Abstract of Ph.D. thesis, University of California, Berkeley, June 1973 CONTRIBUTIONS TO THE MODEL THEORY OF F I N I T E STRUCTURES Abstract Ronald Fagin This t h e s i s i s concerned w i t h t h r e e t o p i c s i n v o l v i n g t h e model t h e o r y of f i n i t e s t r u c t u r e s . First, we study t h e p r o b a b i l i t y t h a t a f i r s t - o r d e r sentence is true i n f i n i t e structures. Second, w e i n v e s t i g a t e s p e c t r a and g e n e r a l i z e d s p e c t r a , i n c l u d i n g q u e s t i o n s i n v o l v i n g t h e d e g r e e of t h e e x t r a p r e d i c a t e symbols. T h i r d , w e a n a l y z e and e x p l o i t t h e i n t e r r e l a t i o n s h i p between g e n e r a l i z e d s p e c t r a and automata, t o o b t a i n r e s u l t s i n both fields. W e b e g i n w i t h o u r r e s u l t s i n p r o b a b i l i t y theory.. Let b be a f i n i t e s e t of ( n o n l o g i c a l ) p r e d i c a t e symbols. By an $ - s t r u c t u r e , a p p r o p r i a t e f o r $. w e mean a r e l a t i o n a l s t r u c t u r e Let 4n (d) s t r u c t u r e s w i t h u n i v e r s e (1, b e t h e s e t of a l l ..., n}. ld- For each f i r s t - o r d e r Id-sentence o , l e t p n ( o ) b e t h e f r a c t i o n of members of d n ( d ) f o r which o is true. W e show t h a t p n ( o ) always converges t o 0 or 1, as n+m. s u b s e t of an($) which c o n t a i n s f o r each e x a c t l y one s t r u c t u r e isomorphic t o first-order of members of Let a. Bn(d, fl in be a dn(J) For each - s e n t e n c e o , l e t vn ( a ) be t h e f r a c t i o n Bn(d) f o r which o i s t r u e . t h a t i f a l l p r e d i c a t e symbols i n d W e show are of t h e same d e g r e e , t h e n v ( a ) converges, and l i m p,(o) n = l i m vn(o). 2 N o w w e t u r n t o t h e second t o p i c . L e t 0 be a f i r s t - o r d e r s e n t e n c e , and l e t P1, ..., Pm be ( n o n l o g i c a l ) p r e d i c a t e symbols i n 0 which a r e n o t i n ( t h e s e a r e t h e e x t r a p r e d i c a t e symbols.) Let ( o r g e n e r a l i z e d s p e c t r u m ) of the c l a s s of f i n i t e J - s t r u c t u r e s i n which (J' .. . 3Pma. s e n t e n c e 3P1 be t h e e x i s t e n t i a l second-order The $-spectrum - those 0' 0' When $=: 0 , w e can i d e n t i f y t h e J - s p e c t r u m of is is true. (J' w i t h the s e t of c a r d i n a l i t i e s of f i n i t e s t r u c t u r e s i n which of 0, is true. 0 T h i s s e t , c a l l e d t h e spectrum was f i r s t c o n s i d e r e d by H. Scholz ( J . of Sym- b o l i c Logic 1 7 , 1 6 0 ) . It. i s n a t u r a l t o ask whether t h e following t w o s t a t e m e n t s are t r u e : (S) The complement of e v e r y spectrum i s a spectrum. (GS) The complement of e v e r y g e n e r a l i z e d spectrum i s a g e n e r a l i z e d spectrum. T h e q u e s t i o n of t h e t r u t h of G. (S) A s s e r i n 1955 ( Z e i t . f u r math. d. Math. 1, 2 5 2 - 2 6 3 ) . w a s f i r s t r a i s e d by Logik und Grundlagen The second s t a t e m e n t i m p l i e s t h e f i r s t , and t h e t r u t h of n e i t h e r i s known. A l a r g e p o r t i o n o f t h i s t h e s i s i s concerned w i t h prob- l e m s r e l a t e d t o these t w o s t a t e m e n t s . Define 3k($) t o b e t h e c l a s s of t h o s e J - s p e c t r a where 2.11 t h e e x t r a p r e d i c a t e symbols a r e k - a r y , c a l l eL'ery $-spectrum in 3,(& monadic. and W e introduce 3 a F r a i s s g - t y p e game t o show t h a t t h e class of monadic g e n e r a l i z e d s p e c t r a i s n o t c l o s e d under complement. We show t h a t f o r each spectrum A t h e r e i s a p o s i t i v e i n t e g e r k such t h a t ink: n€A} i s a spectrum W e use i n v o l v i n g o n l y one b i n a r y p r e d i c a t e symbol. t h i s as a t o o l f o r showing t h a t i f t h e r e i s a c o u n t e r - example t o v a r i o u s con je c t u r e s a b o u t s p e c t r a , t h e n t h e r e i s a spectrum i n v o l v i n g o n l y one b i n a r y p r e d i c a t e symbol which i s a counterexample. We show t h a t t h e r e i s an e x a c t t r a d e - o f f between t h e d e g r e e of t h e e x t r a p r e d i c a t e symbols and t h e c a r d i n a l i t y of an " e x t r a u n i v e r s e . " I n t h e case of s p e c t r a , w e f i n d t h a t i f A i s a s e t of p o s i t i v e i n t e g e r s , and i f k12, t h e n A is i n {nfnl'kl: nEA} i s i n 3P ($1 iff w h e r e cx] i s t h e g r e a t e s t i n t e g e r n o t exceeding x. show t h a t i f p2.2 and yk+l(@) 3P ($1 W e use t h e trade-off = 3P + l (A),t h e n to Jk(J) = f o r each k2p. Another r e s u l t is a "two-cardinal" characterization of s p e c t r a whose complements a r e s p e c t r a . Ncw w e t u r n t o t h e i n t e r r e l a t i o n s h i p between g e n e r a l i z e d s p e c t r a and automata. Consider t h e follow- i n g t w o statements of automata t h e o r y : (S1) The class of sets r e c o g n i z a b l e by a nond e t e r m i n i s t i c Turing machine i n e x p o n e n t i a l t i m e i s c l o s e d under complement. 4 The c l a s s of sets r e c o g n i z a b l e by a non- (CIS1) d e t e r m i n i s t i c T u r i n g machine i n polynomial t i m e i s c l o s e d under complement. W e show t h a t ( G S ) and (GS1) a r e equivalent. This supplerr.ents t h e known r e s u l t t h a t ( S ) and (S1) a r e e q u i v a l e n t ( T h i s l a t t e r r e s u l t i s a p p a r e n t l y due t o James E ' e n n e t t , b u t w a s n e v e r p u b l i s h e d ; it w a s a l s o proved by J o n e s and Selman i n Proc. 4 t h ACM Symposium o n Thy. of Computing, 1 5 7 - 1 6 7 . ) Us8ing automata t h e o r y , w e o b t a i n among o t h e r s t h e foI.lowing r e s u l t s a b o u t ( g e n e r a l i z e d ) s p e c t r a : w e f i n d c e r t a i n s p e c i f i c g e n e r a l i z e d s p e c t r a 4, i n c l u d i n g a monadic g e n e r a l i z e d spectrum, h o l d s i f f t h e complement of 0 is such t h a t ( G S ) a g e n e r a l i z e d spectrum; w e f i n d a s p e c i f i c spectrum A i n v o l v i n g o n l y one b i n a r y p r e d i c a t e symbol such t h a t ( S ) h o l d s i f f t h e complement of A i s a spectrum; we f i n d a spectrum A i n v o l v i n g o n l y one b i n a r y p r e d i c a t e symbol, such t h a t {n: 2%A} i s n o t a spectrum; and w e show t h a t f o r many s p e c t r a A, w e can f i n d a s e n t e n c e 0 which h a s a t most: one model of e a c h f i n i t e c a r d i n a l i t y , such t h a t A i s the spectrum o f 0. W e a l s o prove v a r i o u s r e s u l t s i n automata t h e o r y itself ,, F o r example, w e show t h a t i f t h e c l a s s e s of s e t s w h i c h a r e polynomial-time r e c o g n i z a b l e by determinist:-~and nondeterministic Turing machines are the 5 same, t h e n t h e f o l l o w i n g a p p a r e n t l y much s t r o n g e r c o n d i t i o n holds: there is a c o n s t a n t k such t h a t e s s e n t i a l l y any s e t t h a t can b e r e c o g n i z e d nondeterm i n i s t i c a l l y i n t i m e T can be r e c o g n i z e d d e t e r m i n i s - k tically i n t i m e T . I ACKNOWLEDGEmNTS I want t o e x p r e s s my d e e p l y - f e l t thanks t o my t h e s i s advisor, P r o f e s s o r Robert Vaught, f o r h i s w a r m encouragement and t h o u g h t f u l guidance. I also thank t h e o t h e r members o f my t h e s i s committee: P r o f e s s o r W i l l i a m C r a i g , whose h e l p f u l s u g g e s t i o n s i n c r e a s e d r e a d a b i l i t y and reduced ambiguity, and P r o f e s s o r Jack S i l v e r . I want t o e x p r e s s my g r a t i t u d e t o my good f r i e n d L a r r y C a r t e r , n o t o n l y f o r h i s e x c e l l e n t comments, b u t a l s o f o r l i s t e n i n g t o m e whenever I w a s e x c i t e d about a new i d e a . g r a t e f u l t o P r o f e s s o r s R.W. I am Robinson, Richard Karp, Robert Solovay, and Ralph McKenzie f o r h e l p f u l discussions. I am happy t o acknowledge my d e b t t o P r o f e s s o r Donald K r e i d e r , whose magic i n t h e classroom f i r s t made mathematical l o g i c f a s c i n a t i n g f o r m e , and t o P r o f e s s o r Herbert Enderton, whose t r u l y i n s p i r i n g t e a c h i n g t u r n e d m e towards w r i t i n g my t h e s i s i n l o g i c . F i n a l l y , I thank t h e N a t i o n a l S c i e n c e Foundation f o r t h e i r generous s u p p o r t .