USB Error Condition Interrupt bit(4)
1 = Unmasked error condition has occurred
0 = Unmasked error condition has not occurred
URSTIF: USB Reset Interrupt bit (Device mode)(5)
1 = Valid USB Reset has occurred
0 = No USB Reset has occurred
DETACHIF: USB Detach Interrupt bit (Host mode)(6)
1 = Peripheral detachment was detected by the USB module
0 = Peripheral detachment was not detected
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
bit 0
Note 1:
2:
3:
4:
5:
6:
This bit is valid only if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for
2.5 µs, and the current bus state is not SE0.
When not in Suspend mode, this interrupt should be disabled.
Clearing this bit will cause the STAT FIFO to advance.
Only error conditions enabled through the U1EIE register will set this bit.
Device mode.
Host mode.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 121
PIC32MX330/350/370/430/450/470
REGISTER 11-7:
Bit
Range
31:24
23:16
15:8
7:0
U1IE: USB INTERRUPT ENABLE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
STALLIE
ATTACHIE RESUMEIE
IDLEIE
TRNIE
SOFIE
UERRIE(1)
R/W-0
URSTIE(2)
DETACHIE(3)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
STALLIE: STALL Handshake Interrupt Enable bit
1 = STALL interrupt is enabled
0 = STALL interrupt is disabled
bit 6
ATTACHIE: ATTACH Interrupt Enable bit
1 = ATTACH interrupt is enabled
0 = ATTACH interrupt is disabled
bit 5
RESUMEIE: RESUME Interrupt Enable bit
1 = RESUME interrupt is enabled
0 = RESUME interrupt is disabled
bit 4
IDLEIE: Idle Detect Interrupt Enable bit
1 = Idle interrupt is enabled
0 = Idle interrupt is disabled
bit 3
TRNIE: Token Processing Complete Interrupt Enable bit
1 = TRNIF interrupt is enabled
0 = TRNIF interrupt is disabled
bit 2
SOFIE: SOF Token Interrupt Enable bit
1 = SOFIF interrupt is enabled
0 = SOFIF interrupt is disabled
bit 1
UERRIE: USB Error Interrupt Enable bit(1)
1 = USB Error interrupt is enabled
0 = USB Error interrupt is disabled
bit 0
URSTIE: USB Reset Interrupt Enable bit(2)
1 = URSTIF interrupt is enabled
0 = URSTIF interrupt is disabled
DETACHIE: USB Detach Interrupt Enable bit(3)
1 = DATTCHIF interrupt is enabled
0 = DATTCHIF interrupt is disabled
Note 1:
2:
3:
For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.
Device mode.
Host mode.
DS60001185E-page 122
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-8:
Bit
Range
31:24
23:16
15:8
7:0
U1EIR: USB ERROR INTERRUPT STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
R/WC-0, HS
BTSEF
BMXEF
DMAEF(1)
BTOEF(2)
DFN8EF
CRC16EF
CRC5EF(4)
EOFEF(3,5)
Legend:
WC = Write ‘1’ to clear
HS = Hardware Settable bit
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
PIDEF
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
BTSEF: Bit Stuff Error Flag bit
1 = Packet rejected due to bit stuff error
0 = Packet accepted
bit 6
BMXEF: Bus Matrix Error Flag bit
1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
0 = No address error
bit 5
DMAEF: DMA Error Flag bit(1)
1 = USB DMA error condition detected
0 = No DMA error
bit 4
BTOEF: Bus Turnaround Time-Out Error Flag bit(2)
1 = Bus turnaround time-out has occurred
0 = No bus turnaround time-out
bit 3
DFN8EF: Data Field Size Error Flag bit
1 = Data field received is not an integral number of bytes
0 = Data field received is an integral number of bytes
bit 2
CRC16EF: CRC16 Failure Flag bit
1 = Data packet rejected due to CRC16 error
0 = Data packet accepted
Note 1:
2:
3:
4:
5:
This type of error occurs when the module’s request for the DMA bus is not granted in time to service the
module’s demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer
size is not sufficient to store the received data packet causing it to be truncated.
This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP)
has elapsed.
This type of error occurs when the module is transmitting or receiving data and the SOF counter has
reached zero.
Device mode.
Host mode.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 123
PIC32MX330/350/370/430/450/470
REGISTER 11-8:
U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)
bit 1
CRC5EF: CRC5 Host Error Flag bit(4)
1 = Token packet rejected due to CRC5 error
0 = Token packet accepted
EOFEF: EOF Error Flag bit(3,5)
1 = EOF error condition detected
0 = No EOF error condition
bit 0
PIDEF: PID Check Failure Flag bit
1 = PID check failed
0 = PID check passed
Note 1:
2:
3:
4:
5:
This type of error occurs when the module’s request for the DMA bus is not granted in time to service the
module’s demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer
size is not sufficient to store the received data packet causing it to be truncated.
This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP)
has elapsed.
This type of error occurs when the module is transmitting or receiving data and the SOF counter has
reached zero.
Device mode.
Host mode.
DS60001185E-page 124
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-9:
Bit
Range
31:24
23:16
15:8
7:0
U1EIE: USB ERROR INTERRUPT ENABLE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
BTSEE
BMXEE
DMAEE
BTOEE
DFN8EE
CRC16EE
CRC5EE(1)
EOFEE(2)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
PIDEE
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
BTSEE: Bit Stuff Error Interrupt Enable bit
1 = BTSEF interrupt is enabled
0 = BTSEF interrupt is disabled
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
Note 1:
2:
Note:
BMXEE: Bus Matrix Error Interrupt Enable bit
1 = BMXEF interrupt is enabled
0 = BMXEF interrupt is disabled
DMAEE: DMA Error Interrupt Enable bit
1 = DMAEF interrupt is enabled
0 = DMAEF interrupt is disabled
BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
1 = BTOEF interrupt is enabled
0 = BTOEF interrupt is disabled
DFN8EE: Data Field Size Error Interrupt Enable bit
1 = DFN8EF interrupt is enabled
0 = DFN8EF interrupt is disabled
CRC16EE: CRC16 Failure Interrupt Enable bit
1 = CRC16EF interrupt is enabled
0 = CRC16EF interrupt is disabled
CRC5EE: CRC5 Host Error Interrupt Enable bit(1)
1 = CRC5EF interrupt is enabled
0 = CRC5EF interrupt is disabled
EOFEE: EOF Error Interrupt Enable bit(2)
1 = EOF interrupt is enabled
0 = EOF interrupt is disabled
PIDEE: PID Check Failure Interrupt Enable bit
1 = PIDEF interrupt is enabled
0 = PIDEF interrupt is disabled
Device mode.
Host mode.
For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 125
PIC32MX330/350/370/430/450/470
REGISTER 11-10: U1STAT: USB STATUS REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-x
R-x
R-x
R-x
R-x
R-x
U-0
U-0
DIR
PPBI
—
—
ENDPT<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7-4
ENDPT<3:0>: Encoded Number of Last Endpoint Activity bits
(Represents the number of the BDT, updated by the last USB transfer.)
1111 = Endpoint 15
1110 = Endpoint 14
•
•
•
0001 = Endpoint 1
0000 = Endpoint 0
bit 3
DIR: Last BD Direction Indicator bit
1 = Last transaction was a transmit transfer (TX)
0 = Last transaction was a receive transfer (RX)
bit 2
PPBI: Ping-Pong BD Pointer Indicator bit
1 = The last transaction was to the ODD BD bank
0 = The last transaction was to the EVEN BD bank
bit 1-0
Unimplemented: Read as ‘0’
Note:
The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only
valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register
is invalid when the TRNIF bit = 0.
DS60001185E-page 126
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-11: U1CON: USB CONTROL REGISTER
Bit
Bit
Bit
Range 31/23/15/7 30/22/14/6
31:24
23:16
15:8
7:0
U-0
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-x
R-x
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
JSTATE
SE0
PKTDIS(4)
TOKBUSY(1,5)
USBRST
HOSTEN(2) RESUME(3)
PPBRST
USBEN(4)
SOFEN(5)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
JSTATE: Live Differential Receiver JSTATE flag bit
1 = JSTATE detected on the USB
0 = No JSTATE detected
bit 6
SE0: Live Single-Ended Zero flag bit
1 = Single Ended Zero detected on the USB
0 = No Single Ended Zero detected
bit 5
PKTDIS: Packet Transfer Disable bit(4)
1 = Token and packet processing disabled (set upon SETUP token received)
0 = Token and packet processing enabled
TOKBUSY: Token Busy Indicator bit(1,5)
1 = Token being executed by the USB module
0 = No token being executed
bit 4
USBRST: Module Reset bit(5)
1 = USB reset is generated
0 = USB reset is terminated
bit 3
HOSTEN: Host Mode Enable bit(2)
1 = USB host capability is enabled
0 = USB host capability is disabled
bit 2
RESUME: RESUME Signaling Enable bit(3)
1 = RESUME signaling is activated
0 = RESUME signaling is disabled
Note 1:
2:
3:
4:
5:
Software is required to check this bit before issuing another token command to the U1TOK register (see
Register 11-15).
All host control logic is reset any time that the value of this bit is toggled.
Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and
then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to
the RESUME signaling when this bit is cleared.
Device mode.
Host mode.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 127
PIC32MX330/350/370/430/450/470
REGISTER 11-11: U1CON: USB CONTROL REGISTER (CONTINUED)
bit 1
PPBRST: Ping-Pong Buffers Reset bit
1 = Reset all Even/Odd buffer pointers to the EVEN BD banks
0 = Even/Odd buffer pointers not being Reset
bit 0
USBEN: USB Module Enable bit(4)
1 = USB module and supporting circuitry enabled
0 = USB module and supporting circuitry disabled
SOFEN: SOF Enable bit(5)
1 = SOF token sent every 1 ms
0 = SOF token disabled
Note 1:
2:
3:
4:
5:
Software is required to check this bit before issuing another token command to the U1TOK register (see
Register 11-15).
All host control logic is reset any time that the value of this bit is toggled.
Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and
then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to
the RESUME signaling when this bit is cleared.
Device mode.
Host mode.
DS60001185E-page 128
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
LSPDEN
DEVADDR<6:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
LSPDEN: Low Speed Enable Indicator bit
1 = Next token command to be executed at Low Speed
0 = Next token command to be executed at Full Speed
bit 6-0
DEVADDR<6:0>: 7-bit USB Device Address bits
REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
R-0
R-0
R-0
R-0
R-0
R-0
R-0
FRML<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7-0
FRML<7:0>: The 11-bit Frame Number Lower bits
The register bits are updated with the current frame number whenever a SOF TOKEN is received.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 129
PIC32MX330/350/370/430/450/470
REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
R-0
R-0
R-0
—
—
—
—
—
FRMH<2:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-3 Unimplemented: Read as ‘0’
bit 2-0
FRMH<2:0>: The Upper 3 bits of the Frame Numbers bits
The register bits are updated with the current frame number whenever a SOF TOKEN is received.
REGISTER 11-15: U1TOK: USB TOKEN REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
(1)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
PID<3:0>
EP<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7-4
PID<3:0>: Token Type Indicator bits(1)
0001 = OUT (TX) token type transaction
1001 = IN (RX) token type transaction
1101 = SETUP (TX) token type transaction
Note: All other values are reserved and must not be used.
bit 3-0
EP<3:0>: Token Command Endpoint Address bits
The four bit value must specify a valid endpoint.
Note 1:
All other values are reserved and must not be used.
DS60001185E-page 130
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CNT<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7-0
CNT<7:0>: SOF Threshold Value bits
Typical values of the threshold are:
01001010 = 64-byte packet
00101010 = 32-byte packet
00011010 = 16-byte packet
00010010 = 8-byte packet
REGISTER 11-17: U1BDTP1: USB BDT PAGE 1 REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
BDTPTRL<15:9>
—
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7-1
BDTPTRL<15:9>: BDT Base Address bits
This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting
location of the BDT in system memory.
The 32-bit BDT base address is 512-byte aligned.
bit 0
Unimplemented: Read as ‘0’
 2012-2015 Microchip Technology Inc.
DS60001185E-page 131
PIC32MX330/350/370/430/450/470
REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
BDTPTRH<23:16>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7-0
BDTPTRH<23:16>: BDT Base Address bits
This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting
location of the BDT in system memory.
The 32-bit BDT base address is 512-byte aligned.
REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
BDTPTRU<31:24>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8
Unimplemented: Read as ‘0’
bit 7-0
BDTPTRU<31:24>: BDT Base Address bits
This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location
of the BDT in system memory.
The 32-bit BDT base address is 512-byte aligned.
DS60001185E-page 132
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
U-0
R/W-0
U-0
U-0
U-0
R/W-0
UTEYE
UOEMON
—
USBSIDL
—
—
—
UASUSPND
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8
Unimplemented: Read as ‘0’
bit 7
UTEYE: USB Eye-Pattern Test Enable bit
1 = Eye-Pattern Test is enabled
0 = Eye-Pattern Test is disabled
bit 6
UOEMON: USB OE Monitor Enable bit
1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
0 = OE signal is inactive
bit 5
Unimplemented: Read as ‘0’
bit 4
USBSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 3-1
Unimplemented: Read as ‘0’
bit 0
UASUSPND: Automatic Suspend Enable bit
1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit
(U1PWRC<1>) in Register 11-5.
0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the
USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock
 2012-2015 Microchip Technology Inc.
DS60001185E-page 133
PIC32MX330/350/370/430/450/470
REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER
Bit
Range
31:24
23:16
15:8
7:0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
LSPD
RETRYDIS
—
EPCONDIS
EPRXEN
EPTXEN
EPSTALL
EPHSHK
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-8 Unimplemented: Read as ‘0’
bit 7
LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
1 = Direct connection to a low-speed device is enabled
0 = Direct connection to a low-speed device is disabled; hub required with PRE_PID
bit 6
RETRYDIS: Retry Disable bit (Host mode and U1EP0 only)
1 = Retry NAKed transactions is disabled
0 = Retry NAKed transactions is enabled; retry done in hardware
bit 5
Unimplemented: Read as ‘0’
bit 4
EPCONDIS: Bidirectional Endpoint Control bit
If EPTXEN = 1 and EPRXEN = 1:
1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed
0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed
Otherwise, this bit is ignored.
bit 3
EPRXEN: Endpoint Receive Enable bit
1 = Endpoint n receive is enabled
0 = Endpoint n receive is disabled
bit 2
EPTXEN: Endpoint Transmit Enable bit
1 = Endpoint n transmit is enabled
0 = Endpoint n transmit is disabled
bit 1
EPSTALL: Endpoint Stall Status bit
1 = Endpoint n was stalled
0 = Endpoint n was not stalled
bit 0
EPHSHK: Endpoint Handshake Enable bit
1 = Endpoint Handshake is enabled
0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)
DS60001185E-page 134
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
12.0
Following are key features of this module:
I/O PORTS
Note:
• Individual output pin open-drain enable/disable
• Individual input pin weak pull-up and pull-down
• Monitor selective inputs and generate interrupt
when change in pin state is detected
• Operation during CPU Sleep and Idle modes
• Fast bit manipulation using CLR, SET, and INV
registers
Figure 12-1 illustrates a block diagram of a typical
multiplexed I/O port.
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 12. “I/O Ports”
(DS60001120), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
General purpose I/O pins are the simplest of peripherals. They allow the PIC® MCU to monitor and control
other devices. To add flexibility and functionality, some
pins are multiplexed with alternate function(s). These
functions depend on which peripheral features are on
the device. In general, when a peripheral is functioning,
that pin may not be used as a general purpose I/O pin.
FIGURE 12-1:
BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE
Peripheral Module
Peripheral Module Enable
Peripheral Output Enable
Peripheral Output Data
PIO Module
RD ODC
Data Bus
D
PBCLK
Q
ODC
CK
EN Q
WR ODC
1
RD TRIS
0
I/O Cell
0
1
D
Q
1
TRIS
CK
EN Q
0
WR TRIS
Output Multiplexers
D
Q
I/O Pin
LAT
CK
EN Q
WR LAT
WR PORT
RD LAT
1
RD PORT
0
Sleep
Q
Q
D
CK
Q
Q
D
CK
PBCLK
Synchronization
Peripheral Input
Legend:
Note:
R
Peripheral Input Buffer
R = Peripheral input buffer types may vary. Refer to Table 1-1 for peripheral details.
This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure
for any specific port/peripheral combination may be different than it is shown here.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 135
PIC32MX330/350/370/430/450/470
12.1
Parallel I/O (PIO) Ports
All port pins have ten registers directly associated with
their operation as digital I/O. The data direction register
(TRISx) determines whether the pin is an input or an
output. If the data direction bit is a ‘1’, then the pin is an
input. All port pins are defined as inputs after a Reset.
Reads from the latch (LATx) read the latch. Writes to
the latch write the latch. Reads from the port (PORTx)
read the port pins, while writes to the port pins write the
latch.
12.1.1
OPEN-DRAIN CONFIGURATION
In addition to the PORTx, LATx, and TRISx registers for
data control, some port pins can also be individually
configured for either digital or open-drain output. This is
controlled by the Open-Drain Control register, ODCx,
associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain
output.
The open-drain feature allows the presence of outputs
higher than VDD (e.g., 5V) on any desired 5V-tolerant
pins by using external pull-up resistors. The maximum
open-drain voltage allowed is the same as the maximum VIH specification.
See the “Device Pin Tables” section for the available
pins and their functionality.
12.1.2
CONFIGURING ANALOG AND
DIGITAL PORT PINS
The ANSELx register controls the operation of the
analog port pins. The port pins that are to function as
analog inputs must have their corresponding ANSEL
and TRIS bits set. In order to use port pins for I/O
functionality with digital modules, such as Timers,
UARTs, etc., the corresponding ANSELx bit must be
cleared.
12.1.3
One instruction cycle is required between a port
direction change or port write operation and a read
operation of the same port. Typically this instruction
would be an NOP.
12.1.4
When the PORT register is read, all pins configured as
analog input channels are read as cleared (a low level).
Pins configured as digital inputs do not convert an
analog input. Analog levels on any pin defined as a
digital input (including the ANx pins) can cause the
input buffer to consume current that exceeds the
device specifications.
INPUT CHANGE NOTIFICATION
The input change notification function of the I/O ports
allows the PIC32MX330/350/370/430/450/470 devices
to generate interrupt requests to the processor in
response to a change-of-state on selected input pins.
This feature can detect input change-of-states even in
Sleep mode, when the clocks are disabled. Every I/O
port pin can be selected (enabled) for generating an
interrupt request on a change-of-state.
Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain
the CN interrupt enable control bits for each of the input
pins. Setting any of these bits enables a CN interrupt
for the corresponding pins.
The CNSTATx register indicates whether a change
occurred on the corresponding pin since the last read
of the PORTx bit.
Each I/O pin also has a weak pull-up and every I/O
pin has a weak pull-down connected to it. The pullups act as a current source or sink source connected
to the pin, and eliminate the need for external
resistors when push-button or keypad devices are
connected. The pull-ups and pull-downs are enabled
separately using the CNPUx and the CNPDx
registers, which contain the control bits for each of the
pins. Setting any of the control bits enables the weak
pull-ups and/or pull-downs for the corresponding pins.
Note:
The ANSELx register has a default value of 0xFFFF;
therefore, all pins that share analog functions are
analog (not digital) by default.
If the TRIS bit is cleared (output) while the ANSELx bit
is set, the digital output level (VOH or VOL) is converted
by an analog peripheral, such as the ADC module or
Comparator module.
I/O PORT WRITE/READ TIMING
Pull-ups and pull-downs on change notification pins should always be disabled
when the port pin is configured as a digital
output. They should also be disabled on
5V tolerant pins when the pin voltage can
exceed VDD.
An additional control register (CNCONx) is shown in
Register 12-3.
12.2
CLR, SET, and INV Registers
Every I/O module register has a corresponding CLR
(clear), SET (set) and INV (invert) register designed to
provide fast atomic bit manipulations. As the name of
the register implies, a value written to a SET, CLR or
INV register effectively performs the implied operation,
but only on the corresponding base register and only
bits specified as ‘1’ are modified. Bits specified as ‘0’
are not modified.
Reading SET, CLR and INV registers returns undefined
values. To see the affects of a write operation to a SET,
CLR or INV register, the base register must be read.
DS60001185E-page 136
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
12.3
Peripheral Pin Select
A major challenge in general purpose devices is providing the largest possible set of peripheral features while
minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an
application where more than one peripheral needs to
be assigned to a single pin, inconvenient workarounds
in application code or a complete redesign may be the
only options.
Peripheral pin select configuration provides an
alternative to these choices by enabling peripheral set
selection and their placement on a wide range of I/O
pins. By increasing the pinout options available on a
particular device, users can better tailor the device to
their entire application, rather than trimming the
application to fit the device.
The peripheral pin select configuration feature
operates over a fixed subset of digital I/O pins. Users
may independently map the input and/or output of most
digital peripherals to these I/O pins. Peripheral pin
select is performed in software and generally does not
require the device to be reprogrammed. Hardware
safeguards are included that prevent accidental or
spurious changes to the peripheral mapping once it has
been established.
12.3.1
AVAILABLE PINS
The number of available pins is dependent on the
particular device and its pin count. Pins that support the
peripheral pin select feature include the designation
“RPn” in their full pin designation, where “RP”
designates a remappable peripheral and “n” is the
remappable port number.
12.3.2
AVAILABLE PERIPHERALS
The peripherals managed by the peripheral pin select
are all digital-only peripherals. These include general
serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input
capture and output compare) and interrupt-on-change
inputs.
When a remappable peripheral is active on a given I/O
pin, it takes priority over all other digital I/O and digital
communication peripherals associated with the pin.
Priority is given regardless of the type of peripheral that
is mapped. Remappable peripherals never take priority
over any analog functions associated with the pin.
12.3.3
Peripheral pin select features are controlled through
two sets of SFRs: one to map peripheral inputs, and
one to map outputs. Because they are separately
controlled, a particular peripheral’s input and output (if
the peripheral has both) can be placed on any
selectable function pin without constraint.
The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on
whether an input or output is being mapped.
12.3.4
INPUT MAPPING
The inputs of the peripheral pin select options are
mapped on the basis of the peripheral. That is, a control
register associated with a peripheral dictates the pin it
will be mapped to. The [pin name]R registers, where [pin
name] refers to the peripheral pins listed in Table 12-1,
are used to configure peripheral input mapping (see
Register 12-1). Each register contains sets of 4 bit
fields. Programming these bit fields with an appropriate
value maps the RPn pin with the corresponding value to
that peripheral. For any given device, the valid range of
values for any bit field is shown in Table 12-1.
For example, Figure 12-2 illustrates the remappable
pin selection for the U1RX input.
FIGURE 12-2:
REMAPPABLE INPUT
EXAMPLE FOR U1RX
U1RXR<3:0>
0
RPA2
1
In comparison, some digital-only peripheral modules
are never included in the peripheral pin select feature.
This is because the peripheral’s function requires special I/O circuitry on a specific port and cannot be easily
connected to multiple pins. These modules include I2C
among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital
Converter (ADC).
RPB6
A key difference between remappable and non-remappable peripherals is that remappable peripherals are
not associated with a default I/O pin. The peripheral
must always be assigned to a specific I/O pin before it
can be used. In contrast, non-remappable peripherals
are always available on a default pin, assuming that the
peripheral is active and not conflicting with another
peripheral.
RPn
 2012-2015 Microchip Technology Inc.
CONTROLLING PERIPHERAL PIN
SELECT
2
RPA4
U1RX input
to peripheral
n
Note:
For input only, peripheral pin select functionality
does not have priority over TRISx settings.
Therefore, when configuring RPn pin for input,
the corresponding bit in the TRISx register must
also be configured for input (set to ‘1’).
DS60001185E-page 137
PIC32MX330/350/370/430/450/470
TABLE 12-1:
INPUT PIN SELECTION
[pin name]R Value to
RPn Pin Selection
Peripheral Pin
[pin name]R SFR
[pin name]R bits
INT3
INT3R
INT3R<3:0>
T2CK
T2CKR
T2CKR<3:0>
IC3
IC3R
IC3R<3:0>
U1RX
U1RXR
U1RXR<3:0>
U2RX
U2RXR
U2RXR<3:0>
U5CTS
U5CTSR
U5CTSR<3:0>
REFCLKI
REFCLKIR
REFCLKIR<3:0>
INT4
INT4R
INT4R<3:0>
T5CK
T5CKR
T5CKR<3:0>
IC4
IC4R
IC4R<3:0>
U3RX
U3RXR
U3RXR<3:0>
U4CTS
U4CTSR
U4CTSR<3:0>
SDI1
SDI1R
SDI1R<3:0>
SDI2
SDI2R
SDI2R<3:0>
INT2
INT2R
INT2R<3:0>
T4CK
T4CKR
T4CKR<3:0>
IC2
IC2R
IC2R<3:0>
IC5
IC5R
IC5R<3:0>
U1CTS
U1CTSR
U1CTSR<3:0>
U2CTS
U2CTSR
U2CTSR<3:0>
SS1
SS1R
SS1R<3:0>
Note 1:
2:
3:
4:
0000 = RPD2
0001 = RPG8
0010 = RPF4
0011 = RPD10
0100 = RPF1
0101 = RPB9
0110 = RPB10
0111 = RPC14
1000 = RPB5
1001 = Reserved
1010 = RPC1(3)
1011 = RPD14(3)
1100 = RPG1(3)
1101 = RPA14(3)
1110 = Reserved
1111 = RPF2(1)
0000 = RPD3
0001 = RPG7
0010 = RPF5
0011 = RPD11
0100 = RPF0
0101 = RPB1
0110 = RPE5
0111 = RPC13
1000 = RPB3
1001 = Reserved
1010 = RPC4(3)
1011 = RPD15(3)
1100 = RPG0(3)
1101 = RPA15(3)
1110 = RPF2(1)
1111 = RPF7(2)
0000 = RPD9
0001 = RPG6
0010 = RPB8
0011 = RPB15
0100 = RPD4
0101 = RPB0
0110 = RPE3
0111 = RPB7
1000 = Reserved
1001 = RPF12(3)
1010 = RPD12(3)
1011 = RPF8(3)
1100 = RPC3(3)
1101 = RPE9(3)
1110 = Reserved
1111 = RPB2
This selection is not available on 64-pin USB devices.
This selection is only available on 100-pin General Purpose devices.
This selection is not available on 64-pin USB and General Purpose devices.
This selection is not available when USBID functionality is used.
DS60001185E-page 138
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 12-1:
INPUT PIN SELECTION (CONTINUED)
Peripheral Pin
[pin name]R SFR
[pin name]R bits
INT1
INT1R
INT1R<3:0>
T3CK
T3CKR
T3CKR<3:0>
IC1
IC1R
IC1R<3:0>
U3CTS
U3CTSR
U3CTSR<3:0>
U4RX
U4RXR
U4RXR<3:0>
U5RX
U5RXR
U5RXR<3:0>
SS2
SS2R
SS2R<3:0>
OCFA
OCFAR
OCFAR<3:0>
Note 1:
2:
3:
4:
[pin name]R Value to
RPn Pin Selection
0000 = RPD1
0001 = RPG9
0010 = RPB14
0011 = RPD0
0100 = RPD8
0101 = RPB6
0110 = RPD5
0111 = RPB2
1000 = RPF3(4)
1001 = RPF13(3)
1010 = Reserved
1011 = RPF2(1)
1100 = RPC2(3)
1101 = RPE8(3)
1110 = Reserved
1111 = Reserved
This selection is not available on 64-pin USB devices.
This selection is only available on 100-pin General Purpose devices.
This selection is not available on 64-pin USB and General Purpose devices.
This selection is not available when USBID functionality is used.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 139
PIC32MX330/350/370/430/450/470
12.3.5
OUTPUT MAPPING
12.3.6.1
In contrast to inputs, the outputs of the peripheral pin
select options are mapped on the basis of the pin. In
this case, a control register associated with a
particular pin dictates the peripheral output to be
mapped. The RPnR registers (Register 12-2) are
used to control output mapping. Like the [pin name]R
registers, each register contains sets of 4 bit fields.
The value of the bit field corresponds to one of the
peripherals, and that peripheral’s output is mapped
to the pin (see Table 12-2 and Figure 12-3).
A null output is associated with the output register reset
value of ‘0’. This is done to ensure that remappable
outputs remain disconnected from all output pins by
default.
FIGURE 12-3:
EXAMPLE OF
MULTIPLEXING OF
REMAPPABLE OUTPUT
FOR RPA0
RPA0R<3:0>
Default
U1TX Output
U1RTS Output
0
1
2
RPA0
Control Register Lock
Under normal operation, writes to the RPnR and [pin
name]R registers are not allowed. Attempted writes
appear to execute normally, but the contents of the
registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit
(CFGCON<13>). Setting IOLOCK prevents writes to
the control registers; clearing IOLOCK allows writes.
To set or clear the IOLOCK bit, an unlock sequence
must be executed. Refer to Section 6. “Oscillator”
(DS60001112) in the “PIC32 Family Reference
Manual” for details.
12.3.6.2
Configuration Bit Select Lock
As an additional level of safety, the device can be
configured to prevent more than one write session to
the RPnR and [pin name]R registers. The IOL1WAY
Configuration bit (DEVCFG3<29>) blocks the IOLOCK
bit from being cleared after it has been set once. If
IOLOCK remains set, the register unlock procedure
does not execute, and the peripheral pin select control
registers cannot be written to. The only way to clear the
bit and re-enable peripheral remapping is to perform a
device Reset.
In the default (unprogrammed) state, IOL1WAY is set,
restricting users to one write session.
Output Data
14
15
12.3.6
CONTROLLING CONFIGURATION
CHANGES
Because peripheral remapping can be changed during
run time, some restrictions on peripheral remapping
are needed to prevent accidental configuration
changes. PIC32 devices include two features to
prevent alterations to the peripheral map:
• Control register lock sequence
• Configuration bit select lock
DS60001185E-page 140
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 12-2:
OUTPUT PIN SELECTION
RPn Port Pin
RPnR SFR
RPnR bits
RPD2
RPD2R
RPD2R<3:0>
RPG8
RPG8R
RPG8R<3:0>
RPF4
RPF4R
RPF4R<3:0>
RPD10
RPD10R
RPD10R<3:0>
RPF1
RPF1R
RPF1R<3:0>
RPB9
RPB9R
RPB9R<3:0>
RPB10
RPB10R
RPB10R<3:0>
RPC14
RPC14R
RPC14R<3:0>
RPB5
RPB5R
RPB5R<3:0>
RPC1(4)
RPC1R
RPC1R<3:0>
RPD14(4)
RPD14R
RPD14R<3:0>
RPG1(4)
RPG1R
RPG1R<3:0>
RPA14(4)
RPA14R
RPA14R<3:0>
RPD3
RPD3R
RPD3R<3:0>
RPG7
RPG7R
RPG7R<3:0>
RPF5
RPF5R
RPF5R<3:0>
RPD11
RPD11R
RPD11R<3:0>
RPF0
RPF0R
RPF0R<3:0>
RPB1
RPB1R
RPB1R<3:0>
RPE5
RPE5R
RPE5R<3:0>
RPC13
RPC13R
RPC13R<3:0>
RPB3
RPB3R
RPB3R<3:0>
RPF3(2)
RPF3R
RPF3R<3:0>
RPC4(4)
RPC4R
RPC4R<3:0>
RPD15(4)
RPD15R
RPD15R<3:0>
RPG0(4)
RPG0R
RPG0R<3:0>
(4)
RPA15R
RPA15R<3:0>
RPA15
Note 1:
2:
3:
4:
5:
RPnR Value to Peripheral
Selection
0000 = No Connect
0001 = U3TX
0010 = U4RTS
0011 = Reserved
0100 = Reserved
0101 = Reserved
0110 = SDO2
0111 = Reserved
1000 = Reserved
1001 = Reserved
1010 = Reserved
1011 = OC3
1100 = Reserved
1101 = C2OUT
1110 = Reserved
1111 = Reserved
0000 = No Connect
0001 = U2TX
0010 = Reserved
0011 = U1TX
0100 = U5RTS
0101 = Reserved
0110 = SDO2
0111 = Reserved
1000 = SDO1
1001 = Reserved
1010 = Reserved
1011 = OC4
1100 = Reserved
1101 = Reserved
1110 = Reserved
1111 = Reserved
This selection is only available on General Purpose devices.
This selection is only available on 64-pin General Purpose devices.
This selection is only available on 100-pin General Purpose devices.
This selection is only available on 100-pin USB and General Purpose devices.
This selection is not available on 64-pin USB devices.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 141
PIC32MX330/350/370/430/450/470
TABLE 12-2:
OUTPUT PIN SELECTION (CONTINUED)
RPn Port Pin
RPnR SFR
RPnR bits
RPD9
RPD9R
RPD9R<3:0>
RPG6
RPG6R
RPG6R<3:0>
RPB8
RPB8R
RPB8R<3:0>
RPB15
RPB15R
RPB15R<3:0>
RPD4
RPD4R
RPD4R<3:0>
RPB0
RPB0R
RPB0R<3:0>
RPE3
RPE3R
RPE3R<3:0>
RPB7
RPB7R
RPB7R<3:0>
RPB2
RPB2R
RPB2R<3:0>
RPF12(4)
RPF12R
RPF12R<3:0>
RPD12(4)
RPD12R
RPD12R<3:0>
RPF8(4)
RPF8R
RPF8R<3:0>
RPC3(4)
RPC3R
RPC3R<3:0>
RPE9(4)
RPE9R
RPE9R<3:0>
RPD1
RPD1R
RPD1R<3:0>
RPG9
RPG9R
RPG9R<3:0>
RPB14
RPB14R
RPB14R<3:0>
RPD0
RPD0R
RPD0R<3:0>
RPD8
RPD8R
RPD8R<3:0>
RPB6
RPB6R
RPB6R<3:0>
RPD5
RPD5R
RPD5R<3:0>
RPF3(1)
RPF3R
RPF3R<3:0>
RPF6(1)
RPF6R
RPF6R<3:0>
RPF13(4)
RPF13R
RPF13R<3:0>
RPC2(4)
RPC2R
RPC2R<3:0>
(4)
RPE8R
RPE8R<3:0>
RPF2(5)
RPF2R
RPF2R<3:0>
RPE8
Note 1:
2:
3:
4:
5:
RPnR Value to Peripheral
Selection
0000 = No Connect
0001 = U3RTS
0010 = U4TX
0011 = REFCLKO
0100 = U5TX
0101 = Reserved
0110 = Reserved
0111 = SS1
1000 = SDO1
1001 = Reserved
1010 = Reserved
1011 = OC5
1100 = Reserved
1101 = C1OUT
1110 = Reserved
1111 = Reserved
0000 = No Connect
0001 = U2RTS
0010 = Reserved
0011 = U1RTS
0100 = U5TX
0101 = Reserved
0110 = SS2
0111 = Reserved
1000 = SDO1
1001 = Reserved
1010 = Reserved
1011 = OC2
1100 = OC1
1101 = Reserved
1110 = Reserved
1111 = Reserved
This selection is only available on General Purpose devices.
This selection is only available on 64-pin General Purpose devices.
This selection is only available on 100-pin General Purpose devices.
This selection is only available on 100-pin USB and General Purpose devices.
This selection is not available on 64-pin USB devices.
DS60001185E-page 142
 2012-2015 Microchip Technology Inc.
Control Registers
ANSELA
6010
6030
6040
PORTA
LATA
ODCA
6050
CNPUA
6060
CNPDA
6070 CNCONA
6080
CNENA
Legend:
Note 1:
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
0060
—
—
—
—
—
—
—
—
—
—
0000
TRISA10
TRISA9
—
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
xxxx
30/14
29/13
28/12
27/11
31:16
—
—
—
—
—
15:0
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
15:0
TRISA15 TRISA14
ANSELA10 ANSELA9
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
RA15
RA14
—
—
—
RA10
RA9
—
RA7
RA6
RA5
RA4
RA3
RA2
RA1
RA0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
LATA15
LATA14
—
—
—
LATA10
LATA9
—
LATA7
LATA6
LATA5
LATA4
LATA3
LATA2
LATA1
LATA0
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
ODCA10
ODCA9
—
ODCA7
ODCA6
ODCA5
ODCA4
ODCA3
ODCA2
ODCA1
ODCA0
xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 CNPUA15 CNPUA14
—
—
—
31:16
—
—
—
—
—
—
15:0
31:16
ODCA15 ODCA14
—
—
—
—
15:0 CNPDA15 CNPDA14
CNPUA10 CNPUA9
—
—
CNPDA10 CNPDA9
—
—
—
CNPUA7 CNPUA6 CNPUA5 CNPUA4 CNPUA3 CNPUA2 CNPUA1 CNPUA0 xxxx
—
—
—
—
—
—
—
—
0000
CNPDA7 CNPDA6 CNPDA5 CNPDA4 CNPDA3 CNPDA2 CNPDA1 CNPDA0 xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
ON
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
—
—
CNIEA10
CNIEA9
—
CNIEA7
CNIEA6
CNIEA5
CNIEA4
CNIEA3
CNIEA2
CNIEA1
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
—
CN
STATA10
CN
STATA9
—
CN
STATA7
CN
STATA6
CN
STATA5
CN
STATA4
CN
STATA3
CN
STATA2
CN
STATA1
CN
STATA0
xxxx
15:0
31:16
6090 CNSTATA
26/10
31/15
15:0
CNIEA15 CNIEA14
—
—
CN
CN
STATA15 STATA14
—
—
CNIEA0 xxxx
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
DS60001185E-page 143
PIC32MX330/350/370/430/450/470
6020
TRISA
Bits
All
Resets
6000
PORTA REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY
Bit Range
Register
Name(1)
TABLE 12-3:
Virtual Address
(BF88_#)
 2012-2015 Microchip Technology Inc.
12.4
Virtual Address
(BF88_#)
6110
TRISB
6120
PORTB
6130
LATB
6140
ODCB
6150
CNPUB
6160
CNPDB
6170 CNCONB
CNENB
6190 CNSTATB
Legend:
Note 1:
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All
Resets
Bit Range
Register
Name(1)
Bits
6100 ANSELB
6180
PORTB REGISTER MAP
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 ANSELB15 ANSELB14 ANSELB13 ANSELB12 ANSELB11 ANSELB10 ANSELB9 ANSELB8 ANSELB7 ANSELB6 ANSELB5 ANSELB4 ANSELB3 ANSELB2 ANSELB1 ANSELB0 FFFF
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 TRISB15
31:16
—
TRISB14
—
TRISB13
—
TRISB12
—
TRISB11
—
TRISB10
—
TRISB9
—
TRISB8
—
TRISB7
—
TRISB6
—
TRISB5
—
TRISB4
—
TRISB3
—
TRISB2
—
TRISB1
—
TRISB0
—
xxxx
0000
15:0
31:16
RB15
—
RB14
—
RB13
—
RB12
—
RB11
—
RB10
—
RB9
—
RB8
—
RB7
—
RB6
—
RB5
—
RB4
—
RB3
—
RB2
—
RB1
—
RB0
—
xxxx
0000
15:0
31:16
LATB15
—
LATB14
—
LATB13
—
LATB12
—
LATB11
—
LATB10
—
LATB9
—
LATB8
—
LATB7
—
LATB6
—
LATB5
—
LATB4
—
LATB3
—
LATB2
—
LATB1
—
LATB0
—
xxxx
0000
15:0 ODCB15
31:16
—
ODCB14
—
ODCB13
—
ODCB12
—
ODCB11
—
ODCB10
—
ODCB9
—
ODCB8
—
ODCB7
—
ODCB6
—
ODCB5
—
ODCB4
—
ODCB3
—
ODCB2
—
ODCB1
—
ODCB0
—
xxxx
0000
15:0 CNPUB15 CNPUB14 CNPUB13 CNPUB12 CNPUB11 CNPUB10 CNPUB9 CNPUB8 CNPUB7 CNPUB6 CNPUB5
31:16
—
—
—
—
—
—
—
—
—
—
—
CNPUB4
—
CNPUB3 CNPUB2 CNPUB1 CNPUB0 xxxx
—
—
—
—
0000
15:0 CNPDB15 CNPDB14 CNPDB13 CNPDB12 CNPDB11 CNPDB10 CNPDB9 CNPDB8 CNPDB7 CNPDB6 CNPDB5
31:16
—
—
—
—
—
—
—
—
—
—
—
CNPDB4
—
CNPDB3 CNPDB2 CNPDB1 CNPDB0 xxxx
—
—
—
—
0000
15:0
31:16
ON
—
15:0 CNIEB15
31:16
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIEB14
—
CNIEB13
—
CNIEB12
—
CNIEB11
—
CNIEB10
—
CNIEB9
—
CNIEB8
—
CNIEB7
—
CNIEB6
—
CNIEB5
—
CNIEB4
—
CNIEB3
—
CNIEB2
—
CNIEB1
—
—
—
0000
0000
CNIEB0 xxxx
—
0000
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
xxxx
STATB15 STATB14 STATB13 STATB12 STATB11 STATB10 STATB9 STATB8 STATB7 STATB6 STATB5 STATB4 STATB3 STATB2 STATB1 STATB0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
15:0
PIC32MX330/350/370/430/450/470
DS60001185E-page 144
TABLE 12-4:
 2012-2015 Microchip Technology Inc.
Register
Name(1)
Bit Range
PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY
Virtual Address
(BF88_#)
6210
TRISC
31:16
15:0
—
TRISC15
—
TRISC14
—
TRISC13
—
TRISC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
TRISC4
—
TRISC3
—
TRISC2
—
TRISC1
—
—
0000
xxxx
6220
PORTC
31:16
15:0
—
RC15
—
RC14
—
RC13
—
RC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
RC4
—
RC3
—
RC2
—
RC1
—
—
0000
xxxx
6230
LATC
31:16
15:0
—
LATC15
—
LATC14
—
LATC13
—
LATC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LATC4
—
LATC3
—
LATC2
—
LATC1
—
—
0000
xxxx
6240
ODCC
31:16
15:0
—
ODCC15
—
ODCC14
—
ODCC13
—
ODCC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
ODCC4
—
ODCC3
—
ODCC2
—
ODCC1
—
—
0000
xxxx
6250
CNPUC
31:16
15:0
—
CNPUC15
—
CNPUC14
—
CNPUC13
—
CNPUC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPUC4
—
CNPUC3
—
CNPUC2
—
CNPUC1
—
—
0000
xxxx
6260
CNPDC
31:16
15:0
—
CNPDC15
—
CNPDC14
—
CNPDC13
—
CNPDC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPDC4
—
CNPDC3
—
CNPDC2
—
CNPDC1
—
—
0000
xxxx
6270 CNCONC
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6280
31:16
15:0
—
CNIEC15
—
CNIEC14
CNIEC13
—
CNIEC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIEC4
—
CNIEC3
—
CNIEC2
—
CNIEC1
—
—
0000
xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
Bits
6290 CNSTATC
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
15:0 CNSTATC15 CNSTATC14 CNSTATC13 CNSTATC12
—
—
—
—
CNSTATC4 CNSTATC3 CNSTATC2 CNSTATC1
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
DS60001185E-page 145
PIC32MX330/350/370/430/450/470
CNENC
31/15
All
Resets
 2012-2015 Microchip Technology Inc.
TABLE 12-5:
Virtual Address
(BF88_#)
Register
Name(1)
Bit Range
PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY
6210
TRISC
31:16
15:0
—
TRISC15
—
TRISC14
—
TRISC13
—
TRISC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
6220
PORTC
31:16
15:0
—
RC15
—
RC14
—
RC13
—
RC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
6230
LATC
31:16
15:0
—
LATC15
—
LATC14
—
LATC13
—
LATC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
6240
ODCC
31:16
15:0
—
ODCC15
—
ODCC14
—
ODCC13
—
ODCC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
6250
CNPUC
31:16
15:0
—
CNPUC15
—
CNPUC14
—
CNPUC13
—
CNPUC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
6260
CNPDC
31:16
15:0
—
CNPDC15
—
CNPDC14
—
CNPDC13
—
CNPDC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
6270 CNCONC
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6280
31:16
15:0
—
CNIEC15
—
CNIEC14
CNIEC13
—
CNIEC12
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
xxxx
CNENC
6290 CNSTATC
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All
Resets
Bits
31:16
—
—
—
—
15:0 CNSTATC15 CNSTATC14 CNSTATC13 CNSTATC12
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 146
TABLE 12-6:
 2012-2015 Microchip Technology Inc.
Register
Name(1)
Bit Range
PORTD REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY
Virtual Address
(BF88_#)
6300
ANSELD
31:16
15:0
6310
TRISD
31:16
—
15:0 TRISD15
5320
PORTD
31:16
15:0
—
RD15
—
RD14
—
RD13
—
RD12
—
RD11
—
RD10
—
RD9
—
RD8
—
RD7
—
RD6
—
RD5
—
RD4
—
RD3
—
RD2
—
RD1
—
RD0
0000
xxxx
6330
LATD
31:16
15:0
—
LATD15
—
LATD14
—
LATD13
—
LATD12
—
LATD11
—
LATD10
—
LATD9
—
LATD8
—
LATD7
—
LATD6
—
LATD5
—
LATD4
—
LATD3
—
LATD2
—
LATD1
—
LATD0
0000
xxxx
6340
ODCD
31:16
—
15:0 ODCD15
—
ODCD14
—
ODCD13
—
ODCD12
—
ODCD11
—
ODCD10
—
ODCD9
—
ODCD8
—
ODCD7
—
ODCD6
—
ODCD5
—
ODCD4
—
ODCD3
—
ODCD2
—
ODCD1
—
0000
ODCD0 xxxx
6350
CNPUD
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 CNPUD15 CNPUD14 CNPUD13 CNPUD12 CNPUD11 CNPUD10 CNPUD9 CNPUD8 CNPUD7 CNPUD6 CNPUD5 CNPUD4 CNPUD3 CNPUD2 CNPUD1 CNPUD0 xxxx
6360
CNPDD
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0 CNPDD15 CNPDD14 CNPDD13 CNPDD12 CNPDD11 CNPDD10 CNPDD9 CNPDD8 CNPDD7 CNPDD6 CNPDD5 CNPDD4 CNPDD3 CNPDD2 CNPDD1 CNPDD0 xxxx
Bits
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
TRISD14
—
TRISD13
—
TRISD12
—
TRISD11
—
TRISD10
—
TRISD9
—
TRISD8
—
TRISD7
—
TRISD6
—
TRISD5
—
TRISD4
—
TRISD3
—
TRISD2
—
TRISD1
31:16
15:0
6380
31:16
—
—
—
—
15:0 CNIED15 CNIED14 CNIED13 CNIED12
CNEND
31:16
—
—
—
SIDL
—
—
17/1
—
—
—
ANSELD3 ANSELD2 ANSELD1
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIED11
—
CNIED10
—
CNIED9
—
CNIED8
—
CNIED7
—
CNIED6
—
CNIED5
—
CNIED4
—
CNIED3
—
CNIED2
—
CNIED1
16/0
—
—
0000
00E0
—
0000
TRISD0 xxxx
—
—
0000
0000
—
0000
CNIED0 xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
CNS
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
xxxx
TATD15 STATD14 STATD13 STATD12 STATD11 STATD10 STATD9 STATD8 STATD7 STATD6 STATD5 STATD4 STATD3 STATD2 STATD1 STATD0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
6390 CNSTATD
Legend:
Note 1:
—
ON
18/2
15:0
DS60001185E-page 147
PIC32MX330/350/370/430/450/470
6370 CNCOND
19/3
All
Resets
 2012-2015 Microchip Technology Inc.
TABLE 12-7:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
—
—
0000
00E0
6300 ANSELD
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6310
TRISD
31:16
15:0
—
—
—
—
—
—
—
—
—
TRISD11
—
TRISD10
—
TRISD9
—
TRISD8
—
TRISD7
—
TRISD6
—
TRISD5
—
TRISD4
—
TRISD3
—
TRISD2
—
TRISD1
—
TRISD0
0000
xxxx
5320
PORTD
31:16
15:0
—
—
—
—
—
—
—
—
—
RD11
—
RD10
—
RD9
—
RD8
—
RD7
—
RD6
—
RD5
—
RD4
—
RD3
—
RD2
—
RD1
—
RD0
0000
xxxx
6330
LATD
31:16
15:0
—
—
—
—
—
—
—
—
—
LATD11
—
LATD10
—
LATD9
—
LATD8
—
LATD7
—
LATD6
—
LATD5
—
LATD4
—
LATD3
—
LATD2
—
LATD1
—
LATD0
0000
xxxx
6340
ODCD
31:16
15:0
—
—
—
—
—
—
—
—
—
ODCD11
—
ODCD10
—
ODCD9
—
ODCD8
—
ODCD7
—
ODCD6
—
ODCD5
—
ODCD4
—
ODCD3
—
ODCD2
—
ODCD1
—
ODCD0
0000
xxxx
6350
CNPUD
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
CNPUD11 CNPUD10 CNPUD9 CNPUD8 CNPUD7 CNPUD6 CNPUD5 CNPUD4 CNPUD3 CNPUD2 CNPUD1 CNPUD0 xxxx
6360
CNPDD
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
CNPDD11 CNPDD10 CNPDD9 CNPDD8 CNPDD7 CNPDD6 CNPDD5 CNPDD4 CNPDD3 CNPDD2 CNPDD1 CNPDD0 xxxx
6370 CNCOND
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6380
31:16
15:0
—
—
—
—
—
—
—
—
—
CNIED11
—
CNIED10
—
CNIED9
—
CNIED8
—
CNIED7
—
CNIED6
—
CNIED5
—
CNIED4
—
CNIED3
—
CNIED2
—
CNIED1
—
CNIED0
0000
xxxx
31:16
—
—
—
—
CNEND
—
—
—
—
—
—
—
—
—
—
—
—
0000
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
15:0
—
—
—
—
xxxx
STATD11 STATD10 STATD9 STATD8 STATD7 STATD6 STATD5 STATD4 STATD3 STATD2 STATD1 STATD0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
6390 CNSTATD
Legend:
Note 1:
—
—
—
ANSELD3 ANSELD2 ANSELD1
16/0
All
Resets
Bit Range
Bits
Register
Name(1)
Virtual Address
(BF88_#)
PORTD REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, PIC32MX470F512H DEVICES ONLY
PIC32MX330/350/370/430/450/470
DS60001185E-page 148
TABLE 12-8:
 2012-2015 Microchip Technology Inc.
Register
Name(1)
Bit Range
PORTE REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, PIC32MX470F512L DEVICES ONLY
Virtual Address
(BF88_#)
6400
ANSELE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6410
TRISE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
TRISE9
—
TRISE8
—
TRISE7
—
TRISE6
—
TRISE5
—
TRISE4
—
TRISE3
—
TRISE2
—
TRISE1
—
TRISE0
0000
xxxx
6420
PORTE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
RE9
—
RE8
—
RE7
—
RE6
—
RE5
—
RE4
—
RE3
—
RE2
—
RE1
—
RE0
0000
xxxx
6440
LATE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
LATE9
—
LATE8
—
LATE7
—
LATE6
—
LATE5
—
LATE4
—
LATE3
—
LATE2
—
LATE1
—
LATE0
0000
xxxx
6440
ODCE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
ODCE9
—
ODCE8
—
ODCE7
—
ODCE6
—
ODCE5
—
ODCE4
—
ODCE3
—
ODCE2
—
ODCE1
—
ODCE0
0000
xxxx
6450
CNPUE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPUE9 CNPUE8 CNPUE7
—
CNPUE6
—
CNPUE5
—
—
—
—
—
0000
CNPUE4 CNPDE3 CNPUE2 CNPUE1 CNPUE0 xxxx
6460
CNPDE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPDE9 CNPDE8 CNPDE7
—
CNPDE6
—
CNPDE5
—
—
—
—
—
0000
CNPDE4 CNPDE3 CNPDE2 CNPDE1 CNPDE0 xxxx
6470
CNCONE
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6480
CNENE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIEE9
—
CNIEE8
—
CNIEE7
—
CNIEE6
—
CNIEE5
—
CNIEE4
—
CNIEE3
—
CNIEE2
—
CNIEE1
31:16
—
—
—
—
—
—
15:0
—
—
—
—
—
—
Bits
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
—
—
—
—
ANSELE7 ANSELE6 ANSELE5 ANSELE4
19/3
18/2
17/1
16/0
—
—
—
ANSELE2
—
—
—
—
0000
00F4
0000
0000
—
0000
CNIEE0 xxxx
DS60001185E-page 149
PIC32MX330/350/370/430/450/470
—
—
—
—
—
—
—
—
—
—
—
—
0000
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
xxxx
STATE9 STATE8 STATE7 STATE6 STATE5 STATE4 STATE3 STATE2 STATE1 STATE0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
6490 CNSTATE
Legend:
Note 1:
31/15
All
Resets
 2012-2015 Microchip Technology Inc.
TABLE 12-9:
Virtual Address
(BF88_#)
Register
Name(1)
Bit Range
6400
ANSELE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6410
TRISE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
TRISE7
—
TRISE6
—
TRISE5
—
TRISE4
—
TRISE3
—
TRISE2
—
TRISE1
—
TRISE0
0000
xxxx
6420
PORTE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
RE7
—
RE6
—
RE5
—
RE4
—
RE3
—
RE2
—
RE1
—
RE0
0000
xxxx
6440
LATE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LATE7
—
LATE6
—
LATE5
—
LATE4
—
LATE3
—
LATE2
—
LATE1
—
LATE0
0000
xxxx
6440
ODCE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
ODCE7
—
ODCE6
—
ODCE5
—
ODCE4
—
ODCE3
—
ODCE2
—
ODCE1
—
ODCE0
0000
xxxx
6450
CNPUE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPUE7
—
CNPUE6
—
CNPUE5
—
—
—
—
—
0000
CNPUE4 CNPDE3 CNPUE2 CNPUE1 CNPUE0 xxxx
6460
CNPDE
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPDE7
—
CNPDE6
—
CNPDE5
—
—
—
—
—
0000
CNPDE4 CNPDE3 CNPDE2 CNPDE1 CNPDE0 xxxx
6470 CNCONE
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6480
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIEE7
—
CNIEE6
—
CNIEE5
—
CNIEE4
—
CNIEE3
—
CNIEE2
—
CNIEE1
31:16
—
—
—
—
—
—
—
—
CNENE
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
—
—
—
—
ANSELE7 ANSELE6 ANSELE5 ANSELE4
19/3
18/2
17/1
16/0
—
—
—
ANSELE2
—
—
—
—
0000
00F4
—
—
0000
0000
—
0000
CNIEE0 xxxx
—
—
—
—
—
—
—
—
0000
CN
CN
CN
CN
CN
CN
CN
CN
15:0
—
—
—
—
—
—
—
—
xxxx
STATE7 STATE6 STATE5 STATE4 STATE3 STATE2 STATE1 STATE0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
6490 CNSTATE
Legend:
Note 1:
31/15
All
Resets
Bits
PIC32MX330/350/370/430/450/470
DS60001185E-page 150
TABLE 12-10: PORTE REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY
 2012-2015 Microchip Technology Inc.
Virtual Address
(BF88_#)
Register
Name(1)
Bit Range
6510
TRISF
31:16
15:0
—
—
—
—
—
TRISF13
—
TRISF12
—
—
—
—
—
—
—
TRISF8
—
TRISF7
—
TRISF6
—
TRISF5
—
TRISF4
—
TRISF3
—
TRISF2
—
TRISF1
—
TRISF0
0000
xxxx
6520
PORTF
31:16
15:0
—
—
—
—
—
RF13
—
RF12
—
—
—
—
—
—
—
RF8
—
RF7
—
RF6
—
RF5
—
RF4
—
RF3
—
RF2
—
RF1
—
RF0
0000
xxxx
6530
LATF
31:16
15:0
—
—
—
—
—
LATF13
—
LATF12
—
—
—
—
—
—
—
LATF8
—
LATF7
—
LATF6
—
LATF5
—
LATF4
—
LATF3
—
LATF2
—
LATF1
—
LATF0
0000
xxxx
6540
ODCF
31:16
15:0
—
—
—
—
—
ODCF13
—
ODCF12
—
—
—
—
—
—
—
ODCF8
—
ODCF7
—
ODCF6
—
ODCF5
—
ODCF4
—
ODCF3
—
ODCF2
—
ODCF1
—
ODCF0
0000
xxxx
6550
CNPUF
31:16
15:0
—
—
—
—
—
—
CNPUF13 CNPUF12
—
—
—
—
—
—
—
CNPUF8
—
CNPUF7
—
CNPUF6
—
CNPUF5
—
CNPUF4
—
CNPDF3
—
CNPUF2
—
CNPUF1
—
0000
CNPUF0 xxxx
6560
CNPDF
31:16
15:0
—
—
—
—
—
—
CNPDF13 CNPDF12
—
—
—
—
—
—
—
CNPDF8
—
CNPDF7
—
CNPDF6
—
CNPDF5
—
CNPDF4
—
CNPDF3
—
CNPDF2
—
CNPDF1
—
0000
CNPDF0 xxxx
6570 CNCONF
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6580
31:16
15:0
—
—
—
—
—
CNIEF13
—
CNIEF12
—
—
—
—
—
—
—
CNIEF8
—
CNIEF7
—
CNIEF6
—
CNIEF5
—
CNIEF4
—
CNIEF3
—
CNIEF2
—
CNIEF1
—
CNIEF0
0000
xxxx
31:16
—
—
Bits
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
15:0
—
—
—
—
—
xxxx
STATF13 STATF12
STATF8 STATF7 STATF6 STATF5 STATF4 STATF3 STATF2 STATF1 STATF0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
6590 CNSTATF
Legend:
Note 1:
30/14
DS60001185E-page 151
PIC32MX330/350/370/430/450/470
CNENF
31/15
All
Resets
 2012-2015 Microchip Technology Inc.
TABLE 12-11: PORTF REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, AND PIC32MX370F512L DEVICES
ONLY
Virtual Address
(BF88_#)
Register
Name(1)
Bit Range
6510
TRISF
31:16
15:0
—
—
—
—
—
TRISF13
—
TRISF12
—
—
—
—
—
—
—
TRISF8
—
—
—
—
—
TRISF5
—
TRISF4
—
TRISF3
—
TRISF2
—
TRISF1
—
TRISF0
0000
xxxx
6520
PORTF
31:16
15:0
—
—
—
—
—
RF13
—
RF12
—
—
—
—
—
—
—
RF8
—
—
—
—
—
RF5
—
RF4
—
RF3
—
RF2
—
RF1
—
RF0
0000
xxxx
6530
LATF
31:16
15:0
—
—
—
—
—
LATF13
—
LATF12
—
—
—
—
—
—
—
LATF8
—
—
—
—
—
LATF5
—
LATF4
—
LATF3
—
LATF2
—
LATF1
—
LATF0
0000
xxxx
6540
ODCF
31:16
15:0
—
—
—
—
—
ODCF13
—
ODCF12
—
—
—
—
—
—
—
ODCF8
—
—
—
—
—
ODCF5
—
ODCF4
—
ODCF3
—
ODCF2
—
ODCF1
—
ODCF0
0000
xxxx
6550
CNPUF
31:16
15:0
—
—
—
—
—
—
CNPUF13 CNPUF12
—
—
—
—
—
—
—
CNPUF8
—
—
—
—
—
CNPUF5
—
CNPUF4
—
CNPDF3
—
CNPUF2
—
CNPUF1
—
0000
CNPUF0 xxxx
6560
CNPDF
31:16
15:0
—
—
—
—
—
—
CNPDF13 CNPDF12
—
—
—
—
—
—
—
CNPDF8
—
—
—
—
—
CNPDF5
—
CNPFF4
—
CNPDF3
—
CNPDF2
—
CNPDF1
—
0000
CNPDF0 xxxx
6570 CNCONF
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6580
31:16
15:0
—
—
—
—
—
CNIEF13
—
CNIEF12
—
—
—
—
—
—
—
CNIEF8
—
—
—
—
—
CNIEF5
—
CNIEF4
—
CNIEF3
—
CNIEF2
—
CNIEF1
—
CNIEF0
0000
xxxx
31:16
—
—
15:0
—
—
CNENF
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
CN
CN
CN
CN
CN
CN
CN
CN
CN
—
—
—
—
—
xxxx
STATF13 STATF12
STATF8
STATF5 STATF4 STATF3 STATF2 STATF1 STATF0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
6590 CNSTATF
Legend:
Note 1:
31/15
All
Resets
Bits
PIC32MX330/350/370/430/450/470
DS60001185E-page 152
TABLE 12-12: PORTF REGISTER MAP FOR PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES
ONLY
 2012-2015 Microchip Technology Inc.
Virtual Address
(BF88_#)
Register
Name(1)
Bit Range
6510
TRISF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
TRISF6
—
TRISF5
—
TRISF4
—
TRISF3
—
TRISF2
—
TRISF1
—
TRISF0
0000
xxxx
6520
PORTF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
RF6
—
RF5
—
RF4
—
RF3
—
RF2
—
RF1
—
RF0
0000
xxxx
6530
LATF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LATF6
—
LATF5
—
LATF4
—
LATF3
—
LATF2
—
LATF1
—
LATF0
0000
xxxx
6540
ODCF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
ODCF6
—
ODCF5
—
ODCF4
—
ODCF3
—
ODCF2
—
ODCF1
—
ODCF0
0000
xxxx
6550
CNPUF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPUF6
—
CNPUF5
—
CNPUF4
—
CNPUF3
—
CNPUF2
—
CNPUF1
—
0000
CNPUF0 xxxx
6560
CNPDF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPDF6
—
CNPDF5
—
CNPDF4
—
CNPDF3
—
CNPDF2
—
CNPDF1
—
0000
CNPDF0 xxxx
6570 CNCONF
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6580
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIEF6
—
CNIEF5
—
CNIEF4
—
CNIEF3
—
CNIEF2
—
CNIEF1
—
CNIEF0
0000
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CN
STATF5
—
CN
STATF4
—
CN
STATF3
—
CN
STATF2
—
CN
STATF1
—
CN
STATF0
0000
15:0
—
CN
STATF6
Bits
6590 CNSTATF
Legend:
Note 1:
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
xxxx
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
DS60001185E-page 153
PIC32MX330/350/370/430/450/470
CNENF
31/15
All
Resets
 2012-2015 Microchip Technology Inc.
TABLE 12-13: PORTF REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, AND PIC32MX370F512H DEVICES
ONLY
Virtual Address
(BF88_#)
Register
Name(1)
Bit Range
6510
TRISF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
TRISF5
—
TRISF4
—
TRISF3
—
—
—
TRISF1
—
TRISF0
0000
xxxx
6520
PORTF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
RF5
—
RF4
—
RF3
—
—
—
RF1
—
RF0
0000
xxxx
6530
LATF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
LATF5
—
LATF4
—
LATF3
—
—
—
LATF1
—
LATF0
0000
xxxx
6540
ODCF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
ODCF5
—
ODCF4
—
ODCF3
—
—
—
ODCF1
—
ODCF0
0000
xxxx
6550
CNPUF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPUF5
—
CNPUF4
—
CNPUF3
—
—
—
CNPUF1
—
0000
CNPUF0 xxxx
6560
CNPDF
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPDF5
—
CNPDF4
—
CNPDF3
—
—
—
CNPDF1
—
0000
CNPDF0 xxxx
6570 CNCONF
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6580
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIEF5
—
CNIEF4
—
CNIEF3
—
—
—
CNIEF1
—
CNIEF0
0000
xxxx
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
CN
STATF4
—
CN
STATF3
—
CN
STATF1
—
CN
STATF0
0000
—
—
CN
STATF5
—
15:0
CNENF
6590 CNSTATF
Legend:
Note 1:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
All
Resets
Bits
—
xxxx
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 154
TABLE 12-14: PORTF REGISTER MAP FOR PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES
ONLY
 2012-2015 Microchip Technology Inc.
31/15
30/14
29/13
28/12
27/11
26/10
—
—
—
—
—
—
—
—
—
—
—
—
25/9
24/8
23/7
22/6
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
0000
01C0
31:16
15:0
6610
TRISG
31:16
—
—
—
—
15:0 TRISG15 TRISG14 TRISG13 TRISG12
—
—
—
—
—
TRISG9
—
TRISG8
—
TRISG7
—
TRISG6
—
—
—
—
—
TRISG3
—
TRISG2
—
TRISG1
—
TRISG0
0000
xxxx
6620
PORTG
31:16
15:0
—
RG15
—
RG14
—
RG13
—
RG12
—
—
—
—
—
RG9
—
RG8
—
RG7
—
RG6
—
—
—
—
—
RG3(2)
—
RG2(2)
—
RG1
—
RG0
0000
xxxx
6630
LATG
31:16
15:0
—
LATG15
—
LATG14
—
LATG13
—
LATG12
—
—
—
—
—
LATG9
—
LATG8
—
LATG7
—
LATG6
—
—
—
—
—
LATG3
—
LATG2
—
LATG1
—
LATG0
0000
xxxx
6640
ODCG
31:16
—
15:0 ODCG15
—
ODCG14
—
ODCG13
—
ODCG12
—
—
—
—
—
ODCG9
—
ODCG8
—
ODCG7
—
ODCG6
—
—
—
—
—
ODCG3
—
ODCG2
—
ODCG1
—
ODCG0
0000
xxxx
6650
CNPUG
31:16
—
—
—
—
15:0 CNPUG15 CNPUG14 CNPUG13 CNPUG12
—
—
—
—
—
CNPUG9
—
CNPUG8
—
CNPUG7
—
CNPUG6
—
—
—
—
—
—
—
—
0000
CNPUG3 CNPUG2 CNPUG1 CNPUG0 xxxx
6660
CNPDG
31:16
—
—
—
—
15:0 CNPDG15 CNPDG14 CNPDG13 CNPDG12
—
—
—
—
—
CNPDG9
—
CNPDG8
—
CNPDG7
—
CNPDG6
—
—
—
—
—
—
—
—
0000
CNPDG3 CNPDG2 CNPDG1 CNPDG0 xxxx
6670 CNCONG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6680
31:16
—
—
—
—
15:0 CNIEG15 CNIEG14 CNIEG13 CNIEG12
—
—
—
—
—
CNIEG9
—
CNIEG8
—
CNIEG7
—
CNIEG6
—
—
—
—
—
CNIEG3
—
CNIEG2
—
CNIEG1
CNENG
31:16
2:
—
SIDL
—
—
—
—
0000
0000
—
0000
CNIEG0 xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
CN
—
—
—
—
xxxx
STATG15 STATG14 STATG13 STATG12
STATG9
STATG8
STATG7
STATG6
STATG3 STATG2 STATG1 STATG0
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
This bit only implemented on devices without a USB module.
6690 CNSTATG
Legend:
Note 1:
—
—
15:0
DS60001185E-page 155
PIC32MX330/350/370/430/450/470
6600 ANSELG
—
ON
—
—
—
—
ANSELG9 ANSELG8 ANSELG7 ANSELG6
21/5
All
Resets
Bit Range
Bits
Register
Name(1)
Virtual Address
(BF88_#)
 2012-2015 Microchip Technology Inc.
TABLE 12-15: PORTG REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
0000
01C0
6600 ANSELG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
6610
TRISG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
TRISG9
—
TRISG8
—
TRISG7
—
TRISG6
—
—
—
—
—
TRISG3
—
TRISG2
—
—
—
—
0000
xxxx
6620
PORTG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
RG9
—
RG8
—
RG7
—
RG6
—
—
—
—
—
RG3(2)
—
RG2(2)
—
—
—
—
0000
xxxx
6630
LATG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
LATG9
—
LATG8
—
LATG7
—
LATG6
—
—
—
—
—
LATG3
—
LATG2
—
—
—
—
0000
xxxx
6640
ODCG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
ODCG9
—
ODCG8
—
ODCG7
—
ODCG6
—
—
—
—
—
ODCG3
—
ODCG2
—
—
—
—
0000
xxxx
6650
CNPUG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPUG9
—
CNPUG8
—
CNPUG7
—
CNPUG6
—
—
—
—
—
—
CNPUG3 CNPUG2
—
—
—
—
0000
xxxx
6660
CNPDG
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
CNPDG9
—
CNPDG8
—
CNPDG7
—
CNPDG6
—
—
—
—
—
—
CNPDG3 CNPDG2
—
—
—
—
0000
xxxx
6670 CNCONG
31:16
15:0
—
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
6680
31:16
15:0
—
—
—
—
—
—
—
—
—
—
—
—
—
CNIEG9
—
CNIEG8
—
CNIEG7
—
CNIEG6
—
—
—
—
—
CNIEG3
—
CNIEG2
—
—
—
—
0000
xxxx
31:16
—
—
—
—
—
—
CNENG
—
—
—
—
—
—
—
—
—
—
0000
CN
CN
CN
CN
CN
CN
15:0
—
—
—
—
—
—
—
—
—
—
xxxx
STATG9
STATG8
STATG7
STATG6
STATG3 STATG2
x = Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
This bit is only available on devices without a USB module.
6690 CNSTATG
Legend:
Note 1:
 2012-2015 Microchip Technology Inc.
2:
—
—
—
—
ANSELG9 ANSELG8 ANSELG7 ANSELG6
21/5
All
Resets
Bit Range
Register
Name(1)
Virtual Address
(BF88_#)
Bits
PIC32MX330/350/370/430/450/470
DS60001185E-page 156
TABLE 12-16: PORTG REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY
Register
Name
FA04
INT1R
FA08
INT2R
FA0C
INT3R
FA10
INT4R
FA18
T2CKR
FA1C
T3CKR
FA20
T4CKR
FA24
T5CKR
FA28
IC1R
FA2C
IC2R
FA30
IC3R
FA34
IC4R
FA38
IC5R
FA48
OCFAR
FA50
U1RXR
Legend:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
INT1R<3:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
U1RXR<3:0>
0000
0000
—
OCFAR<3:0>
—
0000
0000
IC5R<3:0>
—
0000
0000
IC4R<3:0>
—
0000
0000
IC3R<3:0>
—
0000
0000
IC2R<3:0>
—
0000
0000
IC1R<3:0>
—
0000
0000
T5CKR<3:0>
—
0000
0000
T4CKR<3:0>
—
0000
0000
T3CKR<3:0>
—
0000
0000
T2CKR<3:0>
—
0000
0000
INT4R<3:0>
—
0000
0000
INT3R<3:0>
—
0000
0000
INT2R<3:0>
—
All Resets
Bit Range
Bits
0000
0000
—
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 157
Virtual Address
(BF80_#)
 2012-2015 Microchip Technology Inc.
TABLE 12-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP
Virtual Address
(BF80_#)
Register
Name
 2012-2015 Microchip Technology Inc.
FA54
U1CTSR
FA58
U2RXR
FA5C
U2CTSR
FA60
U3RXR
FA64
U3CTSR
FA68
U4RXR
FA6C
U4CTSR
FA70
U5RXR
FA74
U5CTSR
FA84
SDI1R
FA88
SS1R
FA90
SDI2R
FA94
SS2R
FAD0 REFCLKIR
Legend:
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
18/2
17/1
16/0
—
—
—
U1CTSR<3:0>
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
REFCLKIR<3:0>
0000
0000
—
SS2R<3:0>
—
0000
0000
SDI2R<3:0>
—
0000
0000
SS1R<3:0>
—
0000
0000
SDI1R<3:0>
—
0000
0000
U5CTSR<3:0>
—
0000
0000
U5RXR<3:0>
—
0000
0000
U4CTSR<3:0>
—
0000
0000
U4RXR<3:0>
—
0000
0000
U3CTSR<3:0>
—
0000
0000
U3RXR<3:0>
—
0000
0000
U2CTSR<3:0>
—
0000
0000
U2RXR<3:0>
—
All Resets
Bit Range
Bits
0000
0000
—
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 158
TABLE 12-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
RPA14R(1)
22/6
21/5
20/4
19/3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
18/2
17/1
—
—
RPA14<3:0>
—
—
RPA15<3:0>
—
—
RPB0<3:0>
—
—
RPB1<3:0>
—
—
RPB2<3:0>
—
—
RPB3<3:0>
—
—
RPB5<3:0>
—
—
RPB6<3:0>
—
—
RPB7<3:0>
—
—
RPB8<3:0>
—
—
RPB9<3:0>
—
—
RPB10<3:0>
—
—
RPB14<3:0>
—
—
RPB15<3:0>
—
—
RPC1<3:0>
—
—
RPC2<3:0>
—
—
RPC3<3:0>
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 159
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
(1) 31:16
FB3C RPA15R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB40 RPB0R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB44 RPB1R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FB48 RPB2R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB4C RPB3R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB54 RPB5R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FB58 RPB6R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB5C RPB7R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB60 RPB8R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FB64 RPB9R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB68 RPB10R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FB78 RPB14R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FB7C RPB15R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FB84 RPC1R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FB88 RPC2R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
(1)
FB8C RPC3R
15:0
—
—
—
—
—
—
—
—
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register is not available on 64-pin devices.
2:
This register is only available on devices without a USB module.
3:
This register is not available on 64-pin devices with a USB module.
FB38
23/7
All Resets
Bit Range
Bits
Register
Name
Virtual Address
(BF80_#)
 2012-2015 Microchip Technology Inc.
TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
 2012-2015 Microchip Technology Inc.
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FBB4 RPC13R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FBB8 RPC14R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FBC0 RPD0R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FBC4 RPD1R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FBC8 RPD2R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FBCC RPD3R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FBD0 RPD4R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FBD4 RPD5R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FBE0 RPD8R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FBE4 RPD9R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FBE8 RPD10R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FBEC RPD11R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FBF0 RPD12R
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
(1) 31:16
FBF8 RPD14R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FBFC RPD15R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FC0C RPE3R
—
—
—
—
—
—
—
—
15:0
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register is not available on 64-pin devices.
2:
This register is only available on devices without a USB module.
3:
This register is not available on 64-pin devices with a USB module.
FB90
RPC4R(1)
23/7
22/6
21/5
20/4
19/3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
18/2
17/1
—
—
RPC4<3:0>
—
—
RPC13<3:0>
—
—
RPC14<3:0>
—
—
RPD0<3:0>
—
—
RPD1<3:0>
—
—
RPD2<3:0>
—
—
RPD3<3:0>
—
—
RPD4<3:0>
—
—
RPD5<3:0>
—
—
RPD8<3:0>
—
—
RPD9<3:0>
—
—
RPD10<3:0>
—
—
RPD11<3:0>
—
—
RPD12<3:0>
—
—
RPD14<3:0>
—
—
RPD15<3:0>
—
—
RPE3<3:0>
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
All Resets
Bit Range
Register
Name
Virtual Address
(BF80_#)
Bits
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 160
TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
RPE5R
22/6
21/5
20/4
19/3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
18/2
17/1
—
—
RPE5<3:0>
—
—
RPE8<3:0>
—
—
RPE9<3:0>
—
—
RPF0<3:0>
—
—
RPF1<3:0>
—
—
RPF2<3:0>
—
—
RPF3<3:0>
—
—
RPF4<3:0>
—
—
RPF5<3:0>
—
—
RPF6<3:0>
—
—
RPF8<3:0>
—
—
RPF12<3:0>
—
—
RPF13<3:0>
—
—
RPG0<3:0>
—
—
RPG1<3:0>
—
—
RPG6<3:0>
—
—
RPG7<3:0>
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 161
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FC20 RPE8R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
(1)
FC24 RPE9R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FC40 RPF0R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FC44 RPF1R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
(3)
FC48 RPF2R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(2)
FC4C RPF3R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FC50 RPF4R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FC54 RPF5R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(2)
FC58 RPF6R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FC60 RPF8R
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
—
(1) 31:16
FC70 RPF12R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FC74 RPF13R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
(1)
FC80 RPG0R
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
(1)
FC84 RPG1R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FC98 RPG6R
15:0
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
FC9C RPG7R
—
—
—
—
—
—
—
—
15:0
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register is not available on 64-pin devices.
2:
This register is only available on devices without a USB module.
3:
This register is not available on 64-pin devices with a USB module.
FC14
23/7
All Resets
Bit Range
Bits
Register
Name
Virtual Address
(BF80_#)
 2012-2015 Microchip Technology Inc.
TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
—
—
—
—
—
—
—
—
31:16
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
—
FCA4 RPG9R
—
—
—
—
—
—
—
—
15:0
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register is not available on 64-pin devices.
2:
This register is only available on devices without a USB module.
3:
This register is not available on 64-pin devices with a USB module.
FCA0
RPG8R
23/7
22/6
21/5
20/4
19/3
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
18/2
17/1
—
—
RPG8<3:0>
—
—
RPG9<3:0>
16/0
—
—
All Resets
Bit Range
Register
Name
Virtual Address
(BF80_#)
Bits
0000
0000
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 162
TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 12-1:
Bit
Range
31:24
23:16
15:8
7:0
[pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
—
[pin name]R<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-4
Unimplemented: Read as ‘0’
bit 3-0
[pin name]R<3:0>: Peripheral Pin Select Input bits
Where [pin name] refers to the pins that are used to configure peripheral input mapping. See Table 12-1 for
input pin selection values.
Note:
Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.
REGISTER 12-2:
Bit
Range
31:24
23:16
15:8
7:0
RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
—
RPnR<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 31-4
Unimplemented: Read as ‘0’
bit 3-0
RPnR<3:0>: Peripheral Pin Select Output bits
See Table 12-2 for output pin selection values.
Note:
x = Bit is unknown
Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 163
PIC32MX330/350/370/430/450/470
REGISTER 12-3:
Bit
Range
31:24
23:16
15:8
7:0
CNCONx: CHANGE NOTICE CONTROL FOR PORTx REGISTER (x = A – G)
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
Bit
Bit
28/20/12/4 27/19/11/3
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
U-0
R/W-0
U-0
U-0
U-0
U-0
U-0
ON
—
SIDL
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: Change Notice (CN) Control ON bit
1 = CN is enabled
0 = CN is disabled
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Control bit
1 = CPU Idle Mode halts CN operation
0 = CPU Idle does not affect CN operation
bit 12-0
Unimplemented: Read as ‘0’
DS60001185E-page 164
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
13.0
The following modes are supported:
TIMER1
Note:
•
•
•
•
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 14. “Timers”
(DS60001105), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
13.1
Additional Supported Features
• Selectable clock prescaler
• Timer operation during CPU Idle and Sleep mode
• Fast bit manipulation using CLR, SET and INV
registers
• Asynchronous mode can be used with the SOSC
to function as a Real-Time Clock (RTC)
This family of PIC32 devices features one synchronous/
asynchronous 16-bit timer that can operate as a freerunning interval timer for various timing applications and
counting external events. This timer can also be used
with the Low-Power Secondary Oscillator (SOSC) for
Real-Time Clock (RTC) applications.
FIGURE 13-1:
Synchronous Internal Timer
Synchronous Internal Gated Timer
Synchronous External Timer
Asynchronous External Timer
TIMER1 BLOCK DIAGRAM
Data Bus<31:0>
TSYNC
<15:0>
1
Reset
Sync
TMR1
0
Equal
16-bit Comparator
PR1
T1IF
Event Flag
0
Q
1
TGATE
D
Q
TGATE
TCS
ON
SOSCO/T1CK
x1
SOSCEN
SOSCI
Gate
Sync
PBCLK
10
00
Prescaler
1, 8, 64, 256
2
TCKPS<1:0>
Note:
The default state of the SOSCEN (OSCCON<1>) bit during a device Reset is controlled by the FSOSCEN
bit in Configuration Word, DEVCFG1.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 165
Control Registers
Virtual Address
(BF80_#)
TABLE 13-1:
TMR1
0620
Legend:
Note 1:
PR1
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
31:16
—
—
—
15:0
31:16
ON
—
—
—
SIDL
—
15:0
31:16
—
—
—
—
23/7
22/6
21/5
20/4
19/3
—
—
—
—
TWDIS
—
TWIP
—
—
—
—
—
—
—
—
TMR1<15:0>
—
—
—
—
—
—
—
—
—
—
TGATE
—
—
—
TCKPS<1:0>
—
—
—
—
—
—
—
—
15:0
PR1<15:0>
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
—
18/2
All Resets
Bit Range
Register
Name(1)
Bits
0600 T1CON
0610
TIMER1 REGISTER MAP
17/1
16/0
—
—
—
0000
TSYNC
—
TCS
—
—
—
0000
0000
—
—
0000
0000
FFFF
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 166
13.2
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 13-1:
Bit
Range
31:24
23:16
15:8
7:0
T1CON: TYPE A TIMER CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
R/W-0
R/W-0
R-0
U-0
U-0
U-0
ON
—
SIDL
TWDIS
TWIP
—
—
—
R/W-0
U-0
R/W-0
R/W-0
U-0
R/W-0
R/W-0
U-0
TGATE
—
—
TSYNC
TCS
—
TCKPS<1:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: Timer On bit(1)
1 = Timer is enabled
0 = Timer is disabled
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode
0 = Continue operation even in Idle mode
bit 12
TWDIS: Asynchronous Timer Write Disable bit
1 = Writes to TMR1 are ignored until pending write operation completes
0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11
TWIP: Asynchronous Timer Write in Progress bit
In Asynchronous Timer mode:
1 = Asynchronous write to TMR1 register in progress
0 = Asynchronous write to TMR1 register complete
In Synchronous Timer mode:
This bit is read as ‘0’.
bit 10-8
Unimplemented: Read as ‘0’
bit 7
TGATE: Timer Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled
bit 6
Unimplemented: Read as ‘0’
bit 5-4
TCKPS<1:0>: Timer Input Clock Prescale Select bits
11 = 1:256 prescale value
10 = 1:64 prescale value
01 = 1:8 prescale value
00 = 1:1 prescale value
bit 3
Unimplemented: Read as ‘0’
Note 1:
When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 167
PIC32MX330/350/370/430/450/470
REGISTER 13-1:
T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)
bit 2
TSYNC: Timer External Clock Input Synchronization Selection bit
When TCS = 1:
1 = External clock input is synchronized
0 = External clock input is not synchronized
When TCS = 0:
This bit is ignored.
bit 1
TCS: Timer Clock Source Select bit
1 = External clock from TxCKI pin
0 = Internal peripheral clock
bit 0
Unimplemented: Read as ‘0’
Note 1:
When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
DS60001185E-page 168
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
14.0
Note:
Two 32-bit synchronous timers are available by
combining Timer2 with Timer3 and Timer4 with Timer5.
The 32-bit timers can operate in three modes:
TIMER2/3, TIMER4/5
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 14. “Timers”
(DS60001105), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
• Synchronous internal 32-bit timer
• Synchronous internal 32-bit gated timer
• Synchronous external 32-bit timer
Note:
This family of PIC32 devices features four synchronous
16-bit timers (default) that can operate as a freerunning interval timer for various timing applications
and counting external events. The following modes are
supported:
14.1
Additional Supported Features
• Selectable clock prescaler
• Timers operational during CPU idle
• Time base for Input Capture and Output Compare
modules (Timer2 and Timer3 only)
• ADC event trigger (Timer3 in 16-bit mode, Timer2/
3 in 32-bit mode)
• Fast bit manipulation using CLR, SET, and INV
registers
• Synchronous internal 16-bit timer
• Synchronous internal 16-bit gated timer
• Synchronous external 16-bit timer
FIGURE 14-1:
In this chapter, references to registers,
TxCON, TMRx and PRx, use ‘x’ to
represent Timer2 through 5 in 16-bit
modes. In 32-bit modes, ‘x’ represents
Timer2 or 4; ‘y’ represents Timer3 or 5.
TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)
Data Bus<31:0>
<15:0>
Reset
Sync
TMRx
ADC Event
Trigger(1)
Equal
Comparator x 16
PRx
TxIF
Event Flag
0
1
TGATE
Q
TGATE
D
Q
TCS
ON
TxCK
x1
Gate
Sync
PBCLK
Note
1:
ADC event trigger is available on Timer3 only.
 2012-2015 Microchip Technology Inc.
10
00
Prescaler
1, 2, 4, 8, 16,
32, 64, 256
3
TCKPS
DS60001185E-page 169
PIC32MX330/350/370/430/450/470
TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)(1)
FIGURE 14-2:
Data Bus<31:0>
<31:0>
Reset
TMRy(1)
MS Half Word
ADC Event
Trigger(2)
Equal
Sync
LS Half Word
32-bit Comparator
PRy
TyIF Event
Flag
TMRx(1)
PRx
0
1
TGATE
Q
D
TGATE
Q
TCS
ON
TxCK
x1
Gate
Sync
PBCLK
10
00
Prescaler
1, 2, 4, 8, 16,
32, 64, 256
3
TCKPS
Note 1:
2:
In this diagram, the use of ‘x’ in registers, TxCON, TMRx, PRx and TxCK, refers to either Timer2 or Timer4; the
use of ‘y’ in registers, TyCON, TMRy, PRy, TyIF, refers to either Timer3 or Timer5.
ADC event trigger is available only on the Timer2/3 pair.
DS60001185E-page 170
 2012-2015 Microchip Technology Inc.
Control Register
TABLE 14-1:
Virtual Address
(BF80_#)
0800 T2CON
0810
TIMER2 THROUGH TIMER5 REGISTER MAP
TMR2
PR2
0A00 T3CON
0A10 TMR3
0A20
PR3
0C00 T4CON
0C10 TMR4
0C20
PR4
0E00 T5CON
0E10 TMR5
0E20
Legend:
Note 1:
PR5
30/14
29/13
28/12
27/11
26/10
25/9
24/8
31:16
—
15:0
31:16
ON
—
15:0
31:16
23/7
22/6
21/5
20/4
19/3
18/2
—
—
—
—
—
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
—
TGATE
—
—
—
—
TCKPS<2:0>
—
—
—
—
T32
—
—
—
—
—
—
—
—
TMR2<15:0>
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
PR2<15:0>
—
—
—
—
15:0
31:16
ON
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
—
—
TMR3<15:0>
—
—
15:0
31:16
—
—
—
—
—
—
—
15:0
31:16
ON
—
—
—
SIDL
—
—
—
—
—
—
—
15:0
31:16
—
—
—
—
—
15:0
31:16
—
—
—
—
15:0
31:16
ON
—
—
—
SIDL
—
15:0
31:16
—
—
—
All Resets
31/15
17/1
16/0
—
—
—
0000
—
—
TCS
—
—
—
0000
0000
—
—
—
—
0000
0000
—
—
—
—
—
FFFF
0000
TCKPS<2:0>
—
—
—
—
—
—
TCS
—
—
—
0000
0000
—
—
—
—
—
—
—
0000
0000
PR3<15:0>
—
—
—
—
—
—
—
—
—
FFFF
0000
—
—
—
—
—
TCKPS<2:0>
—
—
T32
—
—
—
TCS
—
—
—
0000
0000
—
—
TMR4<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
—
—
—
PR4<15:0>
—
—
—
—
—
—
—
—
—
FFFF
0000
—
—
—
—
—
—
—
—
—
—
—
TCKPS<2:0>
—
—
—
—
—
—
TCS
—
—
—
0000
0000
—
—
—
—
TMR5<15:0>
—
—
—
—
—
—
—
—
—
0000
0000
TGATE
—
TGATE
—
TGATE
—
15:0
PR5<15:0>
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
FFFF
DS60001185E-page 171
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
0820
Bit Range
Bits
Register
Name(1)
 2012-2015 Microchip Technology Inc.
14.2
PIC32MX330/350/370/430/450/470
REGISTER 14-1:
Bit
Range
31:24
23:16
15:8
7:0
TxCON: TYPE B TIMER CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
U-0
R/W-0
U-0
U-0
U-0
U-0
U-0
ON(1,3)
—
SIDL(4)
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
R/W-0
U-0
T32(2)
—
TCS(3)
—
TGATE(3)
TCKPS<2:0>(3)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16
Unimplemented: Read as ‘0’
bit 15
ON: Timer On bit(1,3)
1 = Module is enabled
0 = Module is disabled
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit(4)
1 = Discontinue operation when device enters Idle mode
0 = Continue operation even in Idle mode
bit 12-8
Unimplemented: Read as ‘0’
bit 7
TGATE: Timer Gated Time Accumulation Enable bit(3)
When TCS = 1:
This bit is ignored and is read as ‘0’.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled
bit 6-4
TCKPS<2:0>: Timer Input Clock Prescale Select bits(3)
111 = 1:256 prescale value
110 = 1:64 prescale value
101 = 1:32 prescale value
100 = 1:16 prescale value
011 = 1:8 prescale value
010 = 1:4 prescale value
001 = 1:2 prescale value
000 = 1:1 prescale value
Note 1:
When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
This bit is available only on even numbered timers (Timer2 and Timer4).
While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All
timer functions are set through the even numbered timers.
While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer
in Idle mode.
2:
3:
4:
DS60001185E-page 172
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 14-1:
TxCON: TYPE B TIMER CONTROL REGISTER (CONTINUED)
bit 3
T32: 32-Bit Timer Mode Select bit(2)
1 = Odd numbered and even numbered timers form a 32-bit timer
0 = Odd numbered and even numbered timers form a separate 16-bit timer
bit 2
Unimplemented: Read as ‘0’
bit 1
TCS: Timer Clock Source Select bit(3)
1 = External clock from TxCK pin
0 = Internal peripheral clock
bit 0
Unimplemented: Read as ‘0’
Note 1:
When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
This bit is available only on even numbered timers (Timer2 and Timer4).
While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All
timer functions are set through the even numbered timers.
While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer
in Idle mode.
2:
3:
4:
 2012-2015 Microchip Technology Inc.
DS60001185E-page 173
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 174
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
15.0
WATCHDOG TIMER (WDT)
Note:
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 9. “Watchdog,
Deadman, and Power-up Timers”
(DS60001114), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
FIGURE 15-1:
The WDT, when enabled, operates from the internal
Low-Power Oscillator (LPRC) clock source and can be
used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in
software. Various WDT time-out periods can be
selected using the WDT postscaler. The WDT can also
be used to wake the device from Sleep or Idle mode.
The following are some of the key features of the WDT
module:
• Configuration or software controlled
• User-configurable time-out period
• Can wake the device from Sleep or Idle
WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM
PWRT Enable
WDT Enable
LPRC
Control
PWRT Enable
1:64 Output
LPRC
Oscillator
PWRT
1
Clock
25-bit Counter
WDTCLR = 1
WDT Enable
Wake
WDT Enable
Reset Event
25
0
1
WDT Counter Reset
Device Reset
NMI (Wake-up)
Power Save
Decoder
FWDTPS<4:0> (DEVCFG1<20:16>)
 2012-2015 Microchip Technology Inc.
DS60001185E-page 175
Watchdog Timer Control Registers
Virtual Address
(BF80_#)
TABLE 15-1:
Legend:
1:
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
—
—
—
—
—
—
—
—
—
—
—
15:0
ON
—
—
—
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
20/4
19/3
18/2
—
—
—
SWDTPS<4:0>
17/1
16/0
—
—
WDTWINEN WDTCLR
All Resets
Bit Range
Register
Name(1)
Bits
0000 WDTCON
Note
WATCHDOG TIMER CONTROL REGISTER MAP
0000
0000
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 176
15.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 15-1:
Bit
Range
31:24
23:16
15:8
7:0
WDTCON: WATCHDOG TIMER CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
R/W-0
(1,2)
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
U-0
R-y
R-y
R-y
R-y
R-y
R/W-0
R/W-0
ON
—
SWDTPS<4:0>
WDTWINEN WDTCLR
Legend:
y = Values set from Configuration bits on POR
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: Watchdog Timer Enable bit(1,2)
1 = Enables the WDT if it is not enabled by the device configuration
0 = Disable the WDT if it was enabled in software
bit 14-7
Unimplemented: Read as ‘0’
bit 6-2
SWDTPS<4:0>: Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits
On reset, these bits are set to the values of the WDTPS <4:0> of Configuration bits.
bit 1
WDTWINEN: Watchdog Timer Window Enable bit
1 = Enable windowed Watchdog Timer
0 = Disable windowed Watchdog Timer
bit 0
WDTCLR: Watchdog Timer Reset bit
1 = Writing a ‘1’ will clear the WDT
0 = Software cannot force this bit to a ‘0’
Note 1:
2:
A read of this bit results in a ‘1’ if the Watchdog Timer is enabled by the device configuration or software.
When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 177
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 178
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
16.0
Note:
• Prescaler capture event modes:
- Capture timer value on every 4th rising edge of
input at ICx pin
- Capture timer value on every 16th rising edge of
input at ICx pin
INPUT CAPTURE
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 15. “Input Capture” (DS60001122), which is available
from the Documentation > Reference
Manual section of the Microchip PIC32
web site (www.microchip.com/pic32).
Each input capture channel can select between one of
two 16-bit timers (Timer2 or Timer3) for the time base,
or two 16-bit timers (Timer2 and Timer3) together to
form a 32-bit timer. The selected timer can use either
an internal or external clock.
Other operational features include:
• Device wake-up from capture pin during CPU
Sleep and Idle modes
• Interrupt on input capture event
• 4-word FIFO buffer for capture values
Interrupt optionally generated after 1, 2, 3, or 4
buffer locations are filled
• Input capture can also be used to provide
additional sources of external interrupts
The Input Capture module is useful in applications
requiring frequency (period) and pulse measurement.
The Input Capture module captures the 16-bit or 32-bit
value of the selected Time Base registers when an
event occurs at the ICx pin. The following events cause
capture events:
• Simple capture event modes:
- Capture timer value on every falling edge of
input at ICx pin
- Capture timer value on every rising edge of
input at ICx pin
- Capture timer value on every edge (rising
and falling)
- Capture timer value on every edge (rising
and falling), specified edge first.
FIGURE 16-1:
INPUT CAPTURE BLOCK DIAGRAM
FEDGE
Specified/Every
Edge Mode
ICM<2:0>
110
Prescaler Mode
(16th Rising Edge)
101
Prescaler Mode
(4th Rising Edge)
100
TMR2 TMR3
C32 | ICTMR
CaptureEvent
ICx pin
Rising Edge Mode
011
Falling Edge Mode
010
Edge Detection
Mode
001
To CPU
FIFO CONTROL
ICxBUF
FIFO
ICI<1:0>
ICM<2:0>
Set Flag ICxIF
(In IFSx Register)
/N
Sleep/Idle
Wake-up Mode
001
111
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 179
PIC32MX330/350/370/430/450/470
16.1
Control Register
REGISTER 16-1:
Bit Range
Bit
31/23/15/7
Bit
30/22/14/6
U-0
U-0
31:24
23:16
15:8
7:0
ICXCON: INPUT CAPTURE ‘X’ CONTROL REGISTER
Bit
Bit
Bit
Bit
29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2
U-0
U-0
U-0
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
R/W-0
U-0
U-0
U-0
R/W-0
R/W-0
—
SIDL
—
—
—
FEDGE
C32
R/W-0
R/W-0
R/W-0
R-0
R-0
R/W-0
R/W-0
R/W-0
ICOV
ICBNE
ON
ICTMR
ICI<1:0>
ICM<2:0>
Legend:
R = Readable bit
W = Writable bit
-n = Bit Value at POR: (‘0’, ‘1’, x = unknown)
U = Unimplemented bit
P = Programmable bit
r = Reserved bit
bit 31-16
Unimplemented: Read as ‘0’
bit 15
ON: Input Capture Module Enable bit(1)
1 = Module enabled
0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Control bit
1 = Halt in CPU Idle mode
0 = Continue to operate in CPU Idle mode
bit 12-10
Unimplemented: Read as ‘0’
bit 9
FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
1 = Capture rising edge first
0 = Capture falling edge first
bit 8
C32: 32-bit Capture Select bit
1 = 32-bit timer resource capture
0 = 16-bit timer resource capture
bit 7
ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is ‘1’)
0 = Timer3 is the counter source for capture
1 = Timer2 is the counter source for capture
bit 6-5
ICI<1:0>: Interrupt Control bits
11 = Interrupt on every fourth capture event
10 = Interrupt on every third capture event
01 = Interrupt on every second capture event
00 = Interrupt on every capture event
bit 4
ICOV: Input Capture Overflow Status Flag bit (read-only)
1 = Input capture overflow occurred
0 = No input capture overflow occurred
bit 3
ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
1 = Input capture buffer is not empty; at least one more capture value can be read
0 = Input capture buffer is empty
Note 1:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
DS60001185E-page 180
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 16-1:
bit 2-0
Note 1:
ICXCON: INPUT CAPTURE ‘X’ CONTROL REGISTER (CONTINUED)
ICM<2:0>: Input Capture Mode Select bits
111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
110 = Simple Capture Event mode – every edge, specified edge first and every edge thereafter
101 = Prescaled Capture Event mode – every sixteenth rising edge
100 = Prescaled Capture Event mode – every fourth rising edge
011 = Simple Capture Event mode – every rising edge
010 = Simple Capture Event mode – every falling edge
001 = Edge Detect mode – every edge (rising and falling)
000 = Input Capture module is disabled
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 181
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 182
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
17.0
Note:
The following are key features of this module:
OUTPUT COMPARE
• Multiple Output Compare modules in a device
• Programmable interrupt generation on compare
event
• Single and Dual Compare modes
• Single and continuous output pulse generation
• Pulse-Width Modulation (PWM) mode
• Hardware-based PWM Fault detection and
automatic output disable
• Can operate from either of two available 16-bit
time bases or a single 32-bit time base
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 16. “Output Compare” (DS60001111), which is available
from the Documentation > Reference
Manual section of the Microchip PIC32
web site (www.microchip.com/pic32).
The Output Compare module is used to generate a
single pulse or a train of pulses in response to selected
time base events. For all modes of operation, the
Output Compare module compares the values stored
in the OCxR and/or the OCxRS registers to the value in
the selected timer. When a match occurs, the Output
Compare module generates an event based on the
selected mode of operation.
FIGURE 17-1:
OUTPUT COMPARE MODULE BLOCK DIAGRAM
Set Flag bit
OCxIF(1)
OCxRS(1)
Output
Logic
OCxR(1)
3
OCM<2:0>
Mode Select
Comparator
0
16
Timer2
OCTSEL
1
0
S
R
Output
Enable
Q
OCx(1)
Output Enable
Logic
OCFA or OCFB(2)
1
16
Timer3
Timer2
Rollover
Timer3
Rollover
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels,
1 through 5.
2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 183
Control Registers
Virtual Address
(BF80_#)
TABLE 17-1:
3010
OC1R
3020
OC1RS
3200 OC2CON
3210
OC2R
3220
OC2RS
3400 OC3CON
3410
OC3R
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
31:16
—
15:0
31:16
ON
—
—
—
—
—
—
—
—
—
—
—
SIDL
—
—
—
—
—
—
—
OC32
15:0
31:16
15:0
31:16
3610
OC4R
 2012-2015 Microchip Technology Inc.
3810
OC5R
3820
OC5RS
Legend:
Note 1:
18/2
—
—
—
OCFLT
OCTSEL
—
—
—
—
—
—
—
—
—
—
—
—
ON
—
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
16/0
—
—
OCM<2:0>
—
—
—
OCM<2:0>
xxxx
xxxx
—
—
—
—
—
—
—
—
—
—
—
—
—
ON
—
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
—
—
—
OCM<2:0>
xxxx
xxxx
OC3RS<31:0>
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
31:16
ON
—
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
—
—
—
OCM<2:0>
xxxx
0000
0000
xxxx
OC4R<31:0>
xxxx
xxxx
OC4RS<31:0>
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
15:0
31:16
ON
—
SIDL
—
—
—
—
—
—
—
OC32
OCFLT
OCTSEL
OC5RS<31:0>
15:0
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
xxxx
0000
0000
xxxx
OC3R<31:0>
OC5R<31:0>
xxxx
0000
0000
xxxx
OC2RS<31:0>
15:0
0000
0000
xxxx
OC2R<31:0>
15:0
15:0
31:16
17/1
xxxx
xxxx
—
31:16
OC4RS
15:0
3800 OC5CON
19/3
OC1RS<31:0>
15:0
31:16
15:0
31:16
20/4
OC1R<31:0>
15:0
31:16
15:0
31:16
21/5
All Resets
31/15
31:16
OC3RS
15:0
3600 OC4CON
3620
Bit Range
Register
Name(1)
Bits
3000 OC1CON
3420
OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 5 REGISTER MAP
—
—
OCM<2:0>
—
xxxx
0000
0000
xxxx
xxxx
xxxx
xxxx
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 184
17.1
PIC32MX330/350/370/430/450/470
REGISTER 17-1:
Bit
Range
31:24
23:16
15:8
7:0
OCxCON: OUTPUT COMPARE ‘x’ CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
R/W-0
U-0
U-0
U-0
U-0
U-0
—
SIDL
—
—
—
—
—
U-0
U-0
R/W-0
R-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
OC32
OCFLT(2)
OCTSEL
ON
OCM<2:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: Output Compare Peripheral On bit(1)
1 = Output Compare peripheral is enabled
0 = Output Compare peripheral is disabled
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit
1 = Discontinue operation when CPU enters Idle mode
0 = Continue operation in Idle mode
bit 12-6
Unimplemented: Read as ‘0’
bit 5
OC32: 32-bit Compare Mode bit
1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisions to the 32-bit timer source
0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
bit 4
OCFLT: PWM Fault Condition Status bit(2)
1 = PWM Fault condition has occurred (cleared in HW only)
0 = No PWM Fault condition has occurred
bit 3
OCTSEL: Output Compare Timer Select bit
1 = Timer3 is the clock source for this Output Compare module
0 = Timer2 is the clock source for this Output Compare module
bit 2-0
OCM<2:0>: Output Compare Mode Select bits
111 = PWM mode on OCx; Fault pin is enabled
110 = PWM mode on OCx; Fault pin is disabled
101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
100 = Initialize OCx pin low; generate single output pulse on OCx pin
011 = Compare event toggles OCx pin
010 = Initialize OCx pin high; compare event forces OCx pin low
001 = Initialize OCx pin low; compare event forces OCx pin high
000 = Output compare peripheral is disabled but continues to draw current
Note 1:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
This bit is only used when OCM<2:0> = ‘111’. It is read as ‘0’ in all other modes.
2:
 2012-2015 Microchip Technology Inc.
DS60001185E-page 185
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 186
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
18.0
Note:
Some of the key features of the SPI module are:
SERIAL PERIPHERAL
INTERFACE (SPI)
•
•
•
•
•
Master and Slave modes support
Four different clock formats
Enhanced Framed SPI protocol support
User-configurable 8-bit, 16-bit and 32-bit data width
Separate SPI FIFO buffers for receive and transmit
- FIFO buffers act as 4/8/16-level deep FIFOs
based on 32/16/8-bit data width
• Programmable interrupt event on every 8-bit, 
16-bit and 32-bit data transfer
• Operation during CPU Sleep and Idle mode
• Audio Codec Support:
- I2S protocol
- Left-justified
- Right-justified
- PCM
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 23. “Serial
Peripheral
Interface
(SPI)”
(DS60001106), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
The SPI module is a synchronous serial interface that
is useful for communicating with external peripherals
and other microcontroller devices. These peripheral
devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc.
The PIC32 SPI module is compatible with Motorola®
SPI and SIOP interfaces.
FIGURE 18-1:
SPI MODULE BLOCK DIAGRAM
Internal
Data Bus
SPIxBUF
Read
Write
SPIxRXB FIFO
FIFOs Share Address SPIxBUF
SPIxTXB FIFO
Transmit
Receive
SPIxSR
SDIx
bit 0
SDOx
SSx/FSYNC
Slave Select
and Frame
Sync Control
Shift
Control
Clock
Control
MCLKSEL
Edge
Select
SCKx
Note: Access SPIxTXB and SPIxRXB FIFOs via SPIxBUF register.
 2012-2015 Microchip Technology Inc.
1
REFCLK
0
PBCLK
Baud Rate
Generator
MSTEN
DS60001185E-page 187
Control Registers
5800 SPI1CON
5810 SPI1STAT
5820 SPI1BUF
5830 SPI1BRG
5840 SPI1CON2
5A00 SPI2CON
5A10 SPI2STAT
5A20 SPI2BUF
5A30 SPI2BRG
5A40 SPI2CON2
 2012-2015 Microchip Technology Inc.
Legend:
Note 1:
SPI2 AND SPI2 REGISTER MAP
31/15
30/14
29/13
FRMSYNC FRMPOL
28/12
27/11
MSSEN
FRMSYPW
26/10
25/9
31:16
FRMEN
15:0
31:16
ON
—
—
—
SIDL
—
DISSDO
MODE32 MODE16
SMP
RXBUFELM<4:0>
15:0
31:16
—
—
—
FRMERR
SPIBUSY
24/8
FRMCNT<2:0>
—
—
23/7
22/6
21/5
20/4
19/3
18/2
17/1
—
—
SPIFE
MCLKSEL
—
—
—
CKE
SSEN
—
CKP
—
MSTEN
—
DISSDI
SPITUR
SRMT
SPIROV
SPIRBE
—
SPITBE
—
SPITBF
16/0
ENHBUF 0000
STXISEL<1:0>
SRXISEL<1:0>
TXBUFELM<4:0>
DATA<31:0>
All Resets
Bit Range
Bits
Register
Name(1)
Virtual Address
(BF80_#)
TABLE 18-1:
0000
0000
SPIRBF 19EB
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
BRG<8:0>
—
—
—
—
—
0000
0000
—
—
—
SPI
—
—
SGNEXT
31:16 FRMEN FRMSYNC FRMPOL
FRM
ERREN
MSSEN
15:0
31:16
ON
—
—
—
SIDL
—
DISSDO
MODE32 MODE16
SMP
RXBUFELM<4:0>
15:0
31:16
—
—
—
FRMERR
SPIBUSY
15:0
SPI
SPI
IGNROV IGNTUR AUDEN
ROVEN
TUREN
FRMSYPW
FRMCNT<2:0>
MCLKSEL
—
—
AUD
MONO
—
—
—
AUDMOD<1:0>
—
—
—
CKE
SSEN
—
CKP
—
MSTEN
—
DISSDI
SPIFE
SPITUR
SRMT
SPIROV
SPIRBE
—
SPITBE
—
SPITBF
ENHBUF 0000
STXISEL<1:0>
SRXISEL<1:0>
TXBUFELM<4:0>
DATA<31:0>
0000
0000
0000
SPIRBF 19EB
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
BRG<8:0>
—
—
—
—
—
0000
0000
15:0
SPI
SGNEXT
—
—
FRM
ERREN
SPI
ROVEN
SPI
TUREN
IGNROV
IGNTUR
AUDEN
—
—
—
AUD
MONO
—
AUDMOD<1:0>
0000
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV
Registers” for more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 188
18.1
PIC32MX330/350/370/430/450/470
REGISTER 18-1:
Bit
Range
31:24
23:16
15:8
7:0
SPIxCON: SPI CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
FRMEN
FRMSYNC
FRMPOL
MSSEN
FRMSYPW
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
FRMCNT<2:0>
R/W-0
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
MCLKSEL(2)
—
—
—
—
—
SPIFE
ENHBUF(2)
R/W-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ON(1)
—
SIDL
DISSDO
MODE32
MODE16
SMP
CKE(3)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
SSEN
CKP(4)
MSTEN
DISSDI
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
STXISEL<1:0>
SRXISEL<1:0>
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31
FRMEN: Framed SPI Support bit
1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
0 = Framed SPI support is disabled
bit 30
FRMSYNC: Frame Sync Pulse Direction Control on SSx pin bit (Framed SPI mode only)
1 = Frame sync pulse input (Slave mode)
0 = Frame sync pulse output (Master mode)
bit 29
FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
1 = Frame pulse is active-high
0 = Frame pulse is active-low
bit 28
MSSEN: Master Mode Slave Select Enable bit
1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in 
Master mode. Polarity is determined by the FRMPOL bit.
0 = Slave select SPI support is disabled.
bit 27
FRMSYPW: Frame Sync Pulse Width bit
1 = Frame sync pulse is one character wide
0 = Frame sync pulse is one clock wide
bit 26-24 FRMCNT<2:0>: Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per
pulse. This bit is only valid in FRAMED_SYNC mode.
111 = Reserved; do not use
110 = Reserved; do not use
101 = Generate a frame sync pulse on every 32 data characters
100 = Generate a frame sync pulse on every 16 data characters
011 = Generate a frame sync pulse on every 8 data characters
010 = Generate a frame sync pulse on every 4 data characters
001 = Generate a frame sync pulse on every 2 data characters
000 = Generate a frame sync pulse on every data character
bit 23
MCLKSEL: Master Clock Enable bit(2)
1 = REFCLK is used by the Baud Rate Generator
0 = PBCLK is used by the Baud Rate Generator
bit 22-18 Unimplemented: Read as ‘0’
Note 1: When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
2: This bit can only be written when the ON bit = 0.
3: This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI
mode (FRMEN = 1).
4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ‘1’, regardless of the actual value
of CKP.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 189
PIC32MX330/350/370/430/450/470
REGISTER 18-1:
SPIxCON: SPI CONTROL REGISTER (CONTINUED)
bit 17
SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
1 = Frame synchronization pulse coincides with the first bit clock
0 = Frame synchronization pulse precedes the first bit clock
bit 16
ENHBUF: Enhanced Buffer Enable bit(2)
1 = Enhanced Buffer mode is enabled
0 = Enhanced Buffer mode is disabled
bit 15
ON: SPI Peripheral On bit(1)
1 = SPI Peripheral is enabled
0 = SPI Peripheral is disabled
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit
1 = Discontinue operation when CPU enters in Idle mode
0 = Continue operation in Idle mode
bit 12
DISSDO: Disable SDOx pin bit
1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
0 = SDOx pin is controlled by the module
bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits
When AUDEN = 1:
MODE32
MODE16
Communication
1
1
24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
1
0
32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
0
1
16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
0
0
16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame
When AUDEN = 0:
MODE32
MODE16
Communication
1
x
32-bit
0
1
16-bit
0
0
8-bit
SMP: SPI Data Input Sample Phase bit
Master mode (MSTEN = 1):
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time
Slave mode (MSTEN = 0):
SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.
CKE: SPI Clock Edge Select bit(3)
1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
SSEN: Slave Select Enable (Slave mode) bit
1 = SSx pin used for Slave mode
0 = SSx pin not used for Slave mode, pin controlled by port function.
CKP: Clock Polarity Select bit(4)
1 = Idle state for clock is a high level; active state is a low level
0 = Idle state for clock is a low level; active state is a high level
bit 9
bit 8
bit 7
bit 6
bit 5
Note 1:
2:
3:
4:
MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode
When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
This bit can only be written when the ON bit = 0.
This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI
mode (FRMEN = 1).
When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ‘1’, regardless of the actual value
of CKP.
DS60001185E-page 190
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 18-1:
bit 4
SPIxCON: SPI CONTROL REGISTER (CONTINUED)
DISSDI: Disable SDI bit
1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
0 = SDI pin is controlled by the SPI module
STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
10 = Interrupt is generated when the buffer is empty by one-half or more
01 = Interrupt is generated when the buffer is completely empty
00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are 
complete
SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
11 = Interrupt is generated when the buffer is full
10 = Interrupt is generated when the buffer is full by one-half or more
01 = Interrupt is generated when the buffer is not empty
00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
bit 3-2
bit 1-0
Note 1:
2:
3:
4:
When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
This bit can only be written when the ON bit = 0.
This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI
mode (FRMEN = 1).
When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ‘1’, regardless of the actual value
of CKP.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 191
PIC32MX330/350/370/430/450/470
REGISTER 18-2:
Bit
Range
31:24
23:16
15:8
7:0
SPIxCON2: SPI CONTROL REGISTER 2
Bit
31/23/15/7
Bit
Bit
30/22/14/6 29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
Bit
Bit
26/18/10/2 25/17/9/1 24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
U-0
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
SPISGNEXT
—
—
FRMERREN
SPIROVEN
R/W-0
U-0
U-0
U-0
R/W-0
U-0
AUDEN(1)
—
—
—
AUDMONO(1,2)
—
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
SPITUREN IGNROV
R/W-0
IGNTUR
R/W-0
AUDMOD<1:0>(1,2)
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
1 = Data from RX FIFO is sign extended
0 = Data from RX FIFO is not sign extened
bit 14-13 Unimplemented: Read as ‘0’
bit 12
FRMERREN: Enable Interrupt Events via FRMERR bit
1 = Frame Error overflow generates error events
0 = Frame Error does not generate error events
bit 11
SPIROVEN: Enable Interrupt Events via SPIROV bit
1 = Receive overflow generates error events
0 = Receive overflow does not generate error events
bit 10
SPITUREN: Enable Interrupt Events via SPITUR bit
1 = Transmit Underrun Generates Error Events
0 = Transmit Underrun Does Not Generates Error Events
bit 9
IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
1 = A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data
0 = A ROV is a critical error which stop SPI operation
bit 8
IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
0 = A TUR is a critical error which stop SPI operation
bit 7
AUDEN: Enable Audio CODEC Support bit(1)
1 = Audio protocol is enabled
0 = Audio protocol is disabled
bit 6-5
Unimplemented: Read as ‘0’
bit 3
AUDMONO: Transmit Audio Data Format bit(1,2)
1 = Audio data is mono (Each data word is transmitted on both left and right channels)
0 = Audio data is stereo
bit 2
Unimplemented: Read as ‘0’
bit 1-0
AUDMOD<1:0>: Audio Protocol Mode bit(1,2)
11 = PCM/DSP mode
10 = Right Justified mode
01 = Left Justified mode
00 = I2S mode
Note 1:
2:
This bit can only be written when the ON bit = 0.
This bit is only valid for AUDEN = 1.
DS60001185E-page 192
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 18-3:
Bit
Range
31:24
23:16
15:8
7:0
SPIxSTAT: SPI STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
R-0
R-0
R-0
R-0
R-0
—
—
—
U-0
U-0
U-0
R-0
R-0
—
—
—
U-0
U-0
U-0
R/C-0, HS
R-0
U-0
U-0
R-0
—
—
—
FRMERR
SPIBUSY
—
—
SPITUR
RXBUFELM<4:0>
R-0
R-0
R-0
TXBUFELM<4:0>
R-0
R/W-0
R-0
U-0
R-1
U-0
R-0
R-0
SRMT
SPIROV
SPIRBE
—
SPITBE
—
SPITBF
SPIRBF
Legend:
C = Clearable bit
HS = Set in hardware
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-29 Unimplemented: Read as ‘0’
bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF = 1)
bit 23-21 Unimplemented: Read as ‘0’
bit 20-16 TXBUFELM<4:0>: Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
bit 15-13 Unimplemented: Read as ‘0’
bit 12
FRMERR: SPI Frame Error status bit
1 = Frame error is detected
0 = No Frame error is detected
This bit is only valid when FRMEN = 1.
bit 11
SPIBUSY: SPI Activity Status bit
1 = SPI peripheral is currently busy with some transactions
0 = SPI peripheral is currently idle
bit 10-9
Unimplemented: Read as ‘0’
bit 8
SPITUR: Transmit Under Run bit
1 = Transmit buffer has encountered an underrun condition
0 = Transmit buffer has no underrun condition
This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0)
and re-enabling (ON bit = 1) the module, or writing a ‘0’ to SPITUR.
bit 7
SRMT: Shift Register Empty bit (valid only when ENHBUF = 1)
1 = When SPI module shift register is empty
0 = When SPI module shift register is not empty
bit 6
SPIROV: Receive Overflow Flag bit
1 = A new data is completely received and discarded. The user software has not read the previous data in
the SPIxBUF register.
0 = No overflow has occurred
This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the
module, or by writing a ‘0’ to SPIROV.
bit 5
SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1)
1 = RX FIFO is empty (CRPTR = SWPTR)
0 = RX FIFO is not empty (CRPTR SWPTR)
bit 4
Unimplemented: Read as ‘0’
 2012-2015 Microchip Technology Inc.
DS60001185E-page 193
PIC32MX330/350/370/430/450/470
REGISTER 18-3:
SPIxSTAT: SPI STATUS REGISTER (CONTINUED)
bit 3
SPITBE: SPI Transmit Buffer Empty Status bit
1 = Transmit buffer, SPIxTXB is empty
0 = Transmit buffer, SPIxTXB is not empty
Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.
Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
bit 2
Unimplemented: Read as ‘0’
bit 1
SPITBF: SPI Transmit Buffer Full Status bit
1 = Transmit not yet started, SPITXB is full
0 = Transmit buffer is not full
Standard Buffer Mode:
Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB.
Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.
Enhanced Buffer Mode:
Set when CWPTR + 1 = SRPTR; cleared otherwise
bit 0
SPIRBF: SPI Receive Buffer Full Status bit
1 = Receive buffer, SPIxRXB is full
0 = Receive buffer, SPIxRXB is not full
Standard Buffer Mode:
Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB.
Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
Enhanced Buffer Mode:
Set when SWPTR + 1 = CRPTR; cleared otherwise
DS60001185E-page 194
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
19.0
Note:
INTER-INTEGRATED CIRCUIT
(I2C)
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 24. “InterIntegrated Circuit (I2C)” (DS60001116),
which is available from the Documentation
> Reference Manual section of the Microchip PIC32 web site (www.microchip.com/
pic32).
 2012-2015 Microchip Technology Inc.
The I2C module provides complete hardware support
for both Slave and Multi-Master modes of the I2C serial
communication standard. Figure 19-1 illustrates the
I2C module block diagram.
Each I2C module has a 2-pin interface: the SCLx pin is
clock and the SDAx pin is data.
Each I2C module offers the following key features:
• I2C interface supporting both master and slave
operation
• I2C Slave mode supports 7-bit and 10-bit addressing
• I2C Master mode supports 7-bit and 10-bit
addressing
• I2C port allows bidirectional transfers between
master and slaves
• Serial clock synchronization for the I2C port can
be used as a handshake mechanism to suspend
and resume serial transfer (SCLREL control)
• I2C supports multi-master operation; detects bus
collision and arbitrates accordingly
• Provides support for address bit masking
DS60001185E-page 195
PIC32MX330/350/370/430/450/470
FIGURE 19-1:
I2C BLOCK DIAGRAM
Internal
Data Bus
I2CxRCV
Read
SCLx
Shift
Clock
I2CxRSR
LSB
SDAx
Address Match
Match Detect
Write
I2CxMSK
Write
Read
I2CxADD
Read
Start and Stop
Bit Detect
Write
Start and Stop
Bit Generation
Control Logic
I2CxSTAT
Collision
Detect
Read
Write
I2CxCON
Acknowledge
Generation
Read
Clock
Stretching
Write
I2CxTRN
LSB
Read
Shift Clock
Reload
Control
BRG Down Counter
Write
I2CxBRG
Read
PBCLK
DS60001185E-page 196
 2012-2015 Microchip Technology Inc.
Control Registers
TABLE 19-1:
Virtual Address
(BF80_#)
5000 I2C1CON
5010 I2C1STAT
5020 I2C1ADD
5040 I2C1BRG
I2C1TRN
5060 I2C1RCV
5100 I2C2CON
5110 I2C2STAT
5120 I2C2ADD
5130 I2C2MSK
5140 I2C2BRG
5150
I2C2TRN
5160 I2C2RCV
DS60001185E-page 197
Legend:
Note 1:
29/13
28/12
27/11
26/10
25/9
24/8
30/14
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
31:16
ON
—
—
—
SIDL
—
SCLREL
—
STRICT
—
A10M
—
DISSLW
—
SMEN
—
GCEN
—
STREN
—
ACKDT
—
ACKEN
—
RCEN
—
PEN
—
RSEN
—
SEN
—
BFFF
0000
15:0 ACKSTAT TRSTAT
31:16
—
—
—
—
—
—
—
—
BCL
—
GCSTAT
—
ADD10
—
IWCOL
—
I2COV
—
D_A
—
P
—
S
—
R_W
—
RBF
—
TBF
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Address Register
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Address Mask Register
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Transmit Register
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Receive Register
—
—
—
—
—
0000
0000
15:0
31:16
ON
—
—
—
SIDL
—
SCLREL
—
STRICT
—
A10M
—
DISSLW
—
SMEN
—
GCEN
—
STREN
—
ACKDT
—
ACKEN
—
RCEN
—
PEN
—
RSEN
—
SEN
—
BFFF
0000
15:0 ACKSTAT TRSTAT
31:16
—
—
—
—
—
—
—
—
BCL
—
GCSTAT
—
ADD10
—
IWCOL
—
I2COV
—
D_A
—
P
—
S
—
R_W
—
RBF
—
TBF
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Address Register
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Address Mask Register
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
0000
15:0
—
—
—
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
23/7
22/6
21/5
20/4
Baud Rate Generator Register
—
—
—
Baud Rate Generator Register
—
—
—
—
—
19/3
Transmit Register
—
—
Receive Register
18/2
17/1
16/0
All Resets
Bit Range
31/15
0000
All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and
INV Registers” for more information.
PIC32MX330/350/370/430/450/470
5030 I2C1MSK
5050
I2C1 AND I2C2 REGISTER MAP
Bits
Register
Name(1)
 2012-2015 Microchip Technology Inc.
19.1
PIC32MX330/350/370/430/450/470
REGISTER 19-1:
Bit
Range
31:24
23:16
15:8
7:0
I2CXCON: I2C CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
R/W-0
R/W-1, HC
R/W-0
R/W-0
R/W-0
R/W-0
—
SIDL
SCLREL
STRICT
A10M
DISSLW
SMEN
ON
R/W-0
R/W-0
R/W-0
R/W-0, HC
R/W-0, HC
R/W-0, HC
R/W-0, HC
R/W-0, HC
GCEN
STREN
ACKDT
ACKEN
RCEN
PEN
RSEN
SEN
Legend:
HC = Cleared in Hardware
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: I2C Enable bit(1)
1 = Enables the I2C module and configures the SDA and SCL pins as serial port pins
0 = Disables the I2C module; all I2C pins are controlled by PORT functions
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12
SCLREL: SCLx Release Control bit (when operating as I2C slave)
1 = Release SCLx clock
0 = Hold SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear at
beginning of slave transmission. Hardware clear at end of slave reception.
If STREN = 0:
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clear at beginning of slave
transmission.
bit 11
STRICT: Strict I2C Reserved Address Rule Enable bit
1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate
addresses in reserved address space.
0 = Strict I2C Reserved Address Rule is not enabled
bit 10
A10M: 10-bit Slave Address bit
1 = I2CxADD is a 10-bit slave address
0 = I2CxADD is a 7-bit slave address
bit 9
DISSLW: Disable Slew Rate Control bit
1 = Slew rate control is disabled
0 = Slew rate control is enabled
bit 8
SMEN: SMBus Input Levels bit
1 = Enable I/O pin thresholds compliant with SMBus specification
0 = Disable SMBus input thresholds
Note 1:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
DS60001185E-page 198
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 19-1:
I2CXCON: I2C CONTROL REGISTER (CONTINUED)
bit 7
GCEN: General Call Enable bit (when operating as I2C slave)
1 = Enable interrupt when a general call address is received in the I2CxRSR
(module is enabled for reception)
0 = General call address disabled
bit 6
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)
Used in conjunction with SCLREL bit.
1 = Enable software or receive clock stretching
0 = Disable software or receive clock stretching
bit 5
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)
Value that is transmitted when the software initiates an Acknowledge sequence.
1 = Send NACK during Acknowledge
0 = Send ACK during Acknowledge
bit 4
ACKEN: Acknowledge Sequence Enable bit 
(when operating as I2C master, applicable during master receive)
1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. 
Hardware clear at end of master Acknowledge sequence.
0 = Acknowledge sequence not in progress
bit 3
RCEN: Receive Enable bit (when operating as I2C master)
1 = Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.
0 = Receive sequence not in progress
bit 2
PEN: Stop Condition Enable bit (when operating as I2C master)
1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.
0 = Stop condition not in progress
bit 1
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)
1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of 
master Repeated Start sequence.
0 = Repeated Start condition not in progress
bit 0
SEN: Start Condition Enable bit (when operating as I2C master)
1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.
0 = Start condition not in progress
Note 1:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 199
PIC32MX330/350/370/430/450/470
REGISTER 19-2:
Bit
Range
31:24
23:16
15:8
7:0
I2CXSTAT: I2C STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0, HSC
R-0, HSC
U-0
U-0
U-0
R/C-0, HS
R-0, HSC
R-0, HSC
ACKSTAT
TRSTAT
—
—
—
BCL
GCSTAT
ADD10
R/C-0, HS
R/C-0, HS
R-0, HSC
R/C-0, HSC
R/C-0, HSC
R-0, HSC
R-0, HSC
R-0, HSC
IWCOL
I2COV
D_A
P
S
R_W
RBF
TBF
Legend:
HS = Set in hardware
HSC = Hardware set/cleared
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
C = Clearable bit
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ACKSTAT: Acknowledge Status bit 
(when operating as I2C master, applicable to master transmit operation)
1 = Acknowledge was not received from slave
0 = Acknowledge was received from slave
Hardware set or clear at end of slave Acknowledge.
bit 14
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)
1 = Master transmit is in progress (8 bits + ACK)
0 = Master transmit is not in progress
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13-11 Unimplemented: Read as ‘0’
bit 10
BCL: Master Bus Collision Detect bit
1 = A bus collision has been detected during a master operation
0 = No collision
Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and
re-enabling (ON bit = 1) the module.
bit 9
GCSTAT: General Call Status bit
1 = General call address was received
0 = General call address was not received
Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8
ADD10: 10-bit Address Status bit
1 = 10-bit address was matched
0 = 10-bit address was not matched
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7
IWCOL: Write Collision Detect bit
1 = An attempt to write the I2CxTRN register failed because the I2C module is busy
0 = No collision
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6
I2COV: Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register is still holding the previous byte
0 = No overflow
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5
D_A: Data/Address bit (when operating as I2C slave)
1 = Indicates that the last byte received was data
0 = Indicates that the last byte received was device address
Hardware clear at device address match. Hardware set by reception of slave byte.
DS60001185E-page 200
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 19-2:
I2CXSTAT: I2C STATUS REGISTER (CONTINUED)
bit 4
P: Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3
S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2
R_W: Read/Write Information bit (when operating as I2C slave)
1 = Read – indicates data transfer is output from slave
0 = Write – indicates data transfer is input to slave
Hardware set or clear after reception of I 2C device address byte.
bit 1
RBF: Receive Buffer Full Status bit
1 = Receive complete, I2CxRCV is full
0 = Receive not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software 
reads I2CxRCV.
bit 0
TBF: Transmit Buffer Full Status bit
1 = Transmit in progress, I2CxTRN is full
0 = Transmit complete, I2CxTRN is empty
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 201
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 202
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
20.0
UNIVERSAL ASYNCHRONOUS
RECEIVER TRANSMITTER
(UART)
Note:
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 21. “Universal
Asynchronous Receiver Transmitter
(UART)” (DS60001107), which is available from the Documentation > Reference
Manual section of the Microchip PIC32
web site (www.microchip.com/pic32).
The UART module is one of the serial I/O modules
available in PIC32MX330/350/370/430/450/470 family
devices. The UART is a full-duplex, asynchronous
communication channel that communicates with
peripheral devices and personal computers through
protocols, such as RS-232, RS-485, LIN and IrDA®.
The module also supports the hardware flow control
option, with UxCTS and UxRTS pins, and also includes
an IrDA encoder and decoder.
FIGURE 20-1:
The primary features of the UART module are:
•
•
•
•
•
•
•
•
•
•
•
•
•
Full-duplex, 8-bit or 9-bit data transmission
Even, Odd or No Parity options (for 8-bit data)
One or two Stop bits
Hardware auto-baud feature
Hardware flow control option
Fully integrated Baud Rate Generator (BRG) with
16-bit prescaler
Baud rates ranging from 76 bps to 30 Mbps at
120 MHz
8-level deep First-In-First-Out (FIFO) transmit
data buffer
8-level deep FIFO receive data buffer
Parity, framing and buffer overrun error detection
Support for interrupt-only on address detect 
(9th bit = 1)
Separate transmit and receive interrupts
Loopback mode for diagnostic support
• LIN Protocol support
• IrDA encoder and decoder with 16x baud clock
output for external IrDA encoder/decoder support
Figure 20-1 illustrates a simplified block diagram of the
UART.
UART SIMPLIFIED BLOCK DIAGRAM
Baud Rate Generator
IrDA®
Hardware Flow Control
Note:
UxRTS/BCLKx
UxCTS
UARTx Receiver
UxRX
UARTx Transmitter
UxTX
Not all pins are available for all UART modules. Refer to the device-specific pin diagram for more information.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 203
Control Registers
U1STA(1)
6020 U1TXREG
6030 U1RXREG
6040
U1BRG(1)
6200 U2MODE(1)
6210
U2STA(1)
6220 U2TXREG
6230 U2RXREG
6240
U2BRG(1)
 2012-2015 Microchip Technology Inc.
6400 U3MODE(1)
6410
U3STA(1)
6420 U3TXREG
6430 U3RXREG
Bit Range
Register
Name
Bits
6000 U1MODE(1)
6010
UART1 THROUGH UART5 REGISTER MAP
31/15
30/14
31:16
—
—
—
15:0
ON
—
SIDL
31:16
—
—
—
15:0
UTXISEL<1:0>
29/13
28/12
27/11
26/10
25/9
24/8
—
—
—
—
—
IREN
RTSMD
—
—
—
—
—
ADM_EN
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
UEN<1:0>
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
TX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
RX8
31:16
—
—
—
—
—
—
—
—
15:0
31:16
15:0
—
—
—
—
—
ON
—
SIDL
IREN
RTSMD
—
31:16
—
—
—
—
—
—
—
ADM_EN
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
UTXISEL<1:0>
—
—
UEN<1:0>
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
TX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
RX8
31:16
—
—
—
—
—
—
—
—
15:0
21/5
20/4
19/3
18/2
17/1
—
—
—
—
—
—
—
WAKE
LPBACK
ABAUD
RXINV
BRGH
PDSEL<1:0>
16/0
—
0000
STSEL
0000
ADDR<7:0>
URXISEL<1:0>
0000
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
FFFF
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
Transmit Register
—
—
0000
Receive Register
—
31:16
15:0
—
—
—
—
—
ON
—
SIDL
IREN
RTSMD
—
31:16
—
—
—
—
—
—
—
ADM_EN
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
UTXISEL<1:0>
—
—
UEN<1:0>
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
TX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
RX8
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
WAKE
LPBACK
ABAUD
RXINV
BRGH
STSEL
0000
PDSEL<1:0>
ADDR<7:0>
URXISEL<1:0>
0000
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
FFFF
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
Transmit Register
—
—
0000
Receive Register
—
0000
0000
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
WAKE
LPBACK
ABAUD
RXINV
BRGH
STSEL
0000
Baud Rate Generator Prescaler
—
15:0
22/6
Baud Rate Generator Prescaler
—
15:0
23/7
All Resets
Virtual Address
(BF80_#)
TABLE 20-1:
0000
0000
PDSEL<1:0>
ADDR<7:0>
URXISEL<1:0>
0000
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
FFFF
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
Transmit Register
—
—
Receive Register
0000
0000
0000
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 204
20.1
Register
Name
6440
U3BRG(1)
Bit Range
Bits
(1)
6600 U4MODE
6610
U4STA
(1)
6630 U4RXREG
6640
U4BRG(1)
6800
U5MODE(1)
6810
U5STA(1)
6820 U5TXREG
6830 U5RXREG
U5BRG(1)
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
WAKE
LPBACK
ABAUD
RXINV
BRGH
STSEL
0000
15:0
Baud Rate Generator Prescaler
31:16
15:0
—
—
—
—
—
—
ON
—
SIDL
IREN
RTSMD
—
31:16
—
—
—
—
—
—
—
ADM_EN
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
15:0
UTXISEL<1:0>
—
—
UEN<1:0>
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
TX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
RX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
ON
—
SIDL
IREN
RTSMD
—
31:16
—
—
—
—
—
—
—
ADM_EN
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
UTXISEL<1:0>
—
—
UEN<1:0>
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
TX8
31:16
—
—
—
—
—
—
—
—
15:0
—
—
—
—
—
—
—
RX8
31:16
—
—
—
—
—
—
—
—
15:0
PDSEL<1:0>
URXISEL<1:0>
0000
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
FFFF
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
Transmit Register
—
—
0000
Receive Register
0000
0000
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
WAKE
LPBACK
ABAUD
RXINV
BRGH
STSEL
0000
Baud Rate Generator Prescaler
31:16
15:0
15:0
0000
ADDR<7:0>
—
0000
0000
PDSEL<1:0>
ADDR<7:0>
URXISEL<1:0>
0000
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
FFFF
—
—
—
—
—
0000
—
—
—
—
—
—
—
—
—
—
—
—
Transmit Register
—
—
0000
Receive Register
—
Baud Rate Generator Prescaler
0000
—
—
—
—
0000
0000
0000
0000
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more information.
DS60001185E-page 205
PIC32MX330/350/370/430/450/470
6620 U4TXREG
6840
UART1 THROUGH UART5 REGISTER MAP (CONTINUED)
All Resets
Virtual Address
(BF80_#)
 2012-2015 Microchip Technology Inc.
TABLE 20-1:
PIC32MX330/350/370/430/450/470
REGISTER 20-1:
Bit
Range
31:24
23:16
15:8
7:0
UxMODE: UARTx MODE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
R/W-0
R/W-0
R/W-0
U-0
R/W-0
R/W-0
—
SIDL
IREN
RTSMD
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
WAKE
LPBACK
ABAUD
RXINV
BRGH
ON
UEN<1:0>
R/W-0
PDSEL<1:0>
R/W-0
STSEL
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: UARTx Enable bit(1)
1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN 
control bits
0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx
registers; UARTx power consumption is minimal
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode
0 = Continue operation in Idle mode
bit 12
IREN: IrDA Encoder and Decoder Enable bit
1 = IrDA is enabled
0 = IrDA is disabled
bit 11
RTSMD: Mode Selection for UxRTS Pin bit
1 = UxRTS pin is in Simplex mode
0 = UxRTS pin is in Flow Control mode
bit 10
Unimplemented: Read as ‘0’
bit 9-8
UEN<1:0>: UARTx Enable bits
11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits
in the PORTx register
10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits
in the PORTx register
00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by
corresponding bits in the PORTx register
bit 7
WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
1 = Wake-up is enabled
0 = Wake-up is disabled
bit 6
LPBACK: UARTx Loopback Mode Select bit
1 = Loopback mode is enabled
0 = Loopback mode is disabled
Note 1:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
DS60001185E-page 206
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 20-1:
UxMODE: UARTx MODE REGISTER (CONTINUED)
bit 5
ABAUD: Auto-Baud Enable bit
1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55);
cleared by hardware upon completion
0 = Baud rate measurement disabled or completed
bit 4
RXINV: Receive Polarity Inversion bit
1 = UxRX Idle state is ‘0’
0 = UxRX Idle state is ‘1’
bit 3
BRGH: High Baud Rate Enable bit
1 = High-Speed mode – 4x baud clock enabled
0 = Standard Speed mode – 16x baud clock enabled
bit 2-1
PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
10 = 8-bit data, odd parity
01 = 8-bit data, even parity
00 = 8-bit data, no parity
bit 0
STSEL: Stop Selection bit
1 = 2 Stop bits
0 = 1 Stop bit
Note 1:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 207
PIC32MX330/350/370/430/450/470
REGISTER 20-2:
Bit
Range
31:24
23:16
15:8
7:0
UxSTA: UARTx STATUS AND CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
—
—
—
—
—
—
—
ADM_EN
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ADDR<7:0>
R/W-0
R/W-0
UTXISEL<1:0>
R/W-0
R/W-0
URXISEL<1:0>
R/W-0
R/W-0
R/W-0
R/W-0
R-0
R-1
UTXINV
URXEN
UTXBRK
UTXEN
UTXBF
TRMT
R/W-0
R-1
R-0
R-0
R/W-0
R-0
ADDEN
RIDLE
PERR
FERR
OERR
URXDA
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-25 Unimplemented: Read as ‘0’
bit 24
ADM_EN: Automatic Address Detect Mode Enable bit
1 = Automatic Address Detect mode is enabled
0 = Automatic Address Detect mode is disabled
bit 23-16 ADDR<7:0>: Automatic Address Mask bits
When the ADM_EN bit is ‘1’, this value defines the address character to use for automatic address
detection.
bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
11 = Reserved, do not use
10 = Interrupt is generated and asserted while the transmit buffer is empty
01 = Interrupt is generated and asserted when all characters have been transmitted
00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
bit 13
UTXINV: Transmit Polarity Inversion bit
If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is ‘0’):
1 = UxTX Idle state is ‘0’
0 = UxTX Idle state is ‘1’
If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is ‘1’):
1 = IrDA encoded UxTX Idle state is ‘1’
0 = IrDA encoded UxTX Idle state is ‘0’
bit 12
URXEN: Receiver Enable bit
1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the
port.
bit 11
UTXBRK: Transmit Break bit
1 = Send Break on next transmission. Start bit followed by twelve ‘0’ bits, followed by Stop bit; cleared by
hardware upon completion
0 = Break transmission is disabled or completed
bit 10
UTXEN: Transmit Enable bit
1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is
controlled by the port.
bit 9
UTXBF: Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
0 = Transmit buffer is not full, at least one more character can be written
DS60001185E-page 208
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 20-2:
UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8
TRMT: Transmit Shift Register is Empty bit (read-only)
1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6
URXISEL<1:0>: Receive Interrupt Mode Selection bit
11 = Reserved; do not use
10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters)
01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters)
00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5
ADDEN: Address Character Detect bit (bit 8 of received data = 1)
1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect
0 = Address Detect mode is disabled
bit 4
RIDLE: Receiver Idle bit (read-only)
1 = Receiver is Idle
0 = Data is being received
bit 3
PERR: Parity Error Status bit (read-only)
1 = Parity error has been detected for the current character
0 = Parity error has not been detected
bit 2
FERR: Framing Error Status bit (read-only)
1 = Framing error has been detected for the current character
0 = Framing error has not been detected
bit 1
OERR: Receive Buffer Overrun Error Status bit.
This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit
resets the receiver buffer and RSR to empty state.
1 = Receive buffer has overflowed
0 = Receive buffer has not overflowed
bit 0
URXDA: Receive Buffer Data Available bit (read-only)
1 = Receive buffer has data, at least one more character can be read
0 = Receive buffer is empty
 2012-2015 Microchip Technology Inc.
DS60001185E-page 209
PIC32MX330/350/370/430/450/470
20.2
Timing Diagrams
Figure 20-2 and Figure 20-3 illustrate typical receive
and transmit timing for the UART module.
FIGURE 20-2:
UART RECEPTION
Char 1
Char 2-4
Char 5-10
Char 11-13
Read to
UxRXREG
Start 1
Stop Start 2
Stop 4
Start 5
Stop 10 Start 11
Stop 13
UxRX
RIDLE
Cleared by
Software
OERR
Cleared by
Software
UxRXIF
URXISEL = 00
Cleared by
Software
UxRXIF
URXISEL = 01
UxRXIF
URXISEL = 10
FIGURE 20-3:
TRANSMISSION (8-BIT OR 9-BIT DATA)
8 into TxBUF
Write to
UxTXREG
TSR
Pull from Buffer
BCLK/16
(Shift Clock)
UxTX
Start
Bit 0
Bit 1
Stop
Start
Bit 1
UxTXIF
UTXISEL = 00
UxTXIF
UTXISEL = 01
UxTXIF
UTXISEL = 10
DS60001185E-page 210
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
21.0
PARALLEL MASTER PORT
(PMP)
Note:
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 13. “Parallel
Master Port (PMP)” (DS60001128),
which is available from the Documentation
> Reference Manual section of the
Microchip
PIC32
web
site
(www.microchip.com/pic32).
The PMP is a parallel 8-bit/16-bit input/output module
specifically designed to communicate with a wide
variety of parallel devices, such as communications
peripherals, LCDs, external memory devices and
microcontrollers. Because the interface to parallel
peripherals varies significantly, the PMP module is
highly configurable.
The following are key features of the PMP module:
•
•
•
•
•
•
•
•
•
•
•
•
8-bit,16-bit interface
Up to 16 programmable address lines
Up to two Chip Select lines
Programmable strobe options
- Individual read and write strobes, or
- Read/write strobe with enable strobe
Address auto-increment/auto-decrement
Programmable address/data multiplexing
Programmable polarity on control signals
Parallel Slave Port support
- Legacy addressable
- Address support
- 4-byte deep auto-incrementing buffer
Programmable Wait states
Operate during CPU Sleep and Idle modes
Fast bit manipulation using CLR, SET and INV
registers
Freeze option for in-circuit debugging
Note:
FIGURE 21-1:
On 64-pin devices, data pins PMD<15:8>
are not available in 16-bit Master modes.
PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES
Address Bus
Data Bus
Parallel
Master Port
Control Lines
PMA<0>
PMALL
PMA<1>
PMALH
Flash
EEPROM
SRAM
Up to 16-bit Address
PMA<13:2>
PMA<14>
PMCS1
PMA<15>
PMCS2
PMRD
PMRD/PMWR
PMWR
PMENB
PMD<7:0>
PMD<15:8>(1)
Note:
Microcontroller
LCD
FIFO
Buffer
8-bit/16-bit Data (with or without multiplexed addressing)
On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 211
Control Registers
Virtual Address
(BF80_#)
Register
Name(1)
TABLE 21-1:
7000
PMCON
PARALLEL MASTER PORT REGISTER MAP
7010 PMMODE
7020 PMADDR
31/15
30/14
29/13
31:16
—
—
—
15:0
31:16
ON
—
—
—
SIDL
—
15:0
31:16
BUSY
—
15:0
CS2
IRQM<1:0>
—
—
28/12
27/11
—
—
ADRMUX<1:0>
—
—
INCM<1:0>
—
—
26/10
25/9
24/8
23/7
22/6
—
—
—
—
—
PMDIN
7050
PMAEN
7060
PMSTAT
Legend:
Note 1:
—
—
—
17/1
16/0
—
—
—
—
—
—
0000
CS2P
—
CS1P
—
—
—
WRSP
—
RDSP
—
0000
0000
MODE16
—
WAITB<1:0>
—
—
—
MODE<1:0>
—
—
WAITM<3:0>
—
—
—
WAITE<1:0>
—
—
ADDR<13:0>
—
—
—
—
—
—
—
—
0000
0000
0000
DATAOUT<31:0>
0000
0000
DATAIN<31:0>
0000
0000
—
—
—
—
—
—
—
—
—
—
—
PTEN<15:0>
—
—
—
—
—
—
—
—
—
0000
OBUF
—
—
OB3E
OB2E
OB1E
OB0E
BFBF
15:0
31:16
18/2
ALP
—
CS1
—
19/3
CSF<1:0>
—
—
31:16
15:0
31:16
20/4
PMPTTL PTWREN PTRDEN
—
—
—
31:16
7030 PMDOUT
15:0
7040
21/5
All Resets
Bit Range
Bits
15:0
IBF
IBOV
—
—
IB3F
IB2F
IB1F
IB0F
OBE
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
0000
0000
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 212
21.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 21-1:
Bit
Range
31:24
23:16
15:8
7:0
PMCON: PARALLEL PORT CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
SIDL
PMPTTL
PTWREN
PTRDEN
R/W-0
R/W-0
(2)
R/W-0
(2)
U-0
R/W-0
R/W-0
—
WRSP
RDSP
ON
CSF<1:0>
Legend:
R = Readable bit
-n = Value at POR
ALP
ADRMUX<1:0>
R/W-0
(2)
CS2P
W = Writable bit
‘1’ = Bit is set
R/W-0
(2)
CS1P
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: Parallel Master Port Enable bit(1)
1 = PMP is enabled
0 = PMP is disabled, no off-chip access performed
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins
10 = All 16 bits of address are multiplexed on PMD<7:0> pins
01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
00 = Address and data appear on separate pins
bit 10
PMPTTL: PMP Module TTL Input Buffer Select bit
1 = PMP module uses TTL input buffers
0 = PMP module uses Schmitt Trigger input buffer
bit 9
PTWREN: Write Enable Strobe Port Enable bit
1 = PMWR/PMENB port is enabled
0 = PMWR/PMENB port is disabled
bit 8
PTRDEN: Read/Write Strobe Port Enable bit
1 = PMRD/PMWR port is enabled
0 = PMRD/PMWR port is disabled
bit 7-6
CSF<1:0>: Chip Select Function bits(2)
11 = Reserved
10 = PMCS1 and PMCS2 function as Chip Select
01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
00 = PMCS1 and PMCS2 function as address bits 14 and 15, respectively
bit 5
ALP: Address Latch Polarity bit(2)
1 = Active-high (PMALL and PMALH)
0 = Active-low (PMALL and PMALH)
bit 4
CS2P: Chip Select 0 Polarity bit(2)
1 = Active-high (PMCS2)
0 = Active-low (PMCS2)
Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON control bit.
2: These bits have no effect when their corresponding pins are used as address lines.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 213
PIC32MX330/350/370/430/450/470
REGISTER 21-1:
PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
bit 2
bit 1
CS1P: Chip Select 0 Polarity bit(2)
1 = Active-high (PMCS1)
0 = Active-low (PMCS1)
Unimplemented: Read as ‘0’
WRSP: Write Strobe Polarity bit
For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10):
1 = Write strobe active-high (PMWR)
0 = Write strobe active-low (PMWR)
bit 0
For Master mode 1 (MODE<1:0> = 11):
1 = Enable strobe active-high (PMENB)
0 = Enable strobe active-low (PMENB)
RDSP: Read Strobe Polarity bit
For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10):
1 = Read Strobe active-high (PMRD)
0 = Read Strobe active-low (PMRD)
bit 3
For Master mode 1 (MODE<1:0> = 11):
1 = Read/write strobe active-high (PMRD/PMWR)
0 = Read/write strobe active-low (PMRD/PMWR)
Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON control bit.
2: These bits have no effect when their corresponding pins are used as address lines.
DS60001185E-page 214
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 21-2:
Bit
Range
31:24
23:16
15:8
PMMODE: PARALLEL PORT MODE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
BUSY
R/W-0
7:0
IRQM<1:0>
R/W-0
R/W-0
WAITB<1:0>(1)
INCM<1:0>
R/W-0
MODE16
R/W-0
MODE<1:0>
R/W-0
R/W-0
WAITM<3:0>(1)
R/W-0
WAITE<1:0>(1)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
BUSY: Busy bit (Master mode only)
1 = Port is busy
0 = Port is not busy
bit 14-13 IRQM<1:0>: Interrupt Request Mode bits
11 = Reserved, do not use
10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode)
or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
01 = Interrupt generated at the end of the read/write cycle
00 = No Interrupt generated
bit 12-11 INCM<1:0>: Increment Mode bits
11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
10 = Decrement ADDR<15:0> by 1 every read/write cycle(2)
01 = Increment ADDR<15:0> by 1 every read/write cycle(2)
00 = No increment or decrement of address
bit 10
MODE16: 8/16-bit Mode bit
1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
bit 9-8
MODE<1:0>: Parallel Port Mode Select bits
11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>(3))
10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>(3))
01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)
bit 7-6
WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits(1)
11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a
write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select
CS2 and CS1.
3: These pins are active when MODE16 = 1 (16-bit mode).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 215
PIC32MX330/350/370/430/450/470
REGISTER 21-2:
PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)
bit 5-2
WAITM<3:0>: Data Read/Write Strobe Wait States bits(1)
1111 = Wait of 16 TPB
•
•
•
0001 = Wait of 2 TPB
0000 = Wait of 1 TPB (default)
bit 1-0
WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits(1)
11 = Wait of 4 TPB
10 = Wait of 3 TPB
01 = Wait of 2 TPB
00 = Wait of 1 TPB (default)
For Read operations:
11 = Wait of 3 TPB
10 = Wait of 2 TPB
01 = Wait of 1 TPB
00 = Wait of 0 TPB (default)
Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a
write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select
CS2 and CS1.
3: These pins are active when MODE16 = 1 (16-bit mode).
DS60001185E-page 216
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 21-3:
Bit
Range
31:24
23:16
15:8
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
R/W-0
(3)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CS2
ADDR15
7:0
PMADDR: PARALLEL PORT ADDRESS REGISTER
R/W-0
CS1
(2)
ADDR<13:8>
ADDR14(4)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ADDR<7:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
CS2: Chip Select 2 bit(1)
1 = Chip Select 2 is active
0 = Chip Select 2 is inactive
bit 15
ADDR<15>: Destination Address bit 15(2)
bit 14
CS1: Chip Select 1 bit(3)
1 = Chip Select 1 is active
0 = Chip Select 1 is inactive
bit 14
ADDR<14>: Destination Address bit 14(4)
bit 13-0
ADDR<13:0>: Address bits
Note 1:
2:
3:
4:
When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
When the CSF<1:0> bits (PMCON<7:6>) = 00.
When the CSF<1:0> bits (PMCON<7:6>) = 10.
When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 217
PIC32MX330/350/370/430/450/470
REGISTER 21-4:
Bit
Range
31:24
23:16
15:8
7:0
PMAEN: PARALLEL PORT PIN ENABLE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
PTEN<15:14>(1)
R/W-0
R/W-0
PTEN<13:8>
R/W-0
R/W-0
R/W-0
R/W-0
PTEN<1:0>(2)
PTEN<7:2>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Write ‘0’; ignore read
bit 15-14 PTEN<15:14>: PMCSx Address Port Enable bits
1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1(1)
0 = PMA15 and PMA14 function as port I/O
bit 13-2
PTEN<13:2>: PMP Address Port Enable bits
1 = PMA<13:2> function as PMP address lines
0 = PMA<13:2> function as port I/O
bit 1-0
PTEN<1:0>: PMALH/PMALL Address Port Enable bits
1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL(2)
0 = PMA1 and PMA0 pads function as port I/O
Note 1:
2:
The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode
selected by the ADRMUX<1:0> bits in the PMCON register.
DS60001185E-page 218
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 21-5:
Bit
Range
31:24
23:16
15:8
7:0
PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R-0
R/W-0, HSC
U-0
U-0
R-0
R-0
R-0
R-0
IBF
IBOV
—
—
IB3F
IB2F
IB1F
IB0F
R-1
R/W-0, HSC
U-0
U-0
R-1
R-1
R-1
R-1
OBE
OBUF
—
—
OB3E
OB2E
OB1E
OB0E
Legend:
HSC = Set by Hardware; Cleared by Software
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
IBF: Input Buffer Full Status bit
1 = All writable input buffer registers are full
0 = Some or all of the writable input buffer registers are empty
bit 14
IBOV: Input Buffer Overflow Status bit
1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
0 = No overflow occurred
bit 13-12 Unimplemented: Read as ‘0’
bit 11-8
IBxF: Input Buffer ‘x’ Status Full bits
1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
0 = Input Buffer does not contain any unread data
bit 7
OBE: Output Buffer Empty Status bit
1 = All readable output buffer registers are empty
0 = Some or all of the readable output buffer registers are full
bit 6
OBUF: Output Buffer Underflow Status bit
1 = A read occurred from an empty output byte buffer (must be cleared in software)
0 = No underflow occurred
bit 5-4
Unimplemented: Read as ‘0’
bit 3-0
OBxE: Output Buffer ‘x’ Status Empty bits
1 = Output buffer is empty (writing data to the buffer will clear this bit)
0 = Output buffer contains data that has not been transmitted
 2012-2015 Microchip Technology Inc.
DS60001185E-page 219
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 220
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
22.0
Note:
REAL-TIME CLOCK AND
CALENDAR (RTCC)
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 29. “Real-Time
Clock
and
Calendar
(RTCC)”
(DS60001125), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
The PIC32 RTCC module is intended for applications in
which accurate time must be maintained for extended
periods of time with minimal or no CPU intervention.
Low-power optimization provides extended battery
lifetime while keeping track of time.
The following are key features of this module:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
FIGURE 22-1:
Time: hours, minutes and seconds
24-hour format (military time)
Visibility of one-half second period
Provides calendar: Weekday, date, month and
year
Alarm intervals are configurable for half of a
second, one second, 10 seconds, one minute, 10
minutes, one hour, one day, one week, one month
and one year
Alarm repeat with decrementing counter
Alarm with indefinite repeat: Chime
Year range: 2000 to 2099
Leap year correction
BCD format for smaller firmware overhead
Optimized for long-term battery operation
Fractional second synchronization
User calibration of the clock crystal frequency with
auto-adjust
Calibration range: 0.66 seconds error per month
Calibrates up to 260 ppm of crystal error
Requirements: External 32.768 kHz clock crystal
Alarm pulse or seconds clock output on 
RTCC pin
RTCC BLOCK DIAGRAM
CAL<9:0>
32.768 kHz Input
from Secondary
Oscillator (SOSC)
RTCC Prescalers
RTCTIME
0.5s
HR, MIN, SEC
RTCC Timer
Alarm
Event
RTCVAL
RTCDATE
YEAR, MONTH, DAY, WDAY
Comparator
ALRMTIME
Compare Registers
with Masks
HR, MIN, SEC
ALRMVAL
ALRMDATE
MONTH, DAY, WDAY
Repeat Counter
Set RTCC Flag
RTCC Interrupt Logic
Alarm Pulse
Seconds Pulse
0
1
RTCC
RTSECSEL
RTCOE
 2012-2015 Microchip Technology Inc.
DS60001185E-page 221
Control Registers
Virtual Address
(BF80_#)
Register
Name(1)
TABLE 22-1:
0200
RTCCON
RTCC REGISTER MAP
0210 RTCALRM
0220 RTCTIME
0230 RTCDATE
0240 ALRMTIME
0250 ALRMDATE
Legend:
Note 1:
31/15
30/14
31:16
—
15:0
31:16
ON
—
15:0 ALRMEN
31:16
29/13
28/12
27/11
26/10
—
—
—
—
—
—
—
SIDL
—
—
—
—
—
—
—
CHIME
PIV
HR10<3:0>
ALRMSYNC
25/9
24/8
—
—
—
—
23/7
22/6
21/5
20/4
AMASK<3:0>
HR01<3:0>
—
—
—
—
—
—
MONTH10<3:0>
—
15:0
31:16
DAY10<3:0>
HR10<3:0>
DAY01<3:0>
HR01<3:0>
—
—
—
MIN10<3:0>
—
—
—
—
MONTH10<3:0>
—
—
SEC01<3:0>
—
—
0000
—
—
—
—
MONTH01<3:0>
—
WDAY01<3:0>
MIN01<3:0>
—
—
—
MONTH01<3:0>
0000
0000
0000
xxxx
MIN01<3:0>
—
—
16/0
ARPT<7:0>
SEC01<3:0>
YEAR01<3:0>
SEC10<3:0>
—
—
17/1
RTCWREN RTCSYNC HALFSEC RTCOE
—
—
—
—
MIN10<3:0>
SEC10<3:0>
YEAR10<3:0>
—
18/2
CAL<9:0>
RTSECSEL RTCCLKON
—
—
15:0
31:16
15:0
31:16
19/3
All Resets
Bit Range
Bits
xx00
xxxx
xx00
xxxx
—
xx00
00xx
15:0
DAY10<3:0>
DAY01<3:0>
—
—
—
—
WDAY01<3:0>
xx0x
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 222
22.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 22-1:
Bit
Range
31:24
23:16
Bit
30/22/14/6
Bit
Bit
29/21/13/5 28/20/12/4
U-0
U-0
U-0
—
—
—
R/W-0
R/W-0
R/W-0
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
R/W-0
R/W-0
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
CAL<9:8>
CAL<7:0>
15:8
7:0
RTCCON: RTC CONTROL REGISTER
Bit
31/23/15/7
R/W-0
U-0
R/W-0
U-0
U-0
U-0
U-0
ON(1,2)
—
SIDL
—
—
—
—
—
R/W-0
R-0
U-0
U-0
R/W-0
R-0
R-0
R/W-0
—
—
RTSECSEL(3) RTCCLKON
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
RTCWREN(4) RTCSYNC HALFSEC(5)
RTCOE
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-26 Unimplemented: Read as ‘0’
bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value
0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute
•
•
•
0000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute
0000000000 = No adjustment
1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute
•
•
•
bit 15
bit 14
bit 13
bit 12-8
bit 7
bit 6
bit 5-4
Note 1:
2:
3:
4:
5:
Note:
1000000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute
ON: RTCC On bit(1,2)
1 = RTCC module is enabled
0 = RTCC module is disabled
Unimplemented: Read as ‘0’
SIDL: Stop in Idle Mode bit
1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode
0 = Continue normal operation in Idle mode
Unimplemented: Read as ‘0’
RTSECSEL: RTCC Seconds Clock Output Select bit(3)
1 = RTCC Seconds Clock is selected for the RTCC pin
0 = RTCC Alarm Pulse is selected for the RTCC pin
RTCCLKON: RTCC Clock Enable Status bit
1 = RTCC Clock is actively running
0 = RTCC Clock is not running
Unimplemented: Read as ‘0’
The ON bit is only writable when RTCWREN = 1.
When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
The RTCWREN bit can be set only when the write sequence is enabled.
This bit is read-only. It is cleared to ‘0’ on a write to the seconds bit fields (RTCTIME<14:8>).
This register is reset only on a Power-on Reset (POR).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 223
PIC32MX330/350/370/430/450/470
REGISTER 22-1:
RTCCON: RTC CONTROL REGISTER (CONTINUED)
RTCWREN: RTC Value Registers Write Enable bit(4)
1 = RTC Value registers can be written to by the user
0 = RTC Value registers are locked out from being written to by the user
RTCSYNC: RTCC Value Registers Read Synchronization bit
1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read
If the register is read twice and results in the same data, the data can be assumed to be valid
0 = RTC Value registers can be read without concern about a rollover ripple
HALFSEC: Half-Second Status bit(5)
1 = Second half period of a second
0 = First half period of a second
RTCOE: RTCC Output Enable bit
1 = RTCC clock output is enabled – clock presented onto an I/O
0 = RTCC clock output is disabled
bit 3
bit 2
bit 1
bit 0
Note 1:
2:
3:
4:
5:
Note:
The ON bit is only writable when RTCWREN = 1.
When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
The RTCWREN bit can be set only when the write sequence is enabled.
This bit is read-only. It is cleared to ‘0’ on a write to the seconds bit fields (RTCTIME<14:8>).
This register is reset only on a Power-on Reset (POR).
DS60001185E-page 224
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 22-2:
Bit
Range
31:24
23:16
15:8
7:0
RTCALRM: RTC ALARM CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
Bit
27/19/11/3 26/18/10/2
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
—
—
—
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R-0
R/W-0
R/W-0
CHIME(2)
R/W-0
(3)
R/W-0
ALRMEN(1,2)
R/W-0
(2)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
PIV
ALRMSYNC(3)
R/W-0
AMASK<3:0>
R/W-0
ARPT<7:0>(3)
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ALRMEN: Alarm Enable bit(1,2)
1 = Alarm is enabled
0 = Alarm is disabled
bit 14
CHIME: Chime Enable bit(2)
1 = Chime is enabled – ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
0 = Chime is disabled – ARPT<7:0> stops once it reaches 0x00
bit 13
PIV: Alarm Pulse Initial Value bit(2)
When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse.
When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.
bit 12
ALRMSYNC: Alarm Sync bit(3)
1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. 
The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple
bits may be changing, which are then synchronized to the PB clock domain
0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC
clocks away from a half-second rollover
bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits(3)
0000 = Every half-second
0001 = Every second
0010 = Every 10 seconds
0011 = Every minute
0100 = Every 10 minutes
0101 = Every hour
0110 = Once a day
0111 = Once a week
1000 = Once a month
1001 = Once a year (except when configured for February 29, once every four years)
1010 = Reserved; do not use
1011 = Reserved; do not use
11xx = Reserved; do not use
Note 1:
2:
3:
Note:
Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and
CHIME = 0.
This field should not be written when the RTCC ON bit = ‘1’ (RTCCON<15>) and ALRMSYNC = 1.
This assumes a CPU read will execute in less than 32 PBCLKs.
This register is reset only on a Power-on Reset (POR).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 225
PIC32MX330/350/370/430/450/470
REGISTER 22-2:
RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)
ARPT<7:0>: Alarm Repeat Counter Value bits(3)
11111111 = Alarm will trigger 256 times
bit 7-0
•
•
•
00000000 = Alarm will trigger one time
The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.
Note 1:
2:
3:
Note:
Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and
CHIME = 0.
This field should not be written when the RTCC ON bit = ‘1’ (RTCCON<15>) and ALRMSYNC = 1.
This assumes a CPU read will execute in less than 32 PBCLKs.
This register is reset only on a Power-on Reset (POR).
DS60001185E-page 226
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 22-3:
Bit
Range
31:24
23:16
15:8
7:0
RTCTIME: RTC TIME VALUE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
HR10<3:0>
R/W-x
R/W-x
HR01<3:0>
R/W-x
R/W-x
R/W-x
R/W-x
MIN10<3:0>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
MIN01<3:0>
R/W-x
R/W-x
R/W-x
SEC10<3:0>
R/W-x
R/W-x
SEC01<3:0>
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8
SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0
Unimplemented: Read as ‘0’
Note:
This register is only writable when RTCWREN = 1 (RTCCON<3>).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 227
PIC32MX330/350/370/430/450/470
REGISTER 22-4:
Bit
Range
31:24
23:16
15:8
7:0
RTCDATE: RTC DATE VALUE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
YEAR10<3:0>
R/W-x
YEAR01<3:0>
MONTH10<3:0>
R/W-x
R/W-x
U-0
U-0
—
—
R/W-x
R/W-x
R/W-x
MONTH01<3:0>
R/W-x
R/W-x
R/W-x
U-0
U-0
R/W-x
R/W-x
—
—
DAY10<3:0>
R/W-x
R/W-x
DAY01<3:0>
R/W-x
R/W-x
WDAY01<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digits
bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1s place digit
bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10s place digits; contains a value of 0 or 1
bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1s place digit; contains a value from 0 to 9
bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10s place digits; contains a value from 0 to 3
bit 11-8
DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1s place digit; contains a value from 0 to 9
bit 7-4
Unimplemented: Read as ‘0’
bit 3-0
WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1s place digit; contains a value from 0 to 6
Note:
This register is only writable when RTCWREN = 1 (RTCCON<3>).
DS60001185E-page 228
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 22-5:
Bit
Range
31:24
23:16
15:8
7:0
ALRMTIME: ALARM TIME VALUE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
HR10<3:0>
R/W-x
R/W-x
HR01<3:0>
R/W-x
R/W-x
R/W-x
R/W-x
MIN10<3:0>
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
MIN01<3:0>
R/W-x
R/W-x
R/W-x
SEC10<3:0>
R/W-x
R/W-x
SEC01<3:0>
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8
SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0
Unimplemented: Read as ‘0’
 2012-2015 Microchip Technology Inc.
DS60001185E-page 229
PIC32MX330/350/370/430/450/470
REGISTER 22-6:
Bit
Range
31:24
23:16
15:8
7:0
ALRMDATE: ALARM DATE VALUE REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
U-0
U-0
U-0
U-0
Bit
Bit
27/19/11/3 26/18/10/2
U-0
U-0
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
U-0
U-0
U-0
U-0
R/W-x
R/W-x
—
—
—
—
MONTH10<3:0>
R/W-x
MONTH01<3:0>
DAY10<1:0>
R/W-x
R/W-x
DAY01<3:0>
R/W-x
R/W-x
WDAY01<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-24 Unimplemented: Read as ‘0’
bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10s place digits; contains a value of 0 or 1
bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9
bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10s place digits; contains a value from 0 to 3
bit 11-8
DAY01<3:0>: Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9
bit 7-4
Unimplemented: Read as ‘0’
bit 3-0
WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1s place digit; contains a value from 0 to 6
DS60001185E-page 230
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
23.0
Note:
10-BIT ANALOG-TO-DIGITAL
CONVERTER (ADC)
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 17. “10-bit Analog-to-Digital
Converter
(ADC)”
(DS60001104), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
The 10-bit Analog-to-Digital Converter (ADC) includes
the following features:
• Successive Approximation Register (SAR)
conversion
• Up to 1 Msps conversion speed
• Up to 28 analog input pins
• External voltage reference input pins
• One unipolar, differential Sample and Hold
Amplifier (SHA)
• Automatic Channel Scan mode
• Selectable conversion trigger source
• 16-word conversion result buffer
• Selectable buffer fill modes
• Eight conversion result format options
• Operation during CPU Sleep and Idle modes
A block diagram of the 10-bit ADC is illustrated in
Figure 23-1. The 10-bit ADC has up to 28 analog input
pins, designated AN0-AN27. In addition, there are two
analog input pins for external voltage reference
connections. These voltage reference inputs may be
shared with other analog input pins and may be
common to other analog module references.
FIGURE 23-1:
ADC1 MODULE BLOCK DIAGRAM
CTMUI(3)
VREF+(1)
AVDD
VREF-(1)
AVSS
AN0
AN27
VCFG<2:0>
IVREF(3)
ADC1BUF0
CTMUT(2)
ADC1BUF1
Open(4)
S&H
Channel
Scan
VREFH
VREFL
ADC1BUF2
+
CH0SB<4:0>
CH0SA<4:0>
-
SAR ADC
CSCNA
AN1
ADC1BUFE
VREFL
ADC1BUFF
CH0NA CH0NB
Alternate
Input Selection
Note 1: VREF+ and VREF- inputs can be multiplexed with other analog inputs.
2:
Connected to the CTMU module. See Section 26.0 “Charge Time Measurement Unit (CTMU)” for more
information.
3:
See Section 25.0 “Comparator Voltage Reference (CVref)” for more information.
4:
This selection is only used with CTMU capacitive and time measurement.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 231
PIC32MX330/350/370/430/450/470
FIGURE 23-2:
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM
ADRC
FRC(1)
Div 2
1
TAD
ADCS<7:0>
0
8
ADC Conversion
Clock Multiplier
TPB(2)
2, 4,..., 512
Note 1:
2:
See Section 31.0 “Electrical Characteristics” for the exact FRC clock value.
Refer to Figure 8-1 in Section 8.0 “Oscillator Configuration” for more information.
DS60001185E-page 232
 2012-2015 Microchip Technology Inc.
Control Registers
TABLE 23-1:
Register
Name
9010 AD1CON2(1)
AD1CON3(1)
(1)
9050 AD1CSSL
9070 ADC1BUF0
9080 ADC1BUF1
9090 ADC1BUF2
90A0 ADC1BUF3
90B0 ADC1BUF4
90C0 ADC1BUF5
90D0 ADC1BUF6
90E0 ADC1BUF7
DS60001185E-page 233
90F0 ADC1BUF8
9100 ADC1BUF9
30/14
31:16
—
15:0
ON
31:16
—
15:0
29/13
28/12
27/11
26/10
—
—
—
—
—
—
SIDL
—
—
—
—
—
—
—
—
—
—
—
OFFCAL
—
CSCNA
—
—
BUFS
—
—
—
—
—
—
—
—
VCFG<2:0>
25/9
24/8
23/7
—
—
—
FORM<2:0>
31:16
—
—
—
15:0
ADRC
—
—
SAMC<4:0>
31:16
CH0NB
—
—
CH0SB<4:0>
15:0
—
—
—
—
—
—
—
31:16
—
CSSL30
CSSL29
CSSL28
CSSL27
CSSL26
15:0
CSSL15
CSSL14
CSSL13
CSSL12
CSSL11
CSSL10
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
22/6
21/5
—
—
SSRC<2:0>
—
20/4
19/3
18/2
16/0
—
—
—
—
—
0000
CLRASAM
—
ASAM
SAMP
DONE
0000
—
—
—
—
—
0000
BUFM
ALTS
0000
—
—
0000
SMPI<3:0>
—
17/1
—
—
—
ADCS<7:0>
0000
CH0NA
—
—
—
—
—
—
—
—
—
—
CSSL25
CSSL24
CSSL23
CSSL22
CSSL21
CSSL20
CSSL19
CSSL18
CSSL17
CSSL16 0000
CSSL9
CSSL8
CSSL7
CSSL6
CSSL5
CSSL4
CSSL3
CSSL2
CSSL1
CSSL0
ADC Result Word 0 (ADC1BUF0<31:0>)
ADC Result Word 1 (ADC1BUF1<31:0>)
ADC Result Word 2 (ADC1BUF2<31:0>)
ADC Result Word 3 (ADC1BUF3<31:0>)
ADC Result Word 4 (ADC1BUF4<31:0>)
ADC Result Word 5 (ADC1BUF5<31:0>)
ADC Result Word 6 (ADC1BUF6<31:0>)
ADC Result Word 7 (ADC1BUF7<31:0>)
ADC Result Word 8 (ADC1BUF8<31:0>)
ADC Result Word 9 (ADC1BUF9<31:0>)
CH0SA<4:0>
0000
—
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
details.
PIC32MX330/350/370/430/450/470
9040 AD1CHS(1)
31/15
All Resets
Bits
9000 AD1CON1(1)
9020
ADC REGISTER MAP
Bit Range
Virtual Address
(BF80_#)
 2012-2015 Microchip Technology Inc.
23.1
Register
Name
9110 ADC1BUFA
9120 ADC1BUFB
9130 ADC1BUFC
9140 ADC1BUFD
9150 ADC1BUFE
9160 ADC1BUFF
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31:16
15:0
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
ADC Result Word A (ADC1BUFA<31:0>)
ADC Result Word B (ADC1BUFB<31:0>)
ADC Result Word C (ADC1BUFC<31:0>)
ADC Result Word D (ADC1BUFD<31:0>)
ADC Result Word E (ADC1BUFE<31:0>)
ADC Result Word F (ADC1BUFF<31:0>)
21/5
20/4
19/3
18/2
17/1
16/0
All Resets
Bits
Bit Range
Virtual Address
(BF80_#)
ADC REGISTER MAP (CONTINUED)
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
Legend:
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1:
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
details.
PIC32MX330/350/370/430/450/470
DS60001185E-page 234
TABLE 23-1:
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 23-1:
Bit
Range
31:24
23:16
15:8
7:0
AD1CON1: ADC CONTROL REGISTER 1
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
R/W-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
SIDL
—
—
R/W-0
R/W-0
R/W-0
R/W-0
U-0
R/W-0
CLRASAM
—
ASAM
ON
SSRC<2:0>
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
FORM<2:0>
R/W-0, HSC
(2)
SAMP
R/C-0, HSC
(3)
DONE
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: ADC Operating Mode bit(1)
1 = ADC module is operating
0 = ADC module is not operating
bit 14
Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-11 Unimplemented: Read as ‘0’
bit 10-8 FORM<2:0>: Data Output Format bits
011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)
001 = Signed Integer 16-bit (DOUT = 0000 0000 0000 0000 ssss sssd dddd dddd)
000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000)
110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000 0000)
101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd)
100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
bit 7-5
SSRC<2:0>: Conversion Trigger Source Select bits
111 = Internal counter ends sampling and starts conversion (auto convert)
110 = Reserved
101 = Reserved
100 = Reserved
011 = CTMU ends sampling and starts conversion
010 = Timer 3 period match ends sampling and starts conversion
001 = Active transition on INT0 pin ends sampling and starts conversion
000 = Clearing SAMP bit ends sampling and starts conversion
Note 1:
2:
3:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
If ASAM = 0, software can write a ‘1’ to start sampling. This bit is automatically set by hardware if
ASAM = 1. If SSRC = 0, software can write a ‘0’ to end sampling and start conversion. If SSRC 0, this
bit is automatically cleared by hardware to end sampling and start conversion.
This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can
write a ‘0’ to clear this bit (a write of ‘1’ is not allowed). Clearing this bit does not affect any operation
already in progress. This bit is automatically cleared by hardware at the start of a new conversion.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 235
PIC32MX330/350/370/430/450/470
REGISTER 23-1:
bit 4
AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)
CLRASAM: Stop Conversion Sequence bit (when the first ADC interrupt is generated)
1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the
ADC interrupt is generated.
0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
Unimplemented: Read as ‘0’
ASAM: ADC Sample Auto-Start bit
1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
0 = Sampling begins when SAMP bit is set
SAMP: ADC Sample Enable bit(2)
1 = The ADC sample and hold amplifier is sampling
0 = The ADC sample/hold amplifier is holding
When ASAM = 0, writing ‘1’ to this bit starts sampling.
When SSRC = 000, writing ‘0’ to this bit will end sampling and start conversion.
DONE: Analog-to-Digital Conversion Status bit(3)
1 = Analog-to-digital conversion is done
0 = Analog-to-digital conversion is not done or has not started
Clearing this bit will not affect any operation in progress.
bit 3
bit 2
bit 1
bit 0
Note 1:
2:
3:
When using 1:1 PBCLK divisor, the user software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
If ASAM = 0, software can write a ‘1’ to start sampling. This bit is automatically set by hardware if
ASAM = 1. If SSRC = 0, software can write a ‘0’ to end sampling and start conversion. If SSRC 0, this
bit is automatically cleared by hardware to end sampling and start conversion.
This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can
write a ‘0’ to clear this bit (a write of ‘1’ is not allowed). Clearing this bit does not affect any operation
already in progress. This bit is automatically cleared by hardware at the start of a new conversion.
DS60001185E-page 236
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 23-2:
Bit
Range
31:24
23:16
15:8
AD1CON2: ADC CONTROL REGISTER 2
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
R/W-0
R/W-0
R/W-0
U-0
R/W-0
U-0
U-0
OFFCAL
—
CSCNA
—
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
BUFM
ALTS
VCFG<2:0>
7:0
Bit
Bit
28/20/12/4 27/19/11/3
R-0
U-0
BUFS
—
R/W-0
SMPI<3:0>
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits
000
001
010
011
1xx
bit 12
bit 11
bit 10
bit 9-8
bit 7
bit 6
bit 5-2
VREFH
VREFL
AVDD
External VREF+ pin
AVDD
External VREF+ pin
AVDD
AVss
AVSS
External VREF- pin
External VREF- pin
AVSS
OFFCAL: Input Offset Calibration Mode Select bit
1 = Enable Offset Calibration mode
Positive and negative inputs of the sample and hold amplifier are connected to VREFL
0 = Disable Offset Calibration mode
The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL
Unimplemented: Read as ‘0’
CSCNA: Input Scan Select bit
1 = Scan inputs
0 = Do not scan inputs
Unimplemented: Read as ‘0’
BUFS: Buffer Fill Status bit
Only valid when BUFM = 1.
1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF
Unimplemented: Read as ‘0’
SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
•
•
•
bit 1
bit 0
0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
0000 = Interrupts at the completion of conversion for each sample/convert sequence
BUFM: ADC Result Buffer Mode Select bit
1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
ALTS: Alternate Input Sample Mode Select bit
1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and 
Sample A input multiplexer settings for all subsequent samples
0 = Always use Sample A input multiplexer settings
 2012-2015 Microchip Technology Inc.
DS60001185E-page 237
PIC32MX330/350/370/430/450/470
REGISTER 23-3:
Bit
Range
31:24
23:16
15:8
7:0
AD1CON3: ADC CONTROL REGISTER 3
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
—
—
—
U-0
U-0
U-0
U-0
U-0
—
—
—
—
R/W-0
U-0
U-0
—
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ADRC
—
—
R/W-0
R/W-0
R/W-0
R/W
R/W-0
SAMC<4:0>(1)
R/W-0
R/W-0
R/W-0
ADCS<7:0>(2)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ADRC: ADC Conversion Clock Source bit
1 = Clock derived from FRC
0 = Clock derived from Peripheral Bus Clock (PBCLK)
bit 14-13 Unimplemented: Read as ‘0’
bit 12-8
SAMC<4:0>: Auto-Sample Time bits(1)
11111 = 31 TAD
•
•
•
00001 = 1 TAD
00000 = 0 TAD (Not allowed)
bit 7-0
ADCS<7:0>: ADC Conversion Clock Select bits(2)
11111111 =TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD
•
•
•
00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD
00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
Note 1:
2:
This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
This bit is not used if the ADRC bit (AD1CON3<15>) = 1.
DS60001185E-page 238
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 23-4:
Bit
Range
31:24
23:16
15:8
7:0
AD1CHS: ADC INPUT SELECT REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-0
U-0
U-0
CH0NB
—
—
R/W-0
U-0
U-0
CH0NA
(3)
Bit
Bit
28/20/12/4 27/19/11/3
R/W-0
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
U-0
R/W-0
CH0SB<4:0>
R/W-0
R/W-0
R/W-0
—
—
U-0
U-0
U-0
U-0
U-0
CH0SA<4:0>
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31
CH0NB: Negative Input Select bit for Sample B
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREFL
bit 30-29
Unimplemented: Read as ‘0’
bit 28-24
CH0SB<4:0>: Positive Input Select bits for Sample B
11110 = Channel 0 positive input is Open(1)
11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)(2)
11100 = Channel 0 positive input is IVREF(3)
11011 = Channel 0 positive input is AN27
•
•
•
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0
bit 23
CH0NA: Negative Input Select bit for Sample A Multiplexer Setting(3)
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREFL
bit 22-21
Unimplemented: Read as ‘0’
bit 20-16
CH0SA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting
11110 = Channel 0 positive input is Open(1)
11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)(2)
11100 = Channel 0 positive input is IVREF(3)
11011 = Channel 0 positive input is AN27
•
•
•
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0
bit 15-0
Unimplemented: Read as ‘0’
Note 1:
2:
3:
This selection is only used with CTMU capacitive and time measurement.
See Section 26.0 “Charge Time Measurement Unit (CTMU)” for more information.
See Section 25.0 “Comparator Voltage Reference (CVref)” for more information.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 239
PIC32MX330/350/370/430/450/470
REGISTER 23-5:
Bit
Range
31:24
23:16
15:8
7:0
AD1CSSL: ADC INPUT SCAN SELECT REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
CSSL30
CSSL29
CSSL28
CSSL27
CSSL26
CSSL25
CSSL24
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CSSL23
CSSL21
CSSL21
CSSL20
CSSL19
CSSL18
CSSL17
CSSL16
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CSSL15
CSSL14
CSSL13
CSSL12
CSSL11
CSSL10
CSSL9
CSSL8
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
CSSL7
CSSL6
CSSL5
CSSL4
CSSL3
CSSL2
CSSL1
CSSL0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15-0
CSSL<30:0>: ADC Input Pin Scan Selection bits(1,2)
1 = Select ANx for input scan
0 = Skip ANx for input scan
Note 1:
CSSL = ANx, where x = 0-27; CSSL30 selects Vss for scan; CSSL29 selects CTMU input for scan;
CSSL28 selects IVREF for scan.
On devices with less than 28 analog inputs, all CSSLx bits can be selected; however, inputs selected for
scan without a corresponding input on the device will convert to VREFL.
2:
DS60001185E-page 240
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
24.0
The Analog Comparator module contains two
comparators that can be configured in a variety of
ways.
COMPARATOR
Note:
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet,
refer
to
Section
19.
“Comparator” (DS60001110), which is
available from the Documentation >
Reference Manual section of the
Microchip
PIC32
web
site
(www.microchip.com/pic32).
FIGURE 24-1:
The following are key features of this module:
• Selectable inputs available include:
- Analog inputs multiplexed with I/O pins
- On-chip internal absolute voltage reference
(IVREF)
- Comparator voltage reference (CVREF)
• Outputs can be Inverted
• Selectable interrupt generation
A block diagram of the comparator module is provided
in Figure 24-1.
COMPARATOR BLOCK DIAGRAM
CCH<1:0>
C1INB
C1INC
COE
C1IND
CMP1
C1OUT
CREF
CMSTAT<C1OUT>
CM1CON<COUT>
CPOL
C1INA
CCH<1:0>
C2INB
To CTMU module
(Pulse Generator)
C2INC
COE
C2IND
CMP2
C2OUT
CREF
CPOL
C2INA
CMSTAT<C2OUT>
CM2CON<COUT>
CVREF(1)
IVREF (1.2V)
Note 1:
Internally connected. See Section 25.0 “Comparator Voltage Reference (CVref)” for more information.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 241
Control Registers
A000 CM1CON
A010 CM2CON
A060 CMSTAT
Legend:
Note 1:
COMPARATOR REGISTER MAP
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
—
20/4
19/3
18/2
17/1
16/0
All Resets
Bit Range
Bits
Register
Name(1)
Virtual Address
(BF80_#)
TABLE 24-1:
31:16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0000
15:0
31:16
ON
—
COE
—
CPOL
—
—
—
—
—
—
—
—
—
COUT
—
EVPOL<1:0>
—
—
—
—
CREF
—
—
—
—
—
CCH<1:0>
—
—
E1C3
0000
15:0
31:16
ON
—
COE
—
CPOL
—
—
—
—
—
—
—
—
—
COUT
—
EVPOL<1:0>
—
—
—
—
CREF
—
—
—
—
—
CCH<1:0>
—
—
E1C3
0000
—
—
—
—
—
15:0
—
—
SIDL
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
—
C2OUT
C1OUT
0000
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 242
24.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 24-1:
Bit
Range
31:24
23:16
15:8
7:0
CMxCON: COMPARATOR CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
R/W-0
(1)
R/W-0
ON
COE
R/W-1
R/W-1
EVPOL<1:0>
Legend:
R = Readable bit
-n = Value at POR
Bit
Bit
28/20/12/4 27/19/11/3
—
R/W-0
(2)
CPOL
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
—
U-0
U-0
U-0
U-0
R-0
COUT
—
—
—
—
U-0
R/W-0
U-0
U-0
R/W-1
—
CREF
—
—
W = Writable bit
‘1’ = Bit is set
R/W-1
CCH<1:0>
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: Comparator ON bit(1)
1 = Module is enabled. Setting this bit does not affect the other bits in this register
0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this
register
bit 14
COE: Comparator Output Enable bit
1 = Comparator output is driven on the output CxOUT pin
0 = Comparator output is not driven on the output CxOUT pin
bit 13
CPOL: Comparator Output Inversion bit(2)
1 = Output is inverted
0 = Output is not inverted
bit 12-9 Unimplemented: Read as ‘0’
bit 8
COUT: Comparator Output bit
1 = Output of the Comparator is a ‘1’
0 = Output of the Comparator is a ‘0’
bit 7-6
EVPOL<1:0>: Interrupt Event Polarity Select bits
11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
00 = Comparator interrupt generation is disabled
bit 5
Unimplemented: Read as ‘0’
bit 4
CREF: Comparator Positive Input Configure bit
1 = Comparator non-inverting input is connected to the internal CVREF
0 = Comparator non-inverting input is connected to the CXINA pin
bit 3-2
Unimplemented: Read as ‘0’
bit 1-0
CCH<1:0>: Comparator Negative Input Select bits for Comparator
11 = Comparator inverting input is connected to the IVREF
10 = Comparator inverting input is connected to the CxIND pin
01 = Comparator inverting input is connected to the CxINC pin
00 = Comparator inverting input is connected to the CxINB pin
Note 1:
2:
When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an
interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 243
PIC32MX330/350/370/430/450/470
REGISTER 24-2:
Bit
Range
31:24
23:16
15:8
7:0
CMSTAT: COMPARATOR STATUS REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
Bit
28/20/12/4 27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
U-0
—
—
—
—
U-0
U-0
U-0
—
—
—
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
U-0
U-0
—
—
R/W-0
U-0
U-0
U-0
U-0
U-0
SIDL
—
—
—
—
—
U-0
U-0
—
—
U-0
U-0
U-0
U-0
R-0
R-0
—
—
—
—
C2OUT
C1OUT
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-14 Unimplemented: Read as ‘0’
bit 13
SIDL: Stop in IDLE Control bit
1 = All Comparator modules are disabled in IDLE mode
0 = All Comparator modules continue to operate in the IDLE mode
bit 12-2
Unimplemented: Read as ‘0’
bit 1
C2OUT: Comparator Output bit
1 = Output of Comparator 2 is a ‘1’
0 = Output of Comparator 2 is a ‘0’
bit 0
C1OUT: Comparator Output bit
1 = Output of Comparator 1 is a ‘1’
0 = Output of Comparator 1 is a ‘0’
DS60001185E-page 244
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
25.0
Note:
A block diagram of the module is illustrated in
Figure 25-1. The resistor ladder is segmented to
provide two ranges of voltage reference values and has
a power-down function to conserve power when the
reference is not being used. The module’s supply reference can be provided from either device VDD/VSS or an
external voltage reference. The CVREF output is available for the comparators and typically available for pin
output.
COMPARATOR VOLTAGE
REFERENCE (CVREF)
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 20. “Comparator
Voltage
Reference
(CVREF)”
(DS60001109), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
The CVREF module has the following features:
• High and low range selection
• Sixteen output levels available for each range
• Internally connected to comparators to conserve
device pins
• Output can be connected to a pin
The CVREF module is a 16-tap, resistor ladder network
that provides a selectable reference voltage. Although
its primary purpose is to provide a reference for the
analog comparators, it also may be used independently
of them.
FIGURE 25-1:
VREF+
AVDD
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM
CVRSS = 1
CVRSRC
8R
CVRSS = 0
CVR<3:0>
CVREF
R
CVREN
R
R
16-to-1 MUX
R
16 Steps
R
CVREFOUT
CVRCON<CVROE>
R
R
CVRR
VREFAVSS
 2012-2015 Microchip Technology Inc.
8R
CVRSS = 1
CVRSS = 0
DS60001185E-page 245
Control Register
Virtual Address
(BF80_#)
TABLE 25-1:
Legend:
1:
31:16
31/15
30/14
29/13
28/12
27/11
26/10
25/9
24/8
23/7
—
—
—
—
—
—
—
—
—
—
—
CVROE
15:0
ON
—
—
—
—
—
—
—
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
22/6
21/5
20/4
19/3
18/2
17/1
16/0
—
—
—
—
—
—
CVRR
CVRSS
CVR<3:0>
All Resets
Register
Name(1)
Bit Range
Bits
9800 CVRCON
Note
COMPARATOR VOLTAGE REFERENCE REGISTER MAP
0000
0000
The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 246
25.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 25-1:
Bit
Range
31:24
23:16
15:8
7:0
CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
R/W-0
(1)
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
CVROE
CVRR
CVRSS
ON
CVR<3:0>
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-16 Unimplemented: Read as ‘0’
bit 15
ON: Comparator Voltage Reference On bit(1)
1 = Module is enabled
Setting this bit does not affect other bits in the register.
0 = Module is disabled and does not consume current
Clearing this bit does not affect the other bits in the register.
bit 14-7
Unimplemented: Read as ‘0’
bit 6
CVROE: CVREFOUT Enable bit
1 = Voltage level is output on CVREFOUT pin
0 = Voltage level is disconnected from CVREFOUT pin
bit 5
CVRR: CVREF Range Selection bit
1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size
0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
bit 4
CVRSS: CVREF Source Selection bit
1 = Comparator voltage reference source, CVRSRC = (VREF+) – (VREF-)
0 = Comparator voltage reference source, CVRSRC = AVDD – AVSS
bit 3-0
CVR<3:0>: CVREF Value Selection 0  CVR<3:0>  15 bits
When CVRR = 1:
CVREF = (CVR<3:0>/24)  (CVRSRC)
When CVRR = 0:
CVREF = 1/4  (CVRSRC) + (CVR<3:0>/32)  (CVRSRC)
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 247
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 248
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
26.0
The CTMU module includes the following key features:
CHARGE TIME
MEASUREMENT UNIT (CTMU)
• Up to 13 channels available for capacitive or time
measurement input
• On-chip precision current source
• 16-edge input trigger sources
• Selection of edge or level-sensitive inputs
• Polarity control for each edge source
• Control of edge sequence
• Control of response to edges
• High precision time measurement
• Time delay of external or internal signal asynchronous to system clock
• Integrated temperature sensing diode
• Control of current source during auto-sampling
• Four current source ranges
• Time measurement resolution of one nanosecond
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 37. “Charge Time
Measurement
Unit
(CTMU)”
(DS60001167), which is available from the
Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
Note:
The Charge Time Measurement Unit (CTMU) is a
flexible analog module that has a configurable current
source with a digital configuration circuit built around it.
The CTMU can be used for differential time
measurement between pulse sources and can be used
for generating an asynchronous pulse. By working with
other on-chip analog modules, the CTMU can be used
for high resolution time measurement, measure
capacitance, measure relative changes in capacitance
or generate output pulses with a specific time delay.
The CTMU is ideal for interfacing with capacitive-based
sensors.
FIGURE 26-1:
A block diagram of the CTMU is shown in Figure 26-1.
CTMU BLOCK DIAGRAM
CTMUCON1 or CTMUCON2
CTMUICON
ITRIM<5:0>
IRNG<1:0>
Current Source
CTED1
•
•
•
Edge
Control
Logic
CTED13
Timer1
OC1
IC1-IC3
CMP1-CMP2
PBCLK
EDG1STAT
EDG2STAT
TGEN
Current
Control
CTMUP
CTMUT
(To ADC)
Temperature
Sensor
CTMU
Control
Logic
ADC
Trigger
Pulse
Generator
CTPLS
CTMUI
(To ADC S&H capacitor)
C2INB
CDelay
Comparator 2
External capacitor
for pulse generation
Current Control Selection
TGEN
EDG1STAT, EDG2STAT
CTMUT
0
EDG1STAT = EDG2STAT
CTMUI
0
EDG1STAT  EDG2STAT
CTMUP
1
EDG1STAT  EDG2STAT
No Connect
1
EDG1STAT = EDG2STAT
 2012-2015 Microchip Technology Inc.
DS60001185E-page 249
Control Register
A200 CTMUCON
Legend:
Note 1:
CTMU REGISTER MAP
31/15
30/14
29/13
31:16 EDG1MOD EDG1POL
15:0
ON
—
CTMUSIDL
28/12
27/11
26/10
25/9
24/8
23/7
22/6
EDG2STAT EDG1STAT EDG2MOD EDG2POL
EDG1SEL<3:0>
TGEN
EDGEN EDGSEQEN IDISSEN
CTTRIG
21/5
20/4
19/3
EDG2SEL<3:0>
ITRIM<5:0>
18/2
17/1
16/0
—
—
IRNG<1:0>
All Resets
Bit Range
Bits
Register
Name(1)
Virtual Address
(BF80_#)
TABLE 26-1:
0000
0000
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for
more information.
PIC32MX330/350/370/430/450/470
DS60001185E-page 250
26.1
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 26-1:
Bit
Range
31:24
23:16
15:8
7:0
CTMUCON: CTMU CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
R/W-0
R/W-0
R/W-0
Bit
Bit
28/20/12/4 27/19/11/3
R/W-0
EDG1MOD EDG1POL
R/W-0
R/W-0
R/W-0
Bit
26/18/10/2
R/W-0
EDG1SEL<3:0>
R/W-0
R/W-0
EDG2MOD EDG2POL
R/W-0
Bit
25/17/9/1
Bit
24/16/8/0
R/W-0
R/W-0
EDG2STAT EDG1STAT
R/W-0
EDG2SEL<3:0>
U-0
U-0
—
—
R/W-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ON
—
CTMUSIDL
TGEN(1)
EDGEN
EDGSEQEN
IDISSEN(2)
CTTRIG
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ITRIM<5:0>
Legend:
R = Readable bit
-n = Value at POR
W = Writable bit
‘1’ = Bit is set
IRNG<1:0>
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31
EDG1MOD: Edge 1 Edge Sampling Select bit
1 = Input is edge-sensitive
0 = Input is level-sensitive
bit 30
EDG1POL: Edge 1 Polarity Select bit
1 = Edge 1 programmed for a positive edge response
0 = Edge 1 programmed for a negative edge response
bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits
1111 = Reserved
1110 = C2OUT pin is selected
1101 = C1OUT pin is selected
1100 = IC3 Capture Event is selected
1011 = IC2 Capture Event is selected
1010 = IC1 Capture Event is selected
1001 = CTED8 pin is selected
1000 = CTED7 pin is selected
0111 = CTED6 pin is selected
0110 = CTED5 pin is selected
0101 = CTED4 pin is selected
0100 = CTED3 pin is selected
0011 = CTED1 pin is selected
0010 = CTED2 pin is selected
0001 = OC1 Compare Event is selected
0000 = Timer1 Event is selected
bit 25
EDG2STAT: Edge 2 Status bit
Indicates the status of Edge 2 and can be written to control edge source
1 = Edge 2 has occurred
0 = Edge 2 has not occurred
Note 1:
2:
3:
4:
When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to ‘1110’ to select
C2OUT.
The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion
cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor
before conducting the measurement. The IDISSEN bit, when set to ‘1’, performs this function. The ADC
module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor
array.
Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 “Electrical
Characteristics” for current values.
This bit setting is not available for the CTMU temperature diode.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 251
PIC32MX330/350/370/430/450/470
REGISTER 26-1:
CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
bit 24
EDG1STAT: Edge 1 Status bit
Indicates the status of Edge 1 and can be written to control edge source
1 = Edge 1 has occurred
0 = Edge 1 has not occurred
bit 23
EDG2MOD: Edge 2 Edge Sampling Select bit
1 = Input is edge-sensitive
0 = Input is level-sensitive
bit 22
EDG2POL: Edge 2 Polarity Select bit
1 = Edge 2 programmed for a positive edge response
0 = Edge 2 programmed for a negative edge response
bit 21-18 EDG2SEL<3:0>: Edge 2 Source Select bits
1111 = Reserved
1110 = C2OUT pin is selected
1101 = C1OUT pin is selected
1100 = PBCLK clock is selected
1011 = IC3 Capture Event is selected
1010 = IC2 Capture Event is selected
1001 = IC1 Capture Event is selected
1000 = CTED13 pin is selected
0111 = CTED12 pin is selected
0110 = CTED11 pin is selected
0101 = CTED10 pin is selected
0100 = CTED9 pin is selected
0011 = CTED1 pin is selected
0010 = CTED2 pin is selected
0001 = OC1 Compare Event is selected
0000 = Timer1 Event is selected
bit 17-16 Unimplemented: Read as ‘0’
bit 15
ON: ON Enable bit
1 = Module is enabled
0 = Module is disabled
bit 14
Unimplemented: Read as ‘0’
bit 13
CTMUSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12
TGEN: Time Generation Enable bit(1)
1 = Enables edge delay generation
0 = Disables edge delay generation
bit 11
EDGEN: Edge Enable bit
1 = Edges are not blocked
0 = Edges are blocked
Note 1:
2:
3:
4:
When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to ‘1110’ to select
C2OUT.
The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion
cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor
before conducting the measurement. The IDISSEN bit, when set to ‘1’, performs this function. The ADC
module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor
array.
Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 “Electrical
Characteristics” for current values.
This bit setting is not available for the CTMU temperature diode.
DS60001185E-page 252
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 26-1:
bit 10
CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
EDGSEQEN: Edge Sequence Enable bit
1 = Edge 1 must occur before Edge 2 can occur
0 = No edge sequence is needed
IDISSEN: Analog Current Source Control bit(2)
1 = Analog current source output is grounded
0 = Analog current source output is not grounded
CTTRIG: Trigger Control bit
1 = Trigger output is enabled
0 = Trigger output is disabled
ITRIM<5:0>: Current Source Trim bits
011111 = Maximum positive change from nominal current
011110
bit 9
bit 8
bit 7-2
•
•
•
000001 = Minimum positive change from nominal current
000000 = Nominal current output specified by IRNG<1:0>
111111 = Minimum negative change from nominal current
•
•
•
100010
100001 = Maximum negative change from nominal current
IRNG<1:0>: Current Range Select bits(3)
11 = 100 times base current
10 = 10 times base current
01 = Base current level
00 = 1000 times base current(4)
bit 1-0
Note 1:
2:
3:
4:
When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to ‘1110’ to select
C2OUT.
The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion
cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor
before conducting the measurement. The IDISSEN bit, when set to ‘1’, performs this function. The ADC
module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor
array.
Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 “Electrical
Characteristics” for current values.
This bit setting is not available for the CTMU temperature diode.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 253
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 254
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
27.0
Note:
POWER-SAVING FEATURES
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 10. “PowerSaving Features” (DS60001130), which
is available from the Documentation >
Reference Manual section of the
Microchip
PIC32
web
site
(www.microchip.com/pic32).
This section describes power-saving features for the
PIC32MX330/350/370/430/450/470 family of devices.
These PIC32 devices offer a total of nine methods
and modes, organized into two categories, that allow
the user to balance power consumption with device
performance. In all of the methods and modes
described in this section, power-saving is controlled by
software.
27.1
Power Saving with CPU Running
When the CPU is running, power consumption can be
controlled by reducing the CPU clock frequency,
lowering the PBCLK and by individually disabling
modules. These methods are grouped into the
following categories:
• FRC Run mode: the CPU is clocked from the FRC
clock source with or without postscalers.
• LPRC Run mode: the CPU is clocked from the
LPRC clock source.
• SOSC Run mode: the CPU is clocked from the
SOSC clock source.
In addition, the Peripheral Bus Scaling mode is available
where peripherals are clocked at the programmable
fraction of the CPU clock (SYSCLK).
27.2
CPU Halted Methods
The device supports two power-saving modes, Sleep
and Idle, both of which Halt the clock to the CPU. These
modes operate with all clock sources, as listed below:
• POSC Idle mode: the system clock is derived from
the POSC. The system clock source continues to
operate. Peripherals continue to operate, but can
optionally be individually disabled.
• FRC Idle mode: the system clock is derived from
the FRC with or without postscalers. Peripherals
continue to operate, but can optionally be
individually disabled.
• SOSC Idle mode: the system clock is derived from
the SOSC. Peripherals continue to operate, but
can optionally be individually disabled.
• LPRC Idle mode: the system clock is derived from
the LPRC. Peripherals continue to operate, but
can optionally be individually disabled. This is the
lowest power mode for the device with a clock
 2012-2015 Microchip Technology Inc.
running.
• Sleep mode: the CPU, the system clock source
and any peripherals that operate from the system
clock source are Halted. Some peripherals can
operate in Sleep using specific clock sources.
This is the lowest power mode for the device.
27.3
Power-Saving Operation
Peripherals and the CPU can be Halted or disabled to
further reduce power consumption.
27.3.1
SLEEP MODE
Sleep mode has the lowest power consumption of the
device power-saving operating modes. The CPU and
most peripherals are Halted. Select peripherals can
continue to operate in Sleep mode and can be used to
wake the device from Sleep. See the individual
peripheral module sections for descriptions of
behavior in Sleep.
Sleep mode includes the following characteristics:
• The CPU is Halted.
• The system clock source is typically shutdown.
See Section 27.3.3 “Peripheral Bus Scaling
Method” for specific information.
• There can be a wake-up delay based on the
oscillator selection.
• The Fail-Safe Clock Monitor (FSCM) does not
operate during Sleep mode.
• The BOR circuit remains operative during Sleep
mode.
• The WDT, if enabled, is not automatically cleared
prior to entering Sleep mode.
• Some peripherals can continue to operate at
limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the
input signal, WDT, ADC, UART and peripherals
that use an external clock input or the internal
LPRC oscillator (e.g., RTCC, Timer1 and Input
Capture).
• I/O pins continue to sink or source current in the
same manner as they do when the device is not in
Sleep.
• The USB module can override the disabling of the
Posc or FRC. Refer to the USB section for
specific details.
• Modules can be individually disabled by software
prior to entering Sleep in order to further reduce
consumption.
DS60001185E-page 255
PIC32MX330/350/370/430/450/470
The processor will exit, or ‘wake-up’, from Sleep on one
of the following events:
• On any interrupt from an enabled source that is
operating in Sleep. The interrupt priority must be
greater than the current CPU priority.
• On any form of device Reset
• On a WDT time-out
If the interrupt priority is lower than or equal to the
current priority, the CPU will remain Halted, but the
PBCLK will start running and the device will enter into
Idle mode.
27.3.2
IDLE MODE
In Idle mode, the CPU is Halted but the System Clock
(SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted.
Peripherals can be individually configured to Halt when
entering Idle by setting their respective SIDL bit.
Latency, when exiting Idle mode, is very low due to the
CPU oscillator source remaining active.
Note 1: Changing the PBCLK divider ratio
requires recalculation of peripheral timing. For example, assume the UART is
configured for 9600 baud with a PB clock
ratio of 1:1 and a POSC of 8 MHz. When
the PB clock divisor of 1:2 is used, the
input frequency to the baud clock is cut in
half; therefore, the baud rate is reduced
to 1/2 its former value. Due to numeric
truncation in calculations (such as the
baud rate divisor), the actual baud rate
may be a tiny percentage different than
expected. For this reason, any timing calculation required for a peripheral should
be performed with the new PB clock frequency instead of scaling the previous
value based on a change in the PB divisor
ratio.
2: Oscillator start-up and PLL lock delays
are applied when switching to a clock
source that was disabled and that uses a
crystal and/or the PLL. For example,
assume the clock source is switched from
POSC to LPRC just prior to entering Sleep
in order to save power. No oscillator startup delay would be applied when exiting
Idle. However, when switching back to
POSC, the appropriate PLL and/or
oscillator start-up/lock delays would be
applied.
DS60001185E-page 256
The device enters Idle mode when the SLPEN bit
(OSCCON<4>) is clear and a WAIT instruction is
executed.
The processor will wake or exit from Idle mode on the
following events:
• On any interrupt event for which the interrupt
source is enabled. The priority of the interrupt
event must be greater than the current priority of
the CPU. If the priority of the interrupt event is
lower than or equal to current priority of the CPU,
the CPU will remain Halted and the device will
remain in Idle mode.
• On any form of device Reset
• On a WDT time-out interrupt
27.3.3
PERIPHERAL BUS SCALING
METHOD
Most of the peripherals on the device are clocked using
the PBCLK. The peripheral bus can be scaled relative to
the SYSCLK to minimize the dynamic power consumed
by the peripherals. The PBCLK divisor is controlled by
PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to
PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals
using PBCLK are affected when the divisor is changed.
Peripherals such as the USB, Interrupt Controller, DMA,
and the bus matrix are clocked directly from SYSCLK.
As a result, they are not affected by PBCLK divisor
changes.
Changing the PBCLK divisor affects:
• The CPU to peripheral access latency. The CPU
has to wait for next PBCLK edge for a read to
complete. In 1:8 mode, this results in a latency of
one to seven SYSCLKs.
• The power consumption of the peripherals. Power
consumption is directly proportional to the
frequency at which the peripherals are clocked.
The greater the divisor, the lower the power
consumed by the peripherals.
To minimize dynamic power, the PB divisor should be
chosen to run the peripherals at the lowest frequency
that provides acceptable system performance. When
selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken
into account. For example, the UART peripheral may
not be able to achieve all baud rate values at some
PBCLK divider depending on the SYSCLK value.
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
27.4
To disable a peripheral, the associated PMDx bit must
be set to ‘1’. To enable a peripheral, the associated
PMDx bit must be cleared (default). See Table 27-1 for
more information.
Peripheral Module Disable
The Peripheral Module Disable (PMD) registers
provide a method to disable a peripheral module by
stopping all clock sources supplied to that module.
When a peripheral is disabled using the appropriate
PMD control bit, the peripheral is in a minimum power
consumption state. The control and status registers
associated with the peripheral are also disabled, so
writes to those registers do not have effect and read
values are invalid.
TABLE 27-1:
Note:
Disabling a peripheral module while it’s
ON bit is set, may result in undefined
behavior. The ON bit for the associated
peripheral module must be cleared prior to
disable a module via the PMDx bits.
PERIPHERAL MODULE DISABLE BITS AND LOCATIONS
Peripheral(1)
PMDx bit Name(1)
Register Name and Bit Location
ADC1
AD1MD
PMD1<0>
CTMU
CTMUMD
PMD1<8>
Comparator Voltage Reference
CVRMD
PMD1<12>
Comparator 1
CMP1MD
PMD2<0>
Comparator 2
CMP2MD
PMD2<1>
Input Capture 1
IC1MD
PMD3<0>
Input Capture 2
IC2MD
PMD3<1>
Input Capture 3
IC3MD
PMD3<2>
Input Capture 4
IC4MD
PMD3<3>
Input Capture 5
IC5MD
PMD3<4>
Output Compare 1
OC1MD
PMD3<16>
Output Compare 2
OC2MD
PMD3<17>
Output Compare 3
OC3MD
PMD3<18>
Output Compare 4
OC4MD
PMD3<19>
Output Compare 5
OC5MD
PMD3<20>
Timer1
T1MD
PMD4<0>
Timer2
T2MD
PMD4<1>
Timer3
T3MD
PMD4<2>
Timer4
T4MD
PMD4<3>
Timer5
T5MD
PMD4<4>
UART1
U1MD
PMD5<0>
UART2
U2MD
PMD5<1>
UART3
U3MD
PMD5<2>
UART4
U4MD
PMD5<3>
UART5
U5MD
PMD5<4>
SPI1
SPI1MD
PMD5<8>
SPI2
SPI2MD
PMD5<9>
I2C1
I2C1MD
PMD5<16>
I2C2
I2C2MD
PMD5<17>
USB(2)
USBMD
PMD5<24>
RTCC
RTCCMD
PMD6<0>
Reference Clock Output
REFOMD
PMD6<1>
PMPMD
PMD6<16>
PMP
Note 1:
2:
Not all modules and associated PMDx bits are available on all devices. See TABLE 1: “PIC32MX330/350/
370/430/450/470 Controller Family Features” for the lists of available peripherals.
Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 257
PIC32MX330/350/370/430/450/470
27.4.1
CONTROLLING CONFIGURATION
CHANGES
Because peripherals can be disabled during run time,
some restrictions on disabling peripherals are needed
to prevent accidental configuration changes. PIC32
devices include two features to prevent alterations to
enabled or disabled peripherals:
• Control register lock sequence
• Configuration bit select lock
27.4.1.1
Control Register Lock
Under normal operation, writes to the PMDx registers
are not allowed. Attempted writes appear to execute
normally, but the contents of the registers remain
unchanged. To change these registers, they must be
unlocked in hardware. The register lock is controlled by
the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; 
clearing PMDLOCK allows writes.
To set or clear PMDLOCK, an unlock sequence must
be executed. Refer to Section 6. “Oscillator”
(DS60001112) in the “PIC32 Family Reference
Manual” for details.
27.4.1.2
Configuration Bit Select Lock
As an additional level of safety, the device can be
configured to prevent more than one write session to
the PMDx registers. The PMDL1WAY Configuration bit
(DEVCFG3<28>) blocks the PMDLOCK bit from being
cleared after it has been set once. If PMDLOCK
remains set, the register unlock procedure does not
execute, and the peripheral pin select control registers
cannot be written to. The only way to clear the bit and
re-enable PMD functionality is to perform a device
Reset.
DS60001185E-page 258
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
28.0
Note:
SPECIAL FEATURES
This data sheet summarizes the features
of the PIC32MX330/350/370/430/450/470
family of devices. However, it is not
intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to
Section
32.
“Configuration”
(DS60001124)
and
Section
33.
“Programming
and
Diagnostics”
(DS60001129), which are available from
the Documentation > Reference Manual
section of the Microchip PIC32 web site
(www.microchip.com/pic32).
28.1
Configuration Bits
The Configuration bits can be programmed using the
following registers to select various device
configurations.
•
•
•
•
•
DEVCFG0: Device Configuration Word 0
DEVCFG1: Device Configuration Word 1
DEVCFG2: Device Configuration Word 2
DEVCFG3: Device Configuration Word 3
CFGCON: Configuration Control Register
In addition, the DEVID register (Register 28-6)
provides device and revision information.
PIC32MX330/350/370/430/450/470 devices include
several features intended to maximize application
flexibility and reliability and minimize cost through
elimination of external components. These are:
• Flexible device configuration
• Joint Test Action Group (JTAG) interface
• In-Circuit Serial Programming™ (ICSP™)
 2012-2015 Microchip Technology Inc.
DS60001185E-page 259
2FF0 DEVCFG3
2FF4 DEVCFG2
2FF8 DEVCFG1
2FFC DEVCFG0
Legend:
Note 1:
29/13
28/12
27/11
26/10
25/9
—
—
—
—
—
—
—
—
—
—
FPBDIV<1:0>
—
—
15:0
31:16
15:0
—
UPLLEN(1)
31:16
—
—
15:0
—
—
FCKSM<1:0>
31:16
—
—
—
—
—
PWP<3:0>
15:0
CP
24/8
23/7
22/6
21/5
20/4
19/3
—
—
—
—
FSRSSEL<2:0>
xxxx
xxxx
—
—
FPLLMUL<2:0>
—
—
FPLLODIV<2:0>
FPLLIDIV<2:0>
xxxx
xxxx
—
—
USERID<15:0>
—
—
UPLLIDIV<2:0>(1)
—
—
—
—
FWDTWINSZ<1:0> FWDTEN WINDIS
—
OSCIOFNC POSCMOD<1:0>
IESO
—
FSOSCEN
—
—
—
—
—
—
BWP
—
—
—
—
—
—
—
—
—
—
ICESEL<1:0>
18/2
17/1
16/0
WDTPS<4:0>
FNOSC<2:0>
xxxx
xxxx
PWP<7:4>
JTAGEN
DEBUG<1:0>
xxxx
xxxx
x = unknown value on Reset; — = reserved, write as ‘1’. Reset values are shown in hexadecimal.
This bit is only available on devices with a USB module.
DEVICE ID, REVISION, AND CONFIGURATION SUMMARY
F200 CFGCON
31/15
30/14
31:16
—
—
15:0
—
—
31:16
DEVID
15:0
 2012-2015 Microchip Technology Inc.
31:16
F230 SYSKEY
15:0
Legend:
Note 1:
29/13
28/12
27/11
26/10
25/9
24/8
23/7
22/6
21/5
20/4
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
IOLOCK PMDLOCK
VER<3:0>
DEVID<27:16>
DEVID<15:0>
SYSKEY<31:0>
x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Reset values are dependent on the device variant.
19/3
18/2
17/1
16/0
—
—
—
—
JTAGEN
TROEN
—
TDOEN
All Resets
Bit Range
Bits
Register
Name
Virtual Address
(BF80_#)
30/14
31:16 FVBUSONIO FUSBIDIO IOL1WAY PMDL1WAY
TABLE 28-2:
F220
31/15
All Resets
Bit Range
Bits
Register
Name
Virtual Address
(BFC0_#)
DEVCFG: DEVICE CONFIGURATION WORD SUMMARY
0000
000B
xxxx(1)
xxxx(1)
0000
0000
PIC32MX330/350/370/430/450/470
DS60001185E-page 260
TABLE 28-1:
PIC32MX330/350/370/430/450/470
REGISTER 28-1:
Bit
Range
31:24
23:16
15:8
7:0
DEVCFG0: DEVICE CONFIGURATION WORD 0
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
r-0
r-1
r-1
R/P
r-1
r-1
r-1
R/P
—
—
—
CP
—
—
—
BWP
R/P
R/P
R/P
R/P
r-1
r-1
r-1
r-1
—
—
—
—
R/P
R/P
R/P
R/P
PWP<3:0>
r-1
r-1
r-1
—
—
—
Legend:
R = Readable bit
-n = Value at POR
r = Reserved bit
W = Writable bit
‘1’ = Bit is set
R/P
PWP<7:4>
r-1
r-1
r-1
r-1
—
—
—
—
R/P
R/P
R/P
R/P
ICESEL<1:0>
JTAGEN(1)
DEBUG<1:0>
P = Programmable bit
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31
Reserved: Write ‘0’
bit 30-29 Reserved: Write ‘1’
bit 28
CP: Code-Protect bit
Prevents boot and program Flash memory from being read or modified by an external programming device.
1 = Protection is disabled
0 = Protection is enabled
bit 27-25 Reserved: Write ‘1’
bit 24
BWP: Boot Flash Write-Protect bit
Prevents boot Flash memory from being modified during code execution.
1 = Boot Flash is writable
0 = Boot Flash is not writable
bit 23-20 Reserved: Write ‘1’
bit 19-12 PWP<7:0>: Program Flash Write-Protect bits
Prevents selected program Flash memory pages from being modified during code execution. The PWP bits
represent the one’s compliment of the number of write protected program Flash memory pages.
11111111 = Disabled
11111110 = 0xBD00_0FFF
11111101 = 0xBD00_1FFF
11111100 = 0xBD00_2FFF
11111011 = 0xBD00_3FFF
11111010 = 0xBD00_4FFF
11111001 = 0xBD00_5FFF
11111000 = 0xBD00_6FFF
11110111 = 0xBD00_7FFF
11110110 = 0xBD00_8FFF
11110101 = 0xBD00_9FFF
11110100 = 0xBD00_AFFF
11110011 = 0xBD00_BFFF
11110010 = 0xBD00_CFFF
11110001 = 0xBD00_DFFF
11110000 = 0xBD00_EFFF
11101111 = 0xBD00_FFFF
.
.
.
01111111 = 0xBD07_FFFF
Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 261
PIC32MX330/350/370/430/450/470
REGISTER 28-1:
bit 11-5
bit 4-3
bit 2
bit 1-0
Note 1:
DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)
Reserved: Write ‘1’
ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
11 = PGEC1/PGED1 pair is used
10 = PGEC2/PGED2 pair is used
01 = PGEC3/PGED3 pair is used
00 = Reserved
JTAGEN: JTAG Enable bit(1)
1 = JTAG is enabled
0 = JTAG is disabled
DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled)
1x = Debugger is disabled
0x = Debugger is enabled
This bit sets the value for the JTAGEN bit in the CFGCON register.
DS60001185E-page 262
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 28-2:
Bit
Range
31:24
23:16
15:8
7:0
DEVCFG1: DEVICE CONFIGURATION WORD 1
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
r-1
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
—
R/P
R/P
R/P
R/P
r-1
FWDTEN
WINDIS
—
R/P
R/P
R/P
FCKSM<1:0>
Bit
25/17/9/1
Bit
24/16/8/0
R/P
R/P
FWDTWINSZ<1:0>
R/P
R/P
R/P
R/P
R/P
WDTPS<4:0>
R/P
FPBDIV<1:0>
r-1
R/P
—
OSCIOFNC
R/P
R/P
r-1
R/P
r-1
r-1
IESO
—
FSOSCEN
—
—
POSCMOD<1:0>
R/P
R/P
FNOSC<2:0>
Legend:
r = Reserved bit
P = Programmable bit
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-26 Reserved: Write ‘1’
bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits
11 = Window size is 25%
10 = Window size is 37.5%
01 = Window size is 50%
00 = Window size is 75%
bit 23
FWDTEN: Watchdog Timer Enable bit
1 = Watchdog Timer is enabled and cannot be disabled by software
0 = Watchdog Timer is not enabled; it can be enabled in software
bit 22
WINDIS: Watchdog Timer Window Enable bit
1 = Watchdog Timer is in non-Window mode
0 = Watchdog Timer is in Window mode
bit 21
Reserved: Write ‘1’
bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits
10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100
Note 1:
Do not disable the POSC (POSCMOD = 11) when using this oscillator source.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 263
PIC32MX330/350/370/430/450/470
REGISTER 28-2:
DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)
bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
11 = PBCLK is SYSCLK divided by 8
10 = PBCLK is SYSCLK divided by 4
01 = PBCLK is SYSCLK divided by 2
00 = PBCLK is SYSCLK divided by 1
bit 11
Reserved: Write ‘1’
bit 10
OSCIOFNC: CLKO Enable Configuration bit
1 = CLKO output is disabled
0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the
External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
bit 9-8
POSCMOD<1:0>: Primary Oscillator Configuration bits
11 = Primary Oscillator is disabled
10 = HS Oscillator mode is selected
01 = XT Oscillator mode is selected
00 = External Clock mode is selected
bit 7
IESO: Internal External Switchover bit
1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
bit 6
Reserved: Write ‘1’
bit 5
FSOSCEN: Secondary Oscillator Enable bit
1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator
bit 4-3
Reserved: Write ‘1’
bit 2-0
FNOSC<2:0>: Oscillator Selection bits
111 = Fast RC Oscillator with divide-by-N (FRCDIV)
110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator (POSC) with PLL module (XT+PLL, HS+PLL, EC+PLL)
010 = Primary Oscillator (XT, HS, EC)(1)
001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
000 = Fast RC Oscillator (FRC)
Note 1:
Do not disable the POSC (POSCMOD = 11) when using this oscillator source.
DS60001185E-page 264
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 28-3:
Bit
Range
31:24
23:16
15:8
7:0
DEVCFG2: DEVICE CONFIGURATION WORD 2
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
r-1
r-1
r-1
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
—
—
—
R/P
R/P
R/P
r-1
r-1
r-1
r-1
r-1
—
—
—
—
—
R/P
r-1
r-1
r-1
r-1
UPLLEN(1)
—
—
—
—
r-1
R/P-1
R/P
R/P-1
—
FPLLMUL<2:0>
r-1
FPLLODIV<2:0>
R/P
R/P
R/P
UPLLIDIV<2:0>(1)
R/P
—
R/P
R/P
FPLLIDIV<2:0>
Legend:
r = Reserved bit
P = Programmable bit
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-19 Reserved: Write ‘1’
bit 18-16 FPLLODIV<2:0>: Default PLL Output Divisor bits
111 = PLL output divided by 256
110 = PLL output divided by 64
101 = PLL output divided by 32
100 = PLL output divided by 16
011 = PLL output divided by 8
010 = PLL output divided by 4
001 = PLL output divided by 2
000 = PLL output divided by 1
bit 15
UPLLEN: USB PLL Enable bit(1)
1 = Disable and bypass USB PLL
0 = Enable USB PLL
bit 14-11 Reserved: Write ‘1’
bit 10-8
UPLLIDIV<2:0>: USB PLL Input Divider bits(1)
111 = 12x divider
110 = 10x divider
101 = 6x divider
100 = 5x divider
011 = 4x divider
010 = 3x divider
001 = 2x divider
000 = 1x divider
bit 7
Reserved: Write ‘1’
bit 6-4
FPLLMUL<2:0>: PLL Multiplier bits
111 = 24x multiplier
110 = 21x multiplier
101 = 20x multiplier
100 = 19x multiplier
011 = 18x multiplier
010 = 17x multiplier
001 = 16x multiplier
000 = 15x multiplier
bit 3
Reserved: Write ‘1’
Note 1:
This bit is available on PIC32MX4XX devices only.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 265
PIC32MX330/350/370/430/450/470
REGISTER 28-3:
DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)
bit 2-0
FPLLIDIV<2:0>: PLL Input Divider bits
111 = 12x divider
110 = 10x divider
101 = 6x divider
100 = 5x divider
011 = 4x divider
010 = 3x divider
001 = 2x divider
000 = 1x divider
Note 1:
This bit is available on PIC32MX4XX devices only.
DS60001185E-page 266
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 28-4:
Bit
Range
31:24
23:16
15:8
7:0
DEVCFG3: DEVICE CONFIGURATION WORD 3
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
Bit
27/19/11/3 26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
R/P
R/P
R/P
R/P
U-0
U-0
U-0
FVBUSONIO
FUSBIDIO
IOL1WAY
PMDL1WAY
—
—
—
—
U-0
U-0
U-0
U-0
U-0
R/P
R/P
R/P
—
—
—
—
—
R/P
R/P
R/P
R/P
R/P
FSRSSEL<2:0>
R/P
R/P
R/P
R/P
R/P
R/P
USERID<15:8>
R/P
R/P
Legend:
R = Readable bit
-n = Value at POR
R/P
R/P
R/P
USERID<7:0>
r = Reserved bit
W = Writable bit
‘1’ = Bit is set
P = Programmable bit
U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown
bit 31
FVBUSONIO: USB VBUS_ON Selection bit
1 = VBUSON pin is controlled by the USB module
0 = VBUSON pin is controlled by the port function
bit 30
FUSBIDIO: USB USBID Selection bit
1 = USBID pin is controlled by the USB module
0 = USBID pin is controlled by the port function
bit 29
IOL1WAY: Peripheral Pin Select Configuration bit
1 = Allow only one reconfiguration
0 = Allow multiple reconfigurations
bit 28
PMDL1WAY: Peripheral Module Disable Configuration bit
1 = Allow only one reconfiguration
0 = Allow multiple reconfigurations
bit 27-19 Unimplemented: Read as ‘0’
bit 18-16 FSRSSEL<2:0>: Shadow Register Set Priority Select bit
These bits assign an interrupt priority to a shadow register.
111 = Shadow register set used with interrupt priority 7
110 = Shadow register set used with interrupt priority 6
101 = Shadow register set used with interrupt priority 5
100 = Shadow register set used with interrupt priority 4
011 = Shadow register set used with interrupt priority 3
010 = Shadow register set used with interrupt priority 2
001 = Shadow register set used with interrupt priority 1
000 = Shadow register set used with interrupt priority 0
bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG
 2012-2015 Microchip Technology Inc.
DS60001185E-page 267
PIC32MX330/350/370/430/450/470
REGISTER 28-5:
Bit
Range
31:24
23:16
15:8
7:0
CFGCON: CONFIGURATION CONTROL REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
U-0
U-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
—
—
U-0
U-0
R/W-0
R/W-0
U-0
U-0
U-0
U-0
—
—
—
—
—
—
U-0
U-0
U-0
U-0
R/W-0
R/W-0
U-0
R/W-1
—
—
—
—
JTAGEN
TROEN
—
TDOEN
IOLOCK(1) PMDLOCK(1)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-14 Unimplemented: Read as ‘0’
bit 13
IOLOCK: Peripheral Pin Select Lock bit(1)
1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed
0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed
bit 12
PMDLOCK: Peripheral Module Disable bit(1)
1 = Peripheral module is locked. Writes to PMD registers is not allowed
0 = Peripheral module is not locked. Writes to PMD registers is allowed
bit 11-4
Unimplemented: Read as ‘0’
bit 3
JTAGEN: JTAG Port Enable bit
1 = Enable the JTAG port
0 = Disable the JTAG port
bit 2
TROEN: Trace Output Enable bit
1 = Enable trace outputs and start trace clock (trace probe must be present)
0 = Disable trace outputs and stop trace clock
bit 1
Unimplemented: Read as ‘0’
bit 0
TDOEN: TDO Enable for 2-Wire JTAG
1 = 2-wire JTAG protocol uses TDO
0 = 2-wire JTAG protocol does not use TDO
Note 1:
To change this bit, the unlock sequence must be performed. Refer to Section 6. “Oscillator”
(DS60001112) in the “PIC32 Family Reference Manual” for details.
DS60001185E-page 268
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
REGISTER 28-6:
Bit
Range
31:24
23:16
15:8
7:0
DEVID: DEVICE AND REVISION ID REGISTER
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
R
R
R
R
R
VER<3:0>(1)
R
R
R
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
R
R
R
DEVID<27:24>(1)
R
R
R
R
R
R
R
R
R
R
R
DEVID<23:16>(1)
R
R
R
R
R
DEVID<15:8>(1)
R
R
R
R
R
DEVID<7:0>(1)
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 31-28 VER<3:0>: Revision Identifier bits(1)
bit 27-0
DEVID<27:0>: Device ID(1)
Note 1:
See the “PIC32 Flash Programming Specification” (DS60001145) for a list of Revision and Device ID values.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 269
PIC32MX330/350/370/430/450/470
28.2
On-Chip Voltage Regulator
All PIC32MX330/350/370/430/450/470 devices’ core
and digital logic are designed to operate at a nominal
1.8V. To simplify system designs, most devices in the
PIC32MX330/350/370/430/450/470 family incorporate
an on-chip regulator providing the required core logic
voltage from VDD.
A low-ESR capacitor (such as tantalum) must be
connected to the VCAP pin (see Figure 28-1). This
helps to maintain the stability of the regulator. The
recommended value for the filter capacitor is provided
in Section 31.1 “DC Characteristics”.
It is important that the low-ESR capacitor
is placed as close as possible to the VCAP
pin.
Note:
28.2.1
HIGH VOLTAGE DETECT (HVD)
The HVD module monitors the core voltage at the VCAP
pin. If a voltage above the required level is detected on
VCAP, the I/O pins are disabled and the device is held
in Reset as long as the HVD condition persists. See
parameter HV10 (VHVD) in Table 31-11 in Section 31.1
“DC Characteristics” for more information.
28.2.2
28.3
Programming and Diagnostics
PIC32MX330/350/370/430/450/470 devices provide a
complete range of programming and diagnostic features that can increase the flexibility of any application
using them. These features allow system designers to
include:
• Simplified field programmability using two-wire 
In-Circuit Serial Programming™ (ICSP™)
interfaces
• Debugging using ICSP
• Programming and debugging capabilities using
the EJTAG extension of JTAG
• JTAG boundary scan testing for device and board
diagnostics
PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a
range of functions to the application developer.
FIGURE 28-2:
BLOCK DIAGRAM OF
PROGRAMMING,
DEBUGGING AND TRACE
PORTS
ON-CHIP REGULATOR AND POR
It takes a fixed delay for the on-chip regulator to generate
an output. During this time, designated as TPU, code
execution is disabled. TPU is applied every time the
device resumes operation after any power-down,
including Sleep mode.
28.2.3
ON-CHIP REGULATOR AND BOR
PIC32MX330/350/370/430/450/470 devices also have
a simple brown-out capability. If the voltage supplied to
the regulator is inadequate to maintain a regulated
level, the regulator Reset circuitry will generate a
Brown-out Reset. This event is captured by the BOR
flag bit (RCON<1>). The brown-out voltage levels are
specific in Section 31.1 “DC Characteristics”.
PGEC1
PGED1
ICSP™
Controller
PGEC3
PGED3
ICESEL
TDI
TDO
TCK
JTAG
Controller
Core
TMS
FIGURE 28-1:
CONNECTIONS FOR THE
ON-CHIP REGULATOR
JTAGEN
DEBUG<1:0>
3.3V(1)
PIC32
VDD
TRCLK
TRD0
TRD1
CEFC(2,3)
(10 F typ)
Note 1:
2:
3:
VCAP
TRD2
VSS
TRD3
These are typical operating voltages. Refer to
Section 31.1 “DC Characteristics” for the full
operating ranges of VDD.
It is important that the low-ESR capacitor is
placed as close as possible to the VCAP pin.
The typical voltage on the VCAP pin is 1.8V.
DS60001185E-page 270
Instruction Trace
Controller
DEBUG<1:0>
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
29.0
INSTRUCTION SET
The
PIC32MX330/350/370/430/450/470
family
instruction set complies with the MIPS32® Release 2
instruction set architecture. The PIC32 device family
does not support the following features:
• Core extend instructions
• Coprocessor 1 instructions
• Coprocessor 2 instructions
Note:
Refer to “MIPS32® Architecture for
Programmers Volume II: The MIPS32®
Instruction Set” at www.imgtec.com for
more information.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 271
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 272
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
30.0
DEVELOPMENT SUPPORT
®
30.1
®
The PIC microcontrollers (MCU) and dsPIC digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:
• Integrated Development Environment
- MPLAB® X IDE Software
• Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASMTM Assembler
- MPLINKTM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
• Simulators
- MPLAB X SIM Software Simulator
• Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
• In-Circuit Debuggers/Programmers
- MPLAB ICD 3
- PICkit™ 3
• Device Programmers
- MPLAB PM3 Device Programmer
• Low-Cost Demonstration/Development Boards,
Evaluation Kits and Starter Kits
• Third-party development tools
MPLAB X Integrated Development
Environment Software
The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for highperformance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.
With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.
Feature-Rich Editor:
• Color syntax highlighting
• Smart code completion makes suggestions and
provides hints as you type
• Automatic code formatting based on user-defined
rules
• Live parsing
User-Friendly, Customizable Interface:
• Fully customizable interface: toolbars, toolbar
buttons, windows, window placement, etc.
• Call graph window
Project-Based Workspaces:
•
•
•
•
Multiple projects
Multiple tools
Multiple configurations
Simultaneous debugging sessions
File History and Bug Tracking:
• Local file history feature
• Built-in support for Bugzilla issue tracker
 2012-2015 Microchip Technology Inc.
DS60001185E-page 273
PIC32MX330/350/370/430/450/470
30.2
MPLAB XC Compilers
The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.
For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.
The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.
MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assembler include:
•
•
•
•
•
•
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
30.3
MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.
The MPASM Assembler features include:
30.4
MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
• Efficient linking of single libraries instead of many
smaller files
• Enhanced code maintainability by grouping
related modules together
• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
30.5
MPLAB Assembler, Linker and
Librarian for Various Device
Families
MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:
•
•
•
•
•
•
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
• Integration into MPLAB X IDE projects
• User-defined macros to streamline 
assembly code
• Conditional assembly for multipurpose 
source files
• Directives that allow complete control over the
assembly process
DS60001185E-page 274
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
30.6
MPLAB X SIM Software Simulator
The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and
debug code outside of the hardware laboratory environment, making it an excellent, economical software
development tool.
30.7
MPLAB REAL ICE In-Circuit
Emulator System
The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.
The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection
(CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.
 2012-2015 Microchip Technology Inc.
30.8
MPLAB ICD 3 In-Circuit Debugger
System
The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.
The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a highspeed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.
30.9
PICkit 3 In-Circuit Debugger/
Programmer
The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).
30.10 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
DS60001185E-page 275
PIC32MX330/350/370/430/450/470
30.11 Demonstration/Development
Boards, Evaluation Kits, and
Starter Kits
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully
functional systems. Most boards include prototyping
areas for adding custom circuitry and provide application firmware and source code for examination and
modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
30.12 Third-Party Development Tools
Microchip also offers a great collection of tools from
third-party vendors. These tools are carefully selected
to offer good value and unique functionality.
• Device Programmers and Gang Programmers
from companies, such as SoftLog and CCS
• Software Tools from companies, such as Gimpel
and Trace Systems
• Protocol Analyzers from companies, such as
Saleae and Total Phase
• Demonstration Boards from companies, such as
MikroElektronika, Digilent® and Olimex
• Embedded Ethernet Solutions from companies,
such as EZ Web Lynx, WIZnet and IPLogika®
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™
demonstration/development board series of circuits,
Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security
ICs, CAN, IrDA®, PowerSmart battery management,
SEEVAL® evaluation system, Sigma-Delta ADC, flow
rate sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
DS60001185E-page 276
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
31.0
ELECTRICAL CHARACTERISTICS
This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional
information will be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these
maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these
or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.
Absolute Maximum Ratings
(See Note 1)
Ambient temperature under bias............................................................................................................ .-40°C to +105°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to VSS (Note 3)......................................... -0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS when VDD  2.3V (Note 3)........................................ -0.3V to +6.0V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V (Note 3)........................................ -0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3 ..................................................................... -0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS ....................................................................................................... -0.3V to +5.5V
Maximum current out of VSS pin(s) .......................................................................................................................200 mA
Maximum current into VDD pin(s) (Note 2)............................................................................................................200 mA
Maximum output current sourced/sunk by any 4x I/O pin .......................................................................................15 mA
Maximum output current sourced/sunk by any 8x I/O pin .......................................................................................25 mA
Maximum current sunk by all ports .......................................................................................................................150 mA
Maximum current sourced by all ports (Note 2)....................................................................................................150 mA
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions,
above those indicated in the operation listings of this specification, is not implied. Exposure to maximum
rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
3: See the “Device Pin Tables” section for the 5V tolerant pins.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 277
PIC32MX330/350/370/430/450/470
31.1
DC Characteristics
TABLE 31-1:
OPERATING MIPS VS. VOLTAGE
VDD Range
(in Volts)
Characteristic
DC5
PIC32MX330/350/370/430/450/470
(1)
-40°C to +85°C
100 MHz
(1)
-40°C to +105°C
80 MHz
(1)
0°C to +70°C
120 MHz
2.3-3.6V
DC5b
2.3-3.6V
DC5c
2.3-3.6V
Note 1:
Max. Frequency
Temp. Range
(in °C)
Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device
Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to
parameter BO10 in Table 31-10 for VBORMIN values.
TABLE 31-2:
THERMAL OPERATING CONDITIONS
Rating
Symbol
Min.
Typical
Max.
Unit
TJ
TA
0
0
—
—
+115
+70
°C
°C
Industrial Temperature Devices
Operating Junction Temperature Range
TJ
-40
—
+125
°C
Operating Ambient Temperature Range
TA
-40
—
+85
°C
TJ
-40
—
+140
°C
TA
-40
—
+105
°C
Commercial Temperature Devices
Operating Junction Temperature Range
Operating Ambient Temperature Range
V-temp Temperature Devices
Operating Junction Temperature Range
Operating Ambient Temperature Range
Power Dissipation:
Internal Chip Power Dissipation:
PINT = VDD x (IDD – S IOH)
I/O Pin Power Dissipation:
I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))
Maximum Allowed Power Dissipation
TABLE 31-3:
PD
PINT + PI/O
W
PDMAX
(TJ – TA)/JA
W
THERMAL PACKAGING CHARACTERISTICS
Characteristics
Symbol Typical
Max.
Unit
Notes
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)
JA
28
—
°C/W
1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)
JA
47
—
°C/W
1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)
JA
43
—
°C/W
1
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)
JA
43
—
°C/W
1
Package Thermal Resistance, 124-pin VTLA
JA
21
—
°C/W
1
Note 1:
Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.
DS60001185E-page 278
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-4:
DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param.
Symbol
No.
Characteristics
Min.
Typical
Max.
Units
Conditions
Operating Voltage
DC10
VDD
Supply Voltage
2.3
—
3.6
V
—
DC12
VDR
RAM Data Retention Voltage
(Note 1)
1.75
—
—
V
—
DC16
VPOR
VDD Start Voltage
to Ensure Internal 
Power-on Reset Signal
1.75
—
2.1
V
—
DC17
SVDD
VDD Rise Rate
to Ensure Internal
Power-on Reset Signal
0.00005
—
0.115
V/s
—
Note 1:
This is the limit to which VDD can be lowered without losing RAM data.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 279
PIC32MX330/350/370/430/450/470
TABLE 31-5:
DC CHARACTERISTICS: OPERATING CURRENT (IDD)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Parameter
No.
Typical(3)
Maximum
Units
Conditions
4
mA
4 MHz
Operating Current (IDD)(1,2)
DC20
2.5
DC21
6
9
mA
10 MHz (Note 4)
DC22
11
17
mA
20 MHz (Note 4)
DC23
21
32
mA
40 MHz (Note 4)
DC24
30
45
mA
60 MHz (Note 4)
DC25
40
60
mA
80 MHz
DC25a
50
75
mA
100 MHz, -40°C  TA  +85°C
DC25c
72
84
mA
DC26
100
—
µA
Note 1:
2:
3:
4:
120 MHz, 0°C  TA  +70°C
+25ºC, 3.3V
LPRC (31 kHz) (Note 4)
A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors,
such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code
execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate,
oscillator type, as well as temperature, can have an impact on the current consumption.
The test conditions for IDD measurements are as follows:
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
• OSC2/CLKO is configured as an I/O input pin
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
• CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait
states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
• No peripheral modules are operating (ON bit = 0), but the associated PMD bit is clear
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD
• CPU executing while(1) statement from Flash
• RTCC and JTAG are disabled
Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated.
Parameters are for design guidance only and are not tested.
This parameter is characterized, but not tested in manufacturing.
DS60001185E-page 280
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-6:
DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Parameter
No.
Typical(2)
Maximum
Units
Conditions
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)
DC30a
1
2.2
mA
4 MHz
DC31a
3
5
mA
10 MHz (Note 3)
DC32a
5
7
mA
20 MHz (Note 3)
DC33a
8
13
mA
40 MHz (Note 3)
DC34a
11
18
mA
60 MHz (Note 3)
DC34b
15
24
mA
80 MHz
DC34c
19
29
mA
100 MHz, -40°C  TA  +85°C
DC34d
25
34
mA
120 MHz, 0°C  TA  +70°C
DC37a
100
—
µA
-40°C
DC37b
250
—
µA
+25°C
380
—
µA
+85°C
DC37c
Note 1:
2:
3:
3.3V
LPRC (31 kHz)
(Note 3)
The test conditions for IIDLE measurements are as follows:
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
• OSC2/CLKO is configured as an I/O input pin
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
• CPU is in Idle mode (CPU core is halted), program Flash memory Wait states = 7, Program Cache
and Prefetch are disabled and SRAM data memory Wait states = 1
• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD
• RTCC and JTAG are disabled
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
This parameter is characterized, but not tested in manufacturing.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 281
PIC32MX330/350/370/430/450/470
TABLE 31-7:
DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Param. No. Typ.(2)
Units
Max.
Conditions
PIC32MX330 Devices Only
Power-Down Current (IPD) (Note 1)
DC40k
20
55
A
DC40l
38
55
A
DC40n
128
167
A
DC40m
261
419
µA
-40°C
+25°C
+85°C
+105ºC
Base Power-Down Current
-40°C
+25°C
+85°C
+105ºC
Base Power-Down Current
-40°C
+25°C
+85°C
+105ºC
Base Power-Down Current
PIC32MX430 Devices Only
Power-Down Current (IPD) (Note 1)
DC40k
12
28
A
DC40l
21
28
A
DC40n
128
167
A
DC40m
261
419
µA
PIC32MX350F128 Devices Only
Power-Down Current (IPD) (Note 1)
DC40k
31
70
A
DC40l
45
70
A
DC40n
175
280
A
DC40m
415
600
µA
PIC32MX450F128 Devices Only
Power-Down Current (IPD) (Note 1)
DC40k
19
35
A
-40°C
DC40l
28
35
A
+25°C
Base Power-Down Current
DC40n
175
280
A
+85°C
DC40m
415
600
µA
+105ºC
Note 1: The test conditions for IPD measurements are as follows:
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
• OSC2/CLKO is configured as an I/O input pin
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
• CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are
disabled and SRAM data memory Wait states = 1
• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD
• RTCC and JTAG are disabled
• Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: The  current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
5: 120 MHz commercial devices only (0ºC to +70ºC).
DS60001185E-page 282
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-7:
DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Param. No. Typ.(2)
Units
Max.
Conditions
PIC32MX350F256 Devices Only
Power-Down Current (IPD) (Note 1)
DC40k
38
80
A
DC40l
57
80
A
DC40n
220
352
A
DC40m
513
749
µA
PIC32MX450F256 Devices Only
-40°C
+25°C
+85°C
+105ºC
Base Power-Down Current
Power-Down Current (IPD) (Note 1)
DC40k
26
42
A
-40°C
DC40o
26
42
µA
0°C(5)
DC40l
26
42
A
+25°C
Base Power-Down Current
DC40p
250
352
µA
+70°C(5)
DC40n
250
352
A
+85°C
DC40m
513
749
µA
+105ºC
Note 1: The test conditions for IPD measurements are as follows:
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
• OSC2/CLKO is configured as an I/O input pin
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
• CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are
disabled and SRAM data memory Wait states = 1
• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD
• RTCC and JTAG are disabled
• Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: The  current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
5: 120 MHz commercial devices only (0ºC to +70ºC).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 283
PIC32MX330/350/370/430/450/470
TABLE 31-7:
DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Param. No. Typ.(2)
Units
Max.
Conditions
PIC32MX370 Devices Only
Power-Down Current (IPD) (Note 1)
DC40k
55
95
A
DC40l
81
95
A
DC40n
281
450
A
DC40m
559
895
µA
PIC32MX470 Devices Only
-40°C
+25°C
+85°C
+105ºC
Base Power-Down Current
Power-Down Current (IPD) (Note 1)
DC40k
33
78
A
-40°C
DC40o
33
78
µA
0°C(5)
DC40l
49
78
A
+25°C
Base Power-Down Current
DC40p
281
450
µA
+70°C(5)
DC40n
281
450
A
+85°C
DC40m
559
895
µA
+105ºC
PIC32MX330/350/370/430/450/470 Devices
Module Differential Current
DC41e
6.7
20
A
3V
Watchdog Timer Current: IWDT (Note 3)
DC42e
29.1
50
A
3V
RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3)
DC43d
1000
1200
A
3V
ADC: IADC (Notes 3,4)
Note 1: The test conditions for IPD measurements are as follows:
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
• OSC2/CLKO is configured as an I/O input pin
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
• CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are
disabled and SRAM data memory Wait states = 1
• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD
• RTCC and JTAG are disabled
• Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: The  current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
5: 120 MHz commercial devices only (0ºC to +70ºC).
DS60001185E-page 284
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-8:
DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
DC CHARACTERISTICS
Param.
Symb.
No.
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typ.(1)
Max.
Units
DI18
Input Low Voltage
I/O Pins with PMP
I/O Pins
SDAx, SCLx
VSS
VSS
VSS
—
—
—
0.15 VDD
0.2 VDD
0.3 VDD
V
V
V
DI19
SDAx, SCLx
VSS
—
0.8
V
0.65 VDD
0.25 VDD + 0.8V
—
—
VDD
5.5
V
V
0.65 VDD
0.65 VDD
—
—
5.5
5.5
V
V
2.1
—
5.5
V
DI10
VIL
Characteristics
DI28
Input High Voltage
I/O Pins not 5V-tolerant(5)
I/O Pins 5V-tolerant with
PMP(5)
I/O Pins 5V-tolerant(5)
SDAx, SCLx
DI29
SDAx, SCLx
DI20
VIH
Conditions
SMBus disabled 
(Note 4)
SMBus enabled 
(Note 4)
(Note 4,6)
(Note 4,6)
SMBus disabled 
(Note 4,6)
SMBus enabled, 
2.3V  VPIN  5.5 
(Note 4,6)
VDD = 3.3V, VPIN = VSS
(Note 3,6)
VDD = 3.3V, VPIN = VDD
Change Notification 
—
—
-50
A
Pull-up Current
DI31
ICNPD Change Notification 
—
50
—
µA
Pull-down Current(4)
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
5: See the “Device Pin Tables” section for the 5V tolerant pins.
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32
device are guaranteed to be recognized only as a logic “high” internally to the PIC32 device, provided
that the external load does not exceed the minimum value of ICNPU. For External “input” logic inputs that
require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use
an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
7: VIL source < (VSS - 0.3). Characterized but not tested.
8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any
“positive” input injection current.
10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD
+ 0.3) or VIL source < (VSS - 0.3)).
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) /
RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3)  VSOURCE  (VDD +
0.3), injection current = 0.
DI30
ICNPU
 2012-2015 Microchip Technology Inc.
DS60001185E-page 285
PIC32MX330/350/370/430/450/470
TABLE 31-8:
DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)
DC CHARACTERISTICS
Param.
Symb.
No.
DI50
DI51
IIL
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typ.(1)
Max.
Units
Input Leakage Current
(Note 3)
I/O Ports
—
—
+1
A
Analog Input Pins
—
—
+1
A
Characteristics
Conditions
VSS  VPIN  VDD,
Pin at high-impedance
VSS  VPIN  VDD,
Pin at high-impedance
VSS VPIN VDD
VSS VPIN VDD, 
XT and HS modes
Pins with Analog functions.
Exceptions: [N/A] = 0 mA
max
Digital 5V tolerant desigInput Low Injection
DI60a IICL
mA nated pins. Exceptions: 
0
—
-5(7,10)
Current
[N/A] = 0 mA max
Digital non-5V tolerant designated pins. Exceptions: 
[N/A] = 0 mA max
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
5: See the “Device Pin Tables” section for the 5V tolerant pins.
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32
device are guaranteed to be recognized only as a logic “high” internally to the PIC32 device, provided
that the external load does not exceed the minimum value of ICNPU. For External “input” logic inputs that
require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use
an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
7: VIL source < (VSS - 0.3). Characterized but not tested.
8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any
“positive” input injection current.
10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD
+ 0.3) or VIL source < (VSS - 0.3)).
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) /
RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3)  VSOURCE  (VDD +
0.3), injection current = 0.
DI55
DI56
MCLR(2)
OSC1
DS60001185E-page 286
—
—
—
—
+1
+1
A
A
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-8:
DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)
DC CHARACTERISTICS
Param.
Symb.
No.
Characteristics
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typ.(1)
Max.
Units
Conditions
Pins with Analog functions.
Exceptions: [SOSCI] = 0 mA
max.
Digital 5V tolerant designated pins (VIH < 5.5V)(9).
Input High Injection
(8,9,10)
DI60b IICH
mA
0
—
+5
Current
Exceptions: [All] = 0 mA
max.
Digital non-5V tolerant designated pins. Exceptions: 
[N/A] = 0 mA max.
-20(11)
—
+20(11)
mA Absolute instantaneous sum
DI60c IICT Total Input Injection
Current (sum of all I/O
of all ± input injection curand control pins)
rents from all I/O pins
( | IICL + | IICH | )  IICT
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
5: See the “Device Pin Tables” section for the 5V tolerant pins.
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32
device are guaranteed to be recognized only as a logic “high” internally to the PIC32 device, provided
that the external load does not exceed the minimum value of ICNPU. For External “input” logic inputs that
require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use
an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
7: VIL source < (VSS - 0.3). Characterized but not tested.
8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any
“positive” input injection current.
10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD
+ 0.3) or VIL source < (VSS - 0.3)).
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) /
RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3)  VSOURCE  (VDD +
0.3), injection current = 0.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 287
PIC32MX330/350/370/430/450/470
TABLE 31-9:
DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param. Symbol
DO10
DO20
VOL
VOH
DO20A VOH1
Note 1:
Characteristic
Output Low Voltage
I/O Pins:
4x Sink Driver Pins - All I/O
output pins not defined as 8x
Sink Driver pins
Output Low Voltage
I/O Pins:
8x Sink Driver Pins - RC15,
RD2, RD10, RF6, RG6
Output High Voltage
I/O Pins:
4x Source Driver Pins - All I/O
output pins not defined as 8x
Source Driver pins
Output High Voltage
I/O Pins:
8x Source Driver Pins - RC15,
RD2, RD10, RF6, RG6
Output High Voltage
I/O Pins:
4x Source Driver Pins - All I/O
output pins not defined as 8x
Sink Driver pins
Output High Voltage
I/O Pins:
8x Source Driver Pins - RC15,
RD2, RD10, RF6, RG6
Min.
Typ.
Max.
Units
Conditions
—
—
0.4
V
IOL  9 mA, VDD = 3.3V
—
—
0.4
V
IOL  15 mA, VDD = 3.3V
2.4
—
—
V
IOH  -10 mA, VDD = 3.3V
2.4
—
—
V
IOH  -15 mA, VDD = 3.3V
1.5(1)
—
—
2.0(1)
—
—
3.0(1)
—
—
IOH  -7 mA, VDD = 3.3V
1.5(1)
—
—
IOH  -22 mA, VDD = 3.3V
2.0(1)
—
—
3.0(1)
—
—
IOH  -14 mA, VDD = 3.3V
V
V
IOH  -12 mA, VDD = 3.3V
IOH  -18 mA, VDD = 3.3V
IOH  -10 mA, VDD = 3.3V
Parameters are characterized, but not tested.
DS60001185E-page 288
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param.
Symbol
No.
BO10
Note 1:
VBOR
Characteristics
BOR Event on VDD transition
high-to-low
Min.(1) Typical
2.0
—
Max.
Units
Conditions
2.3
V
—
Parameters are for design guidance only and are not tested in manufacturing.
TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param.
Symbol
No.(1)
HV10
Note 1:
VHVD
Characteristics
High Voltage Detect on VCAP
pin
Min.
Typical
Max.
Units
Conditions
—
2.5
—
V
—
Parameters are for design guidance only and are not tested in manufacturing.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 289
PIC32MX330/350/370/430/450/470
TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param.
Symbol
No.
Characteristics
Min.
Typical(1)
Max.
Units
Conditions
20,000
—
—
E/W
—
Program Flash Memory(3)
D130
EP
Cell Endurance
D131
VPR
VDD for Read
2.3
—
3.6
V
—
D132
VPEW
VDD for Erase or Write
2.3
—
3.6
V
—
D134
TRETD
Characteristic Retention
20
—
—
Year Provided no other specifications
are violated
D135
IDDP
Supply Current during
Programming
—
10
—
mA
—
TWW
Word Write Cycle Time
44
—
59
µs
—
Time(2)
D136
TRW
Row Write Cycle
2.8
3.3
3.8
ms
—
D137
TPE
Page Erase Cycle Time
22
—
29
ms
—
TCE
Chip Erase Cycle Time
86
—
116
ms
—
Note 1:
2:
3:
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
The minimum SYSCLK for row programming is 8 MHz. Care should be taken to minimize bus activities
during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads
are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default
Arbitration mode is mode 1 (CPU has lowest priority).
Refer to the “PIC32 Flash Programming Specification” (DS60001145) for operating conditions during
programming and erase cycles.
TABLE 31-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATE
DC CHARACTERISTICS
Required Flash Wait States
0 Wait State
1 Wait State
2 Wait States
3 Wait States
DS60001185E-page 290
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
SYSCLK
Units
Conditions
0-40
MHz
-40ºC to +85ºC
0-30
MHz
-40ºC to +105ºC
41-80
MHz
-40ºC to +85ºC
31-60
MHz
-40ºC to +105ºC
81-100
MHz
-40ºC to +85ºC
61-80
MHz
-40ºC to +105ºC
101-120
MHz
0ºC to +70ºC
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-14: COMPARATOR SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param.
Symbol
No.
Characteristics
Min.
Typical
Max.
Units
Comments
D300
VIOFF
Input Offset Voltage
—
±7.5
±25
mV
AVDD = VDD,
AVSS = VSS
D301
VICM
Input Common Mode Voltage
0
—
VDD
V
AVDD = VDD,
AVSS = VSS
(Note 2)
D302
CMRR
Common Mode Rejection Ratio
55
—
—
dB
Max VICM = (VDD - 1)V
(Note 2)
D303
TRESP
Response Time
—
150
400
ns
AVDD = VDD,
AVSS = VSS
(Notes 1,2)
D304
ON2OV
Comparator Enabled to Output
Valid
—
—
10
s
Comparator module is
configured before setting
the comparator ON bit
(Note 2)
D305
IVREF
Internal Voltage Reference
1.14
1.2
1.26
V
Note 1:
2:
3:
—
Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions 
from VSS to VDD.
These parameters are characterized but not tested.
Settling time measured while CVRR = 1 and CVR<3:0> transitions from ‘0000’ to ‘1111’. This parameter is
characterized, but not tested in manufacturing.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 291
PIC32MX330/350/370/430/450/470
TABLE 31-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param.
Symbol
No.
Characteristics
D312
TSET
D313
DACREFH CVREF Input Voltage
Reference Range
D314
DVREF
D315
DACRES
D316
DACACC
Note 1:
2:
Min.
Typ.
Max.
Units
—
—
10
µs
See Note 1
AVSS
—
AVDD
V
CVRSRC with CVRSS = 0
Internal 4-bit DAC
Comparator Reference
Settling time.
VREF-
—
VREF+
V
CVRSRC with CVRSS = 1
0
—
0.625 x
DACREFH
V
0 to 0.625 DACREFH with
DACREFH/24 step size
0.25 x
DACREFH
—
0.719 x
DACREFH
V
0.25 x DACREFH to 0.719
DACREFH with DACREFH/
32 step size
—
—
DACREFH/24
CVRCON<CVRR> = 1
—
—
DACREFH/32
CVRCON<CVRR> = 0
—
—
1/4
LSB
DACREFH/24,
CVRCON<CVRR> = 1
—
—
1/2
LSB
DACREFH/32,
CVRCON<CVRR> = 0
CVREF Programmable
Output Range
Resolution
Absolute
Comments
Accuracy(2)
Settling time was measured while CVRR = 1 and CVR<3:0> transitions from ‘0000’ to ‘1111’. This parameter is characterized, but is not tested in manufacturing.
These parameters are characterized but not tested.
TABLE 31-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
DC CHARACTERISTICS
Param.
No.
D321
Symbol
CEFC
Characteristics
Min.
Typical
Max.
Units
Comments
External Filter Capacitor Value
8
10
—
F
Capacitor must be low series
resistance (3 ohm). Typical
voltage on the VCAP pin is
1.8V.
DS60001185E-page 292
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
31.2
AC Characteristics and Timing
Parameters
The information contained in this section defines
PIC32MX330/350/370/430/450/470 AC characteristics
and timing parameters.
FIGURE 31-1:
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load Condition 1 – for all pins except OSC2
Load Condition 2 – for OSC2
VDD/2
CL
Pin
RL
VSS
CL
Pin
RL = 464
CL = 50 pF for all pins
50 pF for OSC2 pin (EC mode)
VSS
TABLE 31-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Param.
Symbol
No.
Min.
Typical(1)
Max.
Units
OSC2 pin
—
—
15
pF
In XT and HS modes when an
external crystal is used to drive
OSC1
DO50a CSOSC
SOSCI/SOSCO pins
—
33
—
pF
Epson P/N: MC-306 32.7680KA0:ROHS
DO56
CIO
All I/O pins and OSC2
—
—
50
pF
EC mode
DO58
CB
SCLx, SDAx
—
—
400
pF
In I2C mode
DO50
COSCO
Note 1:
Characteristics
Conditions
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
FIGURE 31-2:
EXTERNAL CLOCK TIMING
OS20
OS30
OS31
OSC1
OS30
 2012-2015 Microchip Technology Inc.
OS31
DS60001185E-page 293
PIC32MX330/350/370/430/450/470
TABLE 31-18: EXTERNAL CLOCK TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Min.
Typical(1)
Max.
Units
Conditions
External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes)
DC
4
—
—
120
120
MHz
MHz
EC (Note 4,5)
ECPLL (Notes 3,5)
Oscillator Crystal Frequency
3
—
10
MHz
XT (Note 4)
OS12
4
—
10
MHz
XTPLL
(Notes 3,4)
OS13
10
—
25
MHz
HS (Note 5)
OS14
10
—
25
MHz
HSPLL
(Notes 3,4)
32
32.768
100
kHz
SOSC (Note 4)
—
—
—
—
See parameter
OS10 for FOSC
value
OS10
FOSC
OS11
Characteristics
OS15
OS20
TOSC
TOSC = 1/FOSC = TCY (Note 2)
OS30
TOSL,
TOSH
External Clock In (OSC1)
High or Low Time
0.45 x TOSC
—
—
ns
EC (Note 4)
OS31
TOSR,
TOSF
External Clock In (OSC1)
Rise or Fall Time
—
—
0.05 x TOSC
ns
EC (Note 4)
OS40
TOST
Oscillator Start-up Timer Period
(Only applies to HS, HSPLL,
XT, XTPLL and SOSC Clock
Oscillator modes)
—
1024
—
TOSC
(Note 4)
OS41
TFSCM
Primary Clock Fail Safe 
Time-out Period
—
2
—
ms
(Note 4)
OS42
GM
External Oscillator
Transconductance (Primary
Oscillator only)
—
12
—
Note 1:
2:
3:
4:
5:
mA/V VDD = 3.3V,
TA = +25°C
(Note 4)
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are
not tested.
Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device
executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or
higher than expected current consumption. All devices are tested to operate at “min.” values with an
external clock applied to the OSC1/CLKI pin.
PLL input requirements: 4 MHZ  FPLLIN  5 MHZ (use PLL prescaler to reduce FOSC). This parameter is
characterized, but tested at 10 MHz only at manufacturing.
This parameter is characterized, but not tested in manufacturing.
For Industrial devices (-40°C  TA  +85°C), the maximum value is 80 MHz.
DS60001185E-page 294
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-19: PLL CLOCK TIMING SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
OS50
FPLLI
PLL Voltage Controlled 
Oscillator (VCO) Input 
Frequency Range
OS51
FSYS
OS52
TLOCK
OS53
Note 1:
2:
DCLK
Min.
Typical Max.
Units
Conditions
3.92
—
5
MHz
On-Chip VCO System Frequency
60
—
120
MHz
—
PLL Start-up Time (Lock Time)
—
—
2
ms
—
-0.25
—
+0.25
%
Stability(2)
CLKO
(Period Jitter or Cumulative)
ECPLL, HSPLL, XTPLL,
FRCPLL modes
Measured over 100 ms
period
These parameters are characterized, but not tested in manufacturing.
This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for
individual time-bases on communication clocks, use the following formula:
DCLK
EffectiveJitter = -------------------------------------------------------------SYSCLK
---------------------------------------------------------CommunicationClock
For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:
D CLK
DCLK
EffectiveJitter = ------------- = ------------1.41
40
-----20
TABLE 31-20:
INTERNAL FRC ACCURACY
AC CHARACTERISTICS
Param.
No.
Characteristics
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typical
Max.
Units
Conditions
—
+0.9
%
—
Internal FRC Accuracy @ 8.00 MHz(1)
F20b
Note 1:
FRC
-0.9
Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.
TABLE 31-21: INTERNAL LPRC ACCURACY
AC CHARACTERISTICS
Param.
No.
Characteristics
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typical
Max.
Units
Conditions
-15
—
+15
%
—
LPRC @ 31.25 kHz(1)
F21
Note 1:
LPRC
Change of LPRC frequency as VDD changes.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 295
PIC32MX330/350/370/430/450/470
FIGURE 31-3:
I/O TIMING CHARACTERISTICS
I/O Pin
(Input)
DI35
DI40
I/O Pin
(Output)
Note: Refer to Figure 31-1 for load conditions.
DO31
DO32
TABLE 31-22: I/O TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
DO31
DO32
Characteristics(2)
Symbol
TIOR
TIOF
Port Output Rise Time
Port Output Fall Time
Min.
Typical(1)
Max.
Units
—
5
15
ns
VDD < 2.5V
—
5
10
ns
VDD > 2.5V
—
5
15
ns
VDD < 2.5V
—
5
10
ns
VDD > 2.5V
Conditions
DI35
TINP
INTx Pin High or Low Time
10
—
—
ns
—
DI40
TRBP
CNx High or Low Time (input)
2
—
—
TSYSCLK
—
Note 1:
2:
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
This parameter is characterized, but not tested in manufacturing.
DS60001185E-page 296
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-4:
POWER-ON RESET TIMING CHARACTERISTICS
Internal Voltage Regulator Enabled
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
VDD
VPOR
(TSYSDLY)
SY02
Power-up Sequence
(Note 2)
CPU Starts Fetching Code
SY00
(TPU)
(Note 1)
Internal Voltage Regulator Enabled
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)
VDD
VPOR
(TSYSDLY)
SY02
Power-up Sequence
(Note 2)
SY00
(TPU)
(Note 1)
Note 1:
2:
SY10
(TOST)
CPU Starts Fetching Code
The power-up period will be extended if the power-up sequence completes before the device exits from BOR
(VDD < VDDMIN).
Includes interval voltage regulator stabilization delay.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 297
PIC32MX330/350/370/430/450/470
FIGURE 31-5:
EXTERNAL RESET TIMING CHARACTERISTICS
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
MCLR
TMCLR
(SY20)
BOR
TBOR
(SY30)
(TSYSDLY)
SY02
Reset Sequence
CPU Starts Fetching Code
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)
(TSYSDLY)
SY02
Reset Sequence
CPU Starts Fetching Code
TOST
(SY10)
TABLE 31-23: RESETS TIMING
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
SY00
TPU
Power-up Period
Internal Voltage Regulator Enabled
—
400
600
s
—
SY02
TSYSDLY System Delay Period:
Time Required to Reload Device
Configuration Fuses plus SYSCLK
Delay before First instruction is
Fetched.
—
s +
8 SYSCLK
cycles
—
—
—
SY20
TMCLR
MCLR Pulse Width (low)
2
—
—
s
—
SY30
TBOR
BOR Pulse Width (low)
—
1
—
s
—
Note 1:
2:
These parameters are characterized, but not tested in manufacturing.
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.
DS60001185E-page 298
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-6:
TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS
TxCK
Tx11
Tx10
Tx15
Tx20
OS60
TMRx
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
TA10
TA11
TA15
Symbol
TTXH
TTXL
TTXP
Characteristics(2)
TxCK
High Time
TxCK
Low Time
Typical Max. Units
Conditions
Synchronous,
with prescaler
[(12.5 ns or 1 TPB)/N]
+ 25 ns
—
—
ns
Must also meet
parameter TA15
Asynchronous,
with prescaler
10
—
—
ns
—
Synchronous,
with prescaler
[(12.5 ns or 1 TPB)/N]
+ 25 ns
—
—
ns
Must also meet
parameter TA15
Asynchronous,
with prescaler
10
—
—
ns
—
[(Greater of 25 ns or
2 TPB)/N] + 30 ns
—
—
ns
VDD > 2.7V
[(Greater of 25 ns or
2 TPB)/N] + 50 ns
—
—
ns
VDD < 2.7V
20
—
—
ns
VDD > 2.7V
(Note 3)
50
—
—
ns
VDD < 2.7V
(Note 3)
32
—
100
kHz
—
1
TPB
—
TxCK
Synchronous,
Input Period with prescaler
Asynchronous,
with prescaler
OS60
FT1
TA20
TCKEXTMRL Delay from External TxCK
Clock Edge to Timer 
Increment
Note 1:
2:
3:
Min.
SOSC1/T1CK Oscillator
Input Frequency Range
(oscillator enabled by setting
TCS bit (T1CON<1>))
—
Timer1 is a Type A.
This parameter is characterized, but not tested in manufacturing.
N = Prescale Value (1, 8, 64, 256).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 299
PIC32MX330/350/370/430/450/470
TABLE 31-25: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Max. Units
Conditions
TB10
TTXH
TxCK
Synchronous, with
High Time prescaler
[(12.5 ns or 1 TPB)/N]
+ 25 ns
—
ns
TB11
TTXL
TxCK
Synchronous, with
Low Time prescaler
[(12.5 ns or 1 TPB)/N]
+ 25 ns
—
ns
TB15
TTXP
TxCK
Input
Period
[(Greater of [(25 ns or
2 TPB)/N] + 30 ns
—
ns
VDD > 2.7V
[(Greater of [(25 ns or
2 TPB)/N] + 50 ns
—
ns
VDD < 2.7V
—
1
TPB
Must also meet N = prescale
parameter
value 
TB15
(1, 2, 4, 8,
Must also meet 16, 32, 64,
256)
parameter
TB15
TB20
Synchronous, with
prescaler
TCKEXTMRL Delay from External TxCK
Clock Edge to Timer Increment
Note 1:
—
These parameters are characterized, but not tested in manufacturing.
FIGURE 31-7:
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS
ICx
IC10
IC11
IC15
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-26: INPUT CAPTURE MODULE TIMING REQUIREMENTS
AC CHARACTERISTICS
Param.
Symbol
No.
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Characteristics(1)
Min.
Max.
Units
Conditions
IC10
TCCL
ICx Input Low Time
[(12.5 ns or 1 TPB)/N]
+ 25 ns
—
ns
Must also
meet
parameter
IC15.
IC11
TCCH
ICx Input High Time
[(12.5 ns or 1 TPB)/N]
+ 25 ns
—
ns
Must also
meet
parameter
IC15.
IC15
TCCP
ICx Input Period
[(25 ns or 2 TPB)/N]
+ 50 ns
—
ns
Note 1:
These parameters are characterized, but not tested in manufacturing.
DS60001185E-page 300
N = prescale
value (1, 4, 16)
—
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-8:
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS
OCx
(Output Compare
or PWM mode)
OC10
OC11
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
OC10
TCCF
OCx Output Fall Time
—
—
—
ns
See parameter DO32
OC11
TCCR
OCx Output Rise Time
—
—
—
ns
See parameter DO31
Note 1:
2:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
FIGURE 31-9:
OCx/PWM MODULE TIMING CHARACTERISTICS
OC20
OCFA/OCFB
OC15
OCx
OCx is tri-stated
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-28: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param
No.
Symbol
Characteristics(1)
Min
Typical(2)
Max
Units
Conditions
OC15
TFD
Fault Input to PWM I/O Change
—
—
50
ns
—
OC20
TFLT
Fault Input Pulse Width
50
—
—
ns
—
Note 1:
2:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 301
PIC32MX330/350/370/430/450/470
FIGURE 31-10:
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS
SCKx
(CKP = 0)
SP11
SP10
SP21
SP20
SP20
SP21
SCKx
(CKP = 1)
SP35
MSb
SDOx
Bit 14 - - - - - -1
SP31
SDIx
MSb In
LSb
SP30
LSb In
Bit 14 - - - -1
SP40 SP41
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-29: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
SP10
TSCL
SCKx Output Low Time 
(Note 3)
TSCK/2
—
—
ns
—
SP11
TSCH
SCKx Output High Time 
(Note 3)
TSCK/2
—
—
ns
—
SP20
TSCF
SCKx Output Fall Time 
(Note 4)
—
—
—
ns
See parameter DO32
SP21
TSCR
SCKx Output Rise Time 
(Note 4)
—
—
—
ns
See parameter DO31
SP30
TDOF
SDOx Data Output Fall Time 
(Note 4)
—
—
—
ns
See parameter DO32
SP31
TDOR
SDOx Data Output Rise Time 
(Note 4)
—
—
—
ns
See parameter DO31
SP35
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
—
—
15
ns
VDD > 2.7V
—
—
20
ns
VDD < 2.7V
SP40
TDIV2SCH, Setup Time of SDIx Data Input
TDIV2SCL to SCKx Edge
10
—
—
ns
—
SP41
TSCH2DIL, Hold Time of SDIx Data Input
TSCL2DIL
to SCKx Edge
10
—
—
ns
—
Note 1:
2:
3:
4:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not
violate this specification.
Assumes 50 pF load on all SPIx pins.
DS60001185E-page 302
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-11:
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS
SP36
SCKX
(CKP = 0)
SP11
SCKX
(CKP = 1)
SP10
SP21
SP20
SP20
SP21
SP35
LSb
Bit 14 - - - - - -1
MSb
SDOX
SP30,SP31
SDIX
MSb In
SP40
Bit 14 - - - -1
LSb In
SP41
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-30: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typ.(2)
Max.
Units
Conditions
SP10
TSCL
SCKx Output Low Time (Note 3)
TSCK/2
—
—
ns
—
SP11
TSCH
SCKx Output High Time (Note 3)
TSCK/2
—
—
ns
—
SP20
TSCF
SCKx Output Fall Time (Note 4)
—
—
—
ns
See parameter DO32
SP21
TSCR
SCKx Output Rise Time (Note 4)
—
—
—
ns
See parameter DO32
SP30
TDOF
SDOx Data Output Fall Time 
(Note 4)
—
—
—
ns
See parameter DO32
SP31
TDOR
SDOx Data Output Rise Time 
(Note 4)
—
—
—
ns
See parameter DO31
SP35
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
—
—
15
ns
VDD > 2.7V
—
—
20
ns
VDD < 2.7V
SP36
TDOV2SC, SDOx Data Output Setup to
TDOV2SCL First SCKx Edge
15
—
—
ns
SP40
TDIV2SCH, Setup Time of SDIx Data Input to
TDIV2SCL SCKx Edge
15
—
—
ns
VDD > 2.7V
20
—
—
ns
VDD < 2.7V
SP41
TSCH2DIL,
TSCL2DIL
15
—
—
ns
VDD > 2.7V
20
—
—
ns
VDD < 2.7V
Note 1:
2:
3:
4:
Hold Time of SDIx Data Input
to SCKx Edge
—
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not
violate this specification.
Assumes 50 pF load on all SPIx pins.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 303
PIC32MX330/350/370/430/450/470
FIGURE 31-12:
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS
SSX
SP52
SP50
SCKX
(CKP = 0)
SP71
SP70
SP73
SP72
SP72
SP73
SCKX
(CKP = 1)
SP35
MSb
SDOX
LSb
Bit 14 - - - - - -1
SP51
SP30,SP31
SDIX
MSb In
SP40
Bit 14 - - - -1
LSb In
SP41
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
SP70
SP71
SP72
SP73
SP30
SP31
SP35
SP40
SP41
SP50
Characteristics(1)
Symbol
TSCL
TSCH
TSCF
TSCR
TDOF
SCKx Input Low Time (Note 3)
SCKx Input High Time (Note 3)
SCKx Input Fall Time
SCKx Input Rise Time
SDOx Data Output Fall Time
(Note 4)
TDOR
SDOx Data Output Rise Time
(Note 4)
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
TDIV2SCH,
TDIV2SCL
TSCH2DIL,
TSCL2DIL
Setup Time of SDIx Data Input
to SCKx Edge
Hold Time of SDIx Data Input
to SCKx Edge
TSSL2SCH, SSx  to SCKx  or SCKx Input
TSSL2SCL
Min. Typ.(2) Max.
Units
Conditions
TSCK/2
TSCK/2
—
—
—
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
See parameter DO32
See parameter DO31
See parameter DO32
—
—
—
ns
See parameter DO31
—
—
10
—
—
—
15
20
—
ns
ns
ns
VDD > 2.7V
VDD < 2.7V
10
—
—
ns
—
175
—
—
ns
—
—
TSSH2DOZ SSx  to SDOx Output 
5
—
25
ns
—
High-Impedance (Note 3)
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
3: The minimum clock period for SCKx is 40 ns.
4: Assumes 50 pF load on all SPIx pins.
SP51
DS60001185E-page 304
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
SP52
Note 1:
2:
3:
4:
Symbol
Characteristics(1)
Min. Typ.(2) Max.
Units
Conditions
TSCH2SSH SSx after SCKx Edge
TSCK + —
—
ns
—
20
TSCL2SSH
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for SCKx is 40 ns.
Assumes 50 pF load on all SPIx pins.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 305
PIC32MX330/350/370/430/450/470
FIGURE 31-13:
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS
SP60
SSx
SP52
SP50
SCKx
(CKP = 0)
SP71
SP70
SP73
SP72
SP72
SP73
SCKx
(CKP = 1)
SP35
MSb
SDOx
Bit 14 - - - - - -1
LSb
SP30,SP31
SDIx
SDI
MSb In
SP40
SP51
Bit 14 - - - -1
LSb In
SP41
Note: Refer to Figure 31-1 for load conditions.
TABLE 31-32: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
Characteristics(1)
Symbol
Min.
Typical(2)
Max.
Units
Conditions
SP70
TSCL
SCKx Input Low Time (Note 3)
TSCK/2
—
—
ns
—
SP71
TSCH
SCKx Input High Time (Note 3)
TSCK/2
—
—
ns
—
SP72
TSCF
SCKx Input Fall Time
—
5
10
ns
—
SP73
TSCR
SCKx Input Rise Time
—
5
10
ns
—
SP30
TDOF
SDOx Data Output Fall Time 
(Note 4)
—
—
—
ns
See parameter DO32
SP31
TDOR
SDOx Data Output Rise Time 
(Note 4)
—
—
—
ns
See parameter DO31
SP35
TSCH2DOV, SDOx Data Output Valid after
TSCL2DOV SCKx Edge
—
—
20
ns
VDD > 2.7V
—
—
30
ns
VDD < 2.7V
SP40
TDIV2SCH, Setup Time of SDIx Data Input
TDIV2SCL to SCKx Edge
10
—
—
ns
—
SP41
TSCH2DIL,
TSCL2DIL
10
—
—
ns
—
Note 1:
2:
3:
4:
Hold Time of SDIx Data Input
to SCKx Edge
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for SCKx is 40 ns.
Assumes 50 pF load on all SPIx pins.
DS60001185E-page 306
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-32: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
Symbol
Characteristics(1)
Min.
Typical(2)
Max.
Units
Conditions
175
—
—
ns
—
SP50
TSSL2SCH, SSx  to SCKx  or SCKx  Input
TSSL2SCL
SP51
TSSH2DOZ SSx  to SDOX Output
High-Impedance 
(Note 4)
5
—
25
ns
—
SP52
TSCH2SSH SSx  after SCKx Edge
TSCL2SSH
TSCK +
20
—
—
ns
—
SP60
TSSL2DOV SDOx Data Output Valid after
SSx Edge
—
—
25
ns
—
Note 1:
2:
3:
4:
These parameters are characterized, but not tested in manufacturing.
Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for SCKx is 40 ns.
Assumes 50 pF load on all SPIx pins.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 307
PIC32MX330/350/370/430/450/470
FIGURE 31-14:
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)
SCLx
IM31
IM34
IM30
IM33
SDAx
Stop
Condition
Start
Condition
Note: Refer to Figure 31-1 for load conditions.
FIGURE 31-15:
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)
IM20
IM21
IM11
IM10
SCLx
IM11
IM26
IM10
IM25
IM33
SDAx
In
IM40
IM40
IM45
SDAx
Out
Note: Refer to Figure 31-1 for load conditions.
DS60001185E-page 308
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
IM10
IM11
IM20
Min.(1)
Max.
Units
Conditions
TLO:SCL Clock Low Time 100 kHz mode
TPB * (BRG + 2)
—
s
—
400 kHz mode
TPB * (BRG + 2)
—
s
—
1 MHz mode 
(Note 2)
TPB * (BRG + 2)
—
s
—
Clock High Time 100 kHz mode
TPB * (BRG + 2)
—
s
—
400 kHz mode
TPB * (BRG + 2)
—
s
—
1 MHz mode 
(Note 2)
TPB * (BRG + 2)
—
s
—
—
300
ns
THI:SCL
TF:SCL
Characteristics
SDAx and SCLx 100 kHz mode
Fall Time
400 kHz mode
1 MHz mode 
(Note 2)
IM21
IM25
IM26
IM30
IM31
IM33
Note 1:
2:
3:
TR:SCL
SDAx and SCLx 100 kHz mode
Rise Time
400 kHz mode
TSU:DAT Data Input
Setup Time
THD:DAT Data Input
Hold Time
TSU:STA
Start Condition
Setup Time
THD:STA Start Condition
Hold Time
TSU:STO Stop Condition
Setup Time
20 + 0.1 CB
300
ns
—
100
ns
—
1000
ns
20 + 0.1 CB
300
ns
1 MHz mode 
(Note 2)
—
300
ns
100 kHz mode
250
—
ns
400 kHz mode
100
—
ns
1 MHz mode 
(Note 2)
100
—
ns
100 kHz mode
0
—
s
400 kHz mode
0
0.9
s
1 MHz mode 
(Note 2)
0
0.3
s
100 kHz mode
TPB * (BRG + 2)
—
s
400 kHz mode
TPB * (BRG + 2)
—
s
1 MHz mode 
(Note 2)
TPB * (BRG + 2)
—
s
100 kHz mode
TPB * (BRG + 2)
—
s
400 kHz mode
TPB * (BRG + 2)
—
s
1 MHz mode 
(Note 2)
TPB * (BRG + 2)
—
s
100 kHz mode
TPB * (BRG + 2)
—
s
400 kHz mode
TPB * (BRG + 2)
—
s
1 MHz mode 
(Note 2)
TPB * (BRG + 2)
—
s
CB is specified to be
from 10 to 400 pF
CB is specified to be
from 10 to 400 pF
—
—
Only relevant for
Repeated Start
condition
After this period, the
first clock pulse is
generated
—
BRG is the value of the I2C Baud Rate Generator.
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
The typical value for this parameter is 104 ns.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 309
PIC32MX330/350/370/430/450/470
TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
IM34
THD:STO Stop Condition
Hold Time
IM40
IM45
TAA:SCL
Min.(1)
Max.
Units
Conditions
100 kHz mode
TPB * (BRG + 2)
—
ns
—
400 kHz mode
TPB * (BRG + 2)
—
ns
1 MHz mode 
(Note 2)
TPB * (BRG + 2)
—
ns
100 kHz mode
—
3500
ns
—
400 kHz mode
—
1000
ns
—
1 MHz mode 
(Note 2)
—
350
ns
—
100 kHz mode
4.7
—
s
400 kHz mode
1.3
—
s
1 MHz mode 
(Note 2)
0.5
—
s
The amount of time the
bus must be free
before a new
transmission can start
Characteristics
Output Valid
from Clock
TBF:SDA Bus Free Time
IM50
CB
Bus Capacitive Loading
—
400
pF
—
IM51
TPGD
Pulse Gobbler Delay
52
312
ns
See Note 3
Note 1:
2:
3:
BRG is the value of the I2C Baud Rate Generator.
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
The typical value for this parameter is 104 ns.
DS60001185E-page 310
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-16:
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)
SCLx
IS34
IS31
IS30
IS33
SDAx
Stop
Condition
Start
Condition
Note: Refer to Figure 31-1 for load conditions.
FIGURE 31-17:
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)
IS20
IS21
IS11
IS10
SCLx
IS30
IS26
IS31
IS25
IS33
SDAx
In
IS40
IS40
IS45
SDAx
Out
Note: Refer to Figure 31-1 for load conditions.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 311
PIC32MX330/350/370/430/450/470
TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
IS10
IS11
IS20
IS21
IS25
IS26
IS30
IS31
IS33
Note 1:
Symbol
TLO:SCL
THI:SCL
TF:SCL
TR:SCL
TSU:DAT
THD:DAT
TSU:STA
THD:STA
TSU:STO
Characteristics
Clock Low Time
Clock High Time
SDAx and SCLx
Fall Time
SDAx and SCLx
Rise Time
Data Input
Setup Time
Data Input
Hold Time
Start Condition
Setup Time
Start Condition
Hold Time
Stop Condition
Setup Time
Min.
Max.
Units
100 kHz mode
4.7
—
s
PBCLK must operate at a
minimum of 800 kHz
400 kHz mode
1.3
—
s
PBCLK must operate at a
minimum of 3.2 MHz
1 MHz mode 
(Note 1)
0.5
—
s
100 kHz mode
4.0
—
s
PBCLK must operate at a
minimum of 800 kHz
400 kHz mode
0.6
—
s
PBCLK must operate at a
minimum of 3.2 MHz
1 MHz mode 
(Note 1)
0.5
—
s
100 kHz mode
—
300
ns
400 kHz mode
20 + 0.1 CB
300
ns
1 MHz mode 
(Note 1)
—
100
ns
100 kHz mode
—
1000
ns
400 kHz mode
20 + 0.1 CB
300
ns
1 MHz mode 
(Note 1)
—
300
ns
100 kHz mode
250
—
ns
400 kHz mode
100
—
ns
1 MHz mode 
(Note 1)
100
—
ns
100 kHz mode
0
—
ns
400 kHz mode
0
0.9
s
1 MHz mode 
(Note 1)
0
0.3
s
100 kHz mode
4700
—
ns
400 kHz mode
600
—
ns
1 MHz mode 
(Note 1)
250
—
ns
100 kHz mode
4000
—
ns
400 kHz mode
600
—
ns
1 MHz mode 
(Note 1)
250
—
ns
100 kHz mode
4000
—
ns
400 kHz mode
600
—
ns
1 MHz mode 
(Note 1)
600
—
ns
Conditions
—
—
CB is specified to be from
10 to 400 pF
CB is specified to be from
10 to 400 pF
—
—
Only relevant for Repeated
Start condition
After this period, the first
clock pulse is generated
—
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
DS60001185E-page 312
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
IS34
IS40
IS45
IS50
Note 1:
Symbol
THD:STO
TAA:SCL
TBF:SDA
CB
Characteristics
Stop Condition
Hold Time
Min.
Max.
Units
Conditions
100 kHz mode
4000
—
ns
—
400 kHz mode
600
—
ns
1 MHz mode 
(Note 1)
250
ns
Output Valid from 100 kHz mode
Clock
400 kHz mode
0
3500
ns
0
1000
ns
1 MHz mode 
(Note 1)
0
350
ns
Bus Free Time
100 kHz mode
4.7
—
s
400 kHz mode
1.3
—
s
1 MHz mode 
(Note 1)
0.5
—
s
—
400
pF
Bus Capacitive Loading
—
The amount of time the bus
must be free before a new
transmission can start
—
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
 2012-2015 Microchip Technology Inc.
DS60001185E-page 313
PIC32MX330/350/370/430/450/470
TABLE 31-35: ADC MODULE SPECIFICATIONS
AC CHARACTERISTICS(5)
Param.
No.
Symbol
Characteristics
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typical
Max.
Units
Conditions
Greater of
VDD – 0.3
or 2.5
—
Lesser of
VDD + 0.3
or 3.6
V
VSS
—
VSS + 0.3
V
AVSS + 2.0
—
AVDD
V
(Note 1)
2.5
—
3.6
V
VREFH = AVDD (Note 3)
Device Supply
AD01
AD02
AVDD
AVSS
Module VDD Supply
Module VSS Supply
—
—
Reference Inputs
AD05
VREFH
Reference Voltage High
AD05a
AD06
VREFL
Reference Voltage Low
AVSS
—
VREFH – 2.0
V
(Note 1)
AD07
VREF
Absolute Reference
Voltage (VREFH – VREFL)
2.0
—
AVDD
V
(Note 3)
AD08
IREF
Current Drain
—
250
—
400
3
A
A
ADC operating
ADC off
VREFL
—
VREFH
V
—
—
AVDD/2
V
—
Analog Input
AD12
VINH-VINL Full-Scale Input Span
AD13
VINL
Absolute VINL Input
Voltage
AVSS – 0.3
AD14
VIN
Absolute Input Voltage
AD15
AD17
RIN
AVSS – 0.3
—
AVDD + 0.3
V
—
Leakage Current
—
+/- 0.001
+/-0.610
A
VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
Source Impedance = 10 k
Recommended
Impedance of Analog
Voltage Source
—
—
5K

(Note 1)
ADC Accuracy – Measurements with External VREF+/VREFAD20c Nr
Resolution
AD21c INL
Integral Nonlinearity
> -1
—
<1
LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
AD22c DNL
Differential Nonlinearity
> -1
—
<1
LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
(Note 2)
AD23c GERR
Gain Error
> -1
—
<1
LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
AD24n EOFF
Offset Error
> -1
—
<1
LSb VINL = AVSS = 0V, 
AVDD = 3.3V
AD25c
Monotonicity
—
—
—
Note 1:
2:
3:
4:
5:
—
10 data bits
bits
—
—
Guaranteed
These parameters are not characterized or tested in manufacturing.
With no missing codes.
These parameters are characterized, but not tested in manufacturing.
Characterized with a 1 kHz sine wave.
Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device
Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to
parameter BO10 in Table 31-10 for VBORMIN values.
DS60001185E-page 314
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-35: ADC MODULE SPECIFICATIONS (CONTINUED)
AC CHARACTERISTICS(5)
Param.
No.
Symbol
Characteristics
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typical
Max.
Units
Conditions
ADC Accuracy – Measurements with Internal VREF+/VREFAD20d Nr
Resolution
AD21d INL
Integral Nonlinearity
> -1
—
<1
LSb VINL = AVSS = 0V, 
AVDD = 2.5V to 3.6V 
(Note 3)
AD22d DNL
Differential Nonlinearity
> -1
—
<1
LSb VINL = AVSS = 0V, 
AVDD = 2.5V to 3.6V
(Notes 2,3)
AD23d GERR
Gain Error
> -4
—
<4
LSb VINL = AVSS = 0V, 
AVDD = 2.5V to 3.6V
(Note 3)
AD24d EOFF
Offset Error
> -2
—
<2
LSb VINL = AVSS = 0V, 
AVDD = 2.5V to 3.6V
(Note 3)
AD25d
Monotonicity
—
—
—
—
Guaranteed
—
10 data bits
bits
(Note 3)
Dynamic Performance
AD31b SINAD
Signal to Noise and 
Distortion
55
58
—
dB
(Notes 3,4)
AD34b ENOB
Effective Number of Bits
9
9.5
—
bits
(Notes 3,4)
Note 1:
2:
3:
4:
5:
These parameters are not characterized or tested in manufacturing.
With no missing codes.
These parameters are characterized, but not tested in manufacturing.
Characterized with a 1 kHz sine wave.
Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device
Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to
parameter BO10 in Table 31-10 for VBORMIN values.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 315
PIC32MX330/350/370/430/450/470
TABLE 31-36: 10-BIT CONVERSION RATE PARAMETERS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS(2)
ADC Input
ADC Speed
AN0-AN14
1 Msps to 400
ksps(1)
TAD
Min.
Sampling
Time
Min.
65 ns
132 ns
RS
Max.
ADC Channels Configuration
VDD
500 3.0V to 3.6V
VREF- VREF+
CHX
ANx
Up to 400 ksps 200 ns
200 ns
SHA
5.0 k 2.5V to 3.6V
ADC
VREF- VREF+
or
or
AVSS AVDD
CHX
ANx
SHA
ADC
ANx or VREF-
AN15-AN27 400 ksps(1)
154 ns
1000 ns
500 3.0V to 3.6V
VREF- VREF+
ANx
Note 1:
2:
CHX
SHA
ADC
External VREF- and VREF+ pins must be used for correct operation.
These parameters are characterized, but not tested in manufacturing.
DS60001185E-page 316
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-37: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Min.
Typical(1)
Max.
Units
ADC Clock Period(2)
65
—
—
ns
12 TAD
—
—
Characteristics
Conditions
Clock Parameters
AD50
TAD
See Table 31-36
Conversion Rate
AD55
TCONV
Conversion Time
—
AD56
FCNV
Throughput Rate 
(Sampling Speed)(4)
—
—
1000
ksps
AVDD = 3.0V to 3.6V
—
—
400
ksps
AVDD = 2.5V to 3.6V
2 TAD
—
—
—
—
1.0 TAD
—
—
AD57
TSAMP
Sample Time
—
—
Timing Parameters
AD60
TPCS
Conversion Start from Sample
Trigger(3)
AD61
TPSS
Sample Start from Setting
Sample (SAMP) bit
0.5 TAD
—
1.5 TAD
—
—
AD62
TCSS
Conversion Completion to
Sample Start (ASAM = 1)(3)
—
0.5 TAD
—
—
—
AD63
TDPU
Time to Stabilize Analog Stage 
from ADC Off to ADC On(3)
—
—
2
s
—
Note 1:
2:
3:
4:
Auto-Convert Trigger
(SSRC<2:0> = 111)
not selected
These parameters are characterized, but not tested in manufacturing.
Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity
performance, especially at elevated temperatures.
Characterized by design but not tested.
Refer to Table 31-36 for detailed conditions.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 317
PIC32MX330/350/370/430/450/470
FIGURE 31-18:
ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING
CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)
AD50
ADCLK
Instruction
Execution Set SAMP
Clear SAMP
SAMP
ch0_dischrg
ch0_samp
eoc
AD61
AD60
TSAMP
AD55
AD55
CONV
ADxIF
Buffer(0)
Buffer(1)
1
2
3
4
5
6
7
8
5
6
7
8
1 – Software sets ADxCON. SAMP to start sampling.
2 – Sampling starts after discharge period. TSAMP is described in Section 17. “10-bit Analog-to-Digital Converter (ADC)”
(DS60001104) in the “PIC32 Family Reference Manual”.
3 – Software clears ADxCON. SAMP to start conversion.
4 – Sampling ends, conversion sequence starts.
5 – Convert bit 9.
6 – Convert bit 8.
7 – Convert bit 0.
8 – One TAD for end of conversion.
DS60001185E-page 318
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-19:
ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS
(ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)
AD50
ADCLK
Instruction
Execution
Set ADON
SAMP
ch0_dischrg
ch0_samp
eoc
TSAMP
AD55
TSAMP
AD55
TCONV
CONV
ADxIF
Buffer(0)
Buffer(1)
1
2
3
4
5
6
7
3
4
5
6
8
3
1 – Software sets ADxCON. ADON to start AD operation.
5 – Convert bit 0.
2 – Sampling starts after discharge period.
TSAMP is described in Section 17. “10-bit Analog-to-Digital
Converter (ADC)” (DS60001104) in the
“PIC32 Family Reference Manual”
6 – One TAD for end of conversion.
3 – Convert bit 9.
4
7 – Begin conversion of next channel.
8 – Sample for time specified by SAMC<4:0>.
4 – Convert bit 8.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 319
PIC32MX330/350/370/430/450/470
FIGURE 31-20:
PARALLEL SLAVE PORT TIMING
CS
PS5
RD
PS6
WR
PS4
PS7
PMD<7:0>
PS1
PS3
PS2
TABLE 31-38: PARALLEL SLAVE PORT REQUIREMENTS
AC CHARACTERISTICS
Para
Symbol
m.No.
Characteristics(1)
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typ.
Max.
Units
Conditions
PS1
TdtV2wr Data In Valid before WR or CS
H
Inactive (setup time)
20
—
—
ns
—
PS2
TwrH2dt WR or CS Inactive to Data-In
I
Invalid (hold time)
40
—
—
ns
—
PS3
TrdL2dt RD and CS Active to Data-Out
V
Valid
—
—
60
ns
—
PS4
TrdH2dtI RD Activeor CS Inactive to
Data-Out Invalid
0
—
10
ns
—
PS5
Tcs
CS Active Time
TPB + 40
—
—
ns
—
PS6
TWR
WR Active Time
TPB + 25
—
—
ns
—
PS7
TRD
RD Active Time
TPB + 25
—
—
ns
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
DS60001185E-page 320
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-21:
PARALLEL MASTER PORT READ TIMING DIAGRAM
TPB
TPB
TPB
TPB
TPB
TPB
TPB
TPB
PB Clock
PM4
Address
PMA<13:18>
PM6
PMD<7:0>
Data
Data
Address<7:0>
Address<7:0>
PM2
PM7
PM3
PMRD
PM5
PMWR
PM1
PMALL/PMALH
PMCS<2:1>
TABLE 31-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typ.
Max.
Units
Conditions
PM1
TLAT
PMALL/PMALH Pulse Width
—
1 TPB
—
—
—
PM2
TADSU
Address Out Valid to PMALL/
PMALH Invalid (address setup
time)
—
2 TPB
—
—
—
PM3
TADHOLD PMALL/PMALH Invalid to
Address Out Invalid (address
hold time)
—
1 TPB
—
—
—
PM4
TAHOLD
PMRD Inactive to Address Out
Invalid
(address hold time)
5
—
—
ns
—
PM5
TRD
PMRD Pulse Width
—
1 TPB
—
—
—
PM6
TDSU
PMRD or PMENB Active to Data
In Valid (data setup time)
15
—
—
ns
—
PM7
TDHOLD
PMRD or PMENB Inactive to
Data In Invalid (data hold time)
—
80
—
ns
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 321
PIC32MX330/350/370/430/450/470
FIGURE 31-22:
PARALLEL MASTER PORT WRITE TIMING DIAGRAM
TPB
TPB
TPB
TPB
TPB
TPB
TPB
TPB
PB Clock
Address
PMA<13:18>
PM2 + PM3
Address<7:0>
PMD<7:0>
Data
PM12
PM13
PMRD
PM11
PMWR
PM1
PMALL/PMALH
PMCS<2:1>
TABLE 31-40: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
Min.
Typ.
Max.
Units
Conditions
PM11
TWR
PMWR Pulse Width
—
1 TPB
—
—
—
PM12
TDVSU
Data Out Valid before PMWR or
PMENB goes Inactive (data setup
time)
—
2 TPB
—
—
—
PM13
TDVHOLD PMWR or PMEMB Invalid to Data
Out Invalid (data hold time)
—
1 TPB
—
—
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
DS60001185E-page 322
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
TABLE 31-41: OTG ELECTRICAL SPECIFICATIONS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
Symbol
No.
Characteristics(1)
USB313 VUSB3V3 USB Voltage
Min.
Typ.
Max.
Units
3.0
—
3.6
V
Conditions
Voltage on VUSB3V3
must be in this range
for proper USB
operation
USB315 VILUSB
Input Low Voltage for USB Buffer
—
—
0.8
V
—
USB316 VIHUSB
Input High Voltage for USB Buffer
2.0
—
—
V
—
USB318 VDIFS
Differential Input Sensitivity
—
—
0.2
V
The difference
between D+ and Dmust exceed this value
while VCM is met
USB319 VCM
Differential Common Mode Range
0.8
—
2.5
V
—
USB320 ZOUT
Driver Output Impedance
28.0
—
44.0

USB321 VOL
Voltage Output Low
0.0
—
0.3
V
1.425 k load
connected to VUSB3V3
USB322 VOH
Voltage Output High
2.8
—
3.6
V
14.25 k load
connected to ground
Note 1:
—
These parameters are characterized, but not tested in manufacturing.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 323
PIC32MX330/350/370/430/450/470
TABLE 31-42: CTMU CURRENT SOURCE SPECIFICATIONS
DC CHARACTERISTICS
Param
No.
Symbol
Characteristic
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
Min.
Typ.
Max.
Units
Conditions
CTMU CURRENT SOURCE
CTMUI1
IOUT1
Base Range(1)
—
0.55
—
µA
CTMUICON<9:8> = 01
CTMUI2
IOUT2
10x Range(1)
—
5.5
—
µA
CTMUICON<9:8> = 10
CTMUI3
IOUT3
100x Range(1)
—
55
—
µA
CTMUICON<9:8> = 11
CTMUI4
IOUT4
1000x Range(1)
—
550
—
µA
CTMUICON<9:8> = 00
Temperature Diode Forward
Voltage(1,2)
—
0.598
—
V
TA = +25ºC, 
CTMUICON<9:8> = 01
—
0.658
—
V
TA = +25ºC, 
CTMUICON<9:8> = 10
—
0.721
—
V
TA = +25ºC, 
CTMUICON<9:8> = 11
—
-1.92
—
mV/ºC CTMUICON<9:8> = 01
—
-1.74
—
mV/ºC CTMUICON<9:8> = 10
—
-1.56
—
mV/ºC CTMUICON<9:8> = 11
CTMUFV1 VF
CTMUFV2 VFVR
Note 1:
2:
Temperature Diode Rate of
Change(1,2)
Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).
Parameters are characterized but not tested in manufacturing. Measurements taken with the following
conditions:
• VREF+ = AVDD = 3.3V
• ADC module configured for conversion speed of 500 ksps
• All PMD bits are cleared (PMDx = 0)
• Executing a while(1) statement
• Device operating from the FRC with no PLL
DS60001185E-page 324
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
FIGURE 31-23:
EJTAG TIMING CHARACTERISTICS
TTCKcyc
TTCKhigh
TTCKlow
Trf
TCK
Trf
TMS
TDI
TTsetup TThold
Trf
Trf
TDO
TTRST*low
TTDOout
TTDOzstate
TRST*
Defined
Trf
Undefined
TABLE 31-43: EJTAG TIMING REQUIREMENTS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature 0°C  TA  +70°C for Commercial
-40°C  TA  +85°C for Industrial 
-40°C  TA  +105°C for V-temp
AC CHARACTERISTICS
Param.
No.
Symbol
Description(1)
Min.
Max.
Units
Conditions
EJ1
TTCKCYC
TCK Cycle Time
25
—
ns
—
EJ2
TTCKHIGH
TCK High Time
10
—
ns
—
EJ3
TTCKLOW
TCK Low Time
10
—
ns
—
EJ4
TTSETUP
TAP Signals Setup Time Before
Rising TCK
5
—
ns
—
EJ5
TTHOLD
TAP Signals Hold Time After
Rising TCK
3
—
ns
—
EJ6
TTDOOUT
TDO Output Delay Time from
Falling TCK
—
5
ns
—
EJ7
TTDOZSTATE TDO 3-State Delay Time from
Falling TCK
—
5
ns
—
EJ8
TTRSTLOW
TRST Low Time
25
—
ns
—
EJ9
TRF
TAP Signals Rise/Fall Time, All
Input and Output
—
—
ns
—
Note 1:
These parameters are characterized, but not tested in manufacturing.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 325
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 326
 2012-2015 Microchip Technology Inc.
DC AND AC DEVICE CHARACTERISTICS GRAPHS
Note:
The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes
only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating
range (e.g., outside specified power supply range) and therefore, outside the warranted range.
FIGURE 32-1:
VOH – 4x DRIVER PINS
FIGURE 32-3:
Ͳ40.00
45.000
3.3V
Ͳ35.00
40.000
3.3V
35.000
Ͳ30.00
Ͳ25.00
Current(mA)
Current(mA)
VOL – 4x DRIVER PINS
Ͳ20.00
Ͳ15.00
Absolute Maximum
30.000
25.000
20.000
15.000
Ͳ10.00
10.000
Ͳ5.00
5.000
0.000
0.000
0.00
0.0
FIGURE 32-2:
0.5
1.0
1.5
Voltage(V)
2.0
2.5
3.0
0.500
1.000
1.500
2.000
2.500
3.000
Voltage(V)
FIGURE 32-4:
VOH – 8x DRIVER PINS
Absolute Maximum
VOL – 8x DRIVER PINS
80.000
Ͳ70.00
70.000
Ͳ60.00
3.3V
3.3V
60.000
Current(mA)
DS60001185E-page 327
Current(mA)
Ͳ50.00
Ͳ40.00
Ͳ30.00
Absolute Maximum
Ͳ20.00
40.000
30.000
Absolute Maximum
20.000
10.000
Ͳ10.00
0.00
50.000
0.0
0.5
1.0
1.5
2.0
Voltage(V)
2.5
3.0
0.000
0.000
0.500
1.000
1.500
2.000
Voltage(V)
2.500
3.000
PIC32MX330/350/370/430/450/470
 2012-2015 Microchip Technology Inc.
32.0
TYPICAL IPD CURRENT @ VDD = 3.3V
FIGURE 32-7:
PIC32MX350/450 DEVICES
PIC32MX330/430 DEVICES
400
350
IPD (μA)
IPD (μA)
300
250
200
150
100
50
0
Ͳ40 Ͳ30 Ͳ20 Ͳ10 0
10 20 30 40 50 60 70 80 90 100 110
600
550
500
450
400
350
300
250
200
150
100
50
0
Ͳ40 Ͳ30 Ͳ20 Ͳ10 0
Temperature(Celsius)
FIGURE 32-6:
TYPICAL IPD CURRENT @ VDD = 3.3V
TYPICAL IPD CURRENT @ VDD = 3.3V
FIGURE 32-8:
TYPICAL IIDLE CURRENT @ VDD = 3.3V
PIC32MX330/430 DEVICES
PIC32MX350/450 DEVICES
20
450
18
400
16
IPD (μA)
 2012-2015 Microchip Technology Inc.
IIDLECURRENT(mA)
500
350
300
250
200
150
10 20 30 40 50 60 70 80 90 100 110
Temperature(Celsius)
14
12
10
8
6
4
100
2
50
0
0
Ͳ40 Ͳ30 Ͳ20 Ͳ10 0
10 20 30 40 50 60 70 80 90 100 110
Temperature(Celsius)
0
10
20
30
40
50
MIPS
60
70
80
90
100
PIC32MX330/350/370/430/450/470
DS60001185E-page 328
FIGURE 32-5:
TYPICAL IIDLE CURRENT @ VDD = 3.3V
FIGURE 32-11:
TYPICAL IDD CURRENT @ VDD = 3.3V
PIC32MX330/430 DEVICES
PIC32MX350/450 DEVICES
20
60
18
50
14
40
12
IDD (mA)
IIDLE CURRENT(mA)
16
10
8
30
20
6
4
10
2
0
0
10
20
30
40
50
60
70
80
90
0
100
0
10
20
30
40
MIPS
FIGURE 32-10:
TYPICAL IIDLE CURRENT @ VDD = 3.3V
FIGURE 32-12:
PIC32MX370/470 DEVICES
60
70
80
90
100
TYPICAL IDD CURRENT @ VDD = 3.3V
PIC32MX350/450 DEVICES
60
20
18
50
16
DS60001185E-page 329
14
40
12
IDD (mA)
IIDLE CURRENT(mA)
50
MIPS
10
8
30
20
6
4
10
2
0
0
10
20
30
40
50
MIPS
60
70
80
90
100
0
0
10
20
30
40
50
MIPS
60
70
80
90
100
PIC32MX330/350/370/430/450/470
 2012-2015 Microchip Technology Inc.
FIGURE 32-9:
TYPICAL IDD CURRENT @ VDD = 3.3V
FIGURE 32-15:
PIC32MX370/470 DEVICES
TYPICAL LPRC FREQUENCY @ VDD = 3.3V
33
60
LPRC Frequency (kHz)
50
IDD (mA)
40
30
20
32
31
10
0
0
10
20
30
40
50
60
70
80
90
100
30
-40
-30
-20
-10
0
10
MIPS
FIGURE 32-14:
20
30
40
50
60
70
80
90
100
Temperature (Celsius)
TYPICAL FRC FREQUENCY @ VDD = 3.3V
FIGURE 32-16:
TYPICAL CTMU TEMPERATURE DIODE
FORWARD VOLTAGE
7990
0.850
7980
0.800
7970
0.750
Forward Voltage (V)
 2012-2015 Microchip Technology Inc.
FRC Frequency (kHz)
8000
7960
7950
7940
7930
7920
0.700
VF = 0.721
0.650
VF = 0.658
0.600
55 µ
A, VF
V
R
= -1.5
6 mV
/ºC
5.5 µ
A, V
FV
VF = 0.598
R
0.55
0.550
0.500
0 500
= -1
.74 m
V/ºC
µA,
VFV
R=
-1.9
2m
0.450
7910
V/ºC
0.400
7900
0.350
-40
-30
-20
-10
0
10
20
30
40
50
Temperature (Celsius)
60
70
80
90
100
-40
-30
-20
-10
0
10
20
30
40
50
Temperature (Celsius)
60
70
80
90
100
110
PIC32MX330/350/370/430/450/470
DS60001185E-page 330
FIGURE 32-13:
PIC32MX330/350/370/430/450/470
33.0
PACKAGING INFORMATION
33.1
Package Marking Information
64-Lead TQFP (10x10x1 mm)
PIC32MX330F
064H-I/PT
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
e3
0510017
100-Lead TQFP (14x14x1 mm)
XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN
100-Lead TQFP (12x12x1 mm)
XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN
Legend: XX...X
Y
YY
WW
NNN
*
Note:
Example
Example
PIC32MX330F
064L-I/PF e3
0510017
Example
PIC32MX330F
064L-I/PT e3
0510017
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e)3
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 331
PIC32MX330/350/370/430/450/470
33.1
Package Marking Information (Continued)
64-Lead QFN (9x9x0.9 mm) with 5.40x5.40 Exposed Pad
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
PIC32MX330F
128H-I/MR
e3
0510017
64-Lead QFN (9x9x0.9 mm) with 4.7x4.7 Exposed Pad
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
Legend: XX...X
Y
YY
WW
NNN
*
Note:
DS60001185E-page 332
Example
PIC32MX330F
064H-I/RG
e3
0510017
124-Lead VTLA (9x9x0.9 mm)
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
Example
Example
PIC32MX430F
064L-I/TL
e3
0510017
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e)3
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
33.2
Package Details
The following sections give the technical details of the packages.
/HDG3ODVWLF7KLQ4XDG)ODWSDFN37±[[PP%RG\PP>74)3@
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D
D1
E
e
E1
N
b
NOTE 1
123
NOTE 2
α
A
φ
c
A2
β
A1
L
L1
8QLWV
'LPHQVLRQ/LPLWV
1XPEHURI/HDGV
0,//,0(7(56
0,1
1
120
0$;
/HDG3LWFK
H
2YHUDOO+HLJKW
$
±
%6&
±
0ROGHG3DFNDJH7KLFNQHVV
$
6WDQGRII
$
±
)RRW/HQJWK
/
)RRWSULQW
/
5()
)RRW$QJOH
2YHUDOO:LGWK
(
ƒ
%6&
ƒ
2YHUDOO/HQJWK
'
%6&
0ROGHG3DFNDJH:LGWK
(
%6&
0ROGHG3DFNDJH/HQJWK
'
%6&
ƒ
/HDG7KLFNQHVV
F
±
/HDG:LGWK
E
0ROG'UDIW$QJOH7RS
ƒ
ƒ
ƒ
0ROG'UDIW$QJOH%RWWRP
ƒ
ƒ
ƒ
1RWHV
3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
&KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
 2012-2015 Microchip Technology Inc.
DS60001185E-page 333
PIC32MX330/350/370/430/450/470
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS60001185E-page 334
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
/HDG3ODVWLF7KLQ4XDG)ODWSDFN3)±[[PP%RG\PP>74)3@
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D
D1
e
E1
E
b
N
α
NOTE 1
1 23
A
NOTE 2
φ
c
β
A2
A1
L
L1
8QLWV
'LPHQVLRQ/LPLWV
1XPEHURI/HDGV
0,//,0(7(56
0,1
1
120
0$;
/HDG3LWFK
H
2YHUDOO+HLJKW
$
±
%6&
±
0ROGHG3DFNDJH7KLFNQHVV
$
6WDQGRII
$
±
)RRW/HQJWK
/
)RRWSULQW
/
5()
)RRW$QJOH
2YHUDOO:LGWK
(
ƒ
%6&
ƒ
2YHUDOO/HQJWK
'
%6&
0ROGHG3DFNDJH:LGWK
(
%6&
0ROGHG3DFNDJH/HQJWK
'
%6&
ƒ
/HDG7KLFNQHVV
F
±
/HDG:LGWK
E
0ROG'UDIW$QJOH7RS
ƒ
ƒ
ƒ
0ROG'UDIW$QJOH%RWWRP
ƒ
ƒ
ƒ
1RWHV
3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
&KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
 2012-2015 Microchip Technology Inc.
DS60001185E-page 335
PIC32MX330/350/370/430/450/470
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS60001185E-page 336
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
/HDG3ODVWLF7KLQ4XDG)ODWSDFN37±[[PP%RG\PP>74)3@
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
D
D1
e
E
E1
N
b
NOTE 1
1 23
NOTE 2
α
c
A
φ
L
β
A1
8QLWV
'LPHQVLRQ/LPLWV
1XPEHURI/HDGV
A2
L1
0,//,0(7(56
0,1
1
120
0$;
/HDG3LWFK
H
2YHUDOO+HLJKW
$
±
%6&
±
0ROGHG3DFNDJH7KLFNQHVV
$
6WDQGRII
$
±
)RRW/HQJWK
/
)RRWSULQW
/
5()
)RRW$QJOH
2YHUDOO:LGWK
(
ƒ
%6&
ƒ
2YHUDOO/HQJWK
'
%6&
0ROGHG3DFNDJH:LGWK
(
%6&
0ROGHG3DFNDJH/HQJWK
'
%6&
ƒ
/HDG7KLFNQHVV
F
±
/HDG:LGWK
E
0ROG'UDIW$QJOH7RS
ƒ
ƒ
ƒ
0ROG'UDIW$QJOH%RWWRP
ƒ
ƒ
ƒ
1RWHV
3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD
&KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0
%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV
5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%
 2012-2015 Microchip Technology Inc.
DS60001185E-page 337
PIC32MX330/350/370/430/450/470
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS60001185E-page 338
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
 2012-2015 Microchip Technology Inc.
DS60001185E-page 339
PIC32MX330/350/370/430/450/470
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS60001185E-page 340
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
 2012-2015 Microchip Technology Inc.
DS60001185E-page 341
PIC32MX330/350/370/430/450/470
64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN]
Saw Singulated
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
D
A
B
N
1
2
NOTE 1
E
(DATUM B)
(DATUM A)
2X
0.20 C
2X
TOP VIEW
0.20 C
DETAIL A
0.10 C
C
SEATING PLANE
(A3)
A
SIDE VIEW
0.10
D2
C A B
0.10
C A B
E2
e
2
NOTE 1
64X (K)
2
1
N
64X L
e
BOTTOM VIEW
64X b
0.10
0.05
C A B
C
Microchip Technology Drawing C04-260A Sheet 1 of 2
DS60001185E-page 342
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN]
Saw Singulated
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
C
A1
SEATING PLANE
64X
0.08 C
DETAIL A
Units
Dimension Limits
Number of Terminals
N
e
Pitch
A
Overall Height
Standoff
A1
Standoff
A3
Overall Width
E
E2
Exposed Pad Width
D
Overall Length
D2
Exposed Pad Length
b
Terminal Width
Terminal Length
L
K
Terminal-to-Exposed-Pad
MIN
0.80
0.00
4.60
4.60
0.15
0.30
MILLIMETERS
NOM
64
0.50 BSC
0.85
0.02
0.20 REF
9.00 BSC
4.70
9.00 BSC
4.70
0.20
0.40
1.755 REF
MAX
0.90
0.05
4.80
4.80
0.25
0.50
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-260A Sheet 2 of 2
 2012-2015 Microchip Technology Inc.
DS60001185E-page 343
PIC32MX330/350/370/430/450/470
64-Lead Very Thin Plastic Quad Flat, No Lead Package (RG) - 9x9x1.0 mm Body [QFN]
4.7x4.7 mm Exposed Pad
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
C1
X2
C2
Y2
(G1)
Y1
Y1
SILK SCREEN
E
RECOMMENDED LAND PATTERN
Units
Dimension Limits
E
Contact Pitch
Optional Center Pad Width
X2
Optional Center Pad Length
Y2
Contact Pad Spacing
C1
Contact Pad Spacing
C2
Contact Pad Width (X64)
X1
Contact Pad Length (X64)
Y1
Contact Pad to Center Pad (X64)
G1
MIN
MILLIMETERS
NOM
0.50 BSC
MAX
4.80
4.80
8.90
8.90
0.25
0.85
1.625 REF
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2260A
DS60001185E-page 344
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
 2012-2015 Microchip Technology Inc.
DS60001185E-page 345
PIC32MX330/350/370/430/450/470
DS60001185E-page 346
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
E
E/2
G4
X1
X2
G3
E
T2 C2
G1
G5
X4
G2
SILK SCREEN
W3
W2
C1
RECOMMENDED LAND PATTERN
Units
Dimension Limits
Contact Pitch
E
Pad Clearance
G1
Pad Clearance
G2
Pad Clearance
G3
Pad Clearance
G4
Contact to Center Pad Clearance (X4)
G5
Optional Center Pad Width
T2
Optional Center Pad Length
W2
W3
Optional Center Pad Chamfer (X4)
Contact Pad Spacing
C1
Contact Pad Spacing
C2
Contact Pad Width (X124)
X1
Contact Pad Length (X124)
X2
MIN
MILLIMETERS
NOM
0.50 BSC
MAX
0.20
0.20
0.20
0.20
0.30
6.60
6.60
0.10
8.50
8.50
0.30
0.30
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2193A
 2012-2015 Microchip Technology Inc.
DS60001185E-page 347
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 348
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
APPENDIX A:
REVISION HISTORY
Revision A (July 2012)
This is the initial released version of the document.
Revision B (April 2013)
Note:
The status of this data sheet was updated
to Preliminary; however, any electrical
specifications listed for PIC32MX370/470
devices is to be considered Advance
Information and is marked accordingly.
This revision includes the following updates, as shown
in Table A-1.
TABLE A-1:
MAJOR SECTION UPDATES
Section
“32-bit Microcontrollers (up to 512
KB Flash and 128 KB SRAM) with
Audio/Graphics/Touch (HMI), USB,
and Advanced Analog”
Update Description
SRAM was changed from 32 KB to 64 KB.
Data Memory (KB) was changed from 32 to 64 for the following devices (see
Table 1):
• PIC32MX350F256H
• PIC32MX350F256L
• PIC32MX450F256H
• PIC32MX450F256L
The following devices were added:
•
•
•
•
4.0 “Memory Organization”
PIC32MX370F512H
PIC32MX370F512L
PIC32MX470F512H
PIC32MX470F512L
The Memory Map for Devices with 256 KB of Program Memory was updated
(see Figure 4-3).
The Memory Map for Devices with 512 KB of Program Memory was added
(see Figure 4-4).
7.0 “Interrupt Controller”
Updated the Interrupt IRQ, Vector and Bit Locations (see Table 7-1).
20.0 “Parallel Master Port (PMP)”
Added the CS2 bit and updated the ADDR bits in the Parallel Port Address
register (see Register 20-3).
27.0 “Special Features”
Updated the PWP bit in the Device Configuration Word 3 register (see
Register 27-4).
30.0 “Electrical Characteristics”
Note 2 in the DC Characteristics: Operating Current (IDD) were updated (see
Table 30-5).
Note 1 in the DC Characteristics: Idle Current (IIDLE) were updated (see
Table 30-6).
Note 1 in the DC Characteristics: Power-down Current (IPD) were updated
(see Table 30-7).
Updated Program Memory values for parameters D135 (TWW), D136 (TRW),
and D137 (TPE and TCE) (see Table 30-12).
31.0 “DC and AC Device
Characteristics Graphs”
 2012-2015 Microchip Technology Inc.
New IDD, IIDLE, and IPD current graphs were added for PIC32MX330/430
devices and PIC32MX350/450 devices.
DS60001185E-page 349
PIC32MX330/350/370/430/450/470
Revision C (October 2013)
This revision includes the following updates, as listed in
Table A-2.
TABLE A-2:
MAJOR SECTION UPDATES
Section
Update Description
“32-bit Microcontrollers (up to 512
KB Flash and 128 KB SRAM) with
Audio/Graphics/Touch (HMI), USB,
and Advanced Analog”
The Operating Conditions and Core sections were updated in support of
100 MHz (-40ºC to +85ºC) devices.
2.0 “Guidelines for Getting Started
with 32-bit MCUs”
Updated the recommended minimum connection (see Figure 2-1).
20.0 “Parallel Master Port (PMP)”
Updated the Parallel Port Control register, PMCON (see Register 20-1).
Added Notes 2 and 3 regarding the conductive thermal pad to the 124-pin
VTLA pin diagrams.
Added 2.10 “SOSC Design Recommendation”.
Updated the Parallel Port Mode register, PMMODE (see Register 20-2).
Updated the Parallel Port Pin Enable register, PMAEN (see Register 20-4).
30.0 “Electrical Characteristics”
Removed Note 4 from the Absolute Maximum Ratings.
The maximum frequency for parameter DC5 In Operating MIPS vs. Voltage
was changed to 100 MHz (see Table 30-1).
Parameter DC25a was added to DC Characteristics: Operating Current (IDD)
(see Table 30-5).
Parameter DC34c was added to DC Characteristics: Idle Current (IIDLE) (see
Table 30-5).
Added parameters for PIC32MX370/470 devices and removed Note 5 from
DC Characteristics: Power-Down Current (IPD) (see Table 30-7).
Updated the Minimum, Typical, and Maximum values and added a reference
to Note 3 for parameter DI30 (ICNPU) in DC Characteristics: I/O Pin Input
Specifications (see Table 30-8).
The SYSCLK values for all required Flash Wait states were updated (see
Table 30-13).
Added parameter DO50A (CSOSC) to the Capacitive Loading Requirements
on Output Pins (see Table 30-16).
Updated the maximum values for parameter OS10, and the Characteristics
definition of parameter OS42 (GM) in the External Clock Timing
Characteristics (see Table 30-17).
31.0 “DC and AC Device
Characteristics Graphs”
DS60001185E-page 350
Updated the IPD, IIDLE, and IDD graphs, and added new graphs for the
PIC32MX370/470 devices (see Figure 31-5 through Figure 31-13).
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
Revision D (March 2015)
This revision includes the following updates, as listed in
Table A-3.
TABLE A-3:
MAJOR SECTION UPDATES
Section
Update Description
“32-bit Microcontrollers (up to
512 KB Flash and 128 KB
SRAM) with Audio/Graphics/
Touch (HMI), USB, and
Advanced Analog”
100 MHz and 120 MHz operation information was added.
2.0 “Guidelines for Getting
Started with 32-bit MCUs”
Added 2.8.1 “Crystal Oscillator Design Consideration”.
12.0 “I/O Ports”
The Block Diagram of a Typical Multiplexed Port Structure was updated (see
Figure 12-1).
21.0 “Parallel Master Port
(PMP)”
The PMADDR: Parallel Port Address Register was updated (see Register 21-3).
31.0 “Electrical
Characteristics”
Specifications for 120 MHz operation were added to the following tables:
Pins 59 through 63 of the 64-pin QFN and TQFP pin diagrams were updated.
• Table 31-1: “Operating MIPS vs. Voltage”
• Table 31-5: “DC Characteristics: Operating Current (IDD)”
• Table 31-6: “DC Characteristics: Idle Current (IIDLE)”
• Table 31-7: “DC Characteristics: Idle Current (IPD)”
• Table 31-13: “DC Characteristics: Program Flash Memory Wait State”
• Table 31-18: “External Clock Timing Requirements”
The unit of measure for IIDLE Current parameters DC37a, DC37b, and DC37c
were updated (see Table 31-6).
Parameter D312 (TSET) was removed from the Comparator Specifications (see
Table 31-14).
Comparator Voltage Reference Specifications were added (see Table 31-15).
Parameter OS10 (FOSC) in the External Clock Timing Requirements was
updated (see Table 31-18).
Parameter USB321 (VOL) in the OTG Electrical Specifications was updated (see
Table 31-41).
32.0 “Packaging Information”
The 64-lead QFN package marking information was updated.
The 124-lead VTLA package land pattern information was added.
“Product Identification System” The Speed category was removed.
The Example was updated.
The MR package was updated.
The RG package was added.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 351
PIC32MX330/350/370/430/450/470
Revision E (October 2015)
This revision includes the following updates, as listed in
Table A-3.
TABLE A-4:
MAJOR SECTION UPDATES
Section
Update Description
2.0 “Guidelines for Getting
Started with 32-bit MCUs”
Section 2.10 “Sosc Design Recommendations” was removed.
31.0 “Electrical
Characteristics”
The Power-Down Current (IPD) DC Characteristics were updated (see Table 31-7).
DS60001185E-page 352
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
INDEX
A
AC Characteristics ............................................................ 293
10-Bit Conversion Rate Parameters ......................... 316
ADC Specifications ................................................... 314
Analog-to-Digital Conversion Requirements............. 317
EJTAG Timing Requirements ................................... 325
Internal FRC Accuracy.............................................. 295
Internal RC Accuracy ................................................ 295
OTG Electrical Specifications ................................... 323
Parallel Master Port Read Requirements ................. 321
Parallel Master Port Write ......................................... 322
Parallel Master Port Write Requirements.................. 322
Parallel Slave Port Requirements ............................. 320
PLL Clock Timing...................................................... 295
Analog-to-Digital Converter (ADC).................................... 231
Assembler
MPASM Assembler................................................... 274
B
Block Diagrams
ADC Module.............................................................. 231
Comparator I/O Operating Modes............................. 241
Comparator Voltage Reference ................................ 245
Connections for On-Chip Voltage Regulator............. 270
CPU ............................................................................ 33
CTMU Configurations
Time Measurement ........................................... 249
DMA ............................................................................ 91
I2C Circuit ................................................................. 196
Input Capture ............................................................ 179
Interrupt Controller ...................................................... 61
JTAG Programming, Debugging and Trace Ports .... 270
Output Compare Module........................................... 183
PMP Pinout and Connections to External Devices ... 211
Prefetch Module.......................................................... 81
Reset System.............................................................. 57
RTCC ........................................................................ 221
SPI Module ............................................................... 187
Timer1....................................................................... 165
Timer2/3/4/5 (16-Bit) ................................................. 169
Typical Multiplexed Port Structure .................... 135, 351
UART ........................................................................ 203
WDT and Power-up Timer ........................................ 175
Brown-out Reset (BOR)
and On-Chip Voltage Regulator................................ 270
C
C Compilers
MPLAB C18 .............................................................. 274
Charge Time Measurement Unit. See CTMU.
Clock Diagram .................................................................... 72
Comparator
Specifications.................................................... 291, 292
Comparator Module .......................................................... 241
Comparator Voltage Reference (CVref ............................. 245
Configuration Bit ............................................................... 259
Configuring Analog Port Pins ............................................ 136
CPU
Architecture Overview................................................. 34
Coprocessor 0 Registers ............................................ 35
Core Exception Types................................................. 36
EJTAG Debug Support ............................................... 36
Power Management .................................................... 36
 2012-2015 Microchip Technology Inc.
CPU Module ................................................................. 27, 33
CTMU
Registers .................................................................. 251
Customer Change Notification Service............................. 357
Customer Notification Service .......................................... 357
Customer Support............................................................. 357
D
DC and AC Characteristics
Graphs and Tables ................................................... 327
DC Characteristics............................................................ 278
I/O Pin Input Specifications ...................................... 285
I/O Pin Output Specifications.................................... 288
Idle Current (IIDLE) .................................................... 281
Power-Down Current (IPD)........................................ 282
Program Memory...................................................... 290
Temperature and Voltage Specifications.................. 279
Development Support ....................................................... 273
Direct Memory Access (DMA) Controller............................ 91
E
Electrical Characteristics .................................................. 277
AC............................................................................. 293
Errata .................................................................................. 14
External Clock
Timer1 Timing Requirements ................................... 299
Timer2, 3, 4, 5 Timing Requirements ....................... 300
Timing Requirements ............................................... 294
F
Flash Program Memory ...................................................... 51
RTSP Operation ......................................................... 51
H
High Voltage Detect (HVD)................................. 59, 270, 289
I
I/O Ports ........................................................................... 135
Parallel I/O (PIO) ...................................................... 136
Write/Read Timing.................................................... 136
Input Change Notification ................................................. 136
Instruction Set................................................................... 271
Inter-Integrated Circuit (I2C .............................................. 195
Internal Voltage Reference Specifications........................ 292
Internet Address ............................................................... 357
Interrupt Controller.............................................................. 61
IRG, Vector and Bit Location ...................................... 62
M
Memory Maps
Devices with 128 KB of Program Memory.................. 39
Devices with 256 KB of Program Memory.................. 40
Devices with 512 KB of Program Memory.................. 41
Devices with 64 KB of Program Memory.................... 38
Memory Organization ......................................................... 37
Layout......................................................................... 37
Microchip Internet Web Site.............................................. 357
MPLAB ASM30 Assembler, Linker, Librarian ................... 274
MPLAB Integrated Development Environment Software.. 273
MPLAB PM3 Device Programmer .................................... 275
MPLAB REAL ICE In-Circuit Emulator System ................ 275
MPLINK Object Linker/MPLIB Object Librarian ................ 274
DS60001185E-page 353
PIC32MX330/350/370/430/450/470
O
Oscillator Configuration....................................................... 71
Output Compare................................................................ 183
P
Packaging ......................................................................... 331
Details ....................................................................... 333
Marking ..................................................................... 331
Parallel Master Port (PMP) ............................................... 211
PIC32 Family USB Interface Diagram............................... 112
Pinout I/O Descriptions (table) ............................................ 18
Power-on Reset (POR)
and On-Chip Voltage Regulator ................................ 270
Power-Saving Features..................................................... 255
CPU Halted Methods ................................................ 255
Operation .................................................................. 255
with CPU Running..................................................... 255
Prefetch Cache ................................................................... 81
R
Real-Time Clock and Calendar (RTCC)............................ 221
Register Map
ADC .......................................................................... 233
Bus Matrix ................................................................... 43
Comparator ............................................................... 242
Comparator Voltage Reference ................................ 246
CTMU........................................................................ 250
Device and Revision ID Summary ............................ 260
Device Configuration Word Summary....................... 260
DMA Channel 0-3 ....................................................... 93
DMA CRC ................................................................... 92
DMA Global................................................................. 92
Flash Controller........................................................... 52
I2C1 and I2C2 ........................................................... 197
Interrupt....................................................................... 64
Output Compare1-5 .................................................. 184
Parallel Master Port .................................................. 212
Peripheral Pin Select Input ....................................... 157
Peripheral Pin Select Output..................................... 159
PORTA...................................................................... 143
PORTB...................................................................... 144
PORTC ............................................................. 145, 146
PORTD ............................................................. 147, 148
PORTE.............................................................. 149, 150
PORTF .............................................. 151, 152, 153, 154
PORTG ............................................................. 155, 156
Prefetch....................................................................... 82
RTCC ........................................................................ 222
SPI1 and SPI2 .......................................................... 188
System Control ..................................................... 58, 73
Timer1-5............................................................ 166, 171
UART1-5 ................................................................... 204
USB........................................................................... 113
Registers
[pin name]R (Peripheral Pin Select Input)................. 163
AD1CHS (ADC Input Select) .................................... 239
AD1CON1 (A/D Control 1) ........................................ 230
AD1CON1 (ADC Control 1) .............................. 230, 235
AD1CON2 (ADC Control 2) ...................................... 237
AD1CON3 (ADC Control 3) ...................................... 238
AD1CSSL (ADC Input Scan Select) ......................... 240
ALRMDATE (Alarm Date Value) ............................... 230
ALRMDATECLR (ALRMDATE Clear)....................... 230
ALRMDATESET (ALRMDATE Set) .......................... 230
ALRMTIME (Alarm Time Value) ............................... 229
DS60001185E-page 354
ALRMTIMECLR (ALRMTIME Clear) ........................ 230
ALRMTIMEINV (ALRMTIME Invert) ......................... 230
ALRMTIMESET (ALRMTIME Set)............................ 230
BMXBOOTSZ (Boot Flash (IFM) Size ........................ 49
BMXCON (Bus Matrix Configuration) ......................... 44
BMXDKPBA (Data RAM Kernel Program 
Base Address) .................................................... 45
BMXDRMSZ (Data RAM Size Register)..................... 48
BMXDUDBA (Data RAM User Data Base Address)... 46
BMXDUPBA (Data RAM User Program 
Base Address) .................................................... 47
BMXPFMSZ (Program Flash (PFM) Size).................. 49
BMXPUPBA (Program Flash (PFM) User Program 
Base Address) .................................................... 48
CHEACC (Cache Access) .......................................... 84
CHECON (Cache Control).......................................... 83
CHEHIT (Cache Hit Statistics).................................... 89
CHELRU (Cache LRU) ............................................... 88
CHEMIS (Cache Miss Statistics) ................................ 89
CHEMSK (Cache TAG Mask)..................................... 86
CHETAG (Cache TAG)............................................... 85
CHEW0 (Cache Word 0) ............................................ 86
CHEW1 (Cache Word 1) ............................................ 87
CHEW2 (Cache Word 2) ............................................ 87
CHEW3 (Cache Word 3) ............................................ 88
CM1CON (Comparator 1 Control) ............................ 243
CMSTAT (Comparator Control Register).................. 244
CNCONx (Change Notice Control for PORTx) ......... 164
CTMUCON (CTMU Control) ..................................... 251
CVRCON (Comparator Voltage Reference Control) 247
DCHxCON (DMA Channel x Control) ....................... 101
DCHxCPTR (DMA Channel x Cell Pointer) .............. 108
DCHxCSIZ (DMA Channel x Cell-Size) .................... 108
DCHxDAT (DMA Channel x Pattern Data) ............... 109
DCHxDPTR (Channel x Destination Pointer) ........... 107
DCHxDSA (DMA Channel x Destination 
Start Address)................................................... 105
DCHxDSIZ (DMA Channel x Destination Size) ........ 106
DCHxECON (DMA Channel x Event Control) .......... 102
DCHxINT (DMA Channel x Interrupt Control)........... 103
DCHxSPTR (DMA Channel x Source Pointer) ......... 107
DCHxSSA (DMA Channel x Source Start Address) . 105
DCHxSSIZ (DMA Channel x Source Size) ............... 106
DCRCCON (DMA CRC Control)................................. 98
DCRCDATA (DMA CRC Data) ................................. 100
DCRCXOR (DMA CRCXOR Enable) ....................... 100
DEVCFG0 (Device Configuration Word 0................. 261
DEVCFG1 (Device Configuration Word 1................. 263
DEVCFG2 (Device Configuration Word 2................. 265
DEVCFG3 (Device Configuration Word 3................. 267
DEVID (Device and Revision ID) .............................. 269
DMAADDR (DMA Address) ........................................ 97
DMAADDR (DMR Address)........................................ 97
DMACON (DMA Controller Control) ........................... 96
DMASTAT (DMA Status) ............................................ 97
I2CxCON (I2C Control)............................................. 198
I2CxSTAT (I2C Status) ............................................. 200
ICxCON (Input Capture x Control)............................ 180
IFSx (Interrupt Flag Status) ........................................ 68
INTCON (Interrupt Control)......................................... 66
INTSTAT (Interrupt Status)......................................... 67
IPCx (Interrupt Priority Control) .................................. 69
IPTMR Interrupt Proximity Timer) ............................... 67
NVMADDR (Flash Address) ....................................... 54
NVMCON (Programming Control) .............................. 53
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
NVMDATA (Flash Program Data) ............................... 55
NVMKEY (Programming Unlock)................................ 54
NVMSRCADDR (Source Data Address)..................... 55
OCxCON (Output Compare x Control) ..................... 185
OSCCON (Oscillator Control) ..................................... 74
PFABT (Prefetch Cache Abort Statistics) ................... 90
PMADDR (Parallel Port Address) ............................. 217
PMAEN (Parallel Port Pin Enable)............................ 218
PMCON (Parallel Port Control) ................................. 213
PMMODE (Parallel Port Mode) ................................. 215
PMSTAT (Parallel Port Status (Slave Modes Only) .. 219
REFOCON (Reference Oscillator Control) ................. 78
REFOTRIM (Reference Oscillator Trim) ..................... 80
RPnR (Peripheral Pin Select Output)........................ 163
RSWRST (Software Reset) ........................................ 60
RTCCON (RTC Control) ........................................... 223
RTCDATE (RTC Date Value) ................................... 228
RTCTIME (RTC Time Value) .................................... 227
SPIxCON (SPI Control)............................................. 189
SPIxCON2 (SPI Control 2)........................................ 192
SPIxSTAT (SPI Status)............................................. 193
T1CON (Type A Timer Control) ................................ 167
TxCON (Type B Timer Control) ................................ 172
U1ADDR (USB Address) .......................................... 129
U1BDTP1 (USB BDT Page 1) .................................. 131
U1BDTP2 (USB BDT Page 2) .................................. 132
U1BDTP3 (USB BDT Page 3) .................................. 132
U1CNFG1 (USB Configuration 1) ............................. 133
U1CON (USB Control) .............................................. 127
U1EIE (USB Error Interrupt Enable) ......................... 125
U1EIR (USB Error Interrupt Status) .......................... 123
U1EP0-U1EP15 (USB Endpoint Control) ................. 134
U1FRMH (USB Frame Number High)....................... 130
U1FRML (USB Frame Number Low) ........................ 129
U1IE (USB Interrupt Enable)..................................... 122
U1IR (USB Interrupt)................................................. 121
U1OTGCON (USB OTG Control) ............................. 119
U1OTGIE (USB OTG Interrupt Enable) .................... 117
U1OTGIR (USB OTG Interrupt Status)..................... 116
U1OTGSTAT (USB OTG Status).............................. 118
U1PWRC (USB Power Control)................................ 120
U1SOF (USB SOF Threshold).................................. 131
U1STAT (USB Status) .............................................. 126
U1TOK (USB Token) ................................................ 130
WDTCON (Watchdog Timer Control) ....................... 177
Resets ................................................................................. 57
Revision History ................................................................ 349
RTCALRM (RTC ALARM Control) .................................... 225
VCAP pin............................................................................ 270
Voltage Regulator (On-Chip) ............................................ 270
S
W
Serial Peripheral Interface (SPI) ....................................... 187
Software Simulator (MPLAB SIM)..................................... 275
Special Features ............................................................... 259
WWW Address ................................................................. 357
WWW, On-Line Support ..................................................... 14
 2012-2015 Microchip Technology Inc.
T
Timer1 Module.................................................................. 165
Timer2/3, Timer4/5 Modules............................................. 169
Timing Diagrams
10-Bit Analog-to-Digital Conversion 
(ASAM = 0, SSRC<2:0> = 000)........................ 318
10-Bit Analog-to-Digital Conversion (ASAM = 1, 
SSRC<2:0> = 111, SAMC<4:0> = 00001) ....... 319
EJTAG ...................................................................... 325
External Clock .......................................................... 293
I/O Characteristics .................................................... 296
I2Cx Bus Data (Master Mode) .................................. 308
I2Cx Bus Data (Slave Mode) .................................... 311
I2Cx Bus Start/Stop Bits (Master Mode)................... 308
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 311
Input Capture (CAPx) ............................................... 300
OCx/PWM................................................................. 301
Output Compare (OCx) ............................................ 301
Parallel Master Port Read ........................................ 321
Parallel Master Port Write......................................... 322
Parallel Slave Port .................................................... 320
SPIx Master Mode (CKE = 0) ................................... 302
SPIx Master Mode (CKE = 1) ................................... 303
SPIx Slave Mode (CKE = 0) ..................................... 304
SPIx Slave Mode (CKE = 1) ..................................... 306
Timer1, 2, 3, 4, 5 External Clock .............................. 299
UART Reception....................................................... 210
UART Transmission (8-bit or 9-bit Data) .................. 210
Timing Requirements
CLKO and I/O ........................................................... 296
Timing Specifications
I2Cx Bus Data Requirements (Master Mode)........... 309
I2Cx Bus Data Requirements (Slave Mode)............. 312
Input Capture Requirements .................................... 300
Output Compare Requirements................................ 301
Simple OCx/PWM Mode Requirements ................... 301
SPIx Master Mode (CKE = 0) Requirements............ 302
SPIx Master Mode (CKE = 1) Requirements............ 303
SPIx Slave Mode (CKE = 1) Requirements.............. 306
SPIx Slave Mode Requirements (CKE = 0).............. 304
U
UART ................................................................................ 203
USB On-The-Go (OTG) .................................................... 111
V
DS60001185E-page 355
PIC32MX330/350/370/430/450/470
NOTES:
DS60001185E-page 356
 2012-2015 Microchip Technology Inc.
PIC32MX330/350/370/430/450/470
THE MICROCHIP WEB SITE
CUSTOMER SUPPORT
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Users of Microchip products can receive assistance
through several channels:
• Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
• General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
• Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
•
•
•
•
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Customers
should
contact
their
distributor,
representative or Field Application Engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://microchip.com/support
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com. Under “Support”, click on
“Customer Change Notification” and follow the
registration instructions.
 2012-2015 Microchip Technology Inc.
DS60001185E-page 357
PIC32MX330/350/370/430/450/470
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PIC32 MX 3XX F 064 H T - XXX I / PT - XXX
Example:
PIC32MX330F064H-I/PT:
General purpose PIC32, 
32-bit RISC MCU, 
64 KB program memory, 
64-pin, Industrial temperature,
TQFP package.
Microchip Brand
Architecture
Product Groups
Flash Memory Family
Program Memory Size (KB)
Pin Count
Tape and Reel Flag (if applicable)
Speed
Temperature Range
Package
Pattern
Flash Memory Family
Architecture
MX = 32-bit RISC MCU core
Product Groups
3XX = General purpose microcontroller family
4XX = General purpose with USB microcontroller family
Flash Memory Family
F
= Flash program memory
Program Memory Size 064
128
256
512
= 6 4KB
= 128KB
= 256KB
= 512KB
Pin Count
H
L
= 64-pin
= 100-pin
Speed
blank = up to 100 MHz
120 = up to 120 MHz
Temperature Range
blank = 0°C to +70°C (Commercial)
I
= -40°C to +85°C (Industrial)
V
= -40°C to +105°C (V-Temp)
Package
Pattern
MR
RG
PT
PT
PF
TL
= 64-Lead (9x9x0.9 mm) QFN with 5.40x5.40 Exposed Pad (Plastic Quad Flat)
= 64-Lead (9x9x0.9 mm) QFN with 4.7x4.7 Exposed Pad (Plastic Quad Flat)
= 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack)
= 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack)
= 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack)
= 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array)
Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)
ES = Engineering Sample
 2012-2015 Microchip Technology Inc.
DS60001185E-page 358
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2012-2015, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
ISBN: 978-1-63277-924-3
QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
 2012-2015 Microchip Technology Inc.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS60001185E-page 359
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Germany - Dusseldorf
Tel: 49-2129-3766400
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
Austin, TX
Tel: 512-257-3370
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
China - Dongguan
Tel: 86-769-8702-9880
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
Germany - Karlsruhe
Tel: 49-721-625370
India - Pune
Tel: 91-20-3019-1500
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Italy - Venice
Tel: 39-049-7625286
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Kaohsiung
Tel: 886-7-213-7828
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
07/14/15
DS60001185E-page 360
 2012-2015 Microchip Technology Inc.