

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 progfr81-prog-manual-cm71-00105-1e.pdf

		
				 FUJITSU MICROELECTRONICS
CONTROLLER MANUAL
CM71-00105-1E
FR81 Family
32-BIT MICROCONTROLLER
PROGRAMMING MANUAL
FR81 Family
32-BIT MICROCONTROLLER
PROGRAMMING MANUAL
For the information for microcontroller supports, see the following web site.
http://edevice.fujitsu.com/micom/en-support/
FUJITSU MICROELECTRONICS LIMITED
PREFACE
■ Objectives and targeted reader
FR81 Family is a 32 bit single chip microcontroller with CPU of new RISC Architecture as the core. FR81
Family has specifications that are optimum for embedded use requiring high performance CPU processing
power.
This manual explains the programming model and execution instructions for engineers developing a
product using this FR81 Family Microcontroller, especially the programmers who produce programs using
assembly language of the assembler for FR/FR80/FR81 Family.
For the rules of assembly grammar language and the method of use of Assembler Programs, kindly refer to
"FR Family Assembler Manual".
*: FR, the abbreviation of Fujitsu RISC controller, is a line of products of Fujitsu Microelectronics Limited.
Other company names and brand names are the trademarks or registered trademarks of their respective
owners.
■ Organization of this Manual
This manual consists of the following 7 chapters and 1 supplement.
CHAPTER 1 OVERVIEW OF FR81 FAMILY CPU
This chapter describes the features of FR81 Family CPU and its differences from hitherto FR Family.
CHAPTER 2 MEMORY ARCHITECTURE
This chapter describes Memory Architecture of the CPU of FR81 Family. Memory Architecture is the
method of allocation of memory space and access to this memory space.
CHAPTER 3 PROGRAMMING MODEL
This chapter describes registers in the CPU existing as programming model of FR81 Family CPU.
CHAPTER 4 RESET AND "EIT" PROCESSING
This chapter describes resetting of FR81 Family CPU and EIT processing. EIT processing is the generic
term for exceptions, interruption and trap.
CHAPTER 5 PIPELINE OPERATION
This chapter describes pipeline operation and delay divergence, the salient feature of FR81 Family CPU.
CHAPTER 6 INSTRUCTION OVERVIEW
This chapter describes outline of commands of FR81 Family CPU.
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
This chapter describes Execution Instructions of FR81 Family CPU in Reference Format in the
alphabetical order.
APPENDIX
It contains instruction list and instruction map of FR81 Family CPU.
i
•
•
•
•
•
•
•
The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU
MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When
you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of
such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of
the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU
MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any thirdparty's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no
liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of
information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or
damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
Copyright ©2009 FUJITSU MICROELECTRONICS LIMITED All rights reserved.
ii
CONTENTS
CHAPTER 1
1.1
1.2
OVERVIEW OF FR81 FAMILY CPU .. 1
Features of FR81 Family CPU .. 2
Changes from the earlier FR Family ... 4
CHAPTER 2
MEMORY ARCHITECTURE .. 7
2.1
Address Space ... 8
2.1.1
Direct Address Area ... 8
2.1.2
Vector Table Area .. 9
2.1.3
20-bit Addressing Area & 32-bit Addressing Area ... 11
2.2
Data Structure ... 12
2.2.1
Byte Data ... 12
2.2.2
Half Word Data .. 12
2.2.3
Word Data ... 12
2.2.4
Byte Order ... 13
2.3
Word Alignment .. 14
2.3.1
Program Access ... 14
2.3.2
Data Access ... 14
CHAPTER 3
PROGRAMMING MODEL .. 15
3.1
Register Configuration ..
3.2
General-purpose Registers ...
3.2.1
Configuration of General-purpose Registers ...
3.2.2
Special Usage of General-purpose Registers ..
3.2.3
Relation between Stack Pointer and R15 ..
3.3
Dedicated Registers ...
3.3.1
Configuration of Dedicated Registers ..
3.3.2
Program Counter (PC) ...
3.3.3
Program Status (PS) ...
3.3.4
System Status Register (SSR) ..
3.3.5
Interrupt Level Mask Register (ILM) ..
3.3.6
Condition Code Register (CCR) ..
3.3.7
System Condition Code Register (SCR) ..
3.3.8
Return Pointer (RP) ...
3.3.9
System Stack Pointer (SSP) ...
3.3.10 User Stack Pointer (USP) ..
3.3.11 Table Base Register (TBR) ...
3.3.12 Multiplication/Division Register (MDH, MDL) ...
3.3.13 Base Pointer (BP) ..
3.3.14 FPU Control Register (FCR) ..
3.3.15 Exception status register (ESR) ..
3.3.16 Debug Register (DBR) ...
3.4
Floating-point Register ..
16
17
17
18
18
19
19
20
20
21
22
23
25
26
27
28
29
30
32
32
37
39
40
iii
CHAPTER 4
RESET AND "EIT" PROCESSING .. 41
4.1
Reset ..
4.2
Basic Operations in EIT Processing ...
4.2.1
Types of EIT Processing and Prior Preparation ..
4.2.2
EIT Processing Sequence ...
4.2.3
Recovery from EIT Processing ..
4.3
Processor Operation Status ..
4.4
Exception Processing ...
4.4.1
Invalid Instruction Exception ..
4.4.2
Instruction Access Protection Violation Exception ...
4.4.3
Data Access Protection Violation Exception ..
4.4.4
FPU Exception ...
4.4.5
Instruction Break ..
4.4.6
Guarded Access Break ..
4.5
Interrupts ...
4.5.1
General interrupts ..
4.5.2
Non-maskable Interrupts (NMI) ...
4.5.3
Break Interrupt ...
4.5.4
Data Access Error Interrupt ...
4.6
Traps ...
4.6.1
INT Instructions ...
4.6.2
INTE Instruction ...
4.6.3
Step Trace Traps ..
4.7
Multiple EIT processing and Priority Levels ..
4.7.1
Multiple EIT Processing ...
4.7.2
Priority Levels of EIT Requests ...
4.7.3
EIT Acceptance when Branching Instruction is Executed ...
4.8
Timing When Register Settings Are Reflected ...
4.8.1
Timing when the interrupt enable flag (I) is requested ..
4.8.2
Timing of Reflection of Interrupt Level Mask Register (ILM) ...
4.9
Usage Sequence of General Interrupts ..
4.9.1
Preparation while using general interrupts ..
4.9.2
Processing during an Interrupt Processing Routine ..
4.9.3
Points of Caution while using General Interrupts ..
4.10 Precautions ...
4.10.1 Exceptions in EIT Sequence and RETI Sequence ..
4.10.2 Exceptions in Multiple Load and Multiple Store Instructions ...
4.10.3 Exceptions in Direct Address Transfer Instruction ...
CHAPTER 5
PIPELINE OPERATION ... 69
5.1
Instruction execution based on Pipeline ...
5.1.1
Integer Pipeline ..
5.1.2
Floating Point Pipeline ...
5.2
Pipeline Operation and Interrupt Processing ..
5.2.1
Mismatch in Acceptance and Cancellation of Interrupt ...
5.2.2
Method of preventing the mismatched pipeline conditions ..
5.3
Pipeline hazards ...
iv
42
43
43
44
45
46
48
48
49
49
50
51
52
53
53
55
55
56
57
57
57
58
60
60
61
62
63
63
64
65
65
66
66
67
67
67
67
70
70
72
73
73
73
74
5.3.1
Occurrence of data hazard ..
5.3.2
Register Bypassing ..
5.3.3
Interlocking ..
5.3.4
Interlocking produced by reference to R15 after Changing the Stack flag (S)
5.3.5
Structural Hazard ...
5.3.6
Control Hazard ..
5.4
Non-block loading ...
5.5
Delayed branching processing ...
5.5.1
Example of branching with non-delayed branching instructions ..
5.5.2
Example of processing of delayed branching instruction ..
CHAPTER 6
6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.4
6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
INSTRUCTION OVERVIEW ... 81
Instruction System .. 82
Integer Type Instructions ... 82
Floating Point Type Instructions .. 84
Instructions Formats ... 85
Instructions Notation Formats .. 85
Addressing Formats .. 86
Instruction Formats .. 87
Register designated Field .. 91
Data Format .. 93
Data Format Used by Integer Type Instructions (Common with All FR Family) 93
Format Used for Floating Point Type Instructions ... 94
Read-Modify-Write type Instructions ... 96
Branching Instructions and Delay Slot .. 97
Delayed Branching Instructions ... 97
Specific example of Delayed Branching Instructions ... 98
Non-Delayed Branching Instructions ... 99
Step Division Instructions ... 100
Signed Division .. 100
Unsigned Division .. 101
CHAPTER 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
74
74
75
75
75
76
77
78
78
79
DETAILED EXECUTION INSTRUCTIONS .. 103
ADD (Add 4bit Immediate Data to Destination Register) ..
ADD (Add Word Data of Source Register to Destination Register) ..
ADD2 (Add 4bit Immediate Data to Destination Register) ..
ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)
ADDN (Add Immediate Data to Destination Register) ..
ADDN (Add Word Data of Source Register to Destination Register) ...
ADDN2 (Add Immediate Data to Destination Register) ..
ADDSP (Add Stack Pointer and Immediate Data) ..
AND (And Word Data of Source Register to Data in Memory) ...
AND (And Word Data of Source Register to Destination Register) ..
ANDB (And Byte Data of Source Register to Data in Memory) ..
ANDCCR (And Condition Code Register and Immediate Data) ...
ANDH (And Halfword Data of Source Register to Data in Memory) ...
ASR (Arithmetic shift to the Right Direction) ...
105
107
109
111
113
115
117
119
121
123
125
127
129
131
v
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
vi
ASR (Arithmetic shift to the Right Direction) ...
ASR2 (Arithmetic shift to the Right Direction) ...
BANDH (And 4bit Immediate Data to Higher 4bit of Byte Data in Memory)
BANDL (And 4bit Immediate Data to Lower 4bit of Byte Data in Memory)
Bcc (Branch relative if Condition satisfied) ...
Bcc:D (Branch relative if Condition satisfied) ..
BEORH (Eor 4bit Immediate Data to Higher 4bit of Byte Data in Memory)
BEORL (Eor 4bit Immediate Data to Lower 4bit of Byte Data in Memory)
BORH (Or 4bit Immediate Data to Higher 4bit of Byte Data in Memory) ..
BORL (Or 4bit Immediate Data to Lower 4bit of Byte Data in Memory) ...
BTSTH (Test Higher 4bit of Byte Data in Memory) ...
BTSTL (Test Lower 4bit of Byte Data in Memory) ..
CALL (Call Subroutine) ...
CALL (Call Subroutine) ...
CALL:D (Call Subroutine) ...
CALL:D (Call Subroutine) ...
CMP (Compare Immediate Data and Destination Register) ...
CMP (Compare Word Data in Source Register and Destination Register)
CMP2 (Compare Immediate Data and Destination Register) ...
DIV0S (Initial Setting Up for Signed Division) ...
DIV0U (Initial Setting Up for Unsigned Division) ...
DIV1 (Main Process of Division) ...
DIV2 (Correction When Remain is zero) ..
DIV3 (Correction When Remain is zero) ..
DIV4S (Correction Answer for Signed Division) ...
DMOV (Move Word Data from Direct Address to Register) ...
DMOV (Move Word Data from Register to Direct Address) ...
DMOV (Move Word Data from Direct Address to Post Increment Register Indirect Address)
DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
DMOV (Move Word Data from Direct Address to Pre Decrement Register Indirect Address)
DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
DMOVB (Move Byte Data from Direct Address to Register) ..
DMOVB (Move Byte Data from Register to Direct Address) ..
DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect Address)
DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct Address)
DMOVH (Move Halfword Data from Direct Address to Register) ...
DMOVH (Move Halfword Data from Register to Direct Address) ...
DMOVH (Move Halfword Data from Direct Address to Post Increment Register Indirect Address)
...
DMOVH (Move Halfword Data from Post Increment Register Indirect Address to Direct Address)
...
ENTER (Enter Function) ...
EOR (Exclusive Or Word Data of Source Register to Data in Memory) ...
EOR (Exclusive Or Word Data of Source Register to Destination Register)
EORB (Exclusive Or Byte Data of Source Register to Data in Memory) ..
EORH (Exclusive Or Halfword Data of Source Register to Data in Memory)
EXTSB (Sign Extend from Byte Data to Word Data) ..
EXTSH (Sign Extend from Byte Data to Word Data) ..
133
135
137
139
141
143
145
147
149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
201
203
205
207
209
211
213
215
217
219
221
223
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98
7.99
7.100
7.101
7.102
7.103
7.104
7.105
7.106
7.107
EXTUB (Unsign Extend from Byte Data to Word Data) ..
EXTUH (Unsign Extend from Byte Data to Word Data) ..
FABSs (Single Precision Floating Point Absolute Value) ...
FADDs (Single Precision Floating Point Add) ...
FBcc (Floating Point Conditional Branch) ...
FBcc:D (Floating Point Conditional Branch with Delay Slot) ..
FCMPs (Single Precision Floating Point Compare) ..
FDIVs (Single Precision Floating Point Division) ..
FiTOs (Convert from Integer to Single Precision Floating Point) ..
FLD (Single Precision Floating Point Data Load) ...
FLD (Single Precision Floating Point Data Load) ...
FLD (Single Precision Floating Point Data Load) ...
FLD (Single Precision Floating Point Data Load) ...
FLD (Single Precision Floating Point Data Load) ...
FLD (Load Word Data in Memory to Floating Register) ...
FLDM (Single Precision Floating Point Data Load to Multiple Register) ..
FMADDs (Single Precision Floating Point Multiply and Add) ...
FMOVs (Single Precision Floating Point Move) ..
FMSUBs (Single Precision Floating Point Multiply and Subtract) ...
FMULs (Single Precision Floating Point Multiply) ...
FNEGs (Single Precision Floating Point sign reverse) ...
FSQRTs (Single Precision Floating Point Square Root) ..
FST (Single Precision Floating Point Data Store) ...
FST (Single Precision Floating Point Data Store) ...
FST (Single Precision Floating Point Data Store) ...
FST (Single Precision Floating Point Data Store) ...
FST (Single Precision Floating Point Data Store) ...
FST (Store Word Data in Floating Point Register to Memory) ..
FSTM (Single Precision Floating Point Data Store from Multiple Register)
FsTOi (Convert from Single Precision Floating Point to Integer) ..
FSUBs (Single Precision Floating Point Subtract) ..
INT (Software Interrupt) ..
INTE (Software Interrupt for Emulator) ...
JMP (Jump) ..
JMP:D (Jump) ...
LCALL (Long Call Subroutine) ..
LCALL:D (Long Call Subroutine) ..
LD (Load Word Data in Memory to Register) ...
LD (Load Word Data in Memory to Register) ...
LD (Load Word Data in Memory to Register) ...
LD (Load Word Data in Memory to Register) ...
LD (Load Word Data in Memory to Register) ...
LD (Load Word Data in Memory to Register) ...
LD (Load Word Data in Memory to Register) ...
LD (Load Word Data in Memory to Program Status Register) ...
LDI:20 (Load Immediate 20bit Data to Destination Register) ...
LDI:32 (Load Immediate 32 bit Data to Destination Register) ..
225
227
229
230
232
234
236
238
240
242
243
244
245
246
247
248
250
252
253
255
257
258
259
260
261
262
263
264
265
267
269
271
273
275
277
279
280
281
283
285
287
289
291
292
294
296
298
vii
7.108
7.109
7.110
7.111
7.112
7.113
7.114
7.115
7.116
7.117
7.118
7.119
7.120
7.121
7.122
7.123
7.124
7.125
7.126
7.127
7.128
7.129
7.130
7.131
7.132
7.133
7.134
7.135
7.136
7.137
7.138
7.139
7.140
7.141
7.142
7.143
7.144
7.145
7.146
7.147
7.148
7.149
7.150
7.151
7.152
7.153
7.154
viii
LDI:8 (Load Immediate 8bit Data to Destination Register) ...
LDM0 (Load Multiple Registers) ...
LDM1 (Load Multiple Registers) ...
LDUB (Load Byte Data in Memory to Register) ..
LDUB (Load Byte Data in Memory to Register) ..
LDUB (Load Byte Data in Memory to Register) ..
LDUB (Load Byte Data in Memory to Register) ..
LDUH (Load Halfword Data in Memory to Register) ...
LDUH (Load Halfword Data in Memory to Register) ...
LDUH (Load Halfword Data in Memory to Register) ...
LDUH (Load Halfword Data in Memory to Register) ...
LEAVE (Leave Function) ..
LSL (Logical Shift to the Left Direction) ..
LSL (Logical Shift to the Left Direction) ..
LSL2 (Logical Shift to the Left Direction) ..
LSR (Logical Shift to the Right Direction) ...
LSR (Logical Shift to the Right Direction) ...
LSR2 (Logical Shift to the Right Direction) ...
MOV (Move Word Data in Source Register to Destination Register) ...
MOV (Move Word Data in Source Register to Destination Register) ...
MOV (Move Word Data in Program Status Register to Destination Register)
MOV (Move Word Data in Source Register to Destination Register) ...
MOV (Move Word Data in Source Register to Program Status Register)
MOV (Move Word Data in General Purpose Register to Floating Point Register)
MOV (Move Word Data in Floating Point Register to General Purpose Register)
MUL (Multiply Word Data) ..
MULH (Multiply Halfword Data) ..
MULU (Multiply Unsigned Word Data) ..
MULUH (Multiply Unsigned Halfword Data) ...
NOP (No Operation) ...
OR (Or Word Data of Source Register to Data in Memory) ..
OR (Or Word Data of Source Register to Destination Register) ...
ORB (Or Byte Data of Source Register to Data in Memory) ...
ORCCR (Or Condition Code Register and Immediate Data) ..
ORH (Or Halfword Data of Source Register to Data in Memory) ...
RET (Return from Subroutine) ..
RET:D (Return from Subroutine) ..
RETI (Return from Interrupt) ...
SRCH0 (Search First Zero bit position distance From MSB) ..
SRCH1 (Search First One bit position distance From MSB) ..
SRCHC (Search First bit value change position distance From MSB) ...
ST (Store Word Data in Register to Memory) ...
ST (Store Word Data in Register to Memory) ...
ST (Store Word Data in Register to Memory) ...
ST (Store Word Data in Register to Memory) ...
ST (Store Word Data in Register to Memory) ...
ST (Store Word Data in Register to Memory) ...
300
302
304
306
308
310
312
313
315
317
319
320
322
324
326
328
330
332
334
336
338
340
342
344
345
346
348
350
352
354
356
358
360
362
364
366
368
370
373
375
377
379
381
383
385
387
389
7.155
7.156
7.157
7.158
7.159
7.160
7.161
7.162
7.163
7.164
7.165
7.166
7.167
7.168
7.169
7.170
7.171
ST (Store Word Data in Register to Memory) ...
ST (Store Word Data in Program Status Register to Memory) ...
STB (Store Byte Data in Register to Memory) ..
STB (Store Byte Data in Register to Memory) ..
STB (Store Byte Data in Register to Memory) ..
STB (Store Byte Data in Register to Memory) ..
STH (Store Halfword Data in Register to Memory) ...
STH (Store Halfword Data in Register to Memory) ...
STH (Store Halfword Data in Register to Memory) ...
STH (Store Halfword Data in Register to Memory) ...
STILM (Set Immediate Data to Interrupt Level Mask Register) ..
STM0 (Store Multiple Registers) ...
STM1 (Store Multiple Registers) ...
SUB (Subtract Word Data in Source Register from Destination Register)
SUBC (Subtract Word Data in Source Register and Carry bit from Destination Register)
SUBN (Subtract Word Data in Source Register from Destination Register)
XCHB (Exchange Byte Data) ..
390
392
394
396
398
400
401
403
405
407
408
410
412
414
416
418
420
APPENDIX ... 423
APPENDIX A
Instruction Lists ..
A.1 Meaning of Symbols ...
A.1.1
Mnemonic and Operation Columns ...
A.1.2
Operation Column ...
A.1.3
Format Column ..
A.1.4
OP Column ..
A.1.5
CYC Column ..
A.1.6
FLAG Column ..
A.1.7
RMW Column ..
A.1.8
Reference Column ...
A.2 Instruction Lists ..
A.3 List of Instructions that can be positioned in the Delay Slot ...
APPENDIX B
Instruction Maps ...
B.1 Instruction Maps ...
B.2 Extension Instruction Maps ..
APPENDIX C
Supplemental Explanation about FPU Exception Processing
C.1 Conformity with IEEE754-1985 Standard ..
C.2 FPU Exceptions ...
C.3 Round Processing ..
424
425
425
430
431
431
432
433
433
433
434
448
450
451
452
455
455
456
458
INDEX... 461
ix
x
CHAPTER 1
OVERVIEW OF FR81 FAMILY
CPU
This chapter describes the features of FR81 Family CPU
and the changes from the earlier FR Family.
1.1 Features of FR81 Family CPU
1.2 Changes from the earlier FR Family
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
1
CHAPTER 1 OVERVIEW OF FR81 FAMILY CPU
1.1
1.1
FR81 Family
Features of FR81 Family CPU
FR81 Family CPU is meant for 32 bit RISC controller having proprietary FR81
architecture of Fujitsu. The FR81 architecture is optimized for microcontrollers by using
the FR family instruction set and including improved floating-point, memory protection,
and debug functions.
■ General-purpose Register Architecture
It is load/store architecture based on 16 numbers of 32-bit General-purpose registers R0 to R15. The
architecture also has instructions that are suitable for embedded uses such as memory to memory transfer,
bit processing etc.
■ Linear Space for 32-bit (4G bytes) addressing
Address space is controlled for each byte unit. Linear specification of Address is made based on 32-bit
address.
■ 16-bit fixed instruction length (excluding immediate data transfer instructions)
It is 16-bit fixed length instruction format excluding 32/20-bit immediate data transfer instruction. It
enables securing high object efficiency.
■ Floating point calculation unit (FPU)
FR81 Family supports single precision floating point calculation (IEEE754 compliant). It has 16 pieces of
32-bit floating point registers from FR0 to FR15. A single instruction can execute a product-sum operation
type calculation (multiplication, or addition/subtraction). The instruction length of a floating point type
instruction is 32 bits
■ Pipeline Configuration
High speed one-instruction one-cycle processing of the basic instructions based on 5-stage pipeline
operation can be carried out. Pipeline has following 5-stage configuration.
• IF Stage: Load Instruction
• ID Stage: Interpret Instruction
• EX Stage: Execute Instruction
• MA Stage: Memory Access
• WB Stage: Write to register
FR81 Family has the 6-stage pipeline configuration to execute floating point type instructions.
■ Non-blocking load
In FR81 Family, non-blocking loading is carried out making execution of LD (load) instructions efficient.
A maximum of four LD (Load) instructions can be issued in anticipation. In non-blocking, succeeding
instruction is executed without waiting for the completion of a load instruction, in case general-purpose
register storing the value of load instruction is not referred by the succeeding instruction.
2
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 1 OVERVIEW OF FR81 FAMILY CPU
1.1
FR81 Family
■ Harvard Architecture
An instruction can be executed efficiently based on Harvard Architecture where instruction bus for
instruction access and data bus for data access are independent.
■ Multiplication Instruction
Multiplication/division computation can be executed at the instruction level based on an in-built multiplier.
32-bit multiplication, signed or unsigned, is executed in 5 cycles. 16-bit multiplication is executed in 3
cycles.
■ Step Division Instruction
32-bit ÷ 32-bit division, signed or unsigned, can be executed based on combination of step division
instructions.
■ Direct Addressing Instruction for peripheral access
Address of 256 words/ 256 half-words/ 256 bytes from the top of address space (low order address) can be
directly specified. It is convenient for address specification in the I/O Register of the peripheral resource.
■ High-speed interrupt processing complete within 6 cycles
Acceptance of interruption is processed at a high speed within 6 cycles. A 16-level priority order is given to
the request for interruption. Masking in line with the priority order can be carried out based on interruption
mask level of the CPU.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
3
CHAPTER 1 OVERVIEW OF FR81 FAMILY CPU
1.2
1.2
FR81 Family
Changes from the earlier FR Family
FR81 Family has partial addition and deletion of instructions and operational changes
from the earlier FR Family (FR30 Family, FR60 Family etc.).
■ Instructions that cannot be used in FR81/FR80 Family
Following instructions cannot be used in FR81/FR80 Family.
• Coprocessor Instructions (COPOP, COPLD, COPST, COPSV)
• Resource Instructions (LDRES, STRES)
Undefined Instruction Exceptions and not the Coprocessor Error Trap occur when execution of
Coprocessor Instruction is attempted. Undefined Instruction Exceptions occur when execution of Resource
Instruction is attempted.
■ Instructions added to FR81/FR80 Family
Following instructions have been added in FR81/FR80 Family. These instructions have replaced the bit
search module embedded as a peripheral function.
• SRCH1 (Bit Search Instruction Detection of First "1" bit from MSB to LSB)
• SRCH0 (Bit Search Instruction Detection of first "0" bit from MSB to LSB)
• SRCHC (Bit Search Instruction Detection of Change point from MSB to LSB)
see "Chapter 7 Detailed Execution Instructions" and "Appendix A 2 Instruction Lists" for operation of Bit
Search Instructions.
■ Adding floating point type instructions
Floating point type instructions and 16 pieces of 32-bit floating point registers (FR0 to FR15) have been
added in FR81 Family.
■ Privilege mode
Privilege mode has been added in FR81 family. Privilege mode and user mode are two CPU operation
modes.
■ Exception processing
Exception processing has been improved for FR81 Family. The following exceptions have been added.
• FPU exception
• Instruction access protection violation exception
• Data access protection violation exception
• Invalid instruction exception (Changing definition from undefined instruction exception)
• Data access error exception
• FPU absence exception
4
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
CHAPTER 1 OVERVIEW OF FR81 FAMILY CPU
1.2
■ Operation of INTE Instructions during Step Execution
In FR81 Family, trap processing is initiated based on INTE instructions even during step execution based
on step trace trap.
In hitherto FR Family, trap processing is not initiated based on INTE instructions during step execution.
For trap processing based on step trace trap and INTE instructions, see “4.6 Traps”.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
5
CHAPTER 1 OVERVIEW OF FR81 FAMILY CPU
1.2
6
FUJITSU MICROELECTRONICS LIMITED
FR81 Family
CM71-00105-1E
CHAPTER 2
MEMORY ARCHITECTURE
This chapter explains the memory architecture of FR81
Family CPU. Memory architecture refers to allocation of
memory spaces and methods used to access memory.
2.1 Address Space
2.2 Data Structure
2.3 Word Alignment
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
7
CHAPTER 2 MEMORY ARCHITECTURE
2.1
2.1
FR81 Family
Address Space
The address space of FR81 Family CPU is 32 bits (4Gbyte).
CPU controls the address spaces in byte units. An address on the address space is accessed from the CPU
by specifying a 32-bit value. Address space is indicated in Figure 2.1-1.
Figure 2.1-1 Address space
Direct address area
General addressing
0000 0000
H
0000 0100
H
0000 0200
H
0000 0400
H
Byte data
Half-word data
Word data
000F FC00 H
0010 0000 H
000F FC00 H
Vector table
initial area
TBR
TBR initial value
Program or data area
FFFF FFFF H
Address space is also called memory space. It is a logical address space as seen from the CPU. Addresses
cannot be changed. Logical address as seen from the CPU, and the physical address actually allocated to
memory or I/O are identical.
2.1.1
Direct Address Area
In the lower address in the address space, there is a direct address area.
Direct address area directly specifies an address in the direct address specification instruction. This area
accesses only based on operand data in the instruction without the use of general-purpose registers. The
size of the address area that can be specified by direct addressing varies according to the data type being
accessed.
The correspondence between data type and area specified by direct address is as follows.
• byte data access: 0000 0000H to 0000 00FFH
• half-word data access: 0000 0000H to 0000 01FFH
• word data access: 0000 0000H to 0000 03FFH
The method of using the 8-bit address data contained in the operand of instructions that specify direct
addresses is as follows:
8
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 2 MEMORY ARCHITECTURE
2.1
FR81 Family
• byte data access: Lower 8 bits of the address are used as it is
• half word data access: Value is doubled and used as lower 9 bits of the address
• word data access: Value is quadrupled and used as lower 10 bits of the address
The relation between data types specified by direct address and memory address is shown in Figure 2.1-2.
Figure 2.1-2 Relation between data type specified by direct address and memory address
[Example 1] Byte data: DMOVB R13,@58H
Memory space
Object code:1A58H
58H
No data shift
R13 12345678
0000 0058H
[Example 2] Half-word data: DMOVH R13,@58H
Right 1-bit shift
Object code:192CH
Memory space
Left 1-bit shift
58H
0000 0058H
R13 12345678
[Example 3] Word data: DMOV R13,@58H
Right 2-bit shift
Object code:1816H
5678
Memory space
Left 2-bit shif t
58H
R13 12345678
2.1.2
78
1345678
0000 0058H
Vector Table Area
An area of 1Kbyte from the address shown in the Table Base Register (TBR) is called the EIT Vector Table
Area.
Table Base Register (TBR) represents the top address of the vector table area. In this vector table area, the
entry addresses of EIT processing (Exception processing, Interrupt processing, Trap processing) are
described. The relation between Table Base Register (TBR) and vector table area is shown in Figure 2.1-3.
Figure 2.1-3 Relation between Table Base Register (TBR) and Vector Table Area addresses
Memory space
Number
EIT source
0000 0000 H
TBR
1 Kbyte
FFFF FFFFH
CM71-00105-1E
Vector
table
area
FF H
000H
Entry address for INT instruction
FEH
004H
Entry address for INT instruction
FDH
008H
Entry address for INT instruction
FCH
00CH
Entry address for INT instruction
00H
3FCH
Entry addressfor reset processing
FUJITSU MICROELECTRONICS LIMITED
9
CHAPTER 2 MEMORY ARCHITECTURE
2.1
FR81 Family
As a result of reset, the value of Table Base Register (TBR) is initialized to 000F FC00H, and the range of
vector table area extends from 000F FC00H to 000F FFFFH. By rewriting the Table Base Register (TBR),
the vector table area can be allocated to any desired location.
A vector table is composed of entry addresses for each EIT processing programs. Each vector table
contains values whose use is fixed according to the CPU architecture, and values that vary according to the
type of built-in peripheral functions. The structure of vector table area is shown in Table 2.1-1.
Table 2.1-1 Structure of Vector Table Area
Offset from
TBR
Vector
number
Modeldependence
3FCH
3F8H
3F4H
3F0H
3ECH
3E8H
00H
01H
02H
03H
04H
05H
No
No
No
No
No
No
3E4H
06H
No
3E0H
07H
No
3DCH
3D8H
3D4H
3D0H
3CCH
3C8H
3C4H
3C0H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
No
No
No
No
No
No
No
No
3BCH
to
304H
0FH
to
3EH
Yes
300H
2FCH
2F8H
2F4H
to
000H
3FH
40H
41H
42H
to
FFH
EIT value description
No
No
No
reset
system reserved
system reserved
system reserved
system reserved
FPU exception
Instruction access protection
violation exception
Data access protection
violation exception
Data access error interrupt
INTE instruction
Instruction break
system reserved
Step trace trap
system reserved
Invalid instruction exception
NMI request
General interrupt
(used in external interrupt,
interrupt from peripheral
function)
General interrupts
system reserved
system reserved
No
Used in INT instruction
Remarks
Disabled
Disabled
Disabled
For use in the emulator
Refer to the Hardware Manual for each
model
Used in Delayed interrupt
Used in REALOS
Used in REALOS
For vector tables of actual models, refer to the hardware manuals for each model.
10
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 2 MEMORY ARCHITECTURE
2.1
FR81 Family
2.1.3
20-bit Addressing Area & 32-bit Addressing Area
The lower portion of the address space extending from 0000 0000H to 000F FFFFH (1Mbyte) will be the
20-bit addressing area. The overall address space from 0000 0000H to FFFF FFFFH will be 32-bit
addressing space.
If all the program locations and data locations are positioned within the 20-bit addressing area, a compact
and high-speed program can be realized as compared to a 32-bit addressing area.
In a 20-bit addressing area, as the address values are within 20 bits, the LDI:20 instruction can be used for
immediate loading of address information. The instruction length (Code size) of LDI:20 instruction is
4bytes. By using LDI:20 instruction, the program becomes more compact than when using LDI:32
instruction of instruction length 6bytes.
Example of 20-bit Addressing
Code size
LDI:20
#label20,Ri
; 4 bytes
JMP
@Ri
; 2 bytes
Total 6 bytes
Example of 32-bit Addressing
Code size
LDI:32
#label32,Ri
; 6 bytes
JMP
@Ri
; 2 bytes
Total 8 bytes
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
11
CHAPTER 2 MEMORY ARCHITECTURE
2.2
2.2
FR81 Family
Data Structure
FR81 Family CPU has three data types namely byte data (8-bits), half word data (16-bits)
and word data (32-bits). The byte order is big endian.
2.2.1
Byte Data
This is a data type having 8 bits as unit. Bit order is little endian, MSB side becomes bit7 and LSB side
becomes bit0. The structure of byte data is shown in Figure 2.2-1.
Figure 2.2-1 Structure of byte data
MSB bit
2.2.2
7
6
5
4
3
2
1
0
LSB
Half Word Data
This is a data type having 16 bits (2byte) as unit. Bit order is little endian, MSB side is bit15 while LSB
side is bit0. Bit15 to bit8 of MSB side represent the higher bytes while bit7 to bit0 of LSB side represent
the lower bytes. The structure of half word data is shown in Figure 2.2-2.
Figure 2.2-2 Structure of Half Word Data
MSB
bit 15
LSB
14
13
12
11
10
9
8
7
6
5
4
Higher bytes
2.2.3
3
2
1
0
Lower bytes
Word Data
This is a data type having 32 bits (4byte) as unit. Bit order is little endian, MSB side is bit31 while LSB
side is bit0. Bit31 to bit16 of the MSB side become the higher half word, while bit15 to bit0 of the LSB
side become the lower half word. The structure of word data is shown in Figure 2.2-3.
Figure 2.2-3 Structure of Word Data
MSB
bit31
LSB
24 23
16 15
Higher half word
12
87
0
Lower half word
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 2 MEMORY ARCHITECTURE
2.2
FR81 Family
2.2.4
Byte Order
The byte order of FR81 Family CPU is big endian. When word data or half word data are allocated to
address spaces, the higher bytes are placed in the lower address side while the lower bytes are placed in the
higher address side. The arrangement of big endian byte data is shown in Figure 2.2-4.
For example, if a word data was written on the memory (RAM) at address location 0004 1234H of the
memory space, the highest byte will be stored at location 0004 1234H while the lowest byte will be stored
at location byte 0004 1237H.
Figure 2.2-4 Big Endian Byte Orde
Address
Byte
MSB
Half word
MSB
Word
MSB
LSB
Address
Address +1
Higher byte
Lower byte
Address
Address +1
Address +2
Address +3
Highest byte
Lowest byte
Higher half word
CM71-00105-1E
LSB
LSB
Lower half word
FUJITSU MICROELECTRONICS LIMITED
13
CHAPTER 2 MEMORY ARCHITECTURE
2.3
2.3
FR81 Family
Word Alignment
The data type used determines restrictions on the designation of memory addresses
(word alignment).
2.3.1
Program Access
Unit of instruction length is half word (2byte) and all instructions are allocated to addresses which are
multiples of 2 (2n location).
At the time of execution of the instruction, bit0 of the program counter (PC) automatically becomes "0",
and is always at an even address. In a branched instruction, even if an odd address is generated as a result
of branch destination address calculation, the bit0 of the address will be assigned "0" and branched to an
even address.
There is no address exception in program access.
2.3.2
Data Access
There are following restrictions on addresses for data access depending upon the data type used.
Word data
Data is assigned to addresses that are multiples of 4 (4n location). The restriction of multiples of 4
on addresses is called ‘word boundary’. If the specified address is not a multiple of 4, the lower two
bits of the address are set to "00" forcibly.
Half-word data
Data is assigned to addresses that are multiples of 2 (2n locations). The restriction of multiples of 2
on addresses is called ‘half-word boundary’. If the specified address is not a multiple of 2, the lower
1 bit of the address is set to "0" forcibly.
Byte data
There is no restriction on allocation of addresses.
During word and half-word data access, condition that lower bit of an address has to be "0" is applicable
only for the result of computation of an effective address. Values still under calculation are used as they
are.
14
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3
PROGRAMMING MODEL
This chapter describes the programming model of FR81
Family CPU.
3.1 Register Configuration
3.2 General-purpose Registers
3.3 Dedicated Registers
3.4 Floating-point Register
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
15
CHAPTER 3 PROGRAMMING MODEL
3.1
3.1
FR81 Family
Register Configuration
FR81 Family CPU uses three types of registers, namely, general-purpose registers, dedicated
registers and floating point registers.
General-purpose registers are registers that store computation data and address information. They comprise
16 registers from R0 to R15. Dedicated registers are registers that store information for specific
applications.
Floating point registers are registers that store calculation information for floating point calculations. They
are comprised of 16 registers from FR0 to FR15.
16
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.2
FR81 Family
3.2
General-purpose Registers
General-purpose registers are used for storing results of various calculations, as well
as information about addresses to be used as pointers for memory access.
3.2.1
Configuration of General-purpose Registers
General-purpose registers has sixteen each 32 bits in length. General-purpose registers have names R0 to
R15.
In case of general instructions, the general-purpose registers can use without any distinction. In some
instructions, three registers namely R13, R14 and R15 have special usages.
Figure 3.2-1 shows the configuration and initial values of general-purpose registers.
Figure 3.2-1 Configuration and initial values of general-purpose registers
32 bits
[Initial value]
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
AC
R14
FP
R15
SP
R0 to R14 are not initialized as a result of reset. R15 is initialized 0000 0000H as a result of reset.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
17
CHAPTER 3 PROGRAMMING MODEL
3.2
3.2.2
FR81 Family
Special Usage of General-purpose Registers
General-purpose registers R13 to R15, besides being used as other general-purpose registers, are used in the
following way in some instructions.
R13 (Virtual Accumulator: AC)
• Base address register for load/store to memory instructions
[Example: LD @(R13,Rj), Ri]
• Accumulator for direct address designation
[Example: DMOV @dir10, R13]
• Memory pointer for direct address designation
[Example: DMOV @dir10,@R13+]
R14 (Frame Pointer: FP)
• Index register for load/store to memory instructions
[Example: LD @(R14,disp10), Ri]
• Frame pointer for reserve/release of dynamic memory area
[Example: ENTER #u10]
R15 (Stack Pointer: SP)
• Index register for load/store to memory instructions
[Example: LD @(R15,udisp6), Ri]
• Stack pointer
[Example: LD @R15+,Ri]
• Stack pointer for reserve/release of dynamic memory area
[Example: ENTER #u10]
3.2.3
Relation between Stack Pointer and R15
R15 functions as an indirect register. Physically it becomes either the system stack pointer (SSP) or user
pointer (USP) for dedicated registers. When the notation R15 is used in an instruction, this register will
function as USP if the stack flag (S) is "1" and as SSP if the stack flag is "0". Table 3.2-1 shows the
correlation between general-purpose register R15 and stack pointer.
When something is written on R15 as a general-purpose register, it is automatically written onto the system
stack pointer (SSP) or user stack pointer (USP) according to the value of stack flag (S).
Table 3.2-1 Correlation between General-purpose Register "R15" and Stack Pointer
General-purpose register
R15
S Flag
1
0
Stack pointer
User stack pointer (USP)
System stack pointer (SSP)
Stack flag (S) is present in the condition code register (CCR) section of the program status (PS).
18
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
3.3
Dedicated Registers
FR81 Family CPU has dedicated registers reserved for special usages.
3.3.1
Configuration of Dedicated Registers
Dedicated registers are used for special purposes. The following dedicated registers are available.
• Program counter (PC)
• Program status (PS)
• Return pointer (RP)
• System stack pointer (SSP)
• User stack pointer (USP)
• Table base register (TBR)
• Multiplication/Division Register (MDH, MDL)
• Base Pointer (BP)
• FPU control register (FCR)
• Exception status register (ESR)
• Debug register (DBR)
Figure 3.3-1 shows the configuration and initial values of dedicated registers.
Figure 3.3-1 Configuration and Initial Values of Dedicated Registers
32 bits
[Initial value]
Program counter
PC
Program status
PS
Table base register
Return pointer
ILM
-
SCR
CCR
TBR
RP
System stack pointer
SSP
User stack pointer
USP
Multiplication/Division
registers
Base Pointer
CM71-00105-1E
-
MDH
MDL
BP
FPU control register
FCR
Except status register
ESR
Debug register
DBR
FUJITSU MICROELECTRONICS LIMITED
19
CHAPTER 3 PROGRAMMING MODEL
3.3
3.3.2
FR81 Family
Program Counter (PC)
Program counter (PC) is a 32-bit register that indicates the address containing the instruction that is
currently executing.
Figure 3.3-2 shows the bit configuration of program counter (PC).
Figure 3.3-2 Program Counter (PC) Bit Configuration
bit0
bit31
Initial value
XXXX XXXX H
The value of the lowest bit (LBS) of the program counter (PC) is always read as “0”. Even if "1" is written
to it as a result of address calculation of branching destination, the lowest bit of branching address will be
treated as "0". When the program counter (PC) changes after the execution of an instruction and it indicates
the next instruction, the lowest bit is always read as "0".
Following a reset, the contents of the Program Counter (PC) are set to the value (reset entry address)
written in the reset vector of the vector table. As the table base register (TBR) is initialized first by reset,
the address of the reset vector will be 000F FFFCH.
3.3.3
Program Status (PS)
Program status (PS) is a 32-bit register that indicates the status of program execution. It sets the interrupt
enable level, controls the program trace break function in the CPU, and indicates the status of instruction
execution.
Program status (PS) consists of the following 4 parts.
• System status register (SSR)
• Interrupt level mask register (ILM)
• System condition code register (SCR)
• Condition code register (CCR)
Figure 3.3-3 shows the bit configuration of program status (PS).
Figure 3.3-3 Program status (PS) Bit Configuration
bit31 bit27
SSR
Reserved
bit20
bit15
ILM
bit10
Reserved SCR
bit7
bit0
CCR
The reserved bits of program status (PS) are all reserved for future expansion. The read value of reserved
bits is always "0". Write values should always be written as "0".
20
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
3.3.4
System Status Register (SSR)
System status register (SSR) is a 4-bit register that indicates the state of the CPU. It lies between bit 31 and
bit 28 of the program status (PS).
Figure 3.3-4 shows the bit configuration of system status register (SSR).
Figure 3.3-4 System Status Register (SSR) Bit Configuration
bit31
DBG
bit30
bit29
bit28
UM FPU MPU
Initial value
0011B
The contents of each bit are described below.
[bit31] DBG: Debug State Flag
This flag indicates the debugging state during debugging. The flag bit is turned to "1" when the
system shifts to a debug state, and turned to "0" when moving from the debug state with a RETI
instruction. This cannot be rewritten using instructions such as the MOV instruction.
The initial value of the debug state flag (DBG) after a reset is "0".
[bit30] UM: User Mode Flag
This flag indicates the user mode. The flag bit is turned to "1" when the system is shifted to user
mode by the execution of a RETI instruction, and cleared to "0" when shifted to privilege mode with
EIT. Upon execution of the RETI instruction, if bit 30 of the PS value is set to "1", a value returned
from memory, the system shifts to user mode. This cannot be rewritten using instructions such as the
MOV instruction.
The initial value of the user mode flag (UM) after a reset is "0".
[bit29] FPU: FPU presence flag
This flag indicates that the floating point calculation unit (FPU) is installed. The flag bit is set to "1"
if a FPU is installed, and "0" if it is not the case. This bit cannot be rewritten.
Table 3.3-1 FPU presence flag (FPU) in the system status register
flag
FPU
value
0
1
Meaning
With FPU (installed)
Without FPU (not installed)
[bit28] MPU: MPU presence flag
This flag indicates that the memory protection unit (MPU) is installed. The flag bit is set to "1" if a
MPU is installed, and "0" if it is not the case. This bit cannot be rewritten.
Table 3.3-2 MPU presence flag (MPU) in the system status register
flag
MPU
CM71-00105-1E
value
0
1
Meaning
With MPU (installed)
Without MPU (not installed)
FUJITSU MICROELECTRONICS LIMITED
21
CHAPTER 3 PROGRAMMING MODEL
3.3
3.3.5
FR81 Family
Interrupt Level Mask Register (ILM)
Interrupt level mask register (ILM) is a 5-bit register used to store the interrupt level mask value. It lies
between bit20 to bit16 of the program status (PS).
Figure 3.3-5 shows the bit configuration of interrupt level mask register (ILM).
Figure 3.3-5 Interrupt Level Mask Register (ILM) Bit Configuration
bit20 bit19 bit18 bit17 bit16
Initial value
ILM4 ILM3 ILM2 ILM1 ILM0
01111B
The value stored in interrupt level mask register (ILM), is used in the level mask of an interrupt. When the
interrupt enable flag (I) is "1", the value of interrupt level mask register (ILM) is compared to the level of
the currently requested interrupt. If the value of interrupt level mask register (ILM) is greater (interrupt
level is stronger), interrupt requested is accepted. Figure 3.3-6 shows the functions of interrupt level mask.
Figure 3.3-6 Functions of Interrupt Level Mask
FR81 family CPU
ICR
Peripheral
Interrupt
request
ILM
1
29
25
Comp
29>25
AND
Interrupt controller
Interrupt activated
Activation OK
The values of interrupt level range from 0(00000B) to 31(11111B). The smaller the value of interrupt level,
the stronger it is, and the larger the value, the weaker it is. 0(00000B) is the strongest interrupt level, while
31(11111B) is the weakest.
There are following restrictions on values of the interrupt level mask register (ILM) that can be set from a
program.
• When the value of interrupt level mask register (ILM) lies between 0(00000B) to 15(01111B), only values
from 0(00000B) to 31(11111B) can be set.
• When the value of interrupt level mask register (ILM) lies between 16(10000B) to 31(11111B), only
values between 16(10000B) to 31(11111B) can be set.
• When setting of values between 0(00000B) to 15(01111B) is attempted, 16 is added on automatically and
values between 16(10000B) to 31(11111B) are set.
The interrupt level mask register (ILM) is initialized to 15(01111B) following a reset. If an interrupt request
is accepted, the interrupt level corresponding to that interrupt is set in the interrupt level mask register
(ILM).
For setting a value in interrupt level mask register (ILM) from a program, the STILM instruction is used.
22
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
3.3.6
Condition Code Register (CCR)
Condition code register (CCR) is an 8-bit register that indicates the status of instruction execution. It lies
between bit7 to bit0 of the program status (PS).
Figure 3.3-7 shows the bit configuration of condition code register (CCR).
Figure 3.3-7 Condition Code Register (CCR) Bit Configuration
bit7
CCR
bit6
bit5
bit4
bit3
bit2
bit1
bit0
S
I
N
Z
V
C
Reserved Reserved
Initial value
--00XXXX B
The contents of each bit are described below.
[bit7, bit6] Reserved
These are reserved bits. Read value is always "0". Write value should always be "0".
[bit5] S: Stack Flag
This flag selects the stack pointer to be used as general-purpose register R15. When the value of
stack flag (S) is "0", system stack pointer (SSP) is used, while when the value is "1", user stack
pointer (USP) is used.
Table 3.3-3 Stack Flag (S) of Condition Code Register
flag
S
value
0
1
Meaning
System stack pointer (SSP)
User stack pointer (USP)
If an EIT operation is accepted, stack flag (S) automatically becomes "0". However, the value of the
condition code register (CCR) saved in system stack is the value which is later replaced by "0".
The initial value of stack flag (S) after a reset is "0".
[bit4] I: Interrupt Enable Flag
This flag is used to enable/disable mask-able interrupts. The value "0" of interrupt enable flag (I)
disables an interrupt while "1" enables an interrupt. When an interrupt is enabled, the mask
operation of interrupt request is performed by interrupt level mask register (ILM).
Table 3.3-4 Interrupt Enable Flag (I) of Condition Code Register
flag
I
Value
0
1
Meaning
Interrupt disable
Interrupt enable
The value of this flag is replaced by "0" by execution of INT instruction. However, the value of
condition code register (CCR) saved in the system stack is the value which is later replaced by "0".
The initial value of an interrupt enable flag (I) after a reset is "0".
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
23
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
[bit3] N: Negative Flag
This flag is used to indicate positive or negative values when the results of a calculation are
expressed in two’s complement form. The value "0" of the negative flag (N) indicates a positive
value while "1" indicates a negative value.
Table 3.3-5 Negative Flag (N) of Condition Code Register
flag
N
value
0
1
Meaning
Calculation result is a positive value
Calculation result is a negative value
The initial value of Negative flag (N) after a reset is undefined.
[bit2] Z: Zero Flag
This flag indicates whether the result of a calculation is zero or not. The value "0" of zero flag (Z)
indicates a non-zero value, while "1" indicates a zero value.
Table 3.3-6 Zero Flag (Z) of Condition Code Register
flag
Z
value
0
1
Meaning
Calculation result is a non-zero value
Calculation result is a zero value
The initial value of Zero flag (Z) after a reset is undefined.
[bit1] V: Overflow Flag
This flag indicates whether an overflow has occurred or not when the results of a calculation are
expressed in two’s complement form. The value "0" of an overflow flag (V) indicates no overflow,
while value "1" indicates an overflow.
Table 3.3-7 Overflow Flag (V) of Condition Code Register
flag
V
value
0
1
Meaning
No overflow
Overflow
Initial value of overflow flag (V) after a reset is indefinite
[bit0] C: Carry Flag
This flag indicates whether a carry or borrow condition has occurred in the highest bit of the results
of a calculation. The value "0" of the carry flag (C) indicates no carry or borrow, while a value "1"
indicates a carry or borrow condition.
Table 3.3-8 Carry Flag (C) of Condition Code Register
flag
C
value
0
1
Meaning
No carry or borrow
Carry or borrow condition
The initial value of a carry flag (C) after reset is undefined.
24
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
3.3.7
System Condition Code Register (SCR)
System condition code register (SCR) is a 3-bit register used to control the intermediate data of stepwise
division and step trace trap. It lies between bit10 to bit8 of the program status (PS).
Figure 3.3-8 shows the bit configuration of system condition code register (SCR).
Figure 3.3-8 System Condition Code Register (SCR) Bit Configuration
bit10
bit9
bit8
Initial value
D1
D0
T
XX0 B
The contents of each bit are described below.
[bit10, bit9] D1, D0: Step Intermediate Data
These bits are used for intermediate data in stepwise division. This register is used to assure
resumption of division calculations when the stepwise division program is interrupted during
processing.
If changes are made to the contents of the intermediate data (D1, D0) during division processing, the
results of the division are not assured. If another processing is performed during stepwise division
processing, division can be resumed by saving/retrieving the program status (PS) in/from the system
stack.
Intermediate data (D1, D0) of stepwise division is made into a set by referencing the dividend and
divisor by executing the "DIV0S" instruction. It is cleared by executing the "DIV0U" instruction.
The initial value of intermediate data (D1, D0) of stepwise division after a CPU reset is undefined.
[bit8] T: Step Trace Trap Flag
This flag specifies whether the step trace trap operation has to be enabled or not. When the step trace
trap flag (T) is set to "1", step trace flag operation is enabled and the CPU generates an EIT event by
trap operation after each instruction execution.
Table 3.3-9 Step Trace Trap Flag (T) of System Condition Code Register
flag
T
value
0
1
Meaning
Step trace trap disabled
Step trace trap enabled
When the step trace trap flag (T) is "1", all NMI & user interrupts are disabled.
Step trace trap function uses an emulator. During a user program which uses the emulator, step trace
trap function cannot be used (the emulator cannot be used for debugging in the step trace trap
routine).
The initial value of step trace trap flag (T) after a reset is "0".
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
25
CHAPTER 3 PROGRAMMING MODEL
3.3
3.3.8
FR81 Family
Return Pointer (RP)
Return pointer (RP) is a 32-bit register which stores the address for returning from a subroutine. It stores
the program counter (PC) value upon execution of a CALL instruction.
Figure 3.3-9 shows the bit configuration of return pointer (RP).
Figure 3.3-9 Return Pointer (RP) Bit Configuration
bit0
bit31
Initial value
XXXXXXXXH
In case of a CALL instruction with a delay slot, the value stored in RP will be the address of the CALL
instruction +4.
In case of a CALL instruction without a delay slot, the value stored in RP will be the address of the CALL
instruction +4.
When returning from a subroutine by the RET instruction, the address stored in the return pointer (RP) is
returned to the program counter (PC).
Return pointer (RP) does not have a stack configuration. When calling another subroutine from the
subroutine called using the CALL instruction, it is necessary to first save the contents of the return pointer
(RP) and restore them before executing the RET instruction.
Figure 3.3-10 shows a sample operation of the return pointer (RP) during the execution of a CALL
instruction without a delay slot, and Figure 3.3-11 shows a sample operation of return pointer (RP) during
the execution of a RET instruction.
Figure 3.3-10 Sample Operation of RP during Execution of a CALL Instruction without a Delay Slot
Memory space
Before execution
PC
12345678H
RP
????????H
CALL SUB1
SUB1
26
Memory space
After execution
PC
SUB1
RP
1234567AH
RET
FUJITSU MICROELECTRONICS LIMITED
CALL SUB1
SUB1
RET
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
Figure 3.3-11 Sample Operation of RP during Execution of a RET Instruction.
Memory space
Before execution
Memory space
After execution
CALL SUB1
PC
SUB1
RP
1234567AH
ADD #1,R0
SUB1
3.3.9
CALL SUB1
PC
1234567AH
RP
1234567AH
RET
ADD #1,R0
SUB1
RET
System Stack Pointer (SSP)
The system stack pointer (SSP) is a 32-bit register that indicates the address to be saved/restored to the
system stack used at the time of EIT processing. The system stack pointer (SSP) is available when CPU is
in privilege mode (UM=0).
Figure 3.3-12 shows the bit configuration of system stack pointer (SSP).
Figure 3.3-12 System Stack Pointer (SSP) Bit Configuration
bit0
bit31
Initial value
00000000H
When the stack flag (S) in the condition code register (CCR) is "0", the general-purpose register R15 is
used as the system stack pointer (SSP). In a normal instruction, system stack pointer is used as the generalpurpose register R15.
When an EIT event occurs, regardless of the value of the stack flag (S), the program counter (PC) and
program status (PS) values are saved to the system stack area designated by system stack pointer (SSP).
The value of stack flag (S) is stored in the system stack as program status (PS), and is restored from the
system stack at the time of returning from the EIT event using RETI instruction.
System stack uses pre-decrement/post-decrement for storing and retrieving data. While saving data, after
performing a data size decrement on the value of system stack pointer (SSP), it is written onto the address
indicated by system stack pointer (SSP). While retrieving data, after the data is read from the address
indicated by the system stack pointer (SSP), a data size increment is performed on the value of system stack
pointer (SSP).
Figure 3.3-13 shows an example of system stack pointer (SSP) operation while executing instruction "ST
R13,@-R15" when the stack flag (S) is set to "0".
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
27
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
Figure 3.3-13 Example of System Stack Pointer (SSP) Operation
Before execution of ST R13,@-R15
After execution of ST R13,@-R15
Memory space
00000000H
SSP
12345678H
USP
76543210H
R13
17263540H
S
CCR
3.3.10
????????
????????
Memory space
00000000H
SSP
12345674H
USP
76543210H
R13
17263540H
FFFFFFFFH
????????
FFFFFFFFH
S
CCR
0
17263540H
0
User Stack Pointer (USP)
User stack pointer (USP) is a 32-bit register used to save/retrieve data to/from the user stack. The user stack
pointer (USP) is available irrespective of the CPU: whether it is in privilege mode (UM=0) or in user mode
(UM=1). In privilege mode, the stack pointer should be selected by rewriting the stack flag (S). In user
mode, only the user stack pointer (USP) is available.
Figure 3.3-14 shows the bit configuration of user stack pointer (USP).
Figure 3.3-14 User Stack Pointer (USP) Bit Configuration
bit0
bit31
Initial value
XXXXXXXXH
When the stack flag (S) in the condition code register (CCR) is "1", the general-purpose register R15 is
used as the user stack pointer (USP). In a normal instruction, user stack pointer (USP) is used as the
general-purpose register R15.
User stack uses pre-decrement/post-decrement to save/retrieve data. While saving data, after performing a
data size decrement on the value of user stack pointer (USP), it is written onto the address indicated by the
user stack pointer (USP). While retrieving data, the data is read from the address indicated by the user stack
pointer (USP), and a data size increment is performed on the value of user stack pointer (USP).
Figure 3.3-15 shows an example of user stack pointer (USP) operation while executing the instruction "ST
R13,@-R15" when the stack flag (S) is set to "1".
28
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
Figure 3.3-15 Example of User Stack Pointer (USP) Operation
Before execution of ST R13,@-R15
After execution of ST R13,@-R15
Memory space
00000000H
SSP
12345678H
USP
76543210H
R13
17263540H
S
CCR
3.3.11
Memory space
00000000H
????????
????????
SSP
12345678H
USP
7654320CH
R13
17263540H
17263540H
????????
FFFFFFFFH
FFFFFFFFH
S
CCR
1
1
Table Base Register (TBR)
Table base register (TBR) is a 32-bit register that designates the vector table containing the entry addresses
for EIT operations.
Figure 3.3-16 shows the bit configuration of table base register (TBR).
Figure 3.3-16 Table Base Register (TBR) Bit Configuration
bit0
bit31
Initial value
000F FC00H
The address of the reference vector is determined by the sum of the contents of the table base register
(TBR) and the vector offset corresponding to the EIT operation generated. Vector table layout is realized in
word units. As the address of the calculated vector is in word units, the lower two bits of the resulting
address value are explicitly read as “0”.
Figure 3.3-17 shows an example of table base register (TBR).
Figure 3.3-17 Example of Table Base Register (TBR) Example
Vector correspondence table
bit31
Vector no.
bit0
Eaddr0 Eaddr1
Timer
interrupt
11H
Eaddr2 Eaddr3
PC
87654123 H TBR
3B8H
Adder
Vector table
87654123H +000003B8H
+0
+1
+2
+3
876544DBH
876544D8H
CM71-00105-1E
Eaddr0 Eaddr1
FUJITSU MICROELECTRONICS LIMITED
Eaddr2 Eaddr3
29
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
The reset value of table base register (TBR) is 000F FC00H. Do not set a value above FFFF FC00H for the
table base register (TBR).
Precautions:
If values greater than FFFF FC00H are assigned to the table base register (TBR), this operation may
result in an overflow when summed with the offset value. An overflow in turn will result in vector
access to the area 0000 0000H to 0000 03FFH, which can cause a program run away.
3.3.12
Multiplication/Division Register (MDH, MDL)
Multiplication/Division register (MDH, MDL) is a 64-bit register comprised of MDH represented by the
higher 32 bits and MDL represented by the lower 32 bits. During multiplication, the product is stored.
During division, the value set for the dividend and the quotient is stored.
Figure 3.3-18 shows the bit configuration of Multiplication/Division register (MDH, MDL).
Figure 3.3-18 Multiplication/Division Register (MDH, MDL) Bit Configuration
bit31
bit0
Initial value
MDH
XXXXXXXXH
MDL
XXXXXXXX H
The function of Multiplication/Division register (MDH, MDL) is different during a multiplication and
during a division operation.
● Function during Multiplication
In case of a 32 bit × 32 bit multiplication (MUL, MULU instruction), the calculation result of 64-bit length
is stored in the product register (MDH, MDL) as follows.
MDH: higher 32 bits
MDL: lower 32 bits
In case of a 16 bit × 16 bit multiplication (MULH, MULUH instruction), the calculation result of 32-bit
length is stored in the product register (MDH, MDL) as follows.
MDH: undefined
MDL: result 32 bits
Figure 3.3-19 shows an example of multiplication operation using Multiplication/Division register (MDH,
MDL).
30
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
Figure 3.3-19 Example of Multiplication Operation using Multiplication/Division Register (MDH, MDL)
Before execution of instruction MUL R0,R1
After execution of instruction MUL R0,R1
R0
12345678H
R0
12345678H
R1
76543210H
R1
76543210H
MDH, MDL ???????? ???????? H
MDH, MDL 086A1C97 0B88D780 H
● Function during Division
Before starting the calculation, the dividend is stored in the Multiplication/Division register (MDH, MDL).
MDH: don’t care
MDL: dividend
When division is performed using any of the instructions DIV0S/DIV0U, DIVI1, DIV2, DIV3, DIV4S
meant for division, the result of division is stored in the Multiplication/Division register (MDH, MDL) as
follows.
MDH: remainder
MDL: quotient
Figure 3.3-20 shows an example of division operation using Multiplication/Division register (MDH, MDL).
Figure 3.3-20 Example of Division Operation using Multiplication/Division Register (MDH,MDL)
Before execution of stepwise division
After execution of stepwise division
R0
R0
12345678H
12345678H
Using R0
MDH, MDL ???????? 76543210H
CM71-00105-1E
MDH, MDL 091A2640 00000006H
FUJITSU MICROELECTRONICS LIMITED
31
CHAPTER 3 PROGRAMMING MODEL
3.3
3.3.13
FR81 Family
Base Pointer (BP)
The base pointer (BP) register is used for pointing in base pointer indirect addressing mode.
Figure 3.3-21 shows the bit configuration of base pointer (BP).
Figure 3.3-21 Base Pointer (BP) Bit Configuration
bit0
bit31
Initial value
XXXX XXXX H
3.3.14
FPU Control Register (FCR)
FPU control register (FCR) is a 32-bit register used to control the FPU. It has a flag that indicates the
settings and status of the FPU operation mode.
The FPU control register (FCR) consists of the following five parts:
• Floating point condition code (FCC)
• Rounding mode (RM)
• Floating point exception enable flag (EEF)
• Floating point exception accumulative flag (ECF)
• Floating point exception flag (CEF)
Figure 3.3-22 shows the bit configuration of FPU control register (FCR).
Figure 3.3-22 FPU control register (FCR) Bit Configuration
bit31
FCC
bit27
bit19 bit17
Reserved
RM
bit11
EEF
ECF
bit0
bit5
CEF
The reserved bits of the FPU control register (FCR) are all reserved for future expansion. The read value of
reserved bits is always "0". The write value should always be "0".
■ Floating point condition code (FCC)
Floating point condition code (FCC) is a 4-bit register that stores the condition code of a floating point
calculation result. It lies between bit 31 and bit 28 of the FPU control register (FCR).
Figure 3.3-23 shows the bit configuration of the floating point condition code (FCC).
Figure 3.3-23 Floating point condition code (FCC) Bit Configuration
bit31 bit30 bit29 bit28
E
32
L
G
U
Initial value
XXXX B
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
The content of each bit are described below.
[bit31] E : E flag
This flag indicates that FRj and FRi are equal based on the floating point compare instruction
(FCMP) results.
[bit30] L : L flag
This flag indicates that FRi is less than FRj based on the floating point compare instruction (FCMP)
results.
[bit29] G : G flag
This flag indicates that FRi is greater than FRj based on the floating point compare instruction
(FCMP) results.
[bit28] U : U flag
This flag indicates that no comparison can be made (Unordered) based on the floating point compare
instruction (FCMP) results.
■ Rounding mode (RM)
Rounding mode (RM) is a 2-bit register that designates rounding mode of floating point calculation results.
It lies between bit 19 and bit 18 of the FPU control register (FCR). In FR81 Family CPU, only rounding up
to the nearest value (RM=00B) can be set.
Figure 3.3-24 shows the bit configuration of rounding mode (RM). Table 3.3-10 shows details of the
rounding mode.
Figure 3.3-24 Rounding mode (RM) Bit Configuration
bit19 bit18
Initial value
RM1 RM0
XX B
Table 3.3-10 Rounding mode
RM
00B
01B
10B
11B
CM71-00105-1E
Rounding mode
The nearest value
0
+∞
-∞
FUJITSU MICROELECTRONICS LIMITED
33
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
■ Floating point exception enable flag (EEF)
Floating point exception enable flag (EEF) is a 6-bit register that enables exception occurrences of floating
point calculation. It lies between bit 17 and bit 12 of the FPU control register (FCR).
Figure 3.3-25 shows the bit configuration of the floating point exception enable flag (EEF).
Figure 3.3-25 Floating point exception enable flag (EEF) Bit Configuration
bit17 bit16 bit15 bit14 bit13 bit12
D
X
U
O
Z
V
Initial value
XXXXXX B
The content of each bit are described below.
[bit17] D : D flag
This is a unnormalized number input exception enable flag. When this bit has been set to "1", the
FPU exception occurs upon input of an unnormalized number. When this bit has been set to "0", the
unnormalized number is regarded as "0" for calculation purposes.
[bit16] X : X flag
This is an inexact exception enable flag. When this bit is set to "1" and an inexact has occurred in
the calculation result, FPU exception occurs. When this bit is set to "0", the value resulting from
rounding up is written in the register.
[bit15] U : U flag
This is an underflow exception enable flag. When this bit is set to "1" and an underflow has
occurred in the calculation result, FPU exception occurs. When this bit is set to "0", a value "0" is
written in the register.
[bit14] O : O flag
This is an overflow exception enable flag. When this bit is set to "1" and an overflow has occurred
in the calculation result, FPU exception occurs. When this bit is set to "0", ± ∞ or ± MAX is written
in the register in accordance with the rounding mode (RM).
[bit13] Z : Z flag
This is a division-by-zero exception enable flag. When this bit is set to "1" and division-by-zero is
carried out, FPU exception occurs. When this bit is set to "0", infinite (∞), which indicates that the
calculation has been carried out appropriately, is written in the register.
[bit12] V : V flag
This is an invalid calculation exception enable flag. When this bit is set to "1" and an invalid
calculation is carried out, FPU exception occurs When this bit is set to "0", QNaN is written in the
register in the calculation type instruction, ± MAX is written in the register in the conversion
instruction, and "1" (unordered) is set for the U flag of the floating point condition code (FCC) in
the compare instruction.
34
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
■ Floating point exception accumulative flag (ECF)
Floating point exception accumulative flag (ECF) is a 6-bit register that indicates the accumulative number
of occurrences of floating point calculation exceptions. It lies between bit 11 and bit 6 of the FPU control
register (FCR). Only a "0" can be written in the accumulative flags. The flag value will not be changed
when "1" is written in the accumulative flags. The write value is evaluated by bit.
Figure 3.3-26 shows the bit configuration of the floating point exception accumulative flag (ECF).
Figure 3.3-26 Floating point exception accumulative flag (ECF) Bit Configuration
bit11 bit10 bit9
D
X
U
bit8
bit7
bit6
Initial value
O
Z
V
XXXXXX B
The content of each bit are described below.
[bit11] D : D flag
This flag indicates that an unnormalized number has been entered while the unnormalized number
input exception is disabled (EEF:D=0). This is a accumulative flag.
[bit10] X : X flag
This flag indicates that the calculation result has become inexact while the inexact exception is
disabled (EEF:X=0). This is a accumulative flag.
[bit9] U : U flag
This flag indicates that an underflow has occurred in the calculation result while the underflow
exception is disabled (EEF:U=0). This is a accumulative flag.
[bit8] O : O flag
This flag indicates that an overflow has occurred in the calculation result while the overflow
exception is disabled (EEF:O=0). This is a accumulative flag.
[bit7] Z : Z flag
This flag indicates that a division by zero has occurred while the division-by-zero exception is
disabled (EEF:Z=0). This is a accumulative flag.
[bit6] V : V flag
This flag indicates that an invalid calculation has been carried out while the invalid calculation
exception is disabled (EEF:V=0). This is a accumulative flag.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
35
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
■ Floating point exception flag (CFE)
Floating point exception flag (CFE) is a 6-bit register that indicates the exception occurrence of floating
point calculation. It lies between bit 5 and bit 0 of the FPU control register (FCR). Each flag is set
according to the calculation result. Each flag shall be cleared using software. Each flag can be set only to
"0", and writing "1" to the flag is invalid. The write value is evaluated by bit. If the flag has not been
cleared during exception processing, each flag is cumulated.
Figure 3.3-27 shows the bit configuration of the floating point exception flag (CFE).
Figure 3.3-27 Floating point exception flag (CFE) Bit Configuration
bit5
bit4 bit3
D
X
U
bit2
bit1
bit0
Initial value
O
Z
V
XXXXXX B
The content of each bit are described below.
[bit5] D : D flag
This flag is set when an unnormalized number has been input while the unnormalized number input
exception is enabled (EEF:D=1).
[bit4] X : X flag
This flag is set when the calculation result has become inexact while the inexact exception is
enabled (EEF:X=1).
[bit3] U : U flag
This flag is set when an underflow has occurred in the calculation result while the underflow
exception is enabled (EEF:U=1).
[bit2] O : O flag
This flag is set when an overflow has occurred in the calculation result while the overflow exception
is enabled (EEF:O=1).
[bit1] Z : Z flag
This flag is set when a division by zero has occurred while the division-by-zero exception is enabled
(EEF:Z=1).
[bit0] V : V flag
This flag is set when an invalid calculation has been carried out while the invalid calculation
exception is enabled (EEF:V=1).
36
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
3.3.15
Exception status register (ESR)
This is a 32-bit register that indicates the balance of process when an exception occurs while executing the
invalid instruction exception source and the multiple load/store instruction.
The exception status register (ESR) consists of the following two parts:
• Register list (RL)
• Invalid instruction exception source (INV)
Figure 3.3-28 shows the bit configuration of the exception status register (ESR).
Figure 3.3-28 Exception status register (ESR) Bit Configuration
bit31
bit16 bit15
RL
bit0
bit7 bit6
Reserved
INV
The reserved bits of the exception status register (ESR) are all reserved for future expansion. The read
value of reserved bits is always "0". Write value should always be "0".
■ Register List (RL)
Register list (RL) is a 16-bit register that indicates registers whose transmission has not ended when an
exception occurs while a LDM0, LDM1, STM0, STM1, FLDM, or FSTM instruction is executed. It lies
between bit 31 and bit 16 of the exception status register (ESR). The register list (RL) value is updated only
when an exception occurs while a LDM0, LDM1, STM0, STM1, FLDM, or FSTM instruction is executed.
Figure 3.3-29 shows the bit configuration of the register list (RL), and Table 3.3-11 shows the
correspondence between the register list (RL) bits and the registers.
Figure 3.3-29 Register List (RL) Bit Configuration
bit31
bit16
Initial value
RL15
RL0
0000 H
Table 3.3-11 Correspondence between the register list (RL) bits and the registers
bit of ESR register
RL bit
LDM1, LDM0 instruction
STM1, STM0 instruction
FLDM instruction
FSTM instruction
ESR bit
RL bit
LDM1, LDM0 instruction
STM1, STM0 instruction
FLDM instruction
FSTM instruction
CM71-00105-1E
31
30
29
28
27
26
25
24
RL15
R15
R0
FR15
FR0
RL14
R14
R1
FR14
FR1
RL13
R13
R2
FR13
FR2
RL12
R12
R3
FR12
FR3
RL11
R11
R4
FR11
FR4
RL10
R10
R5
FR10
FR5
RL9
R9
R6
FR9
FR6
RL8
R8
R7
FR8
FR7
23
22
21
20
19
18
17
16
RL7
R7
R8
FR7
FR8
RL6
R6
R9
FR6
FR9
RL5
R5
R10
FR5
FR10
RL4
R4
R11
FR4
FR11
RL3
R3
R12
FR3
FR12
RL2
R2
R13
FR2
FR13
RL1
R1
R14
FR1
FR14
RL0
R0
R15
FR0
FR15
FUJITSU MICROELECTRONICS LIMITED
37
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
■ Invalid instruction exception source (INV)
Invalid instruction exception source (INV) is a 7-bit register that indicates the source causing an invalid
instruction exception. It lies between bit 6 and bit 0 of the exception status register (ESR). Each flag is set
only when the source occurs. Each flag shall be cleared using software. Each flag can be set only to "0",
and writing "1" to the flag is invalid. The write value is evaluated by bit.
Figure 3.3-30 shows the bit configuration of the invalid instruction exception source (INV).
Figure 3.3-30 Invalid instruction exception source (INV) Bit Configuration
bit6
DT
IF
FPU
PI
SPR
DS
bit0
Initial value
RI
0000000 B
The content of each bit are described below.
[bit6] DT : Data access error
This flag is set when a bus error occurs during data access to a buffer-disabled area, or a system
register is accessed in user mode.
[bit5] IF : Instruction fetch error
This flag is set when a bus error occurs during instruction fetch, and the instruction is executed.
[bit4] FPU : FPU absence error
This flag is set when an floating point type instruction is executed on a model without FPU installed.
[bit3] PI : Privilege instruction execution
This flag is set when a RETI or STILM instruction is executed in user mode.
[bit2] SPR : System-dedicated register access
This flag is set when a MOV or LD instruction is executed to the table base register (TBR), system
stack pointer (SSP), or the exception status register (ESR) in user mode.
[bit1] DS : Invalid instruction placement on delay slot
This flag is set when an instruction that cannot be placed on delay slot is executed on the delay slot.
[bit0] RI : Undefined instruction
This flag is set when an undefined instruction code is being executed.
38
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 3 PROGRAMMING MODEL
3.3
FR81 Family
3.3.16
Debug Register (DBR)
The debug register (DBR) is a dedicated register accessible only in the debug state. Writing to this register
other than in debug state is regarded as invalid.
Figure 3.3-31 shows the bit configuration of Debug Register (DBR).
Figure 3.3-31 Debug Register (DBR) Bit Configuration
bit0
bit31
Initial value
XXXX XXXX H
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
39
CHAPTER 3 PROGRAMMING MODEL
3.4
3.4
FR81 Family
Floating-point Register
Floating point registers are using that store results for floating point calculations.
The floating-point register is 16, each having 32-bit length. As for the register, the name of FR0 to FR15 is
named.
Figure 3.4-1 shows the construction and the initial value of the floating-point register.
Figure 3.4-1 The construction and the initial value of the floating-point register
32 bit
40
[Initial value]
FR0
XXXX XXXXH
FR1
XXXX XXXXH
FR2
XXXX XXXXH
FR3
XXXX XXXXH
FR4
XXXX XXXXH
FR5
XXXX XXXXH
FR6
XXXX XXXXH
FR7
XXXX XXXXH
FR8
XXXX XXXXH
FR9
XXXX XXXXH
FR10
XXXX XXXXH
FR11
XXXX XXXXH
FR12
XXXX XXXXH
FR13
XXXX XXXXH
FR14
XXXX XXXXH
FR15
XXXX XXXXH
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4
RESET AND "EIT"
PROCESSING
This chapter describes reset and EIT processing in the
FR81 family CPU. EIT processing is the generic name for
exceptions, interrupt and trap.
4.1 Reset
4.2 Basic Operations in EIT Processing
4.3 Processor Operation Status
4.4 Exception Processing
4.5 Interrupts
4.6 Traps
4.7 Multiple EIT processing and Priority Levels
4.8 Timing When Register Settings Are Reflected
4.9 Usage Sequence of General Interrupts
4.10 Precautions
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
41
CHAPTER 4 RESET AND "EIT" PROCESSING
4.1
4.1
FR81 Family
Reset
A reset forcibly terminates the current process, initializes the device, and restarts the
program from the reset vector entry address.
The reset process is executed in privilege mode. Transition to user mode should be
carried out by executing a RETI instruction.
When a reset is generated, CPU terminates the processing of the instruction execution at that time and goes
into inactive status until the reset is cancelled. When the reset is cancelled, the CPU initializes all internal
registers and starts execution beginning with the program indicated by the new value of the program
counter (PC).
Reset processing has a higher priority level than each operation of the EIT processing described later. Reset
is accepted even in between an EIT processing.
When a reset is generated, FR81 family CPU makes an attempt to initialize each register, but all registers
cannot be initialized. Each register sets a value through the program executed after a reset, and uses it.
Table 4.1-1 shows the registers that are initialized following a reset.
Table 4.1-1 Registers that are initialized following a reset
Register
Program counter (PC)
Interrupt level mask register (ILM)
Step trace trap flag (T)
Interrupt enable flag (I)
Stack flag (S)
Table base register (TBR)
System stack pointer (SSP)
Debug state flag (DBG)
User mode flag (UM)
Exception status register (ESR)
General-purpose register R15
Initial Value
Word data at location 000F FFFCH
15(01111B)
Remarks
Reset vector
“0”
“0”
“0”
000F FC00H
0000 0000H
“0”
“0”
0000 0000H
Trace OFF
Interrupt disabled
Use SSP
SSP
As per stack flag (S)
No debug state
Privilege mode
For details of My computer built-in functions (peripheral devices, etc.) following a reset, refer to the
Hardware Manual provided with each device.
42
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.2
FR81 Family
4.2
Basic Operations in EIT Processing
Exceptions, interrupts and traps are similar operations applied under partially different
conditions. They save information for terminating or restarting the execution of
instructions and perform branching to a processing program.
4.2.1
Types of EIT Processing and Prior Preparation
EIT processing is a method which terminates the currently executing process and transfers control to a
predetermined processing program after saving restart information to the memory. EIT processing
programs can return to the prior program by use of the RETI instruction.
EIT processing operates in essentially the same manner for exceptions, interrupts and traps, with a few
minor differences listed below by which it differentiates them.
• Exceptions are related to the instruction sequence, and processing is designed to resume from the
instruction in which the exception occurred.
• Interrupts originate independently of the instruction sequence. Processing is designed to resume from the
instruction immediately following the acceptance of the interrupt.
• Traps are also related to the instruction sequence, and processing is designed to resume from the
instruction immediately following the instruction in which the trap occurred.
While performing EIT processing, apply to the following prior settings in the program.
• Set the values in vector table (defining as data)
• Set the value of system stack pointer (SSP)
• Set the value of table base register (TBR) as the initial address in the vector table
• Set the value of interrupt level mask register (ILM) above 16(10000B)
• Set the interrupt enable flag (I) to "1"
The setting of interrupt level mask register (ILM) and interrupt enable flag (I), will be required at the time
of using interrupts.
To support the emulator debugger debug function, a processing called "break" is carried out in the user
state of debugging. The processing differs from usual EIT. The following shows the sources causing
"break". The break processing is executed when the source is detected in the user state.
• Instruction break exception
• Break interrupt
• Step trace trap
• INTE instruction execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
43
CHAPTER 4 RESET AND "EIT" PROCESSING
4.2
4.2.2
FR81 Family
EIT Processing Sequence
FR81 family CPU processes EIT events as follows.
1. The vector table indicated by the table base register (TBR) and the offset value of the vector number
corresponding to the particular EIT are used to determine the entry address for the processing program
for the EIT.
2. For restarting, the contents of the old program counter (PC) and the old program status (PS) are saved to
the stack area designated by the system stack pointer (SSP).
3. "0" is saved in the stack flag (S). Also, the interrupt level Mask Register (ILM) and interrupt enable flag
(I) are updated through EIT.
4. Entry address is saved in the program counter (PC).
5. After the processing flow is completed, just before the execution of the instruction in the entry address,
the presence of new EIT sources is determined.
Figure 4.2-1 shows the operations in the EIT processing sequence.
Figure 4.2-1 Operations in EIT Processing Sequence
Instruction at which EIT event is detected
Canceled instruction
Canceled instruction
IF
ID
EX
IF
ID
xxxx xxxx xxxx
IF
xxxx xxxx xxxx xxxx
(1) Vector address calculation and new PC setting
EIT sequence
MA
WB
ID(1) EX(1) MA(1) WB(1)
(2) SSP update and PS save
(3) SSP update and PC save
(4) Detection of new EIT event
First instruction in EIT handler sequence (branching instruction)
ID(2) EX(2) MA(2) WB(2)
ID(3) EX(3) MA(3) WB(3)
ID(4) EX(4) MA(4) WB(4)
IF
ID
EX
MA
PC
Vector tables are located in the main memory, occupying an area of 1 Kbyte beginning with the address
shown in the table base register (TBR). This area is used as a table of entry addresses for EIT processing.
For details on vector tables, refer to "2.1.2 Vector Table Area" and "3.3.6 Condition Code Register
(CCR)".
Regardless of the value of stack flag (S), the program status (PS) and program counter (PC) is saved in the
stack pointed to by the system stack pointer (SSP). After an EIT processing has commenced, the program
counter (PC) is saved in the address pointed to by the system stack pointer (SSP), while the program status
(PS) is saved at address 4 plus the address pointed to by the system stack pointer (SSP).
Figure 4.2-2 shows an example of saving program counter (PC) and program status (PS) during the
occurrence of an EIT event.
44
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.2
FR81 Family
Figure 4.2-2 Example of storing of PC, PS during an EIT event occurrence
[Example]
SSP
[Before interrupt]
[After interrupt]
SSP
80000000 H
Memory
Memory
7FFFFFF8 H
7FFFFFFC H
80000000 H
4.2.3
7FFFFFF8 H
7FFFFFF8 H
7FFFFFFC H
80000000 H
PC
PS
Recovery from EIT Processing
RETI instruction is used for recovery from an EIT processing program. The RETI instruction retrieves the
value of program counter (PC) and program status (PS) from the system stack, EIT and recovers from the
EIT processing.
1. Retrieving program counter (PC) from the system stack
(SSP) → PC
SSP+4 → SSP
2. Retrieving program status (PS) from the system stack
(SSP) → PS
SSP+4 → SSP
To ensure the program execution results after recovery from the EIT processing program, it is required that
all contents of the CPU registers before the commencement of EIT processing program have been saved at
the time of recovery. The registers used in the EIT processing programs should be saved in the system stack
and retrieved just before the RETI instruction.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
45
CHAPTER 4 RESET AND "EIT" PROCESSING
4.3
4.3
FR81 Family
Processor Operation Status
Processor operation is comprised of four states: Reset, normal operation, low-power
consumption, and debugging.
● Reset state
A state where the CPU is being reset. Two levels are provided for the reset state: Initialize level and reset
level. When an initialize level reset is issued, all functions inside the MCU chip are initialized. When a
reset level is issued, functions except debug control, and some parts of the clock and reset controls are
initialized.
● Normal operation state
A state where the sequential instructions and EIT processing are currently executed. Privilege mode
(UM=0) and user mode (UM=1) are provided for the normal operation state. Some instructions and access
destinations are disabled in user mode while they are enabled in privilege mode.
After release of a reset state, the system enters privilege mode in the normal operation state, and is shifted
to user mode by executing a RETI instruction. In the normal operation state, user mode is shifted to
privilege mode by executing reset or EIT, and privilege mode is shifted to user mode by executing a RETI
instruction.
● Low-power consumption stat
A state where the CPU stops operating to save power consumption. Transition to the lower power
consumption state is carried out by controlling the stand-by in the clock control section. Three modes are
provided for the low-power consumption state: Sleep, stop and clock. An interrupt shall be used to restore
the system from the low-power consumption state.
● Debugging state
A state where an in-circuit emulator (ICE) is connected, and debug related functions are enabled. The
debugging state is separated into a user state and a debug state. In principle, a debugging state shall be
shifted to the other state via a reset. However, a normal operation state can be forcibly shifted to a
debugging state.
As is the case with the normal operation state, privilege mode (UM=0) and user mode (UM=1) are
provided for the user state. However, when a break is executed for debugging the state is shifted to the
debug state. It is carried out in privilege mode under the debug state, and all registers and whole memory
area can be accessed by disabling the memory protection and other functions. The debug state is shifted to
the user state by executing a RETI instruction.
Figure 4.3-1 shows transition between the processor operation states.
46
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.3
FR81 Family
Figure 4.3-1 Transition between processor operation states
Reset state
DSU indication
DSU indication
ICE not connected
Privilege mode
Break
Privilege mode
DSU indication
RETI
EIT
RETI
EIT
User mode
User mode
Normal operation
User State
Debug State
RETI
Debugging
Low-power consumption mode
Executing a transition sequence
Low-power consumption mode
Executing a transition sequence
Low-power
consumption state
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
47
CHAPTER 4 RESET AND "EIT" PROCESSING
4.4
4.4
FR81 Family
Exception Processing
Exceptions originate when there is a problem in the instruction sequence. Exceptions
are processed by first saving the necessary information to resume the currently
executing instruction, and then starting the processing routine corresponding to the
type of exception that has occurred.
Branching to the exception processing routine takes place before execution of the instruction that has
caused the exception. The address of the instruction in which the exception occurs becomes the program
counter (PC) value that is saved to the stack at the time of occurrence of the exception.
The following factors can cause occurrence of an exception:
• Invalid instruction exception
• Instruction access protection violation exception
• Data access protection violation exception
• FPU exception
• Instruction break
• Guarded access break
4.4.1
Invalid Instruction Exception
An invalid instruction exception occurs when an invalid instruction is being executed. The following
sources can cause the invalid instruction exception.
• Executing an undefined instruction code.
• Executing on delay slot an instruction that cannot be placed on the delay slot.
• Writing to a system-dedicated register (TBR, SSP, or ESR) in user mode (with MOV or LD instruction).
• Executing a privilege instruction (RETI or STILM) in user mode.
• Executing a floating point instruction while FPU is absent.
• Occurrence of a bus error during instruction fetch.
• Occurrence of a bus error or violation of system register access during data access to a buffer-disabled
area.
The following operations are performed if an invalid-instruction exception is accepted.
1. Transition to privilege mode is carried out, and the stack flag (S) is cleared.
"0" → UM
"0" → S
2. Contents of program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. Contents of the program counter (PC) of an exception source instruction are saved to the system stack.
SSP - 4 → SSP
48
PC → (SSP)
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.4
FR81 Family
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3C4H) → PC
5. A new EIT event is detected.
The address saved to the system stack as a program counter (PC) value represents the instruction itself that
caused the undefined instruction exception. When a RETI instruction is executed, the contents of the
system stack should be rewritten with the exception processing routine so that the execution will either
resume from the address of the instruction next to the instruction that caused the exception.
4.4.2
Instruction Access Protection Violation Exception
An instruction access protection exception occurs when an instruction is executed in an area protected by
the memory protection function.
During debugging, this exception can be treated as a break source according to an indication from the
debugger. In this case, the instruction access protection violation exception does not occur.
Upon acceptance of the instruction access protection violation exception, the following operations take
place.
1. Transition to privilege mode is carried out, and the stack flag (S) is cleared.
"0" → UM
"0" → S
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. The contents of the program counter (PC) of an exception source instruction are saved to the system
stack.
SSP - 4 → SSP
PC → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3E4H) → PC
5. A new EIT event is detected.
4.4.3
Data Access Protection Violation Exception
A data access protection violation exception occurs when an invalid data access is executed in an area
protected by the memory protection function.
During debugging, this exception can be treated as a break source according to an indication from the
debugger. In this case, the data access protection violation exception does not occur.
If this exception occurs during data access with a RETI instruction in the process of an EIT sequence, the
CPU stops operating and is capable of accepting a reset and break interrupt.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
49
CHAPTER 4 RESET AND "EIT" PROCESSING
4.4
FR81 Family
If this exception occurs while executing LDM0, LDM1, STM0, STM1, FLDM, or FSTM instruction,
contents of execution until the occurrence are reflected in registers and memory. Check the register list
(ESR:RL) for how far the instruction is executed.
Upon acceptance of the instruction access protection violation exception, the following operations take
place.
1. Transition to privilege mode is carried out, and the stack flag (S) is cleared.
"0" → UM
"0" → S
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. The contents of the program counter (PC) of an exception source instruction are saved to the system
stack.
SSP - 4 → SSP
PC → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3E0H) → PC
5. A new EIT event is detected.
4.4.4
FPU Exception
An FPU exception occurs when a floating point instruction is executed. The occurrence of the floating
point exception can be restrained with the floating point control register (FCR).
To prevent a subsequent instruction from being completed before detection of the FPU exception, when the
FPU exception is enabled, a pipeline hazard should be generated in order to stall the pipeline. Thus the
subsequent instruction will not pass the floating point instruction.
The following describes sources causing the FPU exception. For details on conditions of the occurrence,
see the description of each instruction.
• When an unnormalized number has been input while the unnormalized number input is enabled.
• When the calculation result has become inexact while the inexact exception is enabled.
• When an underflow has occurred in the calculation result while the underflow exception is enabled.
• When an overflow has occurred in the calculation result while the overflow exception is enabled.
• When a division-by-zero operation has occurred while the division-by-zero exception is enabled.
• When an invalid calculation has been executed while the invalid calculation exception is enabled.
Upon acceptance of the FPU exception, the following operations take place.
1. Transition to privilege mode is carried out, and the stack flag (S) is cleared.
"0" → UM
"0" → S
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
50
PS → (SSP)
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.4
FR81 Family
3. The contents of the program counter (PC) of an exception source instruction are saved to the system
stack.
SSP - 4 → SSP
PC → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3E8H) → PC
5. A new EIT event is detected.
4.4.5
Instruction Break
An instruction break generates an exception or a break based on address instructions given by the debug
support unit (DSU). Upon detection of the instruction break in the user state during debugging, a break
processing is carried out. Upon detection of the instruction break during normal operation, an exception
processing is carried out.
The following describes the brake processing being carried out when the instruction break is accepted in
the user state.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, 4 is set to the interrupt level
mask register (ILM), and then the mode is shifted to the debug state.
"0" → UM
"0" → S
"4" → ILM
2. The contents of the program status (PS) are saved to the PS save register (PSSR).
PS → PSSR
3. The contents of the program counter (PC) of an exception source instruction are saved to the PS save
register (PCSR).
PC → PCSR
4. An instruction is fetched from the emulator debug instruction register (EIDR1), and the handler is
executed.
The following describes the exception processing being carried out when the instruction break is accepted
during normal operation.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, and 4 is set to the interrupt level
mask register (ILM).
"0" → UM
"0" → S
"4" → ILM
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. The contents of the program counter (PC) of an exception source instruction are saved to the system
stack.
SSP - 4 → SSP
PC → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3D4H) → PC
5. A new EIT event is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
51
CHAPTER 4 RESET AND "EIT" PROCESSING
4.4
4.4.6
FR81 Family
Guarded Access Break
Guarded access break is a function that carries out a break processing instead of generating an exception
when an instruction access protection violation or a data access protection violation occurs during
debugging.
Whether each access protection violation is treated as a break or an exception processing is determined by
the debugger. The guarded access break does not occur during normal operation.
If the debugger determines to carry out the break processing when instruction break has been accepted in
the user state, the following operations are carried out.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, 4 is set to the interrupt level
mask register (ILM), and then the mode is shifted to the debug state.
"0" → UM
"0" → S
"4" → ILM
2. The contents of the program status (PS) are saved to the PS save register (PSSR).
PS → PSSR
3. The contents of the program counter (PC) of an exception source instruction are saved to the PS save
register (PCSR).
PC → PCSR
4. An instruction is fetched from the emulator debug instruction register (EIDR1), and the handler is
executed.
52
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.5
FR81 Family
4.5
Interrupts
Interrupts originate independently of the instruction sequence. They are processed by
saving the necessary information to resume the currently executing instruction
sequence, and then starting the processing routine corresponding to the type of the
interrupt that has occurred interrupt.
Instruction loaded and executing in the CPU before the interrupt will be executed till completion. However
any instruction loaded in the pipeline after the interrupt will be cancelled. Hence, after completion of the
interrupt processing, processing will return to the instruction following the generation of the interrupt
signal.
The following four factors cause the generation of interrupts.
• General interrupts
• Non-maskable interrupt (NMI)
• Break interrupt
• Data access error interrupt
In case an interrupt is generated during the execution of stepwise division instructions, intermediate data is
saved to the program status (PS) to enable resumption of processing. Therefore, if the interrupt processing
program overwrites the contents of the program status (PS) data in the stack, the processor will resume the
normal instruction operations following resumption of processing. However the results of the division
calculation will be incorrect.
4.5.1
General interrupts
General interrupts originate as requests from in-built peripheral functions. Here, the in-built interrupt
controller present in devices and external interrupt control units have been described as one of the
peripheral functions.
The interrupt requests from various in-built peripheral functions are accepted via interrupt controller.
There are some interrupt requests which use external interrupt control unit, taking external terminals as
interrupt input terminals. Figure 4.5-1 shows the acceptance procedure of general interrupts.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
53
CHAPTER 4 RESET AND "EIT" PROCESSING
4.5
FR81 Family
Figure 4.5-1 Acceptance Procedure of General Interrupts
FR81 family CPU
PS
INT
request
I
SSP USP
ILM
Interrupt
controller
Peripheral
device
ICR#n
Interrupt
enable bit
S
compare
AND
Each interrupt request is assigned an interrupt level by the interrupt controller, and it is possible to mask
requests according to their level values. Also, it is possible to disable all interrupts by using the interrupt
enable flag (I) in the condition code register (CCR).
When interrupt requests are generated by peripheral functions, they can be accepted under the following
conditions.
• The level of interrupt level mask register (ILM) is higher (i.e. the numerical value is smaller) than the
interrupt level set in the interrupt control register (ICR) corresponding to the vector number
• The interrupt enable flag (I) in the condition code register (CCR) is set to “1”
Interrupt control register (ICR) is a register of interrupt controller. Refer to the hardware manual of various
models for details about the interrupt controller.
The following operations are performed after a general interrupt is accepted.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, and the accepted interrupt
request level is set to the interrupt level mask register (ILM).
"0" → UM
"0" → S
Interrupt level → ILM
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. The address of the instruction next to that accepted a general interrupt is saved to the system stack.
SSP - 4 → SSP
next instruction address → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + Offset) → PC
5. A new EIT event is detected.
When using general interrupts, it is required to set the interrupt level in the interrupt control register (ICR)
corresponding to the vector number of the interrupt controller. Also perform the settings of the various
peripheral functions and interrupt enable. Refer to the hardware manual of each model for details on
interrupt controller and various peripheral functions.
54
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.5
FR81 Family
4.5.2
Non-maskable Interrupts (NMI)
Non-maskable interrupts (NMI) are interrupts that cannot be masked.
Depending upon the product series, there are models which do not support NMI (there are no external NMI
terminals). Refer to the hardware manual of various models to check whether NMI is supported or not.
Even if the acceptance of interrupts have been restricted by setting of "0" in the interrupt enable flag (I) of
the condition code register (CCR), interrupts generated by NMI cannot be restricted. The masking of
interrupt level by the interrupt level mask register (ILM) is valid. If a value above 16(10000B) is set in the
interrupt level mask register (ILM) by a program, normally "NMI" cannot be masked by the interrupt level.
The value of interrupt level mask register (ILM) is initialized to 15(01111B) following a reset. Therefore,
NMI cannot be masked until a value above 16(10000B) by a program following a reset.
When an NMI is accepted, the following operations are performed.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, and 15 is set to the interrupt
level mask register (ILM).
"0" → UM
"0" → S
"15" → ILM
2. The contents of the program status (PS) are saved to the system stack
SSP - 4 → SSP
PS →(SSP)
3. The address of the instruction next to that accepted NMI is saved to the system stack.
SSP - 4 → SSP
next instruction address → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3C0H) → PC
5. A new EIT event is detected.
4.5.3
Break Interrupt
A break interrupt is used for break request from the debugger. The break interrupt is reported by a level,
and accepted when the level is higher than that of the interrupt level mask register (ILM). The request
levels from 0 to 31 are available. The level cannot be masked by the interrupt enable flag (I).
The following describes conditions to accept the break interrupt. When the conditions are met, the CPU
accepts the break interrupt.
• When a break interrupt request level is higher than that of the interrupt level mask register (ILM)
• When the CPU is operating in the user state during debugging
The following describes the brake processing being carried out when the break interrupt is accepted.
1. Transition to privilege mode is carried out, the stack flag (S) cleared, 4 is set to the interrupt level mask
register (ILM), and then the mode is shifted to the debug state.
"0" → UM
"0" → S
"4" → ILM
2. The code event is determined for the instruction next to that accepted the break interrupt.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
55
CHAPTER 4 RESET AND "EIT" PROCESSING
4.5
FR81 Family
3. The contents of the program status (PS) are saved to the PS save register (PSSR).
PS → PSSR
4. The contents of the program counter (PC) of the instruction next to that accepted the break interrupt are
saved to the PC save register (PCSR).
PC → PCSR
5. An instruction is fetched from the emulator debug instruction register (EIDR1), and the handler is
executed.
4.5.4
Data Access Error Interrupt
Data access error interrupts occur when a bus error occurs during data access to the buffer enabled
specified area. Data access error interrupts can be enabled/disabled using the data access error interrupt
enable bit (MPUCR:DEE). After a data access error interrupt occurs, a new data access error interrupt will
not occur until the data access error bit (DESR:DAE) is cleared.
The data access error interrupt acceptance conditions are described below.
• The data access error interrupt enable bit (MPUCR:DEE) is enabled.
• A bus error occurs during data access to the buffer enabled specified area.
The following operations are carried out if a data access error interrupt is accepted.
1. Transition to privilege mode is carried out, and the stack flag (S) is cleared.
"0" → UM
"0" → S
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. The contents of the program counter (PC) of the instruction which accepted the interrupt are saved to the
system stack.
SSP - 4 → SSP
PC → (SSP)
4. The program counter (PC) value is updated.
(TBR + 3DCH) → PC
5. A new EIT event is detected.
56
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.6
FR81 Family
4.6
Traps
Traps are generated from within the instruction sequence. Traps are processed by first
saving the necessary information to resume processing from the next instruction in the
sequence, and then starting the processing routine corresponding to the type of the
trap that has occurred.
Branching to the processing routine takes place after execution of the instruction that has caused the trap.
The address of the instruction in which the trap occurs becomes the program counter (PC) value that is
saved to the stack at the time of trap generation.
Following factors can lead to generation of traps.
• INT instruction
• INTE instruction
• Step trace traps
4.6.1
INT Instructions
The "INT #u8" instruction is used to create a trap through software. It generates a trap corresponding to the
interrupt number designated in the operand.
When the INT instruction is executed, the following operations take place.
1. Transition to privilege mode is carried out, and the stack flag (S) is cleared.
"0" → UM
"0" → S
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. The address of the next instruction is saved to the system stack.
SSP - 4 → SSP
next instruction address → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3FCH - 4 × u8) → PC
5. A new EIT event is detected.
The value of program counter (PC) saved to the system stack represents the address of the next instruction
after the INT instruction.
4.6.2
INTE Instruction
The INTE instruction is used to create a software trap for debugging. A trap does not occur when the
system is in the debug state during debugging, or if the step trace trap flag (SCR:T) of the program status
(PS) is set. The operation of the INTE instruction varies between the user state during debugging and
normal operation.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
57
CHAPTER 4 RESET AND "EIT" PROCESSING
4.6
FR81 Family
The following operations are carried out when an INTE instruction is executed during normal operation.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, and 4 is set to the interrupt level
mask register (ILM).
"0" → UM
"0" → S
"4" → ILM
2. The contents of the program status (PS) are saved to the system stack.
SSP - 4 → SSP
PS → (SSP)
3. The contents of the program counter (PC) of the subsequent instruction are saved to the system stack.
SSP - 4 → SSP
next instruction address → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3D8H) → PC
5. A new EIT event is detected.
The following operations are carried out when an INTE instruction is executed in the user state during
debugging.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, 4 is set to the interrupt level
mask register (ILM), and then the mode is shifted to the debug state.
"0" → UM
"0" → S
"4" → ILM
2. The contents of the program status (PS) are saved to the PS save register (PSSR).
PS → PSSR
3. The contents of the program counter (PC) of the subsequent instruction are saved to the PS save register
(PCSR).
PC → PCSR
4. An instruction is fetched from the emulator debug instruction register (EIDR1), and the handler is
executed.
The address saved in the system stack as program counter (PC) represents the address of the next
instruction after the "INTE" instruction.
The INTE instruction should not be used within a trap processing routine of step trace trap.
4.6.3
Step Trace Traps
Step trace traps are traps used for debugging programs. Through this, a trap can be created after the
execution of each instruction by setting the step trace trap flag (T) in the system condition code register
(SCR). The operation of the step trace trap varies between the user state during debugging and normal
operation.
A step trace trap is accepted when an instruction for which the step trace trap flag (T) is changed from "0"
to "1" is executed. A step trace trap does not occur when an instruction for which the step trace trap flag (T)
is changed from "1" to "0" is executed. However, for RETI instructions, a step trace trap does not occur
when a RETI instruction for which the step trace trap flag (T) is changed from "0" to "1"is executed.
58
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.6
FR81 Family
A step trace trap is generated when the following conditions are met.
• Step trace trap flag (T) in the system condition code register (SCR) is set to "1".
• The currently executing instruction is not a delayed branching instruction
• User state in which CPU is in normal operation or debugging
Step trace trap is not generated immediately after the execution of a delayed branching instruction. It is
generated after the execution of instruction within the delay slots.
When the step trace trap flag (T) is enabled, non-maskable interrupts (NMI) and general interrupts are
disabled.
The following operations are carried out if a step trace trap is accepted during normal operation.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, the step trace trap flag (T) is
cleared, and 4 is set to the interrupt level mask register (ILM).
"0" → UM
"0" → S
"0" → T
"4" → ILM
2. The contents of the program status (PS) are saved to the system stack
SSP - 4 → SSP
PS → (SSP)
3. The contents of program counter (PC) of the next instruction is saved to the system stack
SSP - 4 → SSP
next instruction address → (SSP)
4. The program counter (PC) value is updated by referring to the vector table.
(TBR + 3CCH) → PC
The address saved as program counter (PC) in the system stack represents the address of the next
instruction after the step trace trap.
The following operations are carried out for the brake process when a step trace trap is accepted in the user
state during debugging.
1. Transition to privilege mode is carried out, the stack flag (S) is cleared, the step trace trap flag (T) is
cleared, 4 is set to the interrupt level mask register (ILM), and then the mode is shifted to the debug
state.
"0" → UM
"0" → S
"0" → T
"4" → ILM
2. The contents of the program status (PS) are saved to the PS save register (PSSR).
PS → PSSR
3. The contents of the program counter (PC) of the subsequent instruction are saved to the PS save register
(PCSR).
PC → PCSR
4. An instruction is fetched from the emulator debug instruction register (EIDR1), and the handler is
executed.
● Restrictions
The INTE instruction should not be used within the step trace trap handler. Use the OCD step trace
function for the device installed with OCD-DSU. Do not use the step trace trap explained in this section,
instead but always write "0" for step trace trap flag (T).
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
59
CHAPTER 4 RESET AND "EIT" PROCESSING
4.7
4.7
FR81 Family
Multiple EIT processing and Priority Levels
When multiple EIT requests occur at the same time, priority levels are used to select
one source and execute the corresponding EIT sequence.
4.7.1
Multiple EIT Processing
When multiple EIT requests occur at the same time, CPU selects one source and executes the
corresponding EIT sequence and then once applies EIT request detection for other sources before executing
the instruction of the entry address, and this operation gets repeated.
At the time of EIT request detection, when all acceptable EIT sources have been exhausted, the CPU
executes the processing routine of the EIT request accepted in the end.
When the processing is returned from the processing routine of the last EIT request accepted using the
RETI instruction, the processing routine of the last but one EIT request is executed. When the processing is
returned from the processing routine of the first accepted EIT request using the RETI instruction, the
control returns to the user program after having processed a series of EIT processes. Figure 4.7-1 shows an
example of multiple EIT processing.
Figure 4.7-1 Example of Multiple EIT Processing
User program
Processing routine of NMI
Processing routine
of INT instruction
Priority level
(1) First executes
(High) NMI generated
(Low) NMI instruction executed
(2) Secondly executes
For example, if A, B, C are three EIT requests that have occurred simultaneously, and have been accepted
in the order of B, C, A, the execution of the processing routine will be in the order A, C, B.
60
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.7
FR81 Family
4.7.2
Priority Levels of EIT Requests
The sequence of accepting each request and executing the corresponding processing routines when multiple
EIT request occur simultaneously, is decided by two factors - by the priority levels of EIT requests, and,
how other EIT requests are to be masked when one EIT request has been accepted.
At the time when an EIT request occurs, and at the time of completion of an EIT sequence, the detection of
EIT requests being generated at that time is performed, and which EIT request will be accepted will be
decided. At the time of completion of the EIT sequence, the detection of EIT requests is carried out under
the condition where masking has been done for the EIT sources other than the EIT request accepted just a
while back. Table 4.7-1 shows the priority levels of EIT requests and masking of other sources.
Table 4.7-1 Priority Levels of EIT Requests & Masking of Other Sources
Priority level
EIT Source
Masking of other sources
ILM after
updated
1
Reset
Other sources discarded
15
2
Instruction break
Guarded access break
All factors given lower priority
4
3
Invalid instruction exception
Instruction access protection
exception
Data access protection exception
FPU exception
All factors given lower priority
-
4
INT instruction
I flag = 0
5
INTE instruction
All factors given lower priority
4
6
General interrupt
ILM= level of source accepted
ICR
7
NMI
ILM=15
15
8
Data access error interrupt
-
-
9
Break interrupt
All factors given lower priority
Request level
10
Step Trace Traps
All factors given lower priority
4
There are times when the value of interrupt level mask register (ILM) gets modified due to the EIT request
accepted earlier and the other EIT sources occurring simultaneously get masked and cannot be accepted. In
such a case, until the processing routine of EIT sources that have occurred simultaneously have been
executed and the control has returned to the user program, the user interrupt is suspended and is re-detected
at the time of resumption of the user program.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
61
CHAPTER 4 RESET AND "EIT" PROCESSING
4.7
FR81 Family
EIT Acceptance when Branching Instruction is Executed
4.7.3
No interrupts are accepted when a branching instruction is executed for delayed branching instruction.
Also, when an exception occurs in the delay slot, branching is cancelled, and the program counter (PC) for
branching instruction is saved. Interrupts and traps are accepted for delay slot instruction. Table 4.7-2
shows the EIT acceptance and saved PC value for branching instructions.
Table 4.7-2 EIT acceptance and saved PC value for branching instruction
EIT acceptance
instruction
EIT type
Branching instruction
Exception
Delay slot instruction
Interrupt/trap
Exception
Interrupt/trap
Branching Delay slot Acceptance Saved PC Acceptance Saved PC Acceptance Saved PC Acceptance Saved PC
value
value
value
value
Yes
No
62
None
❍
PC
❍
Branching
destination
-
-
-
-
Yes
❍
PC
✕
-
❍
Branching
instruction
❍
Branching
destination
None
❍
PC
❍
Subsequent
instruction
-
-
-
-
Yes
❍
PC
✕
-
❍
PC
❍
Subsequent
instruction
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.8
FR81 Family
4.8
Timing When Register Settings Are Reflected
The timing when the new values are reflected after the interrupt enable flag (I) of
program status (PS) and the value of interrupt level mask register (ILM) are modified will
be explained in this section.
4.8.1
Timing when the interrupt enable flag (I) is requested
The interrupt request (enable/disable) is reflected from the instruction which modifies the value of interrupt
enable flag (I).
Figure 4.8-1 shows the timing of reflection of the interrupt enable flag (I) when interrupt enable is set to
(I=1), and Figure 4.8-2 shows the timing of reflection of the interrupt enable flag (I) when interrupt disable
is set to (I=0).
Figure 4.8-1 Timing of reflection of interrupt enable flag (I) when interrupt enable is set to (I=1)
Instruction
execution
I flag
Interrupt
Instruction
0
Disable
ORCCR #10H
1
Enable
Instruction
1
Enable
Interrupt enabled from here
Figure 4.8-2 Timing of reflection of interrupt enable flag (I) when interrupt disable is set to (I=0)
Instruction
execution
I flag
Interrupt
Instruction
1
Enable
ANDCCR #EFH
0
Enable
Instruction
0
Disable
Interrupt disabled from here
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
63
CHAPTER 4 RESET AND "EIT" PROCESSING
4.8
4.8.2
FR81 Family
Timing of Reflection of Interrupt Level Mask Register
(ILM)
Acceptance to interrupt request is reflected from the instruction which modifies the value of interrupt level
mask register (ILM).
Figure 4.8-3 shows the timing of reflection when the interrupt level mask register (ILM) is modified.
Figure 4.8-3 Timing of reflection when the Interrupt level mask register (ILM) is modified
Instruction
execution
ILM
Interrupt
reception
Instruction
A
A
STILM #set_ILM_B
B
B
Instruction
B
B
Instruction
B
B
ILM is reflected from here
"set_ILM_B" is a value of the interrupt level mask register (ILM) to be newly assigned. As in the case of
STILM #30, assign a numeric value of 0 to 31.
64
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 4 RESET AND "EIT" PROCESSING
4.9
FR81 Family
4.9
Usage Sequence of General Interrupts
General interrupts accept interrupt requests from in-built peripheral functions and
external terminals, and perform EIT processing. The general points of caution of
programming while using general interrupts have been described here. Refer to the
hardware manual of various models as the detailed procedure differs as per the
peripheral function.
4.9.1
Preparation while using general interrupts
Before using general interrupts, settings for EIT processing need to be made. Perform the following settings
in the program beforehand.
• Set values in the vector table (defined as data)
• Set up the system stack pointer (SSP) values
• Set up the table base register (TBR) value as the initial address in the vector table
• Set a value of above 16(10000B) in the interrupt level mask register (ILM)
• Set the value of "1" in the interrupt enable flag (I)
After the above settings, the settings of the peripheral functions are performed. In case of peripheral
functions which use general interrupts, two bits in the register of the peripheral functions require to be set a flag bit that indicates that a phenomenon which can become an interrupt source has occurred, and an
interrupt enable bit which uses this flag bit to enable or disable the interrupt request.
The peripheral function verifies the operation halt status, the disable of interrupt request, and that the flag
bit has been cleared. This state is achieved following a reset.
In case the peripheral function is engaged in some operation, the interrupt request is disabled and the flag
bit cleared after the operation of the peripheral function has been halted.
The interrupt level is set in the interrupt control register (ICR) of the interrupt controller. As multiple
interrupt control registers (ICR) are available corresponding to various vector numbers in the, please set an
interrupt control register (ICR) corresponding to the vector number of the interrupt begin used.
The operation of the peripheral function is resumed after clearing the flag bit and enabling the interrupt
request.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
65
CHAPTER 4 RESET AND "EIT" PROCESSING
4.9
4.9.2
FR81 Family
Processing during an Interrupt Processing Routine
After the interrupt request for a general interrupt has been accepted in the CPU as EIT following its
generation, the control moves to the interrupt processing routine after the execution of the EIT sequence.
Vector numbers are assigned to each source of general interrupts, and the interrupt processing routine
corresponding to these vector numbers are started. The interrupt sources and vector numbers do not
necessarily have a one-to-one correspondence, and at times the same vector number is assigned to multiple
interrupt sources. In such a case, the same interrupt processing routine is used for multiple interrupt
sources.
Right in the beginning of the interrupt processing routine, the flag bit which indicates an interrupt source is
verified. If the flag bit has been set, interrupt request for that interrupt is generated and the required
processing (program) is executed after clearing the flag bit. In case, the same vector offset is being used for
multiple interrupt sources, there are multiple flag bits indicating interrupt sources, and each of them are
identified and processed in the same manner.
It is necessary to clear the flag bit while the interrupt of that particular interrupt source is in the disabled
state. When the interrupt processing routine is started after the execution of the EIT sequence, the interrupt
level of the general interrupt is stored in the interrupt level mask register (ILM) and the general interrupt of
that interrupt level is disabled. Make sure to clear the flag bit at the end of the interrupt processing without
modifying the interrupt level mask register (ILM).
The control is returned from the interrupt processing routine by the RETI instruction.
4.9.3
Points of Caution while using General Interrupts
Interrupt requests are enabled either when the corresponding flag bit has been cleared, or at the time of
clearing the flag bit. Enabling interrupt requests when the flag bit is in the set state, leads to the generation
of interrupt request immediately.
While enabling interrupt requests, do not clear flag bit besides the interrupt processing routine. Flag bit
should be cleared at the time of disabling interrupt request.
In case a flag bit is cleared when a peripheral function is performing an operation, there are times when the
flag bit cannot be cleared if the clearing of flag bit by writing to the register and the occurrence of a
phenomenon which can be an interrupt source take place simultaneously or at a very close interval.
Whether a flag bit will be cleared or not when the clearing of flag bit and the occurrence of a phenomenon
that can become an interrupt source take place simultaneously, differs from one peripheral function to the
other.
66
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
4.10
CHAPTER 4 RESET AND "EIT" PROCESSING
4.10
Precautions
The precautions of The reset and the EIT processing described here.
4.10.1
Exceptions in EIT Sequence and RETI Sequence
If a data access protection violation exception (including guarded access break) or invalid instruction
exception (data access error) occurs in the EIT or RETI sequence, since access to the system stack area is
disabled, the CPU goes into the inactive state. To restore the system from this state, reset the system or
execute a break interrupt from the debugger.
At this time, the data access protection violation exception or invalid instruction exception (data access
error) cannot be accepted, and the processing is stopped immediately. The reset process/break process starts
when a reset or break request is detected in the CPU stopped. If the CPU shifts to this stop state, since the
EIT or RETI sequence is stopped in the middle of execution, it is impossible to execute the user program
with this condition.
4.10.2
Exceptions in Multiple Load and Multiple Store
Instructions
If a data access protection violation exception, invalid instruction exception (data access error), or guarded
access break (data access) occurs when the LDM0, LDM1, STM0, STM1, FLDM or FSTM instruction is
executed, the result of the processing up to this point is reflected in the memory or R15 (SSP/USP). The list
of registers that have not been executed is stored in the register list of the exception status register (ESR).
4.10.3
Exceptions in Direct Address Transfer Instruction
If a data access protection violation exception, invalid instruction exception (data access error), or guarded
access break (data access) occurs when data is transferred from the direct area to the memory by the direct
address transfer instruction (DMOV), the I/O register value is updated when the I/O register value in the
direct area is changed by reading.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
67
CHAPTER 4 RESET AND "EIT" PROCESSING
4.10
68
FUJITSU MICROELECTRONICS LIMITED
FR81 Family
CM71-00105-1E
CHAPTER 5
PIPELINE OPERATION
This chapter explains the chief characteristics of FR81
family CPU like pipeline operation, delayed branching
processing etc.
5.1 Instruction execution based on Pipeline
5.2 Pipeline Operation and Interrupt Processing
5.3 Pipeline hazards
5.4 Non-block loading
5.5 Delayed branching processing
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
69
CHAPTER 5 PIPELINE OPERATION
5.1
5.1
FR81 Family
Instruction execution based on Pipeline
FR81 Family CPU processes a instruction using a pipeline operation. This makes it
possible to process to process nearly all instructions in one cycle. FR81 Family has two
pipelines: an integer pipeline and floating point pipeline.
Pipeline operation divides each type of step that carries out interpretation and execution of instructions of
CPU in to stages, and simultaneously executes different stages of each instruction. Instruction execution
that requires multiple cycles in other processing methods is apparently conducted in one cycle here.
Processing of both the integer pipeline and floating point pipeline are common up to the decoding stage,
and independent processing is carried out for each pipeline from the execution and subsequent stages. The
process sequence for each pipeline differs from the sequence of issuing instructions. However, the
processing result that has been acquired by following the program sequence procedure is guaranteed.
5.1.1
Integer Pipeline
Integer pipeline is a 5-stage pipeline compatible with FR family. A 4-stage load buffer is provided for nonblocking loading.
The integer pipeline has the following 5-stage configuration.
• IF Stage: Fetch Instruction
Instruction address is generated and instruction is fetched.
• ID Stage: Decode Instruction
Fetched instruction is decoded. Register reading is also carried out.
• EX Stage: Execute Instruction
Computation is executed.
• MA Stage: Memory Access
Loading or access to storage is executed against the memory.
• WB Stage: Write Back to register
Computation result (or loaded memory data) is written in the register.
Example of the integer pipeline operation (1) is shown in Figure 5.1-1 and Example of integer pipeline
operation (2) is shown in Figure 5.1-2.
70
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 5 PIPELINE OPERATION
5.1
FR81 Family
Figure 5.1-1 Example of integer pipeline operation (1)
(Example 1)
LD
@R10, R1
LDI:8
#0x02, R2
CMP
R1, R2
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
BNE:D Label_G
ADD
#0x1, R1
WB
In principle, execution of instructions is carried out at one instruction per cycle. However, multiple cycles
are necessary for the execution of instruction in case of load store instruction accompanied by memory
wait, non-delayed branching instruction, and multiple cycle instruction. The speed of instruction execution
is also reduced in cases where there is a delay in the supply of instructions, such as internal conflict of bus
in the CPU, instruction execution through external bus interface etc.
Normally, instructions are executed sequentially in the integer pipeline. For example, if instruction A enters
the pipeline before instruction B, it invariably reaches WB stage before instruction B. However, when the
register used in Load instruction (LD instruction) is not used in the subsequent instruction, the subsequent
instruction is executed before the completion of execution of load instruction based on the non-blocking
loading buffer.
Figure 5.1-2 Example of integer pipeline operation (2)
(Example 2)
LD
@R10, R1
LDI:8
#0x02, R2
CMP
R1, R2
BNE:D Label_G
ADD
#0x1, R1
IF
ID
IF
EX
MA
MA
MA
WB
ID
EX
MA
WB
IF
ID
ID
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
MA stage is prolonged in case of Load instruction (LD instruction) till the completion of reading of the
loaded data. However, the subsequent instruction is executed as it is, if the register used in the load
instruction is not used in the subsequent instruction.
In the Example given in Figure 5.1-1, loading is carried out in R1 (load value is written in R1) based on
preceding LD instruction, and R1 contents are referred to in the subsequent CMP instruction. Since the
loaded data returns in 1 cycle, execution of instructions is sequential.
Similarly in the Example given in Figure 5.1-2, R1 that writes load value with LD instruction is used in the
CMP instruction. Since the loaded data does not return in 1 cycle, execution till LDI:8 instruction is carried
out and CMP instruction is made to wait at the ID stage by register hazard.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
71
CHAPTER 5 PIPELINE OPERATION
5.1
5.1.2
FR81 Family
Floating Point Pipeline
The floating point pipeline is a 6-stage pipeline used to execute floating point calculations. The IF stage
and ID stage are common with the integer pipeline.
The floating point pipeline has the following 5-stage configuration.
• IF Stage: Fetch Instruction
Instruction address is generated and instruction is fetched.
• ID Stage: Decode Instruction
Fetched instruction is decoded. Register reading is also carried out.
• E1 Stage: Execute Instruction 1
Computation is executed. Multiple cycles may be required depending on the instruction.
• E1 Stage: Execute Instruction 2
The result is rounded and normalized.
• WB Stage: Write Back to register
Computation result is written in the register.
72
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 5 PIPELINE OPERATION
5.2
FR81 Family
5.2
Pipeline Operation and Interrupt Processing
It is possible at times that an event wherein it appears that interrupt request is lost after
acceptance of interrupt, if the flag that causes interrupt in the interrupt-enabled
condition, because pipeline operation is conducted, occurs.
5.2.1
Mismatch in Acceptance and Cancellation of Interrupt
Because CPU is carrying out pipeline processing, pipeline processing of multiple instructions is already
executed at the time of acceptance of interrupt. Therefore, in case corresponding interrupt cancellation
processing among the instructions under execution in the pipeline (For example, clearing of flag bits that
cause interrupt) is carried out, branching to corresponding interrupt processing program is carried out
normally but when control is transferred to interrupt processing, the interrupt request is at times already
over (Flag bits that cause interrupt having been cleared).
An Example of Mismatch in Acceptance and cancellation of interrupt is shown is Figure 5.2-1.
Figure 5.2-1 Example of Mismatch in Acceptance and Cancellation of interrupt
Interrupt request
None None None None Generated Canceled None None None
LD @R10, R1
IF
ST R2, @R11
ADD R1, R3(cancelled)
BNETestOK(cancelled)
EIT sequence execution #1
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
--
--
--
IF
--
--
--
--
IF
ID
EX
MA
WB
--: Canceled stages
This type of phenomenon does not occur in case of exceptions and trap, because the operation for request
cancellation cannot be carried out in the program.
5.2.2
Method of preventing the mismatched pipeline conditions
Mismatch in Acceptance and Deletion of interrupt can occur in case flag bits that cause interrupt are
cleared while interrupt request is enabled in the peripheral functions.
To avoid such a phenomenon, programmers should set the interrupt enable flag (I) at "0", disable interrupt
acceptance in CPU and clear the flag bits that cause an interrupt.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
73
CHAPTER 5 PIPELINE OPERATION
5.3
5.3
FR81 Family
Pipeline hazards
The FR81 Family CPU executes program steps in the order in which they are written and
is therefore equipped with a function that detects the occurrence of data hazards and
construction hazards, and stops pipeline processing when necessary.
5.3.1
Occurrence of data hazard
A data hazard occurs if dependency that refers or updates the register exists in between the preceding and
subsequent instructions. The CPU may simultaneously process one instruction that involves writing values
to a register, and a subsequent instruction that attempts to refer to the same register before the write process
is completed.
An example of a data hazard is shown in Figure 5.3-1. In this case, the reading of R1 used as the address
will read the value before the modification, as the read timing precedes the writing to R1 requested by the
just previous instruction. (Actually, the data hazard is avoided, and the modified value is read.)
Figure 5.3-1 Example of a data hazard
IF
ADD R0, R1
SUB R1, R2
5.3.2
ID
EX
MA
WB
IF
ID
EX
MA
: Write cycle to R1
WB
: Read cycle from R1
Register Bypassing
Even when a data hazard does occur, it is possible to process instructions without operating delays if the
data intended for the register to be accessed can be extricated from the preceding instruction. This type of
data transfer processing is called register bypassing.
An example of Register Bypassing is indicated in Figure 5.3-2. In this example, instead of reading the R1
in the ID stage of SUB instruction, the program uses the results of the calculation from ADD instruction
(before the results are written to the register) and thus executes the instruction without delay.
Figure 5.3-2 Example of a register bypass
ADD R0, R1
SUB R1, R2
74
IF
ID
EX
MA
WB
IF
ID
EX
MA
: Data calculation cycle to R1
WB
: Read cycle from R1
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 5 PIPELINE OPERATION
5.3
FR81 Family
5.3.3
Interlocking
Instructions that are relatively slow in loading data to the CPU may cause data hazards that cannot be
handled by register bypassing.
In the example Figure 5.3-3, data required for the ID stage of the SUB instruction must be loaded to the
CPU in the MA stage of the LD instruction, creating a data hazard that cannot be avoided by the bypass
function.
Figure 5.3-3 Example: Data Hazard that cannot be avoided by Bypassing
IF
LD @R0, R1
SUB R1, R2
ID
EX
MA
WB
IF
ID
EX
MA
: Data read cycle to R0
WB
: Read cycle from R1
In cases such as this, the CPU executes the instruction correctly by pausing before the execution of
subsequent instruction. This function is called interlocking.
In the example in Figure 5.3-4, the ID stage of the SUB instruction is delayed until the data is loaded from
the MA stage of the LD instruction.
Figure 5.3-4 Example of Interlocking
LD @R0, R1
SUB R1, R2
5.3.4
IF
ID
EX
MA
WB
IF
ID
ID
EX
: Data read cycle to R0
MA
WB
: Read cycle from R1
Interlocking produced by reference to R15 after
Changing the Stack flag (S)
The general purpose register R15 is designed to function as either the system stack pointer (SSP) or user
stack pointer (USP). For this reason the FR Family CPU is designed to automatically generate an interlock
whenever a change to the stack flag (S) in the program status (PS) is followed immediately by an instruction
that references the R15. This interlock enables the CPU to reference the SSP or USP values in the order in
which they are written in the program.
Hardware design similarly generates an interlock whenever a TYPE-A format instruction immediately
follows an instruction that changes the value of Stack flag (S). For information on instruction formats, see
Section "6.2.3 Instruction Formats".
5.3.5
Structural Hazard
A structural hazard occurs if a resource conflict occurs between instructions which use the same hardware
resource. If this hazard is detected, the pipeline is interlocked to pause the processing of subsequent
instruction until the hazard is eliminated.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
75
CHAPTER 5 PIPELINE OPERATION
5.3
5.3.6
FR81 Family
Control Hazard
A control hazard occurs when the next instruction cannot be fetched before the branching instruction is
complete. In FR81 Family, to reduce penalty due to this control hazard, the pre-fetch function that bypasses
the branch destination address from the ID stage and the delayed branching instruction have been added.
Therefore, penalties do not become apparent.
● Pre-fetch function
FR81 Family CPU has a 32-bit 4-stage pre-fetch buffer, and fetches a subsequent instruction of consecutive
addresses as long as the buffer is not full. However, when a branching instruction is decoded, the
instruction is fetched from the branching destination regardless of the condition. If an instruction is
branched, the instruction in the pre-fetch buffer is discarded, and the subsequent instruction in the
branching destination will be pre-fetched. If not branched, the instruction in the branching destination is
discarded, and the instruction in the pre-fetch buffer will be used.
● Delayed branching processing
Delayed branching processing is the function to execute the instruction immediately following the
branching instruction for pipeline operation by one, regardless of whether the branching is successful or
unsuccessful. The position immediately following a branching instruction is called the delay slot.
Instructions that can be placed in the delay slot should be executable in one state having 16-bit length.
Placing an instruction that does not fit in the delay slot will result an invalid instruction exception to occur.
Refer to Appendix A.3 for the list of instructions that can be placed in delay slot.
76
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 5 PIPELINE OPERATION
5.4
FR81 Family
5.4
Non-block loading
Non-block loading is carried out in FR81 Family CPU. A maximum of 4 loading instructions
can be issued with precedence.
In non-block loading, the subsequent instruction is executed without waiting for the completion of loading
instruction, if the general-purpose register in which the load instruction value is stored is not referred in the
subsequent instruction.
As shown below, when register R1 that stores data value based on LD instruction is referred to in the
subsequent ADD instruction, the ADD instruction is executed after storing R1 value based on LD
instruction.
LD
@10,R1
ADD
R1,R2
; waits for completion of execution of preceding LD instruction
As shown below, ADD instruction is executed without waiting for the completion of execution of LD
instruction when R1 that stores data value by LD instruction is not referred to in the subsequent ADD
instruction. After that, at the time of execution of SUB instruction that references R1, if the preceding LD
instruction is not already executed, the SUB instruction is executed after waiting for the completion of
execution of that LD instruction.
LD
@10,R1
ADD
R2,R3
; Does not wait for completion of execution of preceding LD instruction
SUB
R1,R3
; waits for completion of execution of preceding LD instruction
A maximum of 4 load instructions can be executed with precedence. It can also be used in the following
way for issuing multiple LD instructions with precedence.
CM71-00105-1E
LD
@100,R1 ; LD instruction (1)
LD
@104,R2
LD
@108,R3
LD
@112,R4 ; a maximum of four LD instructions can be issued with precedence
ADD
R5,R6
SUB
R6,R0
ADD
R1,R5
; executed without waiting for the completion of execution of preceding LD
instruction
; executed after completion of execution of preceding LD instruction (1)
FUJITSU MICROELECTRONICS LIMITED
77
CHAPTER 5 PIPELINE OPERATION
5.5
5.5
FR81 Family
Delayed branching processing
Because FR81 Family CPU features pipeline operation, the loading of the instruction is
already completed at the time of execution of branching instruction. The processing
speeds can be improved by using the delayed branching processing.
5.5.1
Example of branching with non-delayed branching
instructions
Non-delayed branching instruction executes instructions in the order of program but the execution speed
drops down by 1 cycle as compared to delayed branching instruction when branching.
In a pipeline operation, by the time the CPU recognizes an instruction as a branching instruction the next
instruction has already been loaded. To process the program as written, the instruction following the
branching instruction must be cancelled in the middle of execution. Branching instructions that are handled
in this manner are non-delayed branching instructions.
The example of processing non-delayed branching instruction with fulfilled branching conditions is given
in Figure 5.5-1 which shows that execution of the "ST R2,@R12" instruction (instruction placed
immediately after branching instruction) that had started pipeline operation before fetching instruction from
the branching destination is cancelled in the middle. Due to this, program processing happens as the
program is written, but branching instruction apparently takes 2 cycles for completion.
Figure 5.5-1 Example of processing of Non-Delayed Branching instruction
(Branching conditions satisfied)
LD @R10, R1
LD @R11, R2
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
--
--
--
--
IF
ID
EX
MA
ADD R1, R3
ST R2, @R12(instruction immediately after)
ST R2, @R13(branch destination instruction)
WB
-- : Canceled stages
: PC change
Figure 5.5-2 shows an example of processing a non-delayed branching instruction when branching
conditions are not fulfilled. In this example, the "ST R2,@R12" instruction (instruction kept immediately
after branching instruction) that started pipeline processing before fetching instruction from the branching
destination is executed without being cancelled. The processing of program happens as written in the
program since the instructions are executed sequentially, without branching, and branching instruction
execution speed is apparently of 1 cycle.
78
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 5 PIPELINE OPERATION
5.5
FR81 Family
Figure 5.5-2 Example of processing of Non-Delayed Branching instruction
(Branching conditions not satisfied)
LD @R10, R1
IF
LD @R11, R2
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
Not canceled
IF
ID
EX
MA
WB
ADD R1, R3
ST R2, @R12(instruction immediately after)
ADD #4, R12(subsequent instruction)
5.5.2
Example of processing of delayed branching instruction
Delayed branching instructions are processed with an apparent execution speed of 1 cycle, regardless of
whether or not branching conditions are satisfied. When branching occurs, this is one cycle faster than
using non-delayed branching instructions. However, the apparent order of instruction processing is inverted
in cases where branching occurs.
An instruction immediately following a branching instruction will already be loaded by the CPU by the
time the branching instruction is executed. This position is called the delay slot. A delayed branching
instruction is a branching instruction that executes the instruction in the delay slot regardless of whether or
not branching conditions are satisfied.
Figure 5.5-3 shows an example of processing a delayed branching instruction when branching conditions
are satisfied. In this example, the branch destination instruction "ST R2,@R13" is executed after the
instruction "ST R2,@R12" in the delay slot. As a result, the branching instruction has an apparent
execution speed of 1 cycle. However, the instruction "ST R2,@R12" in the delay slot is executed before
the branch destination instruction "ST R2,@R13" and therefore the apparent order of processing is
inverted.
Figure 5.5-3 Example of processing of Delayed Branching instruction (Branching conditions satisfied)
LD @R10, R1
IF
LD @R11, R2
ADD R1, R3
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
Not canceled
IF
ID
EX
MA
WB
ST R2, @R12(delay slot instruction)
ST R2, @R13(branch destination instruction)
: PC change
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
79
CHAPTER 5 PIPELINE OPERATION
5.5
FR81 Family
Figure 5.5-4 shows an example of processing a delayed branching instruction when branching conditions
are not satisfied. In this example, the instruction "ST R2,@R12" in delay slot is executed without being
cancelled. As a result, the program is processed in the order in which it is written. The branching
instruction requires an apparent processing time of 1 cycle.
Figure 5.5-4 Example of processing of Delayed Branching instruction
(Branching conditions not satisfied)
LD @R10, R1
IF
LD @R11, R2
ADD R1, R3
BNE:D TestOK (br
ST R2, @R12 (delay slot instruction)
ADD #4, R12
80
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
WB
IF
ID
EX
MA
FUJITSU MICROELECTRONICS LIMITED
Not canceled
WB
CM71-00105-1E
CHAPTER 6
INSTRUCTION OVERVIEW
This chapter presents an overview of the instructions
used with the FR81 Family CPU.
6.1 Instruction System
6.2 Instructions Formats
6.3 Data Format
6.4 Read-Modify-Write type Instructions
6.5 Branching Instructions and Delay Slot
6.6 Step Division Instructions
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
81
CHAPTER 6 INSTRUCTION OVERVIEW
6.1
6.1
FR81 Family
Instruction System
FR81 Family CPU has the integer type instruction of upward compatibility with FR80
Family and floating point type instruction executed by FPU.
6.1.1
Integer Type Instructions
Integer type instructions, in addition to instruction type of general RISC CPU, is also compatible with
logical operation optimized for embedded use, bit operation and direct addressing instructions.
Integer type instructions of FR81 Family CPU can be divided into the following 15 groups.
● Add/Subtract Instructions
These are the Instructions to carry out addition and subtraction between general-purpose registers or a
general-purpose register and immediate data. They also enable computation with carry used in multi-word
long computation or computations where flag value of Condition Code Register (CCR) convenient for
address calculation is not changed.
● Compare Instructions
These are the Instructions to carry out subtraction between general-purpose registers or a general-purpose
register and immediate data and reflect the results in the flag of Condition Code Register (CCR).
● Logical Calculation Instructions
These are the Instructions to carry out logical calculation for each bit between general-purpose registers or
a general-purpose register and memory (including I/O). Logical calculation types are logical product
(AND), logical sum (OR), and exclusive logical sum (EXOR). Memory addressing is register indirect.
● Bit Operation Instructions
These are the Instructions to carry out logical calculation between memory (including I/O) and immediate
value and operate directly for each bit. Logical calculation types are logical product (AND), logical sum
(OR), and exclusive logical sum (EXOR). Memory addressing is register indirect.
● Multiply/Divide Instructions
These are the instructions to carry out multiplication and division between general-purpose register and
multiplication/division result register. There are 32 bit × 32 bit, 16 bit × 16 bit multiplication instructions
and step division instructions to carry out 32 bit ÷ 32 bit division.
● Shift Instructions
These are the instructions to carry out shift (logical shift, arithmetic shift) of general-purpose registers. By
specifying general-purpose register or immediate data, shift (Barrel Shift) of multiple bits can be specified
at once.
82
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.1
FR81 Family
● Immediate Data Transfer Instructions
These are the instructions to transfer immediate data to general-purpose registers and can transfer
immediate data of 8bit, 20 bit, and 32 bit.
● Memory Load Instructions
These are the instructions to load from memory (including I/O) to general-purpose registers or dedicated
registers. They can transfer data length of 3 types namely, bytes, half-words and words and memory
addressing is register indirect.
During memory addressing of some Instructions, Displacement Register Indirect or Increment/Decrement
Register Indirect Address is possible.
● Memory Store Instructions
These are the instructions to store from general-purpose register or dedicated register to memory (Including
I/O). They can transfer data length of 3 types namely, bytes, half-words and words and memory addressing
is register indirect.
During memory addressing of some Instructions, Displacement Register Indirect or Increment/Decrement
Register Indirect Address is possible.
● Inter-register Transfer Instructions/Dedicated Register Transfer Instructions
These are the instructions to transfer data between general-purpose registers or a general-purpose register
and dedicated register.
● Non-delayed Branching Instructions
These are the instructions that do not have delay slot and carry out branching, sub-routine call, interrupt and
return.
● Delayed Branching Instructions
These are the instructions that have delay slot and carry out branching, sub-routine call, interrupt and
return. Delay slot instructions are executed when branching.
● Direct Addressing Instructions
These are the instructions to transfer data between general-purpose register and memory (INCLUDING I/O)
or between two memories. Addressing is not register indirect but direct specification with operand of
instruction.
In some instructions, in combination with specific general-purpose registers, access is made in combination
with increment/decrement Register Indirect addressing.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
83
CHAPTER 6 INSTRUCTION OVERVIEW
6.1
FR81 Family
● Bit Search Instructions
These are the instructions that have been added to FR81/FR80 Family CPU. They search 32-bit data of
general-purpose register from MSB and obtain the first "1" bit, "0" bit and bit position of change point
(distance of bit from MSB).
They correspond to bit search module packaged in the family prior to FR81/FR80 Family (FR30 Family,
FR60 Family etc.) as peripheral function.
● Other Instructions
These are the instructions to carry out flag setting, stack operation, sign/zero extension etc. of Program
Status (PS). There are also high-level language compatible Enter Function/Leave Function, Register Multi
load/store Instructions.
See “A.2 Instruction Lists” to know about the groups and types of Instructions.
6.1.2
Floating Point Type Instructions
The floating point type instructions is an instruction added in FR81 family CPU. The floating point type
instructions is divided into the following six groups.
● FPU Memory Load Instruction
This is an instruction to load data from memory to the floating point register. Memory addressing is register
indirect. Displacement Register Indirect or Increment/Decrement Register Indirect Address is possible.
● FPU Memory Store Instruction
This is an instruction to store data from the floating point register in memory. Memory addressing is
register indirect. Displacement Register Indirect or Increment/Decrement Register Indirect Address is
possible.
● FPU Single-Precision Floating Point Calculation Instruction
This is an instruction to perform single-precision floating point calculations.
● FPU Inter-Register Transfer Instruction
This is an instruction to transfer data between floating point registers or between the floating point register
and general-purpose register.
● FPU Branching Instruction without Delay
This is a conditional branching instruction without a delay slot.
● FPU Branching Instruction with Delay
This is a conditional branching instruction with a delay slot.
84
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
FR81 Family
6.2
Instructions Formats
This part describes about Instruction Formats of FR81 Family CPU.
6.2.1
Instructions Notation Formats
● Integer type instruction
The integer type instruction is 2 operand format. There are 3 types of Instruction notation formats
depending on the number of operands. Instruction notation formats are as follows.
<Mnemonic> <Operand 1> <Operand 2>
Mnemonic calculations are carried out between operand 2 and operand 1 and the results are stored at
operand 2.
Ex:
ADD
R1,R2
; R2 + R1 -> R2
<Mnemonic> <Operand 1>
Operations are designated by a mnemonic and use operand 1.
Ex:
JMP
@R1
; R1 -> PC
<Mnemonic>
Operations are designated by a mnemonic.
Ex:
NOP
; No Operation
Operands have general-purpose register, dedicated register, immediate data and combinations of part of
general-purpose register and immediate data. Operand format varies depending on Instruction.
● Floating point type instruction
Floating point type instruction is 3 operand format. The following description formats are added.
<Mnemonic> <Operand 1> <Operand 2> <Operand 3>
Mnemonic calculations are executed between operand 1 and operand 2 and the results are stored in
operand 3. For some of the instructions, calculations are executed between operand 3 and the
calculation result of operand 1 and operand 2, and then the results are stored in operand 3.
Ex:
CM71-00105-1E
FADDs
FR1, FR2, FR3
; FR1 + FR2 -> FR3
FUJITSU MICROELECTRONICS LIMITED
85
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
6.2.2
FR81 Family
Addressing Formats
There are several methods for address specification when accessing memory in the memory space or I/O
register. Addressing format varies depending on Instruction.
@General-purpose Registers
It is Register Indirect Addressing. Address indicated by the content of the general-purpose register is
accessed.
@(R13, General-purpose Register)
Address where virtual accumulator (R13) and contents of general-purpose register are added is
accessed.
@(R14,Immediate Data)
Address where contents of Frame Pointer (R14) and immediate data are added is accessed.
Immediate data is specified in the multiples of data size (word, half word, byte).
@(R15, Immediate Data)
Address where contents of Stack Pointer (R15) and immediate data are added is accessed.
Immediate data is specified in the multiples of data size (word, half word, byte).
@R15+
Write access to the address indicated by the contents of Stack Pointer (R15) is made. 4 will be added
to the stack pointer (R15).
@-R15
Read access to the address which is deduction of 4 from the contents of Stack Pointer (R15) is made.
4 will be deducted from the Stack Pointer (R15).
@ Immediate Data
It is direct addressing. Address indicated by immediate data is accessed.
@R13+
Access to address indicated by the contents of virtual accumulator (R13) is made. Data size (Bytes)
will get added to virtual accumulator (R13).
@(BP, Immediate Data)
Address where the base pointer (BP) and immediate data are added is accessed. Immediate data is
specified in the multiples of data size (word, half word, byte).
86
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
FR81 Family
6.2.3
Instruction Formats
FR81 Family CPU Instructions are 16-bit in length. Bit configuration of Instructions varies depending on
configuration of operands of Instructions. Bit configuration of Instructions classified into groups is called
Instruction Formats.
There are 14 types of Instructions Formats TYPE-A through TYPE-N.
TYPE-A
It has 8-bit OP Code (OP) and two Register designated fields (Rj/Rs,Ri)
MSB
LSB
OP
Rj/Rs
Ri
TYPE-B
It has 4-bit OP Code (OP) and 8-bit immediate data fields (i8/o8), register designated field (Ri)
MSB
LSB
OP
i8/o8
Ri
TYPE-C
It has 8-bit OP Code (OP) and 4-bit immediate data fields (u4/m4/i4), register designated field (Ri)
MSB
LSB
OP
u4/m4/i4
Ri
TYPE-D
It has 8-bit OP Code (OP) and 8-bit immediate data field (u8) or address designated field (rel8/dir8).
In some instructions, it is 8-bit register list designated field (rlist).
MSB
LSB
OP
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
u8/rel8/dir8/reglist
87
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
FR81 Family
TYPE-E
It has 12-bit OP Codes (OP) and register designated fields (Ri/Rs).
MSB
LSB
OP
Ri/Rs
TYPE-E’
It is deformation of TYPE-E. It has 12-bit OP Code (OP). TYPE-E register designated field is fixed
to 0000B. It is applied for instructions where 16-bit instruction code such as NOP Instruction or RET
Instructions etc. is defined.
MSB
LSB
OP
0
0
0
0
TYPE-F
It has 5-bit OP Code (OP) and 11-bit address designated filed (rel11).
MSB
LSB
OP
rel11
TYPE-G
It has 8-bit OP code (OP) and 20bit immediate data field (i20), register designated field (Ri). It has
32-bit length and is applied only for LDI:20 Instruction.
MSB
(n+0)
(n+2)
88
LSB
OP
i20 (Upper)
Ri
i20 (Lower)
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
FR81 Family
TYPE-H
It has 12bit OP code (OP) and 32bit immediate data field (i32), register designated field (Ri). It has
48-bit length and is applied only for LDI:32 Instruction.
MSB
(n+0)
LSB
OP
Ri
(n+2)
i32 (Upper}
(n+4)
i32 (Lower)
TYPE-I
It has 12-bit OP Code (OP) and 20-bit address designated filed (rel20). These are the instruction
formats that have been added to FR81 Family CPU.
MSB
(n+0)
LSB
OP
(n+2)
rel20
rel20
TYPE-J
It has 12-bit OP Code (OP), register designated fields (Rj/FRi/cc) and 16-bit address designated
fields (u16/rel16). These are the instruction formats that have been added to FR81 Family CPU.
MSB
(n+0)
(n+2)
CM71-00105-1E
LSB
OP
Ri/FRi/cc
u16/rel16
FUJITSU MICROELECTRONICS LIMITED
89
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
FR81 Family
TYPE-K
It has 12-bit OP Code (OP), register designated field (Rj) and floating point register designated filed
(FRi). These are the instruction formats that have been added to FR81 Family CPU.
MSB
LSB
(n+0)
OP
Rj
(n+2)
-
FRi
TYPE-L
It has 14-bit OP Code (OP) and 14-bit immediate data fields (o14/u14), floating point register
designated field (FRi). Immediate data fields are not used in some instructions. These are the
instruction formats that have been added to FR81 Family CPU.
MSB
LSB
(n+0)
OP
(n+2)
o14/u14/-
o14/u14/-
FRi
TYPE-M
It has 16-bit OP Code (OP) and three floating point register designated fields (FRk, FRj, FRi). These
are the instruction formats that have been added to FR81 Family CPU.
MSB
LSB
(n+0)
(n+2)
90
OP
-
FRk/-
FUJITSU MICROELECTRONICS LIMITED
FRj/-
FRi/-
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
FR81 Family
TYPE-N
It has 14-bit OP Code (OP) and floating point register list (frlist). These are the instruction formats
that have been added to FR81 Family CPU.
MSB
LSB
(n+0)
OP
(n+2)
6.2.4
-
frlist
Register designated Field
● General-purpose register designated Field (Ri/Rj)
Among Instruction formats, fields that designate general-purpose register are 4-bit length Ri and Rj.
Relation between bit pattern of general purpose register and register designated field has been indicated in
Table 6.2-1.
Table 6.2-1 Bit pattern of general purpose register and register designated field
Ri / Rj
0000B
0001B
0010B
0011B
0100B
0101B
0110B
0111B
CM71-00105-1E
Register
R0
R1
R2
R3
R4
R5
R6
R7
Ri / Rj
1000B
1001B
1010B
1011B
1100B
1101B
1110B
1111B
Register
R8
R9
R10
R11
R12
R13
R14
R15
FUJITSU MICROELECTRONICS LIMITED
91
CHAPTER 6 INSTRUCTION OVERVIEW
6.2
FR81 Family
● Dedicated register designated Field (Rs)
Among Instruction formats, field that designates dedicated register is 4-bit length Rs. Relation between bit
pattern of dedicated register and register designated field has been indicated in Table 6.2-2.
Table 6.2-2 Bit pattern of dedicated register and register designated field
Rs
0000B
0001B
0010B
0011B
0100B
0101B
0110B
0111B
Register
Table Base Register (TBR)
Return Pointer (RP)
System Stack Pointer (SSP)
User Stack Pointer (USP)
Multiply/Divide Register (MDH)
Multiply/Divide Register (MDL)
Base pointer (BP)
FPU control register (FCR)
Rs
1000B
1001B
1010B
1011B
1100B
1101B
1110B
1111B
Register
Exception status register (ESR)
Reserved
Debug register (DBR)
Bit pattern which is shown as "Reserved" in the field that designates dedicated register is the reserved
pattern. Operation when reserved pattern is specified is not covered by the warranty.
● Floating point register designated field
Among instruction formats, fields that designate floating point register are 4-bit length FRi, FRj and FRk.
The relationship between the bit pattern of the floating point register and register designated field is
indicated in Table 6.2-3.
Table 6.2-3 Bit pattern of floating point register and register designated field
FRk/FRj/FRi
0000B
0001B
0010B
0011B
0100B
0101B
0110B
0111B
92
Register
FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FRk/FRj/FRi
1000B
1001B
1010B
1011B
1100B
1101B
1110B
1111B
Register
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.3
FR81 Family
6.3
Data Format
This section describes the data type and format supported by FR81 Family CPU. In
addition to integer type supported by FR80 and earlier, single precision floating point
type has been added.
6.3.1
Data Format Used by Integer Type Instructions (Common
with All FR Family)
● Signed integer byte
Signed integer byte is represented as consecutive 8 bits. Bit 7 represents the sign bit (S), and "0" represents
positive or zero and "1" represents negative.
MSB
7
6
LSB
0
S
● Unsigned integer byte
Unsigned integer byte is represented as consecutive 8 bits.
MSB
7
LSB
0
● Signed integer half word
Signed integer half word is represented as consecutive 16 bits. Bit 15 represents the sign bit (S), and "0"
represents positive or zero and "1" represents negative.
MSB
15
14
LSB
0
S
● Unsigned integer half word
Unsigned integer half word is represented as consecutive 16 bits.
MSB
15
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
LSB
0
93
CHAPTER 6 INSTRUCTION OVERVIEW
6.3
FR81 Family
● Signed integer word
Signed integer word is represented as consecutive 32 bits. Bit 31 represents the sign bit (S), and "0"
represents positive or zero and "1" represents negative.
MSB
31
LSB
0
30
S
● Unsigned integer word
Unsigned integer word is represented as consecutive 32 bits.
MSB
31
6.3.2
LSB
0
Format Used for Floating Point Type Instructions
● Floating point format
The IEEE 754 standard is used for floating point format. A floating point is represented by the following 3
fields.
Field
Symbol
Content
Sign bit (Sign)
s
"0" represents positive, and "1" represents negative.
Exponent (Exponent)
e
Bias representation with single precision bias of 127, and the
double precision bias of 1023
Fractional bit
(Fraction)
f
The fraction represents a number less than 1, but the significant is
1 plus the fraction part.
Using the above-described symbols, floating point (normalized number) is represented by the following
formula. Bias representation with single precision bias is 127, and the double precision bias is 1023.
(-1)s × 1.f × 2(e - bias)
In addition, there are special numbers of not-a-number (NaN), infinity (∞), zero and unnormalized number.
94
Signaling NaN (SNaN)
e - bias = Emax +1, and MSB of f is 0
Quiet NaN (QNaN)
e - bias = Emax +1, and MSB of f is 1
Infinity (+ ∞, - ∞)
e - bias = Emax +1, and f is 0
Normalized number
e - bias = Between Emin and Emax
Unnormalized number
e - bias = Emin -1, and f is not 0
Zero (+0, -0)
e, f = 0
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.3
FR81 Family
● Single precision floating point (32-bit)
This conforms to IEEE754 single precision format and is represented as consecutive 32 bits. In the single
precision floating point format, bit 31 represents the sign bit (S), bit 30 to bit 23 represent the exponent
bits, and bit 22 to bit 0 represent the fractional bits.
MSB
31
30
S
CM71-00105-1E
23
Exponent
LSB
0
22
Fraction
FUJITSU MICROELECTRONICS LIMITED
95
CHAPTER 6 INSTRUCTION OVERVIEW
6.4
6.4
FR81 Family
Read-Modify-Write type Instructions
Read-Modify-Write type Instructions are those that carry out a series of operations
namely, arithmetic processing in the data read from the memory space and write the
result in the same address of the memory space.
IN registers of peripheral functions (I/O Registers), there are bits whose read values are different depending
on instructions that independently carry out read access like LD Instruction and Read-Modify-Write type
Instructions. Such bits have been described in the explanation on registers (I/O Registers) of peripheral
functions.
In case of Read-Modify-Write type Instructions, a different instruction based on EIT processing is not
executed between Read access and Write access of one instruction. This is used for exclusive control that
uses flag or semaphore between programs.
Whether or not an instruction is Read-Modify-Write system Instruction is defined for each instruction. See
"CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS".
96
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.5
FR81 Family
6.5
Branching Instructions and Delay Slot
FR81 Family CPU Branching Instructions are of two types namely, Delayed Branching
Instructions and Non-delayed Branching Instructions.
6.5.1
Delayed Branching Instructions
In case of Delayed Branching Instructions, prior to execution of Branching Destination Instructions,
instructions immediately after Branching Instructions are executed. Instructions immediately after Delayed
Branching Instructions are called Delay slot.
Branching Instructions having ":D" affixed to mnemonic are Delayed Branching Instructions. Next
Instruction will be Delayed Branching Instruction.
JMP:D @Ri
CALL:D label12
CALL:D @Ri
RET:D
BRA:D label9
BNO:D
label9
BEQ:D
label9
BNE:D label9
BC:D
label9
BNC:D
label9
BN:D
label9
BP:D
BV:D
label9
BNV:D
label9
BLT:D
label9
BGE:D label9
BLE:D label9
BGT:D
label9
BLS:D
label9
BHI:D
label9
label9
Since Delay Slot instructions are executed prior to Branching operation, apparent execution cycle of
Branching Instruction will be 1 cycle. In case a valid instruction cannot be allocated in the Delay slot, it is
necessary to allocate NOP Instruction. Example of Delayed Branching Instruction has been given below.
;
Instructions alignment
ADD
R1,R2
BRA:D
LABEL
; Branching Instructions
MOV
R2,R3
; Delay slot (Executed before Branching)
R3,@R4
; Branching Destination
...
LABEL:
ST
In case of Conditional Branching Instruction, whether or not Branching conditions are established, Delay
slot instructions are executed.
Instructions that can be placed in the Delay slot are only those that satisfy following conditions. When an
attempt is made to execute an instruction that cannot be placed in the delay slot, an invalid instruction
exception occurs and the EIT processing is carried out.
• 1 cycle Instructions
• Those that are not Branching Instructions
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
97
CHAPTER 6 INSTRUCTION OVERVIEW
6.5
FR81 Family
• Instructions that do not affect the operation even when the order is changed
1 cycle Instructions are those where anyone variable namely 1, a, b, c, d is independently written in the
CYC Column of "A.2 Instruction Lists". (Instructions which have 2a or 1+b are not 1 cycle instructions).
List of instructions that can be placed in Delay Slot are indicated in "Appendix A.3".
EIT processing such as Step Trace Trap, general interrupt, NMI etc. cannot be accepted between Delayed
Branching Instructions and Delay Slot Instructions.
6.5.2
Specific example of Delayed Branching Instructions
Specific example of Delayed Branching Instruction is given below.
"JMP:D @Ri" Instruction, "CALL:D @Ri" Instruction
General-purpose register Ri referred to during JMP:D Instruction, CALL:D Instruction is not affected
by the Branching Destination Address even if Delay Slot Instruction updates Ri.
[Ex]
LDI:32
#Label,R0
JMP:D
@R0
; Branching in Label
LDI:8
#0,R0
; Does not affect Branching Destination Address
...
RET:D Instruction
Return Pointer (RP) referred to by RET:D Instruction is not affected even if Delay Slot Instruction
updates the Return Pointer (RP).
[Ex]
RET:D
MOV
; Branching to address indicated by RP set prior to this
R8,RP
; Not affected by Return Operation
...
Bcc:D Instructions
Flag of Condition Code Register (CCR) referred to by Bcc:D Instruction is not affected by Delay Slot
Instructions.
[Ex]
98
ADD
#1,R0
; Flag change
BC:D
overflow
; Branching based on execution result of preceding ADD Instruction
ANDCCR
#0
; Updating of this flag does not affect Branching
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.5
FR81 Family
CALL:D Instruction
If Return Pointer (RP) is referred to based on Delay Slot Instruction of CALL:D Instruction, updated
content will be read based on CALL:D Instruction.
[Ex]
6.5.3
CALL:D
Label
; Branching after updating of RP
MOV
RP,R0
; Execution result of RP of preceding CALL:D Instruction is transferred to
R0
Non-Delayed Branching Instructions
In case of Non-Delayed Branching Instructions, execution is carried out in the sequence of Instructions.
Instruction immediately after Branching Instruction is never executed before branching.
Branching Instructions without ":D" in mnemonic are Non-Delayed Branching Instructions. Next
instruction will be Non-Delayed Branching Instruction
JMP
@Ri
CALL label12
CALL
@Ri
RET
BRA
label9
BNO
label9
BEQ
label9
BNE label9
BC
label9
BNC
label9
BN
label9
BP
BV
label9
BNV
label9
BLT
label9
BGE label9
BLE
label9
BGT
label9
BLS
label9
BHI
label9
label9
Execution cycles of Non-Delayed Branching Instruction will be 2 cycles when Branching and 1 cycle when
not branching. Example of Non-Delayed Branching Instruction is given below.
;
Sequence of Instructions
ADD
R1,R2
BRA
LABEL
; Branching Instruction
MOV
R2,R3
; Not executed
R3,@R4
; Branching Destination
...
LABEL:
ST
Compared to Delayed Branching Instructions where NOP Instruction is placed in the Delay Slot, efficiency
of instruction code can be increased. Execution speed and Code Efficiency both can be realized by using
Delayed Branching Instruction when valid instruction can be placed in the Delay Slot and using Nondelayed Branching Instruction otherwise.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
99
CHAPTER 6 INSTRUCTION OVERVIEW
6.6
6.6
FR81 Family
Step Division Instructions
In FR81 Family CPU, 32-bit signed/unsigned division is carried out based on combination
of Step Division Instructions.
Step Division Instructions are of following types.
• DIV0S (Initial Setting Up for Signed Division)
• DIV0U (Initial Setting Up for Unsigned Division)
• DIV1 (Main Process of Division)
• DIV2 (Correction When Remain is zero)
• DIV3 (Correction When Remain is zero)
• DIV4S (Correction Answer for Signed Division)
In order to realize signed division, combine the Instructions as follows.
DIV0S, DIV1 × 32, DIV2, DIV3, DIV4S
In order to realize unsigned division, combine the Instructions as follows.
DIV0U, DIV1 × 32
For various Instructions, see "CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS".
6.6.1
Signed Division
Signed 32bit dividend is divided with signed 32 bit divisor and quotient of signed 32 bit and remainder of
signed 32bit are obtained.
Before carrying out division, dividend and divisor are set in the following register.
• Multiplication/Division Register (MDL): Dividend of signed 32 bit (Dividend)
• One of general-purpose registers: Divisor of signed 32 bit (Divisor)
Signed division is carried out by executing following 36 Instructions. DIV1 Instructions 32 numbers are
arranged after DIV0S Instructions. In the operand of DIV0S Instructions, DIV1 Instructions, DIV2
Instructions general-purpose registers that store divisor are specified.
DIV0S
R2
; Divisor in R2
DIV1
R2
; #1
DIV1
R2
; #2
R2
; #30
...
DIV1
100
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 6 INSTRUCTION OVERVIEW
6.6
FR81 Family
DIV1
R2
; #31
DIV1
R2
; #32
DIV2
R2
DIV3
DIV4S
Division results are stored in the following registers.
• Multiplication/Division Register (MDL): quotient of signed 32 bit
• Multiplication/Division Register (MDH): remainder of signed 32 bit
Example of execution of signed division has been indicated in Figure 6.6-1.
Figure 6.6-1 Example of execution of signed division
R2
0 1 2 3 4 5 6 7
R2
0 1 2 3 4 5 6 7
MDH
× × × × × × × ×
MDH
F F F F F F F F
MDL
F E D C B A 9 8
MDL
F F F F F F F F
D1 D0 T
D1 D0 T
SCR
× × 0
SCR
Before execution
1 1 0
After execution
In SOFTUNE Assembler, DIV Instruction has been arranged to carry out signed division as Assembler
Pseudo Machine Instruction. Using this DIV Instruction in place of above mentioned 36 Instructions,
signed division can be described with 1 Instruction. See "FR family SOFTUNE Assembler Manual" for
DIV Instruction.
6.6.2
Unsigned Division
Dividend of unsigned 32 bit dividend is divided with unsigned 32bit divisor and quotient of unsigned 32 bit
and remainder of unsigned 32 bit are obtained.
Before carrying out division, dividend and divisor are set in the following register.
• Multiplication/Division Register (MDL): Dividend of unsigned 32 bit (Dividend)
• One of general-purpose registers: Divisor of unsigned 32 bit (Divisor)
Unsigned division is carried out by executing following 33 Instructions. DIV1 Instructions 32 numbers are
arranged after DIV0U Instruction. In the operand of DIV0U Instructions, DIV1 Instructions, generalpurpose registers that store divisor are specified.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
101
CHAPTER 6 INSTRUCTION OVERVIEW
6.6
DIV0S
R2
; divisor in R2
DIV1
R2
; #1
DIV1
R2
; #2
DIV1
R2
; #30
DIV1
R2
; #31
DIV1
R2
; #32
FR81 Family
...
Division result is stored in the following registers.
• Multiplication/Division Register (MDL): quotient of unsigned 32 bit
• Multiplication/Division Register (MDH): remainder of unsigned 32 bit
Example of execution of unsigned division has been indicated in Figure 6.6-2.
Figure 6.6-2 Example of execution of unsigned division
R2
0 1 2 3 4 5 6 7
R2
0 1 2 3 4 5 6 7
MDH
× × × × × × × ×
MDH
0 0 0 0 0 0 7 8
MDL
F E D C B A 9 8
MDL
0 0 0 0 0 0 E 0
D1 D0 T
D1 D0 T
SCR
× × 0
SCR
Before execution
0 0 0
After execution
In SOFTUNE Assembler, DIVU Instruction has been arranged to carry out unsigned division as Assembler
Pseudo Machine Instruction. Using this DIVU Instruction in place of above mentioned 33 Instructions,
unsigned division can be described with 1 Instruction. See "FR family SOFTUNE Assembler Manual" for
DIVU Instruction.
102
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7
DETAILED EXECUTION
INSTRUCTIONS
This chapter explains each of the execution instructions
used by the FR81 Family CPU, alphabetically in the
reference format.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
103
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
FR81 Family
Refer to "A.1 Meaning of Symbols" for explanation regarding symbols used in detailed
execution instructions. The respective instructions are explained separately in the
following items.
● Assembler Format
Shows the format of writing the instruction in the assembler language.
● Operation
Shows the operation of an instruction by substituting it with an arrow mark (→).
● Flag Change
Shows whether the flag of the Condition Code Register (CCR) changes by the execution of an instruction.
● Classification
Shows Functional classification of instructions and the following sections of instructions.
Instruction with delay slot: Instruction than can be positioned in the delay slot
Read-Modify-Write system Instruction
FR80 Family: Instructions added to FR80 Family and after CPUs
FR81 Family: Instructions added in FR81 Family CPU
FR81 Updating: Instruction to which definition is changed in FR81 family CPU
● Execution Cycle
Shows the required number of clock cycles for instruction execution
● Instruction Format
Shows the format and bit pattern of the instruction.
● Execution example
Shows the operation example at the time of instruction execution.
104
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.1
FR81 Family
7.1
ADD (Add 4bit Immediate Data to Destination Register)
Adds the result of higher 28 bits of 4-bit immediate data with zero extension(0-15) and
stores the results to Ri.
● Assembler Format
ADD #i4, Ri
● Operation
Ri + extu(i4) → Ri
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a carry has occurred as a result of the operation, cleared otherwise.
● Classification
Add/Subtract Instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
1
0
0
i4
FUJITSU MICROELECTRONICS LIMITED
Ri
105
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.1
FR81 Family
● Execution Example
ADD #2, R3
R3
; Bit pattern of instruction: 1010 0100 0010 0011
9 9 9 9 9 9 9 7
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
106
9 9 9 9 9 9 9 9
FUJITSU MICROELECTRONICS LIMITED
1 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.2
FR81 Family
7.2
ADD (Add Word Data of Source Register to Destination
Register)
Adds word data of Rj to Ri, stores result to Ri.
● Assembler Format
ADD Rj, Ri
● Operation
Ri + Rj → Ri
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a carry has occurred as a result of the operation, cleared otherwise.
● Classification
Add/Subtract Instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
107
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.2
FR81 Family
● Execution Example
ADD R2, R3
; Bit pattern of instruction: 1010 0110 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
8 7 6 5 4 3 2 1
R3
9 9 9 9 9 9 9 9
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
108
FUJITSU MICROELECTRONICS LIMITED
1 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.3
FR81 Family
7.3
ADD2 (Add 4bit Immediate Data to Destination Register)
Adds the result of the higher 28 bits of 4-bit immediate data with minus extension (-16
to -1) to word data in Ri, stores results to Ri. Unlike SUB instruction, changing C flag of
this instruction becomes it as well as the ADD instruction unlike the SUB instruction.
● Assembler Format
ADD2 #i4, Ri
● Operation
Ri + extn(i4) → Ri
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a carry has occurred as a result of the operation, cleared otherwise.
● Classification
Add/Subtract Instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
1
0
1
i4
FUJITSU MICROELECTRONICS LIMITED
Ri
109
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.3
FR81 Family
● Execution Example
ADD2 #-2, R3
R3
; Bit pattern of instruction: 1010 0101 1110 0011
9 9 9 9 9 9 9 9
R3
9 9 9 9 9 9 9 7
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
110
FUJITSU MICROELECTRONICS LIMITED
1 0 0 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.4
FR81 Family
7.4
ADDC (Add Word Data of Source Register and Carry Bit to
Destination Register)
Adds word data and carry flag (C) of Rj to Ri, stores results in Ri.
● Assembler Format
ADDC Rj, Ri
● Operation
Ri + Rj + C → Ri
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when MSB of the operation result is "1", cleared when MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a carry has occurred as a result of the operation, cleared otherwise.
● Classification
Add/Subtract Instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
1
1
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
111
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.4
FR81 Family
● Execution Example
ADDC R2, R3
; Bit pattern of the instruction: 1010 0111 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
8 7 6 5 4 3 2 0
R3
9 9 9 9 9 9 9 9
N Z V C
CCR
0 0 0 1
N Z V C
CCR
Before execution
112
FUJITSU MICROELECTRONICS LIMITED
1 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.5
FR81 Family
7.5
ADDN (Add Immediate Data to Destination Register)
Adds the result of the higher 28 bits of the 4-bit immediate data with zero extension
(0 to 15) to the word data of Ri, stores the results without changing flag settings.
● Assembler Format
ADDN #i4, Ri
● Operation
Ri + extu(i4) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Add/Subtract Instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
0
0
0
i4
FUJITSU MICROELECTRONICS LIMITED
Ri
113
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.5
FR81 Family
● Execution Example
ADDN #2, R3
R3
; Bit pattern of the instruction: 1010 0000 0010 0011
9 9 9 9 9 9 9 7
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
114
9 9 9 9 9 9 9 9
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.6
FR81 Family
7.6
ADDN (Add Word Data of Source Register to Destination
Register)
Adds the word data of Rj to the word data of Ri, stores results in Ri without changing
flag settings.
● Assembler Format
ADDN Rj, Ri
● Operation
Ri + Rj → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Add/Subtract Instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
115
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.6
FR81 Family
● Execution Example
ADDN R2, R3
; Bit pattern of the instruction: 1010 0010 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
8 7 6 5 4 3 2 1
R3
9 9 9 9 9 9 9 9
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
116
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.7
FR81 Family
7.7
ADDN2 (Add Immediate Data to Destination Register)
Adds the result of the higher 28 bits of 4-bit immediate data with minus extension (-16
to -1) to word data in Ri, stores the results in Ri without changing flag settings.
● Assembler Format
ADDN2 #i4, Ri
● Operation
Ri + extn(i4) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Add/Subtract Instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
0
0
1
i4
FUJITSU MICROELECTRONICS LIMITED
Ri
117
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.7
FR81 Family
● Execution Example
ADDN2 #-2, R3
R3
; Bit pattern of the instruction: 1010 0001 1110 0011
9 9 9 9 9 9 9 9
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
118
9 9 9 9 9 9 9 7
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.8
FR81 Family
7.8
ADDSP (Add Stack Pointer and Immediate Data)
Adds 4 times the 8-bit immediate data as a signed extended value to the word data of
R15 and stores result in R15. Specifies the value of s8 × 14 as s10.
● Assembler Format
ADDSP #s10
● Operation
R15 + exts(s8×4) → R15
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
0
0
1
1
s8
FUJITSU MICROELECTRONICS LIMITED
119
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.8
FR81 Family
● Execution Example
ADDSP #-4
R15
; Bit pattern of the instruction: 1010 0011 1111 1111
8 0 0 0 0 0 0 0
R15
Before execution
120
FUJITSU MICROELECTRONICS LIMITED
7 F F F F F F C
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.9
FR81 Family
7.9
AND (And Word Data of Source Register to Data in
Memory)
Takes the logical AND of the word data at memory address Ri and word data in Rj and
stores the results to the memory address corresponding to Ri.
● Assembler Format
AND Rj,@Ri
● Operation
(Ri) & Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical calculation instruction, Read/Modify/Write type instruction
● Execution Cycle
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
0
1
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
121
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.9
FR81 Family
● Execution Example
AND R2,@R3
; Bit pattern of the instruction: 1000 0100 0010 0011
R2
1 1 1 1 0 0 0 0
R2
1 1 1 1 0 0 0 0
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 0 1 0 1 0 1 0
Memory
12345678
1234567C
1234567C
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
122
1 0 1 0 0 0 0 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.10
FR81 Family
7.10
AND (And Word Data of Source Register to Destination
Register)
Takes the logical AND of word data in Ri and word data in Rj and stores the results to
Rj.
● Assembler Format
AND Rj, Ri
● Operation
Ri & Rj → Ri
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "“0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical calculation instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
0
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
123
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.10
FR81 Family
● Execution Example
AND R2, R3
; Bit pattern of the instruction: 1000 0010 0010 0011
R2
1 1 1 1 0 0 0 0
R2
1 1 1 1 0 0 0 0
R3
1 0 1 0 1 0 1 0
R3
1 0 1 0 0 0 0 0
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
124
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.11
FR81 Family
7.11
ANDB (And Byte Data of Source Register to Data in
Memory)
Takes the logical AND of the byte data at memory address Ri and the byte data in Rj and
stores the results at Ri location in the memory.
● Assembler Format
ANDB Rj,@Ri
● Operation
(Ri) & Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
0
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
125
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.11
FR81 Family
● Execution Example
ANDB R2,@R3
; Bit pattern of the instruction: 1000 0110 0010 0011
R2
0 0 0 0 0 0 1 0
R2
0 0 0 0 0 0 1 0
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 1
12345679
Memory
12345678
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
126
1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.12
FR81 Family
7.12
ANDCCR (And Condition Code Register and Immediate
Data)
Takes the logical AND of byte data in the condition code register (CCR) and 8-bit
immediate data and returns the results to the CCR.
● Assembler Format
ANDCCR #u8
● Operation
User mode:
CCR & (u8 | 30H) → CCR
Privilege mode
CCR & u8 → CCR
In user mode, a request to rewrite the stack flag (S) or the interrupt enable flag (I) is ignored. The S and I
flags can only be changed in privilege mode.
● Flag Change
S
C
I
C
N
C
Z
C
V
C
C
C
S, I, N, Z, V, C: Varies according to results of operation.
● Classification
Other instructions, Instruction with delay slot, FR81 updating
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
0
0
1
1
u8
FUJITSU MICROELECTRONICS LIMITED
127
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.12
FR81 Family
● EIT Occurrence and Detection
An interrupt is detected (the value of I flag after instruction execution is used).
● Execution Example
ANDCCR #0FEH ; Bit pattern of the instruction: 1000 0011 1111 1110
S I N Z V C
CCR
0 1 0 1 0 1
S I N Z V C
CCR
Before execution
128
FUJITSU MICROELECTRONICS LIMITED
0 1 0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.13
FR81 Family
7.13
ANDH (And Halfword Data of Source Register to Data in
Memory)
Takes the logical AND of the half-word data at Ri location of the memory and the halfword data in Rj and stores the results at Ri location of the memory.
● Assembler Format
ANDH Rj,@Ri
● Operation
(Ri) & Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB (bit15) is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
0
1
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
129
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.13
FR81 Family
● Execution Example
ANDH R2,@R3
; Bit pattern of the instruction: 1000 0101 0010 0011
R2
0 0 0 0 1 1 0 0
R2
0 0 0 0 1 1 0 0
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 0 1 0
Memory
12345678
1234567A
1234567A
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
130
1 0 0 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.14
FR81 Family
7.14
ASR (Arithmetic shift to the Right Direction)
Makes an arithmetic right shift of the word data in Ri by Rj bits, stores the result to Ri.
Only the lower 5 bits of Rj, which designates the size of the shift, are valid and the shift
range is 0 to 31 bits.
● Assembler Format
ASR Rj, Ri
● Operation
Ri >> Rj → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last. Cleared when the shift amount is "0".
● Classification
Shift instructions, Instruction with delayed slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
1
1
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
131
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.14
FR81 Family
● Execution Example
ASR R2, R3
; Bit pattern of the instruction: 1011 1010 0010 0011
R2
0 0 0 0
0 0 0 8
R2
0 0 0 0 0 0 0 8
R3
F F 0 F F F F F
R3
F F F F 0 F F F
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
132
FUJITSU MICROELECTRONICS LIMITED
1 0 0 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.15
FR81 Family
7.15
ASR (Arithmetic shift to the Right Direction)
Makes an arithmetic right shift of the word data in Ri by u4 bits, stores the result to Ri.
● Assembler Format
ASR #u4, Ri
● Operation
Ri >> u4 → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last. Cleared when the shift amount is "0".
● Classification
Shift instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
1
1
0
0
0
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
133
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.15
FR81 Family
● Execution Example
ASR #8, R3
R3
; Bit pattern of the instruction: 1011 1000 1000 0011
F F 0 F F F F F
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
134
F F F F 0 F F F
FUJITSU MICROELECTRONICS LIMITED
1 0 0 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.16
FR81 Family
7.16
ASR2 (Arithmetic shift to the Right Direction)
Makes an arithmetic right shift of the word data in Ri by u4+16 bits, stores the result to
Ri.
● Assembler Format
ASR2 #u4, Ri
● Operation
Ri >> {u4 + 16} → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last.
● Classification
Shift instruction, Instruction with delayed slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
1
1
0
0
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
135
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.16
FR81 Family
● Execution Example
ASR2 #8, R3
R3
; Bit pattern of the instruction: 1011 1001 1000 0011
F 0 F F F F F F
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
136
F F F F F F F 0
FUJITSU MICROELECTRONICS LIMITED
1 0 0 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.17
FR81 Family
7.17
BANDH (And 4bit Immediate Data to Higher 4bit of Byte
Data in Memory)
Takes the logical AND of the 4-bit immediate data and the higher 4 bits of byte data at
memory Ri, stores the results to the memory address corresponding to Ri.
● Assembler Format
BANDH #u4,@Ri
● Operation
(Ri) & {u4 << 4 + 0F H} → (Ri) [Operation uses higher 4 bits only]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Bit operation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
0
0
0
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
137
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.17
FR81 Family
● Execution Example
BANDH #0,@R3 ; Bit pattern of the instruction: 1000 0001 0000 0011
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 1
Memory
12345678
12345679
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
138
0 1
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.18
FR81 Family
7.18
BANDL (And 4bit Immediate Data to Lower 4bit of Byte
Data in Memory)
Takes the logical AND of the 4-bit immediate data and the lower 4 bits of byte data at
memory Ri, stores the results to the memory address corresponding to Ri.
● Assembler Format
BANDL #u4,@Ri
● Operation
(Ri) & {F0H + u4} → (Ri) [Operation uses lower 4 bits only]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Bit operation instructions, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
0
0
0
0
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
139
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.18
FR81 Family
● Execution Example
BANDL #0,@R3 ; Bit pattern of the instruction: 1000 0000 0000 0011
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 1
Memory
12345678
12345679
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
140
1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.19
FR81 Family
7.19
Bcc (Branch relative if Condition satisfied)
This is a branching instruction without a delay slot. If the conditions specified for each
instruction are satisfied, branch to the address indicated by label9 relative to the value
of the program counter (PC). When calculating the address, double the value of rel8 as
a signed extension. If conditions are not satisfied, no branching occurs.
● Assembler Format
BRA
label9
BV
label9
BNO
label9
BNV
label9
BEQ
label9
BLT
label9
BNE
label9
BGE
label9
BC
label9
BLE
label9
BNC
label9
BGT
label9
BN
label9
BLS
label9
BP
label9
BHI
label9
● Operation
if (condition) then
PC + 2 + exts(rel8 × 2) → PC
Branching of each instruction is shown in Table 7.19-1.
Table 7.19-1 Branching conditions
Mnemonic
cc
Condition
BRA
0000 Always satisfied
BNO
0001 Always unsatisfied
BEQ
0010 Z == 1
BNE
0011 Z == 0
BC
0100 C == 1
BNC
0101 C == 0
BN
0110 N == 1
BP
0111 N == 0
| : Logical add (or) ^ : Exclusive-OR (exor)
CM71-00105-1E
Mnemonic
cc
Condition
BV
1000 V == 1
BNV
1001 V == 0
BLT
1010 (V ^ N) == 1
BGE
1011 (V ^ N) == 0
BLE
1100 ((V ^ N) | Z) == 1
BGT
1101 ((V ^ N) | Z) == 0
BLS
1110 (C | Z) == 1
BHI
1111 (C | Z) == 0
==: comparison operation (satisfied by congruence)
FUJITSU MICROELECTRONICS LIMITED
141
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.19
FR81 Family
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Non-delayed branching instruction
● Execution Cycles
At time of branching: 2 cycles
At the time of no branching: 1 cycle
● Instruction Format
MSB
1
LSB
1
1
0
cc
rel8
● Execution Example
BHI label
; Bit pattern of the instruction: 1110 1111 0010 1000
...
label:
; Address of BHI Instruction + 50H
PC
F F 8 0 0 0 0 0
PC
N Z V C
CCR
1 0 1 0
N Z V C
CCR
Before execution
142
F F 8 0 0 0 5 2
FUJITSU MICROELECTRONICS LIMITED
1 0 1 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.20
FR81 Family
7.20
Bcc:D (Branch relative if Condition satisfied)
This is a branching instruction with a delay slot. If the conditions established for each
particular instruction are satisfied, branch to the address indicated by label9 relative to
the value of the program counter (PC). When calculating the address, double the value
of rel8 as a signed extension. If conditions are not satisfied, no branching occurs.
● Assembler Format
BRA:D label9
BV:D
BNO:D label9
BNV:D label9
BEQ:D label9
BLT:D
BNE:D label9
BGE:D label9
BC:D
BLE:D
label9
label9
label9
label9
BNC:D label9
BGT:D label9
BN:D
label9
BLS:D
label9
BP:D
label9
BHI:D
label9
● Operation
if (condition) then
PC + 2 + exts(rel8 × 2) → PC
Branching conditions of each instruction are shown in Table 7.20-1.
Table 7.20-1 Branching conditions
Mnemonic
cc
Condition
Mnemonic
cc
Condition
BRA:D
0000 Always satisfied
BV:D
1000 V == 1
BNO:D
0001 Always unsatisfied
BNV:D
1001 V == 0
BEQ:D
0010 Z == 1
BLT:D
1010 (V ^ N) == 1
BNE:D
0011 Z == 0
BGE:D
1011 (V ^ N) == 0
BC:D
0100 C == 1
BLE:D
1100 ((V ^ N) | Z) == 1
BNC:D
0101 C == 0
BGT:D
1101 ((V ^ N) | Z) == 0
BN:D
0110 N == 1
BLS:D
1110 (C | Z) == 1
BP:D
0111 N == 0
BHI:D
1111 (C | Z) == 0
| : Logical add (or) ^ : Exclusive-OR (exor) ==: comparison operation (satisfied by congruence)
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
143
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.20
FR81 Family
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Delayed branching instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
LSB
1
1
1
cc
rel8
● Execution Example
BHI:D label
; Bit pattern of the instruction: 1111 1111 0010 1000
LDI:8
; Instruction placed in delay slot
#255, R1
...
label:
; BHI:D instruction address + 50H
R1
8 9 4 7 9 7 A F
R1
0 0 0 0 0 0 F F
PC
F F 8 0 0 0 0 0
PC
F F 8 0 0 0 5 2
N Z V C
CCR
1 0 1 0
N Z V C
CCR
Before execution
1 0 1 0
After execution
The instruction placed in delay slot will be executed before the execution of the branch destination
instruction. The value of R1 above will vary according to the specifications of the LDI:8 instruction placed
in the delay slot.
144
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.21
FR81 Family
7.21
BEORH (Eor 4bit Immediate Data to Higher 4bit of Byte
Data in Memory)
Takes the logical exclusive OR of the 4-bit immediate data and the higher 4 bits of byte
data at memory address Ri, stores the results to the memory address corresponding to
Ri.
● Assembler Format
BEORH #u4,@Ri
● Operation
(Ri) ^ {u4 << 4} → (Ri) [Operation uses higher 4 bits only]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Bit Operation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
0
0
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
145
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.21
FR81 Family
● Execution Example
BEORH #1,@R3
R3
; Bit pattern of the instruction: 1001 1001 0001 0011
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
0 0
Memory
12345678
12345679
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
146
1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.22
FR81 Family
7.22
BEORL (Eor 4bit Immediate Data to Lower 4bit of Byte Data
in Memory)
Takes the logical exclusive OR of the 4-bit immediate data and the lower 4 bits of byte
data at memory address Ri, stores the results to the memory address corresponding to
Ri.
● Assembler Format
BEORL #u4,@Ri
● Operation
(Ri) ^ u4 → (Ri) [Operation uses lower 4 bits only]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Bit Operation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
0
0
0
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
147
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.22
FR81 Family
● Execution Example
BEORL #1,@R3
R3
; Bit pattern of the instruction: 1001 1000 0001 0011
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
0 0
Memory
12345678
12345679
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
148
0 1
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.23
FR81 Family
7.23
BORH (Or 4bit Immediate Data to Higher 4bit of Byte Data
in Memory)
Takes the logical OR of the 4-bit immediate data and the higher 4 bits of byte data at
memory address Ri, stores the results to the memory address corresponding to Ri.
● Assembler Format
BORH #u4,@Ri
● Operation
(Ri) | {u4 << 4} → (Ri) [Operation uses higher 4 bits only]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Bit Operation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
0
0
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
149
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.23
FR81 Family
● Execution Example
BORH #1,@R3
R3
; Bit pattern of the instruction: 1001 0001 0001 0011
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
0 0
12345679
Memory
12345678
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
150
1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.24
FR81 Family
7.24
BORL (Or 4bit Immediate Data to Lower 4bit of Byte Data in
Memory)
Takes the logical OR of the 4-bit immediate data and the lower 4 bits of byte data at
memory address Ri, stores the results to the memory address corresponding to Ri.
● Assembler Format
BORL #u4,@Ri
● Operation
(Ri) | u4 → (Ri) [Operation uses lower 4 bits only]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Bit Operation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
0
0
0
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
151
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.24
FR81 Family
● Execution Example
BORL #1,@R3
R3
; Bit pattern of the instruction: 1001 0000 0001 0011
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
0 0
12345679
Memory
12345678
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
152
0 1
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.25
FR81 Family
7.25
BTSTH (Test Higher 4bit of Byte Data in Memory)
Takes the logical AND of the 4-bit immediate data and the higher 4 bits of byte data at
memory address Ri places the results in the condition code register (CCR).
● Assembler Format
BTSTH #u4,@Ri
● Operation
(Ri) & {u4 << 4} [Test uses higher 4 bits only]
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB(bit7) is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Bit Operation instruction
● Execution Cycles
2+a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
1
0
0
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
153
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.25
FR81 Family
● Execution Example
BTSTH #1,@R3
R3
; Bit pattern of the instruction: 1000 1001 0001 0011
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
0 1
12345679
Memory
12345678
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
154
0 1
FUJITSU MICROELECTRONICS LIMITED
0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.26
FR81 Family
7.26
BTSTL (Test Lower 4bit of Byte Data in Memory)
Takes the logical AND of the 4-bit immediate data and the lower 4 bits of byte data at
memory address Ri, places the results in the flag of the condition code register.
● Assembler Format
BTSTL #u4,@Ri
● Operation
(Ri) & u4 [Test uses lower 4 bits only]
● Flag Change
N
0
Z
C
V
-
C
-
N: Cleared.
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Bit Operation instruction
● Execution Cycles
2+a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
0
1
0
0
0
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
155
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.26
FR81 Family
● Execution Example
BTSTL #1,@R3
R3
; Bit pattern of the instruction: 1000 1000 0001 0011
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 0
12345679
Memory
12345678
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
156
1 0
FUJITSU MICROELECTRONICS LIMITED
0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.27
FR81 Family
7.27
CALL (Call Subroutine)
This is a branching instruction without a delay slot. After storing the address of the next
instruction in the return pointer (RP), branch to the address indicated by label12 relative
to the value of the program counter (PC). When calculating the address, double the
value of rel11 as a signed extension.
● Assembler Format
CALL label12
● Operation
PC + 2 → RP
PC + 2 + exts(rel11 × 2) → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Non-delayed branching instruction
● Execution Cycles
2 cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
1
0
1
0
rel11
FUJITSU MICROELECTRONICS LIMITED
157
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.27
FR81 Family
● Execution Example
CALL label
; Bit pattern of the instruction: 1101 0000 1001 0000
...
label:
; CALL instruction address + 122H
PC
F F 8 0 0 0 0 0
PC
F F 8 0 0 1 2 2
RP
x x x x
RP
F F 8 0 0 0 0 4
x x x x
Before execution
158
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.28
FR81 Family
7.28
CALL (Call Subroutine)
This is a branching instruction without a delay slot. After saving the address of the next
instruction in the return pointer (RP), a branch to the address indicated by Ri occurs.
● Assembler Format
CALL @Ri
● Operation
PC + 2 → RP
Ri → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Non-delayed branching instruction
● Execution Cycles
2 cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
1
1
1
0
0
0
1
FUJITSU MICROELECTRONICS LIMITED
Ri
159
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.28
FR81 Family
● Execution Example
CALL @R1
; Bit pattern of the instruction: 1001 0111 0001 0001
R1
F F F F F 8 0 0
R1
F F F F F 8 0 0
PC
8 0 0 0 F F F E
PC
F F F F F 8 0 0
RP
x x x x x x x x
RP
8 0 0 1 0 0 0 0
Before execution
160
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.29
FR81 Family
7.29
CALL:D (Call Subroutine)
This is a branching instruction with a delay slot. After saving the address of the next
instruction after the delay slot to the return pointer (RP), branch to the address
indicated by label12 relative to the value of the program counter (PC). When calculating
the address, double the value of rel11 as a signed extension.
● Assembler Format
CALL:D label12
● Operation
PC + 4 → RP
PC + 2 + exts(rel11 × 2) → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Delayed branching instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
1
0
1
1
rel11
FUJITSU MICROELECTRONICS LIMITED
161
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.29
FR81 Family
● Execution Example
CALL:D label
; Bit pattern of the instruction: 1101 1000 1001 0000
LDI:8
; Instruction placed in delay slot
#0, R2
…
label:
; CALL instruction address + 122H
R2
x x x x
PC
RP
x x x x
R2
0 0 0 0 0 0 0 0
F F 8 0 0 0 0 0
PC
F F 8 0 0 1 2 2
x x x x
RP
F F 8 0 0 0 0 4
x x x x
Before execution of CALL instruction
After branching
The instruction placed in delay slot is executed before execution of the branch destination instruction. The
value R2 above will vary according to the specifications of the LDI:8 instruction placed in the delay slot.
162
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.30
FR81 Family
7.30
CALL:D (Call Subroutine)
This is a branching instruction with a delay slot. After saving the address of the next
instruction after the delay slot to the return pointer (RP), it branches to the address
indicated by Ri.
● Assembler Format
CALL:D @Ri
● Operation
PC + 4 → RP
Ri → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Delayed branching instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
1
1
1
0
0
0
1
FUJITSU MICROELECTRONICS LIMITED
Ri
163
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.30
FR81 Family
● Execution Example
CALL:D @R1
; Bit pattern of the instruction: 1001 1111 0001 0001
LDI:8 #1, R1
; Instruction placed in delay slot
R1
F F F F F 8 0 0
R1
0 0 0 0 0 0 0 1
PC
8 0 0 0 F F F E
PC
F F F F F 8 0 0
RP
x x x x
RP
8 0 0 1 0 0 0 2
x x x x
Before execution of CALL instruction
After branching
The instruction placed in delay slot is executed before execution of the branch destination instruction. The
value R2 above will vary according to the specifications of the LDI:8 instruction placed in the delay slot.
164
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.31
FR81 Family
7.31
CMP (Compare Immediate Data and Destination Register)
Subtracts the result of the higher 28 bits of 4-bit immediate data with zero extension
from the word data in Ri, sets results in the flag of condition code register (CCR).
● Assembler Format
CMP #i4, Ri
● Operation
Ri - extu(i4)
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a borrow has occurred as a result of the operation, cleared otherwise.
● Classification
Compare instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
1
0
0
0
i4
FUJITSU MICROELECTRONICS LIMITED
Ri
165
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.31
FR81 Family
● Execution Example
CMP #3, R3
R3
; Bit pattern of the instruction: 1010 1000 0011 0011
0 0 0 0 0 0 0 3
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
166
0 0 0 0 0 0 0 3
FUJITSU MICROELECTRONICS LIMITED
0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.32
FR81 Family
7.32
CMP (Compare Word Data in Source Register and
Destination Register)
Subtracts the word data in Rj from the word data in Ri, sets results in the flag of
condition code register (CCR).
● Assembler Format
CMP Rj, Ri
● Operation
Ri - Rj
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a borrow has occurred as a result of the operation, cleared otherwise.
● Classification
Compare instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
1
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
167
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.32
FR81 Family
● Execution Example
CMP R2, R3
; Bit pattern of the instruction: 1010 1010 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
168
FUJITSU MICROELECTRONICS LIMITED
0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.33
FR81 Family
7.33
CMP2 (Compare Immediate Data and Destination Register)
Subtracts the result of the higher 28 bits of 4-bit immediate (from -16 to -1) data with
minus extension from the word data in Ri, sets results in the flag of condition code
register (CCR).
● Assembler Format
CMP2 #i4, Ri
● Operation
Ri - extn(i4)
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a borrow has occurred as a result of the operation, cleared otherwise.
● Classification
Compare instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
1
0
1
0
0
1
i4
FUJITSU MICROELECTRONICS LIMITED
Ri
169
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.33
FR81 Family
● Execution Example
CMP2 #-3, R3
R3
; Bit pattern of the instruction: 1010 1001 1101 0011
F F F F F F F D
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
170
F F F F F F F D
FUJITSU MICROELECTRONICS LIMITED
0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.34
FR81 Family
7.34
DIV0S (Initial Setting Up for Signed Division)
This is a step division instruction. This command issued for signed division in which
multiplication division register (MDL) contains the dividend and the Ri the divisor, with
the quotient stored in the MDL and the remainder in multiplication division register
(MDH).
● Assembler Format
DIV0S Ri
● Operation
MDL[31] → D0
MDL[31] ^ Ri[31] → D1
exts(MDL) → MDH, MDL
The word data in MDL is extended to 64 bits, with the higher word in the MDH and the lower word in the
MDL. The value of the sign bit in the MDL and Ri is used to set the D0 and D1 flag bits in the system
condition code register (SCR).
● Flag Change
N
-
Z
-
V
-
C
-
D1
C
D0
C
N, Z, V, C: Flags unchanged.
D1: Set when the divisor and dividend signs are different, cleared when equal.
D0: Set when the dividend is negative, cleared when positive.
● Classification
Multiply/Divide Instruction
● Execution Cycles
1 cycle
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
171
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.34
FR81 Family
● Instruction Format
MSB
1
LSB
0
0
1
0
1
1
1
0
1
0
0
Ri
● Execution Example
DIV0S R2
; Bit pattern of the instruction: 1001 0111 0100 0010
R2
0 F F F F F F F
R2
0 F F F F F F F
MDH
0 0 0 0 0 0 0 0
MDH
F F F F F F F F
MDL
F F F F F F F 0
MDL
F F F F F F F 0
D1 D0 T
D1 D0 T
SCR
x x 0
SCR
Before execution
172
FUJITSU MICROELECTRONICS LIMITED
1 1 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.35
FR81 Family
7.35
DIV0U (Initial Setting Up for Unsigned Division)
This is a step division command. This command issued for unsigned division in which
multiplication division register (MDL) contains the dividend and the Ri the divisor, with
the quotient stored in the MDL and the remainder in multiplication division register
(MDH).
● Assembler Format
DIV0U Ri
● Operation
0 → D0
0 → D1
0 → MDH
The MDH and bits D0 and D1 from system condition code register (SCR) are cleared to "0".
● Flag Change
N
-
Z
-
V
-
C
-
D1
0
D0
0
N, Z, V, C: Flags unchanged.
D1,D0: Cleared.
● Classification
Multiply/Divide Instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
1
1
1
0
1
0
1
FUJITSU MICROELECTRONICS LIMITED
Ri
173
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.35
FR81 Family
● Execution Example
DIV0U R2
; Bit pattern of the instruction: 1001 0111 0101 0010
R2
0 0 F F F F F F
R2
0 0 F F F F F F
MDH
0 0 0 0 0 0 0 0
MDH
0 0 0 0 0 0 0 0
MDL
0 F F F F F F 0
MDL
0 F F F F F F 0
D1 D0 T
D1 D0 T
SCR
x x 0
SCR
Before execution
174
FUJITSU MICROELECTRONICS LIMITED
0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.36
FR81 Family
7.36
DIV1 (Main Process of Division)
This is a step division instruction used for unsigned division.
● Assembler Format
DIV1 Ri
● Operation
{MDH, MDL} <<= 1
/* 1 bit left shift */
if (D1==1) {
MDH + Ri → temp
}
else {
MDH - Ri → temp
}
if ({D0 ^ D1 ^ C} == 0) {
temp → MDH
1 → MDL[0]
}
● Flag Change
N
-
Z
C
V
-
C
C
N, V: Unchanged.
Z: Set when the result of step division is zero, cleared otherwise. Set according to remainder of division
results, not according to quotient.
C: Set when the operation result of step division involves a carry operation, cleared otherwise.
● Classification
Multiply/Divide Instruction
● Execution Cycles
1 cycle
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
175
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.36
FR81 Family
● Instruction Format
MSB
1
LSB
0
0
1
0
1
1
1
0
1
1
0
Ri
● Execution Example
DIV1 R2
; Bit pattern of the instruction: 1001 0111 0110 0010
R2
0 0 F F F F F F
R2
0 0 F F F F F F
MDH
0 0 F F F F F F
MDH
0 1 0 0 0 0 0 0
MDL
0 0 0 0 0 0 0 0
MDL
0 0 0 0 0 0 0 1
D1 D0 T
D1 D0 T
SCR
0 0 0
SCR
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
176
0 0 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.37
FR81 Family
7.37
DIV2 (Correction When Remain is zero)
This is a step division instruction used for signed division.
● Assembler Format
DIV2 Ri
● Operation
if (D1==1) {
MDH + Ri → temp
}
else {
MDH - Ri → temp
}
if (Z==1) {
0 → MDH
}
● Flag Change
N
-
Z
C
V
-
C
C
N, V: Unchanged.
Z: Set when the result of step division is zero, cleared otherwise. Set according to remainder of division
results, not according to quotient.
C: Set when the operation result of step division involves a carry or borrow operation, cleared otherwise.
● Classification
Multiply/Divide Instruction
● Execution Cycles
c cycle
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
177
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.37
FR81 Family
● Instruction Format
MSB
1
LSB
0
0
1
0
1
1
1
0
1
1
1
Ri
● Execution Example
DIV2 R2
; Bit pattern of the instruction: 1001 0111 0111 0010
R2
0 0 F F F F F F
R2
0 0 F F F F F F
MDH
0 0 F F F F F F
MDH
0 0 0 0 0 0 0 0
MDL
0 0 0 0 0 0 0 F
MDL
0 0 0 0 0 0 0 F
D1 D0 T
D1 D0 T
SCR
0 0 0
SCR
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
178
0 0 0
FUJITSU MICROELECTRONICS LIMITED
0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.38
FR81 Family
7.38
DIV3 (Correction When Remain is zero)
This is a step division instruction used for signed division.
● Assembler Format
DIV3
● Operation
if (Z==1) {
MDL + 1 → MDL
}
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Multiply/Divide Instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
1
1
1
0
1
1
0
0
FUJITSU MICROELECTRONICS LIMITED
0
0
0
179
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.38
FR81 Family
● Execution Example
DIV3
; Bit pattern of the instruction: 1001 1111 0110 0000
R2
0 0 F F F F F F
R2
0 0 F F F F F F
MDH
0 0 0 0
0 0 0 0
MDH
0 0 0 0 0 0 0 0
MDL
0 0 0 0 0 0 0 F
MDL
0 0 0 0 0 0 1 0
D1 D0 T
D1 D0 T
SCR
0 0 0
SCR
N Z V C
CCR
0 1 0 0
N Z V C
CCR
Before execution
180
0 0 0
FUJITSU MICROELECTRONICS LIMITED
0 1 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.39
FR81 Family
7.39
DIV4S (Correction Answer for Signed Division)
This is a step division instruction used for signed division.
● Assembler Format
DIV4S
● Operation
if (D1==1) {
0 - MDL → MDL
}
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Multiply/Divide Instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
1
1
1
0
1
1
1
0
FUJITSU MICROELECTRONICS LIMITED
0
0
0
181
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.39
FR81 Family
● Execution Example
DIV4S
; Bit pattern of the instruction: 1001 1111 0111 0000
R2
0 0 F F F F F F
R2
0 0 F F F F F F
MDH
0 0 0 0
0 0 0 0
MDH
0 0 0 0 0 0 0 0
MDL
0 0 0 0 0 0 0 F
MDL
F F F F F F F 1
D1 D0 T
D1 D0 T
SCR
1 1 0
SCR
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
182
1 1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.40
FR81 Family
7.40
DMOV (Move Word Data from Direct Address to Register)
Transfers, to R13 the word data at the direct address corresponding to 4 times the value
of dir8. The value of dir8 × 4 is specified as dir10.
● Assembler Format
DMOV @dir10, R13
● Operation
(dir8 × 4) → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
0
0
0
dir8
FUJITSU MICROELECTRONICS LIMITED
183
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.40
FR81 Family
● Execution Example
DMOV @88H, R13
R13
x x x x
; Bit pattern of the instruction: 0000 1000 0010 0010
x x x x
R13
4 5 6 7
Memory
Memory
84 H
x x x x
x x x x
84 H
x x x x
x x x x
88 H
0 1 2 3
4 5 6 7
88 H
0 1 2 3
4 5 6 7
8CH
x x x x
x x x x
8CH
x x x x
x x x x
Before execution
184
0 1 2 3
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.41
FR81 Family
7.41
DMOV (Move Word Data from Register to Direct Address)
Transfers word data in R13 to the direct address corresponding to 4 times the value of
dir8. The value of dir8 × 4 is specified as dir10.
● Assembler Format
DMOV R13,@dir10
● Operation
R13 → (dir8 × 4)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
1
0
0
0
dir8
FUJITSU MICROELECTRONICS LIMITED
185
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.41
FR81 Family
● Execution Example
DMOV R13,@54H
R13
; Bit pattern of the instruction: 0001 1000 0001 0101
8 9 A B C D E F
R13
Memory
Memory
50 H
x x x x
x x x x
50 H
x x x x
54 H
x x x x
x x x x
54 H
8 9 A B C D E F
58 H
x x x x
x x x x
58 H
x x x x
Before execution
186
8 9 A B C D E F
FUJITSU MICROELECTRONICS LIMITED
x x x x
x x x x
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.42
FR81 Family
7.42
DMOV (Move Word Data from Direct Address to Post
Increment Register Indirect Address)
Transfers the word data at the direct address corresponding to 4 times the value of dir8
to the address indicated in R13. After the data transfer, it increments the value of R13
by 4. The value of dir8 × 4 is specified as dir10.
● Assembler Format
DMOV @dir10,@R13+
● Operation
(dir8 × 4) → (R13)
R13 + 4 → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
1
0
0
dir8
FUJITSU MICROELECTRONICS LIMITED
187
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.42
FR81 Family
● Execution Example
DMOV @88H,@R13+
R13
; Bit pattern of the instruction: 0000 1100 0010 0010
F F F F 1 2 4 8
R13
Memory
00000088
1 4 1 4 2 1 3 5
Memory
00000088
1 4 1 4 2 1 3 5
FFFF1248
x x x x
x x x x
FFFF1248
1 4 1 4 2 1 3 5
FFFF124C
x x x x
x x x x
FFFF124C
x x x x
Before execution
188
F F F F 1 2 4 C
FUJITSU MICROELECTRONICS LIMITED
x x x x
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.43
FR81 Family
7.43
DMOV (Move Word Data from Post Increment Register
Indirect Address to Direct Address)
Transfers the word data at the address indicated in R13 to the direct address
corresponding to 4 times the value dir8. After the data transfer, it increments the value
of R13 by 4. The value of dir8 × 4 is specified as dir10.
● Assembler Format
DMOV @R13+,@dir10
● Operation
(R13) → (dir8 × 4)
R13 + 4 → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
1
1
0
0
dir8
FUJITSU MICROELECTRONICS LIMITED
189
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.43
FR81 Family
● Execution Example
DMOV @R13+,@54H
R13
; Bit pattern of the instruction: 0001 1100 0001 0101
F F F F 1 2 4 8
R13
Memory
Memory
00000054
x x x x x x x x
00000054
8 9 4 7 9 1 A F
FFFF1248
8 9 4 7 9 1 A F
FFFF1248
8 9 4 7 9 1 A F
FFFF124C
x x x x
x x x x
FFFF124C
x x x x x x x x
Before execution
190
F F F F 1 2 4 C
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.44
FR81 Family
7.44
DMOV (Move Word Data from Direct Address to Pre
Decrement Register Indirect Address)
Decrements the value of R15 by 4, then transfers the word data at the direct address
corresponding to 4 times the value of dir8 to the address indicated in R15. The value of
dir8 × 4 is specified as dir10.
● Assembler Format
DMOV @dir10,@-R15
● Operation
R15 - 4 → R15
(dir8 × 4) → (R15)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
0
1
1
dir8
FUJITSU MICROELECTRONICS LIMITED
191
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.44
FR81 Family
● Execution Example
DMOV @2CH,@-R15
R15
; Bit pattern of the instruction: 0000 1011 0000 1011
7 F F F F F 8 8
R15
Memory
0000002C
8 2 A 2 8 2 A 9
Memory
0000002C
8 2 A 2 8 2 A 9
7FFFFF84
x x x x
x x x x
7FFFFF84
8 2 A 2 8 2 A 9
7FFFFF88
x x x x
x x x x
7FFFFF88
x x x x
Before execution
192
7 F F F F F 8 4
FUJITSU MICROELECTRONICS LIMITED
x x x x
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.45
FR81 Family
7.45
DMOV (Move Word Data from Post Increment Register
Indirect Address to Direct Address)
Transfers the word data at the address indicated in R15 to the direct address
corresponding to 4 times the value dir8. After the data transfer, it increments the value
of R15 by 4. The value of dir8 × 4 is specified as dir10.
● Assembler Format
DMOV @R15+,@dir10
● Operation
(R15) → (dir8 × 4)
R15 + 4 → R15
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
1
0
1
1
dir8
FUJITSU MICROELECTRONICS LIMITED
193
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.45
FR81 Family
● Execution Example
DMOV @R15+,@38H
R15
; Bit pattern of the instruction: 0001 1011 0000 1110
7 F F E E E 8 0
R15
Memory
Memory
00000038
x x x x x x x x
00000038
8 3 4 3 8 3 4 A
7FFEEE80
8 3 4 3 8 3 4 A
7FFEEE80
8 3 4 3 8 3 4 A
7FFEEE84
x x x x x x x x
7FFEEE84
x x x x x x x x
Before execution
194
7 F F E E E 8 4
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.46
FR81 Family
7.46
DMOVB (Move Byte Data from Direct Address to Register)
Transfers the byte data at the address indicated by the value dir8 to R13. Uses zeros to
extend the higher 24 bits of data.
● Assembler Format
DMOVB @dir8, R13
● Operation
(dir8) → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
0
1
0
dir8
FUJITSU MICROELECTRONICS LIMITED
195
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.46
FR81 Family
● Execution Example
DMOVB @91H, R13
R13
x x x x
; Bit pattern of the instruction: 0000 1010 1001 0001
x x x x
R13
0 0 0 0 0 0 3 2
Memory
90
x x
90
x x
91
3 2
91
3 2
92
x x
92
x x
Before execution
196
Memory
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.47
FR81 Family
7.47
DMOVB (Move Byte Data from Register to Direct Address)
Transfers the byte data from R13 to the direct address indicated by the value dir8.
● Assembler Format
DMOVB R13,@dir8
● Operation
R13 → (dir8)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
1
0
1
0
dir8
FUJITSU MICROELECTRONICS LIMITED
197
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.47
FR81 Family
● Execution Example
DMOVB R13,@53H
R13
; Bit pattern of the instruction: 0001 1010 0101 0011
F F F F F F F E
R13
F F F F F F F E
Memory
52
x x
52
x x
53
x x
53
F E
54
x x
54
x x
Before execution
198
Memory
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.48
FR81 Family
7.48
DMOVB (Move Byte Data from Direct Address to Post
Increment Register Indirect Address)
Moves the byte data at the direct address indicated by the value dir8 to the address
indicated by R13. After the data transfer, it increments the value of R13 by 1.
● Assembler Format
DMOVB @dir8,@R13+
● Operation
(dir8) → (R13)
R13 + 1 → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
1
1
0
dir8
FUJITSU MICROELECTRONICS LIMITED
199
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.48
FR81 Family
● Execution Example
DMOVB @71H,@R13+ ; Bit pattern of the instruction: 0000 1110 0111 0001
R13
8 8 0 0 1 2 3 4
R13
8 8 0 0 1 2 3 5
Memory
Memory
00000071
9 9
00000071
9 9
88001234
x x
88001234
9 9
88001235
x x
88001235
x x
Before execution
200
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.49
FR81 Family
7.49
DMOVB (Move Byte Data from Post Increment Register
Indirect Address to Direct Address)
Transfers the byte data at the address indicated by R13 to the direct address indicated
by the value dir8. After the data transfer, it increments the value of R13 by 1.
● Assembler Format
DMOVB @R13+,@dir8
● Operation
(R13) → (dir8)
R13 + 1 → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
1
1
1
0
dir8
FUJITSU MICROELECTRONICS LIMITED
201
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.49
FR81 Family
● Execution Example
DMOVB @R13+,@57H ; Bit pattern of the instruction: 0001 1110 0101 0111
R13
F F 8 0 1 2 2 0
R13
F F 8 0 1 2 2 1
Memory
Memory
00000057
x x
00000057
5 5
FF801220
5 5
FF801220
5 5
FF801221
x x
FF801221
x x
Before execution
202
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.50
FR81 Family
7.50
DMOVH (Move Halfword Data from Direct Address to
Register)
Transfers the half-word data at the direct address corresponding to 2 times the value
dir8 to R13. Uses zeros to extend the higher 16 bits of data. The value of dir8 × 2 is
specified as dir9.
● Assembler Format
DMOVH @dir9, R13
● Operation
(dir8 × 2) → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
0
0
1
dir8
FUJITSU MICROELECTRONICS LIMITED
203
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.50
FR81 Family
● Execution Example
DMOVH @88H, R13
R13
x x x x
; Bit pattern of the instruction: 0000 1001 0100 0100
x x x x
R13
0 0 0 0
Memory
Memory
86
x x x x
86
x x x x
88
B 2 B 6
88
B 2 B 6
8A
x x x x
8A
x x x x
Before execution
204
B 2 B 6
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.51
FR81 Family
7.51
DMOVH (Move Halfword Data from Register to Direct
Address)
Transfers the half-word data from R13 to the direct address corresponding to 2 times
the value dir8. The value of dir8 × 2 is specified as dir9.
● Assembler Format
DMOVH R13,@dir9
● Operation
R13 → (dir8 × 2)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
1
0
0
1
dir8
FUJITSU MICROELECTRONICS LIMITED
205
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.51
FR81 Family
● Execution Example
DMOVH R13,@52H
R13
F F F F
; Bit pattern of the instruction: 0001 1001 0010 1001
A E 8 6
R13
F F F F
Memory
Memory
50
x x x x
50
x x x x
52
x x x x
52
A E 8 6
54
x x x x
54
x x x x
Before execution
206
A E 8 6
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.52
FR81 Family
7.52
DMOVH (Move Halfword Data from Direct Address to Post
Increment Register Indirect Address)
Transfers the half-word data at the direct address corresponding to 2 times the value
dir8 to the address indicated by R13. After the data transfer, it increments the value of
R13 by 2. The value of dir8 × 2 is specified as dir9.
● Assembler Format
DMOVH @dir9,@R13+
● Operation
(dir8 × 2) → (R13)
R13 + 2 → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
1
0
1
dir8
FUJITSU MICROELECTRONICS LIMITED
207
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.52
FR81 Family
● Execution Example
DMOVH @88H,@R13+ ; Bit pattern of the instruction: 0000 1101 0100 0100
R13
F F 0 0 0 0 5 2
R13
F F 0 0 0 0 5 4
Memory
Memory
00000088
1 3 7 4
00000088
1 3 7 4
FF000052
x x x x
FF000052
1 3 7 4
FF000054
x x x x
FF000054
x x x x
Before execution
208
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.53
FR81 Family
7.53
DMOVH (Move Halfword Data from Post Increment
Register Indirect Address to Direct Address)
Transfers the half-word data at the address indicated by R13 to the direct address
corresponding to 2 times the value dir8. After the data transfer, it increments the value
of R13 by 2. The value of dir8 × 2 is specified as dir9.
● Assembler Format
DMOVH @R13+,@dir9
● Operation
(R13) → (dir8 × 2)
R13 + 2 → R13
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Direct Addressing Instructions
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
1
1
0
1
dir8
FUJITSU MICROELECTRONICS LIMITED
209
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.53
FR81 Family
● Execution Example
DMOVH @R13+,@52H ; Bit pattern of the instruction: 0001 1101 0010 1001
R13
F F 8 0 1 2 2 0
R13
F F 8 0 1 2 2 2
Memory
Memory
00000052
x x x x
00000052
8 9 3 3
FF801220
8 9 3 3
FF801220
8 9 3 3
FF801222
x x x x
FF801222
x x x x
Before execution
210
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.54
FR81 Family
7.54
ENTER (Enter Function)
This instruction is used for stack frame generation processing for high level
languages.The value u8 is calculated as an unsigned value. The value of u8 × 4 is
specified as u10.
● Assembler Format
ENTER #u10
● Operation
R14 → (R15-4)
R15 - 4 → R14
R15 - extu(u8 × 4) → R15
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions
● Execution Cycles
1+a cycles
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
1
1
1
1
u8
FUJITSU MICROELECTRONICS LIMITED
211
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.54
FR81 Family
● Execution Example
ENTER #0CH
; Bit pattern of the instruction: 0000 1111 0000 0011
R14
8 0 0 0
0 0 0 0
R14
7 F F F F F F 4
R15
7 F F F F F F 8
R15
7 F F F F F E C
Memory
Memory
7FFFFFEC
x x x x x x x x
7FFFFFEC
x x x x x x x x
7FFFFFF0
x x x x x x x x
7FFFFFF0
x x x x x x x x
7FFFFFF4
x x x x x x x x
7FFFFFF4
8 0 0 0 0 0 0 0
7FFFFFF8
x x x x x x x x
7FFFFFF8
x x x x x x x x
7FFFFFFC
x x x x x x x x
7FFFFFFC
x x x x x x x x
80000000
x x x x x x x x
80000000
x x x x x x x x
Before execution
212
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.55
FR81 Family
7.55
EOR (Exclusive Or Word Data of Source Register to Data in
Memory)
Takes the logical exclusive OR of the word data at memory address Ri and the word
data in Rj, stores the results to the memory address corresponding to Ri.
● Assembler Format
EOR Rj,@Ri
● Operation
(Ri) ^ Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
0
LSB
0
1
1
1
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
213
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.55
FR81 Family
● Execution Example
EOR R2,@R3
; Bit pattern of the instruction: 1001 1100 0010 0011
R2
1 1 1 1 0 0 0 0
R2
1 1 1 1 0 0 0 0
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 0 1 0 1 0 1 0
Memory
12345678
1234567C
1234567C
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
214
0 1 0 1 1 0 1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.56
FR81 Family
7.56
EOR (Exclusive Or Word Data of Source Register to
Destination Register)
Takes the logical exclusive OR of the word data in Ri and the word data in Rj, stores the
results to Ri.
● Assembler Format
EOR Rj, Ri
● Operation
Ri ^ Rj → Ri
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
215
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.56
FR81 Family
● Execution Example
EOR R2, R3
; Bit pattern of the instruction: 1001 1010 0010 0011
R2
1 1 1 1 0 0 0 0
R2
1 1 1 1 0 0 0 0
R3
1 0 1 0 1 0 1 0
R3
0 1 0 1 1 0 1 0
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
216
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.57
FR81 Family
7.57
EORB (Exclusive Or Byte Data of Source Register to Data
in Memory)
Takes the logical exclusive OR of the byte data at memory address Ri and the byte
datain Rj, stores the results to the memory address corresponding to Ri.
● Assembler Format
EORB Rj,@Ri
● Operation
(Ri) ^ Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
217
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.57
FR81 Family
● Execution Example
EORB R2,@R3
; Bit pattern of the instruction: 1001 1110 0010 0011
R2
0 0 0 0 0 0 1 1
R2
0 0 0 0 0 0 1 1
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 0
12345679
Memory
12345678
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
218
0 1
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.58
FR81 Family
7.58
EORH (Exclusive Or Halfword Data of Source Register to
Data in Memory)
Takes the logical exclusive OR of the half-word data at memory address Ri and the halfword data in Rj, stores the results to the memory address corresponding to Ri.
● Assembler Format
EORH Rj,@Ri
● Operation
(Ri) ^ Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB(bit15) of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
1
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
219
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.58
FR81 Family
● Execution Example
EORH R2,@R3
; Bit pattern of the instruction: 1001 1101 0010 0011
R2
0 0 0 0 1 1 0 0
R2
0 0 0 0 1 1 0 0
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
Memory
12345678
1 0 1 0
1234567A
1234567A
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
220
0 1 1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.59
FR81 Family
7.59
EXTSB (Sign Extend from Byte Data to Word Data)
Extends the byte data indicated by Ri to word data as signed binary value.
● Assembler Format
EXTSB Ri
● Operation
exts(Ri[7:0]) → Ri
[byte → word]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
1
1
1
1
0
0
0
FUJITSU MICROELECTRONICS LIMITED
Ri
221
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.59
FR81 Family
● Execution Example
EXTSB R1
R1
; Bit pattern of the instruction: 1001 0111 1000 0001
0 0 0 0 0 0 A B
R1
Before execution
222
FUJITSU MICROELECTRONICS LIMITED
F F F F FFA B
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.60
FR81 Family
7.60
EXTSH (Sign Extend from Byte Data to Word Data)
Extends the half-word data indicated by Ri to word data as a signed binary value.
● Assembler Format
EXTSH Ri
● Operation
exts(Ri[15:0]) → Ri
[half-word → word]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
1
1
1
1
0
1
0
FUJITSU MICROELECTRONICS LIMITED
Ri
223
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.60
FR81 Family
● Execution Example
EXTSH R1
R1
; Bit pattern of the instruction: 1001 0111 1010 0001
0 0 0 0 A B C D
R1
Before execution
224
FUJITSU MICROELECTRONICS LIMITED
F F F F A B C D
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.61
FR81 Family
7.61
EXTUB (Unsign Extend from Byte Data to Word Data)
Extends the byte data indicated by Ri to word data as an unsigned binary value.
● Assembler Format
EXTUB Ri
● Operation
extu(Ri[7:0]) → Ri
[byte → word]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
1
1
1
1
0
0
1
FUJITSU MICROELECTRONICS LIMITED
Ri
225
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.61
FR81 Family
● Execution Example
EXTUB R1
R1
; Bit pattern of the instruction: 1001 0111 1001 0001
F F F F F F F F
R1
Before execution
226
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0 0 0 F F
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.62
FR81 Family
7.62
EXTUH (Unsign Extend from Byte Data to Word Data)
Extends the half-word data indicated by Ri to word data as an unsigned binary value.
● Assembler Format
EXTUH Ri
● Operation
extu(Ri[15:0]) → Ri
[half-word → word]
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
1
1
1
1
0
1
1
FUJITSU MICROELECTRONICS LIMITED
Ri
227
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.62
FR81 Family
● Execution Example
EXTUH R1
R1
; Bit pattern of the instruction: 1001 0111 1011 0001
F F F F F F F F
R1
Before execution
228
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0 F F F F
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.63
FR81 Family
7.63
FABSs (Single Precision Floating Point Absolute Value)
Loads the absolute value FRj to FRi.
● Assembler Format
FABSs FRj, FRi
● Operation
| FRj | → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
1
0
1
0
1
FRj
1
0
0
-
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
229
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.64
7.64
FR81 Family
FADDs (Single Precision Floating Point Add)
FRk is added to FRj, and its result is stored in FRi.
● Assembler Format
FADDs FRk, FRj, FRi
● Operation
FRk + FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
FRk
1
1
0
1
FRj
0
0
0
0
0
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
230
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.64
FR81 Family
● Calculation result and exception flag
FRj
+0
+0
-0
+0/(-)
-0
+Norm
-Norm
+INF
-INF
QNaN
SNaN
+Norm/(X) -Norm/(X) +INF/(-) -INF/(-) QNaN/(-) QNaN/V
-0/(-)
+Norm +Norm/(X)
*1
*2
-Norm -Norm/(X)
*2
*1
FRk
+INF
-INF
QNaN/V
-INF/(-)
QNaN/V -INF/(-)
QNaN
SNaN
*1: +INF/0,X or -INF/P.X or ± Norm/(X)
*2: ± 0/(-) or ± 0/U or ± Norm/(X)
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
231
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.65
7.65
FR81 Family
FBcc (Floating Point Conditional Branch)
This is a branching instruction without a delay slot. If conditions specified for each
instruction are satisfied, control branches to the address indicated by label17 relative to
the program counter (PC). The rel16 value is doubled and its sign is extended. If
conditions are not satisfied, no branching occurs.
● Assembler Format
FBN
FBL
label17
FBUGE
label17
FBNE label17
FBUG
label17
FBE
FBLE
label17
FBLG label17
FBG
label17
FBUE label17
FBULE
label17
FBUL label17
FBU
label17
FBGE label17
FBO
label17
FBA
label17
label17
The FBN instruction has no operand.
● Operation
if (condition) {
PC + 4 + exts(rel16 × 2) → PC
}
The branching conditions of each instruction are shown in Table 7.65-1.
Table 7.65-1 Branching conditions of FBcc instruction (1 / 2)
Mnemonic
232
cc
Contents
conditions (FCC field)
FBN
0000
Branch Never
Always unsatisfied
FBA
1111
Branch Always
Always satisfied
FBNE
0111
Branch Not Equal
L or G or U
FBE
1000
Branch Equal
E
FBLG
0110
Branch Less or Greater
L or G
FBUE
1001
Branch Unordered or Equal
E or U
FBUL
0101
Branch Unoredered or Less
L or U
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.65
FR81 Family
Table 7.65-1 Branching conditions of FBcc instruction (2 / 2)
Mnemonic
cc
Contents
conditions (FCC field)
FBGE
1010
Branch Greater or Equal
G or E
FBL
0100
Branch Less
L
FBUGE
1011
Branch Unordered or Greater or Equal
U or G or E
FBUG
0011
Branch Unorder or Greater
G or U
FBLE
1100
Branch Less or Equal
L or E
FBG
0010
Branch Greater
G
FBULE
1101
Branch Unordered or Less or Equal
E or L or U
FBU
0001
Branch Unordered
U
FBO
1110
Branch Ordered
E or L or G
● Classification
Floating point instruction, FR81 family
● Execution Cycles
2 cycles
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
1
1
1
1
cc
rel16
● EIT Occurrence and Detection
An interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
233
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.66
7.66
FR81 Family
FBcc:D (Floating Point Conditional Branch with Delay Slot)
This is a branching instruction having a delay slot. If conditions specified for each
instruction are satisfied, control branches to the address indicated by label17 relative to
the program counter (PC). The rel16 value is doubled and its sign is extended. If
conditions are not satisfied, no branching occurs.
● Assembler Format
FBN:D
FBA:D
FBL:D
label17
label17
FBUGE:D label17
FBNE:D label17
FBUG:D
label17
FBE:D
FBLE:D
label17
FBLG:D label17
FBG:D
label17
FBUE:D label17
FBULE:D label17
FBUL:D label17
FBU:D
label17
FBGE:D label17
FBO:D
label17
label17
The FBN:D instruction has no operand.
● Operation
if (condition) {
PC + 4 + exts(rel16 × 2) → PC
}
The branching conditions of each instruction are shown in Table 7.66-1.
Table 7.66-1 Branching conditions of FBcc:D instruction (1 / 2)
Mnemonic
234
cc
Contents
conditions (FCC field)
FBN:D
0000
Branch Never
Always unsatisfied
FBA:D
1111
Branch Always
Always satisfied
FBNE:D
0111
Branch Not Equal
L or G or U
FBE:D
1000
Branch Equal
E
FBLG:D
0110
Branch Less or Greater
L or G
FBUE:D
1001
Branch Unordered or Equal
E or U
FBUL:D
0101
Branch Unoredered or Less
L or U
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.66
FR81 Family
Table 7.66-1 Branching conditions of FBcc:D instruction (2 / 2)
Mnemonic
cc
Contents
conditions (FCC field)
FBGE:D
1010
Branch Greater or Equal
G or E
FBL:D
0100
Branch Less
L
FBUGE:D
1011
Branch Unordered or Greater or Equal
U or G or E
FBUG:D
0011
Branch Unorder or Greater
G or U
FBLE:D
1100
Branch Less or Equal
L or E
FBG:D
0010
Branch Greater
G
FBULE:D
1101
Branch Unordered or Less or Equal
E or L or U
FBU:D
0001
Branch Unordered
U
FBO:D
1110
Branch Ordered
E or L or G
● Classification
Floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
1
1
1
1
cc
rel16
● EIT Occurrence and Detection
No interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
235
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.67
7.67
FR81 Family
FCMPs (Single Precision Floating Point Compare)
FRk and FRj are compared, and the result is reflected on the floating point condition
code (FCC) of floating point control register (FCR).
● Assembler Format
FCMPs FRk, FRj
● Operation
FRk - FRj
The FCC is set as follows according to the comparison result.
FCC
Comparison result
1000H (E)
FRk = FRj
0100H (L)
FRk < FRj
0010H (G)
FRk > FRj
0001H (U)
FRk ? FRj (not possible to compare)
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
236
0
LSB
0
0
-
0
0
1
1
FRk
1
1
0
1
FRj
FUJITSU MICROELECTRONICS LIMITED
0
0
1
0
0
-
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.67
FR81 Family
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
● Calculation result and exception flag
FRj
+0
+Norm
-Norm
+INF
-INF
QNaN
SNaN
EQ/(-)
L/(-)
G/(-)
L(-)
G(-)
UO/(-)
UO/V
+Norm
G/(-)
*1
-Norm
L/(-)
+INF
G/(-)
-INF
L/(-)
+0
-0
-0
*1
FRk
E/(-)
E/(-)
QNaN
SNaN
*1: G/(-) or L/(-) or E/(-)
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
237
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.68
7.68
FR81 Family
FDIVs (Single Precision Floating Point Division)
FRk is divided by FRj, and its result is stored in FRi.
● Assembler Format
FDIVs FRk, FRj, FRi
● Operation
FRk / FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
9 cycles
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
FRk
1
1
0
1
FRj
0
1
0
1
0
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
238
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.68
FR81 Family
● Calculation result and exception flag
FRj
+0
+0
-0
QNaN/V
-0
+Norm
-Norm
+INF
-INF
+0(-)
-0/(-)
+0/(-)
-0/(-)
-0/(-)
+0/(-)
-0/(-)
+0/(-)
+Norm
+INF/Z
-INF/Z
*1
*2
+0/(-)
-0/(-)
-Norm
-INF/Z
+INF/Z
*2
*1
-0/(-)
+0/(-)
+INF
+INF/(-)
-INF/(-)
+INF/(-)
-INF/(-)
QNaN/V
-INF
-INF/(-)
+INF/(-)
-INF/(-)
+INF/(-)
QNaN
SNaN
QNaN/(-) QNaN/V
FRk
QNaN
SNaN
*1: +INF/0, X or +0/U, X or +Norm/(X)
*2: -INF/0, X or -0/U, X or -Norm/(X)
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
239
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.69
7.69
FR81 Family
FiTOs (Convert from Integer to Single Precision Floating
Point)
A 32-bit signed integer in FRj is converted into a single-precision floating point value,
and it is stored in FRi.
● Assembler Format
FiTOs FRj, FRi
● Operation
(float) FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
1
0
1
FRj
0
1
0
0
0
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
240
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.69
FR81 Family
● Calculation result and exception flag
FRj
Output result
±0
0/(-)
+Norm
+Norm/(X)
-Norm
-Norm/(X)
+MAX
+Nrom/X
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
241
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.70
7.70
FR81 Family
FLD (Single Precision Floating Point Data Load)
Loads the value at memory address Rj to FRi.
● Assembler Format
FLD @Rj, FRi
● Operation
(Rj) → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
1
1
0
-
0
Rj
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
242
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.71
FR81 Family
7.71
FLD (Single Precision Floating Point Data Load)
Loads the value at memory address R13+Rj to FRi.
● Assembler Format
FLD @(R13,Rj), FRi
● Operation
(R13 + Rj) → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
1
1
1
-
0
Rj
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
243
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.72
7.72
FR81 Family
FLD (Single Precision Floating Point Data Load)
Loads the value at memory address R14+o14 × 4 to FRi. Signed o14 value is calculated.
The value in o14 × 4 is specified as disp16.
● Assembler Format
FLD @(R14,disp16), FRi
● Operation
(R14 + o14 × 4) → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
1
1
0
o14
1
0
0
o14
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
244
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.73
FR81 Family
7.73
FLD (Single Precision Floating Point Data Load)
Loads the value at memory address R15+u14x4 to FRi. Unsigned u14 value is
calculated. The value in u14x4 is specified as udisp16.
● Assembler Format
FLD @(R15,udisp16), FRi
● Operation
(R15 + u14 × 4) → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
1
1
0
u14
1
0
1
u14
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
245
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.74
7.74
FR81 Family
FLD (Single Precision Floating Point Data Load)
Loads the value at memory address R15 to FRi, and adds 4 to R15.
● Assembler Format
FLD @R15+, FRi
● Operation
(R15) → FRi
R15 + 4 → R15
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
1
1
0
-
1
1
0
-
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
246
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.75
FR81 Family
7.75
FLD (Load Word Data in Memory to Floating Register)
Loads the word data at memory address BP+u16 × 4 to FRi. Unsigned u16 value is
calculated. The value in u16 × 4 is specified as udisp18.
● Assembler Format
FLD @(BP, udisp18), FRi
● Operation
(BP+u16 × 4) → FRi
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory load instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
0
1
1
1
FRi
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
247
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.76
7.76
FR81 Family
FLDM (Single Precision Floating Point Data Load to
Multiple Register)
The registers shown on the frlist are sequentially restored from the stack. Registers
FR0 to FR15 can be set on the frlist. They are processed in ascending order of register
numbers.
● Assembler Format
FLDM (frlist)
● Operation
The following operations are repeated according to the number of registers specified in the parameter frlist.
(R15) → FRi
R15 + 4 → R15
The bit and register relation of frlist of FLDM instruction is shown in Table 7.76-1.
Table 7.76-1 The bit and register relation of frlist of FLDM instruction
bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FRi FR15 FR14 FR13 FR12 FR11 FR10 FR9 FR8 FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0
● Classification
Floating point instruction, FR81 family
● Execution Cycles
na cycle (n: Transfer register number)
248
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.76
FR81 Family
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
1
1
0
1
1
1
-
frlist
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
If an exception occurs during repetition, the access that generated the exception is interrupted. The
remaining values of frlist are stored in the RL of exception status register (ESR), and the exception process
is executed.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
249
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.77
7.77
FR81 Family
FMADDs (Single Precision Floating Point Multiply and
Add)
FRk is multiplied by FRj, and FRi is added to its result and then stored in FRi.
● Assembler Format
FMADDs FRk, FRj, FRi
● Operation
FRk × FRj + FRi → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
4 cycles
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
FRk
1
1
0
1
FRj
0
0
1
0
1
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
250
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.77
FR81 Family
● Calculation result and exception flag
[Multiplication]
FRj
+0
-0
+Norm
-Norm
+INF
-INF
+0
+0/(-)
-0/(-)
+0/(-)
-0/(-)
QNaN/V
-0
-0/(-)
+0/(-)
-0/(-)
+0/(-)
+Norm
+0/(-)
-0/(-)
*1
*2
+INF/(-) -INF/(-)
-Norm
-0/(-)
+0/(-)
*2
*1
-INF/(-) +INF/(-)
+INF
QNaN/V
+INF/(-)
-INF/(-)
+INF/(-) -INF/(-)
-INF/(-)
+INF/(-)
-INF/(-) +INF/(-)
QNaN
SNaN
QNaN/(-) QNaN/V
FRk
-INF
QNaN
SNaN
*1: +INF/0, X or +0/U, X or +Norm/(X)
*2: -INF/0, X or -0/U, X or -Norm/(X)
[Addition]
FRj
+0
+0
-0
+0/(-)
-0
+Norm
-Norm
+INF
-INF
QNaN
SNaN
+Norm/(X) -Norm/(X) +INF/(-) -INF/(-) QNaN/(-) QNaN/V
-0/(-)
+Norm +Norm/(X)
*1
*2
-Norm -Norm/(X)
*2
*1
FRk
+INF
-INF
QNaN/V
-INF/(-)
QNaN/V +INF/(-)
QNaN
SNaN
*1: +INF/0, X or -INF/P. X or ± Norm/(X)
*2: ± 0/(-) or ± 0/U or ± Norm/(X)
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
251
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.78
7.78
FR81 Family
FMOVs (Single Precision Floating Point Move)
Loads the value in FRj to FRi.
● Assembler Format
FMOVs FRj, FRi
● Operation
FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
1
0
1
0
1
FRj
1
1
0
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an interrupt is detected.
252
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.79
FR81 Family
7.79
FMSUBs (Single Precision Floating Point Multiply and
Subtract)
FRk is multiplied by FRj, and its result is subtracted by FRi and then stored in FRi.
● Assembler Format
FMSUBs FRk, FRj, FRi
● Operation
FRk × FRj - FRi → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
4 cycles
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
FRk
1
1
0
1
FRj
0
0
1
1
0
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
253
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.79
FR81 Family
● Calculation result and exception flag
[Multiplication]
FRj
+0
-0
+Norm
-Norm
+INF
-INF
+0
+0/(-)
-0/(-)
+0/(-)
-0/(-)
QNaN/V
-0
-0/(-)
+0/(-)
-0/(-)
+0/(-)
+Norm
+0/(-)
-0/(-)
*1
*2
+INF/(-) -INF/(-)
-Norm
-0/(-)
+0/(-)
*2
*1
-INF/(-) +INF/(-)
+INF
QNaN/V
+INF/(-)
-INF/(-)
+INF/(-) -INF/(-)
-INF/(-)
+INF/(-)
-INF/(-) +INF/(-)
QNaN
SNaN
QNaN/(-) QNaN/V
FRk
-INF
QNaN
SNaN
*1: +INF/0, X or +0/U, X or +Norm/(X)
*2: -INF/0, X or -0/U, X or -Norm/(X)
[Addition]
FRj
+0
+0
+0/(-)
-0
-0/(-)
-0
+Norm
-Norm
+INF
-INF
QNaN
SNaN
+Norm/(X) -Norm/(X) +INF/(-) -INF/(-) QNaN/(-) QNaN/V
+Norm +Norm/(X)
*1
*2
-Norm
-Norm/(X)
*2
*1
+INF
+INF/(-)
-INF
-INF/(-)
FRk
QNaN/V
QNaN/V
QNaN
SNaN
*1: +INF/0 or -INF/0 or ± NorM/(X)
*2: ± 0/(-) or ± 0/U or ± Norm/(X)
254
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.80
FR81 Family
7.80
FMULs (Single Precision Floating Point Multiply)
FRk is multiplied by FRj, and its result is stored in FRi.
● Assembler Format
FMULs FRk, FRj, FRi
● Operation
FRk × FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
FRk
1
1
0
1
FRj
0
0
1
1
1
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
255
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.80
FR81 Family
● Calculation result and exception flag
FRj
+0
-0
+Norm
-Norm
+INF
-INF
+0
+0/(-)
-0/(-)
+0/(-)
-0/(-)
QNaN/V
-0
-0/(-)
+0/(-)
-0/(-)
+0/(-)
+Norm
+0/(-)
-0/(-)
*1
*2
+INF/(-) -INF/(-)
-Norm
-0/(-)
+0/(-)
*2
*1
-INF/(-) +INF/(-)
+INF
QNaN/V
+INF/(-)
-INF/(-)
+INF/(-) -INF/(-)
-INF/(-)
+INF/(-)
-INF/(-) +INF/(-)
QNaN
SNaN
QNaN/(-) QNaN/V
FRk
-INF
QNaN
SNaN
*1: +INF/0, X or +0/U, X or +Norm/(X)
*2: -INF/0, X or 0/U, X or -Norm/(X)
256
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.81
FR81 Family
7.81
FNEGs (Single Precision Floating Point sign reverse)
A sign of FRj value is inverted, and the result is stored in FRi.
● Assembler Format
FNEGs FRj, FRi
● Operation
FRj × -1 → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
1
0
1
0
1
FRj
1
1
1
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
257
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.82
7.82
FR81 Family
FSQRTs (Single Precision Floating Point Square Root)
A square root of FRj is calculated, and its result is stored in FRi.
● Assembler Format
FSQRTs FRj, FRi
● Operation
FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
14 cycles
● Instruction Format
MSB
(n+0)
0
(n+2)
LSB
0
0
0
0
1
-
1
1
1
-
0
1
0
1
FRj
0
1
1
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
● Calculation result and exception flag
FRj
258
+0
-0
+Norm
-Norm
+INF
-INF
QNaN
SNaN
+0/(-)
-0/(-)
+Norm/(X)
QNaN/V
+INF/(-)
QNaN/V
QNaN/(-)
QNaN/V
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.83
FR81 Family
7.83
FST (Single Precision Floating Point Data Store)
Loads the value in FRi to memory address Rj.
● Assembler Format
FST FRi, @Rj
● Operation
FRi → (Rj)
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
1
-
0
1
1
-
1
1
1
0
-
0
Rj
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
259
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.84
7.84
FR81 Family
FST (Single Precision Floating Point Data Store)
Loads the value in FRi to memory address R13+Rj.
● Assembler Format
FST FRi, @(R13,Rj)
● Operation
FRi → (R13 + Rj)
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
1
-
0
1
1
-
1
1
1
1
-
0
Rj
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
260
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.85
FR81 Family
7.85
FST (Single Precision Floating Point Data Store)
Loads the value in FRi to memory address R14+o14 × 4. Signed o14 value is calculated.
The value in o14 × 4 is specified as disp16.
● Assembler Format
FST FRi, @(R14,disp16)
● Operation
FRi → (R14 + o14 × 4)
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
1
1
0
o14
1
0
0
o14
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
261
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.86
7.86
FR81 Family
FST (Single Precision Floating Point Data Store)
Loads the value in FRi to memory address R15+u14 × 4. Unsigned u14 value is
calculated. The value in u14 × 4 is specified as udisp16.
● Assembler Format
FST FRi, @(R15,udisp16)
● Operation
FRi → (R15 + u14 × 4)
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
1
1
0
u14
1
0
1
u14
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
262
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.87
FR81 Family
7.87
FST (Single Precision Floating Point Data Store)
R15 is subtracted by 4, and the value in FRi is loaded to the memory address identified
by new R15.
● Assembler Format
FST FRi, @-R15
● Operation
R15 - 4 → R15
FRi → (R15)
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
1
1
0
-
1
1
0
-
FRi
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
263
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.88
7.88
FR81 Family
FST (Store Word Data in Floating Point Register to
Memory)
Loads the word data in FRi to memory address BP+u16 × 4. Unsigned u16 value is
calculated. The value in u16 × 4 is specified as udisp18.
● Assembler Format
FST FRi, @(BP, udisp18)
● Operation
FRi → (BP+u16 × 4)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory store instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
0
1
1
1
FRi
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
264
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.89
FR81 Family
7.89
FSTM (Single Precision Floating Point Data Store from
Multiple Register)
The registers shown on frlist are sequentially saved in the stack. Registers FR0 to FR15
can be set on the frlist. They are processed in descending order of register numbers.
● Assembler Format
FSTM (frlist)
● Operation
The following operations are repeated according to the number of registers specified in the parameter frlist.
R15 - 4 → R15
(R15) → FRi
The bit and register relation of frlist of FSTM instruction is shown in Table 7.89-1.
Table 7.89-1 The bit and register relation of frlist of FSTM instruction
bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FRi FR0 FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9 FR10 FR11 FR12 FR13 FR14 FR15
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
na cycle (n: Transfer register number)
● Instruction Format
MSB
(n+0)
(n+2)
CM71-00105-1E
0
LSB
0
0
1
0
1
1
1
1
1
0
1
1
1
-
frlist
FUJITSU MICROELECTRONICS LIMITED
265
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.89
FR81 Family
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error or FPU
absence error), or an interrupt is detected.
If an exception occurs during repetition, the access that generated the exception is interrupted. The
remaining values of frlist are stored in the register list (RL) of exception status register (ESR), and the
exception process is executed.
266
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.90
FR81 Family
7.90
FsTOi (Convert from Single Precision Floating Point to
Integer)
A single-precision floating point value of FRj is converted into a 32-bit signed integer,
and it is stored in FRi.
● Assembler Format
FsTOi FRj, FRi
● Operation
(int) FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
1
0
1
FRj
0
1
0
0
1
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
267
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.90
FR81 Family
● Calculation result and exception flag
FRj
268
Output result
±0
0/(-)
± Den
0/D
+Norm
+0/(X), +Norm/(X), +MAX/V
-Norm
+0/(X), -Norm/(X), -MAX/V
+INF
+MAX/V
-INF
-MAX/V
QNaN, SNaN
± MAX/V
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.91
FR81 Family
7.91
FSUBs (Single Precision Floating Point Subtract)
FRk is subtracted by FRj, and its result is stored in FRi.
● Assembler Format
FSUBs FRk, FRj, FRi
● Operation
FRk - FRj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
FRk
1
1
0
1
FRj
0
0
0
1
0
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error), an FPU exception, or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
269
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.91
FR81 Family
● Calculation result and exception flag
FRj
+0
+0
+0/(-)
-0
-0/(-)
-0
+Norm
-Norm
+INF
-INF
QNaN
SNaN
+Norm/(X) -Norm/(X) +INF/(-) -INF/(-) QNaN/(-) QNaN/V
+Norm +Norm/(X)
*1
*2
-Norm
-Norm/(X)
*2
*1
+INF
+INF/(-)
-INF
-INF/(-)
FRk
QNaN/V
QNaN/V
QNaN
SNaN
*1: +INF/0 or -INF/0 or ± NorM/(X)
*2: ± 0/(-) or ± 0/U or ± Norm/(X)
270
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.92
FR81 Family
7.92
INT (Software Interrupt)
This is a software interrupt instruction. Reads the vector table for the interrupt vector
number u8 to determine the branch destination address, and branches.
● Assembler Format
INT #u8
Vector numbers 9 to 13, 64 and 65 are used by emulators for debugging interrupts and therefore the
corresponding numbers "INT #9" to "INT #13", "INT #64", "INT #65" should not be used in user
programs.
● Operation
SSP-4 → SSP
PS → (SSP)
SSP-4 → SSP
PC+2 → (SSP)
"0" → CCR:I
"0" → CCR:S
(TBR+3FCH-u8 × 4) → PC
Stores the values of the program counter (PC) and program status (PS) to the stack indicated by the system
stack pointer (SSP) for interrupt processing. Writes "0" to the S flag in the condition code register (CCR),
and uses the SSP as the stack pointer for following steps. Writes "0" to the I flag (interrupt enable flag) in
the CCR to disable external interrupts. Reads the vector table for the interrupt vector number u8 to
determine the branch destination address, and branches.
● Flag Change
S
0
I
0
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
S, I: Cleared.
● Classification
Non-Delayed Branching instruction
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
271
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.92
FR81 Family
● Execution Cycles
1+3a cycles
● Instruction Format
MSB
0
LSB
0
0
1
1
1
1
1
u8
● Execution Example
INT #20H
; Bit pattern of the instruction: 0001 1111 0010 0000
R15
4 0 0 0 0 0 0 0
R15
7 F F F F F F 8
SSP
8 0 0 0 0 0 0 0
SSP
7 F F F F F F 8
TBR
0 0 0 F F C 0 0
TBR
0 0 0 F F C 0 0
USP
4 0 0 0 0 0 0 0
USP
4 0 0 0 0 0 0 0
PC
8 0 8 8 8 0 8 6
PC
6 8 0 9 6 8 0 0
PS
F F F F F 8 F 0
PS
F F F F F 8 C 0
S I N Z V C
CCR
1 1 0 0 0 0
S I N Z V C
CCR
Memory
Memory
000FFF7C
6 8 0 9 6 8 0 0
000FFF7C
6 8 0 9 6 8 0 0
7FFFFFF8
x x x x x x x x
7FFFFFF8
8 0 8 8 8 0 8 8
7FFFFFFC
x x x x x x x x
7FFFFFFC
F F F F F 8 F 0
80000000
x x x x x x x x
80000000
x x x x x x x x
Before execution
272
0 0 0 0 0 0
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.93
FR81 Family
7.93
INTE (Software Interrupt for Emulator)
This software interrupt instruction is used for debugging. It determines the branch
destination address by reading interrupt vector number "#9" from the vector table, then
branches.
● Assembler Format
INTE
● Operation
SSP-4 → SSP
PS → (SSP)
SSP-4 → SSP
PC+2 → (SSP)
4 → ILM
"0" → CCR:S
(TBR+3D8H) → PC
It stores the values of the program counter (PC) and program status (PS) to the stack indicated by the
system stack pointer (SSP) for interrupt processing. It writes "0" to the S flag in the condition code register
(CCR), and uses the SSP as the stack pointer for the following steps. It determines the branch destination
address by reading interrupt vector number #9 from the vector table, then branches.
There is not change to the I flag in the condition code register (CCR). The interrupt level mask register
(ILM) in the program status (PS) is set to level 4.
● Flag Change
S
0
I
-
N
-
Z
-
V
-
C
-
I, N, Z, V, C: Unchanged.
S: Cleared.
● Classification
Non-Delayed Branching instruction
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
273
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.93
FR81 Family
● Execution Cycles
1+3a cycles
● Instruction Format
MSB
1
LSB
0
0
1
1
1
1
1
0
0
1
1
0
0
0
0
● Execution Example
INTE
; Bit pattern of the instruction: 1001 1111 0011 0000
R15
4 0 0 0 0 0 0 0
R15
7 F F F F F F 8
SSP
8 0 0 0 0 0 0 0
SSP
7 F F F F F F 8
USP
4 0 0 0 0 0 0 0
USP
4 0 0 0 0 0 0 0
TBR
0 0 0 F F C 0 0
TBR
0 0 0 F F C 0 0
PC
8 0 8 8 8 0 8 6
PC
6 8 0 9 6 8 0 0
PS
F F F 5 F 8 F 0
PS
F F E 4 F 8 D 0
ILM
1 0 1 0 1
ILM
S I N Z V C
CCR
1 1 0 0 0 0
S I N Z V C
CCR
Memory
0 1 0 0 0 0
Memory
000FFFD8
6 8 0 9 6 8 0 0
000FFFD8
6 8 0 9 6 8 0 0
7FFFFFF8
x x x x x x x x
7FFFFFF8
8 0 8 8 8 0 8 8
7FFFFFFC
x x x x x x x x
7FFFFFFC
F F F F F 8 F 0
80000000
x x x x x x x x
80000000
x x x x x x x x
Before execution
274
0 0 1 0 0
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.94
FR81 Family
7.94
JMP (Jump)
This is a branching instruction without a delay slot. Branches to the address indicated
in Ri.
● Assembler Format
JMP @Ri
● Operation
Ri → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Non-Delayed Branching instruction
● Execution Cycles
2 cycles
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
0
1
1
1
0
0
0
0
FUJITSU MICROELECTRONICS LIMITED
Ri
275
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.94
FR81 Family
● Execution Example
JMP @R1
; Bit pattern of the instruction: 1001 0111 0000 0001
R1
C 0 0 0 8 0 0 0
R1
0 0 0 0 0 0 F F
PC
F F 8 0 0 0 0 0
PC
C 0 0 0 8 0 0 0
Before execution
276
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.95
FR81 Family
7.95
JMP:D (Jump)
This is a branching instruction with delay slot. Branches to the address indicated by Ri.
● Assembler Format
JMP:D @Ri
● Operation
Ri → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Delayed Branching instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
CM71-00105-1E
LSB
0
0
1
1
1
1
1
0
0
0
0
FUJITSU MICROELECTRONICS LIMITED
Ri
277
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.95
FR81 Family
● Execution Example
JMP:D @R1
; Bit pattern of the instruction: 1001 1111 0000 0001
LDI:8 #0FFH, R1 ; Instruction placed in delay slot
R1
C 0 0 0 8 0 0 0
R1
0 0 0 0 0 0 F F
PC
F F 8 0 0 0 0 0
PC
C 0 0 0 8 0 0 0
Before execution of JMP instruction
After branching
The instruction placed in the delay slot will be executed before execution of the branch destination
instruction. The value R1 above will vary according to the specifications of the LDI:8 instruction placed in
the delay slot.
278
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.96
FR81 Family
7.96
LCALL (Long Call Subroutine)
This is a branching instruction without a delay slot. The next instruction address is
stored in the return pointer (RP), and then control branches to the address identified by
label21 relative to the program counter (PC). The value in rel20 is doubled during
address calculation, and its sign is extended.
● Assembler Format
LCALL label21
● Operation
PC + 4 → RP
PC + 4 + exts(rel20 × 2) → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Branching instruction without delay, FR81 family
● Execution Cycles
2 cycles
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
0
0
1
0
rel20 (Upper)
rel20 (Lower)
● EIT Occurrence and Detection
An interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
279
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.97
7.97
FR81 Family
LCALL:D (Long Call Subroutine)
This is a branching instruction with a delay slot. The next instruction address is stored
in the return pointer (RP), and then control branches to the address identified by label21
relative to the program counter (PC). The value in rel20 is doubled during address
calculation, and its sign is extended.
● Assembler Format
LCALL:D label21
● Operation
PC + 6 → RP
PC + 4 + exts(rel20 × 2) → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Branching instruction with delay, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
0
0
1
0
rel20 (Upper)
rel20 (Lower)
● EIT Occurrence and Detection
No interrupt is detected.
280
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.98
FR81 Family
7.98
LD (Load Word Data in Memory to Register)
Loads the word data at memory address Rj to Ri.
● Assembler Format
LD @Rj, Ri
● Operation
(Rj) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
0
1
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
281
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.98
FR81 Family
● Execution Example
LD @R2, R3
; Bit pattern of the instruction: 0000 0100 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
0 0 0 0 0 0 0 0
R3
8 7 6 5 4 3 2 1
Memory
12345678
8 7 6 5 4 3 2 1
Memory
12345678
Before execution
282
FUJITSU MICROELECTRONICS LIMITED
8 7 6 5 4 3 2 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.99
FR81 Family
7.99
LD (Load Word Data in Memory to Register)
Loads the word data at memory address R13 + Rj to Ri.
● Assembler Format
LD @(R13, Rj), Ri
● Operation
(R13+Rj) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
0
0
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
283
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.99
FR81 Family
● Execution Example
LD @(R13, R2), R3
; Bit pattern of the instruction: 0000 0000 0010 0011
R2
0 0 0 0 0 0 0 4
R2
0 0 0 0 0 0 0 4
R3
x x x x
R3
8 7 6 5 4 3 2 1
R13
1 2 3 4 5 6 7 8
R13
1 2 3 4 5 6 7 8
x x x x
1234567B
Memory
1234567B
Memory
1234567C
8 7 6 5 4 3 2 1
1234567C
8 7 6 5 4 3 2 1
Before execution
284
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.100
FR81 Family
7.100
LD (Load Word Data in Memory to Register)
Loads the word data at memory address R14 + o8 × 4 to Ri. The value of o8 × 4 is
specified as disp10.
● Assembler Format
LD @(R14, disp10), Ri
● Operation
(R14+o8 × 4) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
1
0
o8
FUJITSU MICROELECTRONICS LIMITED
Ri
285
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.100
FR81 Family
● Execution Example
LD @(R14,4), R3
; Bit pattern of the instruction: 0010 0000 0001 0011
R3
x x x x
R14
1 2 3 4 5 6 7 8
x x x x
R3
8 7 6 5 4 3 2 1
R14
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
1234567C
8 7 6 5 4 3 2 1
1234567C
8 7 6 5 4 3 2 1
Before execution
286
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.101
FR81 Family
7.101
LD (Load Word Data in Memory to Register)
Loads the word data at memory address R15 + u4 × 4 to Ri. The value u4 is an unsigned
calculation. The value of u4 × 4 is specified as udisp6.
● Assembler Format
LD @(R15, udisp6), Ri
● Operation
(R15+u4 ×4) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
0
0
1
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
287
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.101
FR81 Family
● Execution Example
LD @(R15,4), R3
; Bit pattern of the instruction: 0000 0011 0001 0011
R3
x x x x
R15
1 2 3 4 5 6 7 8
x x x x
R3
8 7 6 5 4 3 2 1
R15
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
1234567C
8 7 6 5 4 3 2 1
1234567C
8 7 6 5 4 3 2 1
Before execution
288
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.102
FR81 Family
7.102
LD (Load Word Data in Memory to Register)
Loads the word data at memory address R15 to Rj, and adds 4 to the value of R15. If
R15 is given as parameter Ri, the value read from the memory will be loaded into
memory address R15.
● Assembler Format
LD @R15+, Ri
● Operation
(R15) → Ri
R15 + 4 → R15
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
0
1
1
1
0
0
0
0
FUJITSU MICROELECTRONICS LIMITED
Ri
289
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.102
FR81 Family
● Execution Example
LD @R15+, R3
; Bit pattern of the instruction: 0000 0111 0000 0011
R3
x x x x
R15
1 2 3 4 5 6 7 8
x x x x
R3
8 7 6 5 4 3 2 1
R15
1 2 3 4 5 6 7 C
Memory
12345678
8 7 6 5 4 3 2 1
1234567C
Memory
12345678
1234567C
Before execution
290
8 7 6 5 4 3 2 1
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.103
FR81 Family
7.103
LD (Load Word Data in Memory to Register)
Loads the word data at memory address BP+u16 × 4 to Ri. Unsigned u16 value is
calculated. The value in u16 × 4 is specified as udisp18.
● Assembler Format
LD @(BP, udisp18), Ri
● Operation
(BP+u16 × 4) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory load instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
0
1
0
0
Ri
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (a data access error), or an
interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
291
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.104
7.104
FR81 Family
LD (Load Word Data in Memory to Register)
Loads the word data at memory address R15 to dedicated register Rs, and adds 4 to the
value of R15.
● Assembler Format
LD @R15+, Rs
● Operation
(R15) → Rs
R15 + 4 → R15
If TBR, SSP, or ESR is specified in user mode or if a non-existing register number is specified in user
mode, an invalid instruction exception (system-only register access) is generated.
There is no restriction in privilege mode. If a number without a dedicated register is specified for Rs in
privilege mode, a value being read from memory is abandoned.
If Rs is designated as the system stack pointer (SSP) or user stack pointer (USP), and that pointer is
indicating R15 (the S flag in the condition code register (CCR) is set to "0" to indicate the SSP, and to "1"
to indicate the USP), the last value remaining in R15 will be the value read from memory.
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot, FR81 updating
● Execution Cycles
b cycle
292
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.104
FR81 Family
● Instruction Format
MSB
0
LSB
0
0
0
0
1
1
1
1
0
0
0
Rs
● EIT Occurrence and Detection
User mode:
An invalid instruction exception (system-only register access) is generated. A data access protection
violation exception, an invalid instruction exception (data access error), or an interrupt is detected.
Privilege mode:
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected.
● Execution Example
LD @R15+, MDH
; Bit pattern of the instruction: 0000 0111 1000 0100
R15
1 2 3 4 5 6 7 4
R15
1 2 3 4 5 6 7 8
MDH
x x x x
MDH
8 7 6 5 4 3 2 1
x x x x
12345670
Memory
12345670
Memory
12345674
8 7 6 5 4 3 2 1
12345674
8 7 6 5 4 3 2 1
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
293
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.105
7.105
FR81 Family
LD (Load Word Data in Memory to Program Status
Register)
Loads the word data at memory address R15 to the program status (PS), and adds 4 to
the value of R15.
● Assembler Format
LD @R15+, PS
● Operation
(R15) → PS
R15 + 4 → R15
The contents of system status register (SSR) cannot be changed by this instruction regardless of the
selected operation mode. If this instruction is executed in user mode, only the D1, D0, N, Z, V and C flags
can be changed. The other flag values are not updated. Any bit other than SSR can be changed in privilege
mode.
At the time this instruction is executed, if the value of the interrupt level mask register (ILM) is in the range
16 to 31, only new ILM settings between 16 and 31 can be entered. If data in the range 0 to 15 is loaded
from memory, the value 16 will be added to that data before being transferred to the ILM. IF the original
ILM value is in the range 0 to 15, then any value from 0 to 31 can be transferred to the ILM.
● Flag Change
N
C
Z
C
V
C
C
C
N, Z, V, C: Data of (R15) is transferred.
● Classification
Memory Load instruction, FR81 updating
● Execution Cycles
1+a cycles
294
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.105
FR81 Family
● Instruction Format
MSB
0
LSB
0
0
0
0
1
1
1
1
0
0
1
0
0
0
0
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected. If the interrupt level mask register (ILM) or interrupt enable flag (I) is changed, an
interrupt is detected using the changed values.
● Execution Example
LD @R15+, PS
; Bit pattern of the instruction: 0000 0111 1001 0000
R15
1 2 3 4 5 6 7 4
R15
1 2 3 4 5 6 7 8
PS
F F F F F 8 D 5
PS
F F F 8 F 8 C 0
12345670
Memory
12345670
Memory
12345674
F F F 8 F 8 C 0
12345674
F F F 8 F 8 C 0
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
295
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.106
7.106
FR81 Family
LDI:20 (Load Immediate 20bit Data to Destination Register)
Extends the 20-bit immediate data with 12 zeros in the higher bits, loads to Ri.
● Assembler Format
LDI:20 #i20, Ri
● Operation
extu(i20) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Immediate Data Transfer instruction
● Execution Cycles
2 cycles
● Instruction Format
MSB
(n+0)
(n+2)
296
1
LSB
0
0
1
1
0
1
1
i20 (higher)
Ri
i20 (lower)
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.106
FR81 Family
● Execution Example
LDI:20 #54321H, R3
; Bit pattern of the instruction: 1001 1011 0101 0011
;
R3
0 0 0 0 0 0 0 0
0100 0011 0010 0001
R3
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 0 0 5 4 3 2 1
After execution
297
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.107
7.107
FR81 Family
LDI:32 (Load Immediate 32 bit Data to Destination
Register)
Loads 1 word of immediate data to Ri.
● Assembler Format
LDI:32 #i32, Ri
● Operation
i32 → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Immediate Data Transfer instruction
● Execution Cycles
d cycle
● Instruction Format
MSB
(n+0)
298
1
LSB
0
0
1
1
1
1
1
1
(n+2)
i32 (higher)
(n+4)
i32 (lower)
0
0
FUJITSU MICROELECTRONICS LIMITED
0
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.107
FR81 Family
● Execution Example
LDI:32 #87654321H, R3 ; Bit pattern of the instruction: 1001 1111 1000 0011
R3
;
1000 0111 0110 0101
;
0100 0011 0010 0001
0 0 0 0 0 0 0 0
R3
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
8 7 6 5 4 3 2 1
After execution
299
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.108
7.108
FR81 Family
LDI:8 (Load Immediate 8bit Data to Destination Register)
Extends the 8-bit immediate data with 24 zeros in the higher bits, loads to Ri.
● Assembler Format
LDI:8 #i8, Ri
● Operation
extu(i8) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Immediate Data Transfer instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
300
LSB
1
0
0
i8
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.108
FR81 Family
● Execution Example
LDI:8 #21H, R3
R3
; Bit pattern of the instruction: 1100 0010 0001 0011
0 0 0 0 0 0 0 0
R3
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0 0 0 2 1
After execution
301
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.109
7.109
FR81 Family
LDM0 (Load Multiple Registers)
The LDM0 instruction stores the word data from the address R15 to the registers in the
range R0 to R7 as members of the parameter reglist and repeats the operation of adding
4 to R15. Registers are processed in ascending numerical order.
● Assembler Format
LDM0 (reglist)
Registers from R0 to R7 are separated in reglist, multiple register are arranged and specified.
● Operation
The following operations are repeated according to the number of registers specified in the parameter
reglist.
(R15) → Ri
R15+4 → R15
Bit values and register numbers for reglist (LDM0) are shown in Table 7.109-1.
Table 7.109-1 Bit values and register numbers for reglist (LDM0)
Bit
7
6
5
4
3
2
1
0
Register
R7
R6
R5
R4
R3
R2
R1
R0
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
302
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.109
FR81 Family
● Classification
Other instructions
● Execution Cycles
If "n" is the number of registers specified in the parameter reglist, the execution cycles required are as
follows.
When n=0: 1 cycle
Otherwise: b × n cycles
● Instruction Format
MSB
1
LSB
0
0
0
1
1
0
0
reglist
● Execution Example
LDM0 (R3, R4)
; Bit pattern of the instruction: 1000 1100 0001 1000
R3
x x x x
x x x x
R3
9 0 B C 9 3 6 3
R4
x x x x
x x x x
R4
8 3 4 3 8 3 4 A
R15
7 F F F F F C 0
R15
7 F F F F F C 8
Memory
Memory
7FFFFFC0
9 0 B C 9 3 6 3
7FFFFFC0
9 0 B C 9 3 6 3
7FFFFFC4
8 3 4 3 8 3 4 A
7FFFFFC4
8 3 4 3 8 3 4 A
7FFFFFC8
x x x x
7FFFFFC8
x x x x
x x x x
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
x x x x
After execution
303
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.110
7.110
FR81 Family
LDM1 (Load Multiple Registers)
Loads the word data of address R15 to multiple registers R8 to R15 specified in reglist,
repeats the operation of adding 4 to R15. Registers are processed in ascending
numerical order. If R15 is specified in the parameter reglist, the final contents of R15
will be read from memory.
● Assembler Format
LDM1 (reglist)
Registers from R8 to R15 are separated in reglist, multiple register are arranged and specified.
● Operation
The following operations are repeated according to the number of registers specified in the parameter
reglist.
(R15) → Ri
R15+4 → R15
Bit values and register numbers for reglist (LDM1) are shown in Table 7.110-1.
Table 7.110-1 Bit values and register numbers for reglist (LDM1)
Bit
7
6
5
4
3
2
1
0
Register
R15
R14
R13
R12
R11
R10
R9
R8
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
304
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.110
FR81 Family
● Classification
Other instructions
● Execution Cycles
If "n" is the number of registers specified in the parameter reglist the execution cycles required are as
follows.
When n=0: 1 cycle
Otherwise: b × n cycles
● Instruction Format
MSB
1
LSB
0
0
0
1
1
0
1
reglist
● Execution Example
LDM1 (R10, R11, R12)
; Bit pattern of the instruction: 1000 1101 0001 1100
R10
x x x x x x x x
R10
8 F E 3 9 E 8 A
R11
x x x x x x x x
R11
9 0 B C 9 3 6 3
R12
x x x x x x x x
R12
8 D F 7 8 8 E 4
R15
7 F F F F F C 0
R15
7 F F F F FC C
Memory
Memory
7FFFFFC0
8 F E 3 9 E 8 A
7FFFFFC0
8 F E 3 9 E 8 A
7FFFFFC4
9 0 B C 9 3 6 3
7FFFFFC4
9 0 B C 9 3 6 3
7FFFFFC8
8 D F 7 8 8 E 4
7FFFFFC8
8 D F 7 8 8 E 4
7FFFFFCC
x x x x x x x x
7FFFFFCC
x x x x x x x x
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
305
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.111
7.111
FR81 Family
LDUB (Load Byte Data in Memory to Register)
Extends with zeros the byte data at memory address Rj, loads to Ri.
● Assembler Format
LDUB @Rj, Ri
● Operation
extu((Rj)) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
306
LSB
0
0
0
0
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.111
FR81 Family
● Execution Example
LDUB @R2, R3
; Bit pattern of the instruction: 0000 0110 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
x x x x
R3
0 0 0 0 0 0 2 1
x x x x
Memory
12345678
2 1
Memory
12345678
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
2 1
After execution
307
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.112
7.112
FR81 Family
LDUB (Load Byte Data in Memory to Register)
Extends with zeros the byte data at memory address R13 + Rj, loads to Ri.
● Assembler Format
LDUB @(R13, Rj), Ri
● Operation
extu((R13+Rj)) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
308
LSB
0
0
0
0
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.112
FR81 Family
● Execution Example
LDUB @(R13, R2), R3
; Bit pattern of the instruction: 0000 0010 0010 0011
R2
0 0 0 0
0 0 0 4
R2
0 0 0 0 0 0 0 4
R3
x x x x
x x x x
R3
0 0 0 0 0 0 2 1
R13
1 2 3 4 5 6 7 8
R13
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
1234567C
2 1
1234567C
2 1
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
309
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.113
7.113
FR81 Family
LDUB (Load Byte Data in Memory to Register)
Extends with zeros the byte data at memory address 14 + o8, loads to Ri. The value o8
is a signed calculation. The value of o8 is specified in disp8.
● Assembler Format
LDUB @(R14, disp8), Ri
● Operation
extu((R14+o8)) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
310
LSB
1
1
0
o8
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.113
FR81 Family
● Execution Example
LDUB @(R14,1), R3
; Bit pattern of the instruction: 0110 0000 0001 0011
R3
x x x x
x x x x
R3
0 0 0 0 0 0 2 1
R14
1 2 3 4
5 6 7 8
R14
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
12345679
2 1
12345679
2 1
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
311
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.114
7.114
FR81 Family
LDUB (Load Byte Data in Memory to Register)
Loads the byte data at memory address BP+u16 to Ri. Unsigned u16 value is calculated.
The value in u16 is specified as udisp16.
● Assembler Format
LDUB @(BP, udisp16), Ri
● Operation
(BP+u16) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
0
1
1
0
Ri
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected.
312
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.115
FR81 Family
7.115
LDUH (Load Halfword Data in Memory to Register)
Extends with zeros the half-word data at memory address Rj, loads to Ri.
● Assembler Format
LDUH @Rj, Ri
● Operation
extu((Rj)) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
0
1
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
313
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.115
FR81 Family
● Execution Example
LDUH @R2, R3
; Bit pattern of the instruction: 0000 0101 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
x x x x
R3
0 0 0 0 4 3 2 1
x x x x
Memory
12345678
4 3 2 1
Before execution
314
FUJITSU MICROELECTRONICS LIMITED
Memory
12345678
4 3 2 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.116
FR81 Family
7.116
LDUH (Load Halfword Data in Memory to Register)
Extends with zeros the half-word data at memory address R13 + Rj, loads to Ri.
● Assembler Format
LDUH @(R13, Rj), Ri
● Operation
extu((R13+Rj)) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
0
0
0
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
315
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.116
FR81 Family
● Execution Example
LDUH @(R13, R2), R3
; Bit pattern of the instruction: 0000 0001 0010 0011
R2
0 0 0 0 0 0 0 4
R2
0 0 0 0 0 0 0 4
R3
x x x x
R3
0 0 0 0 4 3 2 1
R13
1 2 3 4 5 6 7 8
R13
1 2 3 4 5 6 7 8
x x x x
12345678
Memory
12345678
Memory
1234567C
4 3 2 1
1234567C
4 3 2 1
Before execution
316
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.117
FR81 Family
7.117
LDUH (Load Halfword Data in Memory to Register)
Extends with zeros the half-word data at memory address R14 + o8 × 2, loads to Ri. The
value o8 is a signed calculation. The value of o8 × 2 is specified in disp9.
● Assembler Format
LDUH @(R14, disp9), Ri
● Operation
extu((R14+o8 × 2)) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
1
0
0
o8
FUJITSU MICROELECTRONICS LIMITED
Ri
317
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.117
FR81 Family
● Execution Example
LDUH @(R14,2), R3
; Bit pattern of the instruction: 0100 0000 0001 0011
R3
x x x x
x x x x
R14
1 2 3 4 5 6 7 8
R3
0 0 0 0 4 3 2 1
R14
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
1234567A
4 3 2 1
1234567A
4 3 2 1
Before execution
318
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.118
FR81 Family
7.118
LDUH (Load Halfword Data in Memory to Register)
Loads the half word data at memory address BP+u16 × 2 to Ri. Unsigned u16 value is
calculated. The value in u16 × 2 is specified as udisp17.
● Assembler Format
LD @(BP, udisp17), Ri
● Operation
(BP+u16 × 2) → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Load instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
0
(n+2)
0
1
1
1
0
1
0
1
Ri
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
319
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.119
7.119
FR81 Family
LEAVE (Leave Function)
This instruction is used for stack frame release processing for high level languages.
● Assembler Format
LEAVE
● Operation
R14+4 → R15
(R15-4) → R14
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot
● Execution Cycles
b cycle
● Instruction Format
MSB
1
320
LSB
0
0
1
1
1
1
1
1
0
0
1
0
FUJITSU MICROELECTRONICS LIMITED
0
0
0
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.119
FR81 Family
● Execution Example
LEAVE
; Bit pattern of the instruction: 1001 1111 1001 0000
R14
7 F F F F F F 4
R14
8 0 0 0
R15
7 F F F F F E C
R15
7 F F F F F F 8
Memory
Memory
7FFFFFEC
x x x x
x x x x
7FFFFFEC
x x x x
x x x x
7FFFFFF0
x x x x
x x x x
7FFFFFF0
x x x x
x x x x
7FFFFFF4
8 0 0 0
0 0 0 0
7FFFFFF4
8 0 0 0
0 0 0 0
7FFFFFF8
x x x x
x x x x
7FFFFFF8
x x x x
x x x x
7FFFFFFC
x x x x
x x x x
7FFFFFFC
x x x x
x x x x
80000000
x x x x
x x x x
80000000
x x x x
x x x x
Before execution
CM71-00105-1E
0 0 0 0
FUJITSU MICROELECTRONICS LIMITED
After execution
321
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.120
7.120
FR81 Family
LSL (Logical Shift to the Left Direction)
Makes a logical left shift of the word data in Ri by Rj bits, stores the result to Ri. Only
the lower 5 bits of Rj, which designates the size of the shift, are valid and the shift range
is 0 to 31 bits.
● Assembler Format
LSL Rj, Ri
● Operation
Ri << Rj → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last. Cleared when the shift amount is zero.
● Classification
Shift instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
322
LSB
0
1
1
0
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.120
FR81 Family
● Execution Example
LSL R2, R3
; Bit pattern of the instruction: 1011 0110 0010 0011
R2
0 0 0 0
0 0 0 8
R2
0 0 0 0 0 0 0 8
R3
F F F F F F F F
R3
F F F F F F 0 0
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
1 0 0 1
After execution
323
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.121
7.121
FR81 Family
LSL (Logical Shift to the Left Direction)
Makes a logical left shift of the word data in Ri by u4 bits, stores the result to Ri.
● Assembler Format
LSL #u4, Ri
● Operation
Ri << u4 → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last. Cleared when the shift amount is zero.
● Classification
Shift instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
324
LSB
0
1
1
0
1
0
0
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.121
FR81 Family
● Execution Example
LSL #8, R3
R3
; Bit pattern of the instruction: 1011 0100 1000 0011
F F F F F F F F
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
F F F F F F 0 0
FUJITSU MICROELECTRONICS LIMITED
1 0 0 1
After execution
325
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.122
7.122
FR81 Family
LSL2 (Logical Shift to the Left Direction)
Makes a logical left shift of the word data in Ri by u4+16 bits, stores the result to Ri.
● Assembler Format
LSL2 #u4, Ri
● Operation
Ri << {u4+16} → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last.
● Classification
Shift instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
326
LSB
0
1
1
0
1
0
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.122
FR81 Family
● Execution Example
LSL2 #8, R3
R3
; Bit pattern of the instruction: 1011 0101 1000 0011
F F F F F F F F
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
F F 0 0 0 0 0 0
FUJITSU MICROELECTRONICS LIMITED
1 0 0 1
After execution
327
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.123
7.123
FR81 Family
LSR (Logical Shift to the Right Direction)
Makes a logical right shift of the word data in Ri by Rj bits, stores the result to Ri. Only
the lower 5 bits of Rj, which designates the size of the shift, are valid and the shift range
is 0 to 31 bits.
● Assembler Format
LSR Rj, Ri
● Operation
Ri >> Rj → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last. Cleared when the shift amount is zero.
● Classification
Shift instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
328
LSB
0
1
1
0
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.123
FR81 Family
● Execution Example
LSR R2, R3
; Bit pattern of the instruction: 1011 0010 0010 0011
R2
0 0 0 0
0 0 0 8
R2
0 0 0 0 0 0 0 8
R3
F F F F F F F F
R3
0 0 F F F F F F
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 0 0 1
After execution
329
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.124
7.124
FR81 Family
LSR (Logical Shift to the Right Direction)
Makes a logical left shift of the word data in Ri by u4 bits, stores the result to Ri.
● Assembler Format
LSR #u4, Ri
● Operation
Ri >> u4 → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last. Cleared when the shift amount is zero.
● Classification
Shift instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
330
LSB
0
1
1
0
0
0
0
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.124
FR81 Family
● Execution Example
LSR #8, R3
R3
; Bit pattern of the instruction: 1011 0000 1000 0011
F F F F F F F F
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
0 0 F F F F F F
FUJITSU MICROELECTRONICS LIMITED
0 0 0 1
After execution
331
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.125
7.125
FR81 Family
LSR2 (Logical Shift to the Right Direction)
Makes a logical left shift of the word data in Ri by u4+16 bits, stores the result to Ri.
● Assembler Format
LSR2 #u4, Ri
● Operation
Ri >> {u4+16} → Ri
● Flag Change
N
C
Z
C
V
-
C
C
N: Cleared.
Z: Set when the operation result is zero, cleared otherwise.
V: Unchanged.
C: Holds the bit value shifted last.
● Classification
Shift instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
332
LSB
0
1
1
0
0
0
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.125
FR81 Family
● Execution Example
LSR2 #8, R3
R3
; Bit pattern of the instruction: 1011 0001 1000 0011
F F F F F F F F
R3
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
0 0 0 0 0 0 F F
FUJITSU MICROELECTRONICS LIMITED
0 0 0 1
After execution
333
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.126
7.126
FR81 Family
MOV (Move Word Data in Source Register to Destination
Register)
Moves the word data in Rj to Ri.
● Assembler Format
MOV Rj, Ri
● Operation
Rj → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Inter-register transfer instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
334
LSB
0
0
0
1
0
1
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.126
FR81 Family
● Execution Example
MOV R2, R3
; Bit pattern of the instruction: 1000 1011 0010 0011
R2
8 7 6 5 4 3 2 1
R2
8 7 6 5 4 3 2 1
R3
x x x x
R3
8 7 6 5 4 3 2 1
x x x x
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
335
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.127
7.127
FR81 Family
MOV (Move Word Data in Source Register to Destination
Register)
Moves the word data in dedicated register Rs to general-purpose register Ri.
● Assembler Format
MOV Rs, Ri
● Operation
Rs → Ri
If the number of a non-existent dedicated register is given as Rs, undefined data will be transferred.
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Inter-Register Transfer instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
336
LSB
0
1
1
0
1
1
1
Rs
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.127
FR81 Family
● Execution Example
MOV MDL, R3
; Bit pattern of the instruction: 1011 0111 0101 0011
R3
x x x x
x x x x
MDL
8 7 6 5 4 3 2 1
R3
8 7 6 5 4 3 2 1
MDL
8 7 6 5 4 3 2 1
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
337
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.128
7.128
FR81 Family
MOV (Move Word Data in Program Status Register to
Destination Register)
Moves the word data in the program status (PS) to general-purpose register Ri.
● Assembler Format
MOV PS, Ri
● Operation
PS → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Inter-Register Transfer instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
0
338
LSB
0
0
1
0
1
1
1
0
0
0
1
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.128
FR81 Family
● Execution Example
MOV PS, R3
; Bit pattern of the instruction: 0001 0111 0001 0011
R3
x x x x x x x x
R3
F F F 8 F 8 C 0
PS
F F F 8 F 8 C 0
PS
F F F 8 F 8 C 0
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
339
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.129
7.129
FR81 Family
MOV (Move Word Data in Source Register to Destination
Register)
Moves the word data of general-purpose register Ri to dedicated register Rs.
● Assembler Format
MOV Ri, Rs
● Operation
Ri → Rs
If TBR, SSP, or ESR is specified in user mode or if a number without a dedicated register is specified for
"RS", it generates an invalid instruction exception (system-only register access).
There is no restriction in privilege mode. If the number of a non-existent register is given as parameter Rs
in privilege mode, the read value Ri will be ignored.
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Inter-Register Transfer instruction, Instruction with delay slot, FR81 updating
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
340
LSB
0
1
1
0
0
1
1
Rs
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.129
FR81 Family
● EIT Occurrence and Detection
User mode:
An invalid instruction exception (system-only register access) is generated and an interrupt is detected.
Privilege mode:
An interrupt is detected.
● Execution Example
MOV R3, MDL
; Bit pattern of the instruction: 1011 0011 0101 0011
R3
8 7 6 5 4 3 2 1
R3
8 7 6 5 4 3 2 1
MDL
x x x x
MDL
8 7 6 5 4 3 2 1
x x x x
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
341
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.130
7.130
FR81 Family
MOV (Move Word Data in Source Register to Program
Status Register)
Stores the word data of general-purpose register Ri to program status (PS).
● Assembler Format
MOV Ri, PS
● Operation
Ri → PS
The contents of system status register (SSR) cannot be changed by this instruction regardless of the
selected operation mode. If this instruction is executed in user mode, only the D1, D0, N, Z, V, and C flags
can be changed. The other flag values are not updated. Any bit other than SSR can be changed in privilege
mode.
At the time this instruction is executed, if the value of the interrupt level mask register (ILM) is in the range
16 to 31, only new ILM settings between 16 and 31 can be entered. If data in the range 0 to 15 is loaded
from Ri, the value +16 is transferred to the ILM. If the original ILM value is in the range 0 to 15, then any
value from 0 to 31 can be transferred to the ILM.
● Flag Change
N
C
Z
C
V
C
C
C
N, Z, V, C: Data from Ri is transferred.
● Classification
Inter-Register Transfer instruction, Instruction with delay slot, FR81 updating
● Execution Cycles
1 cycle
342
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.130
FR81 Family
● Instruction Format
MSB
0
LSB
0
0
0
0
1
1
1
0
0
0
1
Ri
● EIT Occurrence and Detection
An interrupt is detected.
● Execution Example
MOV R3, PS
; Bit pattern of the instruction: 0000 0111 0001 0011
R3
F F F 3 F 8 D 5
R3
F F F 3 F 8 D 5
PS
x x x x
PS
F F F 3 F 8 D 5
x x x x
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
343
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.131
7.131
FR81 Family
MOV (Move Word Data in General Purpose Register to
Floating Point Register)
The value in Rj is transferred to FRi.
● Assembler Format
MOV Rj, FRi
● Operation
Rj → FRi
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
0
-
0
1
1
-
1
0
0
1
1
-
Rj
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error) or an interrupt is detected.
344
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.132
FR81 Family
7.132
MOV (Move Word Data in Floating Point Register to
General Purpose Register)
The value in FRi is transferred to Rj.
● Assembler Format
MOV FRi, Rj
● Operation
FRi → Rj
● Classification
Single-precision floating point instruction, FR81 family
● Execution Cycles
1 cycle
● Instruction Format
MSB
(n+0)
(n+2)
0
LSB
0
0
1
-
0
1
1
-
1
0
0
1
1
-
Rj
FRi
● EIT Occurrence and Detection
An invalid instruction exception (FPU absence error) or an interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
345
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.133
7.133
FR81 Family
MUL (Multiply Word Data)
Multiplies the word data in Rj by the word data in Ri as signed numbers, and stores the
resulting signed 64-bit data with the higher word in the multiplication/division register
(MDH), and the lower word in the multiplication/division register (MDL).
● Assembler Format
MUL Rj, Ri
● Operation
Ri × Rj → MDH, MDL
● Flag Change
N
C
Z
C
V
C
C
-
N: Set when the MSB of the "MDL" of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Cleared when the operation result is in the range -2147483648 to 2147483647, cleared otherwise.
C: Unchanged.
● Classification
Multiply/Divide Instruction
● Execution Cycles
5 cycles
● Instruction Format
MSB
1
346
LSB
0
1
0
1
1
1
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.133
FR81 Family
● Execution Example
MUL R2, R3
; Bit pattern of the instruction: 1010 1111 0010 0011
R2
0 0 0 0 0 0 0 2
R2
0 0 0 0 0 0 0 2
R3
8 0 0 0 0 0 0 1
R3
8 0 0 0 0 0 0 1
MDH
x x x x
x x x x
MDH
F F F F F F F F
MDL
x x x x
x x x x
MDL
0 0 0 0 0 0 0 2
N Z V C
N Z V C
CCR
0 0 0 0
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 0 1 0
After execution
347
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.134
7.134
FR81 Family
MULH (Multiply Halfword Data)
Multiplies the half-word data in the lower 16 bits of Rj by the half-word data in the lower
16 bits of Ri as signed numbers, and stores the resulting signed 32-bit data in the
multiplication/division register (MDL). The multiplication/division register (MDH) is
undefined.
● Assembler Format
MULH Rj, Ri
● Operation
Ri × Rj → MDL
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the MDL of the operation result is "1", cleared when the MSB is "0".
Z: Set when MDL of the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Multiply/Divide Instruction
● Execution Cycles
3 cycles
● Instruction Format
MSB
1
348
LSB
0
1
1
1
1
1
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.134
FR81 Family
● Execution Example
MULH R2, R3
; Bit pattern of the instruction: 1011 1111 0010 0011
R2
F E D C B A 9 8
R2
F E D C B A 9 8
R3
0 1 2 3 4 5 6 7
R3
0 1 2 3 4 5 6 7
MDH
x x x x
x x x x
MDH
x x x x
MDL
x x x x
x x x x
MDL
E D 2 F 0 B 2 8
N Z V C
N Z V C
CCR
0 0 0 0
CCR
Before execution
CM71-00105-1E
x x x x
FUJITSU MICROELECTRONICS LIMITED
1 0 0 0
After execution
349
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.135
7.135
FR81 Family
MULU (Multiply Unsigned Word Data)
Multiplies the word data in Rj by the word data in Ri as unsigned numbers and stores
the resulting unsigned 64-bit data with the higher word in the multiplication/division
register (MDH), and the lower word in the multiplication/division register (MDL).
● Assembler Format
MULU Rj, Ri
● Operation
Ri × Rj → MDH, MDL
● Flag Change
N
C
Z
C
V
C
C
-
N: Set when the MSB of the MDL of the operation result is "1", cleared when the MSB is "0".
Z: Set when the MDL of the operation result is zero, cleared otherwise.
V: Cleared when the operation result is in the range 0 to 4294967295, set otherwise.
C: Unchanged.
● Classification
Multiply/Divide Instruction
● Execution Cycles
5 cycles
● Instruction Format
MSB
1
350
LSB
0
1
0
1
0
1
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.135
FR81 Family
● Execution Example
MULU R2, R3
; Bit pattern of the instruction: 1010 1011 0010 0011
R2
0 0 0 0 0 0 0 2
R2
0 0 0 0 0 0 0 2
R3
8 0 0 0 0 0 0 1
R3
8 0 0 0 0 0 0 1
MDH
x x x x
x x x x
MDH
0 0 0 0 0 0 0 1
MDL
x x x x
x x x x
MDL
0 0 0 0 0 0 0 2
N Z V C
N Z V C
CCR
0 0 0 0
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 0 1 0
After execution
351
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.136
7.136
FR81 Family
MULUH (Multiply Unsigned Halfword Data)
Multiplies the half-word data in the lower 16 bits of Rj by the half-word data in the lower
16 bits of Ri as unsigned numbers, and stores the resulting unsigned 32-bit data in the
multiplication/division register (MDL). The multiplication/division register (MDH) is
undefined.
● Assembler Format
MULUH Rj, Ri
● Operation
Ri × Rj → MDL
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the MDL of the operation result is "1", cleared when the MSB is "0".
Z: Set when the MDL of the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Multiply/Divide Instruction
● Execution Cycles
3 cycles
● Instruction Format
MSB
1
352
LSB
0
1
1
1
0
1
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.136
FR81 Family
● Execution Example
MULUH R2, R3
; Bit pattern of the instruction: 1011 1011 0010 0011
R2
F E D C B A 9 8
R2
F E D C B A 9 8
R3
0 1 2 3 4 5 6 7
R3
0 1 2 3 4 5 6 7
MDH
x x x x
x x x x
MDH
x x x x
MDL
x x x x
x x x x
MDL
3 2 9 6 0 B 2 8
N Z V C
N Z V C
CCR
0 0 0 0
CCR
Before execution
CM71-00105-1E
x x x x
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
353
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.137
7.137
FR81 Family
NOP (No Operation)
This instruction performs no operation.
● Assembler Format
NOP
● Operation
No operation
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
354
LSB
0
0
1
1
1
1
1
1
0
1
0
0
FUJITSU MICROELECTRONICS LIMITED
0
0
0
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.137
FR81 Family
● Execution Example
NOP
PC
; Bit pattern of the instruction: 1001 1111 1010 0000
8 3 4 3 8 3 4 A
PC
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
8 3 4 3 8 3 4 C
After execution
355
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.138
7.138
FR81 Family
OR (Or Word Data of Source Register to Data in Memory)
Takes the logical OR of the word data at memory address Ri and the word data in Rj,
stores the results to the memory address corresponding to Ri.
● Assembler Format
OR Rj,@Ri
● Operation
(Ri) | Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
356
LSB
0
0
1
0
1
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.138
FR81 Family
● Execution Example
OR R2,@R3
; Bit pattern of the instruction: 1001 0100 0010 0011
R2
1 1 1 1 0 0 0 0
R2
1 1 1 1 0 0 0 0
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 0 1 0 1 0 1 0
Memory
12345678
1234567C
1234567C
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
1 1 1 1 1 0 1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
357
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.139
7.139
FR81 Family
OR (Or Word Data of Source Register to Destination
Register)
Takes the logical OR of the word data in Ri and the word data in Rj, stores the results to
Ri.
● Assembler Format
OR Rj, Ri
● Operation
Ri | Rj → Ri
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
358
LSB
0
0
1
0
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.139
FR81 Family
● Execution Example
OR R2, R3
; Bit pattern of the instruction: 1001 0010 0010 0011
R2
1 1 1 1 0 0 0 0
R2
1 1 1 1 0 0 0 0
R3
1 0 1 0 1 0 1 0
R3
1 1 1 1 1 0 1 0
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
359
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.140
7.140
FR81 Family
ORB (Or Byte Data of Source Register to Data in Memory)
Takes the logical OR of the byte data at memory address Ri and the byte data in Rj,
stores the results to the memory address corresponding to Ri.
● Assembler Format
ORB Rj,@Ri
● Operation
(Ri) | Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB(bit7) of the operation result is "1", cleared when the MSB(bit7) is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
360
LSB
0
0
1
0
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.140
FR81 Family
● Execution Example
ORB R2,@R3
; Bit pattern of the instruction: 1001 0110 0010 0011
R2
0 0 0 0 0 0 1 1
R2
0 0 0 0 0 0 1 1
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
Memory
12345678
1 0
12345679
12345679
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
1 1
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
361
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.141
7.141
FR81 Family
ORCCR (Or Condition Code Register and Immediate Data)
Takes the logical OR of the byte data in the condition code register (CCR) and the
immediate data, and returns the results in to the CCR.
● Assembler Format
ORCCR #u8
● Operation
User mode:
CCR | (u8 & CFH) → CCR
Privilege mode:
CCR | u8 → CCR
In user mode, a request to rewrite the stack flag (S) or the interrupt enable flag (I) is ignored. The S and I
flags can only be changed in privilege mode.
● Flag Change
S
C
I
C
N
C
Z
C
V
C
C
C
S, I, N, Z, V, C: Varies according to results of calculation.
● Classification
Other instructions, Instruction with delay slot, FR81 updating
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
362
LSB
0
0
1
0
0
1
1
u8
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.141
FR81 Family
● EIT Occurrence and Detection
An interrupt is detected (the value of I flag after instruction execution is used).
● Execution Example
ORCCR #10H
; Bit pattern of the instruction: 1001 0011 0001 0000
S I N Z V C
CCR
0 0 0 1 0 1
S I N Z V C
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 1 0 1 0 1
After execution
363
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.142
7.142
FR81 Family
ORH (Or Halfword Data of Source Register to Data in
Memory)
Takes the logical OR if the half-word data at memory address Ri and the half-word data
in Rj, stores the results to the memory address corresponding to Ri.
● Assembler Format
ORH Rj,@Ri
● Operation
(Ri) | Rj → (Ri)
● Flag Change
N
C
Z
C
V
-
C
-
N: Set when the MSB(bit15) of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V, C: Unchanged.
● Classification
Logical Calculation instruction, Read/Modify/Write type instruction
● Execution Cycles
1+2a cycles
● Instruction Format
MSB
1
364
LSB
0
0
1
0
1
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.142
FR81 Family
● Execution Example
ORH R2,@R3
; Bit pattern of the instruction: 1001 0101 0010 0011
R2
0 0 0 0 1 1 0 0
R2
0 0 0 0 1 1 0 0
R3
1 2 3 4 5 6 7 8
R3
1 2 3 4 5 6 7 8
Memory
12345678
1 0 1 0
1234567A
Memory
12345678
1234567A
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
1 1 1 0
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
365
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.143
7.143
FR81 Family
RET (Return from Subroutine)
This is a branching instruction without a delay slot. Branches to the address indicated
by the return pointer(RP). Used for return from Subroutine.
● Assembler Format
RET
● Operation
RP → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Non-Delayed Branching instruction
● Execution Cycles
2 cycles
● Instruction Format
MSB
1
366
LSB
0
0
1
0
1
1
1
0
0
1
0
0
FUJITSU MICROELECTRONICS LIMITED
0
0
0
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.143
FR81 Family
● Execution Example
RET
; Bit pattern of the instruction: 1001 0111 0010 0000
PC
F F F 0 8 8 2 0
PC
8 0 0 0 A E 8 6
RP
8 0 0 0 A E 8 6
RP
8 0 0 0 A E 8 6
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
367
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.144
7.144
FR81 Family
RET:D (Return from Subroutine)
This is a branching instruction with a delay slot. Branches to the address indicated by
the return pointer (RP). Used for return from Subroutine.
● Assembler Format
RET:D
● Operation
RP → PC
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Delayed Branching instruction
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
368
LSB
0
0
1
1
1
1
1
0
0
1
0
0
FUJITSU MICROELECTRONICS LIMITED
0
0
0
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.144
FR81 Family
● Execution Example
RET:D
; Bit pattern of the instruction: 1001 1111 0010 0000
MOV R0, R1
; Instruction placed in delay slot
R0
0 0 1 1 2 2 3 3
R0
0 0 1 1 2 2 3 3
R1
x x x x x x x x
R1
0 0 1 1 2 2 3 3
PC
F F F 0 8 8 2 0
PC
8 0 0 0 A E 8 6
RP
8 0 0 0 A E 8 6
RP
8 0 0 0 A E 8 6
Before execution of RET instruction
After branching
The instruction placed in delay slot will be executed before execution of the branch destination instruction.
The value of R1 above will vary according to the specifications of the MOV instruction placed in the delay
slot.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
369
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.145
7.145
FR81 Family
RETI (Return from Interrupt)
Loads data from the stack indicated by system stack pointer (SSP), to the program
counter (PC) and program status (PS), and retakes control from the EIT operation
handler.
● Assembler Format
RETI
● Operation
• Normal operation state
(SSP) → PC
SSP+4 → SSP
(SSP) → PS
SSP+4 → SSP
• Debug state
PC save register (PCSR) → PC
PS save register (PSSR) → PS
(PC) instruction execution
This is a privilege instruction, which is only available in privilege mode. If this instruction is executed in
user mode, it generates an invalid instruction exception (privilege instruction execution).
Operation varies depending on whether this instruction is executed in the normal operation state or debug
state. If this instruction is executed in the debug state, the DSU register is used instead of a stack, and the
acceptance of interrupts is withheld until the next instruction execution is completed. This, therefore,
executes one instruction necessarily after the RETI instruction was executed in the debug state.
At the time this instruction is executed, if the value of the interrupt level mask register (ILM) is in the range
16 to 31, only new ILM settings between 16 and 31 can be entered. If data in the range 0 to 15 is loaded in
memory, the value 16 will be added to that data before being transferred to the ILM. If the original ILM
value is in the range 0 to 15, then any value between 0 and 31 can be transferred to the ILM.
● Flag Change
S
C
I
C
N
C
Z
C
V
C
C
C
D2, D1, S, I, N, Z, V, C: Change according to the values retrieved from the stack.
370
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.145
FR81 Family
● Classification
Non-Delayed Branching instruction, FR81 updating
● Execution Cycles
1+2b cycles
● Instruction Format
MSB
1
LSB
0
0
1
0
1
1
1
0
0
1
1
0
0
0
0
● EIT Occurrence and Detection
User mode:
An invalid instruction exception (privilege instruction execution) is generated.
Privilege mode:
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected. The interrupt level is judged using the value returned from the stack.
Debug state:
EIT is not accepted.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
371
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.145
FR81 Family
● Execution Example
RETI
; Bit pattern of the instruction: 1001 0111 0011 0000
R15
7 F F F F F F 8
R15
4 0 0 0 0 0 0 0
SSP
7 F F F F F F 8
SSP
8 0 0 0 0 0 0 0
USP
4 0 0 0 0 0 0 0
USP
4 0 0 0 0 0 0 0
PC
F F 0 0 9 0 B C
PC
8 0 8 8 8 0 8 8
PS
F F F 0 F 8 D 4
PS
F F F 3 F 8 F 1
ILM
1 0 0 0 0
ILM
S I N Z V C
CCR
0 1 0 1 0 0
S I N Z V C
CCR
Memory
1 1 0 0 0 1
Memory
7FFFFFF8
8 0 8 8 8 0 8 8
7FFFFFF8
8 0 8 8 8 0 8 8
7FFFFFFC
F F F 3 F 8 F 1
7FFFFFFC
F F F 3 F 8 F 1
80000000
x x x x x x x x
80000000
x x x x x x x x
Before execution
372
1 0 0 1 1
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.146
FR81 Family
7.146
SRCH0 (Search First Zero bit position distance From MSB)
This is a "0" search instruction used for bit searching. Takes a comparison of word
data in Ri from MSB (bit31) and "0", stores the distance in Ri from the first "0" that is
found and bit MSB (bit31).
● Assembler Format
SRCH0 Ri
● Operation
search_zero(Ri) → Ri
If "0" bit is not found (in case all word data of Ri is "1" bit), 32 is stored in Ri. In case MSB(bit31) is "0",
zero is stored in Ri and 31 is stored in Ri when LSB (bit0) is "0" and other bits are "1".
The Ri bit pattern before execution of instruction its relation with the values stored in Ri is shown in Table
7.146-1.
Table 7.146-1 Input pattern of SRCH0 instruction and its results
Input (Ri bit pattern before execution of instruction)
11111111_11111111_11111111_11111111
0xxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
10xxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
110xxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
1110xxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
...
11111111_11111111_11111111_11110xxx
11111111_11111111_11111111_111110xx
11111111_11111111_11111111_1111110x
11111111_11111111_11111111_11111110
Result
32
0
1
2
3
28
29
30
31
Remarks
Not found
MSB(bit31) was "1"
Only LSB(bit0) was "0"
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
373
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.146
FR81 Family
● Classification
Bit Search instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
0
LSB
0
1
0
1
1
1
1
1
0
0
Ri
● Execution Example
SRCH0 R2
R2
; Bit pattern of the instruction: 1001 0111 1100 0010
F C 3 4 5 6 7 8
R2
0 0 0 0 0 0 0 6
Before execution
374
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.147
FR81 Family
7.147
SRCH1 (Search First One bit position distance From MSB)
This is a "1" search instruction used for bit searching. Takes a comparison of word
data in Ri from MSB (bit31) and "1", stores the distance in Ri from the first "1" that is
found and bit MSB(bit31).
● Assembler Format
SRCH1 Ri
● Operation
search_one(Ri) → Ri
If "1" bit is not found (in case all word data of Ri is "0" bit), 32 is stored in Ri. In case MSB(bit31) is "1",
zero is stored in Ri and 31 is stored in Ri when LSB (bit0) is "1" and other bits are "0".
The Ri bit pattern before execution of instruction its relation with the values stored in Ri is shown in Table
7.147-1.
Table 7.147-1 Input bit pattern of SRCH1 instruction and its results
Input (Ri bit pattern before execution of the instruction)
00000000_00000000_00000000_00000000
1xxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
01xxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
001xxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
0001xxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
...
00000000_00000000_00000000_00001xxx
00000000_00000000_00000000_000001xx
00000000_00000000_00000000_0000001x
00000000_00000000_00000000_00000001
Results
32
0
1
2
3
28
29
30
31
Remarks
Not found
MSB(bit31) was "0"
Only LSB(bit0) was "0"
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
375
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.147
FR81 Family
● Classification
Bit Search instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
LSB
0
0
1
0
1
1
1
1
1
0
1
Ri
● Execution Example
SRCH0 R2
R2
; Bit pattern of the instruction: 1001 0111 1101 0010
0 0 3 4 5 6 7 8
R2
0 0 0 0 0 0 0 A
Before execution
376
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.148
FR81 Family
7.148
SRCHC (Search First bit value change position distance
From MSB)
This is a Change point search instruction used for bit searching. Takes a comparison
of data in Ri with MSB (bit31), stores in Ri the distance from the first varying bit value
that is found and bit MSB (bit31).
● Assembler Format
SRCHC Ri
● Operation
search_change(Ri) → Ri
If the values of all bits are the same, 32 is stored in Ri. In case the values of MSB (bit31) the adjacent bit30
is different, 1 is stored in Ri and 31 is stored in Ri when only the value of LSB (bit0) is different.
The Ri bit pattern before execution of instruction its relation with the values stored in Ri is shown in Table
7.148-1.
Table 7.148-1 Input bit pattern of SRCHC instruction and its results
Input (Ri bit pattern before execution of instruction)
00000000_00000000_00000000_00000000
11111111_11111111_11111111_11111111
01xxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
10xxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
001xxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
110xxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
0001xxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
1110xxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
00001xxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
11110xxx_xxxxxxxx_xxxxxxxx_xxxxxxxx
Results
Remarks
32
Not found
1
Difference between bit value of
MSB(bit31) and bit30
2
3
4
...
00000000_00000000_00000000_00001xxx
11111111_11111111_11111111_11110xxx
00000000_00000000_00000000_000001xx
11111111_11111111_11111111_111110xx
00000000_00000000_00000000_0000001x
11111111_11111111_11111111_1111110x
00000000_00000000_00000000_00000001
11111111_11111111_11111111_11111110
* The value of result (Ri) can not become 0.
CM71-00105-1E
28
29
30
31
Bit value of only LSB(bit0) is
different
FUJITSU MICROELECTRONICS LIMITED
377
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.148
FR81 Family
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Bit Search instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
LSB
0
0
1
0
1
1
1
1
1
1
0
Ri
● Execution Example
SRCHC R2
R2
; Bit pattern of the instruction: 1001 0111 1110 0010
F F 3 4 5 6 7 8
R2
0 0 0 0 0 0 0 8
Before execution
378
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.149
FR81 Family
7.149
ST (Store Word Data in Register to Memory)
Loads word data in Ri to memory address Rj.
● Assembler Format
ST Ri,@Rj
● Operation
Ri → (Rj)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
0
1
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
379
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.149
FR81 Family
● Execution Example
ST R3,@R2
; Bit pattern of the instruction: 0001 0100 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
8 7 6 5 4 3 2 1
R3
8 7 6 5 4 3 2 1
Memory
12345678
x x x x x x x x
Memory
12345678
Before execution
380
FUJITSU MICROELECTRONICS LIMITED
8 7 6 5 4 3 2 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.150
FR81 Family
7.150
ST (Store Word Data in Register to Memory)
Loads the word data in Ri to memory address R13 + Rj.
● Assembler Format
ST Ri,@(R13, Rj)
● Operation
Ri → (R13+Rj)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
0
0
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
381
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.150
FR81 Family
● Execution Example
ST R3,@(R13, R2)
; Bit pattern of the instruction: 0001 0000 0010 0011
R2
0 0 0 0 0 0 0 4
R2
0 0 0 0 0 0 0 4
R3
8 7 6 5 4 3 2 1
R3
8 7 6 5 4 3 2 1
R13
1 2 3 4 5 6 7 8
R13
1 2 3 4 5 6 7 8
12345678
1234567C
Memory
x x x x x x x x
12345678
Memory
1234567C
8 7 6 5 4 3 2 1
Before execution
382
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.151
FR81 Family
7.151
ST (Store Word Data in Register to Memory)
Loads the word data in Ri to memory address R14 + o8 × 4. The value o8 is a signed
calculation. The value of o8 × 4 is specified in disp10.
● Assembler Format
ST Ri,@(R14, disp10)
● Operation
Ri → (R14+o8 × 4)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
1
1
o8
FUJITSU MICROELECTRONICS LIMITED
Ri
383
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.151
FR81 Family
● Execution Example
ST R3,@(R14,4)
; Bit pattern of the instruction: 0011 0000 0001 0011
R3
8 7 6 5 4 3 2 1
R3
8 7 6 5 4 3 2 1
R14
1 2 3 4 5 6 7 8
R14
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
1234567C
x x x x x x x x
1234567C
8 7 6 5 4 3 2 1
Before execution
384
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.152
FR81 Family
7.152
ST (Store Word Data in Register to Memory)
Loads the word data in Ri to memory address R15 + u4 × 4. The value u4 is an unsigned
calculation. The value of u4 × 4 is specified in udisp6.
● Assembler Format
ST Ri,@(R15, udisp6)
● Operation
Ri → (R15+u4 × 4)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
0
0
1
1
u4
FUJITSU MICROELECTRONICS LIMITED
Ri
385
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.152
FR81 Family
● Execution Example
ST R3,@(R15,4)
; Bit pattern of the instruction: 0001 0011 0001 0011
R3
8 7 6 5 4 3 2 1
R3
8 7 6 5 4 3 2 1
R15
1 2 3 4 5 6 7 8
R15
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
1234567C
x x x x x x x x
1234567C
8 7 6 5 4 3 2 1
Before execution
386
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.153
FR81 Family
7.153
ST (Store Word Data in Register to Memory)
Subtracts 4 from the value of R15, stores the word data in Ri to the memory address
indicated by the new value of R15. If R15 is given as the parameter Ri, the data transfer
will use the value of R15 before subtraction.
● Assembler Format
ST Ri,@-R15
● Operation
R15 - 4 → R15
Ri → (R15)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
0
1
1
1
0
0
0
0
FUJITSU MICROELECTRONICS LIMITED
Ri
387
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.153
FR81 Family
● Execution Example
ST R3,@-R15
; Bit pattern of the instruction: 0001 0111 0000 0011
R3
8 7 6 5 4 3 2 1
R3
8 7 6 5 4 3 2 1
R15
1 2 3 4 5 6 7 8
R15
1 2 3 4 5 6 7 4
Memory
12345674
x x x x x x x x
12345678
Memory
12345674
12345678
Before execution
388
8 7 6 5 4 3 2 1
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.154
FR81 Family
7.154
ST (Store Word Data in Register to Memory)
Loads the word data in Ri to memory address BP+u16 × 4. Unsigned u16 value is
calculated. The value in u16 × 4 is specified as udisp18.
● Assembler Format
ST Ri, @(BP, udisp18)
● Operation
Ri → (BP+u16 × 4)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
0
1
0
0
Ri
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
389
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.155
7.155
FR81 Family
ST (Store Word Data in Register to Memory)
Subtracts 4 from the value R15, stores the word data in dedicated register Rs to the
memory address indicated by the new value of R15.
● Assembler Format
ST Rs,@-R15
● Operation
R15 - 4 → R15
Rs → (R15)
If the number of a non-existent dedicated register is specified in parameter Rs, the read value will be
ignored.
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
390
LSB
0
0
1
0
1
1
1
1
0
0
0
FUJITSU MICROELECTRONICS LIMITED
Rs
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.155
FR81 Family
● Execution Example
ST MDH,@-R15
; Bit pattern of the instruction: 0001 0111 1000 0100
R15
1 2 3 4 5 6 7 8
R15
1 2 3 4 5 6 7 4
MDH
8 7 6 5 4 3 2 1
MDH
8 7 6 5 4 3 2 1
12345670
Memory
12345670
Memory
12345674
x x x x x x x x
12345674
8 7 6 5 4 3 2 1
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
391
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.156
7.156
FR81 Family
ST (Store Word Data in Program Status Register to
Memory)
Subtracts 4 from the value of R15, stores the word data in the program status (PS) to
the memory address indicated by the new value of R15.
● Assembler Format
ST PS,@-R15
● Operation
R15 - 4 → R15
PS → (R15)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
392
LSB
0
0
1
0
1
1
1
1
0
0
1
0
FUJITSU MICROELECTRONICS LIMITED
0
0
0
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.156
FR81 Family
● Execution Example
ST PS,@-R15
; Bit pattern of the instruction: 0001 0111 1001 0000
R15
1 2 3 4 5 6 7 8
R15
1 2 3 4 5 6 7 4
PS
F F F 8 F 8 C 0
PS
F F F 8 F 8 C 0
12345670
Memory
12345670
12345674
x x x x x x x x
12345674
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
Memory
F F F 8 F 8 C 0
After execution
393
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.157
7.157
FR81 Family
STB (Store Byte Data in Register to Memory)
Stores the byte data in Ri to memory address Rj.
● Assembler Format
STB Ri,@Rj
● Operation
Ri → (Rj)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
394
LSB
0
0
1
0
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.157
FR81 Family
● Execution Example
STB R3,@R2
; Bit pattern of the instruction: 0001 0110 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
0 0 0 0 0 0 2 1
R3
0 0 0 0 0 0 2 1
Memory
12345678
x x
Memory
12345678
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
2 1
After execution
395
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.158
7.158
FR81 Family
STB (Store Byte Data in Register to Memory)
Stores the byte data in Ri to memory address R13 + Rj.
● Assembler Format
STB Ri,@(R13, Rj)
● Operation
Ri → (R13+Rj)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
396
0
LSB
0
1
0
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.158
FR81 Family
● Execution Example
STB R3,@(R13, R2)
; Bit pattern of the instruction: 0001 0010 0010 0011
R2
0 0 0 0 0 0 0 4
R2
0 0 0 0 0 0 0 4
R3
0 0 0 0 0 0 2 1
R3
0 0 0 0 0 0 2 1
R13
1 2 3 4 5 6 7 8
R13
1 2 3 4 5 6 7 8
1234567B
Memory
1234567B
Memory
1234567C
x x
1234567C
2 1
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
397
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.159
7.159
FR81 Family
STB (Store Byte Data in Register to Memory)
Stores the byte data in Ri to memory address R14 + o8. The value o8 is a signed
calculation. The value of o8 is specified in disp8.
● Assembler Format
STB Ri,@(R14, disp8)
● Operation
Ri → (R14+o8)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
398
LSB
1
1
1
o8
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.159
FR81 Family
● Execution Example
STB R3,@(R14,1)
; Bit pattern of the instruction: 0111 0000 0001 0011
R3
0 0 0 0 0 0 2 1
R3
0 0 0 0 0 0 2 1
R14
1 2 3 4 5 6 7 8
R14
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
12345679
x x
12345679
2 1
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
399
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.160
7.160
FR81 Family
STB (Store Byte Data in Register to Memory)
Loads the byte data in Ri to memory address BP+u16. Unsigned u16 value is calculated.
The value in u16 is specified as udisp16.
● Assembler Format
STB Ri, @(BP, udisp16)
● Operation
Ri → (BP+u16)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
0
0
1
1
0
Ri
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected.
400
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.161
FR81 Family
7.161
STH (Store Halfword Data in Register to Memory)
Stores the half-word data in Ri to memory address Rj.
● Assembler Format
STH Ri,@Rj
● Operation
Ri → (Rj)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
0
1
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
401
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.161
FR81 Family
● Execution Example
STH R3,@R2
; Bit pattern of the instruction: 0001 0101 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
0 0 0 0 4 3 2 1
R3
0 0 0 0 4 3 2 1
Memory
12345678
x x x x
Memory
12345678
Before execution
402
FUJITSU MICROELECTRONICS LIMITED
4 3 2 1
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.162
FR81 Family
7.162
STH (Store Halfword Data in Register to Memory)
Stores the half-word data in Ri to memory address R13 + Rj.
● Assembler Format
STH Ri,@(R13, Rj)
● Operation
Ri → (R13+Rj)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
0
0
1
0
0
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
403
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.162
FR81 Family
● Execution Example
STH R3,@(R13, R2)
; Bit pattern of the instruction: 0001 0001 0010 0011
R2
0 0 0 0 0 0 0 4
R2
0 0 0 0 0 0 0 4
R3
0 0 0 0 4 3 2 1
R3
0 0 0 0 4 3 2 1
R13
1 2 3 4 5 6 7 8
R13
1 2 3 4 5 6 7 8
1234567A
Memory
1234567A
Memory
1234567C
x x x x
1234567C
4 3 2 1
Before execution
404
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.163
FR81 Family
7.163
STH (Store Halfword Data in Register to Memory)
Stores the half-word data in Ri to memory address R14 + o8 × 2. The value of o8 × 2 is
specified in disp9.
● Assembler Format
STH Ri,@(R14, disp9)
● Operation
Ri → (R14+o8×2)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, Instruction with delay slot
● Execution Cycles
a cycle
● Instruction Format
MSB
0
CM71-00105-1E
LSB
1
0
1
o8
FUJITSU MICROELECTRONICS LIMITED
Ri
405
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.163
FR81 Family
● Execution Example
STH R3,@(R14,2)
; Bit pattern of the instruction: 0101 0000 0001 0011
R3
0 0 0 0 4 3 2 1
R3
0 0 0 0 4 3 2 1
R14
1 2 3 4 5 6 7 8
R14
1 2 3 4 5 6 7 8
12345678
Memory
12345678
Memory
1234567A
x x x x
1234567A
4 3 2 1
Before execution
406
FUJITSU MICROELECTRONICS LIMITED
After execution
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.164
FR81 Family
7.164
STH (Store Halfword Data in Register to Memory)
Loads the half word data in Ri to memory address BP+u16 × 2. Unsigned u16 value is
calculated. The value in u16 × 2 is specified as udisp17.
● Assembler Format
STB Ri, @(BP, udisp17)
● Operation
Ri → (BP+u16 × 2)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Memory Store instruction, FR81 family
● Execution Cycles
a cycle
● Instruction Format
MSB
(n+0)
0
LSB
0
0
1
(n+2)
0
1
1
1
0
1
0
1
Ri
u16
● EIT Occurrence and Detection
A data access protection violation exception, an invalid instruction exception (data access error), or an
interrupt is detected.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
407
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.165
7.165
FR81 Family
STILM (Set Immediate Data to Interrupt Level Mask
Register)
Transfers the immediate data to the interrupt level mask register (ILM) in the program
status (PS).
● Assembler Format
STILM #u8
● Operation
if (ILM < 16)
u8 → ILM
else if (u8 < 16)
u8+16 → ILM
else
u8 → ILM
This is a privilege instruction, which is only available in privilege mode. If this instruction is executed in
user mode, it causes an invalid instruction exception (privilege instruction execution).
Only the lower 5 bits (bit4 to bit0) of the immediate data are valid. At the time this instruction is executed,
if the value of the interrupt level mask register (ILM) is in the range 16 to 31, only new ILM settings
between 16 and 31 can be entered. If the value u8 is in the range 0 to 15, the value 16 will be added to that
data before being transferred to the ILM. If the original ILM value is in the range 0 to 15, then any value
between 0 and 31 can be transferred to the ILM.
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Instruction with delay slot, FR81 updating
408
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.165
FR81 Family
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
LSB
0
0
0
0
1
1
1
u8
● EIT Occurrence and Detection
User mode:
Used to generate an invalid instruction exception (privilege instruction execution).
Privilege mode:
An interrupt is detected (ILM after instruction execution is used).
● Execution Example
STILM #14H
ILM
; Bit pattern of the instruction: 1000 0111 0001 0100
1 1 1 1 1
ILM
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
1 0 1 0 0
After execution
409
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.166
7.166
FR81 Family
STM0 (Store Multiple Registers)
The STM0 instruction stores the word data from multiple registers specified in reglist
(from R0 to R7) and repeats the operation of storing the result in address R15 after
subtracting the value of 4 from R15. Registers are processed in ascending order.
● Assembler Format
STM0 (reglist)
Registers from R0 to R7 are separated by "," , arranged and specified in reglist.
● Operation
The following operations are repeated according to the number of registers in reglist.
R15-4 → R15
Ri → (R15)
The bit values and register numbers for reglist (STM0) are shown in Table 7.166-1.
Table 7.166-1 Bit values and register numbers for reglist (STM0)
Bit
7
6
5
4
3
2
1
0
Register
R0
R1
R2
R3
R4
R5
R6
R7
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
410
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.166
FR81 Family
● Classification
Other instructions
● Execution Cycles
If "n" is the number of registers specified in the parameter reglist, the execution cycles required are as
follows.
When n=0: 1 cycle
Otherwise: a × n cycles
● Instruction Format
MSB
1
LSB
0
0
0
1
1
1
0
reglist
● Execution Example
STM0 (R2, R3)
; Bit pattern of the instruction: 1000 1110 0011 0000
R2
9 0 B C 9 3 6 3
R2
9 0 B C 9 3 6 3
R3
8 3 4 3 8 3 4 A
R3
8 3 4 3 8 3 4 A
R15
7 F F F F F C 8
R15
7 F F F F F C 0
Memory
Memory
7FFFFFC0
x x x x x x x x
7FFFFFC0
9 0 B C 9 3 6 3
7FFFFFC4
x x x x x x x x
7FFFFFC4
8 3 4 3 8 3 4 A
7FFFFFC8
x x x x x x x x
7FFFFFC8
x x x x x x x x
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
411
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.167
7.167
FR81 Family
STM1 (Store Multiple Registers)
The STM1 instruction stores the word data from multiple registers specified in reglist
(from R8 to R15) and repeats the operation of storing the result in address R15 after
subtracting the value of 4 from R15. Registers are processed in ascending order. If R15
is specified in the parameter reglist, the contents of R15 retained before the instruction
is executed will be written to memory.
● Assembler Format
STM1 (reglist)
Registers from R0 to R7 are separated by "," , arranged and specified.in reglist.
● Operation
The following operations are repeated according to the number of registers in reglist.
R15-4 → R15
Ri → (R15)
The bit values and register numbers for reglist (STM1) are shown in Table 7.167-1.
Table 7.167-1 Bit values and register numbers for reglist (STM1)
Bit
7
6
5
4
3
2
1
0
Register
R8
R9
R10
R11
R12
R13
R14
R15
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
412
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.167
FR81 Family
● Classification
Other instructions
● Execution Cycles
If "n" is the number of registers specified in the parameter reglist, the execution cycles required are as
follows.
When n=0: 1 cycle
Otherwise: a × n cycles
● Instruction Format
MSB
1
LSB
0
0
0
1
1
1
1
reglist
● Execution Example
STM1 (R10, R11, R12)
; Bit pattern of the instruction: 1000 1111 0011 1000
R10
8 F E 3 9 E 8 A
R10
8 F E 3 9 E 8 A
R11
9 0 B C 9 3 6 3
R11
9 0 B C 9 3 6 3
R12
8 D F 7 8 8 E 4
R12
8 D F 7 8 8 E 4
R15
7 F F F F FC C
R15
7 F F F F F C 0
Memory
Memory
7FFFFFC0
x x x x x x x x
7FFFFFC0
8 F E 3 9 E 8 A
7FFFFFC4
x x x x x x x x
7FFFFFC4
9 0 B C 9 3 6 3
7FFFFFC8
x x x x x x x x
7FFFFFC8
8 D F 7 8 8 E 4
7FFFFFCC
x x x x x x x x
7FFFFFCC
x x x x x x x x
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
After execution
413
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.168
7.168
FR81 Family
SUB (Subtract Word Data in Source Register from
Destination Register)
Subtracts the word data in Rj from the word data in Ri, stores the results to Ri.
● Assembler Format
SUB Rj, Ri
● Operation
Ri - Rj → Ri
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is zero, cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when a borrow has occurred as a result of the operation, cleared otherwise.
● Classification
Add/Subtract instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
414
LSB
0
1
0
1
1
0
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.168
FR81 Family
● Execution Example
SUB R2, R3
; Bit pattern of the instruction: 1010 1100 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
9 9 9 9 9 9 9 9
R3
8 7 6 5 4 3 2 1
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
1 0 0 0
After execution
415
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.169
7.169
FR81 Family
SUBC (Subtract Word Data in Source Register and Carry
bit from Destination Register)
Subtracts word data in Rj and carry flag (C) from Ri, stores the results to Ri.
● Assembler Format
SUBC Rj, Ri
● Operation
Ri - Rj - C → Ri
● Flag Change
N
C
Z
C
V
C
C
C
N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".
Z: Set when the operation result is "0", cleared otherwise.
V: Set when an overflow has occurred as a result of the operation, cleared otherwise.
C: Set when an borrow has occurred as a result of the operation, cleared otherwise.
● Classification
Add/Subtract instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
416
LSB
0
1
0
1
1
0
1
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.169
FR81 Family
● Execution Example
SUBC R2, R3
; Bit pattern of the instruction: 1010 1101 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
9 9 9 9 9 9 9 9
R3
8 7 6 5 4 3 2 0
N Z V C
CCR
0 0 0 1
N Z V C
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
1 0 0 0
After execution
417
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.170
7.170
FR81 Family
SUBN (Subtract Word Data in Source Register from
Destination Register)
Subtracts the word data in Rj from the word data in Ri, stores results to Ri without
changing the flag settings.
● Assembler Format
SUBN Rj, Ri
● Operation
Ri - Rj → Ri
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Add/Subtract instruction, Instruction with delay slot
● Execution Cycles
1 cycle
● Instruction Format
MSB
1
418
LSB
0
1
0
1
1
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.170
FR81 Family
● Execution Example
SUBN R2, R3
; Bit pattern of the instruction: 1010 1110 0010 0011
R2
1 2 3 4 5 6 7 8
R2
1 2 3 4 5 6 7 8
R3
9 9 9 9 9 9 9 9
R3
8 7 6 5 4 3 2 1
N Z V C
CCR
0 0 0 0
N Z V C
CCR
Before execution
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
0 0 0 0
After execution
419
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.171
7.171
FR81 Family
XCHB (Exchange Byte Data)
Exchanges the contents of the byte address indicated by Rj and those indicated by Ri.
The lower 8 bits of data originally at Ri are transferred to the byte address indicated by
Rj and the data originally at Rj is extended with zeros and transferred to Ri.
● Assembler Format
XCHB @Rj, Ri
● Operation
Ri → TEMP
extu((Rj)) → Ri
TEMP → (Rj)
● Flag Change
N
-
Z
-
V
-
C
-
N, Z, V, C: Unchanged.
● Classification
Other instructions, Read/Modify/Write type instruction
● Execution Cycles
2a cycles
● Instruction Format
MSB
1
420
0
LSB
0
0
1
0
1
0
Rj
FUJITSU MICROELECTRONICS LIMITED
Ri
CM71-00105-1E
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.171
FR81 Family
● Execution Example
XCHB @R1, R0
; Bit pattern of the instruction: 1000 1010 0001 0000
R0
0 0 0 0 0 0 7 8
R0
0 0 0 0 0 0 F D
R1
8 0 0 0 0 0 0 2
R1
8 0 0 0 0 0 0 2
Memory
80000001
x x
80000001
x x
80000002
F D
80000002
7 8
80000003
x x
80000003
x x
Before execution
CM71-00105-1E
Memory
FUJITSU MICROELECTRONICS LIMITED
After execution
421
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.171
422
FUJITSU MICROELECTRONICS LIMITED
FR81 Family
CM71-00105-1E
APPENDIX
It includes Instruction Lists and Instruction Maps of
FR81 Family.
APPENDIX A Instruction Lists
APPENDIX B Instruction Maps
APPENDIX C Supplemental Explanation about FPU Exception
Processing
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
423
APPENDIX
APPENDIX A
Instruction Lists
APPENDIX A
FR81 Family
Instruction Lists
It includes Instruction Lists of FR81 Family CPU.
A.1 Meaning of Symbols
A.2 Instruction Lists
A.3 List of Instructions that can be positioned in the Delay Slot
424
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
A.1
APPENDIX A
APPENDIX
Instruction Lists
Meaning of Symbols
This section describes the meaning of symbols used in the Instruction Lists and
Detailed Execution Instructions has been explained.
A.1.1
Mnemonic and Operation Columns
These are the symbols used in Mnemonic and Operation columns of Instruction Lists as well as assembler
format of Detailed Execution Instructions and operation.
i4
It is 4-bit immediate data. 0(0H) to 15(FH) in case of zero extension and -16(0H) to -1(FH) in case of
minus extension can be specified.
Table A.1-1 zero extension and minus extension values of 4-bit immediate data
Bit Pattern
Specified Value
Zero Extension
Minus Extension
0000B
0001B
0010B
0
1
2
1101B
1110B
1111B
13
14
15
-16
-15
-14
...
-3
-2
-1
i8
8-bit immediate data, Range 0 (00H) to 255 (FFH)
i20
20-bit immediate data, Range 0 (00000H) to 1,048,575 (FFFFFH)
i32
32-bit immediate data, Range 0 (0000 0000H) to 4,294,967,295 (FFFF FFFFH)
s8
signed 8-bit immediate data, range -128 (80H) to 127 (7FH)
s10
signed 10-bit immediate data, range-512 (200H) to 508 (1FCH) in multiples of 4
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
425
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
u4
unsigned 4-bit immediate data, range 0 (0H) to 15 (FH)
u8
unsigned 8-bit immediate data, range 0 (00H) to 255 (FFH)
u10
unsigned 10-bit immediate data, range 0 (000H) to 1020 (3FCH) in multiples of 4
udisp6
unsigned 6-bit address values, range 0 (00H) to 60 (3CH) in multiples of 4
udisp16
unsigned 16-bit address values, range 0 (0000H) to 65535 (FFFFH), range 0 (0000H) to 65532 (FFFCH)
in multiples of 4
udisp17
unsigned 17-bit address values, range 0 (00000H) to 131070 (1FFFEH) in multiples of 2
udisp18
unsigned 18-bit address values, range 0 (00000H) to 262140 (3FFFCH) in multiples of 4
disp8
signed 6-bit address values, range -128(80H) to 127(7FH)
disp9
signed 9-bit address values, range -256(100H) to 254(0FEH) in multiples of 2
disp10
signed 10-bit address values, range -512(200H) to 508(1FCH) in multiples of 4
disp16
signed 16-bit address values, range -32768 (8000H) to 32764 (FFFCH)
dir8
Unsigned 8-bit address values, range 0 (00H) to255 (FFH)
426
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
dir9
unsigned 9-bit address values, range 0 (000H) to 510 (1FEH) in multiples of 2
dir10
unsigned 10-bit address values, range 0 (000H) to 1020 (3FCH)in multiples of 4
label9
branch address, range 256 (100H) to 254 (0FEH) in multiples of 2 for the value of Program Counter
(PC) +2
label12
branch address, range -2048 (800H) to 2046 (7FEH) in multiples of 2 for the value of Program Counter
(PC) +2
label17
branch address, range -65536 (10000H) to 65534 (0FFFEH) in multiples of 2 for the value of Program
Counter (PC) +2
label21
branch address, range -1048576 (100000H) to 1048574(0FFFFEH) in multiples of 2 for the value of
Program Counter (PC) +2
rel8
signed 8-bit relative address. Result which is double the value of rel8 for the value of Program Counter
(PC) +2 will denote the Branch Destination Address. Range 128 (80H) to 127 (7FH)
rel11
signed 11-bit relative address. Result which is double the value of rel11 for the value of Program
Counter (PC) +2 will denote the Branch Destination Address. Range -1024 (400H) to 1023 (3FFH)
rel16
signed 16-bit relative address. Result which is double the value of rel16 for the value of Program
Counter (PC) +2 will denote the Branch Destination Address. Range -32768 (8000H) to 32767 (7FFFH)
rel20
signed 20-bit relative address. Result which is double the value of rel20 for the value of Program
Counter (PC) +2 will denote the Branch Destination Address. Range -524288 (80000H) to 524287
(7FFFFH)
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
427
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
Ri, Rj
Indicates General-purpose Registers (R0 to R15)
Table A.1-2 Specification of General-purpose register based on Rj/Ri
Ri / Rj
0000
0001
0010
0011
0100
0101
0110
0111
Register
R0
R1
R2
R3
R4
R5
R6
R7
Ri / Rj
1000
1001
1010
1011
1100
1101
1110
1111
Register
R8
R9
R10
R11
R12
R13
R14
R15
Rs
Indicates Dedicated Registers (TBR, RP, USP, SSP, MDH, MDL, BP, FCR, ESR, DBR)
Table A.1-3 Specification of Dedicated Register based on Rs
Rs
0000
0001
0010
0011
0100
0101
0110
0111
428
Register
Table Base Register (TBR)
Return Pointer (RP)
System Stack Pointer (SSP)
User Stack Pointer (USP)
Multiplication/Division Register (MDH)
Multiplication/Division Register (MDL)
Base pointer (BP)
FPU control register (FCR)
Rs
1000
1001
1010
1011
1100
1101
1110
1111
FUJITSU MICROELECTRONICS LIMITED
Register
Exception status register (ESR)
Reserved (Disabled)
Debug register (DBR)
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
FRi, FRj, FRk
Indicates Floating Point Registers (FR0 to FR15)
Table A.1-4 Floating Point Register based on FRi/FRj/FRk
FRi/FRj/FRk
0000
0001
0010
0011
0100
0101
0110
0111
Register
FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FRi/FRj/FRk
1000
1001
1010
1011
1100
1101
1110
1111
Register
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15
(reglist)
Indicates 8-bit Register list. General purpose register corresponding to each bit value can be specified.
Table A.1-5 Correspondence between reglist of LDM0,LDM1 Instruction and
General purpose Register
LDM0 Instruction
reglist
Register
bit0
R0
bit1
R1
bit2
R2
bit3
R3
bit4
R4
bit5
R5
bit6
R6
bit7
R7
LDM1Instruction
reglist
Register
bit0
R8
bit1
R9
bit2
R10
bit3
R11
bit4
R12
bit5
R13
bit6
R14
bit7
R15
Table A.1-6 Correspondence between reglist of STM0,STM1 Instruction and
General purpose Register
STM0 Instruction
reglist
Register
bit0
R7
bit1
R6
bit2
R5
bit3
R4
bit4
R3
bit5
R2
bit6
R1
bit7
R0
CM71-00105-1E
STM1 Instruction
reglist
Register
bit0
R15
bit1
R14
bit2
R13
bit3
R12
bit4
R11
bit5
R10
bit6
R9
bit7
R8
FUJITSU MICROELECTRONICS LIMITED
429
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
(frlist)
Indicates 16-bit Register list. Floating Point Registers (FR0 to FR15) corresponding to each bit value
can be specified.
Table A.1-7 Correspondence between frlist bit of FLDM Instruction and Floating Point
Registers
frlist
bit0
bit1
bit2
bit3
bit4
bit5
bit6
bit7
Register
FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
frlist
bit8
bit9
bit10
bit11
bit12
bit13
bit14
bit15
Register
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15
Table A.1-8 Correspondence between frlist bit of FSTM Instruction and Floating Point
Registers
frlist
bit0
bit1
bit2
bit3
bit4
bit5
bit6
bit7
A.1.2
Register
FR15
FR14
FR13
FR12
FR11
FR10
FR9
FR8
frlist
bit8
bit9
bit10
bit11
bit12
bit13
bit14
bit15
Register
FR7
FR6
FR5
FR4
FR3
FR2
FR1
FR0
Operation Column
These are symbols used in Operation Column of Instruction Lists and operation of Detailed Execution
Instructions.
extu()
indicates a zero extension operation, in which portion lacking higher bits is complimented by adding
"0" bit.
extn()
indicates a minus extension operation, in which portion lacking higher bits is complimented by adding
"1" bit.
exts()
indicates a sign extension operation, in which zero extension is performed for the data within () if MSB
430
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
is "0" and a minus extension is performed if MSB is "1".
&
Indicates logical calculation of each bit (AND)
|
Indicates the logical sum of each bit (OR)
^
Indicates Dedicated Logical Sum of each bit (EXOR)
()
Indicates specification of indirect address. It is address memory read/write value of the Register or
formula within ().
{}
Indicate the calculation priority. Since () is used for specifying indirect address, different bracket
namely { } is used.
if (Condition) then {formula} or if (condition) then {Formula 1} else {Formula 2}
Indicates the execution of conditions. If the conditions are established, formula after ‘then’ is executed
and when the conditions are not established, formula next to ‘else’ is executed. Formula can be
described variously using the { }.
[m:n]
Bits from m to n are extracted and targeted for operation.
A.1.3
Format Column
Symbols used in the Format Column of the Instruction Lists.
A to N
Indicates the Instruction Formats. A to N correspond to TYPE-A to TYPE-N.
A.1.4
OP Column
Hexadecimal value used in the Instruction Lists. They denote operation codes (OP). They branch into the
following depending on the Instruction Format.
TYPE-A, TYPE-C, TYPE-D, TYPE-G
2-digit hexadecimal value represents 8-bit OP code
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
431
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
TYPE-B
2-digit hexadecimal value represents 4 bits of OP code as higher 1 digit and "0" for lower digit.
TYPE-E, TYPE-H, TYPE-I, TYPE-J, TYPE-K
3-digit hexadecimal value represents 12-bit OP code.
TYPE-F
2-digit hexadecimal value represents 8 bits with 3-bit 000B added below 5-bit OP code.
TYPE-L, TYPE-N
4-digit hexadecimal value represents 16 bits with 2-bit 00B added below 14-bit OP code.
TYPE-M
4-digit hexadecimal value represents 16-bit OP code.
A.1.5
CYC Column
Symbols used in CYC Column of Instruction Lists and execution cycles of Detailed Execution Instructions.
Numerical values represent CPU clock cycles. Minimum of a to d is 1 cycle.
a
Memory access cycles. Cycles change depending on the access target. Minimum value is 1 cycle.
b
Memory access cycles. Cycles change depending on the access target. Minimum value is 1 cycle.
It is 1 cycle when uncompleted LD Instructions are less than 4 Instructions and Register which is the
object of load operation is not referred by the subsequent Instruction.
When uncompleted LD Instructions become more than 4 in number, an interlock will be applied from
that point till the completion of first LD Instruction and the number of execution cycles will be
increased by (Memory Access Cycles - Number of cycles from the issue of an Instruction till first LD
Instruction is completed).
When the Register which is target of load operation is referred to by the succeeding Instruction, an
interlock will be applied from that point and the number of execution cycles will increase by (Memory
Access Cycles - Number of cycle from the issue of an Instruction till an instruction refers to the targeted
Register + 1).
432
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
c
An interlock will be applied when the immediately next Instruction refers to Multiplication/Division
Register (MDH) and the number of execution cycles will be increased to 2. Otherwise it will be 1
cycle.
d
There will be 2 cycles when pre-fetching of Instruction in the Pre-fetch Buffer is not carried out.
Minimum value is 1 cycle.
A.1.6
FLAG Column
Symbols used for flag change in the Flag Column of Instruction Lists and Detailed Execution Instructions.
Represents change in Negative Flag (N), Zero Flag (Z), Overflow Flag (V), Carry Flag (C) of the Condition
Code Register (CCR).
C
Varies depending on the result of operation
No change
0
Value becomes "0"
1
Value becomes "1"
A.1.7
RMW Column
Symbols used in the RMW Column of Instruction Lists. It represents whether or not it is Read-ModifyWrite Instruction.
Instruction is not Read-Modify-Write Instruction.
❍
Instruction is Read-Modify-Write Instruction.
A.1.8
Reference Column
Represents the portion explained in “Chapter 7 Detailed Execution Instructions”
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
433
APPENDIX
APPENDIX A
A.2
Instruction Lists
FR81 Family
Instruction Lists
This part indicates Instruction Lists of FR81 Family CPU.
There are a total of 231 instructions in FR81 Family CPU. These instructions are divided into the following
21 categories.
434
•
Add/Subtract Instructions (10Instructions)
•
Compare Calculation Instructions (3 Instructions)
•
Logical Calculation Instructions (12 Instructions)
•
Bit Operation Instructions (8 Instructions)
•
Multiply/ Divide Instructions (10 Instructions)
•
Shift Instructions (9 Instructions)
•
Immediate Data Transfer Instructions (3 Instructions)
•
Memory Load Instructions (16 Instructions)
•
Memory Store Instructions (16 Instructions)
•
Inter-Register Transfer Instructions/Dedicated Register Transfer Instructions (5 Instructions)
•
Non-delayed Branching Instructions (24 Instructions)
•
Delayed Branching Instructions (21 Instructions)
•
Direct Addressing Instructions (14 Instructions)
•
Bit Search Instructions (3 Instructions)
•
Other Instructions (16 Instructions)
•
FPU Memory Load Instructions (7 Instructions)
•
FPU Memory Store Instructions (7 Instructions)
•
FPU Single-Precision Floating Point Calculation Instruction (12 Instructions)
•
FPU Inter-Register Transfer Instruction (3 Instructions)
•
FPU Branching Instruction without Delay (16 Instructions)
•
FPU Branching Instruction with Delay (16 Instructions)
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
Table A.2-1 Add/Subtract Instructions (10Instructions)
Mnemonic
ADD Rj, Ri
ADD #i4, Ri
ADD2 #i4, Ri
ADDC Rj, Ri
ADDN Rj, Ri
ADDN #i4, Ri
ADDN2 #i4, Ri
SUB Rj, Ri
SUBC Rj, Ri
SUBN Rj, Ri
Format
OP
CYC
FLAG
NZVC
RMW
A
C
C
A
A
C
C
A
A
A
A6
A4
A5
A7
A2
A0
A1
AC
AD
AE
1
1
1
1
1
1
1
1
1
1
CCCC
CCCC
CCCC
CCCC
---------CCCC
CCCC

-
Operation
Remarks
Ri+Rj → Ri
Ri+extu(i4) → Ri
Ri+extn(i4) → Ri
Ri+Rj+C → Ri
Ri+Rj → Ri
Ri+extu(i4) → Ri
Ri+extn(i4) → Ri
Ri-Rj → Ri
Ri-Rj-C →Ri
Ri-Rj → Ri
i4 is zero extension
i4 is Minus extension
Add with carry
i4 is Zero extension
i4 is Minus extension
Add with carry
Reference
7.2
7.1
7.3
7.4
7.6
7.5
7.7
7.129
7.130
7.131
Table A.2-2 Compare Calculation Instructions (3 Instructions)
Mnemonic
CMP Rj, Ri
CMP #i4, Ri
CMP2 #i4, Ri
Format
OP
CYC
FLAG
NZVC
RMW
A
C
C
AA
A8
A9
1
1
1
CCCC
CCCC
CCCC
-
Operation
Ri-Rj
Ri-extu(i4)
Ri-extn(i4)
Remarks
i4 is Zero extension
i4 is Minus extension
Reference
7.32
7.31
7.33
Table A.2-3 Logical Calculation Instructions (12 Instructions)
Mnemonic
AND Rj, Ri
AND Rj, @Ri
ANDH Rj, @Ri
ANDB Rj, @Ri
OR Rj, Ri
OR Rj, @Ri
ORH Rj, @Ri
ORB Rj, @Ri
EOR Rj, Ri
EOR Rj, @Ri
EORH Rj, @Ri
EORB Rj, @Ri
CM71-00105-1E
Format
OP
CYC
FLAG
NZVC
RMW
A
A
A
A
A
A
A
A
A
A
A
A
82
84
85
86
92
94
95
96
9A
9C
9D
9E
1
1+2a
1+2a
1+2a
1
1+2a
1+2a
1+2a
1
1+2a
1+2a
1+2a
CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC--
❍
❍
❍
❍
❍
❍
❍
❍
❍
Operation
Ri & Rj → Ri
(Ri) & Rj → (Ri)
(Ri) & Rj → (Ri)
(Ri) & Rj → (Ri)
Ri | Rj → Ri
(Ri) | Rj → (Ri)
(Ri) | Rj → (Ri)
(Ri) | Rj → (Ri)
Ri ^ Rj → Ri
(Ri) ^ Rj → (Ri)
(Ri) ^ Rj → (Ri)
(Ri) ^ Rj → (Ri)
FUJITSU MICROELECTRONICS LIMITED
Remarks
Word
Word
Half-Word
Byte
Word
Word
Half-Word
Byte
Word
Word
Half-Word
Byte
Reference
7.10
7.9
7.13
7.11
7.139
7.138
7.142
7.140
7.56
7.55
7.58
7.57
435
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
Table A.2-4 Bit Operation Instructions (8 Instructions)
Mnemonic
Format
OP
CYC
FLAG
NZVC
RMW
BANDL #u4, @Ri
C
80
1+2a

❍
(Ri) & {F0H+u4} → (Ri)
Lower 4- bit
7.18
BANDH #u4, @Ri
BORL #u4, @Ri
BORH #u4, @Ri
BEORL #u4, @Ri
BEORH #u4, @Ri
BTSTL #u4, @Ri
BTSTH #u4, @Ri
C
C
C
C
C
C
C
81
90
91
98
99
88
89
1+2a
1+2a
1+2a
1+2a
1+2a
2+a
2+a
---------------0C-CC--
❍
❍
❍
❍
❍
-
(Ri) & {u4<<4+0FH} → (Ri)
Higher 4 bit
Lower 4- bit
Higher 4 bit
Lower 4- bit
Higher 4 bit
Lower 4- bit
Higher 4 bit
7.17
7.24
7.23
7.22
7.21
7.26
7.25
Operation
(Ri) | u4 → (Ri)
(Ri) | {u4<<4} → (Ri)
(Ri) ^ u4 → (Ri)
(Ri) ^ {u4<<4} → (Ri)
(Ri) & u4
(Ri) & {u4<<4}
Remarks
Reference
Table A.2-5 Multiply/ Divide Instructions (10 Instructions)
Mnemonic
Format
OP
CYC
MUL Rj, Ri
MULU Rj, Ri
MULH Rj, Ri
MULUH Rj, Ri
DIV0S Ri
DIV0U Ri
DIV1 Ri
DIV2 Ri
DIV3
DIV4S
A
A
A
A
E
E
E
E
E’
E’
AF
AB
BF
BB
97-4
97-5
97-6
97-7
9F-6
9F-7
5
5
3
3
1
1
1
c
1
1
FLAG
NZVC
Operation
RMW
-
CCCCCCCC-CC--------C-C
-C-C

Ri
Ri
Ri
Ri
Remarks
× Rj → MDH,MDL
× Rj → MDH,MDL
× Rj → MDL
× Rj → MDL
Reference
32 × 32 bit = 64 bit
Unsigned
16 × 16 bit = 32 bit
Unsigned
In the Specified
Instruction Sequence
MDL ÷ Ri → MDL
MDL%Ri → MDH
Step Calculation
32 ÷ 32 bit = 32 bit
Operation
Remarks
7.133
7.135
7.134
7.136
7.34
7.35
7.36
7.37
7.38
7.39
Table A.2-6 Shift Instructions (9 Instructions)
Mnemonic
LSL Rj, Ri
LSL #u4, Ri
LSL2 #u4, Ri
LSR Rj, Ri
LSR #u4, Ri
LSR2 #u4, Ri
ASR Rj, Ri
ASR #u4, Ri
ASR2 #u4, Ri
Format
OP
CYC
FLAG
NZVC
RMW
A
C
C
A
C
C
A
C
C
B6
B4
B5
B2
B0
B1
BA
B8
B9
1
1
1
1
1
1
1
1
1
CC-C
CC-C
CC-C
CC-C
CC-C
CC-C
CC-C
CC-C
CC-C
-
Ri << Rj → Ri
Ri << u4 → Ri
Ri << {u4+16} → Ri
Ri >> Rj → Ri
Ri >> u4 → Ri
Ri >> {u4+16} → Ri
Ri >> Rj → Ri
Ri >> u4 → Ri
Ri >> {u4+16} → Ri
Reference
Logical Shift
Logical Shift
Arithmetic Shift
7.120
7.121
7.122
7.123
7.124
7.125
7.14
7.15
7.16
Table A.2-7 Immediate Data Transfer Instructions (3 Instructions)
Mnemonic
Format
OP
CYC
FLAG
NZVC
RMW
LDI:32 #i32, Ri
LDI:20 #i20, Ri
LDI:8 #i8, Ri
H
G
B
9F-8
9B
C0
d
d
1

-
436
Operation
i32 → Ri
extu(i20) → Ri
extu(i8) → Ri
Remarks
Reference
Higher 12-Bits are Zero extension
7.107
7.106
7.108
Higher 24-Bits are Zero extension
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
Table A.2-8 Memory Load Instructions (16 Instructions)
Format
OP
CYC
FLAG
NZVC
RMW
Operation
A
A
B
C
04
00
20
03
b
b
b
b

-
LD @R15+, Ri
E
07-0
b

-
LD @R15+, Rs
E
07-8
b

-
LD @R15+, PS
E
07-9
1+a
CCCC
-
LD @(BP, udisp18), Ri
LDUH @Rj, Ri
LDUH @(R13, Rj), Ri
LDUH @(R14, disp9), Ri
LDUH @(BP, udisp17), Ri
LDUB @Rj, Ri
LDUB @(R13, Rj), Ri
LDUB @(R14, disp8), Ri
LDUB @(BP, udisp16), Ri
J
A
A
B
J
A
A
B
J
07-4
05
01
40
07-5
06
02
60
07-6
a
b
b
b
a
b
b
b
a

-
(Rj) → Ri
(R13+Rj) → Ri
(R14+o8 × 4) → Ri
(R15+u4 × 4) → Ri
(R15) → Ri,
R15+4 → R15
(R15) → Rs,
R15+4 → R15
(R15) → PS,
R15+4 → R15
(BP+u16 × 4) → Ri
extu((Rj)) → Ri
extu((R13+Rj)) → Ri
extu((R14+o8 × 2)) → Rj
(BP+u16 × 2) → Ri
extu((Rj)) → Ri
extu((R13+Rj)) → Ri
extu((R14+o8)) → Ri
(BP+u16) → Ri
Mnemonic
LD
LD
LD
LD
@Rj, Ri
@(R13, Rj), Ri
@(R14, disp10), Ri
@(R15, udisp6), Ri
Remarks
Reference
7.98
7.99
7.100
7.101
Word
7.102
7.104
7.105
HalfWord
Zero extension
Byte
Zero extension
7.103
7.115
7.116
7.117
7.118
7.111
7.112
7.113
7.114
• Relation of field o8 in the Instruction Format TYPE-B to the values disp8 to disp10 in assembly notation
is as follows.
o8 = disp8
o8 = disp9 >> 1
o8 = disp10 >> 2
• Relation of field u4 in the Instruction Format TYPE-C to the values udisp6 in assembly notation is as
follows.
u4 = udisp6 >> 2
• Relation of field u16 in the Instruction Format TYPE-J to the values udisp16 to udisp18 in assembly
notation is as follows.
u16 = udisp16
u16 = udisp17 >> 1
u16 = udisp18 >> 2
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
437
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
Table A.2-9 Memory Store Instructions (16 Instructions)
Format
OP
CYC
FLAG
NZVC
RMW
A
A
B
C
14
10
30
13
a
a
a
a

-|
ST Ri, @-R15
E
17-0
a

-
ST Rs, @-R15
E
17-8
a

-
ST PS, @-R15
E
17-9
a

-
ST Ri, @(BP, udisp18)
STH Ri, @Rj
STH Ri, @(R13, Rj)
STH Ri, @(R14, disp9)
STH Ri, @(BP, udisp17)
STB Ri, @Rj
STB Ri, @(R13, Rj)
STB Ri, @(R14, disp8)
STB Ri, @(BP, udisp16)
J
A
A
B
J
A
A
B
J
17-4
15
11
50
17-5
16
12
70
17-6
a
a
a
a
a
a
a
a
a

-
Mnemonic
ST
ST
ST
ST
Ri, @Rj
Ri, @(R13, Rj)
Ri, @(R14, disp10)
Ri, @(R15, udisp6)
Operation
Ri → (Rj)
Ri → (R13+Rj)
Ri → (R14+o8 × 4)
Ri → (R15+u4 × 4)
R15-4 → R15,
Ri → (R15)
R15-4 → R15,
Rs → (R15)
R15-4 → R15,
PS → (R15)
Ri → (BP+u16 × 4)
Ri → (Rj)
Ri → (R13+Rj)
Ri → (R14+o8 × 2)
Ri → (BP+u16 × 2)
Ri → (Rj)
Ri → (R13+Rj)
Ri → (R14+o8)
Ri → (BP+u16)
Remarks
Reference
7.149
7.150
7.151
7.152
7.153
Word
7.155
7.156
Half-Word
Byte
7.154
7.161
7.162
7.163
7.164
7.157
7.158
7.159
7.160
• Relation of field o8 in the Instruction Format TYPE-B to the values disp8 to disp10 in assembly notation
is as follows.
o8 = disp8
o8 = disp9 >> 1
o8 = disp10 >> 2
• Relation of field u4 in the Instruction Format TYPE-C to the values udisp6 in assembly notation is as
follows.
u4 = udisp6 >> 2
• Relation of field u16 in the Instruction Format TYPE-J to the values udisp16 to udisp18 in assembly
notation is as follows.
u16 = udisp16
u16 = udisp17 >> 1
u16 = udisp18 >> 2
438
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
Table A.2-10 Inter-Register Transfer Instructions/Dedicated Register Transfer Instructions (5
Instructions)
Mnemonic
MOV
MOV
MOV
MOV
MOV
Format
OP
CYC
A
A
A
E
E
8B
B7
B3
17-1
07-1
1
1
1
1
c
Rj, Ri
Rs, Ri
Ri, Rs
PS, Ri
Ri, PS
CM71-00105-1E
FLAG
NZVC
------------CCCC
RMW
Operation
Remarks
Reference
-
Rj → Ri
Rs → Ri
Ri → Rs
PS → Ri
Ri → PS
Transfer between general-purpose Registers
Rs: Dedicated Register
Rs: Dedicated Register
PS: Program Status
PS: Program Status
7.126
7.127
7.129
7.128
7.130
FUJITSU MICROELECTRONICS LIMITED
439
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
Table A.2-11 Non-delayed Branching Instructions (24 Instructions)
Format
OP
CYC
FLAG
NZVC
RMW
JMP @Ri
E
97-0
2

-
CALL label12
F
D0
2

-
CALL @Ri
E
97-1
2

-
LCALL label21
I
07-2
2

-
RET
E’
97-2
2

-
INT #u8
D
1F
1+3a

-
INTE
E’
9F-3
1+3a

-
RETI
E’
97-3
1+2b

-
BNO label9
BRA label9
D
D
E1
E0
1
2

-
BEQ label9
D
E2
2/1

-
BNE label9
D
E3
2/1

-
BC label9
D
E4
2/1

-
BNC label9
D
E5
2/1

-
BN label9
D
E6
2/1

-
BP label9
D
E7
2/1

-
BV label9
D
E8
2/1

-
BNV label9
D
E9
2/1

-
BLT label9
D
EA
2/1

-
BGE label9
D
EB
2/1

-
BLE label9
D
EC
2/1

-
BGT label9
D
ED
2/1

-
BLS label9
D
EE
2/1

-
BHI label9
D
EF
2/1

-
Mnemonic
Operation
Remarks
Ri → PC
PC+2 → RP,
PC+2+exts(rel11 × 2) → PC
PC+2 → RP, Ri → PC
Reference
7.94
7.27
7.28
PC+4 → RP
PC+4+exts(rel20 × 2) → PC
7.96
RP → PC
SSP-4 → SSP, PS → (SSP),
SSP-4 → SSP, PC+2 → (SSP),
0 → CCR:I, 0 → CCR:S,
(TBR+3FC-u8 × 4) → PC
SSP → SSP, PS → (SSP),
SSP → SSP, PC+2 → (SSP),
0 → CCR:S, 4 → ILM,
(TBR+3D8) → PC
(SSP) → PC, SSP+4 → SSP,
(SSP) → PS, SSP+4 → SSP
No branch
7.143
7.92
7.93
7.145
7.19
7.19
PC+2+exts(rel8 × 2) → PC
if (Z==1) then
PC+2+exts(rel8 × 2) → PC
if (Z==0) then
PC+2+exts(rel8 × 2) → PC
if (C==1) then
PC+2+exts(rel8 × 2) → PC
if (C==0) then
PC+2+exts(rel8 × 2) → PC
if (N==1) then
PC+2+exts(rel8 × 2) → PC
if (N==0) then
PC+2+exts(rel8 × 2) → PC
if (V==1) then
PC+2+exts(rel8 × 2) → PC
if (V==0) then
PC+2+exts(rel8 × 2) → PC
if (V ^ N==1) then
PC+2+exts(rel8 × 2) → PC
if (V ^ N==0) then
PC+2+exts(rel8 × 2) → PC
if ({V ^ N} | Z==1) then
PC+2+exts(rel8 × 2) → PC
if ({V ^ N} | Z==0) then
PC+2+exts(rel8 × 2) → PC
if (C or Z==1) then
PC+2+exts(rel8 × 2) → PC
if (C or Z==0) then
PC+2+exts(rel8 × 2) → PC
7.19
7.19
7.19
7.19
7.19
7.19
7.19
7.19
7.19
7.19
7.19
7.19
7.19
7.19
• The value of "2/1" in CYC Column indicates 2 cycles if branching and 1 if not branching.
• It is necessary to set the Stack Flag (S) to "0" for RETI instruction execution.
440
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
• The field rel8 in TYPE-D Instruction Format and the field rel11 in TYPE-F Format have the following
relation to the values of label9, label12 in assembly notation.
rel8 = (label9-PC-2)/2
rel11 = (label12-PC-2)/2
• The field rel20 in TYPE-I Instruction Format has the following relation to the values of label21 in
assembly notation.
rel20 = (labe21-PC-4)/2
Table A.2-12 Delayed Branching Instructions (21 Instructions)
Format
OP
CYC
FLAG
NZVC
RMW
JMP:D @Ri
E
9F-0
1

-
CALL:D label12
F
D8
1

-
CALL:D @Ri
E
9F-1
1

-
LCALL:D label21
I
17-2
1

-
RET:D
BNO:D label9
BRA:D label9
E’
D
D
9F-2
F1
F0
1
1
1

-
BEQ:D label9
D
F2
1

-
BNE:D label9
D
F3
1

-
BC:D label9
D
F4
1

-
BNC:D label9
D
F5
1

-
BN:D label9
D
F6
1

-
BP:D label9
D
F7
1

-
BV:D label9
D
F8
1

-
BNV:D label9
D
F9
1

-
BLT:D label9
D
FA
1

-
BGE:D label9
D
FB
1

-
BLE:D label9
D
FC
1

-
BGT:D label9
D
FD
1

-
BLS:D label9
D
FE
1

-
BHI:D label9
D
FF
1

-
Mnemonic
CM71-00105-1E
Operation
Ri → PC
PC+4 → RP,
PC+2+exts(rel11 × 2) → PC
PC+4 → RP, Ri → PC
PC+6 → RP
PC+4+exts(rel20 × 2) → PC
RP → PC
No branch
PC+2+exts(rel8 × 2) → PC
if (Z==1) then
PC+2+exts(rel8 × 2) → PC
if (Z==0) then
PC+2+exts(rel8 × 2) → PC
if (C==1) then
PC+2+exts(rel8 × 2) → PC
if (C==0) then
PC+2+exts(rel8 ×) → PC
if (N==1) then
PC+2+exts(rel8 × 2) → PC
if (N==0) then
PC+2+exts(rel8 × 2) → PC
if (V==1) then
PC+2+exts(rel8 × 2) → PC
if (V==0) then
PC+2+exts(rel8 × 2) → PC
if (V ^ N==1) then
PC+2+exts(rel8 × 2) → PC
if (V ^ N==0) then
PC+2+exts(rel8 × 2) → PC
if ({V ^ N} | Z==1) then
PC+2+exts(rel × 2) → PC
if ({V ^ N} | Z==0) then
PC+2+exts(rel8 × 2) → PC
if (C or Z==1) then
PC+2+exts(rel8 × 2) → PC
if (C or Z==0) then
PC+2+exts(rel8 × 2) → PC
FUJITSU MICROELECTRONICS LIMITED
Remarks
Reference
7.95
7.29
7.30
7.97
7.144
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
7.20
441
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
• Delayed Branching Instructions are branched after always executing the following Instruction (the Delay
Slot).
• The field rel8 in TYPE-D instruction format and the field rel11 in TYPE-D format have the following
relation to the values label9, label12 in assembly notation.
rel8 = (label9-PC-2)/2
rel11 = (label12-PC-2)/2
• The field rel20 in TYPE-I Instruction Format has the following relation to the values of label21 in
assembly notation.
rel20 = (labe21-PC-4)/2
Table A.2-13 Direct Addressing Instructions (14 Instructions)
Format
OP
CYC
FLAG
NZVC
RMW
DMOV @dir10, R13
DMOV R13, @dir10
D
D
08
18
b
a

-
DMOV @dir10, @R13+
D
0C
1+2a

-
DMOV @R13+, @dir10
D
1C
1+2a

-
DMOV @dir10, @-R15
D
0B
1+2a

-
DMOV @R15+, @dir10
D
1B
1+2a

-
DMOVH @dir9, R13
DMOVH R13, @dir9
D
D
09
19
b
a

-
DMOVH @dir9, @R13+
D
0D
1+2a

-
DMOVH @R13+, @dir9
D
1D
1+2a

-
DMOVB @dir8, R13
DMOVB R13, @dir8
D
D
0A
1A
b
a

-
DMOVB @dir8, @R13+
D
0E
1+2a

-
DMOVB @R13+, @dir8
D
1E
1+2a

-
Mnemonic
Operation
(dir8 × 4) → R13
R13 → (dir8 × 4)
(dir8 × 4) → (R13),
R13+4 → (R13)
(R13) → (dir8 × 4),
R13+4 → (R13)
R15-4 → (R15),
(dir8 × 4) → (R15)
(R15) → (dir8 × 4),
R15+4 → (R15)
(dir8 × 2) → R13
R13 → (dir8 × 2)
(dir8 × 2) → (R13),
R13+2 → (R13)
(R13) → (dir8 × 2),
R13+2 → (R13)
(dir8) → R13
R13 → (dir8)
(dir8) → (R13),
R13+2 → (R13)
(R13) → (dir8),
R13+2 → (R13)
Remarks
Reference
7.40
7.41
7.42
Word
7.43
7.44
7.45
7.50
7.51
Half-Word
7.52
7.53
7.46
7.47
Byte
7.48
7.49
• The field dir8 in FORMAT_D Instruction format has the following relation to the values of dir8, dir9,
dir10 in assembly notation.
dir8 = dir8
dir8 = dir9 >> 1
dir8 = dir10 >> 2
442
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
Table A.2-14 Bit Search Instructions (3 Instructions)
Mnemonic
Format
OP
CYC
FLAG
NZVC
RMW
SRCH0 Ri
SRCH1 Ri
SRCHC Ri
E
E
E
97-C
97-D
97-E
1
1
1

-
Operation
search_zero(Ri) → Ri
search_one(Ri) → Ri
search_change(Ri) → Ri
Remarks
Reference
Searches first 0 Bit
Searches first 1 Bit
Searches first change
7.110
7.111
7.112
Table A.2-15 Other Instructions (16 Instructions)
Format
OP
CYC
FLAG
NZVC
RMW
NOP
ANDCCR #u8
ORCCR #u8
STILM #u8
ADDSP #s10
EXTSB Ri
EXTUB Ri
EXTSH Ri
EXTUH Ri
E’
D
D
D
D
E
E
E
E
9F-A
83
93
87
A3
97-8
97-9
97-A
97-B
1
1
1
1
1
1
1
1
1
---CCCC
CCCC

-
LDM0 (reglist)
D
8C
*1

-
LDM1 (reglist)
D
8D
*1

-
STM0 (reglist)
D
8E
*2

-
STM1 (reglist)
D
8F
*2

-
ENTER #u10
D
0F
1+a

-
LEAVE
E’
9F-9
b

-
XCHB @Rj, Ri
A
8A
2a

❍
Mnemonic
Operation
Remarks
No change
CCR & u8 → CCR
CCR | u8 → CCR
u8 → ILM
Sets ILM immediate value
R15+s8 × 4 → R15
exts(Ri[7:0]) → Ri
extu(Ri[7:0]) → Ri
exts(Ri[15:0]) → Ri
extu(Ri[15:0]) → Ri
for Ri of reglist
(R15) → Ri,
R15+4 → R15
for Ri of reglist
(R15) → Ri,
R15+4 → R15
for Ri of reglist
R15-4 → R15,
Ri → (R15)
for Ri of reglist
R15-4 → R15,
Ri → (R15)
R14 → (R15-4) ,
R15-4 → R14,
R15-extu(u8 × 4) → R15
R14+4 → R15,
(R15-4) → R14
Ri → TEMP,
extu((Rj)) → Ri,
TEMP → (Rj)
Sign extension 8 → 32
Zero extension8 → 32
Sign extension 16 → 32
Zero extension16 → 32
Reference
7.137
7.12
7.141
7.126
7.8
7.59
7.61
7.60
7.62
Load Multiple
R0 to R7
7.109
Load Multiple
R8 to R15
7.110
Store multiple
R0 to R7
7.127
Store multiple
R8 to R15
7.128
Function entry
processing
7.54
Function exit processing
7.85
Byte data for semaphore
processing
7.132
*1: The number of execution cycles for LDM0(reglist) and LDM1(reglist) is b × n cycles when "n" is the number of
registers designated.
*2: The number of execution cycles for STM0(reglist)and STM1(reglist) is a × n when "n" is the number of registers
designated.
• In the ADD SP Instruction, the field s8 in TYPR-D Instruction Format has the following relation to the
value of s10 in assembly notation.
s8 = s10 >> 2
• In the ENTER Instruction, the field u8 in TYPR-D Instruction Format has the following relation to the
value of u10 in assembly notation.
u8 = u10 >> 2
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
443
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
Table A.2-16 FPU Memory Load Instructions (7 Instructions)
Format
OP
CYC
FCC
ELGU
RMW
K
K
L
L
07-C
07-E
07-D0
07-D4
a
a
a
a

-
FLD @R15+, FRi
L
07-D8
a

-
FLD @(BP, udisp18), FRi
J
07-7
a

Mnemonic
FLD
FLD
FLD
FLD
@Rj, FRi
@(R13, Rj), FRi
@(R14, disp16), FRi
@(R15, udisp16), FRi
FLDM (frlist)
N
07-DC
*1

Operation
(Rj) → FRi
Remarks
Reference
Word
Word
Word
Word
7.70
7.71
7.72
7.73
(R15) → FRi
R15 + 4 → R15
Word
7.74
-
(BP+u16 × 4) → FRi
Word
7.75
-
for FRi of frlist
(R15) → FRi
R15 + 4 → R15
Load Multiple
FR0 to FR15
7.76
(R13+Rj) → FRi
(R14+o14 × 4) → FRi
(R15+u14 × 4) → FRi
*1: The number of execution cycles for FLDM instruction is a × n when "n" is the number of registers designated.
• The field o14 and u14 in TYPE-L instruction format have the following relation to the values disp16,
udisp16 in assembly notation.
o14 = disp16 >> 2
u14 = udisp16 >> 2
• The field u16 in TYPE-J instruction format has the following relation to the value udisp18 in assembly
notation.
u16 = udisp18 >> 2
Table A.2-17 FPU Memory Store Instructions (7 Instructions)
Format
OP
CYC
FCC
ELGU
RMW
K
K
L
L
17-C
17-E
17-D0
17-D4
a
a
a
a

-
FST FRi, @-R15
L
17-D8
a

-
FST FRi, @(BP, udisp18)
J
17-7
a

Mnemonic
FST
FST
FST
FST
FRi, @Rj
FRi, @(R13, Rj)
FRi, @(R14, disp16)
FRi, @(R15, udisp16)
FSTM (frlist)
N
17-DC
*1

Operation
FRi → (Rj)
Remarks
Reference
Word
Word
Word
Word
7.83
7.84
7.85
7.86
R15 - 4 → R15
FRi → (R15)
Word
7.87
-
FRi → (BP+u16 × 4)
Word
7.88
-
for FRi of frlist
R15 - 4 → R15
FRi → (R15)
Store Multiple
FR0 to FR15
7.89
FRi → (R13+Rj)
FRi → (R14+o14 × 4)
FRi → (R15+u14 × 4)
*1: The number of execution cycles for FSTM instruction is a × n when "n" is the number of registers designated.
• The field o14 and u14 in TYPE-L instruction format have the following relation to the values disp16 and
udisp16 in assembly notation.
o14 = disp16 >> 2
u14 = udisp16 >> 2
• The field u16 in TYPE-J instruction format has the following relation to the value udisp18 in assembly
notation.
u16 = udisp18 >> 2
444
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
Table A.2-18 FPU Single-Precision Floating Point Calculation Instruction (12 Instructions)
Mnemonic
Format
OP
CYC
FCC
ELGU
RMW
Operation
FADDs FRk, FRj, FRi
FSUBs FRk, FRj, FRi
FCMPs FRk, FRj
FMULs FRk, FRj, FRi
FDIVs FRk, FRj, FRi
FNEGs FRj, FRi
FABSs FRj, FRi
FMADDs FRk, FRj, FRi
FMSUBs FRk, FRj, FRi
FSQRTs FRj, FRi
FiTOs FRj, FRi
FsTOi FRj, FRi
M
M
M
M
M
M
M
M
M
M
M
M
07-A0
07-A2
07-A4
07-A7
07-AA
07-AF
07-AC
07-A5
07-A6
07-AB
07-A8
07-A9
1
1
1
1
9
1
1
4
4
14
1
1
------CCCC

-
FRk + FRj → FRi
FRk - FRj → FRi
FRk - FRj
FRk × FRj → FRi
FRk / FRj → FRi
FRj × -1 → FRi
|FRj| → FRi
FRk × FRj + FRi → FRi
FRk × FRj - FRi → FRi
Remarks
Reference
7.64
7.91
7.67
7.80
7.68
7.81
7.63
7.77
7.79
7.82
7.69
7.90
FRj → FRi
(float)FRj → FRi
(int)FRj → FRi
Table A.2-19 FPU Inter-Register Transfer Instruction (3 Instructions)
Mnemonic
FMOVs FRj, FRi
MOV Rj, FRi
MOV FRj, Ri
CM71-00105-1E
Format
OP
CYC
FCC
ELGU
RMW
M
K
K
07-AE
07-3
17-3
1
1
1

-
Operation
FRj → FRi
Rj → FRi
FRj → Ri
FUJITSU MICROELECTRONICS LIMITED
Remarks
Reference
7.78
7.131
7.132
445
APPENDIX
APPENDIX A
Instruction Lists
FR81 Family
Table A.2-20 FPU Branching Instruction without Delay (16 Instructions)
Format
OP
CYC
FCC
ELGU
RMW
FBN
FBA label17
N
N
07-F0
07-FF
2
2

-
FBNE label17
N
07-F7
2

-
FBE label17
N
07-F8
2

-
FBLG label17
N
07-F6
2

-
FBUE label17
N
07-F9
2

-
FBUL label17
N
07-F5
2

-
FBGE label17
N
07-FA
2

-
FBL label17
N
07-F4
2

-
FBUGE label17
N
07-FB
2

-
FBUG label17
N
07-F3
2

-
FBLE label17
N
07-FC
2

-
FBG label17
N
07-F2
2

-
FBULE label17
N
07-FD
2

-
FBU label17
N
07-F1
2

-
FBO label17
N
07-FE
2

-
Mnemonic
Operation
No branch
PC+4+exts(rel16 × 2) → PC
if (L || G || U) then
PC+4+exts(rel16 × 2) → PC
if (E) then
PC+4+exts(rel16 × 2) → PC
if (L || G) then
PC+4+exts(rel16 × 2) → PC
if (E || U) then
PC+4+exts(rel16 × 2) → PC
if (L || U) then
PC+4+exts(rel16 × 2) → PC
if (G || E) then
PC+4+exts(rel16 × 2) → PC
if (L) then
PC+4+exts(rel16 × 2) → PC
if (U || G || E) then
PC+4+exts(rel16 × 2) → PC
if (U || G) then
PC+4+exts(rel16 × 2) → PC
if (L || E) then
PC+4+exts(rel16 × 2) → PC
if (G) then
PC+4+exts(rel16 × 2) → PC
if (E || L || U) then
PC+4+exts(rel16 × 2) → PC
if (U) then
PC+4+exts(rel16 × 2) → PC
if (E || L || G) then
PC+4+exts(rel16 × 2) → PC
Remarks
Reference
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
7.65
• The field rel16 in TYPE-N instruction format has the following relation to the value label17 in assembly
notation.
rel16 = (label17-PC-4)/2
446
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
APPENDIX
Instruction Lists
Table A.2-21 FPU Branching Instruction with Delay (16 Instructions)
Format
OP
CYC
FCC
ELGU
RMW
FBN:D
FBA:D label17
N
N
17-F0
17-FF
2
2

-
FBNE:D label17
N
17-F7
2

-
FBE:D label17
N
17-F8
2

-
FBLG:D label17
N
17-F6
2

-
FBUE:D label17
N
17-F9
2

-
FBUL:D label17
N
17-F5
2

-
FBGE:D label17
N
17-FA
2

-
FBL:D label17
N
17-F4
2

-
FBUGE:D label17
N
17-FB
2

-
FBUG:D label17
N
17-F3
2

-
FBLE:D label17
N
17-FC
2

-
FBG:D label17
N
17-F2
2

-
FBULE:D label17
N
17-FD
2

-
FBU:D label17
N
17-F1
2

-
FBO:D label17
N
17-FE
2

-
Mnemonic
Operation
No branch
PC+4+exts(rel16 × 2) → PC
if (L || G || U) then
PC+4+exts(rel16 × 2) → PC
if (E) then
PC+4+exts(rel16 × 2) → PC
if (L || G) then
PC+4+exts(rel16 × 2) → PC
if (E || U) then
PC+4+exts(rel16 × 2) → PC
if (L || U) then
PC+4+exts(rel16 × 2) → PC
if (G || E) then
PC+4+exts(rel16 × 2) → PC
if (L) then
PC+4+exts(rel16 × 2) → PC
if (U || G || E) then
PC+4+exts(rel16 × 2) → PC
if (U || G) then
PC+4+exts(rel16 × 2) → PC
if (L || E) then
PC+4+exts(rel16 × 2) → PC
if (G) then
PC+4+exts(rel16 × 2) → PC
if (E || L || U) then
PC+4+exts(rel16 × 2) → PC
if (U) then
PC+4+exts(rel16 × 2) → PC
if (E || L || G) then
PC+4+exts(rel16 × 2) → PC
Remarks
Reference
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
7.66
• Delayed Branching Instructions are branched after always executing the following Instruction (the Delay
Slot).
• The field rel16 in TYPE-N instruction format has the following relation to the value label17 in assembly
notation.
rel16 = (label17-PC-4)/2
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
447
APPENDIX
APPENDIX A
A.3
Instruction Lists
FR81 Family
List of Instructions that can be positioned in the Delay Slot
This section shows the Instructions List that can be positioned in the delay slot of
Delay Branching Instruction.
● Add/Subtract Instructions
ADD Rj, Ri
ADD #14, Ri
ADD2 #i4, Ri
ADDC Rj, Ri
ADDN Rj, Ri
ADDN #i4, Ri
ADDN2 #i4, Ri
SUB Rj, Ri
SUBC Rj, Ri
SUBN Rj, Ri
● Compare Calculation Instructions
CMP Rj, Ri
CMP #i4, Ri
CMP2 #i4, Ri
● Logical Calculation Instructions
AND Rj, Ri
OR Rj, Ri
EOR Rj, Ri
● Multiply/ Divide Instructions
DIV0S Ri
DIV0U Ri
DIV1 Ri
DIV2 Ri
DIV3
DIV4S
LSL Rj, Ri
LSL #u4, Ri
LSL2 #u4, Ri
LSR Rj, Ri
LSR #u4, Ri
LSR2 #u4, Ri
ASR Rj, Ri
ASR #u4, Ri
ASR2 #u4, Ri
● Shift Instructions
● Immediate Data Transfer Instructions
LDI:8 #i8, Ri
● Memory Load Instructions
448
LD @Rj, Ri
LD @(R13, Rj), Ri
LD @(R14, disp10), Ri
LD @(R15, udisp6), Ri
LD @R15+, Ri
LD @R15+, Rs
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX A
LDUH @Rj, Ri
LDUH @(R13, Rj), Ri
LDUH @(R14, disp9), Ri
LDUB @Rj, Ri
LDUB @(R13, Rj), Ri
LDUB @(R14, disp8), Ri
ST Ri, @Rj
ST Ri, @(R13, Rj)
ST Ri, @(R14, disp10)
ST Ri, @(R15, udisp6)
ST Ri, @-R15
ST Rs, @-R15
STH Ri, @Rj
STH Ri, @(R13, Rj)
STH Ri, @(R14, disp9)
STB Ri, @Rj
STB Ri, @(R13, Rj)
STB Ri, @(R14, disp8)
APPENDIX
Instruction Lists
● Memory Store Instructions
ST PS, @-R15
● Inter-Register Transfer Instructions
MOV Rj, Ri
MOV Rs, Ri
MOV PS, Ri
MOV Ri, PS
MOV Ri, Rs
● Direct Addressing Instructions
DMOV @dir10, R13
DMOV R13, @dir10
DMOVH @dir9, R13
DMOVH R13, @dir9
DMOVB @dir8, R13
DMOVB R13, @dir8
SRCH1 Ri
SRCHC Ri
NOP
ANDCCR #u8
ORCCR #u8
STILM #u8
ADDSP #s10
EXTSB Ri
EXTUB Ri
EXTSH Ri
EXTUH Ri
● Bit Search Instructions
SRCH0 Ri
● Other Instructions
LEAVE
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
449
APPENDIX
APPENDIX B
Instruction Maps
APPENDIX B
FR81 Family
Instruction Maps
It includes instruction maps of FR81 Family CPU.
B.1 Instruction Maps
B.2 Extension Instruction Maps
450
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CM71-00105-1E
0
1
ST Ri,@
(R14,
disp10)
LDUH
@(R14,
disp9),Ri
STH
Ri,@(R14,
disp9)
LDUB
@(R14,
disp8),Ri
8
FUJITSU MICROELECTRONICS LIMITED
F
#u8
ENTER #u10
E
INT
DMOVH @d9, DMOVH
@R13+
@R13+, @ d9
DMOVB
DMOVB
@d8, @R13+ @R13+, @ d8
D
DMOV
DMOV
@d10,@–R15 @R15+,@d10
DMOV
DMOV
@d10,@R13+ @R13+,@d10
B
C
9
ORCCR
#u8
OR Rj, Ri
BORH
#u4,@Ri
BORL
#u4,@Ri
ANDB
Rj,@Ri
ANDH
Rj,@Ri
STM1
(reglist)
STM0
(reglist)
LDM1
(reglist)
LDM0
(reglist)
BT STH
#u4,@Ri
A
EORH
Rj,@Ri
Refer to
APPENDIX B.2
EORB
Rj,@Ri
LSL #u4,Ri
MOV Ri, Rs
LSR Rj, Ri
LSR2 #u4,Ri
MOV Rs, Ri
ASR #u4,Ri
ASR Rj,Ri
BGT label9
BLE label9
BGE label9
BLT label9
BNV label9
BV label9
BP label9
BN label9
BNC label9
BC label9
BNE label9
BEQ label9
BNO label9
BHI label9
MULH Rj,Ri
E
BRA label9
MUL Rj,Ri
CALL:D
label12
CALL
label12
D
BLS label9
LDI:8 #i 8,Ri
C
SUBN Rj,Ri
SUBCRj, Ri STRES
#u4,@Ri+
LDRES
@Ri+,#u4
MULU R j, Ri MULUH
Rj, Ri
CMP Rj,Ri
CMP2 #i4,Ri ASR2
#u4,Ri
CMP #i4,Ri
ADDCRj,Ri
LSL Rj,Ri
ADD2 #i4,Ri LSL2 #u4,Ri
ADD #i4,Ri
ADDSP
#s10
ADDN Rj,Ri
ADDN2
#i4,Ri
EORRj,@ Ri SUB R j, Ri
LD:20
#i20,Ri
EOR Rj,Ri
BEORH
#u4,@Ri
BEORL
#u4,@Ri
Refer to
APPENDIX B.2
B
ADDN# i4,Ri LSR #u4,Ri
ORB Rj,@Ri ADD Rj,Ri
ORH
Rj,@Ri
AND Rj,@Ri OR Rj,@Ri
ANDCCR
#u8
AND Rj,Ri
BANDH
#u4,@Ri
BANDL
#u4,@Ri
STILM #u8
STB
Ri,@(R14,
BT STL
disp8)
#u4,@Ri
7
MOV Rj,Ri
LD @(R14,
disp10),Ri
6
XCHB
@Rj,Ri
DMOV
R13,@d10
Refer to
APPENDIX B.2
5
DMOVB@ d8, DMOVB
R13
R13, @d 8
DMOV
@d10,R13
8
4
DMOVH @d9, DMOVH
R13
R13, @d 9
Refer to
APPENDIX B.2
7
STB Ri,@Rj
STH Ri,@ Rj
3
9
LDUB@Rj,Ri
ST Ri,@ Rj
2
A
LDUH@Rj,Ri
6
4
5
LD @ (R15,
udisp6),Ri
LD @Rj,Ri
3
ST Ri,
@(R15,ud6)
LDUH
STH Ri,
@(R13,Rj), Ri @(R13,Rj)
LDUB
STB Ri ,
@(R13,Rj), Ri @(R13,Rj)
1
2
LD @(R13,Rj), ST Ri,
Ri
@(R13,Rj)
F
BHI:D
label9
BLS:D
label9
BGT:D
label9
BLE:D
label9
BGE:D
label9
BLT:D label9
BNV:D
label9
BV:D
label9
BP:D
label9
BN:D
label9
BNC:D
label9
BC:D
label9
BNE:D
label9
BEQ:D
label9
BNO:D
label9
BRA:D
label9
B.1
0
Higher 4 bits
FR81 Family
APPENDIX B
APPENDIX
Instruction Maps
Instruction Maps
The following shows an instruction map when the operation code consists of 8 or less
bits.
Figure B.1-1 illustrates in tabular form 8 bit operation codes (OP) for each instruction. Instructions where
operation code (OP) is less than 8 bit, they have been converted into 8 bit by packing them on MSB side.
Figure B.1-1 Instruction Map
Lower 4 b its
451
APPENDIX
APPENDIX B
B.2
Instruction Maps
FR81 Family
Extension Instruction Maps
The following shows an instruction map when the operation code consists of 12 or
more bits.
Instructions with a 12-bit operation code (OP), which is divided into 8 higher bits and 4 lower bits are
shown in Table B.2-1.
Table B.2-1 Instruction Map with 12-Bit Operation Code
Higher 8 bits
Lower 4 bits
07
17
97
9F
0
LD @R15+,Ri
ST Ri,@-R15
JMP @Ri
JMP:D @Ri
1
MOV Ri,PS
MOV PS,Ri
CALL @Ri
CALL:D @Ri
2
LCALL label21
LCALL:D label21
RET
RET:D
3
MOV Rj, FRi
MOV FRi, Rj
RETI
INTE
4
LD @(BP, udisp18), Ri
ST Ri, @(BP, udisp18)
DIV0S Ri
-
5
LDUH @(BP, udisp17), Ri
STH Ri, @(BP, udisp17)
DIV0U Ri
-
6
LDUB @(BP, udisp16), Ri
STB Ri, @(BP, udisp16)
DIV1 Ri
DIV3
7
FLD @(BP, udisp18), FRi
FST FRi, @(BP, udisp18)
DIV2 Ri
DIV4S
8
LD @R15+,Rs
ST Rs,@-R15
EXTSB Ri
LDI:32 #i32,Ri
9
LD @R15+,PS
ST PS,@-R15
EXTUB Ri
LEAVE
A
Refer to Table B.2-2
Refer to Table B.2-2
EXTSH Ri
NOP
B
-
-
EXTUH Ri
-
C
FLD @Rj, FRi
FST FRi, @Rj
-
SRCH0
D
Refer to Table B.2-2
Refer to Table B.2-2
-
SRCH1
E
FLD @(R13, Rj), FRi
FST FRi, @(R13, Rj)
-
SRCHC
F
Refer to Table B.2-3
Refer to Table B.2-3
-
-
-: Undefined
452
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX B
APPENDIX
Instruction Maps
Instructions with 16-bit and 14-bit operation codes (OP), each of which is divided into 8 higher bits and 8
lower bits are shown in Tables Table B.2-2 and Table B.2-3. An instruction with a 14-bit operation code is
padded to the MSB side to convert the 14-bit operation code to a 16-bit operation code.
Table B.2-2 Instruction Map with 16-Bit/14-Bit Operation Code
Higher 8 bits
07
A0
FADDs FRK, FRj, FRi
A1
A2
-
-
-
FSUBs FRK, FRj, FRi
A3
Lower 8 bits
17
-
-
-
A4
FCMPs FRk, FRj
-
A5
FMADDs FRk, FRj, FRi
-
A6
FMSUBs FRk, FRj, FRi
-
A7
FMULs FRK, FRj, FRi
-
A8
FiTOs FRj, FRi
-
A9
FsTOi FRj, FRi
-
AA
FDIVs FRK, FRj, FRi
-
AB
FSQRTs FRk, FRj
-
AC
FABSs FRj, FRi
-
AD
-
-
AE
FMOVs FRj, FRi
-
AF
FNEGs FRj, FRi
-
D0*
FLD @(R14, disp16), FRi
FST FRi, @(R14, disp16)
D4*
FLD @(R15, udisp16), FRi
FST FRi, @(R15, udisp16)
D8*
FLD @R15+, FRi
FST FRi, @-R15
DC*
FLDM (frlist)
FSTM (frlist)
*: Instruction of 14-Bit Operation Code
-: Undefined
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
453
APPENDIX
APPENDIX B
Instruction Maps
FR81 Family
Table B.2-3 Instruction Map with 16-Bit Operation Code
Higher 8 bits
Lower 8 bits
07
454
17
F0
FBN
FBN:D
F1
FBU label17
FBU:D label17
F2
FBG label17
FBG:D label17
F3
FBUG label17
FBUG:D label17
F4
FBL label17
FBL:D label17
F5
FBUL label17
FBUL:D label17
F6
FBLG label17
FBLG:D label17
F7
FBNE label17
FBNE:D label17
F8
FBE label17
FBE:D label17
F9
FBUE label17
FBUE:D label17
FA
FBGE label17
FBGE:D label17
FB
FBUGE label17
FBUGE:D label17
FC
FBLE label17
FBLE:D label17
FD
FBULE label17
FBULE:D label17
FE
FBO label17
FBO:D label17
FF
FBA label17
FBA:D label17
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX
APPENDIX C Supplemental Explanation about FPU Exception Processing
APPENDIX C
C.1
Supplemental Explanation about FPU Exception
Processing
Conformity with IEEE754-1985 Standard
The FR81 Family CPU conforms to the IEEE754-1985 standard (hereinafter referred to as "IEEE754"),
excluding the following.
1. Overflow
IEEE754 defines that the biased (+192 for single-precision) exponent part is used as the result if overflow
occurs; however, this architecture does not provide for certain cases such as the addition of the biased
value.
2. Underflow
IEEE754 defines that the biased (-192 for single-precision) exponent part is used as the result if
underflow occurs; however, this architecture does not provide for certain cases such as the reduction of
the biased value.
When the result is an unnormalized number, the result is flushed to zero.
3. Unnormalized number
IEEE754 defines an unnormalized number to prevent the result from being flushed rapidly to zero;
however, the unnormalized number is not supported in this architecture. If an unnormalized number is
input when the unnormalized number input exception is prohibited, its numeric value is assumed to be
zero for calculation purposes. This is also applied when the calculation result is an unnormalized number;
therefore, the result is set to zero.
4. QNaN
The QNaN output pattern is fixed to 7FFFFFFFH, excluding the move, sign inversion, and absolute value
instructions.
5. Unsupported instructions
This architecture does not support the following instructions.
• Remainder
• Integer rounding (Round Floating-Point Number to Integer Value)
• Conversion between binary and decimal numbers
6. Floating point calculation exception
This exception occurs when the sufficient calculation result is not obtained for IEEE754. This
architecture provides six exceptions in total: five exceptions (Inexact, Underflow, Overflow, Division by
Zero, and Invalid Calculation), which are defined in IEEE754, as well as one exception (unnormalized
number input).
In IEEE754, if a floating point calculation exception occurs, the defined operation is carried out to
generate a trap. In this architecture, it is provided as an exception; therefore, no data is written to the
destination when a floating point calculation exception occurs.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
455
APPENDIX
APPENDIX C Supplemental Explanation about FPU Exception Processing
C.2
FR81 Family
FPU Exceptions
FPU exceptions are classified into six types: five exceptions (Inexact, Underflow, Overflow, Division by
Zero, and Invalid Calculation), which are defined in IEEE754, and an exception that is generated when an
unnormalized number is input. Whether or not to generate those calculation exceptions can be specified
using the FPU control register (FCR.EEF). The result output upon the exception conditions being satisfied
varies depending on the FCR.EEF setting.
If an exception is not permitted, the result of each calculation is output so that the requested result is
obtained when calculation runs on even if an exception occurs, or so that it can be recognized from the
result that the calculation is invalid. When an exception is permitted, if the significant calculation result
cannot be obtained due to an exception factor, the calculation result is not written; otherwise, it is written.
1. Invalid calculation exception (Invalid Operation)
This exception occurs when calculation cannot be carried out properly because the specified operand is
invalid for the calculation. In concrete terms, this exception occurs when:
• SNaN has been input;
• the result is in infinite format (∞ - ∞, 0 × ∞, 0/0, ∞/∞,
– 1 etc.)
• the conversion source value is not indicated in the conversion destination format using a conversion
instruction.
If this exception occurs, the following operations are carried out.
[FCR:EEF:V=1]
Writing to the floating point register or FCR:FCC is prohibited.
The FCR.CEF.V flag is set to generate an FPU exception.
[FCR:EEF:V=0]
QNaN (7FFFFFFFH) is stored in the floating point register for instructions other than conversion or
comparison instructions.
For the conversion instruction, ± MAX is stored in the floating point register.
For the comparison instruction, the FCR:FCC:U flag is set.
The FCR:ECF:V flag is set.
2. Division-by-Zero exception (Division by Zero)
This exception occurs when performing division by zero. If this exception occurs, the following
operations are carried out.
[FCR:EEF:Z=1]
Writing to the floating point register is prohibited.
The FCR:CEF.Z flag is set to generate this exception.
[FCR:EEF:Z=0]
The infinity is stored in the floating point register. If the sign is the same, it is set to a positive sign. If
the sign is different, it is set to a negative sign.
The FCR:ECF:Z flag is set.
456
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX
APPENDIX C Supplemental Explanation about FPU Exception Processing
3. Overflow exception (Overflow)
This exception occurs when, during calculation, the exponent exceeds the maximum that can be
expressed in the specified format. If this exception occurs, the following operations are carried out.
[FCR:EEF:O=1]
Writing to the floating point register is prohibited.
The FCR:CEF:O flag is set to generate this exception.
[FCR:EEF:O=0]
As shown in the following Table C.2-1, the value is written to the floating point register based on the
rounding mode.
The FCR:ECF:O flag is set.
Table C.2-1 Output Result in Rounding Mode and at Overflow
Rounding mode
(FCR:RM)
Output result
Positive overflow
Negative overflow
+∞
-∞
+MAX
-MAX
10B (+∞)
+∞
-MAX
11B (-∞)
+MAX
-∞
00B (Latest value)
01B (Zero)
4. Underflow exception (Underflow)
This exception occurs when the rounding result is incorrect and the absolute value is less than the
minimum normalized number in the specified format. In concrete terms, this exception occurs when the
exponent is set to 0 while normalizing a significand or when the exponent is set to a negative value
during multiplication or division. This exception also occurs when a specific value is set to the minimum
normalized number after round processing while it is an unnormalized number before round processing
(pre-rounding rule). This exception does not occur when the result of non-round processing is correct and
set to zero. If this exception occurs, the following operations are carried out.
[FCR:EEF:U=1]
Writing to the floating point register is prohibited.
The FCR:CEF:U flag is set to generate this exception.
[FCR:EEF:U=0]
Zero is always stored in the floating point register. (Zero flush)
The FCR:ECF:U flag is set.
5. Inexact exception (Inexact)
This exception occurs when the rounding result is incorrect (including a case where an Underflow
exception is detected at FCR:EEF:U = 0 when a unnormalized number is flushed to zero) or when
overflow has occurred because an Overflow exception is invalid (including a case where overflow has
occurred as a result of round processing). If this exception occurs, the following operations are carried
out.
[FCR:EEF:X=1]
Writing to the floating point register is prohibited.
The FCR:CEF:X flag is set to generate this exception.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
457
APPENDIX
APPENDIX C Supplemental Explanation about FPU Exception Processing
FR81 Family
[FCR:EEF:X=0]
The calculation result is stored in the floating point register.
The FCR:ECF:X flag is set.
6. Unnormalized Number Input exception (Denormalized Number Input)
This exception occurs when an unnormalized number is specified in the input operand. If this exception
occurs, the following operations are carried out.
[FCR:EEF:D=1]
Writing to the floating point register is prohibited.
The FCR:CEF:D flag is set to generate this exception.
[FCR.EEF.D=0]
The input operand that is set to an unnormalized number is flushed to zero before calculation.
The FCR:ECF:D flag is set.
C.3
Round Processing
Rounding processing conforms to IEEE754. A significand is expressed by 24 bits (single-precision). If a
significand of calculation result is expressed by the number of bits greater than 24 bits (including
unnormalized numbers), round processing is performed to obtain the approximate value of 24 bits (singleprecision). The following explains round processing.
The calculation result (S) of the significand is defined as follows (see next if the guard bit is omitted
(already processed)).
Figure C.3-1 Calculation Result of Significand including Guard Bit
26
3
significand (p)
2
1
0
g
r
s
Here, "g" indicates a guard bit, "r" indicates a round bit, "s" indicates a sticky bit, and "p" indicates a
significand.
Next, obtain the OR value (r∪s) between "r" and "s". Then set the result as "s" and set "g" as "r" again.
Figure C.3-2 Calculation Result of Significand omitting Guard Bit
25
2
significand (p)
1
0
r
s
Perform round processing based on the following Table C.3-1. Here, "S" indicates the calculation result of
the significand, "r" indicates a round bit, "s" indicates a sticky bit, and "LSB" indicates the LSB of "p".
("!s" indicates the reversal value of "s".)
458
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
APPENDIX
APPENDIX C Supplemental Explanation about FPU Exception Processing
Table C.3-1 Rounding Mode and Rounding Processing of Significand
Rounding
mode
(FCR.RM)
00B (Latest
value)
S≥0
"p+1" if "r^!s^LSB" or "r^s" is true
S<0
"p+1" if "r^!s^LSB" or "r^s" is true
01B (Zero)
10B (+∞)
"p+1" if "r∪s" is true
11B (-∞)
"p+1" if "r∪s" is true
The blank column means that the "p" value is used as the result.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
459
APPENDIX
APPENDIX C Supplemental Explanation about FPU Exception Processing
460
FUJITSU MICROELECTRONICS LIMITED
FR81 Family
CM71-00105-1E
FR81 Family
INDEX
The index follows on the next page.
This is listed in alphabetic order.
CM71-00105-1E
FUJITSU MICROELECTRONICS LIMITED
461
FR81 Family
Index
Numerics
A
20-bit Addressing
20-bit Addressing Area & 32-bit Addressing Area
..11
32-bit Addressing
20-bit Addressing Area & 32-bit Addressing Area
..11
Access
Data Access ... 14
Program Access ... 14
ADD
ADD (Add 4bit Immediate Data to Destination
Register)... 105
ADD (Add Word Data of Source Register to
Destination Register) 107
ADD2 (Add 4bit Immediate Data to Destination
Register)... 109
ADDC
ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register) 111
ADDN
ADDN (Add Immediate Data to Destination Register)
.. 113
ADDN (Add Word Data of Source Register to
Destination Register) 115
ADDN2 (Add Immediate Data to Destination
Register)... 117
Address Space
Address Space.. 8
Addressing
20-bit Addressing Area & 32-bit Addressing Area
.. 11
Addressing Formats
Addressing Formats.. 86
ADDSP
ADDSP (Add Stack Pointer and Immediate Data)
.. 119
Alignment
Word Alignment .. 14
AND
AND (And Word Data of Source Register to Data
in Memory)... 121
AND (And Word Data of Source Register to
Destination Register) 123
ANDB
ANDB (And Byte Data of Source Register to Data
in Memory)... 125
ANDCCR
ANDCCR (And Condition Code Register and
Immediate Data).................................. 127
ANDH
ANDH (And Halfword Data of Source Register to
Data in Memory)................................. 129
462
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
Arithmetic shift
ASR (Arithmetic shift to the Right Direction)
..131, 133
ASR2 (Arithmetic shift to the Right Direction)
..135
ASR
ASR (Arithmetic shift to the Right Direction)
..131, 133
ASR2 (Arithmetic shift to the Right Direction)
..135
B
BANDH
BANDH (And 4bit Immediate Data to Higher 4bit of
Byte Data in Memory)..........................137
BANDL
BANDL (And 4bit Immediate Data to Lower 4bit of
Byte Data in Memory)..........................139
Bcc
Bcc (Branch relative if Condition satisfied)141
Bcc:D
Bcc:D (Branch relative if Condition satisfied)
..143
BEORH
BEORH (Eor 4bit Immediate Data to Higher 4bit of
Byte Data in Memory)..........................145
BEORL
BEORL (Eor 4bit Immediate Data to Lower 4bit of
Byte Data in Memory)..........................147
BORH
BORH (Or 4bit Immediate Data to Higher 4bit of Byte
Data in Memory)149
BORL
BORL (Or 4bit Immediate Data to Lower 4bit of Byte
Data in Memory)151
Branch
Bcc (Branch relative if Condition satisfied)141
Bcc:D (Branch relative if Condition satisfied)
..143
Branching
Delayed Branching Instructions97
Delayed branching processing..............................78
Example of branching with non-delayed branching
instructions ...78
Example of processing of delayed branching
instruction...79
Non-Delayed Branching Instructions99
Specific example of Delayed Branching Instructions
..98
Branching Instructions
Branching Instructions and Delay Slot97
CM71-00105-1E
BTSTH
BTSTH (Test Higher 4bit of Byte Data in Memory)
.. 153
BTSTL
BTSTL (Test Lower 4bit of Byte Data in Memory)
.. 155
Bypassing
Register Bypassing ... 74
Byte Data
ANDB (And Byte Data of Source Register to Data
in Memory)... 125
BTSTH (Test Higher 4bit of Byte Data in Memory)
.. 153
BTSTL (Test Lower 4bit of Byte Data in Memory)
.. 155
Byte Data .. 12
DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)
.. 199
DMOVB (Move Byte Data from Direct Address to
Register)... 195
DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
.. 201
DMOVB (Move Byte Data from Register to Direct
Address)... 197
EORB (Exclusive Or Byte Data of Source Register to
Data in Memory) 217
EXTSB (Sign Extend from Byte Data to Word Data)
.. 221
EXTSH (Sign Extend from Byte Data to Word Data)
.. 223
EXTUB (Unsign Extend from Byte Data to Word
Data).. 225
EXTUH (Unsign Extend from Byte Data to Word
Data).. 227
LDUB (Load Byte Data in Memory to Register)
.. 306, 308, 310
ORB (Or Byte Data of Source Register to Data
in Memory)... 360
STB (Store Byte Data in Register to Memory)
.. 394, 396, 398
XCHB (Exchange Byte Data) 420
Byte Order
Byte Order... 13
C
CALL
CALL (Call Subroutine) 157, 159
CALL:D
CALL:D (Call Subroutine) 161, 163
Carry Bit
ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register) 111
FUJITSU MICROELECTRONICS LIMITED
463
FR81 Family
CCR
Condition Code Register (CCR)21, 23
CMP
CMP (Compare Immediate Data and Destination
Register) ...165
CMP (Compare Word Data in Source Register and
Destination Register)............................167
CMP2 (Compare Immediate Data and Destination
Register) ...169
Condition Code Register
ANDCCR (And Condition Code Register and
Immediate Data)127
Condition Code Register (CCR)23
ORCCR (Or Condition Code Register and Immediate
Data) ..362
Correction
DIV2 (Correction When Remain is 0).................177
DIV3 (Correction When Remain is 0).................179
DIV4S (Correction Answer for Signed Division)
..181
CPU
Features of FR80 Family CPU2
FR80 Family CPU Register Configuration16
D
Data Access
Data Access ...14
Data Structure
Data Structure ..12
Dedicated Registers
Configuration of Dedicated Registers19
Dedicated Registers ..19
Delay Slot
Branching Instructions and Delay Slot97
Delayed Branching
Delayed branching processing..............................78
Delayed Branching Instruction
Delayed Branching Instructions97
Example of processing of delayed branching
instruction...79
Specific example of Delayed Branching Instructions
..98
Destination Register
ADD (Add 4bit Immediate Data to Destination
Register) ...105
ADD2 (Add 4bit Immediate Data to Destination
Register) ...109
ADDN (Add Immediate Data to Destination Register)
..113
ADDN2 (Add Immediate Data to Destination
Register) ...117
CMP (Compare Immediate Data and Destination
Register) ...165
464
CMP2 (Compare Immediate Data and Destination
Register)... 169
LDI:8 (Load Immediate 8bit Data to Destination
Register)... 300
Direct Address
Direct Address Area ... 8
DMOV (Move Word Data from Direct Address to
Post Increment Register Indirect Address)
.. 187
DMOV (Move Word Data from Direct Address to
Pre Decrement Register Indirect Address)
.. 191
DMOV (Move Word Data from Direct Address to
Register)... 183
DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
.. 189
DMOV (Move Word Data from Register to Direct
Address)... 185
DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)
.. 199
DMOVB (Move Byte Data from Direct Address to
Register)... 195
DMOVB (Move Byte Data from Register to Direct
Address)... 197
DMOVH (Move Halfword Data from Direct Address
to Register) ... 203
DMOVH (Move Halfword Data from Direct Address
to Post Increment Register Indirect Address)
.. 207
DIV
DIV0S (Initial Setting Up for Signed Division)
.. 171
DIV0U (Initial Setting Up for Unsigned Division)
.. 173
DIV1 (Main Process of Division)....................... 175
DIV2 (Correction When Remain is 0) 177
DIV3 (Correction When Remain is 0) 179
DIV4S (Correction Answer for Signed Division)
.. 181
Division
DIV0S (Initial Setting Up for Signed Division)
.. 171
DIV0U (Initial Setting Up for Unsigned Division)
.. 173
DIV1 (Main Process of Division)....................... 175
DIV4S (Correction Answer for Signed Division)
.. 181
Signed Division.. 100
Step Division Instructions 100
Unsigned Division.. 101
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
DMOV
DMOV (Move Word Data from Direct Address to
Post Increment Register Indirect Address)
..187
DMOV (Move Word Data from Direct Address to
Pre Decrement Register Indirect Address)
..191
DMOV (Move Word Data from Direct Address to
Register) ...183
DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
..189, 193
DMOV (Move Word Data from Register to Direct
Address) ...185
DMOVB
DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)
..199
DMOVB (Move Byte Data from Direct Address to
Register) ...195
DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
..201
DMOVB (Move Byte Data from Register to Direct
Address) ...197
DMOVH
DMOVH (Move Halfword Data from Direct Address
to Register) ...203
DMOVH (Move Halfword Data from Direct Address
to Post Increment Register Indirect Address)
..207
DMOVH (Move Halfword Data from Post Increment
Register Indirect Address to Direct Address)
..209
DMOVH (Move Halfword Data from Register to
Direct Address)205
E
EIT
Basic Operations in EIT Processing......................43
EIT Processing Sequence44
Multiple EIT Processing......................................60
Multiple EIT processing and Priority Levels..........60
Priority Levels of EIT Requests61
Recovery from EIT Processing.............................45
Types of EIT Processing and Prior Preparation
..43
Emulator
INTE (Software Interrupt for Emulator)..............273
ENTER
ENTER (Enter Function)...................................211
EOR
BEORH (Eor 4bit Immediate Data to Higher 4bit of
Byte Data in Memory)..........................145
CM71-00105-1E
BEORL (Eor 4bit Immediate Data to Lower 4bit of
Byte Data in Memory) 147
EOR (Exclusive Or Word Data of Source Register to
Destination Register) 215
EOR (Exclusive Or Word Data of Source Register to
Data in Memory)................................. 213
EORB
EORB (Exclusive Or Byte Data of Source Register to
Data in Memory)................................. 217
EORH
EORH (Exclusive Or Halfword Data of Source
Register to Data in Memory) 219
Exception
Exception Processing.. 48
Exchange
XCHB (Exchange Byte Data) 420
Exclusive Or
EOR (Exclusive Or Word Data of Source Register to
Destination Register) 215
EOR (Exclusive Or Word Data of Source Register to
Data in Memory)................................. 213
EORB (Exclusive Or Byte Data of Source Register to
Data in Memory)................................. 217
EORH (Exclusive Or Halfword Data of Source
Register to Data in Memory) 219
Extend
EXTSB (Sign Extend from Byte Data to Word Data)
.. 221
EXTSH (Sign Extend from Byte Data to Word Data)
.. 223
EXTUB (Unsign Extend from Byte Data to Word
Data).. 225
EXTSB
EXTSB (Sign Extend from Byte Data to Word Data)
.. 221
EXTSH
EXTSH (Sign Extend from Byte Data to Word Data)
.. 223
EXTUB
EXTUB (Unsign Extend from Byte Data to Word
Data).. 225
EXTUH
EXTUH (Unsign Extend from Byte Data to Word
Data).. 227
F
FABSs
FABSs (Single Precision Floating Point Absolute
Value) .. 229
FADDs
FADDs (Single Precision Floating Point Add)
.. 230
FUJITSU MICROELECTRONICS LIMITED
465
FR81 Family
FBcc
FBcc (Floating Point Conditional Branch)...........232
FBcc:D (Floating Point Conditional Branch
with Delay Slot)234
FCMPs
FCMPs (Single Precision Floating Point Compare)
..236
FDIVs
FDIVs (Single Precision Floating Point Division)
..238
First One bit
SRCH1 (Search First One bit position distance From
MSB) ...375
First Zero bit
SRCH0 (Search First Zero bit position distance From
MSB) ...373
FiTOs
FiTOs (Convert from Integer to Single Precision
Floating Point).....................................240
flag
Timing when the interrupt enable flag (I) is requested
..63
FLD
FLD (Load Word Data in Memory to Floating
Register) ...247
FLD (Single Precision Floating Point Data Load)
..........................242, 243, 244, 245, 246
FLDM
FLDM (Single Precision Floating Point Data Load to
Multiple Register)................................248
FMADDs
FMADDs (Single Precision Floating Point Multiply
and Add)...250
FMOVs
FMOVs (Single Precision Floating Point Move)
..252
FMSUBs
FMSUBs (Single Precision Floating Point Multiply
and Subtract)253
FMULs
FMULs (Single Precision Floating Point Multiply)
..255
FNEGs
FNEGs (Single Precision Floating Point sign reverse)
..257
Format
Instruction Formats ...87
Formats
Addressing Formats ..86
Instructions Formats ...85
Instructions Notation Formats85
FR Family
Changes from the earlier FR Family4
466
FR81 Family
Features of FR81 Family CPU............................... 2
FR81 Family CPU Register Configuration............ 16
FSQRTs
FSQRTs (Single Precision Floating Point Square
Root).. 258
FST
FST (Single Precision Floating Point Data Store)
.......................... 259, 260, 261, 262, 263
FST (Store Word Data in Floating Point Register to
Memory) .. 264
FSTM
FSTM (Single Precision Floating Point Data Store
from Multiple Register) 265
FsTOi
FsTOi (Convert from Single Precision Floating Point
to Integer)... 267
FSUBs
FSUBs (Single Precision Floating Point Subtract)
.. 269
G
General Interrupt
General interrupts... 53
General-purpose Registers
Configuration of General-purpose Registers.......... 17
General-purpose Registers................................... 17
Interlocking produced by reference to R15 and
General-purpose Registers after Changing
the Stack flag (S flag) 75
Special Usage of General-purpose Registers 18
H
Half Word Data
Half Word Data.. 12
Halfword Data
ANDH (And Halfword Data of Source Register to
Data in Memory)................................. 129
DMOVH (Move Halfword Data from Direct Address
to Register) ... 203
DMOVH (Move Halfword Data from Direct Address
to Post Increment Register Indirect Address)
.. 207
DMOVH (Move Halfword Data from Post Increment
Register Indirect Address to Direct Address)
.. 209
DMOVH (Move Halfword Data from Register to
Direct Address) 205
EORH (Exclusive Or Halfword Data of Source
Register to Data in Memory) 219
LDUH (Load Halfword Data in Memory to Register)
.. 313, 315, 317
MULH (Multiply Halfword Data) 348
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
MULUH (Multiply Unsigned Halfword Data)
..352
ORH (Or Halfword Data of Source Register to Data
in Memory) ...364
STH (Store Halfword Data in Register to Memory)
..401, 403, 405
hazard
Occurrence of register hazard...............................74
Register hazards ...74
I
I
Timing when the interrupt enable flag (I) is requested
..63
ILM
Interrupt Level Mask Register (ILM)....................22
Immediate 20bit Data
LDI:20 (Load Immediate 20bit Data to Destination
Register) ...296
Immediate 32 bit Data
LDI:32 (Load Immediate 32 bit Data to Destination
Register) ...298
Immediate 8bit Data
LDI:8 (Load Immediate 8bit Data to Destination
Register) ...300
Immediate Data
ADD (Add 4bit Immediate Data to Destination
Register) ...105
ADD2 (Add 4bit Immediate Data to Destination
Register) ...109
ADDN (Add Immediate Data to Destination Register)
..113
ADDN2 (Add Immediate Data to Destination
Register) ...117
ADDSP (Add Stack Pointer and Immediate Data)
..119
BANDH (And 4bit Immediate Data to Higher 4bit of
Byte Data in Memory)..........................137
BANDL (And 4bit Immediate Data to Lower 4bit of
Byte Data in Memory)..........................139
BEORH (Eor 4bit Immediate Data to Higher 4bit of
Byte Data in Memory)..........................145
BEORL (Eor 4bit Immediate Data to Lower 4bit of
Byte Data in Memory)..........................147
BORH (Or 4bit Immediate Data to Higher 4bit of Byte
Data in Memory)149
BORL (Or 4bit Immediate Data to Lower 4bit of Byte
Data in Memory)151
CMP (Compare Immediate Data and Destination
Register) ...165
CMP2 (Compare Immediate Data and Destination
Register) ...169
ORCCR (Or Condition Code Register and Immediate
Data) ..362
CM71-00105-1E
STILM (Set Immediate Data to Interrupt Level Mask
Register)... 408
Increment Register
DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
.. 189, 193
DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
.. 201
Indirect Address
DMOV (Move Word Data from Direct Address to
Post Increment Register Indirect Address)
.. 187
DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
.. 189
Instruction
“INT”Instructions... 57
Branching Instructions and Delay Slot.................. 97
Delayed Branching Instructions 97
Example of branching with non-delayed branching
instructions ... 78
Example of processing of delayed branching
instruction .. 79
Instruction execution based on Pipeline 70
INTE Instruction .. 57
Non-Delayed Branching Instructions.................... 99
Read-Modify-Write type Instructions 96
Specific example of Delayed Branching Instructions
.. 98
Step Division Instructions 100
Instruction Format
Instruction Formats... 87
Instructions Formats ... 85
Instruction System
Instruction System.. 82
Instructions Notation Formats
Instructions Notation Formats.............................. 85
INT
“INT”Instructions... 57
INT (Software Interrupt) 271
INTE
INTE (Software Interrupt for Emulator) 273
INTE Instruction .. 57
Interlocking
Interlocking ... 75
Interlocking produced by reference to R15 and
General-purpose Registers after Changing
the Stack flag (S flag) 75
Interrupt
General interrupts... 53
INT (Software Interrupt) 271
INTE (Software Interrupt for Emulator) 273
Interrupts... 53
FUJITSU MICROELECTRONICS LIMITED
467
FR81 Family
Mismatch in Acceptance and Cancellation of Interrupt
..73
Non-maskable Interrupts (NMI)55
Pipeline Operation and Interrupt Processing73
Points of Caution while using User Interrupts........66
Preparation while using user interrupts65
Processing during an Interrupt Processing Routine
..66
RETI (Return from Interrupt).............................370
Usage Sequence of User Interrupts65
interrupt enable flag
Timing when the interrupt enable flag (I) is requested
..63
Interrupt Level Mask Register
Interrupt Level Mask Register (ILM)....................22
Timing of Reflection of Interrupt Level Mask Register
(ILM) ...64
Interrupt Processing Routine
Processing during an Interrupt Processing Routine
..66
J
JMP
JMP (Jump) ...275
JMP:D
JMP:D (Jump) ..277
Jump
JMP (Jump) ...275
JMP:D (Jump) ..277
L
LCALL
LCALL (Long Call Subroutine)279
LCALL:D (Long Call Subroutine)280
LD
LD (Load Word Data in Memory to Program Status
Register) ...294
LD (Load Word Data in Memory to Register)
..........281, 283, 285, 287, 289, 291, 292
LDI:20
LDI:20 (Load Immediate 20bit Data to Destination
Register) ...296
LDI:32
LDI:32 (Load Immediate 32 bit Data to Destination
Register) ...298
LDI:8
LDI:8 (Load Immediate 8bit Data to Destination
Register) ...300
LDM
LDM0 (Load Multiple Registers)302
LDM1 (Load Multiple Registers)304
468
LDUB
LDUB (Load Byte Data in Memory to Register)
.................................. 306, 308, 310, 312
LDUH
LDUH (Load Halfword Data in Memory to Register)
.................................. 313, 315, 317, 319
LEAVE
LEAVE (Leave Function) 320
Load
LD (Load Word Data in Memory to Program Status
Register)... 294
LD (Load Word Data in Memory to Register)
.................. 281, 283, 285, 287, 289, 292
LDI:20 (Load Immediate 20bit Data to Destination
Register)... 296
LDI:32 (Load Immediate 32 bit Data to Destination
Register)... 298
LDI:8 (Load Immediate 8bit Data to Destination
Register)... 300
LDM0 (Load Multiple Registers)....................... 302
LDM1 (Load Multiple Registers)....................... 304
LDUB (Load Byte Data in Memory to Register)
.. 306, 308, 310
LDUH (Load Halfword Data in Memory to Register)
.. 313, 315, 317
Logical Shift
LSL (Logical Shift to the Left Direction)
.. 322, 324
LSL2 (Logical Shift to the Left Direction) 326
LSR (Logical Shift to the Right Direction)
.. 328, 330
LSR2 (Logical Shift to the Right Direction)........ 332
LSL
LSL (Logical Shift to the Left Direction)
.. 322, 324
LSL2 (Logical Shift to the Left Direction) 326
LSR
LSR (Logical Shift to the Right Direction)
.. 328, 330
LSR2 (Logical Shift to the Right Direction)........ 332
M
MDH
Multiplication/Division Register (MDH, MDL)
.. 30
MDL
Multiplication/Division Register (MDH, MDL)
.. 30
MOV
MOV (Move Word Data in Floating Point Register to
General Purpose Register) 345
MOV (Move Word Data in General Purpose Register
to Floating Point Register).................... 344
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
MOV (Move Word Data in Program Status Register to
Destination Register)............................338
MOV (Move Word Data in Source Register to
Destination Register)............334, 336, 340
MOV (Move Word Data in Source Register to
Program Status Register)342
Move
MOV (Move Word Data in Program Status Register to
Destination Register)............................338
MOV (Move Word Data in Source Register to
Destination Register)............334, 336, 340
MOV (Move Word Data in Source Register to
Program Status Register)342
MSB
SRCH0 (Search First Zero bit position distance From
MSB) ...373
SRCH1 (Search First One bit position distance From
MSB) ...375
MUL
MUL (Multiply Word Data)346
MULH
MULH (Multiply Halfword Data)348
Multiple
Multiple EIT Processing......................................60
Multiple EIT processing and Priority Levels..........60
Multiple Registers
LDM0 (Load Multiple Registers)302
LDM1 (Load Multiple Registers)304
STM0 (Store Multiple Registers)410
STM1 (Store Multiple Registers)412
Multiplication/Division Register
Multiplication/Division Register (MDH, MDL)
..30
Multiply
MUL (Multiply Word Data)346
MULH (Multiply Halfword Data)348
MULU (Multiply Unsigned Word Data)350
MULUH (Multiply Unsigned Halfword Data)
..352
MULU
MULU (Multiply Unsigned Word Data)350
MULUH
MULUH (Multiply Unsigned Halfword Data)
..352
N
NMI
Non-maskable Interrupts (NMI)55
No Operation
NOP (No Operation) ...354
Non-block loading
Non-block loading ..77
CM71-00105-1E
non-delayed branching
Example of branching with non-delayed branching
instructions ... 78
Non-Delayed Branching Instructions
Non-Delayed Branching Instructions.................... 99
Non-maskable Interrupts
Non-maskable Interrupts (NMI)........................... 55
NOP
NOP (No Operation)... 354
O
OR
BORH (Or 4bit Immediate Data to Higher 4bit of Byte
Data in Memory)................................. 149
BORL (Or 4bit Immediate Data to Lower 4bit of Byte
Data in Memory)................................. 151
OR (Or Word Data of Source Register to Data
in Memory)... 356
OR (Or Word Data of Source Register to Destination
Register)... 358
ORB
ORB (Or Byte Data of Source Register to Data
in Memory)... 360
ORCCR
ORCCR (Or Condition Code Register and Immediate
Data).. 362
ORH
ORH (Or Halfword Data of Source Register to Data
in Memory).. 364
P
PC
Program Counter (PC) .. 20
Pipeline
How to prevent mismatched pipeline conditions?
.. 73
Instruction execution based on Pipeline 70
Pipeline Operation and Interrupt Processing.......... 73
Pointer
ADDSP (Add Stack Pointer and Immediate Data)
.. 119
Post
DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
.. 193
DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)
.. 199
DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
.. 201
FUJITSU MICROELECTRONICS LIMITED
469
FR81 Family
DMOVH (Move Halfword Data from Direct Address
to Post Increment Register Indirect Address)
..207
DMOVH (Move Halfword Data from Post Increment
Register Indirect Address to Direct Address)
..209
Prior Preparation
Types of EIT Processing and Prior Preparation
..43
Priority Levels
Multiple EIT processing and Priority Levels
..60
Priority Levels of EIT Requests61
Processing
Multiple EIT Processing......................................60
processing
Multiple EIT processing and Priority Levels
..60
Program Access
Program Access..14
Program Counter
Program Counter (PC)...20
Program Status
LD (Load Word Data in Memory to Program Status
Register) ...294
MOV (Move Word Data in Program Status Register to
Destination Register)............................338
Program Status (PS)..20
Program Status Register
ST (Store Word Data in Program Status Register to
Memory)...392
PS
Program Status (PS)..20
R
R15
Interlocking produced by reference to R15 and
General-purpose Registers after Changing
the Stack flag (S flag).............................75
Read-Modify-Write
Read-Modify-Write type Instructions96
Recovery
Recovery from EIT Processing.............................45
Register
Timing of Reflection of Interrupt Level Mask Register
(ILM) ...64
Register Bypassing
Register Bypassing ...74
Register Configuration
FR80 Family CPU Register Configuration16
Register designated Field
Register designated Field.....................................91
470
Register hazard
Occurrence of register hazard 74
Register hazards ... 74
Register Settings
Timing When Register Settings Are Reflected
.. 63
Remain
DIV2 (Correction When Remain is 0) 177
DIV3 (Correction When Remain is 0) 179
Reset
Reset... 42
RET
RET (Return from Subroutine) 366
RET:D
RET:D (Return from Subroutine)....................... 368
RETI
RETI (Return from Interrupt) 370
Return
RET (Return from Subroutine) 366
RET:D (Return from Subroutine)....................... 368
RETI (Return from Interrupt) 370
Return Pointer
Return Pointer (RP) .. 26
RP
Return Pointer (RP) .. 26
S
S flag
Interlocking produced by reference to R15 and
General-purpose Registers after Changing
the Stack flag (S flag) 75
SCR
System Condition Code Register (SCR) 25
Search
SRCH0 (Search First Zero bit position distance From
MSB) ... 373
SRCH1 (Search First One bit position distance From
MSB) ... 375
SRCHC (Search First bit value change position
distance From MSB)............................ 377
Sign Extend
EXTSB (Sign Extend from Byte Data to Word Data)
.. 221
EXTSH (Sign Extend from Byte Data to Word Data)
.. 223
Signed Division
DIV0S (Initial Setting Up for Signed Division)
.. 171
DIV4S (Correction Answer for Signed Division)
.. 181
Signed Division.. 100
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
Slot
Branching Instructions and Delay Slot97
Software Interrupt
INT (Software Interrupt)271
INTE (Software Interrupt for Emulator)..............273
Source Register
ADD (Add Word Data of Source Register to
Destination Register)............................107
ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register)...................111
ADDN (Add Word Data of Source Register to
Destination Register)............................115
AND (And Word Data of Source Register to Data
in Memory) ...121
AND (And Word Data of Source Register to
Destination Register)............................123
ANDB (And Byte Data of Source Register to Data
in Memory) ...125
ANDH (And Halfword Data of Source Register to
Data in Memory)129
CMP (Compare Word Data in Source Register and
Destination Register)............................167
EOR (Exclusive Or Word Data of Source Register to
Destination Register)............................215
EOR (Exclusive Or Word Data of Source Register to
Data in Memory)213
EORB (Exclusive Or Byte Data of Source Register to
Data in Memory)217
EORH (Exclusive Or Halfword Data of Source
Register to Data in Memory).................219
MOV (Move Word Data in Source Register to
Destination Register)............334, 336, 340
MOV (Move Word Data in Source Register to
Program Status Register)342
OR (Or Word Data of Source Register to Data
in Memory) ...356
OR (Or Word Data of Source Register to Destination
Register) ...358
ORB (Or Byte Data of Source Register to Data
in Memory) ...360
ORH (Or Halfword Data of Source Register to Data
in Memory) ...364
SUB (Subtract Word Data in Source Register from
Destination Register)............................414
SUBC (Subtract Word Data in Source Register and
Carry bit from Destination Register)
..416
SUBN (Subtract Word Data in Source Register from
Destination Register)............................418
Special Usage
Special Usage of General-purpose Registers..........18
SRCH
SRCH0 (Search First Zero bit position distance From
MSB) ...373
CM71-00105-1E
SRCH1 (Search First One bit position distance From
MSB) ... 375
SRCHC
SRCHC (Search First bit value change position
distance From MSB)............................ 377
SSP
System Stack Pointer (SSP)................................. 27
ST
ST (Store Word Data in Program Status Register to
Memory) .. 392
ST (Store Word Data in Register to Memory)
.......... 379, 381, 383, 385, 387, 389, 390
Stack flag
Interlocking produced by reference to R15 and
General-purpose Registers after Changing
the Stack flag (S flag) 75
Stack Pointer
ADDSP (Add Stack Pointer and Immediate Data)
.. 119
Relation between Stack Pointer and R15............... 18
STB
STB (Store Byte Data in Register to Memory)
.................................. 394, 396, 398, 400
Step Division Instructions
Step Division Instructions 100
Step Trace
Step Trace Traps .. 58
STH
STH (Store Halfword Data in Register to Memory)
.................................. 401, 403, 405, 407
STILM
STILM (Set Immediate Data to Interrupt Level Mask
Register)... 408
STM
STM0 (Store Multiple Registers) 410
STM1 (Store Multiple Registers) 412
Store
ST (Store Word Data in Program Status Register to
Memory) .. 392
ST (Store Word Data in Register to Memory)
.................. 379, 381, 383, 385, 387, 390
STB (Store Byte Data in Register to Memory)
.. 394, 396, 398
STH (Store Halfword Data in Register to Memory)
.. 401, 403, 405
STM0 (Store Multiple Registers) 410
STM1 (Store Multiple Registers) 412
SUB
SUB (Subtract Word Data in Source Register from
Destination Register) 414
FUJITSU MICROELECTRONICS LIMITED
471
FR81 Family
SUBC
SUBC (Subtract Word Data in Source Register and
Carry bit from Destination Register)
..416
SUBN
SUBN (Subtract Word Data in Source Register from
Destination Register)............................418
Subroutine
CALL (Call Subroutine)............................157, 159
CALL:D (Call Subroutine)161, 163
RET (Return from Subroutine)...........................366
RET:D (Return from Subroutine)368
Subtract
SUB (Subtract Word Data in Source Register from
Destination Register)............................414
SUBC (Subtract Word Data in Source Register and
Carry bit from Destination Register)
..416
SUBN (Subtract Word Data in Source Register from
Destination Register)............................418
System Condition Code Register
System Condition Code Register (SCR)................25
System Stack Pointer
System Stack Pointer (SSP)27
System Status Register
System Status Register (SSR)21
T
Table Base Register
Table Base Register (TBR)29
Test
BTSTH (Test Higher 4bit of Byte Data in Memory)
..153
BTSTL (Test Lower 4bit of Byte Data in Memory)
..155
Trace
Step Trace Traps...58
Traps
Step Trace Traps...58
Traps ...57
TBR
Table Base Register (TBR)29
U
Unsign Extend
EXTUB (Unsign Extend from Byte Data to Word
Data) ..225
EXTUH (Unsign Extend from Byte Data to Word
Data) ..227
Unsigned Division
DIV0U (Initial Setting Up for Unsigned Division)
..173
472
Unsigned Division.. 101
Unsigned Halfword Data
MULUH (Multiply Unsigned Halfword Data)
.. 352
Unsigned Word Data
MULU (Multiply Unsigned Word Data) 350
User Interrupt
Points of Caution while using User Interrupts 66
Preparation while using user interrupts 65
Usage Sequence of User Interrupts....................... 65
User Stack Pointer
User Stack Pointer (USP) 28
USP
User Stack Pointer (USP) 28
V
value change
SRCHC (Search First bit value change position
distance From MSB)............................ 377
Vector Table
Vector Table Area .. 9
W
Word Alignment
Word Alignment .. 14
Word Data
ADD (Add Word Data of Source Register to
Destination Register) 107
ADDC (Add Word Data of Source Register and
Carry Bit to Destination Register) 111
ADDN (Add Word Data of Source Register to
Destination Register) 115
AND (And Word Data of Source Register to Data
in Memory).. 121
AND (And Word Data of Source Register to
Destination Register) 123
CMP (Compare Word Data in Source Register and
Destination Register) 167
DMOV (Move Word Data from Direct Address to
Post Increment Register Indirect Address)
.. 187
DMOV (Move Word Data from Direct Address to
Pre Decrement Register Indirect Address)
.. 191
DMOV (Move Word Data from Direct Address to
Register)... 183
DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
.. 189, 193
DMOV (Move Word Data from Register to Direct
Address)... 185
EOR (Exclusive Or Word Data of Source Register to
Destination Register) 215
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
FR81 Family
EOR (Exclusive Or Word Data of Source Register to
Data in Memory)213
EXTSB (Sign Extend from Byte Data to Word Data)
..221
EXTSH (Sign Extend from Byte Data to Word Data)
..223
EXTUB (Unsign Extend from Byte Data to Word
Data) ..225
EXTUH (Unsign Extend from Byte Data to Word
Data) ..227
LD (Load Word Data in Memory to Program Status
Register) ...294
LD (Load Word Data in Memory to Register)
..................281, 283, 285, 287, 289, 292
MOV (Move Word Data in Program Status Register to
Destination Register)............................338
MOV (Move Word Data in Source Register to
Destination Register)............334, 336, 340
MOV (Move Word Data in Source Register to
Program Status Register)342
MUL (Multiply Word Data)346
MULU (Multiply Unsigned Word Data)350
CM71-00105-1E
OR (Or Word Data of Source Register to Data
in Memory)... 356
OR (Or Word Data of Source Register to Destination
Register)... 358
ST (Store Word Data in Program Status Register to
Memory) .. 392
ST (Store Word Data in Register to Memory)
.................. 379, 381, 383, 385, 387, 390
SUB (Subtract Word Data in Source Register from
Destination Register) 414
SUBC (Subtract Word Data in Source Register and
Carry bit from Destination Register)
.. 416
SUBN (Subtract Word Data in Source Register from
Destination Register) 418
Word Data ... 12
X
XCHB
XCHB (Exchange Byte Data) 420
FUJITSU MICROELECTRONICS LIMITED
473
FR81 Family
474
FUJITSU MICROELECTRONICS LIMITED
CM71-00105-1E
CM71-00105-1E
FUJITSU SEMICONDUCTOR • CONTROLLER MANUAL
FR81 Family
32-BIT MICROCONTROLLER
PROGRAMMING MANUAL
August 2009 the first edition
Published
FUJITSU MICROELECTRONICS LIMITED
Edited
Sales Promotion Dept.

				

 Open as PDF

 	Similar pages
	

										3.5MB

	

										3.2MB

	

										5.5MB

	

										progfr-cm71-00101-4e.pdf

	

										3.7MB

	

										SST SST58LM008-70-C-FRI

	

										TSC 1.5SMC33A

	

										ETC 1.5SMC120C

	

										Through Hole Resistor Packaging

	

										Family data sheet

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

