

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN61102 PSoC 3 and PSoC 5LP ADC Data Buffering Using DMA.pdf

		
				 AN61102
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Author: Anu M D, Anup Mohan
Associated Project: Yes
®
Associated Part Family: All PSoC 3 and PSoC 5LP parts
®
Software Version: PSoC Creator™ 3.3 CP2
Related Application Notes: AN52705 and AN84810
AN61102 describes how to configure the direct memory access (DMA) to buffer the analog-to-digital converter (ADC)
data. It discusses how to overcome some of the limitations of the DMA when buffering the ADC data.
Contents
1
2
3
4
5
6
1
Introduction ..1
Basic Concepts..2
DMA Configuration ..2
Channel Configuration ...3
4.1 TD Configuration ...3
4.2 Delta-Sigma ADC Output4
4.3 Delta Sigma ADC Coherency Key5
8-Bit ADC Data Buffering Using DMA5
5.1 Example Project ..6
16-Bit ADC Data Buffering Using DMA9
6.1 Example Project .. 10
6.2 Channel Configuration 11
6.3 TD Configuration ... 12
6.4 Endian Format .. 13
6.5 16-Bit ADC Continuous Data Buffering
Using DMA Example ... 13
7
20-Bit ADC Data Buffering Using DMA 15
7.1 Using Intermediate Memory Location 16
7.2 Example Project .. 17
7.3 Channel Configuration 18
7.4 TD Configuration ... 19
7.5 ADC Coherency .. 20
8 12–Bit SAR ADC Data Buffering Using DMA 21
8.1 Channel Configuration 23
8.2 TD Configuration ... 23
9 Example Projects: Operation and Test Procedure 24
9.1 Operation .. 24
9.2 Test Procedure ... 24
10 Summary ... 26
Document History.. 27
Worldwide Sales and Design Support 28
Introduction
®
The DMA controller in PSoC 3 and PSoC 5LP is used to handle data transfer without CPU intervention. This is
useful in applications that require ADC data buffering and allows the CPU to do simultaneous tasks.
This application note explains the basics of 8-bit, 16-bit, and 20-bit Delta Sigma ADC data buffering using DMA with
example projects. The 20-bit example project accompanying this application note demonstrates problems with data
buffering using DMA. These problems occur when the peripheral’s spoke width is less than the actual data width. The
project describes how to tackle this using multiple DMA channels. The application note also includes an example
project on 12-bit SAR ADC data buffering for PSoC 5LP device.
This document assumes that you know how to create designs for PSoC 3 and PSoC 5LP using PSoC Creator. If you
are new to these products, you can find introductions in AN54181 – Getting Started with PSoC 3 and AN77759 –
Getting Started with PSoC 5LP. If you are new to PSoC Creator, see the PSoC Creator home page. You should also
be familiar with the topics discussed in the basic DMA application note, AN52705 – Getting Started with DMA. For an
advanced DMA application, see AN84810 – PSoC® 3 and PSoC 5LP Advanced DMA Topics..
www.cypress.com
Document No. 001-61102 Rev. *J
1
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
2
Basic Concepts
The DMA is used to move data from a source to destination without CPU intervention. The DMA controller (DMAC)
controls these data transfers. Some basic concepts of the ADC and the DMA used in this document are as follows:
3

PHUB: The Peripheral HUB (PHUB) is the central hub that has data buses that connects various on-chip
peripherals and memory. The DMAC resides within the PHUB.

Spoke: Spokes are data buses which branch out from the PHUB to various peripherals. Each spoke is connected
®
®
to one or more peripherals. The spoke data bus width can be either 16 or 32 bits. See PSoC 3, PSoC 5
Technical Reference Manual for more details. The data width of the spoke attached to Delta sigma ADC in PSoC
3 / PSoC 5LP is 16-bit.

Channel: Channel resides in the DMA controller. Channels use the PHUB to transfer data. The channels fetch
the transaction descriptors, access the PHUB spoke for the source and the destination, and transfer data.

Transaction Descriptor (TD): The TD stores all information required for the data transfer. The information stored
in the TD includes the source and the destination addresses, the number of bytes to transfer and other properties
of the transfer.

drq: This refers to the data request terminal of the DMA. This terminal becomes visible when you enable the
hardware request for the DMA channel.

The DMA channel is triggered by the signal given to the hardware request terminal. The ADC generates an End
of Conversion (EoC) signal at the end of each conversion and this can be used as the DMA channel trigger to
buffer the ADC data.

nrq: This output terminal of the DMA component can be used to monitor whether the DMA transfer is complete.
The TD should be configured (using APIs) to generate appropriate termout signal on the nrq line when the
transfer is complete. If the TD is configured to generate termout, a pulse signal (two bus clock cycles wide)
appears on the nrq line once the TD transfer is complete. The following sections describe some additional
concepts.
DMA Configuration
The various parameters of a DMA transfer are configured using the channel configuration and the TD configuration
registers as shown in Figure 1 described in the subsequent sections.
Figure 1. DMA Configuration
Channel
Configuration
TD
Configuration
Source Address
(Upper 16 bits)
Source Address
(Lower 16 bits)
Destination Address
(Upper 16 bits)
Destination Address
(Lower 16 bits)
Burst Count
(1-127)
Transfer Count
(0 to 4095)
Request per Burst
(TRUE or FALSE)
TD Property
First TD of Channel
Next TD
Preserve TD
(TRUE or FALSE)
www.cypress.com
Document No. 001-61102 Rev. *J
2
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
4
Channel Configuration
The source addresses and the destination addresses in PSoC 3 and PSoC 5LP are 32 bits wide. The upper 16-bits
are configured in channel configuration registers and the lower 16-bits are configured in TD configuration registers.
4.1

Upper Source Address (16-bits)
Upper 16-bits of 32-bit source address configured in channel configuration registers.

Upper Destination Address (16-bits)
Upper 16-bits of 32-bit destination address configured in channel configuration registers

Lower Source Address (16-bit)
Lower 16-bits of 32-bit source address configured in TD configuration registers

Lower Destination Address (16-bit)
Lower 16-bits of 32-bit destination address configured in TD configuration registers

Burst Count (1 to 127)
Number of bytes the DMA channel must move from the source to the destination before it releases the spoke.
The DMAC acquires the spoke for each burst data movement, moves (copies) the specified number of bytes
from the source to the destination (configured in burst count parameter of channel configuration registers) and
then releases the spoke. It re-acquires the spoke during the next burst transfer.

Request Per Burst(0 or 1)
When multiple bursts are required to finish the DMA data transfer, this parameter determines the nature of the
bursts.
0: All subsequent bursts after the first burst are automatically done without a separate request. (Only the first
burst transfer must have a DMA request.)
1: All subsequent bursts after the first burst must have individual requests.

Initial TD
The channel collects information from the first TD pointer and subsequent TD pointers and keeps it in the TD
itself, similar to a linked list. The pointer to the first TD is stored in channel configuration memory and subsequent
TD pointers are stored in TD configuration memory, similar to a linked list.

Preserve TD(0 or 1)
Defines whether to use TD configuration registers or separate the PHUB working registers to store intermediate
TD states.
0: Store the intermediate states on top of the original TD chain (TD configuration registers).
1: Store the intermediate states separately in a working register to keep the original TD configuration.
Typically TD configurations are preserved so that TD can be repeated.
TD Configuration

Transfer Count(0 to 4095)
The total number of bytes to be moved from the source to the destination.
For example, if you want to move 100 bytes of the data from a 16-bit peripheral to a memory buffer, the burst
count is set to 2 and transfer count is set to 100.

Next TD
Points to the next TD, similar to a linked list
 TD Property (Configurable from the list below)
Increment Source Address
Increases source address after each burst transfer.
Increment Destination Address
Increments destination address after each burst transfer.
www.cypress.com
Document No. 001-61102 Rev. *J
3
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Swap Enable
The PSoC 3 Keil Compiler uses big endian format to store 16-bit and 32-bit variables. But the PSoC 3 peripheral
registers uses little endian format. A byte swap on 2-byte or 4-byte words must occur to move the data between array
and peripheral registers. For this reason, the DMA must be configured to swap bytes while it moves the data between
the peripheral registers and the memory in PSoC 3.
If this TD property is set, DMA swaps the data bytes while it moves the data from the source to the destination.
Swap Size: Used with the Swap Enable setting.
0: Swap size is 2 bytes. Every 2 bytes are endian swapped during the DMA transfer.
1: Swap size is 4 bytes. Every 4 bytes are endian swapped during the DMA transfer.
Auto Execute Next TD
0: The next TD in the chain will be executed only after the next DMA request.
1: The next TD in the chain is automatically executed soon after the current TD transfer is finished.
DMA Completion Event
A DMA “done signal” is generated after the data transfer is finished. This is typically used to create an interrupt after
the transfer is finished.
4.2
Delta-Sigma ADC Output
The Delta-Sigma ADC has programmable resolutions from 8-bits to 20-bits. The Delta-Sigma ADC output is available
in 32-bit format consisting of four 8-bit registers: OUTSAMP, OUTSAMPM, OUTSAMPH, and OUTSAMPS registers.
The OUTSAMPS register gives sign extension of the data if OUTSAMPH is read as a 16-bit register.
In the default ADC configuration, the output is aligned to the least significant bit (LSB). Hence for an ‘n’ bit resolution,
the ADC result is always available in the least ‘n’ bits starting from OUTSAMP.
Figure 2. 8-Bit ADC Result
OUTSAMPS
OUTSAMPH
OUTSAMPM
OUTSAMP
(Sign Ext -0x4e13)
(0x4e12)
(0x4e11)
(Addr: 0x4e10)
Figure 3. 16-Bit ADC Result
OUTSAMPS
OUTSAMPH
OUTSAMPM
OUTSAMP
(Sign Ext -0x4e13)
(0x4e12)
(0x4e11)
(Addr: 0x4e10)
Figure 4. 20-Bit ADC Result
OUTSAMPS
OUTSAMPH
OUTSAMPM
OUTSAMP
(Sign Ext -0x4e13)
(0x4e12)
(0x4e11)
(Addr: 0x4e10)
For SAR ADCs, the 12-bit output data is available in the registers ‘SAR[0,1]. WRK0’ and ‘SAR[0,1]. WRK1’.
Figure 5. 12-Bit SAR ADC Result
SAR[0,1].WRK1
www.cypress.com
SAR[0,1].WRK0
Document No. 001-61102 Rev. *J
4
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
4.3
Delta Sigma ADC Coherency Key
The ADC result registers are protected on reads so that the underlying hardware does not update it when partially
read by CPU or DMA. Since the ADC lies on a 16-bit spoke it will only support 8-bit or 16-bit read operation of these
registers. When CPU/DMA is reading 32-bit ADC result (4 bytes) as multiple byte (16 bit) read operation, it is possible
for ADC to overwrite the result register with a new sample while the CPU or DMA is reading the current sample. To
avoid this problem, the ADC module allows the user to specify the coherency byte using
DEC_COHER[SAMP_KEY<1:0>] bits. If any byte of ADC result register is read by CPU or DMA, it will lock the result
register from being overwritten until the coherency byte is read. Depending on the configuration of the block, not all
bytes of the result registers may be needed. The coherency methodology allows for any size output field and handles
it properly.
5
8-Bit ADC Data Buffering Using DMA
For 8-bit ADC data buffering, the contents of OUTSAMP register should be moved to memory buffer on each EoC.
The DMA is triggered using EoC signal from ADC. Figure 6 shows the block diagram illustrating 8-bit transfer.
Figure 6. Block Diagram Demonstrating 8-bit Transfer
Destination : RAM Buffer
Source : ADC Outsamp
Register
Sample 1
er 1
n sf
Tra nsfer2
Tra
1 Byte
Read
Sample 2
Increment
Destination
Address
Write
...
ADC
...
a
Tr
DMA Channel
ns
EoC
r
fe
….
‘N
’
DMA
Request
Sample ‘N’
DMA Transaction
complete signal
Associated TD
8 bits wide
TD0
Source
TD Property
www.cypress.com
Destination
Transfer
Count (N)
Next TD
: Increment Destination address,
: Generate transaction complete signal
Document No. 001-61102 Rev. *J
5
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
5.1
Example Project
The schematic and the ADC component configuration for the project are as follows.
Figure 7. Schematic and ADC Configuration for 8-Bit Example
www.cypress.com
Document No. 001-61102 Rev. *J
6
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
The hardware request of the DMA channel component is set to rising edge. The hardware request terminal of the
DMA channel is connected to the ADC EoC signal so that the DMA channel is requested whenever the ADC result is
available. The DMA is enabled on a switch press. Once enabled the DMA channel moves the 16-bit ADC data to
memory on every EoC event. Once the DMA buffers the required number of ADC samples, a DMA Transaction
Complete signal is generated on the nrq terminal. This signal activates an ISR which disables the DMA channel.
Table 1. Channel Configuration
Parameter
www.cypress.com
Project Setting
Upper Source Address
HI16(CYDEV_PERIPH_BASE)
Upper Destination Address
HI16(CYDEV_SRAM_BASE)
Burst Count
1 Byte
Request Per Burst
True (1)
Initial TD
DMA_TD[0]
Preserve TD
Yes(1)
Document No. 001-61102 Rev. *J
7
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
The upper 16 bits of the source address is set to HI16(CYDEV_PERIPH_BASE).‘CYDEV_PERIPH_BASE‘ is defined
in the header file cydevice.h that is generated by PSoC Creator. This gives the 32-bit base address for all PSoC 3
and PSoC 5LP peripherals including ADC. The HI16 macro gives the upper 16 bits of this 32-bit address.
The upper 16 bits of RAM variables are given by the macro HI16(CYDEV_SRAM_BASE), where CYDEV_SRAM_BASE
is the SRAM base address defined in cydevice.h.
In this example, the 8-bit ADC result must be moved from the ADC to memory on each DMA request. For this reason,
the burst count is set to 1 and the request per burst is set to true.
The ‘Preserve TD’ parameter of the channel is set to ‘1’ to preserve the original source and the destination address.
This is done so that after N samples are buffered (TD transfer is complete), the source address, the destination
address, and the transfer count are automatically reloaded with the initial values and the TD can be repeated again.
Table 2. TD Configuration
Parameter
Project Setting
Lower Source Address
LO16 (ADC_DEC_OUTSAMP_PTR)
Lower Destination Address
LO16 (ADC_sample)
Transfer Count
N×1 (No. of samples × Bytes per sample)
Increment Destination Address
TD property
Generate DMA done event
Next TD
None/repeat to same TD
The lower 16 bits of the source and the destination address are identified by the LO16 macro. The destination is the
16-bit RAM array “ADC_sample”.
The transfer count identifies the total number of bytes to be moved from the source to the destination to finish the
transaction. This is set to ‘Number of samples × Bytes per Sample’ (N).
The TD property (TD_INC_DST_PTR) is set to increment the destination address after each burst transfer. The TD is
also defined to generate a transaction complete signal (DMA__TD_TERMOUT_EN) after the specified number of
bytes is moved from the ADC to buffer.
The timing diagram for the 8-bit transfer is as shown in Figure 8.
Figure 8. Timing Diagram for 8-Bit Transfer
TD Source
Addr
0x4E10
0x4E10
0x4E10
1
TD Dest
Addr
0x4E10
2
BA
BA + 1
Sample 1
Sample 2
BA + 2
BA+(N-1)
BA
BA + 1
EOC
Sample 3
Sample N
Sample 1
BA : Base Address of Memory buffer
N : Number of samples
1
2
www.cypress.com
Destination Address incremented after each transaction
Source and destination addresses are automatically reset to the base address after N samples are buffered
Document No. 001-61102 Rev. *J
8
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
See Example Projects: Operation and Test Procedure..
6
16-Bit ADC Data Buffering Using DMA
In a 16-bit ADC configuration, the contents of OUTSAMP and OUTSAMPM registers must be buffered using the
DMA. Hence, the burst count of the DMA channel is set to ‘2’ and the TD transfer count is set to ‘2 × total number of
samples to be buffered’. Figure 9 shows the block diagram illustrating 16-bit transfer.
Figure 9. Block Diagram Demonstrating 16-bit Transfer
Destination : RAM Buffer
Source : ADC Outsamp
Register
Sample 1
er 1
n sf
Tra nsfer2
Tra
2 Bytes
Read
Sample 2
Increment
Destination
Address
Write
...
ADC
...
a
Tr
DMA Channel
ns
EoC
r
fe
….
‘N
’
DMA
Request
Sample ‘N’
DMA Transaction
complete signal
Associated TD
16 bits wide
TD0
Source
Destination
TD Property
Transfer
Count (2N)
Next TD
: Increment Destination address
: Swap the Data bytes
: Generate transaction complete signal
As the previous figure shows, the DMA must move the ADC result (2 bytes) from the source ADC to the destination
RAM buffer each time it receives a request. The RAM buffer pointer must be increased after each data movement to
point to the next sample location. After the specific number of ADC samples is collected, the DMA must send a signal
that the transaction is finished.
www.cypress.com
Document No. 001-61102 Rev. *J
9
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
6.1
Example Project
The schematic and the ADC component configuration for the project are as follows.
Figure 10. Schematic and ADC Configuration for 16-Bit Example
www.cypress.com
Document No. 001-61102 Rev. *J
10
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
The hardware request of the DMA channel component is set to rising edge. The hardware request terminal of the
DMA channel is connected to the ADC EoC signal so that the DMA channel is requested whenever the ADC result is
available. The DMA is enabled on a switch press. Once enabled the DMA channel moves the 16-bit ADC data to
memory on every EoC event. Once the DMA buffers the required number of the ADC samples, a DMA Transaction
Complete signal is generated on the nrq terminal. This signal activates an ISR which disables the DMA channel.
6.2
Channel Configuration
Table 3. Channel Configuration
Parameter
www.cypress.com
Project Setting
Upper Source Address
HI16(CYDEV_PERIPH_BASE)
Upper Destination Address
HI16(CYDEV_SRAM_BASE)
Burst Count
2 Bytes
Request Per Burst
True (1)
Initial TD
DMA_TD[0]
Preserve TD
Yes(1)
Document No. 001-61102 Rev. *J
11
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
The upper 16 bits of the source address is set to HI16(CYDEV_PERIPH_BASE).
‘CYDEV_PERIPH_BASE‘ is defined in the header file cydevice.h that is created generated by PSoC Creator. This
gives the 32-bit base address for all PSoC 3 and PSoC 5LP peripherals including the ADC. The HI16 macro gives the
upper 16-bits of this 32-bit address.
The upper 16-bits of RAM variables are given by the macro HI16(CYDEV_SRAM_BASE), where CYDEV_SRAM_BASE
is the SRAM base address defined in cydevice.h.
In this example, a 2-byte ADC result must be moved from ADC to memory on each DMA request. For this reason, the
burst count is set to 2 and the request per burst is set to true.
The ‘Preserve TD’ parameter of the channel is set to ‘1’ to preserve the original source and the destination address.
This is done so that after N samples are buffered (TD transfer is complete), the source address, the destination
address, and the transfer count are automatically reloaded with the initial values and the TD can be repeated again.
6.3
TD Configuration
Table 4. TD Configuration
Parameter
Project Setting
Lower Source Address
LO16 (ADC_DEC_OUTSAMP_PTR)
Lower Destination Address
LO16 (ADC_sample)
Transfer Count
N×2 (No. of samples × Bytes per sample)
Increment Destination Address
Generate DMA done event
TD property
Swap Enable required for PSoC3
Next TD
None/repeat to same TD
The lower 16 bits of the source and the destination address are identified by the LO16 macro. The destination is the
16-bit RAM array “ADC_sample”.
The transfer count identifies the total number of bytes to be moved from the source to the destination to finish the
transaction. This is set to ‘Number of samples × Bytes per Sample’ (2N).
The TD property (TD_INC_DST_PTR) is set to increment the destination address and the RAM buffer pointer after
each burst transfer. The TD is also defined to generate a transaction complete signal (DMA__TD_TERMOUT_EN) after
the specified number of bytes is moved from the ADC to buffer.
For 16-bit and 20-bit ADC data buffering, the data bytes should be swapped while moving data from the ADC to
memory in PSoC 3. This is explained in the following section.
www.cypress.com
Document No. 001-61102 Rev. *J
12
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
6.4
Endian Format
With PSoC 3, the Keil 8051 compiler uses big endian format for 16- and 32-bit variables. The PSoC 5LP device uses
little endian format for multibyte values. All PSoC 3 and PSoC 5LP peripheral registers including the ADC, store data
in little endian format. Therefore, the data byte should be swapped while moving multibyte data from the ADC to
memory in PSoC 3. DMA transaction descriptors can be programmed to have bytes swapped while transferring data.
The swap size should be set to 2 bytes for 16-bit transfers or 4 bytes for 32-bit transfers. TD_SWAP_EN configuration
of the TD is used to swap the bytes while moving data using DMA; the default swap size is 2 bytes.
The timing diagram for a 16-bit transfer is as follows.
Figure 11. Timing Diagram for 16-Bit Transfer
TD Source
Addr
0x4E10
0x4E10
1
TD Dest
Addr
BA
0x4E10
0x4E10
BA
BA + 1
2
BA + 2
BA+2(N-1)
EOC
Sample 1
Sample 2
Sample 3
Sample N
Sample 1
BA : Base Address of Memory buffer
N : Number of samples
1
2
Destination address incremented after each transaction
Source and destination addresses are automatically reset to the base address after N samples are buffered
Preserve TD parameter is set to 1 to automatically re-initialize the TD after the transfer is complete
6.5
16-Bit ADC Continuous Data Buffering Using DMA Example
The continuous buffering example shows how to transfer the data buffered using DMA continuously to a PC using the
USBUART of the PSoC. This project is created by making minor modifications to the above example. The data is
transferred in blocks of 64 bytes to the PC. Refer to the USBFS Component Datasheet for more information on
USBUART functionality.
www.cypress.com
Document No. 001-61102 Rev. *J
13
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Figure 12. Schematic and ADC Configuration for 16-Bit Continuous Data Buffering Example
www.cypress.com
Document No. 001-61102 Rev. *J
14
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
7
20-Bit ADC Data Buffering Using DMA
The block diagram illustrating 20-bit transfer is as follows.
Figure 13. Block Diagram Demonstrating 20-bit Transfer
Destination : RAM Buffer
Source : ADC Outsamp
Register
er 1
n sf
Tra nsfer2
Tra
4 Bytes
ADC
Spoke width =
16 bits
Read
Sample 1
Sample 2
Increment
Destination
Address
Write
...
...
ns
EoC
a
Tr
DMA Channel
r
fe
‘N
….
’
DMA
Request
Sample
‘N’
DMA Transaction
complete signal
Associated TD
32 bits wide
TD0
Source
OUTSAMP
OUTSAMPM
OUTSAMPH
OUTSAMPS
Destination
Increment
Source
TD Property
Addr.
Transfer
Count (4N)
Next TD
: Increment Destination address
: Swap the Data bytes
: Generate transaction complete signal
Reset source
address
In this project, DMA reads the 32-bit ADC result register on every EoC event and stores the “N” samples in a buffer.
The ADC module is mapped onto a 16-bit spoke and hence the CPU or DMA can only read a maximum of 16-bit data
at a time. To read 32-bit ADC result register, the DMA must perform two read operation with address increment and
the address must be reset after second read operation to read the ADC result register again in the next EoC event.
The number of bytes to be read on every end of conversion is 4 bytes and hence the burst size should be set to 4
bytes.
Resetting the source register after reading the 4-byte ADC result requires followings:
1.
The transfer count must be set to 4 bytes. This way the DMA channel is forced to move to next TD after reading 4
bytes.
2.
The TD must be looped to itself and the DMA channel must be configured to preserve the TD to retain the original
source, the destination address and the transfer count to read the 4-byte ADC result register on the following EoC
event.
The DMA destination address must be incremented to store the ADC samples in consecutive locations for every
conversion. Note that the destination register also gets reset after reading 4 byte ADC result register and hence this
DMA configuration reads 4 byte ADC result register and writes to same memory locations on every EoC event.
If we want to buffer “N” samples of ADC in memory buffer, then it is impossible to directly buffer the samples due to
this limitation.
The simplest way to tackle this problem is to move the ADC data to an intermediate memory location using the one
DMA channel and move data from the intermediate location to the destination buffer using the second DMA channel.
This is possible because the internal memory is mapped into 32-bit spoke and does not suffer the limitation of the
ADC register being mapped to 16-bit spoke.
www.cypress.com
Document No. 001-61102 Rev. *J
15
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
7.1
Using Intermediate Memory Location
In this method, the data is moved to an intermediate memory location using one DMA channel and from this
intermediate memory location to the destination memory buffer using the second DMA channel as shown in Figure 15
and Figure 16.
The memory is mapped to a 32-bit spoke in PSoC 3 and PSoC 5LP. Therefore the DMA can transfer 32-bit data from
memory to memory in a burst which eliminates the need for incrementing the address for a 32-bit memory to memory
transfer. However in this case the destination address needs to be incremented after each burst transfer to point to
the next sample location in the destination buffer.
Figure 14. 20-Bit Data Buffering Using Intermediate Memory Location
Swap Endian
for PSoC3
Source: ADC data
registers
Destination: Memory
buffer
16 bits wide
OUTSAMP
OUTSAMPM
OUTSAMPH
OUTSAMPS
Increment
Source
Addr.
MSW
Reset source
address
MSW1
LSW1
Sample 1
MSW2
LSW2
Sample 2
LSW
Increment
Destination
Addr
Intermediate Memory
Location
MSW N
LSW: Least Significant Word (lower 16 bits of ADC data)
LSW N
Sample N
32 bits wide
MSW: Most Significant Word (upper 16 bits of ADC data)
Destination : RAM
Buffer 2
Source : ADC Outsamp
Register
er 1
n sf
Tra ansfer2
Tr
Destination : RAM Buffer 1
4 Bytes
Transfer
ADC
Read
Read
Increment
Destination
Address
...
DMA Channel 2
...
ns
DMA Channel 1
r
fe
32 bits wide
….
‘N
’
Increment
Source
Address
Sample 2
Write
Sample1
Write
a
Tr
EoC
4 Bytes
Sample 1
DMA
Request
DMA Transaction
complete signal
Sample
‘N’
DMA
Request
nrq
DMA Transaction
complete signal
Associated TD
Associated TD
TD0
Source
TD Property
www.cypress.com
Destination
Transfer
Count (4)
TD0
Source
Next TD
: Increment Source address
: Swap the Data bytes
: Generate transaction complete signal
TD Property
Document No. 001-61102 Rev. *J
Destination
Transfer
Count (4N)
Next TD
: Increment Destination address
: Generate transaction complete signal
16
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
7.2
Example Project
The schematic and the ADC component configuration for the project are as follows.
Figure 15. ADC_DMA_Memory_20bit Schematic and ADC Configuration
www.cypress.com
Document No. 001-61102 Rev. *J
17
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
DMA collects a specified number of ADC samples (N) on a switch press. The DMA channels are enabled on each
switch press and disabled after it collects the specified number of ADC samples. A DMA Transaction Complete signal
on the nrq terminal on the first DMA channel triggers the second DMA channel and the nrq signal on the second DMA
channel activates an ISR, which disables the DMA channels.
The DMA component instance has the name DMA_ADC2Mem. The hardware request of this DMA channel
component is set to rising edge. The hardware request terminal of the DMA channel is connected to the ADC EoC
signal so that the DMA channel is requested whenever the ADC result is available. The second DMA component has
the instance name DMA_Mem2Mem. The hardware request of this DMA channel component is set to rising edge and
the hardware request terminal is connected to the nrq terminal for the DMA_ADC2Mem DMA component.
7.3
Channel Configuration
Table 5. Channel Configuration
Channel: DMA_ADC2Mem
Parameter
Project Setting
Upper Source Address
HI16(CYDEV_PERIPH_BASE)
Upper Destination Address
HI16(CYDEV_SRAM_BASE)
Burst Count
4 Bytes
Request Per Burst
True (1)
Initial TD
DMA_ADC2Mem_TD[0]
Preserve TD
Yes(1)
Channel: DMA_Mem2Mem
Parameter
Project Setting
Upper Source Address
HI16(CYDEV_SRAM_BASE)
Upper Destination Address
HI16(CYDEV_SRAM_BASE)
Burst Count
4 Bytes
Request Per Burst
True (1)
Initial TD
DMA_Mem2Mem_TD[0]
Preserve TD
Yes(1)
The upper 16 bits of the source address of DMA_ADC2Mem channel is set to HI16(CYDEV_PERIPH_BASE).
‘CYDEV_PERIPH_BASE‘is defined in the header file cydevice.h that is created generated by PSoC Creator. This
gives the 32-bit base address for all PSoC 3 and PSoC 5LP peripherals including the ADC. The HI16 macro gives the
upper 16 bits of this 32-bit address.
The upper 16 bits of RAM variables are given by the macro
CYDEV_SRAM_BASE is the SRAM base address defined in cydevice.h.
HI16(CYDEV_SRAM_BASE),
where
In this example for both the DMA channels, a 4-byte data must be moved to memory on each DMA request. For this
reason, the burst count is set to 4 and the request per burst is set to true.
The ‘Preserve TD’ parameter of the channel is set to ‘1’ to preserve the original source and the destination address.
This is done so that after N samples are buffered (TD transfer is complete), the source address, the destination
address, and the transfer count are automatically reloaded with the initial values and the TD can be repeated again.
www.cypress.com
Document No. 001-61102 Rev. *J
18
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
7.4
TD Configuration
Table 6. TD Configuration
DMA_ADC2Mem
Parameter
Project Setting
Lower Source Address
LO16 (ADC_DEC_OUTSAMP_PTR)
Lower Destination Address
LO16 (adc_temp)
Transfer Count
N×4 (No. of samples × Bytes per sample)
Increment Source Address
Generate DMA done event
Swap Enable required for PSoC3
TD property
Set Swap size to 4 bytes
Next TD
None/repeat to same TD
DMA_Mem2Mem
Parameter
Project Setting
Lower Source Address
LO16 (ADC_DEC_OUTSAMP_PTR)
Lower Destination Address
LO16 (ADC_sample)
Transfer Count
N×4 (No. of samples × Bytes per sample)
Increment Destination Address
TD property
Generate DMA done event
Next TD
None/repeat to same TD
The lower 16 bits of the source and the destination address are identified by the LO16 macro. The destination for the
DMA_ADC2Mem is the 32-bit RAM variable adc_temp and the destination for DMA_Mem2Mem is the 32 bit RAM
array ADC_sample.
The transfer count identifies the total number of bytes to be moved from source to destination to finish the
transaction. This is set to ‘Number of samples × Bytes per Sample’ (4N).
When the 20-bit data is moved from ADC to memory in PSoC 3, the bytes must be swapped. This is because PSoC 3
peripheral registers use little endian format and the Keil compiler uses big endian format. For more information, see
the ‘Endian Format’ section. The TD_SWAP_EN and TD_SWAP_SIZE4 configurations make the DMA able to swap 4
bytes while it moves data from peripheral to memory.
Also in this case please make sure that the intermediate variable to transfer the ADC data is on an even address
boundary since DMA cannot transfer 32 bit data in one burst unless the source and destination address are aligned
at the boundaries. Use compiler directives/keywords as given in the attached sample projects to make sure that the
temporary location is 32 bit boundary aligned.
www.cypress.com
Document No. 001-61102 Rev. *J
19
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Figure 16. Timing Diagram for 32-Bit Transfer
1
TD Source
Addr. Of
DMA_ADC2M
em
0x4E10
TD Dest
Addr
BA
3
2
0x4E12
0x4e14
5
4
0x4e10
0x4E10
0x4E12
0x4e14
BA
BA + 4 (N-1)
BA + 4
0x4e10
EOC
Sample 1
Sample 2
Sample N
Transfer
Complete
Sample1
Note 1. The source (ADC) is on a 16-bit spoke and hence the source address is incremented by two after fetching the first two bytes
least significant to fetch the most significant word of ADC data.
Note 2. Because the TD is configured to increment source and destination addresses, the source and destination addresses continue
to increment after each transaction. The destination is on a 32-bit spoke; therefore, the destination address is incremented by 4 after
each burst of 4 bytes.
Note 3. On each EoC trigger, the source address register of DMA_ADC2Mem is reset back to OUTSAMP using DMA_UpdateTDAddr.
The DMA_ADC2Mem then moves 32 bits from ADC to memory.
Note 4. Because the ‘Preserve TD’ parameter of DMA_ADC2Mem is set to zero, source address, destination address, and transfer
count are NOT reinitialized by DMAC when the transfer is complete.
Note 5. The TD source address, destination address, and transfer count are re-initialized using APIs after the transfer is complete.
7.5
ADC Coherency
The ADC coherency key should be set to the last sample byte that is read by DMA. By default, the ADC component
sets OUTSAMP as the coherency key byte. But, for 32-bit buffering using DMA, LSW (OUTSAMP and OUTSAMPM)
is read first, followed by MSW (OUTSAMPH and OUTSAMPS). Hence the coherency key must be changed to
OUTSAMPH, after the ADC component initializatiSon.
/*Change the ADC coherent key to high byte*/
ADC_DelSig_DEC_COHER_REG |= ADC_DelSig_DEC_SAMP_KEY_HIGH;
This is required because there is no option to automatically decrement TD source address to configure the DMA to
read MSW before LSW.
www.cypress.com
Document No. 001-61102 Rev. *J
20
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
8
12–Bit SAR ADC Data Buffering Using DMA
In addition to Delta Sigma ADC, the PSoC 5LP device has two SAR ADCs. The maximum resolution of the SAR ADC
is 12 bits and the maximum conversion speed attainable is 700 ksps. The DMA configuration required to buffer the
12-bit SAR ADC data are similar to that mentioned in the 16-Bit ADC Data Buffering Using DMA section. The only
difference is that instead of OUTSAMP register, the source address of DMA would be set to the SAR ADC data
register namely SAR [0, 1].WRK0. The following figure shows a 12-bit SAR ADC to memory signal chain that uses
DMA.
Figure 17. Block Diagram Demonstrating 12-bit Transfer
Destination : RAM Buffer
Source : SAR[0,1].WRK0
Register
Sample 1
r1
sfe
n
a
Tr nsfer2
Tra
2 Bytes
Read
Sample 2
Increment
Destination
Address
Write
...
SAR ADC
...
a
Tr
DMA Channel
ns
EoC
r
fe
….
‘N
’
DMA
Request
Sample
‘N’
DMA Transaction
complete signal
Associated TD
TD0
Source
TD Property
Destination
Transfer
Count (2N)
Next TD
: Increment Destination address
: Generate transaction complete signal
An example project named SAR_ADC_DMA_Memory is attached with this application note, which demonstrates 12bit SAR ADC data buffering using the DMA. More details on the working and test procedure of the project can be
found at the section Example Project: Operation and Test Procedure. The schematic and the SAR ADC component
configuration for the project are as follows.
www.cypress.com
Document No. 001-61102 Rev. *J
21
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Figure 18. SAR_ADC_DMA_Memory Schematic and SAR ADC Configuration
s
www.cypress.com
Document No. 001-61102 Rev. *J
22
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
DMA collects a specified number of ADC samples (N) on a switch press. The DMA channel is enabled on each
switch press and disabled after it collects the specified number of ADC samples. A DMA Transaction Complete signal
on the nrq terminal activates an ISR, which disables the DMA channel. The hardware request of the DMA channel
component is set to rising edge. The hardware request terminal of the DMA channel is connected to the ADC EoC
signal so that the DMA channel is requested whenever ADC result is available.
8.1
Channel Configuration
Table 7. Channel Configuration
Parameter
Project Setting
Upper Source Address
HI16(CYDEV_PERIPH_BASE)
Upper Destination Address
HI16(CYDEV_SRAM_BASE)
Burst Count
2 Bytes
Request Per Burst
True (1)
Initial TD
DMA_TD[0]
Preserve TD
Yes(1)
The upper 16-bits of the source address is set to HI16(CYDEV_PERIPH_BASE). ‘CYDEV_PERIPH_BASE‘ is defined
in the header file cydevice.h that is created generated by PSoC Creator. This gives the 32-bit base address for all
PSoC 3 and PSoC 5LP peripherals including ADC. The HI16 macro gives the upper 16-bits of this 32-bit address.
The upper 16-bits of RAM variables are given by the macro HI16(CYDEV_SRAM_BASE), where CYDEV_SRAM_BASE
is the SRAM base address defined in cydevice.h.
In this example, a 2-byte ADC result must be moved from the ADC to memory on each DMA request. For this reason,
the burst count is set to 2 and the request per burst is set to true.
The ‘Preserve TD’ parameter of the channel is set to ‘1’ to preserve the original source and the destination address.
This is done so that after N samples are buffered (TD transfer is complete), the source address, the destination
address, and the transfer count are automatically reloaded with the initial values and the TD can be repeated again.
8.2
TD Configuration
Table 8. TD Configuration
Parameter
Project Setting
Lower Source Address
LO16 (ADC_SAR_SAR_WRK0_PTR)
Lower Destination Address
LO16 (ADC_sample)
Transfer Count
N×2 (No. of samples × Bytes per sample)
Increment Destination Address
TD property
Generate DMA done event
Next TD
None/repeat to same TD
The lower 16-bits of the source and the destination address are identified by the LO16 macro. The destination is the
16-bit RAM array ADC_sample. Since PSoC 5LP SRAM registers and the peripheral register store data in little
endian format, byte swapping is not required.
www.cypress.com
Document No. 001-61102 Rev. *J
23
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
9
Example Projects: Operation and Test Procedure
There are five example projects associated with this application note demonstrating 8-bit, 16-bit and 20-bit Delta
Sigma ADC data buffering and 12-bit SAR ADC data buffering using the DMA. The projects are available in the
AN61102.zip file and are arranged as follows:

ADC_DMA_16Bit_Continuous (16 bit continuous buffering example)
ADC_DMA_Memory_8bit (8 bit buffering example)
ADC_DMA_Memory_16bit (16 bit buffering example)
ADC_DMA_Memory_20bit (20 bit buffering example)
SAR_ADC_DMA_Memory (12 bit SAR ADC buffering example)
The first example project ADC_DMA_16Bit_Continuous continuously buffers 16-bit ADC data using DMA. The DMA
is configured to buffer the blocks of ADC data where each block has 64 ADC samples.
The last four example projects are similar except for the ADC configuration and the DMA configuration as explained
in the previous sections. Hence the operation and test procedure for all the example projects are same.
9.1
Operation
In the first example project ADC_DMA_16Bit_Continuous the ADC starts conversion of the input signal and the 64
bytes of data are transferred to the internal memory. The ADC conversion is stopped after this step to allow transfer
of data to the USBUART. The USB is configured for automatic DMA transfers. The ADC conversion is restarted once
the data is transferred to terminal program.
In the last four example projects, the DMA is configured to buffer specified number of ADC samples on a switch
press. The DMA channel is enabled on switch press and disabled after collecting the specified number of ADC
samples. The DMA configuration details are available in main.c.
When the switch is pressed, ISR_Switch triggers and ‘switch_flag’ is set in the ISR to indicate switch press. The main
loop monitors this flag and enables the DMA channels to buffer ADC data.
After buffering the specified number of ADC samples in memory, the nrq signal of the DMA channel connected to
ISR_DMA_Done goes high. In ISR_DMA_Done.c, the ‘DMADone_flag’ is set to indicate that the DMA has completed
the transfer and the main loop checks ‘DMADone_flag’ and disables the DMA channel if the flag is set.
9.2
Test Procedure
To verify the project,
For the first example project ADC_DMA_16Bit_Continuous

Build and program the chip
Provide the ADC data at pin P0[2]
Connect USBUART com port to Bridge Control Panel (BCP).
Set the variable name input as shown in Figure 19
Figure 19. Variable Setting in BCP

Enter the command in Editor window as: rx8 @0input @1input
Repeat the command and verify the result in Chart window as shown in Figure 20.
www.cypress.com
Document No. 001-61102 Rev. *J
24
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Figure 20. ADC Data in Chart Window of BCP
For the rest of four example projects:

Build and program the chip
Press F5 or click the debug icon to download the program and debug as shown in Figure 21.
Figure 21. Debug Icon in PSoC Creator

Add ADC_sample as a watch variable as shown in Figure 22.
Figure 22. ADC_Sample Watch Variable

Put a breakpoint inside if(DMADone_flag)as shown in the Figure 23.
Figure 23. Breakpoint at DMADone_Flag
www.cypress.com
Document No. 001-61102 Rev. *J
25
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA

Press F5 to run the program. Press SW1 connected to P1[2] to enable the DMA to start ADC sample buffering.
The execution stops at the breakpoint after the DMA transfers the specified number of samples from ADC to
memory and the result can be verified by monitoring the “ADC_sample” array in the watch window. A sample
output for the four example projects are as shown in Figure 24.
Figure 24. Sample Output for Example Projects.
8-bit Example
16-bit Example
20-bit Example
10
12-bit SAR ADC Example
Summary
The DMA in PSoC 3 and PSoC 5LP can buffer ADC data without any CPU intervention. Some of the limitations of
DMA can be overcome using multiple DMA channels and TDs.
About the Author
Name:
Anu M D
Title:
Applications Engineer
Background:
Anu is an Applications Engineer in Cypress Semiconductor’s Consumer and Computation
Division focused on PSoC applications.
www.cypress.com
Document No. 001-61102 Rev. *J
26
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Document History
Document Title: AN61102 - PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Document Number: 001-61102
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
2963929
ANMD
06/30/2010
New application note
*A
3012497
ANMD
08/20/2010
Updated 20-Bit ADC Data Buffering Using DMA and projects to Beta 5.
*B
3156327
ANMD
01/27/2011
Updated for PSoC Creator 1.0.
*C
3294938
ANMD
06/28/2011
Updated 20-Bit ADC Data Buffering Using DMA and Basic Concept.
Added Disable ADC interrupts.
Updated project to SP2.
*D
3386960
ANUP
11/08/2011
Added figures 4, 6, 8, 14, 15, and 16.
Added 12–Bit SAR ADC Data Buffering Using DMA section.
Major rewrite of the application note and updated template.
*E
3446170
NIDH
11/29/2011
Updated for PSoC Creator 2.0
*F
3811896
RRSH
11/14/2012
Updated for PSoC 5LP
*G
3870753
ANMD
01/16/2013
Fixed broken link on page15.
*H
4429438
RNJT
07/03/2014
Fixed typographical errors, updated projects to PSoC Creator 3.0 SP1
*I
4515342
RNJT
09/26/2014
Updated the example projects to include a continuous data buffering example.
*J
5253989
ASRI
05/13/2016
Updated associated project for PSoC Creator 3.3 CP2
Added Figure 12, Figure 19, Figure 20.
Updated the section Example Projects: Operation and Test Procedure for
continuous data buffering example project
Added reference for AN84810 - PSoC® 3 and PSoC 5LP Advanced DMA Topics
Updated template
www.cypress.com
Document No. 001-61102 Rev. *J
27
PSoC® 3 and PSoC 5LP - ADC Data Buffering Using DMA
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
Products
®
®
PSoC® Solutions
ARM Cortex Microcontrollers
cypress.com/arm
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Automotive
cypress.com/automotive
Cypress Developer Community
Clocks & Buffers
cypress.com/clocks
Interface
cypress.com/interface
Lighting & Power Control
cypress.com/powerpsoc
Memory
cypress.com/memory
PSoC
cypress.com/psoc
Touch Sensing
cypress.com/touch
USB Controllers
cypress.com/usb
Wireless/RF
cypress.com/wireless
Forums | Projects | Videos | Blogs | Training | Components
Technical Support
cypress.com/support
PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2010-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries,
including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned
by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other
names and brands may be claimed as property of their respective owners.
www.cypress.com
Document No. 001-61102 Rev. *J
28

				

 Open as PDF

 	Similar pages
	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA (Japanese).pdf

	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA (Chinese).pdf

	

										AN54181 Getting Started with PSoC® 3 (Chinese).pdf

	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA.pdf

	

										AN89056 PSoC 4 IEC 60730 Class B and IEC 61508 SIL Safety Software Library.pdf

	

										AN57821 PSoC 3, PSoC 4, and PSoC 5LP Mixed-Signal Circuit Board Layout Considerations.pdf

	

										AN2099 - PSoC 1, PSoC 3, PSoC 4, and PSoC 5LP - Single-Pole Infinite Impulse Response (IIR) Filters.pdf

	

										AN84810 PSoC 3 and PSoC 5LP Advanced DMA Topics.pdf

	

										AN52927 PSoC 3 and PSoC 5LP - Segment LCD Direct Drive.pdf

	

										MAX9450 EV KIT

	

										MAXIM MAX1172CDJ

	

										AN52701 - PSoC 3 and PSoC 5LP - Getting Started with Controller Area Network.pdf

	

										Component - Clock (Cy_Clock) V1.50 Datasheet.pdf

	

										TOSHIBA TA78L20F

	

										CY8CKIT-002 MiniProg3 User Guide

	

										Download ReleaseNotes1.pdf

	

										AN95599 Hardware Design Guidelines for EZ-PD CCG2.pdf

	

										CE95273 Delta Sigma ADC in single-ended mode using DMA and VDAC with PSoC 3/5LP.pdf

	

										CYPRESS CY7C64215

	

										CE95277 Delta Sigma ADC in Single-Ended Mode with PSoC 3/PSoC 5LP.pdf

	

										Component - USBFS V2.70

	

										Component - USBFS V2.80

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

