TI TVP5146

!
"#$ $% &'() *$+,#% $
-' . $ ( ,++
Data Manual
November 2004
HPA Digital Audio Video
SLES084A
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is
an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303, Dallas, Texas 75265
Copyright  2004, Texas Instruments Incorporated
Contents
Section
1
2
Title
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Detailed Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3
Related Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
Analog Processing and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1
Video Input Switch Control . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2
Analog Input Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3
Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4
A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
Digital Video Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
2 Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2
Composite Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3
Luminance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4
Component Video Processor . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5
Color Space Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3
Clock Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4
Real-Time Control (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5
Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1
Fast Switches for SCART . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2
Separate Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3
Embedded Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6
I2C Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1
Reset and I2C Bus Address Selection . . . . . . . . . . . . . . . . .
2.6.2
I2C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.3
VBUS Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.4
I2C Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7
VBI Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.1
VBI FIFO and Ancillary Data in Video Stream . . . . . . . . . . .
2.7.2
VBI Raw Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8
Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9
Adjusting External Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.10 Internal Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page
1−1
1−2
1−3
1−3
1−3
1−4
1−5
1−6
2−1
2−1
2−1
2−2
2−2
2−2
2−2
2−3
2−3
2−7
2−8
2−9
2−9
2−9
2−10
2−11
2−11
2−16
2−16
2−17
2−17
2−17
2−19
2−19
2−20
2−21
2−21
2−22
2−22
iii
2.11
iv
Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.1
Input Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.2
AFE Gain Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.3
Video Standard Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.4
Operation Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.5
Autoswitch Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.6
Color Killer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.7
Luminance Processing Control 1 Register . . . . . . . . . . . . . .
2.11.8
Luminance Processing Control 2 Register . . . . . . . . . . . . . .
2.11.9
Luminance Processing Control 3 Register . . . . . . . . . . . . . .
2.11.10 Luminance Brightness Register . . . . . . . . . . . . . . . . . . . . . . .
2.11.11 Luminance Contrast Register . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.12 Chrominance Saturation Register . . . . . . . . . . . . . . . . . . . . .
2.11.13 Chroma Hue Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.14 Chrominance Processing Control 1 Register . . . . . . . . . . .
2.11.15 Chrominance Processing Control 2 Register . . . . . . . . . . .
2.11.16 Component Pr Saturation Register . . . . . . . . . . . . . . . . . . . .
2.11.17 Component Y Contrast Register . . . . . . . . . . . . . . . . . . . . . .
2.11.18 Component Pb Saturation Register . . . . . . . . . . . . . . . . . . .
2.11.19 Component Y Brightness Register . . . . . . . . . . . . . . . . . . . .
2.11.20 AVID Start Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.21 AVID Stop Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.22 HSYNC Start Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.23 HSYNC Stop Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.24 VSYNC Start Line Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.25 VSYNC Stop Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.26 VBLK Start Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.27 VBLK Stop Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.28 Fast-Switch Control Register . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.29 Fast-Switch SCART Delay Register . . . . . . . . . . . . . . . . . . .
2.11.30 SCART Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.31 CTI Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.32 CTI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.33 RTC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.34 Sync Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.35 Output Formatter 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.36 Output Formatter 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.37 Output Formatter 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.38 Output Formatter 4 Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.39 Output Formatter 5 Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.40 Output Formatter 6 Register . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.41 Clear Lost Lock Detect Register . . . . . . . . . . . . . . . . . . . . . .
2.11.42 Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.43 Status 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−27
2−27
2−28
2−28
2−29
2−29
2−30
2−30
2−31
2−31
2−31
2−32
2−32
2−32
2−33
2−33
2−33
2−34
2−34
2−34
2−35
2−35
2−35
2−36
2−36
2−36
2−36
2−37
2−37
2−37
2−38
2−38
2−38
2−39
2−39
2−40
2−40
2−41
2−42
2−43
2−44
2−44
2−45
2−46
2.11.44
2.11.45
2.11.46
2.11.47
2.11.48
2.11.49
2.11.50
2.11.51
2.11.52
2.11.53
2.11.54
2.11.55
2.11.56
2.11.57
2.11.58
2.11.59
2.11.60
2.11.61
2.11.62
2.11.63
2.11.64
2.11.65
2.11.66
2.11.67
2.11.68
2.11.69
2.11.70
2.11.71
2.11.72
2.11.73
2.11.74
2.11.75
2.11.76
2.11.77
2.11.78
2.11.79
2.11.80
2.11.81
2.11.82
2.11.83
2.11.84
2.11.85
AGC Gain Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . .
Video Standard Status Register . . . . . . . . . . . . . . . . . . . . . .
GPIO Input 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Input 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical Line Count Register . . . . . . . . . . . . . . . . . . . . . . . . . .
AFE Coarse Gain for CH 1 Register . . . . . . . . . . . . . . . . . . .
AFE Coarse Gain for CH 2 Register . . . . . . . . . . . . . . . . . . .
AFE Coarse Gain for CH 3 Register . . . . . . . . . . . . . . . . . . .
AFE Coarse Gain for CH 4 Register . . . . . . . . . . . . . . . . . . .
AFE Fine Gain for Pb_B Register . . . . . . . . . . . . . . . . . . . . .
AFE Fine Gain for Y_G_Chroma Register . . . . . . . . . . . . . .
AFE Fine Gain for R_Pr Register . . . . . . . . . . . . . . . . . . . . .
AFE Fine Gain for CVBS_Luma Register . . . . . . . . . . . . . .
ROM Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AGC White Peak Processing Register . . . . . . . . . . . . . . . . .
AGC Increment Speed Register . . . . . . . . . . . . . . . . . . . . . .
AGC Increment Delay Register . . . . . . . . . . . . . . . . . . . . . . .
Chip ID MSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chip ID LSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDP TTX Filter And Mask Registers . . . . . . . . . . . . . . . . . . .
VDP TTX Filter Control Register . . . . . . . . . . . . . . . . . . . . . .
VDP FIFO Word Count Register . . . . . . . . . . . . . . . . . . . . . .
VDP FIFO Interrupt Threshold Register . . . . . . . . . . . . . . . .
VDP FIFO Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDP FIFO Output Control Register . . . . . . . . . . . . . . . . . . . .
VDP Line Number Interrupt Register . . . . . . . . . . . . . . . . . .
VDP Pixel Alignment Register . . . . . . . . . . . . . . . . . . . . . . . .
VDP Line Start Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDP Line Stop Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDP Global Line Mode Register . . . . . . . . . . . . . . . . . . . . . .
VDP Full Field Enable Register . . . . . . . . . . . . . . . . . . . . . . .
VDP Full Field Mode Register . . . . . . . . . . . . . . . . . . . . . . . .
VBUS Data Access With No VBUS Address Increment
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VBUS Data Access With VBUS Address Increment
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO Read Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VBUS Address Access Register . . . . . . . . . . . . . . . . . . . . . .
Interrupt Raw Status 0 Register . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Raw Status 1 Register . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Mask 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Mask 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−46
2−47
2−47
2−48
2−48
2−49
2−49
2−50
2−50
2−51
2−51
2−52
2−52
2−52
2−53
2−54
2−54
2−54
2−54
2−55
2−56
2−57
2−58
2−58
2−58
2−58
2−59
2−59
2−59
2−59
2−60
2−60
2−60
2−60
2−61
2−61
2−62
2−63
2−64
2−65
2−66
2−67
v
3
4
5
6
vi
2.11.86 Interrupt Clear 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.87 Interrupt Clear 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12 VBUS Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.1
VDP Closed Caption Data Register . . . . . . . . . . . . . . . . . . .
2.12.2
VDP WSS Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.3
VDP VITC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.4
VDP V-Chip TV Rating Block 1 Register . . . . . . . . . . . . . . .
2.12.5
VDP V-Chip TV Rating Block 2 Register . . . . . . . . . . . . . . .
2.12.6
VDP V-Chip TV Rating Block 3 Register . . . . . . . . . . . . . . .
2.12.7
VDP V-Chip MPAA Rating Data Register . . . . . . . . . . . . . . .
2.12.8
VDP General Line Mode and Line Address Register . . . . .
2.12.9
VDP VPS/Gemstar Data Register . . . . . . . . . . . . . . . . . . . . .
2.12.10 VDP FIFO Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.11 Interrupt Configuration Register . . . . . . . . . . . . . . . . . . . . . . .
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2
Analog Processing and A/D Converters . . . . . . . . . . . . . . . .
3.3.3
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1
Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3
Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2
Designing With PowerPAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−68
2−69
2−70
2−70
2−70
2−71
2−71
2−71
2−72
2−72
2−73
2−74
2−74
2−75
3−1
3−1
3−1
3−1
3−2
3−2
3−2
3−3
4−1
4−1
4−1
4−1
4−2
4−2
4−2
4−3
4−3
4−3
5−1
5−1
5−2
6−1
List of Illustrations
Figure
1−1
1−2
2−1
2−2
2−3
2−4
2−5
2−6
2−7
2−8
2−9
2−10
2−11
2−12
2−13
2−14
2−15
2−16
2−17
2−18
2−19
2−20
2−21
2−22
2−23
2−24
2−25
Title
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terminal Assignments Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog Processors and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Video Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Composite and S-Video Processor Block Diagram . . . . . . . . . . . . . . . . . .
Color Low-Pass Filter Frequency Response . . . . . . . . . . . . . . . . . . . . . . . .
Color Low-Pass Filter With Filter Frequency Response, NTSC Square
Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Color Low-Pass Filter With Filter Characteristics,
NTSC/PAL ITU-R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Color Low-Pass Filter With Filter Characteristics, PAL Square Pixel
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chroma Trap Filter Frequency Response, NTSC Square Pixel
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chroma Trap Filter Frequency Response, PAL ITU-R BT.601
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chroma Trap Filter Frequency Response, PAL Square Pixel
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Luminance Edge-Enhancer Peaking Block Diagram . . . . . . . . . . . . . . . . .
Peaking Filter Response, NTSC Square Pixel Sampling . . . . . . . . . . . . .
Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling . . . . . . . .
Peaking Filter Response, PAL Square Pixel Sampling . . . . . . . . . . . . . . .
Y Component Gain, Offset, Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CbCr Component Gain, Offset, Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RTC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical Synchronization Signals for 525-Line System . . . . . . . . . . . . . . . .
Vertical Synchronization Signals for 625-Line System . . . . . . . . . . . . . . . .
Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode . . . . . . . . . . . .
Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode . . . . . . . . . . . .
VSYNC Position With Respect to HSYNC . . . . . . . . . . . . . . . . . . . . . . . . . .
VBUS Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page
1−4
1−5
2−1
2−3
2−4
2−5
2−5
2−5
2−5
2−6
2−6
2−6
2−6
2−7
2−7
2−7
2−8
2−8
2−9
2−9
2−10
2−12
2−13
2−14
2−15
2−16
2−18
vii
2−26
2−27
3−1
3−2
5−1
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−21
Teletext Filter Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−57
Clocks, Video Data, and Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3
I2C Host Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1
List of Tables
Table
1−1
2−1
2−2
2−3
2−4
2−5
2−6
2−7
2−8
2−9
2−10
2−11
2−12
viii
Title
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary of Line Frequencies, Data Rates, and Pixel/Line Counts . . . .
EAV and SAV Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C Host Interface Terminal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supported VBI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ancillary Data Format and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VBI Raw Data Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VBUS Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog Channel and Video Mode Selection . . . . . . . . . . . . . . . . . . . . . . . .
Page
1−6
2−10
2−11
2−16
2−17
2−17
2−19
2−20
2−21
2−21
2−23
2−26
2−27
1 Introduction
The TVP5146 device is a high quality, single-chip digital video decoder that digitizes and decodes all popular
baseband analog video formats into digital component video. The TVP5146 decoder supports the analog-to-digital
(A/D) conversion of component RGB and YPbPr signals, as well as the A/D conversion and decoding of NTSC, PAL,
and SECAM composite and S-video into component YCbCr. This decoder includes four 10-bit 30-MSPS A/D
converters (ADCs). Preceding each ADC in the device, the corresponding analog channel contains an analog circuit
that clamps the input to a reference voltage and applies a programmable gain and offset. A total of 10 video input
terminals can be configured to a combination of RGB, YPbPr, CVBS, or S-video video inputs.
Component, composite, or S-video signals are sampled at 2× the square-pixel or ITU-R BT.601 clock frequency,
line-locked, and are then decimated to the 1× pixel rate. CVBS decoding utilizes five-line adaptive comb filtering for
both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts. A chroma trap filter is
also available. On CVBS and S-video inputs, the user can control video characteristics such as contrast, brightness,
saturation, and hue via an I2C host port interface. Furthermore, luma peaking (sharpness) with programmable gain
is included, as well as a patented chroma transient improvement (CTI) circuit.
A built-in color space converter is applied to decoded component RGB data.
The following output formats can be selected: 20-bit 4:2:2 YCbCr or 10-bit 4:2:2 YCbCr.
The TVP5146 decoder generates synchronization, blanking, field, active video window, horizontal and vertical syncs,
clock, genlock (for downstream video encoder synchronization), host CPU interrupt and programmable logic I/O
signals, in addition to digital video outputs.
The TVP5146 decoder includes methods for advanced vertical blanking interval (VBI) data retrieval. The VBI data
processor (VDP) slices, parses, and performs error checking on teletext, closed caption (CC), and other VBI data.
A built-in FIFO stores up to 11 lines of teletext data, and with proper host port synchronization, full-screen teletext
retrieval is possible. The TVP5146 decoder can pass through the output formatter 2× the sampled raw luma data for
host-based VBI processing.
The decoder provides the option for concurrent processing of pixel-locked CVBS and RGB/YPbPr input formats.
The main blocks of the TVP5146 decoder include:
•
Robust sync detection for weak and noisy signals as well as VCR trick modes
•
Y/C separation by 2-D, 5-line, adaptive comb or chroma trap filter
•
Fast-switch input for pixel-by-pixel switching between CVBS and YPbPr/RGB component video inputs
(SCART support)
•
Four 10-bit, 30-MSPS A/D converters with analog preprocessors [clamp and automatic gain control (AGC)]
•
Luminance processor
•
Chrominance processor
•
Component processor
•
Clock/timing processor and power-down control
•
Software-controlled power-saving standby mode
•
Output formatter
•
I2C host port interface
•
VBI data processor
1−1
•
Macrovision copy protection detection circuit (Type 1, 2, 3, and separate color stripe detection)
•
3.3-V tolerant digital I/O ports
1.1 Detailed Functionality
•
Four 30-MSPS, 10-bit A/D channels with programmable gain control
•
Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60), SECAM (B, D, G, K, K1, L), CVBS, and S-video
•
Supports analog component SD YPbPr/RGB video formats with embedded sync
•
10 analog video input terminals for multisource connection
•
User-programmable video output formats
−
10-bit ITU-R BT.656 4:2:2 YCbCr with embedded syncs
−
10-bit 4:2:2 YCbCr with separate syncs
−
20-bit 4:2:2 YCbCr with separate syncs
−
2× sampled raw VBI data in active video during a vertical blanking period
−
Sliced VBI data during a vertical blanking period or active video period (full field mode)
•
HSYNC/VSYNC outputs with programmable position, polarity, and width, and FID (field ID) output
•
Component video processing
•
•
−
Gain (contrast) and offset (brightness) adjustments
−
Automatic component video detection (525/625)
−
Color space conversion from RGB to YCbCr
Composite and S-video processing
−
Adaptive 2-D, 5-line, adaptive comb filter for composite video inputs; chroma trap available
−
Automatic video standard detection (NTSC/PAL/SECAM) and switching
−
Luma-peaking with programmable gain
−
Patented CTI circuit
−
Patented architecture for locking to weak, noisy, or unstable signals
−
Single 14.31818-MHz reference crystal for all standards (ITU-R.BT601 and square pixel)
−
Line-locked internal pixel sampling clock generation with horizontal- and vertical-lock signal outputs
−
Genlock output [real-time control (RTC] format) for downstream video encoder synchronization
Certified Macrovision copy protection detection
Macrovision is a trademark of Macrovision Corporation.
Other trademarks are the property of their respective owners.
1−2
•
VBI data processor
−
Teletext (NABTS, WST)
−
CC and extended data service (EDS)
−
Wide screen signaling (WSS)
−
Copy generation management system (CGMS)
−
Video program system (VPS/PDC)
−
Vertical interval time code (VITC)
−
Gemstar 1×/2× electronic program guide compatible mode
−
Register readback of CC, WSS (CGMS), VPS/PDC, VITC, and Gemstar 1×/2× sliced data
•
I2C host port interface
•
Reduced power consumption: 1.8-V digital core, 3.3-V for digital I/O, and 1.8-V analog core with power-save
and power-down modes
•
80-terminal TQFP PowerPAD package
1.2 Applications
•
Digital TV
•
LCD TV/monitors
•
DVD-R
•
PVR
•
PC video cards
•
Video capture/video editing
•
Video conferencing
1.3 Related Products
•
TVP5150A/TVP5150AM1 Ultralow Power NTSC/PAL/SECAM Video Decoder With Robust Sync Detector,
(SLES098)
1.4 Ordering Information
PACKAGED DEVICES
TA
80-TERMINAL PLASTIC FLAT-PACK PowerPADTM
0°C to 70°C
TVP5146PFP
Gemstar is a trademark of Gemstar-TV Guide International.
PowerPAD is a trademark of Texas Instruments.
1−3
1.5 Functional Block Diagram
Copy
Protection
Detector
VBI
Data
Slicer
CVBS/Y/G
Analog Front End
CVBS/
Pb/B/C
CVBS/
Y/G
VI_1_A
VI_1_B
Composite and S-Video Processor
ADC1
VI_1_C
CVBS/Y
VI_2_A
C
VI_2_B
VI_2_C
VI_3_B
5-line
Adaptive
Comb
ADC2
M
U
X
VI_3_A
CVBS/
Pr/R/C
Y/C
Separation
VI_3_C
C
Chroma
Processing
YCbCr
Y[9:0]
Output
Formatter
Pb/B
Gain/Offset
Pr/R
CVBS/Y VI_4_A
Luma
Processing
C[9:0]
FSS
Component
Processor
Y/G
ADC3
Y
ADC4
Color
Space
Conversion
YCbCr
GPIO
Figure 1−1. Functional Block Diagram
1−4
SDA
GLCO
Host
Interface
HS/CS
FID
VS/VBLK
AVID
DATACLK
PWDN
RESETB
XTAL2
XTAL1
Timing Processor
With Sync Detector
SCL
Sampling
Clock
1.6 Terminal Assignments
VI_1_A
CH1_A18GND
CH1_A18VDD
PLL_A18GND
PLL_A18VDD
XTAL2
XTAL1
VS/VBLK/GPIO
HS/CS/GPIO
FID/GPIO
C_0/GPIO
C_1/GPIO
DGND
DVDD
C_2/GPIO
C_3/GPIO
C_4/GPIO
C_5/GPIO
IOGND
IOVDD
PFP PACKAGE
(TOP VIEW)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
1
60
2
59
3
58
4
57
5
56
6
55
7
54
8
53
9
52
10
51
11
50
12
49
13
48
14
47
15
46
16
45
17
44
18
43
19
42
20
41
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
C_6/GPIO
C_7/GPIO
C_8/GPIO
C_9/GPIO
DGND
DVDD
Y_0
Y_1
Y_2
Y_3
Y_4
IOGND
IOVDD
Y_5
Y_6
Y_7
Y_8
Y_9
DGND
DVDD
CH4_A33VDD
CH4_A33GND
VI_4_A
CH4_A18GND
CH4_A18VDD
AGND
DGND
SCL
SDA
INTREQ
DVDD
DGND
PWDN
RESETB
FSS/GPIO
AVID/GPIO
GLCO/I2CA
IOVDD
IOGND
DATACLK
VI_1_B
VI_1_C
CH1_A33GND
CH1_A33VDD
CH2_A33VDD
CH2_A33GND
VI_2_A
VI_2_B
VI_2_C
CH2_A18GND
CH2_A18VDD
A18VDD_REF
A18GND_REF
CH3_A18VDD
CH3_A18GND
VI_3_A
VI_3_B
VI_3_C
CH3_A33GND
CH3_A33VDD
Figure 1−2. Terminal Assignments Diagram
1−5
1.7 Terminal Functions
Table 1−1. Terminal Functions
TERMINAL
NAME
NUMBER
I/O
DESCRIPTION
Analog Video
VI_1_A
80
VI_1_B
1
VI_1_x: Analog video input for CVBS/Pb/B/C
VI_1_C
2
VI_2_x: Analog video input for CVBS/Y/G
VI_2_A
7
VI_3_x: Analog video input for CVBS/Pr/R/C
VI_2_B
8
VI_2_C
9
VI_3_A
16
VI_3_B
17
VI_3_C
18
VI_4_A
23
VI_4_A: Analog video input for CVBS/Y
I
Up to 10 composite, 4 S-video, and 2 composite or 3 component video inputs (or a combination thereof)
can be supported.
The inputs must be ac-coupled. The recommended coupling capacitor is 0.1 µF.
The possible input configurations are listed in the input select register at I2C subaddress 00h (see
Section 2.11.1).
Clock Signals
DATACLK
40
O
Line-locked data output clock
XTAL1
74
I
External clock reference input. It can be connected to an external oscillator with a 1.8-V compatible clock
signal or to a 14.31818-MHz crystal oscillator.
XTAL2
75
O
External clock reference output. Not connected if XTAL1 is driven by an external single-ended oscillator.
Digital Video
C_[9:0]/
GPIO
Y_[9:0]
57, 58,
59, 60,
63, 64,
65, 66,
69, 70
O
43, 44,
45, 46,
47, 50,
51, 52,
53, 54
O
Digital video output of CbCr, C_9 is MSB and C_0 is LSB. Unused outputs can be left unconnected. Also,
these terminals can be programmable general-purpose I/O.
For the 8-bit mode, the two LSBs are ignored.
C1 needs a pulldown resistor (see Figure 5−1).
Digital video output of Y/YCbCr, Y_9 is MSB and Y_0 is LSB.
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.
Miscellaneous Signals
FSS/GPIO
35
I/O
Fast-switch (blanking) input. Switching signal between the synchronous component video (YPbPr/RGB)
and the composite video input.
Programmable general-purpose I/O
Genlock control output (GLCO)
GLCO/I2CA
37
I/O
INTREQ
30
O
Interrupt request
PWDN
33
I
Power-down input:
1 = Power down
0 = Normal mode
RESETB
34
I
Reset input, active low
1−6
During reset, this terminal is an input used to program the I2C address LSB.
Table 1−1. Terminal Functions (Continued)
TERMINAL
NAME
NUMBER
I/O
DESCRIPTION
Host Interface
I2C clock input
I2C data bus
SCL
28
I
SDA
29
I/O
AGND
26
I
Analog ground. Connect to analog ground.
A18GND_REF
13
I
Analog 1.8-V return
A18VDD_REF
12
I
Analog power for reference 1.8 V
CH1_A18GND
CH2_A18GND
CH3_A18GND
CH4_A18GND
79
10
15
24
I
Analog 1.8-V return
CH1_A18VDD
CH2_A18VDD
CH3_A18VDD
CH4_A18VDD
78
11
14
25
I
Analog power. Connect to 1.8 V.
CH1_A33GND
CH2_A33GND
CH3_A33GND
CH4_A33GND
3
6
19
22
I
Analog 3.3-V return
CH1_A33VDD
CH2_A33VDD
CH3_A33VDD
CH4_A33VDD
4
5
20
21
I
Analog power. Connect to 3.3 V.
DGND
27, 32, 42,
56, 68
I
Digital return
DVDD
31, 41, 55,
67
I
Digital power. Connect to 1.8 V.
IOGND
39, 49, 62
I
Digital power return
IOVDD
38, 48, 61
I
Digital power. Connect to 3.3 V or less for reduced noise.
PLL_A18GND
77
I
Analog power return
PLL_A18VDD
76
I
Analog power. Connect to 1.8 V.
HS/CS/GPIO
72
I/O
Horizontal sync output or digital composite sync output
Programmable general-purpose I/O
VS/VBLK/GPIO
73
I/O
Vertical sync output (for modes with dedicated VSYNC) or VBLK output
Programmable general-purpose I/O
FID/GPIO
71
I/O
Odd/even field indicator output. This terminal needs a pulldown resistor (see Figure 5−1).
Programmable general-purpose I/O
AVID/GPIO
36
I/O
Active video indicator output
Programmable general-purpose I/O
Power Supplies
Sync Signals
1−7
1−8
2 Functional Description
2.1 Analog Processing and A/D Converters
Figure 2−1 shows a functional diagram of the analog processors and ADCs. This block provides the analog interface
to all video inputs. It accepts up to 10 inputs and performs source selection, video clamping, video amplification, A/D
conversion, and gain and offset adjustments to center the digitized video signal.
TVP5146 Analog Front End
VI_1_A
VI_1_B
VI_1_C
VI_2_A
VI_2_B
VI_2_C
M
U
X
Clamp
PGA
10-Bit
ADC
M
U
X
Clamp
PGA
10-Bit
ADC
CH1 A/D
CH2 A/D
Line-Locked Sampling Clock
VI_3_A
VI_3_B
VI_3_C
VI_4_A
M
U
X
Clamp
PGA
10-Bit
ADC
Clamp
PGA
10-Bit
ADC
CH3 A/D
CH4 A/D
Figure 2−1. Analog Processors and A/D Converters
2.1.1
Video Input Switch Control
The TVP5146 decoder has 4 analog channels that accept up to 10 video inputs. The user can configure the internal
analog video switches via the I2C interface. The 10 analog video inputs can be used for different input configurations,
some of which are:
•
Up to 10 selectable individual composite video inputs
•
Up to four selectable S-video inputs
•
Up to three selectable analog YPbPr/RGB video inputs and one CVBS input
•
Up to two selectable analog YPbPr/RGB video inputs, two S-video inputs, and two CVBS inputs
The input selection is performed by the input select register at I2C subaddress 00h (see Section 2.11.1).
2−1
2.1.2
Analog Input Clamping
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit provides
line-by-line restoration of the video sync level to a fixed dc reference voltage. The selection between bottom and mid
clamp is performed automatically by the TVP5146 decoder.
2.1.3
Automatic Gain Control
The TVP5146 decoder uses four programmable gain amplifiers (PGAs), one per channel. The PGA can scale a signal
with a voltage-input compliance of 0.5-VPP to 2-VPP to a full-scale 10-bit A/D output code range. A 4-bit code sets
the coarse gain with individual adjustment per channel. Minimum gain corresponds to a code 0x0 (2-VPP full-scale
input, –6-dB gain) while maximum gain corresponds to code 0xF (0.5 VPP full scale, +6-dB gain). The TVP5146
decoder also has 12-bit fine gain controls for each channel and applies independently to coarse gain controls. For
composite video, the input video signal amplitude can vary significantly from the nominal level of 1 VPP. The TVP5146
decoder can adjust its PGA setting automatically: an AGC can be enabled and can adjust the signal amplitude such
that the maximum range of the ADC is reached without clipping. Some nonstandard video signals contain peak white
levels that saturate the ADC. In these cases, the AGC automatically cuts back gain to avoid clipping. If the AGC is
on, then the TVP5146 decoder can read the gain currently being used.
The TVP5146 AGC comprises the front-end AGC before Y/C separation and the back-end AGC after Y/C separation.
The back-end AGC restores the optimum system gain whenever an amplitude reference such as the composite peak
(which is only relevant before Y/C separation) forces the front-end AGC to set the gain too low. The front-end and
back-end AGC algorithms can use up to four amplitude references: sync height, color burst amplitude, composite
peak, and luma peak.
The specific amplitude references being used by the front-end and back-end AGC algorithms can be independently
controlled using the AGC white peak processing register located at subaddress 74h. The TVP5146 gain increment
speed and gain increment delay can be controlled using the AGC increment speed register located at subaddress
78h and the AGC increment delay register located at subaddress 79h, respectively.
2.1.4
A/D Converters
All ADCs have a resolution of 10 bits and can operate up to 30 MSPS. All A/D channels receive an identical clock
from the on-chip phase-locked loop (PLL) at a frequency between 24 MHz and 30 MHz. All ADC reference voltages
are generated internally.
2.2 Digital Video Processing
Figure 2−2 is a block diagram of the TVP5146 digital video decoder processor. This processor receives digitized
video signals from the ADCs and performs composite processing for CVBS and S-video inputs, YCbCr signal
enhancements for CVBS and S-video inputs, and YPbPr/RGB processing for component video inputs. It also
generates horizontal and vertical syncs and other output control signals such as genlock for CVBS and S-video inputs.
Additionally, it can provide field identification, horizontal and vertical lock, vertical blanking, and active video window
indication signals. The digital data output can be programmed to two formats: 20-bit 4:2:2 with external syncs or 10-bit
4:2:2 with embedded/separate syncs. The circuit detects pseudosync pulses, AGC pulses, and color striping in
Macrovision-encoded copy-protected material. Information present in the VBI interval can be retrieved and either
inserted in the ITU-R BT.656 output as ancillary data or stored in internal FIFO and/or registers for retrieval via the
host port interface.
2−2
Copy
Protection
Detector
CH1 A/D
VBI Data
Processor
Y[9:0]
Output
Formatter
2
Decimation
CVBS/Y/G
C[9:0]
FSS
CVBS/Y
CH2 A/D
2
Decimation
C
CH3 A/D
2
Decimation
Y/G
Pb/B
Pr/R
CH4 A/D
Slice VBI Data
Composite
Processor
YCbCr
Component
Processor
YCbCr
2
Decimation
XTAL1
FID
XTAL2
RESETB
PWDN
DATACLK
VS/VBLK
Timing
Processor
HS/CS
Host
Interface
SCL
SDA
GLCO
AVID
Figure 2−2. Digital Video Processor Block Diagram
2.2.1
2 Decimation Filter
All input signals are oversampled by a factor of 2 (27 MHz). The A/D outputs first pass through decimation filters that
reduce the data rate to 1× the pixel rate. The decimation filter is a half-band filter. Oversampling and decimation
filtering can effectively increase the overall signal-to-noise ratio by 3 dB.
2.2.2
Composite Processor
Figure 2−3 is a block diagram of the TVP5146 digital composite video processing circuit. This circuit receives a
digitized composite or S-video signal from the ADCs and performs Y/C separation (bypassed for S-video input),
chroma demodulation for PAL/NTSC and SECAM, and YUV signal enhancements.
The 10-bit composite video is multiplied by the subcarrier signals in the quadrature demodulator to generate color
difference signals U and V. The U and V signals are then sent to low-pass filters to achieve the desired bandwidth.
An adaptive 5-line comb filter separates UV from Y based on the unique property of color phase shifts from line to
line. The chroma is remodulated through a quadrature modulator and subtracted from line-delayed composite video
to generate luma. This form of Y/C separation is completely complementary, thus there is no loss of information.
However, in some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In that case, notch filters
can be turned on. To accommodate some viewing preferences, a peaking filter is also available in the luma path.
Contrast, brightness, sharpness, hue, and saturation controls are programmable through the host port.
2−3
Peaking
CVBS/Y
Line
Delay
Delay
Y
–
Y
NTSC/PAL
Remodulation
SECAM Luma
Contrast
Brightness
Saturation
Adjust
Notch
Filter
CVBS
SECAM
Color
Demodulation
U
Burst
Accumulator
(V)
V
CVBS/C
NTSC/PAL
Demodulation
Color LPF
↓2
Cr
Notch
Filter
Color LPF
↓2
Burst
Accumulator
(U)
Cb
5-Line
Adaptive
Comb
Filter
Notch
Filter
Delay
Notch
Filter
Delay
U
V
Figure 2−3. Composite and S-Video Processor Block Diagram
2.2.2.1 Color Low-Pass Filter
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for video
sources that have asymmetrical U and V side bands, it is desirable to limit the filter bandwidth to avoid UV crosstalk.
The color low-pass filter bandwidth is programmable to enable one of the three notch filters. Figure 2−4 through
Figure 2−7 represent the frequency responses of the wideband color low-pass filters.
2−4
10
10
0
0
PAL SQP –3 dB
@ 1.55 MHz
−20
−30
−40
ITU-R BT.601 –3 dB
@ 1.42 MHz
−50
−60
−70
0.0
Filter 0
–3 dB @ 1.29 MHz
−10
Amplitude − dB
Amplitude − dB
−10
Filter 2
–3 dB @ 767 kHz
−20
Filter 3
–3 dB @ 504 kHz
−30
Filter 1
–3 dB
@ 936 kHz
−40
−50
NTSC SQP –3 dB
@ 1.29 MHz
0.5
1.0
1.5
2.0
−60
2.5
3.0
3.5
−70
0.0
4.0
0.5
f – Frequency – MHz
2.0
2.5
3.0
3.5
4.0
Figure 2−5. Color Low-Pass Filter With Filter
Frequency Response, NTSC Square Pixel
Sampling
10
10
Filter 2
–3 dB @ 844 kHz
0
−10
Amplitude − dB
Filter 3
–3 dB @ 554 kHz
−20
Filter 1
–3 dB
@ 1.03 MHz
−30
−40
−40
−60
−60
1.5
2.0
2.5
3.0
3.5
f – Frequency – MHz
Figure 2−6. Color Low-Pass Filter With Filter
Characteristics, NTSC/PAL ITU-R BT.601
Sampling
4.0
Filter 1
–3 dB
@ 1.13 MHz
−30
−50
1.0
Filter 3
–3 dB
@ 605 kHz
−20
−50
0.5
Filter 2
–3 dB @ 922 kHz
Filter 0
–3 dB @ 1.55 MHz
0
Filter 0
–3 dB @ 1.41 MHz
−10
Amplitude − dB
1.5
f – Frequency – MHz
Figure 2−4. Color Low-Pass Filter Frequency
Response
−70
0.0
1.0
−70
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
f – Frequency – MHz
Figure 2−7. Color Low-Pass Filter With Filter
Characteristics, PAL Square Pixel Sampling
2−5
2.2.2.2 Y/C Separation
Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter. The comb filter can
be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, then chroma trap
filters are used which are shown in Figure 2−8 through Figure 2−11. TI’s patented adaptive comb filter algorithm
reduces artifacts such as hanging dots at color boundaries. It detects and properly handles false colors in high
frequency luminance images, such as a multiburst pattern or circle pattern. Adaptive comb filtering is the
recommended mode of operation.
10
10
5
Notch 2 Filter
0
0
−5
−5
Amplitude − dB
Amplitude − dB
5
−10
−15
−20
Notch 3 Filter
Notch 1 Filter
−25
Notch 3 Filter
−10
Notch 1 Filter
−15
−20
Notch 2 Filter
−25
No Notch Filter
−30
−30
No Notch Filter
−35
−35
−40
−40
0
1
2
3
4
5
6
0
7
1
2
Figure 2−8. Chroma Trap Filter Frequency
Response, NTSC Square Pixel Sampling
5
6
7
Figure 2−9. Chroma Trap Filter Frequency
Response, NTSC ITU-R BT.601 Sampling
10
10
Notch 3 Filter
5
0
0
−5
−5
−10
Notch 1 Filter
−15
−20
Notch 3 Filter
5
Amplitude − dB
Amplitude − dB
4
f – Frequency – MHz
f – Frequency – MHz
Notch 2 Filter
−25
−10
Notch 1 Filter
−15
−20
Notch 2 Filter
−25
−30
−30
No Notch Filter
−35
No Notch Filter
−35
−40
−40
0
1
2
3
4
5
6
7
f – Frequency – MHz
Figure 2−10. Chroma Trap Filter Frequency
Response, PAL ITU-R BT.601 Sampling
2−6
3
0
1
2
3
4
5
6
7
f – Frequency – MHz
Figure 2−11. Chroma Trap Filter Frequency
Response, PAL Square Pixel Sampling
2.2.3
Luminance Processing
The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter, either of
which removes chrominance information from the composite signal to generate a luminance signal. The luminance
signal is then fed into the input of a peaking circuit. Figure 2−12 illustrates the basic functions of the luminance data
path. In the case of S-video, the luminance signal bypasses the comb filter or chroma trap filter and is fed directly
to the circuit. High-frequency components of the luminance signal are enhanced by a peaking filter (sharpness).
Figure 2−13, Figure 2−14, and Figure 2−15 show the characteristics of the peaking filter at four different gain settings
that are programmable via the host port.
Gain
Peak
Detector
IN
Bandpass
Filter
Peaking
Filter
x
Delay
+
OUT
Figure 2−12. Luminance Edge-Enhancer Peaking Block Diagram
7
7
Peak at
f = 2.40 MHz
6
Peak at
f = 2.64 MHz
6
Gain = 2
Gain = 2
5
Gain = 1
4
Amplitude − dB
Amplitude − dB
5
3
Gain = 0.5
2
Gain = 1
4
3
Gain = 0.5
2
1
1
0
0
Gain = 0
Gain = 0
−1
0
1
2
3
4
5
6
7
−1
0
1
2
3
4
5
6
f – Frequency – MHz
f – Frequency – MHz
Figure 2−13. Peaking Filter Response, NTSC
Square Pixel Sampling
Figure 2−14. Peaking Filter Response,
NTSC/PAL ITU-R BT.601 Sampling
7
2−7
7
Peak at
f = 2.89 MHz
6
Gain = 2
5
Amplitude − dB
Gain = 1
4
3
Gain = 0.5
2
1
0
Gain = 0
−1
0
1
2
3
4
5
6
7
f – Frequency – MHz
Figure 2−15. Peaking Filter Response, PAL Square Pixel Sampling
2.2.3.1 Color Transient Improvement
Color transient improvement (CTI) enhances horizontal color transients by delay modulation for both color difference
signals. The operation must be performed only on YCbCr-formatted data. The color difference signal transition points
are maintained, but the edges are enhanced for signals which have bandwidth-limited color components (for
example, CVBS and S-video).
2.2.4
Component Video Processor
The component video processing block supports a user-selectable contrast, brightness, and saturation adjustment
in YCbCr output formats. For YCbCr output formats, gain and offset values are applied to the luma data path in order
to map the pixel values to the correct output range (for 10-bit Ymin = 64 and Ymax = 940), and to provide a means of
adjusting contrast and brightness. For Y, digital contrast (gain) and brightness (offset) factors can vary from 0 to 255.
The contrast control adjusts the amplitude range of the Y output centered at the midpoint of the output code range.
The limit block limits the output to the ITU-R BT.601 range (Ymin to Ymax) or an extended range, depending on a user
setting.
Offset
Y
x
+
Limit
Gain
Figure 2−16. Y Component Gain, Offset, Limit
2−8
Y
For CbCr components, a saturation (gain) factor is applied to the CbCr inputs in order to map them to the CbCr output
code range and provide saturation control. Similarly, the limit block can limit CbCr outputs to a valid range:
Cb,Crmin = 64 / Cb,Crmax = 960
CbCr
x
Limit
CbCr
Gain
Figure 2−17. CbCr Component Gain, Offset, Limit
2.2.5
Color Space Conversion
The formulas for RGB to YCbCr conversion are given as:
Y = 0.299 × R + 0.587 × G + 0.114 × B
Cb = –0.172 × R – 0.339 × G + 0.511 × B + 512
Cr = 0.511 × R – 0.428 × G – 0.083 × B + 512
2.3 Clock Circuits
An internal line-locked PLL generates the system and pixel clocks. A 14.31818-MHz clock is required to drive the PLL.
This can be input to the TVP5146 decoder at the 1.8-V level on terminal 74 (XTAL1), or a crystal of 14.31818-MHz
fundamental resonant frequency can be connected across terminals 74 and 75 (XTAL2). If a parallel resonant circuit
is used as shown in Figure 2−18, then the external capacitors must have the following relationship:
CL1 = CL2 = 2CL – CSTRAY,
where CSTRAY is the terminal capacitance with respect to ground. Figure 2−18 shows the reference clock
configurations. The TVP5146 decoder generates the DATACLK signal used for clocking data.
TVP5146
XTAL1
XTAL2
TVP5146
74
75
14.31818-MHz
Clock
XTAL1
XTAL2
74
14.31818-MHz
Crystal
CL1
75
CL2
Figure 2−18. Reference Clock Configurations
2.4 Real-Time Control (RTC)
Although the TVP5146 decoder is a line-locked system, the color burst information is used to determine accurately
the color subcarrier frequency and phase. This ensures proper operation with nonstandard video signals that do not
follow exactly the required frequency multiple between color subcarrier frequency and video line frequency. The
frequency control word of the internal color subcarrier PLL and the subcarrier reset bit are transmitted via terminal 37
(GLCO) for optional use in an end system (for example, by a video encoder). The frequency control word is a 23-bit
binary number. The instantaneous frequency of the color subcarrier can be calculated from the following equation:
F PLL +
F ctrl
2 23
F sclk
where FPLL is the frequency of the subcarrier PLL, Fctrl is the 23-bit PLL frequency control word, and Fsclk is two times
the pixel frequency. Figure 2−19 shows the detailed timing diagram.
2−9
Valid
Sample
Invalid
Sample
Reserved
RTC
128 CLK
18 CLK
M
S
B
L
S
B
22
0
45 CLK
23-Bit Fsc PLL Increment
S
R
3 CLK
1 CLK
Start
Bit
NOTE: RTC Reset bit (R) is active low, Sequence bit (S) PAL:1 = (R-Y) line normal, 0 = (R-Y) line inverted, NTSC: 1 = no change
Figure 2−19. RTC Timing
2.5 Output Formatter
The output formatter sets how the data is formatted for output on the TVP5146 output buses. Table 2−1 shows the
available output modes.
Table 2−1. Output Format
2−10
TERMINAL
NAME
TERMINAL
NUMBER
10-Bit 4:2:2 YCbCr
20-Bit 4:2:2
YCbCr
Y_9
43
Cb9, Y9, Cr9
Y9
Y_8
44
Cb8, Y8, Cr8
Y8
Y_7
45
Cb7, Y7, Cr7
Y7
Y_6
46
Cb6, Y6, Cr6
Y6
Y_5
47
Cb5, Y5, Cr5
Y5
Y_4
50
Cb4, Y4, Cr4
Y4
Y_3
51
Cb3, Y3, Cr3
Y3
Y_2
52
Cb2, Y2, Cr2
Y2
Y_1
53
Cb1, Y1, Cr1
Y1
Cb0, Y0, Cr0
Y_0
54
C_9
57
Cb9, Cr9
Y0
C_8
58
Cb8, Cr8
C_7
59
Cb7, Cr7
C_6
60
Cb6, Cr6
C_5
63
Cb5, Cr5
C_4
64
Cb4, Cr4
C_3
65
Cb3, Cr3
C_2
66
Cb2, Cr2
C_1
69
Cb1, Cr1
C_0
70
Cb0, Cr0
Table 2−2. Summary of Line Frequencies, Data Rates, and Pixel/Line Counts
PIXELS PER
LINE
ACTIVE PIXELS
PER LINE
LINES PER
FRAME
PIXEL
FREQUENCY
(MHz)
NTSC-J, M
858
720
525
NTSC-4.43
858
720
525
PAL-M
858
720
525
PAL-60
858
720
525
PAL-B, D, G, H, I
864
720
PAL-N
864
PAL-Nc
864
STANDARDS
COLOR
SUBCARRIER
FREQUENCY (MHz)
HORIZONTAL
LINE RATE (kHz)
13.5
3.579545
15.73426
13.5
4.43361875
15.73426
13.5
3.57561149
15.73426
13.5
4.43361875
15.73426
625
13.5
4.43361875
15.625
720
625
13.5
4.43361875
15.625
720
625
13.5
3.58205625
15.625
Dr = 4.406250
Db = 4.250000
15.625
601 sampling
SECAM
864
720
625
13.5
NTSC-J, M
780
640
525
12.2727
3.579545
15.73426
NTSC-4.43
780
640
525
12.2727
4.43361875
15.73426
PAL-M
780
640
525
12.2727
3.57561149
15.73426
PAL-60
780
640
525
12.2727
4.43361875
15.73426
PAL-B, D, G, H, I
944
768
625
14.75
4.43361875
15.625
PAL-N
944
768
625
14.75
4.43361875
15.625
PAL-Nc
944
768
625
14.75
3.58205625
15.625
SECAM
944
768
625
14.75
Dr = 4.406250
Db = 4.250000
15.625
Square sampling
2.5.1
Fast Switches for SCART
The TVP5146 decoder supports the SCART interface used in European audio/video end equipment to carry
composite video, S-video, and RGB video on the same cable. In the event that composite video and RGB video are
present simultaneously on the video terminals assigned to a SCART interface, the TVP5146 decoder assumes they
are pixel synchronous to each other. The timing for both composite video and RGB video is obtained from the
composite source, and its derived clock is used to sample RGB video as well. The fast-switch input terminal allows
switching between these two input video sources on a pixel-by-pixel basis. The fast switch is a hard switch; there is
no alpha blending between both sources.
2.5.2
Separate Syncs
VS, HS, and VBLK are independently software programmable to a 1× pixel count. This allows any possible alignment
to the internal pixel count and line count. The default settings for 525-line and 625-line video outputs are given as
examples below. FID changes at the same transient time when the trailing edge of vertical sync occurs. The polarity
of FID is programmable by an I2C interface.
2−11
525-Line
525
1
2
3
4
5
6
7
8
9
10
11
21
22
First Field Video
HS
VS
VS Start
VS Stop
CS
FID
VBLK
VBLK Start
262
263
VBLK Stop
264
265
266
267
268
269
270
271
272
273
284
Second Field Video
HS
VS
VS Start
VS Stop
CS
FID
VBLK
VBLK Start
VBLK Stop
NOTE: Line numbering conforms to ITU-R BT.470
Figure 2−20. Vertical Synchronization Signals for 525-Line System
2−12
285
625-Line
622
623
624
625
1
2
3
4
5
6
7
8
23
24
25
First Field Video
HS
VS
VS Start
VS Stop
CS
FID
VBLK
VBLK Start
310
311
VBLK Stop
312
313
314
315
316
317
318
319
320
321
336
337
338
Second Field Video
HS
VS
VS Start
VS Stop
CS
FID
VBLK
VBLK Start
VBLK Stop
NOTE: Line numbering conforms to ITU-R BT.470
Figure 2−21. Vertical Synchronization Signals for 625-Line System
2−13
0
DATACLK
Y[9:0]
Cb
Y
Cr
Y
EAV EAV EAV EAV
2
1
3
4
Horizontal Blanking
HS Start
SAV SAV SAV SAV
Cb0
1
2
3
4
HS Stop
HS
A
C
B
D
AVID
AVID Stop
AVID Start
DATACLK = 2
Pixel Clock
Mode
A
B
C
D
NTSC 601
106
128
42
276
PAL 601
112
128
48
288
NTSC Sqp
108
128
44
280
PAL Sqp
144
128
80
352
NOTE: ITU-R BT.656 10-bit 4:2:2 timing with 2× pixel clock reference
Figure 2−22. Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode
2−14
Y0
Cr0
Y1
0
DATACLK
Y[9:0]
CbCr[9:0]
Y
Y
Y
Y
Horizontal Blanking
Cb
Cr
Cb
Cr
Horizontal Blanking
HS Start
Y0
Y1
Y2
Y3
Cb0 Cr0 Cb1 Cr1
HS Stop
HS
A
C
B
2
D
AVID
AVID Stop
AVID Start
NOTE: AVID rising edge occurs 2 clock cycles early.
DATACLK = 1
Pixel Clock
Mode
A
B
C
D
NTSC 601
53
64
19
136
PAL 601
56
64
22
142
NTSC Sqp
54
64
20
138
PAL Sqp
72
64
38
174
NOTE: 20-bit 4:2:2 timing with 1× pixel clock reference
Figure 2−23. Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode
2−15
HS
First Field
B/2
B/2
VS
HS
H/2 + B/2
Second Field
H/2 + B/2
VS
10-Bit (PCLK = 2
Mode
Pixel Clock)
20-Bit (PCLK = 1
Pixel Clock)
B/2
H/2
B/2
H/2
NTSC 601
64
858
32
429
PAL 601
64
864
32
432
NTSC Sqp
64
780
32
390
PAL Sqp
64
944
32
472
Figure 2−24. VSYNC Position With Respect to HSYNC
2.5.3
Embedded Syncs
Standards with embedded syncs insert the SAV and EAV codes into the data stream on the rising and falling edges
of AVID. These codes contain the V and F bits which also define vertical timing. Table 2−3 gives the format of the SAV
and EAV codes.
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and field
counter varies depending on the standard.
The P bits are protection bits:
P3 = V xor H; P2 = F xor H; P1 = F xor V; P0 = F xor V xor H
Table 2−3. EAV and SAV Sequence
D9 (MSB)
D8
D7
D6
D5
D4
D3
D2
D1
D0
Preamble
1
1
1
1
1
1
1
1
1
1
Preamble
0
0
0
0
0
0
0
0
0
0
Preamble
0
0
0
0
0
0
0
0
0
0
Status word
1
F
V
H
P3
P2
P1
P0
0
0
2.6 I2C Host Interface
Communication with the TVP5146 decoder is via an I2C host interface. The I2C standard consists of two signals, the
serial input/output data (SDA) line and the serial input clock line (SCL), which carry information between the devices
connected to the bus. A third signal (I2CA) is used for slave address selection. Although an I2C system can be
multimastered, the TVP5146 decoder functions as a slave device only.
2−16
Because SDA and SCL are kept open-drain at a logic-high output level or when the bus is not driven, the user must
connect SDA and SCL to a positive supply voltage via a pullup resistor on the board. The slave-address select signal,
terminal 37 (I2CA), enables the use of two TVP5146 decoders tied to the same I2C bus by controlling the least
significant bit of the I2C device address.
Table 2−4. I2C Host Interface Terminal Description
SIGNAL
I2CA
TYPE
DESCRIPTION
I
Slave address selection
SCL
I
Input clock line
SDA
I/O
Input/output data line
Reset and I2C Bus Address Selection
2.6.1
The TVP5146 decoder can respond to two possible chip addresses. The address selection is made at reset by an
externally supplied level on the I2CA terminal. The TVP5146 decoder samples the level of terminal 37 at power up
or at the trailing edge of RESETB and configures the I2C bus address bit A0. The I2CA terminal has an internal
pulldown resistor to pull the terminal low to set a zero.
Table 2−5. I2C Address Selection
A6
A5
A4
A3
A2
A1
A0 (I2CA)
R/W
1
0
1
1
1
0
B9/B8
0
1
1
1
0
0 (default)
1†
1/0
1
1/0
BB/BA
HEX
† If terminal 37 is strapped to DVDD via a 2.2-kΩ resistor, I2C device address A0 is set to 1.
2.6.2
I2C Operation
S
1011 1000
ACK
Subaddress
ACK
Send data
ACK
P
Data transfers occur using the following illustrated formats.
Read from I2C control registers
S
1011 1000
ACK
Subaddress
ACK
S
1011 1001
ACK
Receive data
NAK
P
S = I2C bus start condition
P = I2C bus stop condition
ACK = Acknowledge generated by the slave
NAK = Acknowledge generated by the master, for multiple-byte read master with ACK for each byte except
last byte
Subaddrress = Subaddress byte
Data = Data byte, if more than one byte of data is transmitted (read and write), the subaddress pointer is
automatically incremented.
I2C bus address = Example showing that I2CA is in default mode. Write (B8h), read (B9h)
2.6.3
VBUS Access
The TVP5146 decoder has additional internal registers accessible through an indirect access to an internal 24-bit
address wide VBUS. Figure 2−25 shows the VBUS registers access.
2−17
I2C Registers
VBUS Registers
00h
HOST
Processor
00 0000h
I2C
CC
80 051Ch
WSS
80 0520h
VITC
E0h
VBUS
Data
E1h
E8h
Line
Mode
VBUS[23:0]
VPS
VBUS
Address
EAh
FIFO
FFh
80 052Ch
80 0600h
80 0700h
90 1904h
FF FFFFh
VBUS Write
Single Byte
S
B8
ACK
E8
ACK
VA0
ACK
VA1
ACK
S
B8
ACK
E0
ACK
Send Data
ACK P
VA2
ACK P
ACK P
Multiple Bytes
S
B8
ACK
E8
ACK
VA0
ACK
VA1
ACK
VA2
S
B8
ACK
E1
ACK
Send Data
ACK
•••
Send Data
VA0
VA1
ACK
VA2
ACK P
VBUS Read
Single Byte
S
B8
ACK
E8
ACK
S
B8
ACK
E0
ACK S
ACK
B9
ACK
Read Data
ACK P
NAK P
Multiple Bytes
S
B8
ACK
E8
ACK
VA0
S
B8
ACK
E1
ACK S
ACK
B9
VA1
ACK
ACK
VA2
Read Data
ACK P
ACK
NOTE: Examples use default I2C address.
ACK = Acknowledge generated by the slave
NAK = No Acknowledge generated by the master
Figure 2−25. VBUS Access
2−18
•••
Read Data
NAK P
2.6.4
I2C Timing Requirements
The TVP5146 decoder requires delays in the I2C accesses to accommodate the internal processor timing. In
accordance with I2C specifications, the TVP5146 decoder holds the I2C clock line (SCL) low to indicate the wait period
to the I2C master. If the I2C master is not designed to check for the I2C clock line held-low condition, then the maximum
delays must always be inserted where required. These delays are of variable length; maximum delays are indicated
in the following diagram:
Normal register
S
1011 1000
ACK
Subaddress
ACK
Send data
ACK
Wait 64 µs
P
2.7 VBI Data Processor
The TVP5146 VBI data processor (VDP) slices various data services like teletext (WST, NABTS), closed caption
(CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code (VITC), video program
system (VPS), copy generation management system (CGMS) data, and electronic program guide (Gemstar) 1x/2x.
Table 2−6 shows the supported VBI system.
These services are acquired by programming the VDP to enable the reception of one or more VBI data standard(s)
in the VBI. The VDP can be programmed on a line-per-line basis to enable simultaneous reception of different VBI
formats, one per line. The results are stored in a FIFO and/or registers. Because of its high data bandwidth, the teletext
results are stored in FIFO only. The TVP5146 decoder provides fully decoded V-CHIP data to the dedicated registers
at subaddresses 800540h–800543h (see Sections 2.12.4 through 2.12.7).
Table 2−6. Supported VBI Systems
VBI SYSTEM
Teletext WST A
Teletext WST B
STANDARD
LINE NUMBER
NUMBER OF BYTES
SECAM
6–23 (Fields 1 and 2)
38
PAL
6–22 (Fields 1 and 2)
43
Teletext NABTS C
NTSC
10–21 (Fields 1 and 2)
34
Teletext NABTS D
NTSC-J
10–21 (Fields 1 and 2)
35
Closed caption
PAL
22 (Fields 1 and 2)
2
Closed caption
NTSC
21 (Fields 1 and 2)
2
PAL
23 (Fields 1 and 2)
14 bits
WSS
WSS-CGMS
NTSC
20 (Fields 1 and 2)
20 bits
VITC
PAL
6–22
9
VITC
NTSC
10–20
9
PAL
16
13
V-CHIP (decoded)
NTSC
21 (Field 2)
2
Gemstar 1×
NTSC
2
Gemstar 2×
NTSC
5 with frame byte
VPS (PDC)
User
Any
Programmable
Programmable
2−19
2.7.1
VBI FIFO and Ancillary Data in Video Stream
Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI data is output on the
Y[9:2] terminals during the horizontal blanking period. Table 2−7 shows the header format and sequence of the
ancillary data inserted into the video stream. This format is also used to store any VBI data into the FIFO. The size
of the FIFO is 512 bytes. Therefore, the FIFO can store up to 11 lines of teletext data with the NTSC NABTS standard.
Table 2−7. Ancillary Data Format and Sequence
BYTE
NO.
D7
(MSB)
D6
D5
D4
D3
D2
D1
D0
(LSB)
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
3
NEP
EP
0
1
0
DID2
DID1
DID0
4
NEP
EP
F5
F4
F3
F2
F1
F0
Secondary data ID (SDID)
5
NEP
EP
N5
N4
N3
N2
N1
N0
Number of 32-bit data (NN)
0
0
0
6
7
Video line # [7:0]
Data
error
Match
#1
DESCRIPTION
Ancillary data preamble
Data ID (DID)
Internal data ID0 (IDID0)
Match
#2
Video line # [9:8]
Internal data ID1 (IDID1)
8
1. Data
Data byte
9
2. Data
Data byte
10
3. Data
Data byte
11
4. Data
Data byte
:
4N+7
:
0
0
0
0
1st word
:
m. Data
Data byte
CS[7:0]
Check sum
0
0
0
0
Nth word
Fill byte
EP:
Even parity for D0–D5
DID:
91h: Sliced data of VBI lines of first field
53h: Sliced data of line 24 to end of first field
55h: Sliced data of VBI lines of second field
97h: Sliced data of line 24 to end of second field
SDID:
This field holds the data format taken from the line mode register bits [2:0] of the corresponding line.
NN:
Number of Dwords beginning with byte 8 through 4N+7. Note this value is the number of Dwords where
each Dword is 4 bytes.
IDID0:
Transaction video line number [7:0]
IDID1:
Bit 0/1 = Transaction video line number [9:8]
Bit 2 = Match 2 flag
Bit 3 = Match 1 flag
Bit 4 = 1 if an error was detected in the EDC block. 0 if no error was detected.
CS:
Sum of D0–D7 of first data through last data byte.
Fill byte:
Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the sync pattern
byte. Byte 9 is the first data byte.
2−20
NEP: Negated even parity
2.7.2
VBI Raw Data Output
The TVP5146 decoder can output raw A/D video data at twice the sampling rate for external VBI slicing. This is
transmitted as an ancillary data block, although somewhat differently from the way the sliced VBI data is transmitted
in the FIFO format as described in Section 2.7.1. The samples are transmitted during the active portion of the line.
VBI raw data uses ITU-R BT.656 format having only luma data. The chroma samples are replaced by luma samples.
The TVP5146 decoder inserts a four-byte preamble 000h 3FFh 3FFh 180h before data start. There are no checksum
bytes and fill bytes in this mode.
Table 2−8. VBI Raw Data Output Format
BYTE
NO.
D9
(MSB)
D8
D7
D6
D5
D4
D3
D2
D1
D0
(LSB)
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
3
0
1
1
0
0
0
0
0
0
0
4
1. Data
5
2. Data
:
:
n–1
n–5. Data
n
n–4. Data
DESCRIPTION
VBI raw data preamble
2× pixel rate luma data
2
(i.e., NTSC 601: n = 1707)
2.8 Reset and Initialization
Reset is initiated at power up or any time terminal 34 (RESETB) is brought low. Table 2−9 describes the status of the
TVP5146 terminals during and immediately after reset.
Table 2−9. Reset Sequence
SIGNAL NAME
DURING RESET
RESET COMPLETED
Y[9:0], C[9:0], DATACLK
Input
High-impedance
RESETB, PWDN, SDA, SCL, FSS,
AVID, GLCO, HS, VS, FID
Input
Input
INTREQ
Input
Output
DATACLK
Output
High-impedance
POWER
(3.3 V and 1.8 V)
1 ms (min)
200 ns (min)
Normal Operation
RESETB
(Terminal 34)
Reset
1 ms (min)
SDA
(Terminal 29)
Invalid I2C Cycle
Valid
Figure 2−26. Reset Timing
2−21
The TVP5146 requires that terminal 69 (C_1/GPIO) be held LOW. If using the 20-/16-bit mode or using this
terminal as GPIO, then this terminal must be pulled low through a 2.2-kΩ pulldown resistor (see Figure 5−1).
If unused, this terminal can be shorted to ground. (Note: If using the 20-/16-bit mode and only using the 16
MSBs, it is possible to short terminal 69 to GND, but the current for IOVDD will increase by 2 or 3 mA.)
After reset, the user must write the following I2C commands to the TVP5146:
STEP
I2C SUBADDRESS
I2C DATA
1
0xE8
0x02
2
0xE9
0x00
3
0xEA
0x80
4
0xE0
0x01
5
0xE8
0x60
6
0xE9
0x00
7
0xEA
0xB0
8
0xE0
0x01
9
0xE0
0x00
Afterward, the user programs the device as usual.
2.9 Adjusting External Syncs
The proper sequence to program the following external syncs is:
•
•
•
To set NTSC, PAL-M, NTSC 443, PAL60 (525-line modes):
−
Set the video standard to NTSC (register 02h)
−
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)
To set PAL, PAL-N, SECAM (625-line modes):
−
Set the video standard to PAL (register 02h)
−
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)
For autoswitch, set the video standard to autoswitch (register 02h)
2.10 Internal Control Registers
The TVP5146 decoder is initialized and controlled by a set of internal registers that define the operating parameters
of the entire decoder. Communication between the external controller and the TVP5146 decoder is through a
standard I2C host port interface, as described earlier. Table 2−10 shows the summary of these registers. Detailed
programming information for each register is described in the following sections. Additional registers are accessible
through an indirect procedure involving access to an internal 24-bit address wide VBUS. Table 2−11 shows the
summary of the VBUS registers.
NOTE: Do not write to reserved registers. Reserved bits in any defined register must be written
with 0s, unless otherwise noted.
2−22
Table 2−10. Register Summary
I2C SUBADDRESS
DEFAULT
R/W
Input select
00h
00h
R/W
AFE gain control
01h
0Fh
R/W
Video standard
02h
00h
R/W
Operation mode
03h
00h
R/W
Autoswitch mask
04h
23h
R/W
Color killer
05h
10h
R/W
Luminance processing control 1
06h
00h
R/W
Luminance processing control 2
07h
00h
R/W
Luminance processing control 3
08h
02h
R/W
Luminance brightness
09h
80h
R/W
Luminance contrast
0Ah
80h
R/W
Chrominance saturation
0Bh
80h
R/W
Chroma hue
0Ch
00h
R/W
Chrominance processing control 1
0Dh
00h
R/W
Chrominance processing control 2
0Eh
0Eh
R/W
Reserved
0Fh
Component Pr saturation
10h
80h
R/W
Component Y contrast
11h
80h
R/W
Component Pb saturation
12h
80h
R/W
Reserved
13h
Component Y brightness
14h
80h
R/W
Reserved
15h
REGISTER NAME
AVID start pixel
16h–17h
055h
R/W
AVID stop pixel
18h–19h
325h
R/W
HSYNC start pixel
1Ah–1Bh
000h
R/W
HSYNC stop pixel
1Ch–1Dh
040h
R/W
VSYNC start line
1Eh–1Fh
004h
R/W
VSYNC stop line
20h–21h
007h
R/W
VBLK start line
22h–23h
001h
R/W
VBLK stop line
24h–25h
015h
R/W
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
2−23
Table 2−10. Registers Summary (Continued)
REGISTER NAME
Reserved
Fast-switch control
DEFAULT
R/W
CCh
R/W
00h
R/W
26h–27h
28h
Reserved
29h
Fast-switch SCART delay
2Ah
Reserved
2Bh
SCART delay
2Ch
00h
R/W
CTI delay
2Dh
00h
R/W
CTI control
2Eh
00h
R/W
Reserved
2Fh–30h
RTC
31h
05h
R/W
Sync control
32h
00h
R/W
Output formatter 1
33h
40h
R/W
Output formatter 2
34h
00h
R/W
Output formatter 3
35h
FFh
R/W
Output formatter 4
36h
FFh
R/W
Output formatter 5
37h
FFh
R/W
Output formatter 6
38h
FFh
R/W
Clear lost lock detect
39h
00h
R/W
Status 1
3Ah
R
Status 2
3Bh
R
3Ch–3Dh
R
AGC gain status
Reserved
3Eh
Video standard status
3Fh
R
GPIO input 1
40h
R
GPIO input 2
41h
R
Vertical line count
42h–43h
R
Reserved
44h–45h
R
AFE coarse gain for CH1
46h
20h
R/W
AFE coarse gain for CH2
47h
20h
R/W
AFE coarse gain for CH3
48h
20h
R/W
AFE coarse gain for CH4
49h
20h
R/W
AFE fine gain for Pb_B
4Ah–4Bh
900h
R/W
AFE fine gain for Y_G_Chroma
4Ch–4Dh
900h
R/W
AFE fine gain for Pr_R
4Eh–4Fh
900h
R/W
AFE fine gain for CVBS_Luma
50h–51h
900h
R/W
Reserved
52h–6Fh
ROM version
Reserved
AGC white peak processing
Reserved
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
2−24
I2C SUBADDRESS
70h
R
71h–73h
74h
75h–77h
00h
R/W
Table 2−10. Registers Summary (Continued)
REGISTER NAME
I2C SUBADDRESS
DEFAULT
R/W
AGC increment speed
78h
05h
R/W
AGC increment delay
79h
1Eh
R/W
Reserved
7Ah–7Fh
Chip ID MSB
80h
R
Chip ID LSB
81h
R
Reserved
82h–B0h
VDP TTX filter 1 mask 1
B1h
00h
R/W
VDP TTX filter 1 mask 2
B2h
00h
R/W
VDP TTX filter 1 mask 3
B3h
00h
R/W
VDP TTX filter 1 mask 4
B4h
00h
R/W
VDP TTX filter 1 mask 5
B5h
00h
R/W
VDP TTX filter 2 mask 1
B6h
00h
R/W
VDP TTX filter 2 mask 2
B7h
00h
R/W
VDP TTX filter 2 mask 3
B8h
00h
R/W
VDP TTX filter 2 mask 4
B9h
00h
R/W
VDP TTX filter 2 mask 5
BAh
00h
R/W
VDP TTX filter control
BBh
00h
R/W
VDP FIFO word count
BCh
VDP FIFO interrupt threshold
BDh
Reserved
BEh
VDP FIFO reset
R
80h
R/W
BFh
00h
R/W
VDP FIFO output control
C0h
00h
R/W
VDP line number interrupt
C1h
00h
R/W
VDP pixel alignment
C2h–C3h
01Eh
R/W
Reserved
C4h–D5h
VDP line start
D6h
06h
R/W
VDP line stop
D7h
1Bh
R/W
VDP global line mode
D8h
FFh
R/W
VDP full field enable
D9h
00h
R/W
DAh
FFh
R/W
VDP full field mode
Reserved
DBh–DFh
VBUS data access with no VBUS address
increment
E0h
00h
R/W
VBUS data access with VBUS address increment
E1h
00h
R/W
FIFO read data
E2h
Reserved
R
E3h–E7h
VBUS address access
E8h–E9h
Reserved
EBh–EFh
Interrupt raw status 0
F0h
Interrupt raw status 1
F1h
00 0000h
R/W
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
2−25
Table 2−10. Registers Summary (Continued)
REGISTER NAME
I2C SUBADDRESS
DEFAULT
R/W
Interrupt status 0
F2h
Interrupt status 1
F3h
Interrupt mask 0
F4h
00h
R/W
Interrupt mask 1
F5h
00h
R/W
Interrupt clear 0
F6h
00h
R/W
Interrupt clear 1
F7h
00h
R/W
DEFAULT
R/W
Reserved
R/W
R/W
F8h–FFh
NOTE: R = Read only
W = Write only
R/W = Read and write
Reserved register addresses must not be written to.
Table 2−11. VBUS Register Summary
REGISTER NAME
I2C SUBADDRESS
Reserved
00 0000h–80 051Bh
VDP closed caption data
80 051Ch–80 051Fh
R
VDP WSS data
80 0520h–80 0526h
R
Reserved
80 0527h–80 052Bh
VDP VITC data
80 052Ch–80 0534h
Reserved
80 0535h–80 053Fh
VDP V-Chip data
80 0540h–80 0543h
Reserved
80 0544h–80 05FFh
VDP general line mode and line address
80 0600h–80 0611h
Reserved
80 0612h–80 06FFh
VDP VPS/Gemstar data
80 0700h–80 070Ch
Reserved
80 070Dh–90 1903h
VDP FIFO read
Reserved
Interrupt configuration
Reserved
R
R
00h, FFh
R/W
R
90 1904h
R
90 1905h–B0 005Fh
B0 0060h
00h
R/W
B0 0061h–FF FFFFh
NOTE: Writing any value to a reserved register may cause erroneous operation of the TVP5146 decoder.
It is recommended not to access any data to/from reserved registers.
2−26
2.11 Register Definitions
2.11.1 Input Select Register
Subaddress
00h
Default
00h
7
6
5
4
3
2
1
0
Input select [7:0]
Table 2−12. Analog Channel and Video Mode Selection
MODE
CVBS
S-video
RGB
YPbPr
SCART
INPUT(S) SELECTED
INPUT SELECT [7:0]
7
6
5
4
3
2
1
0
HEX
VI_1_A (default)
0
0
0
0
0
0
0
0
00
VI_1_B
0
0
0
0
0
0
0
1
01
VI_1_C
0
0
0
0
0
0
1
0
02
VI_2_A
0
0
0
0
0
1
0
0
04
VI_2_B
0
0
0
0
0
1
0
1
05
VI_2_C
0
0
0
0
0
1
1
0
06
VI_3_A
0
0
0
0
1
0
0
0
08
VI_3_B
0
0
0
0
1
0
0
1
09
VI_3_C
0
0
0
0
1
0
1
0
0A
VI_4_A
0
0
0
0
1
1
0
0
0C
VI_2_A(Y), VI_1_A(C)
0
1
0
0
0
1
0
0
44
VI_2_B(Y), VI_1_B(C)
0
1
0
0
0
1
0
1
45
VI_2_C(Y), VI_1_C(C)
0
1
0
0
0
1
1
0
46
VI_2_A(Y), VI_3_A(C)
0
1
0
1
0
1
0
0
54
VI_2_B(Y), VI_3_B(C)
0
1
0
1
0
1
0
1
55
VI_2_C(Y), VI_3_C(C)
0
1
0
1
0
1
1
0
56
VI_4_A(Y), VI_1_A(C)
0
1
0
0
1
1
0
0
4C
VI_4_A(Y), VI_1_B(C)
0
1
0
0
1
1
0
1
4D
VI_4_A(Y), VI_1_C(C)
0
1
0
0
1
1
1
0
4E
VI_4_A(Y), VI_3_A(C)
0
1
0
1
1
1
0
0
5C
VI_4_A(Y), VI_3_B(C)
0
1
0
1
1
1
0
1
5D
VI_4_A(Y), VI_3_C(C)
0
1
0
1
1
1
1
0
5E
VI_1_A(B), VI_2_A(G), VI_3_A(R)
1
0
0
0
0
1
0
0
84
VI_1_B(B), VI_2_B(G), VI_3_B(R)
1
0
0
0
0
1
0
1
85
VI_1_C(B), VI_2_C(G), VI_3_C(R)
1
0
0
0
0
1
1
0
86
VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr)
1
0
0
1
0
1
0
0
94
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr)
1
0
0
1
0
1
0
1
95
VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr)
1
0
0
1
0
1
1
0
96
VI_1_A(B), VI_2_A(G), VI_3_A(R), VI_4_A(CVBS)
1
1
0
0
1
1
0
0
CC
VI_1_B(B), VI_2_B(G), VI_3_B(R), VI_4_A(CVBS)
1
1
0
0
1
1
0
1
CD
VI_1_C(B), VI_2_C(G), VI_3_C(R), VI_4_A(CVBS)
1
1
0
0
1
1
1
0
CE
VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr), VI_4_A(CVBS)
1
1
0
1
1
1
0
0
DC
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr), VI_4_A(CVBS)
1
1
0
1
1
1
0
1
DD
VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr), VI_4_A(CVBS)
1
1
0
1
1
1
1
0
DE
Ten input terminals can be configured to support composite, S-video, and component YPbPr/RGB or SCART as listed
in Table 2−12. Users must follow this table properly for S-video and component applications because only the terminal
configurations listed in Table 2−12 are supported.
2−27
2.11.2 AFE Gain Control Register
Subaddress
01h
Default
0Fh
7
6
5
4
Reserved
3
2
1
0
1
1
AGC chroma
AGC luma
Bit 3: 1 must be written to this bit.
Bit 2: 1 must be written to this bit.
AGC chroma: Controls automatic gain in the chroma/B/R/PbPr channel:
0 = Manual (if AGC luma is set to manual, AGC chroma is forced to be in manual)
1 = Enabled auto gain, applies a gain value acquired from the sync channel for S-video and component
mode. When AGC luma is set, this state is valid. (default)
AGC luma: Controls automatic gain in the embedded sync channel of CVBS, S-video, component video:
0 = Manual gain, AFE coarse and fine gain frozen to the previous gain value set by a AGC when this bit is set
to 0.
1 = Enabled auto gain applies only to the embedded sync channel (default)
These settings only affect the analog front-end (AFE). The brightness and contrast of component, CVBS are not
affected by these settings.
2.11.3 Video Standard Register
Subaddress
02h
Default
00h
7
6
5
4
3
Reserved
2
1
0
Video standard [2:0]
Video standard [2:0]:
CVBS and S-Video
000 = Autoswitch mode (default)
001 = (M, J) NTSC
010 = (B, D, G, H, I, N) PAL
011 = (M) PAL
100 = (Combination-N) PAL
101 = NTSC 4.43
110 = SECAM
111 = PAL 60
Component Video
Autoswitch mode (default)
Component 525
Component 625
Reserved
Reserved
Reserved
Reserved
Reserved
NOTE: PAL60 is not included in autoswitch mode.
With the autoswitch code running, the user can force the decoder to operate in a particular video standard mode by
writing the appropriate value into this register. Changing these bits causes the register settings to be reinitialized.
NOTE: Sampling rate (either square pixel or ITU-R BT.601) can be set by bit 7 (sampling rate)
in the output formatter 1 register at I2C subaddress 33h (see Section 2.11.35).
2−28
2.11.4 Operation Mode Register
Subaddress
03h
Default
00h
7
6
5
4
3
2
1
Reserved
0
Power save
Power save:
0 = Normal operation (default)
1 = Power-save mode. Reduces the clock speed of the internal processor and switches off the ADCs. I2C
interface is active and all current operating settings are preserved.
2.11.5 Autoswitch Mask Register
Subaddress
04h
Default
23h
7
6
Reserved
5
4
3
2
1
0
SECAM
NTSC 4.43
(Nc) PAL
(M) PAL
PAL
(M, J) NTSC
Autoswitch mode mask: Limits the video formats between which autoswitch is possible.
SECAM:
0 = Autoswitch does not include SECAM
1 = Autoswitch includes SECAM (default)
NTSC 4.43:
0 = Autoswitch does not include NTSC 4.43 (default)
1 = Autoswitch includes NTSC 4.43
(Nc) PAL:
0 = Autoswitch does not include (Nc) PAL (default)
1 = Autoswitch includes (Nc) PAL
(M) PAL:
0 = Autoswitch does not include (M) PAL (default)
1 = Autoswitch includes (M) PAL
PAL:
0 = Reserved
1 = Autoswitch includes (B, D, G, H, I, N) PAL (default)
(M, J ) NTSC:
0 = Reserved
1 = Autoswitch includes (M, J) NTSC (default)
NOTE: Bits 1 and 0 must always be 1.
2−29
2.11.6 Color Killer Register
Subaddress
05h
Default
10h
7
6
Reserved
5
4
3
2
Automatic color killer
1
0
Color killer threshold [4:0]
Automatic color killer:
00 = Automatic mode (default)
01 = Reserved
10 = Color killer enabled, the C terminals are forced to a zero color state.
11 = Color killer disabled
Color killer threshold [4:0]:
1 1111 = 31 (maximum)
1 0000 = 16 (default)
0 0000 = 0 (minimum)
2.11.7 Luminance Processing Control 1 Register
Subaddress
06h
Default
00h
7
6
5
4
Reserved
Pedestal not present
Reserved
VBI raw
3
2
1
0
Luminance signal delay [3:0]
Pedestal not present:
0 = 7.5 IRE pedestal is present on the analog video input signal (default)
1 = Pedestal is not present on the analog video input signal
VBI raw:
0 = Disabled (default)
1 = Enabled
During the duration of the vertical blanking as defined by the VBLK start and stop line registers at subaddresses 22h
through 25h (see Sections 2.11.26 and 2.11.27), the chroma samples are replaced by luma samples. This feature
can be used to support VBI processing performed by an external device during the VBI. In order to use this bit, the
output format must be 10-bit ITU-R BT.656 mode.
Luminance signal delay [3:0]: Luminance signal delays with respect to the chroma signal in 1× pixel clock
increments.
0111 = Reserved
0110 = 6-pixel delay
0001 = 1-pixel delay
0000 = 0 delay (default)
1111 = –1-pixel delay
1000 = –8-pixel delay
2−30
2.11.8 Luminance Processing Control 2 Register
Subaddress
07h
Default
00h
7
6
5
Luma filter select [1:0]
4
3
Reserved
2
1
Peaking gain (sharpness) [1:0]
0
Reserved
Luma filter selected [1:0]:
00 = Luminance adaptive comb enabled (default on CVBS)
01 = Luminance adaptive comb disabled (trap filter selected)
10 = Luma comb/trap filter bypassed (default on S-video, component mode, and SECAM)
11 = Reserved
Peaking gain (sharpness) [1:0]:
00 = 0 (default)
01 = 0.5
10 = 1
11 = 2
2.11.9 Luminance Processing Control 3 Register
Subaddress
08h
Default
02h
7
6
5
4
3
2
Reserved
1
0
Trap filter select [1:0]
Trap filter select [1:0] selects one of the four trap filters to produce the luminance signal by removing the chrominance
signal from the composite video signal. The stopband of the chroma trap filter is centered at the chroma subcarrier
frequency with the stopband bandwidth controlled by the two control bits.
Trap filter stopband bandwidth (MHz):
Filter select [1:0]
00 =
01 =
10 = (default)
11 =
NTSC ITU-R BT.601
1.2129
0.8701
0.7183
0.5010
NTSC Square pixel
1.1026
0.7910
0.6712
0.4554
PAL ITU-R BT.601
1.2129
0.8701
0.7383
0.5010
PAL Square pixel
1.3252
0.9507
0.8066
0.5474
2.11.10 Luminance Brightness Register
Subaddress
09h
Default
80h
7
6
5
4
3
2
1
0
Brightness [7:0]
Brightness [7:0]: This register works for CVBS and S-video luminance.
1111 1111 = 255 (bright)
1000 0000 = 128 (default)
0000 0000 = 0 (dark)
2−31
2.11.11 Luminance Contrast Register
Subaddress
0Ah
Default
80h
7
6
5
4
3
2
1
0
2
1
0
2
1
0
Contrast [7:0]
Contrast [7:0]: This register works for CVBS and S-video luminance.
1111 1111 = 255 (maximum contrast)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum contrast)
2.11.12 Chrominance Saturation Register
Subaddress
0Bh
Default
80h
7
6
5
4
3
Saturation [7:0]
Saturation [7:0]: This register works for CVBS and S-video chrominance.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (no color)
2.11.13 Chroma Hue Register
Subaddress
0Ch
Default
00h
7
6
5
4
3
Hue [7:0]
Hue [7:0] (does not apply to a component video): This register works for CVBS and S-video chrominance.
0111 1111 = +180 degrees
0000 0000 = 0 degrees (default)
1000 0000 = –180 degrees
2−32
2.11.14 Chrominance Processing Control 1 Register
Subaddress
0Dh
Default
00h
7
6
5
Reserved
4
3
2
Color PLL reset
Chrominance adaptive
comb enable
Reserved
1
0
Automatic color gain control [1:0]
Color PLL reset:
0 = Color subcarrier PLL not reset (default)
1 = Color subcarrier PLL reset
Chrominance adaptive comb enable: This bit is effective on composite video only.
0 = Enabled (default)
1 = Disabled
Automatic color gain control (ACGC) [1:0]:
00 = ACGC enabled (default)
01 = Reserved
10 = ACGC disabled, ACGC set to the nominal value
11 = ACGC frozen to the previous set value
2.11.15 Chrominance Processing Control 2 Register
Subaddress
0Eh
Default
0Eh
7
6
5
4
Reserved
3
2
PAL compensation
WCF
1
0
Chrominance filter select [1:0]
PAL compensation:
0 = Disabled
1 = Enabled (default)
WCF: Wideband chroma LPF filter
0 = Disabled
1 = Enabled (default)
Chrominance filter select [1:0]:
00 = Disabled
01 = Notch 1
10 = Notch 2 (default)
11 = Notch 3
See Figure 2−8 through Figure 2−11 for characteristics.
2.11.16 Component Pr Saturation Register
Subaddress
10h
Default
80h
7
6
5
4
3
2
1
0
Pr saturation [7:0]
Pr saturation [7:0]: This register works only with YPbPr component video. For RGB video, user must use the AFE
gain registers.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum)
2−33
2.11.17 Component Y Contrast Register
Subaddress
11h
Default
80h
7
6
5
4
3
2
1
0
Y contrast [7:0]
Y contrast [7:0]: This register works only with YPbPr component video. For RGB video, user must use the AFE gain
registers.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum)
2.11.18 Component Pb Saturation Register
Subaddress
12h
Default
80h
7
6
5
4
3
2
1
0
Pb saturation [7:0]
Pb saturation [7:0]: This register works only with YPbPr component video. For RGB video, user must use the AFE
gain registers.
1111 1111 = 255 (maximum)
1000 0000 =128 (default)
0000 0000 = 0 (minimum)
2.11.19 Component Y Brightness Register
Subaddress
14h
Default
80h
7
6
5
4
3
Y brightness [7:0]
Y brightness [7:0]: This register works only with YPbPr component video.
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum)
2−34
2
1
0
2.11.20 AVID Start Pixel Register
Subaddress
16h–17h
Default
055h
Subaddress
7
6
5
4
16h
3
2
1
0
AVID start [7:0]
17h
Reserved
AVID active
Reserved
AVID start [9:8]
AVID active:
0 = AVID out active in VBLK (default)
1 = AVID out inactive in VBLK
AVID start [9:0]: AVID start pixel number, this is a absolute pixel location from HSYNC start pixel 0.
default
NTSC 601
85 (55h)
NTSC Sqp
86 (56h)
PAL 601
88 (58h)
PAL Sqp
103 (67h)
The TVP5146 decoder updates the AVID start only when the AVID start MSB byte is written to. If the user changes
these registers, then the TVP5146 decoder retains values in different modes until this decoder resets. The AVID start
pixel register also controls the position of the SAV code.
2.11.21 AVID Stop Pixel Register
Subaddress
18h–19h
Default
325h
Subaddress
7
6
5
4
18h
3
2
1
0
AVID stop [7:0]
19h
Reserved
AVID stop [9:8]
AVID stop [9:0]: AVID stop pixel number. The number of pixels of active video must be an even number. This is an
absolute pixel location from HSYNC start pixel 0.
default
NTSC 601
805 (325h)
NTSC Sqp
726 (2D6h)
PAL 601
808 (328h)
PAL Sqp
696 (2B8h)
The TVP5146 decoder updates the AVID stop only when the AVID stop MSB byte is written to. If the user changes
these registers, then the TVP5146 decoder retains values in different modes until this decoder resets. The AVID start
pixel register also controls the position of the EAV code.
2.11.22 HSYNC Start Pixel Register
Subaddress
1Ah–1Bh
Default
000h
Default (000h)
Subaddress
7
6
5
4
1Ah
1Bh
3
2
1
0
HSYNC start [7:0]
Reserved
HSYNC start [9:8]
HSYNC start pixel [9:0]: This is an absolute pixel location from HSYNC start pixel 0.
The TVP5146 decoder updates the HSYNC start only when the HSYNC start MSB byte is written to. If the user
changes these registers, then the TVP5146 decoder retains values in different modes until this decoder resets.
2−35
2.11.23 HSYNC Stop Pixel Register
Subaddress
1Ch–1Dh
Default
040h
Subaddress
7
6
5
4
1Ch
3
2
1
0
HSYNC stop [7:0]
1Dh
Reserved
HSYNC stop [9:8]
HSYNC stop [9:0]: This is an absolute pixel location from HSYNC start pixel 0.
The TVP5146 decoder updates the HSYNC stop only when the HSYNC Stop MSB byte is written to. If the user
changes these registers, then the TVP5146 decoder retains values in different modes until this decoder resets.
2.11.24 VSYNC Start Line Register
Subaddress
1Eh–1Fh
Default
004h
Subaddress
7
6
5
4
1Eh
3
2
1
0
VSYNC start [7:0]
1Fh
Reserved
VSYNC start [9:8]
VSYNC start [9:0]: This is an absolute line number. The TVP5146 decoder updates the VSYNC start only when the
VSYNC start MSB byte is written to. If the user changes these registers, then the TVP5146 decoder retains values
in different modes until this decoder resets.
NTSC: default 004h,
PAL: default 001h
2.11.25 VSYNC Stop Line Register
Subaddress
20h–21h
Default
007h
Subaddress
7
6
5
4
20h
3
2
1
0
VSYNC stop [7:0]
21h
Reserved
VSYNC stop [9:8]
VSYNC stop [9:0]: This is an absolute line number. The TVP5146 decoder updates the VSYNC stop only when the
VSYNC stop MSB byte is written to. If the user changes these registers, the TVP5146 decoder retains values in
different modes until this decoder resets.
NTSC: default 007h,
PAL: default 004h
2.11.26 VBLK Start Line Register
Subaddress
22h–23h
Default
001h
Subaddress
7
6
5
4
22h
23h
3
2
1
0
VBLK start [7:0]
Reserved
VBLK start [9:8]
VBLK start [9:0]: This is an absolute line number. The TVP5146 decoder updates the VBLK start line only when the
VBLK start MSB byte is written to. If the user changes these registers, the TVP5146 decoder retains values in different
modes until this decoder resets.
NTSC: default 001h,
PAL: default 623 (26Fh)
2−36
2.11.27 VBLK Stop Line Register
Subaddress
24h–25h
Default
015h
Subaddress
7
6
5
4
24h
3
2
1
0
VBLK stop [7:0]
25h
Reserved
VBLK stop [9:8]
VBLK stop [9:0]: This is an absolute line number. The TVP5146 decoder updates the VBLK stop only when the VBLK
stop MSB byte is written to. If the user changes these registers, then the TVP5146 decoder retains values in different
modes until this decoder resets.
NTSC: default 21 (15h), PAL: default 23 (17h)
2.11.28 Fast-Switch Control Register
Subaddress
28h
Default
CCh
7
6
5
Mode [2:0]
4
3
2
1
0
Reserved
Reserved
FSS edge
Reserved
Polarity FSS
1
0
Mode [2:0]: Select fast-switch modes
000 = CVBS $ SCART
001 = Reserved
010 = Reserved
011 = Reserved
100 = Reserved
101 = Reserved
110 = Composite only (default)
111 = Component only
FSS edge: FSS is sampled at the rising or falling edge of the sampling clock
0 = Rising edge
1 = Falling edge (default)
Polarity FSS:
0 = 0: YCbCr/RGB
1 = 0: CVBS (4A)
1: CVBS (4A) (default)
1: YCbCr/RGB
2.11.29 Fast-Switch SCART Delay Register
Subaddress
2Ah
Default
00h
7
6
5
Reserved
4
3
2
FSS delay [4:0]
FSS delay [4:0]: Adjusts the delay between the FSS and component RGB/YPbPr
0 1111 = 15 pixel delay
0 0001 = 1 pixel delay
0 0000 = 0 delay (default)
1 1111 = –1 pixel delay
1 0000 = –16 pixel delay
2−37
2.11.30 SCART Delay Register
Subaddress
2Ch
Default
00h
7
6
5
4
3
Reserved
2
1
0
1
0
SCART delay [4:0]
SCART delay [4:0]: Adjusts delay between the CVBS and component (RGB) video
0 1111 = 15 pixel delay
0 0001 = 1 pixel delay
0 0000 = 0 delay (default)
1 1111 = –1 pixel delay
1 0000 = –16 pixel delay
2.11.31 CTI Delay Register
Subaddress
2Dh
Default
00h
7
6
5
4
3
2
Reserved
CTI delay [2:0]
CTI delay [2:0]: Sets the delay of the Y channel with respect to Cb/Cr in the CTI block
011 = 3 pixel delay
001 = 1 pixel delay
000 = 0 delay (default)
111 = –1 pixel delay
100 = –4 pixel delay
2.11.32 CTI Control Register
Subaddress
2Eh
Default
00h
7
6
5
CTI coring [3:0]
4
3
2
1
0
CTI gain [3:0]
CTI coring [3:0]: 4-bit CTI coring limit control value, unsigned linear control range from 0 to ±60, step size = 4
1111 = ±60
0001 = ±4
0000 = 0 (default)
CTI gain [3:0]: 4-bit CTI gain control values, unsigned linear control range from 0 to 15/16, step size = 1/16
1111 = 15/16
0001 = 1/16
0000 = 0 disabled (default)
2−38
2.11.33 RTC Register
Subaddress
31h
Default
05h
7
6
5
4
3
2
Reserved
1
0
Genlock [2:0]
Genlock [2:0]:
000 = Reserved
001 = Reserved
010 = Reserved
011 = Reserved
100 = Reserved
101 = RTC mode
110 = Reserved
111 = Reserved
2.11.34 Sync Control Register
Subaddress
32h
Default
00h
7
6
Reserved
5
4
3
2
1
0
Polarity FID
Polarity VS
Polarity HS
VS/VBLK
HS/CS
Polarity FID: determines polarity of FID terminal
0 = First field high, second field low (default)
1 = First field low, second field high
Polarity VS: determines polarity of VS terminal
0 = Active low (default)
1 = Active high
Polarity HS: determines polarity of HS terminal
0 = Active low (default)
1 = Active high
VS/VBLK:
0 = VS terminal outputs vertical sync (default)
1 = VS terminal outputs vertical blank
HS/CS:
0 = HS terminal outputs horizontal sync (default)
1 = HS terminal outputs composite sync
2−39
2.11.35 Output Formatter 1 Register
Subaddress
33h
Default
40h
7
6
5
Sampling rate
YCbCr code range
CbCr code
4
3
2
Reserved
1
0
Output format [2:0]
Sampling rate (changing this bit causes the register settings to be reinitialized):
0 = ITU-R BT.601 sampling rate (default)
1 = Square pixel sampling rate
YCbCr code range:
0 = ITU-R BT.601 coding range (Y ranges from 64 to 940. Cb and Cr range from 64 to 960.)
1 = Extended coding range (Y, Cb, and Cr range from 4 to 1016) (default)
CbCr code:
0 = Offset binary code (2s complement + 512) (default)
1 = Straight binary code (2s complement)
Output format [2:0]:
000 = 10-bit 4:2:2 (2× pixel rate) with embedded syncs (ITU-R BT.656) (default)
001 = 20-bit 4:2:2 (pixel rate) with separate syncs
010 = Reserved
011 = 10-bit 4:2:2 with separate syncs
100–111= Reserved
NOTE: 10-bit mode is also used for the raw VBI output mode when bit 4 (VBI raw) in the
luminance processing control 1 register at subaddress 06h is set (see Section 2.11.7).
2.11.36 Output Formatter 2 Register
Subaddress
34h
Default
00h
7
6
Reserved
5
4
Y[9:0] enable
3
2
Reserved
Y[9:0] enable: Y[9:0] and C[9:0] output enable
0 = Y[9:0] and C[9:0] high impedance (default)
1 = Y [9:0] and C[9:0] active
CLK polarity:
0 = Data clocked out on the falling edge of DATACLK (default)
1 = Data clocked out on the rising edge of DATACLK
Clock enable:
0 = DATACLK outputs are high-impedance (default).
1 = DATACLK outputs are enabled.
2−40
1
0
CLK polarity
Clock enable
2.11.37 Output Formatter 3 Register
Subaddress
35h
Default
FFh
7
6
5
FSS [1:0]
4
AVID [1:0]
3
2
GLCO [1:0]
1
0
FID [1:0]
FSS [1:0]: FSS terminal function select
00 = FSS is logic 0 output.
01 = FSS is logic 1 output.
10 = FSS is fast-switch input for SCART support.
11 = FSS is logic input (default).
AVID [1:0]: AVID terminal function select
00 = AVID is logic 0 output.
01 = AVID is logic 1 output.
10 = AVID is active video indicator output.
11 = AVID is logic input (default).
GLCO [1:0]: GLCO terminal function select
00 = GLCO is logic 0 output.
01 = GLCO is logic 1 output.
10 = GCLO is genlock output.
11 = GCLO is logic input (default).
FID [1:0]: FID terminal function select
00 = FID is logic 0 output.
01 = FID is logic 1 output.
10 = FID is FID output.
11 = FID is logic input (default).
2−41
2.11.38 Output Formatter 4 Register
Subaddress
36h
Default
FFh
7
6
VS/VBLK [1:0]
5
4
HS/CS [1:0]
3
2
C_1 [1:0]
1
0
C_0 [1:0]
VS/VBLK [1:0]: VS terminal function select
00 = VS is logic 0 output.
01 = VS is logic 1 output.
10 = VS/VBLK is vertical sync or vertical blank output corresponding to bit 1 (VS/VBLK) in the sync control
register at subaddress 32h (see Section 2.11.34).
11 = VS is logic input (default).
HS/CS [1:0]: HS terminal function select
00 = HS is logic 0 output.
01 = HS is logic 1 output.
10 = HS/CS is horizontal sync or composite sync output corresponding to bit 0 (HS/CS) in the sync control
register at subaddress 32h (see Section 2.11.34).
11 = HS is logic input (default).
C_1 [1:0]: C_1 terminal function select
00 = C_1 is logic 0 output.
01 = C_1 is logic 1 output.
10 = Reserved
11 = C_1 is logic input (default).
C_0 [1:0]: C_0 terminal function select
00 = C_0 is logic 0 output.
01 = C_0 is logic 1 output.
10 = Reserved
11 = C_0 is logic input (default).
C_x functions are only available in the 10-bit output mode.
2−42
2.11.39 Output Formatter 5 Register
Subaddress
37h
Default
FFh
7
6
5
C_5 [1:0]
4
C_4 [1:0]
3
2
C_3 [1:0]
1
0
C_2 [1:0]
C_5 [1:0]: C_5 terminal function select
00 = C_5 is logic 0 output.
01 = C_5 is logic 1 output.
10 = Reserved
11 = C_5 is logic input (default).
C_4 [1:0]: C_4 terminal function select
00 = C_4 is logic 0 output.
01 = C_4 is logic 1 output.
10 = Reserved
11 = C_4 is logic input (default).
C_3 [1:0]: C_3 terminal function select
00 = C_3 is logic 0 output.
01 = C_3 is logic 1 output.
10 = Reserved
11 = C_3 is logic input (default)
C_2 [1:0]: C_2 terminal function select
00 = C_2 is logic 0 output.
01 = C_2 is logic 1 output.
10 = Reserved
11 = C_2 is logic input (default).
C_x functions are only available in the 10-bit output mode.
2−43
2.11.40 Output Formatter 6 Register
Subaddress
38h
Default
FFh
7
6
5
C_9 [1:0]
4
3
C_8 [1:0]
2
1
C_7 [1:0]
0
C_6 [1:0]
C_9 [1:0]: C_9 terminal function select
00 = C_9 is logic 0 output.
01 = C_9 is logic 1 output.
10 = Reserved
11 = C_9 is logic input (default).
C_8 [1:0]: C_8 terminal function select
00 = C_8 is logic 0 output.
01 = C_8 is logic 1 output.
10 = Reserved
11 = C_8 is logic input (default).
C_7 [1:0]: C_7 terminal function select
00 = C_7 is logic 0 output.
01 = C_7 is logic 1 output.
10 = Reserved
11 = C_7 is logic input (default).
C_6 [1:0]: C_6 terminal function select
00 = C_6 is logic 0 output.
01 = C_6 is logic 1 output.
10 = Reserved
11 = C_6 is logic input (default).
C_x functions are only available in the 10-bit output mode.
2.11.41 Clear Lost Lock Detect Register
Subaddress
39h
Default
00h
7
6
5
4
Reserved
3
2
1
0
Clear lost lock detect
Clear lost lock detect: Clear bit 4 (lost lock detect) in the status 1 register at subaddress 3Ah (see Section 2.11.42).
0 = No effect (default)
1 = Clears bit 4 in the status 1 register
2−44
2.11.42 Status 1 Register
Subaddress
3Ah
Read only
7
6
5
4
3
2
1
0
Peak white
detect status
Line-alternating
status
Field rate
status
Lost lock
detect
Color subcarrier
lock status
Vertical sync
lock status
Horizontal sync
lock status
TV/VCR
status
Peak white detect status:
0 = Peak white is not detected.
1 = Peak white is detected.
Line-alternating status:
0 = Nonline-alternating
1 = Line-alternating
Field rate status:
0 = 60 Hz
1 = 50 Hz
Lost lock detect:
0 = No lost lock since this bit was cleared
1 = Lost lock since this bit was cleared.
Color subcarrier lock status:
0 = Color subcarrier is not locked.
1 = Color subcarrier is locked.
Vertical sync lock status:
0 = Vertical sync is not locked.
1 = Vertical sync is locked.
Horizontal sync lock status:
0 = Horizontal sync is not locked.
1 = Horizontal sync is locked.
TV/VCR status:
0 = TV
1 = VCR
2−45
2.11.43 Status 2 Register
Subaddress
3Bh
Read only
7
6
5
4
3
Reserved
Weak signal detection
PAL switch polarity
Field sequence status
Reserved
2
1
0
Macrovision detection [2:0]
Weak signal detection:
0 = No weak signal
1 = Weak signal mode
PAL switch polarity of first line of odd field:
0 = PAL switch is zero.
1 = PAL switch is one.
Field sequence status:
0 = Even field
1 = Odd field
Macrovision detection [2:0]:
000 = No copy protection
001 = AGC pulses/pseudo syncs present (type 1)
010 = 2-line colorstripe only present
011 = AGC pulses/pseudo syncs and 2-line colorstripe present (type 2)
100 = Reserved
101 = Reserved
110 = 4-line colorstripe only present
111 = AGC pulses/pseudo syncs and 4-line colorstripe present (type 3)
2.11.44 AGC Gain Status Register
Subaddress
3Ch–3Dh
Read only
Subaddress
7
6
5
3Ch
4
3
2
1
0
Fine gain [7:0]
3Dh
Coarse gain [3:0]
Fine gain [11:8]
Fine gain [11:0]: This register provides the fine gain value of sync channel. See FGAIN 1 [11:0] in the AFE fine gain
for Pb_B register at subaddress 4Ah–4Bh (see Section 2.11.53).
1111 1111 1111 = 1.9995
1000 0000 0000 = 1
0010 0000 0000 = 0.5
Coarse gain [3:0]: This register provides the coarse gain value of sync channel. See CGAIN 1 [3:0] in the AFE coarse
gain for CH1 register at subaddress 46h (see Section 2.11.49).
1111 = 2
0101 = 1
0000 = 0.5
These AGC gain status registers are updated automatically by the TVP5146 decoder with AGC on. In manual gain
control mode these register values are not updated by the TVP5146 decoder.
2−46
2.11.45 Video Standard Status Register
Subaddress
3Fh
Read only
7
6
5
Autoswitch
4
3
2
Reserved
1
0
Video standard [2:0]
Autoswitch mode:
0 = Stand-alone (forced video standard) mode
1 = Autoswitch mode
Video standard [2:0]:
CVBS and S-video
000 = Reserved
001 = (M, J) NTSC
010 = (B, D, G, H, I, N) PAL
011 = (M) PAL
100 = (Combination-N) PAL
101 = NTSC 4.43
110 = SECAM
111 = PAL 60
Component video
Reserved
Component 525
Component 625
Reserved
Reserved
Reserved
Reserved
Reserved
This register contains information about the detected video standard that the decoder is currently operating. When
autoswitch code is running, this register must be tested to determine which video standard has been detected.
2.11.46 GPIO Input 1 Register
Subaddress
40h
Read only
7
6
5
4
3
2
1
0
C_7
C_6
C_5
C_4
C_3
C_2
C_1
C_0
C_x input status:
0 = Input is a low.
1 = Input is a high.
These status bits are only valid when terminals are used as inputs and their states updated at every line.
2−47
2.11.47 GPIO Input 2 Register
Subaddress
41h
Read only
7
6
5
4
3
2
1
0
FSS
AVID
GLCO
VS
HS
FID
C_9
C_8
FSS input terminal status:
0 = Input is a low.
1 = Input is a high.
AVID input terminal status:
0 = Input is a low.
1 = Input is a high.
GLCO input terminal status:
0 = Input is a low
1 = Input is a high.
VS input terminal status:
0 = Input is a low.
1 = Input is a high.
HS input status:
0 = Input is a low.
1 = Input is a high.
FID input status:
0 = Input is a low.
1 = Input is a high.
C_x input status:
0 = Input is a low.
1 = Input is a high.
These status bits are only valid when terminals are used as inputs and their states updated at every line.
2.11.48 Vertical Line Count Register
Subaddress
42h–43h
Read only
Subaddress
7
6
5
4
42h
43h
3
2
Reserved
V_CNT[9:0] represents the detected total number of lines from the previous frame.
2−48
1
0
V_CNT[7:0]
V_CNT[9:8]
2.11.49 AFE Coarse Gain for CH 1 Register
Subaddress
46h
Default
20h
7
6
5
4
3
2
CGAIN 1 [3:0]
1
0
Reserved
CGAIN 1 [3:0]: Coarse_Gain = 0.5 + (CGAIN 1)/10, where 0 CGAIN 1 15
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2.11.50 AFE Coarse Gain for CH 2 Register
Subaddress
47h
Default
20h
7
6
5
CGAIN 2 [3:0]
4
3
2
1
0
Reserved
CGAIN 2 [3:0]: Coarse_Gain = 0.5 + (CGAIN 2)/10, where 0 CGAIN 2 15
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2−49
2.11.51 AFE Coarse Gain for CH 3 Register
Subaddress
48h
Default
20h
7
6
5
4
3
2
CGAIN 3 [3:0]
1
0
Reserved
CGAIN 3 [3:0]: Coarse_Gain = 0.5 + (CGAIN 3)/10, where 0 CGAIN 3 15
This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2.11.52 AFE Coarse Gain for CH 4 Register
Subaddress
49h
Default
20h
7
6
5
CGAIN 4 [3:0]
4
3
2
1
0
Reserved
CGAIN 4 [3:0]: Coarse_Gain = 0.5 + (CGAIN 4)/10, where 0 CGAIN 4 15
This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2
1110 = 1.9
1101 = 1.8
1100 = 1.7
1011 = 1.6
1010 = 1.5
1001 = 1.4
1000 = 1.3
0111 = 1.2
0110 = 1.1
0101 = 1
0100 = 0.9
0011 = 0.8
0010 = 0.7 (default)
0001 = 0.6
0000 = 0.5
2−50
2.11.53 AFE Fine Gain for Pb_B Register
Subaddress
4Ah–4Bh
Default
900h
Subaddress
7
6
5
4
4Ah
3
2
1
0
FGAIN 1 [7:0]
4Bh
Reserved
FGAIN 1 [11:8]
FGAIN 1 [11:0]: This fine gain applies to component Pb/B.
Fine_Gain = (1/2048) * FGAIN 1, where 0 FGAIN 1 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.54 AFE Fine Gain for Y_G_Chroma Register
Subaddress
4Ch–4Dh
Default
900h
Subaddress
7
6
5
4
4Ch
4Dh
3
2
1
0
FGAIN 2 [7:0]
Reserved
FGAIN 2 [11:8]
FGAIN 2 [11:0]: This gain applies to component Y/G channel or S-video chroma.
Fine_Gain = (1/2048) * FGAIN 2, where 0 FGAIN 2 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2−51
2.11.55 AFE Fine Gain for R_Pr Register
Subaddress
4Eh–4Fh
Default
900h
Subaddress
7
6
5
4
4Eh
3
2
1
0
FGAIN 3 [7:0]
4Fh
Reserved
FGAIN 3 [11:8]
FGAIN 3 [11:0]: This fine gain applies to component Pb/B.
Fine_Gain = (1/2048) * FGAIN 3, where 0 FGAIN 3 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.56 AFE Fine Gain for CVBS_Luma Register
Subaddress
50h–51h
Default
900h
Subaddress
7
6
5
4
50h
3
2
1
0
FGAIN 4 [7:0]
51h
Reserved
FGAIN 4 [11:8]
FGAIN 4 [11:0]: This fine gain applies to CVBS or S-video luma.
Fine_Gain = (1/2048) * FGAIN 4, where 0 FGAIN 4 4095
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995
1100 0000 0000 = 1.5
1001 0000 0000 = 1.125 (default)
1000 0000 0000 = 1
0100 0000 0000 = 0.5
0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.57 ROM Version Register
Subaddress
70h
Read only
7
6
5
4
3
ROM version [7:0]
ROM Version [7:0]: ROM revision number
2−52
2
1
0
2.11.58 AGC White Peak Processing Register
Subaddress
74h
Default
00h
7
6
5
4
3
2
1
0
Luma peak A
Reserved
Color burst A
Sync height A
Luma peak B
Composite peak
Color burst B
Sync height B
Luma peak A: Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC
algorithm.
0 = Enabled (default)
1 = Disabled
Color burst A: Use of the color burst amplitude as a video amplitude reference for the back-end.
NOTE: Not available for SECAM, component, and B/W video sources.
0 = Enabled (default)
1 = Disabled
Sync height A: Use of the sync height as a video amplitude reference for the back-end feed-forward type AGC
algorithm.
0 = Enabled (default)
1 = Disabled
Luma peak B: Use of the luma peak as a video amplitude reference for the front-end feedback type AGC algorithm.
0 = Enabled (default)
1 = Disabled
Composite peak: Use of the composite peak as a video amplitude reference for the front-end feedback type AGC
algorithm.
NOTE: Required for CVBS and SCART (with color burst) video sources.
0 = Enabled (default)
1 = Disabled
Color burst B: Use of the color burst amplitude as a video amplitude reference for the front-end feedback type AGC
algorithm.
NOTE: Not available for SECAM, component, and B/W video sources.
0 = Enabled (default)
1 = Disabled
Sync height B: Use of the sync height as a video amplitude reference for the front-end feedback type AGC algorithm.
0 = Enabled (default)
1 = Disabled
NOTE: If all 4 bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected),
then the front-end analog and digital gains are automatically set to nominal values of 2 and
2304, respectively.
If all 4 bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then
the back-end gain is set automatically to unity.
If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than 100%,
then the back-end scale factor attempts to increase the contrast in the back end to restore the video amplitude to
100%.
2−53
2.11.59 AGC Increment Speed Register
Subaddress
78h
Default
06h
7
6
5
4
3
2
Reserved
1
0
AGC increment speed [3:0]
AGC increment speed: Adjusts gain increment speed.
111 = 7 (slowest)
110 = 6 (default)
L
000 = 0 (fastest)
2.11.60 AGC Increment Delay Register
Subaddress
79h
Default
1Eh
7
6
5
4
3
2
1
0
2
1
0
1
0
AGC increment delay [7:0]
AGC increment delay: Number of frames to delay gain increments
1111 1111 = 255
L
0001 1110 = 30 (default)
L
0000 0000 = 0
2.11.61 Chip ID MSB Register
Subaddress
80h
Read only
7
6
5
4
3
Chip ID MSB [7:0]
Chip ID MSB [7:0]: This register identifies the MSB of the device ID. Value = 51h
2.11.62 Chip ID LSB Register
Subaddress
81h
Read only
7
6
5
4
3
2
Chip ID LSB [7:0]
Chip ID LSB [7:0]: This register identifies the LSB of the device ID. Value = 46h
2−54
2.11.63 VDP TTX Filter And Mask Registers
Subaddress
B1h
B2h
B3h
B4h
B5h
B6h
B7h
B8h
B9h
BAh
Default
00h
00h
00h
00h
00h
00h
00h
00h
00h
00h
Subaddress
7
6
5
4
3
2
1
B1h
Filter 1 mask 1
Filter 1 pattern 1
B2h
Filter 1 mask 2
Filter 1 pattern 2
B3h
Filter 1 mask 3
Filter 1 pattern 3
B4h
Filter 1 mask 4
Filter 1 pattern 4
B5h
Filter 1 mask 5
Filter 1 pattern 5
B6h
Filter 2 mask 1
Filter 2 pattern 1
B7h
Filter 2 mask 2
Filter 2 pattern 2
B8h
Filter 2 mask 3
Filter 2 pattern 3
B9h
Filter 2 mask 4
Filter 2 pattern 4
BAh
Filter 2 mask 5
Filter 2 pattern 5
0
For an NABTS system, the packet prefix consists of five bytes. Each byte contains 4 data bits (D[3:0]) interlaced with
4 Hamming protection bits (H[3:0]):
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
D3
H3
D2
H2
D1
H1
D0
H0
Only data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern bits P[3:0]
and mask bits M[3:0] (see Figure 2−27). The filter ignores the Hamming protection bits.
For WST system (PAL or NTSC), the packet prefix consists of two bytes. The two bytes contain three bits of magazine
number (M[2:0]) and five bits of row address (R[4:0]), interlaced with eight Hamming protection bits H[7:0]:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
R0
H3
M2
H2
M1
H1
M0
H0
R4
H7
R3
H6
R2
H5
R1
H4
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB of mask
1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data bit on the
transaction. If these match, then a true result is returned. A 0 in a mask bit means that the filter module must ignore
that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter matches all patterns returning
a true result (default 00h).
2−55
2.11.64 VDP TTX Filter Control Register
Subaddress
BBh
Default
00h
7
6
5
Reserved
4
3
Filter logic [1:0]
2
1
0
Mode
TTX filter 2 enable
TTX filter 1 enable
Filter logic [1:0]: Allows different logic to be applied when combining the decision of filter 1 and filter 2 as follows:
00 = NOR (default)
01 = NAND
10 = OR
11 = AND
Mode: Indicates which teletext mode is in use.
0 = Teletext filter applies to 2 header bytes (default)
1 = Teletext filter applies to 5 header bytes
TTX filter 2 enable: Provides for enabling the teletext filter function within the VDP.
0 = Disabled (default)
1 = Enabled
TTX filter 1 enable: Provides for enabling the teletext filter function within the VDP.
0 = Disabled (default)
1 = Enabled
If the filter matches or if the filter mask is all 0s, then a true result is returned.
2−56
1P1[3]
D1[3]
1M1[3]
1P1[2]
D1[2]
1M1[2]
1P1[1]
D1[1]
1M1[1]
1P1[0]
D1[0]
1M1[0]
NIBBLE 1
D2[3:0]
NIBBLE 2
1P2[3:0]
1M2[3:0]
PASS 1
D3[3:0]
1P3[3:0]
Filter 1
Enable
NIBBLE 3
00
1M3[3:0]
D4[3:0]
01
NIBBLE 4
1P4[3:0]
PASS
1M4[3:0]
10
D5[3:0]
1P5[3:0]
NIBBLE 5
11
1M5[3:0]
2
Filter Logic
FILTER 1
D1..D5
PASS 2
FILTER 2
2P1..2P5
2M1..2M5
Filter 2
Enable
Figure 2−27. Teletext Filter Function
2.11.65 VDP FIFO Word Count Register
Subaddress
BCh
Read only
7
6
5
4
3
2
1
0
FIFO word count [7:0]
FIFO word count [7:0]: This register provides the number of words in the FIFO.
NOTE: 1 word equals 2 bytes.
2−57
2.11.66 VDP FIFO Interrupt Threshold Register
Subaddress
BDh
Default
80h
7
6
5
4
3
2
1
0
Threshold [7:0]
Threshold [7:0]: This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds
this value.
NOTE: 1 word equals 2 bytes.
2.11.67 VDP FIFO Reset Register
Subaddress
BFh
Default
00h
7
6
5
4
3
2
1
Reserved
0
FIFO reset
FIFO reset: Writing any data to this register clears the FIFO and VDP data registers (CC, WSS, VITC and VPS). After
clearing them, this register is automatically cleared.
2.11.68 VDP FIFO Output Control Register
Subaddress
C0h
Default
00h
7
6
5
4
3
2
1
0
Reserved
Host access enable
Host access enable: This register is programmed to allow the host port access to the FIFO or to allow all VDP data
to go out the video output.
0 = Output FIFO data to the video output Y[9:2] (default)
1 = Allow host port access to the FIFO data
2.11.69 VDP Line Number Interrupt Register
Subaddress
C1h
Default
00h
7
6
Field 1 enable
Field 2 enable
5
4
3
2
1
0
Line number [5:0]
Field 1 enable:
0 = Interrupt disabled (default)
1 = Interrupt enabled
Field 2 enable:
0 = Interrupt disabled (default)
1 = Interrupt enabled
Line number [5:0]: Interrupt line number (default 00h)
This register is programmed to trigger an interrupt when the video line number exceeds this value in bits [5:0]. This
interrupt must be enabled at address F4h.
NOTE: The line number value of 0 or 1 is invalid and does not generate an interrupt.
2−58
2.11.70 VDP Pixel Alignment Register
Subaddress
C2h–C3h
Default
01Eh
Subaddress
7
6
5
4
C2h
3
2
1
0
Pixel alignment [7:0]
C3h
Reserved
Pixel alignment [9:8]
Pixel alignment [9:0]: These registers form a 10-bit horizontal pixel position from the falling edge of horizontal sync,
where the VDP controller initiates the program from one line standard to the next line standard. For example, the
previous line of teletext to the next line of closed caption. This value must be set so that the switch occurs after the
previous transaction has cleared the delay in the VDP, but early enough to allow the new values to be programmed
before the current settings are required.
The default value is 0x1E and has been tested with every standard supported here. A new value is needed only if
a custom standard is in use.
2.11.71 VDP Line Start Register
Subaddress
D6h
Default
06h
7
6
5
4
3
2
1
0
VDP line start [7:0]
VDP line start [7:0]: Sets the VDP line starting address
This register must be set properly before enabling the line mode registers. VDP processor works only in the VBI region
set by this register and the VDP line stop register at subaddress D7h (see Section 2.11.72).
2.11.72 VDP Line Stop Register
Subaddress
D7h
Default
1Bh
7
6
5
4
3
2
1
0
2
1
0
VDP line stop [7:0]
VDP line stop [7:0]: Sets the VDP stop line address
2.11.73 VDP Global Line Mode Register
Subaddress
D8h
Default
FFh
7
6
5
4
3
Global line mode [7:0]
Global line mode [7:0]: VDP processing for multiple lines set by the VDP start line register at subaddress D6h and
the VDP stop line register at subaddress D7h.
Global line mode register has the same bit definition as the general line mode registers.
General line mode has priority over the global line mode.
2−59
2.11.74 VDP Full Field Enable Register
Subaddress
D9h
Default
00h
7
6
5
4
3
2
1
0
Reserved
Full field enable
Full field enable:
0 = Disabled full field mode (default)
1 = Enabled full field mode
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line
mode register programmed with FFh are sliced with the definition of the VDP full field mode register at subaddress
DAh. Values other than FFh in the line mode registers allow a different slice mode for that particular line.
2.11.75 VDP Full Field Mode Register
Subaddress
DAh
Default
FFh
7
6
5
4
3
2
1
0
Full field mode [7:0]
Full field mode [7:0]:
This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line settings
take priority over the full field register. This allows each VBI line to be programmed independently but have the
remaining lines in full field mode. The full field mode register has the same bit definition as line mode registers (default
FFh).
Global line mode has priority over the full field mode.
2.11.76 VBUS Data Access With No VBUS Address Increment Register
Subaddress
E0h
Default
00h
7
6
5
4
3
2
1
0
1
0
VBUS data [7:0]
VBUS data [7:0]: VBUS data register for VBUS single byte read/write transaction.
2.11.77 VBUS Data Access With VBUS Address Increment Register
Subaddress
E1h
Default
00h
7
6
5
4
3
2
VBUS data [7:0]
VBUS data [7:0]: VBUS data register for VBUS multibyte read/write transaction. VBUS address is autoincremented
after each data byte read/write.
2−60
2.11.78 FIFO Read Data Register
Subaddress
E2h
Read only
7
6
5
4
3
2
1
0
FIFO read data [7:0]
FIFO read data [7:0]: This register is provided to access VBI FIFO data through the host port. All forms of teletext
data come directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or
from the FIFO. If the host port is to be used to read data from the FIFO, then bit 0 (host access enable) in the VDP
FIFO output control register at subaddress C0h must be set to 1 (see Section 2.11.68).
2.11.79 VBUS Address Access Register
Subaddress
E8h
E9h
EAh
Default
00h
00h
00h
Subaddress
E8h
7
6
5
4
3
2
1
0
VBUS address [7:0]
E9h
VBUS address [15:8]
EAh
VBUS address [23:16]
VBUS address [23:0]: VBUS is a 24-bit wide internal bus. The user must program in these registers the 24-bit address
of the internal register to be accessed via host port indirect access mode.
2−61
2.11.80 Interrupt Raw Status 0 Register
Subaddress
F0h
Read only
7
6
5
4
3
2
1
0
FIFO THRS
TTX
WSS
VPS
VITC
CC F2
CC F1
Line
FIFO THRS: FIFO threshold passed, unmasked
0 = Not passed
1 = Passed
TTX: Teletext data available unmasked
0 = Not available
1 = Available
WSS: WSS data available unmasked
0 = Not available
1 = Available
VPS: VPS data available unmasked
0 = Not available
1 = Available
VITC: VITC data available unmasked
0 = Not available
1 = Available
CC F2: CC field 2 data available unmasked
0 = Not available
1 = Available
CC F1: CC field 1 data available unmasked
0 = Not available
1 = Available
Line: Line number interrupt unmasked
0 = Not available
1 = Available
See also the interrupt raw status 1 register at subaddress F1h (see Section 2.11.81).
The host interrupt raw status 0 and 1 registers represent the interrupt status without applying mask bits.
2−62
2.11.81 Interrupt Raw Status 1 Register
Subaddress
F1h
Read only
7
6
5
4
Reserved
3
2
1
0
Macrovision status changed
Standard changed
FIFO full
Macrovision status changed: unmasked
0 = Macrovision status unchanged
1 = Macrovision status changed
Standard changed: unmasked
0 = Video standard unchanged
1 = Video standard changed
FIFO full: unmasked
0 = FIFO not full
1 = FIFO was full during write to FIFO
The FIFO full error flag is set when the current line of VBI data cannot enter the FIFO. For example, if the FIFO has
only 10 bytes left and teletext is the current VBI line, then the FIFO full error flag is set, but no data is written because
the entire teletext line does not fit. However, if the next VBI line is closed caption requiring only 2 bytes of data plus
the header, then this goes into the FIFO even if the full error flag is set.
2−63
2.11.82 Interrupt Status 0 Register
Subaddress
F2h
Read only
7
6
5
4
3
2
1
0
FIFO THRS
TTX
WSS
VPS
VITC
CC F2
CC F1
Line
FIFO THRS: FIFO threshold passed, masked
0 = Not passed
1 = Passed
TTX: Teletext data available masked
0 = Not available
1 = Available
WSS: WSS data available masked
0 = Not available
1 = Available
VPS: VPS data available masked
0 = Not available
1 = Available
VITC: VITC data available masked
0 = Not available
1 = Available
CC F2: CC field 2 data available masked
0 = Not available
1 = Available
CC F1: CC field 1 data available masked
0 = Not available
1 = Available
Line: Line number interrupt masked
0 = Not available
1 = Available
See also the interrupt status 1 register at subaddress F3h (see Section 2.11.83).
The interrupt status 0 and 1 registers represent the interrupt status after applying mask bits. Therefore, the status
bits are the result of a logical AND between the raw status and mask bits. The external interrupt terminal is derived
from this register as an OR function of all nonmasked interrupts in this register.
Reading data from the corresponding register does not clear the status flags automatically. These flags are reset
using the corresponding bits in interrupt clear 0 and 1 registers.
2−64
2.11.83 Interrupt Status 1 Register
Subaddress
F3h
Read only
7
6
5
4
Reserved
3
2
1
0
Macrovsion status changed
Standard changed
FIFO full
Macrovision status changed: Macrovision status changed masked
0 = Macrovision status not changed
1 = Macrovision status changed
Standard changed: Standard changed masked
0 = Video standard not changed
1 = Video standard changed
FIFO full: Full status of FIFO masked
0 = FIFO not full
1 = FIFO was full during write to FIFO, see the interrupt mask 1 register at subaddress F5h for details (see
Section 2.11.85)
2−65
2.11.84 Interrupt Mask 0 Register
Subaddress
F4h
Default
00h
7
6
5
4
3
2
1
0
FIFO THRS
TTX
WSS
VPS
VITC
CC F2
CC F1
Line
FIFO THRS: FIFO threshold passed mask
0 = Disabled (default)
1 = Enabled FIFO_THRES interrupt
TTX: Teletext data available mask
0 = Disabled (default)
1 = Enabled TTX available interrupt
WSS: WSS data available mask
0 = Disabled (default)
1 = Enabled WSS available interrupt
VPS: VPS data available mask
0 = Disabled (default)
1 = Enabled VPS available interrupt
VITC: VITC data available mask
0 = Disabled (default)
1 = Enabled VITC available interrupt
CC F2: CC field 2 data available mask
0 = Disabled (default)
1 = Enabled CC_field 2 available interrupt
CC F1: CC field 1 data available mask
0 = Disabled (default)
1 = Enabled CC_field 1 available interrupt
Line: Line number interrupt mask
0 = Disabled (default)
1 = Enabled Line_INT interrupt
See also the interrupt mask 1 register at subaddress F5h (see Section 2.11.85).
The host interrupt mask 0 and 1 registers can be used by the external processor to mask unnecessary interrupt
sources for the interrupt status 0 and 1 register bits, and for the external interrupt terminal. The external interrupt is
generated from all nonmasked interrupt flags.
2−66
2.11.85 Interrupt Mask 1 Register
Subaddress
F5h
Default
00h
7
6
5
4
Reserved
3
2
1
0
Macrovision status changed
Standard changed
FIFO full
Macrovision status changed: Macrovision status changed mask
0 = Macrovision status unchanged
1 = Macrovision status changed
Standard changed: Standard changed mask
0 = Disabled (default)
1 = Enabled video standard changed
FIFO full: FIFO full mask
0 = Disabled (default)
1 = Enabled FIFO full interrupt
2−67
2.11.86 Interrupt Clear 0 Register
Subaddress
F6h
Default
00h
7
6
5
4
3
2
1
0
FIFO THRS
TTX
WSS
VPS
VITC
CC F2
CC F1
Line
FIFO THRS: FIFO threshold passed clear
0 = No effect (default)
1 = Clear bit 7 (FIFO_THRS) in the interrupt status 0 register at subaddress F2h
TTX: Teletext data available clear
0 = No effect (default)
1 = Clear bit 6 (TTX available) in the interrupt status 0 register at subaddress F2h
WSS: WSS data available clear
0 = No effect (default)
1 = Clear bit 5 (WSS available) in the interrupt status 0 register at subaddress F2h
VPS: VPS data available clear
0 = No effect (default)
1 = Clear bit 4 (VPS available) in the interrupt status 0 register at subaddress F2h
VITC: VITC data available clear
0 = Disabled (default)
1 = Clear bit 3 (VITC available) in the interrupt status 0 register at subaddress F2h
CC F2: CC field 2 data available clear
0 = Disabled (default)
1 = Clear bit 2 (CC field 2 available) in the interrupt status 0 register at subaddress F2h
CC F1: CC field 1 data available clear
0 = Disabled (default)
1 = Clear bit 1 (CC field 1 available) in the interrupt status 0 register at subaddress F2h
Line: Line number interrupt clear
0 = Disabled (default)
1 = Clear bit 0 (line interrupt available) in the interrupt status 0 register at subaddress F2h
See also the interrupt clear 1 register at subaddress F7h (see Section 2.11.87).
The host interrupt clear 0 and 1 registers are used by the external processor to clear the interrupt status bits in the
host interrupt status 0 and 1 registers. When no nonmasked interrupts remain set in the registers, the external
interrupt terminal also becomes inactive.
2−68
2.11.87 Interrupt Clear 1 Register
Subaddress
F7h
Default
00h
7
6
5
4
Reserved
3
2
1
0
Macrovision status changed
Standard changed
FIFO full
Macrovision status changed: Clear Macrovision status changed flag
0 = No effect (default)
1 = Clear bit 2 (Macrovision status changed) in the interrupt status 1 register at subaddress F3h and the
interrupt raw status 1 register at subaddress F1h
Standard changed: Clear standard changed flag
0 = No effect (default)
1 = Clear bit 1 (video standard changed) in the interrupt status 1 register at subaddress F3h and the interrupt
raw status 1 register at subaddress F1h
FIFO full: Clear FIFO full flag
0 = No effect (default)
1 = Clear bit 0 (FIFO full flag) in the interrupt status 1 register at subaddress F3h and the interrupt raw status
1 register at subaddress F1h
2−69
2.12 VBUS Register Definitions
2.12.1 VDP Closed Caption Data Register
Subaddress
80 051Ch–80 051Fh
Read only
Subaddress
7
6
5
4
3
80 051Ch
Closed caption field 1 byte 1
80 051Dh
Closed caption field 1 byte 2
80 051Eh
Closed caption field 2 byte 1
80 051Fh
Closed caption field 2 byte 2
2
1
0
These registers contain the closed caption data arranged in bytes per field.
2.12.2 VDP WSS Data Register
Subaddress
80 0520h–80 0526h
WSS NTSC (CGMS):
Read only
Subaddress
7
6
5
b13
b12
80 0520h
80 0521h
80 0522h
4
3
2
1
0
Byte
b5
b4
b3
b2
b1
b0
WSS field 1 byte 1
b11
b10
b9
b8
b7
b6
WSS field 1 byte 2
b19
b18
b17
b16
b15
b14
WSS field 1 byte 3
b5
b4
b3
b2
b1
b0
WSS field 2 byte 1
b11
b10
b9
b8
b7
b6
WSS field 2 byte 2
b19
b18
b17
b16
b15
b14
WSS field 2 byte 3
80 0523h
Reserved
80 0524h
80 0525h
b13
b12
80 0526h
These registers contain the wide screen signaling data for NTSC.
Bits 0–1 represent word 0, aspect ratio.
Bits 2–5 represent word 1, header code for word 2.
Bits 6–13 represent word 2, copy control.
Bits 14–19 represent word 3, CRC.
PAL/SECAM:
Read only
Subaddress
7
6
5
4
3
2
1
0
Byte
80 0520h
b7
b6
b5
b4
b3
b2
b1
b0
WSS field 1 byte 1
b13
b12
b11
b10
b9
b8
WSS field 1 byte 2
80 0521h
80 0522h
Reserved
80 0523h
80 0524h
80 0525h
80 0526h
Reserved
b7
b6
b5
b4
b3
b2
b1
b0
WSS field 2 byte 1
b13
b12
b11
b10
b9
b8
WSS field 2 byte 2
Reserved
PAL/SECAM:
Bits 0–3 represent group 1, aspect ratio.
Bits 4–7 represent group 2, enhanced services.
Bits 8–10 represent group 3, subtitles.
Bits 11–13 represent group 4, others.
2−70
2.12.3 VDP VITC Data Register
Subaddress
80 052Ch–80 0534h
Read only
Subaddress
7
6
5
4
80 052Ch
3
2
1
0
VITC frame byte 1
80 052Dh
VITC frame byte 2
80 052Eh
VITC seconds byte 1
80 052Fh
VITC seconds byte 2
80 0530h
VITC minutes byte 1
80 0531h
VITC minutes byte 2
80 0532h
VITC hours byte 1
80 0533h
VITC hours byte 2
80 0534h
VITC CRC byte
These registers contain the VITC data.
2.12.4 VDP V-Chip TV Rating Block 1 Register
Subaddress
80 0540h
Read only
7
6
5
4
3
2
1
0
Reserved
14-D
PG-D
Reserved
MA-L
14-L
PG-L
Reserved
TV parental guidelines rating block 1:
14-D: When incoming video program is TV-14-D rated, then this bit is set high
PG-D: When incoming video program is TV-PG-D rated, then this bit is set high
MA-L: When incoming video program is TV-MA-L rated, then this bit is set high
14-L: When incoming video program is TV-14-L rated, then this bit is set high
PG-L: When incoming video program is TV-PG-L rated, then this bit is set high
2.12.5 VDP V-Chip TV Rating Block 2 Register
Subaddress
80 0541h
Read only
7
6
5
4
3
2
1
0
MA-S
14-S
PG-S
Reserved
MA-V
14-V
PG-V
Y7-FV
TV parental guidelines rating block 2:
MA-S: When incoming video program is TV-MA-S rated, then this bit is set high
14-S: When incoming video program is TV-14-S rated, then this bit is set high
PG-S: When incoming video program is TV-PG-S rated, then this bit is set high
MA-V: When incoming video program is TV-MA-V rated, then this bit is set high
14-V: When incoming video program is TV-14-V rated, then this bit is set high
PG-V: When incoming video program is TV-PG-S rated, then this bit is set high
Y7-FV: When incoming video program is TV-Y7-FV rated, then this bit is set high
2−71
2.12.6 VDP V-Chip TV Rating Block 3 Register
Subaddress
80 0542h
Read only
7
6
5
4
3
2
1
0
None
TV-MA
TV-14
TV-PG
TV-G
TV-Y7
TV-Y
None
TV parental guidelines rating block 3:
None: No block intended
TV-MA: When incoming video program is TV-MA rated in TV Parental Guidelines Rating, then this bit is set
high
TV-14: When incoming video program is TV-14 rated in TV Parental Guidelines Rating, then this bit is set
high
TV-PG: When incoming video program is TV-PG rated in TV Parental Guidelines Rating, then this bit is set
high
TV-G: When incoming video program is TV-G rated in TV Parental Guidelines Rating, then this bit is set high
TV-Y7: When incoming video program is TV-Y7 rated in TV Parental Guidelines Rating, then this bit is set
high
TV-Y: When incoming video program is TV-G rated in TV Parental Guidelines Rating, then this bit is set high
None: No block intended
2.12.7 VDP V-Chip MPAA Rating Data Register
Subaddress
80 0543h
Read only
7
6
5
4
3
2
1
0
Not Rated
X
NC-17
R
PG-13
PG
G
N/A
MPAA rating block (E5h):
Not Rated: When incoming video program is Not Rated rated in MPAA Rating, then this bit is set high
X: When incoming video program is X rated in MPAA Rating, then this bit is set high
NC-17: When incoming video program is NC-17 rated in MPAA Rating, then this bit is set high
R: When incoming video program is R rated in MPAA Rating, then this bit is set high
PG-13: When incoming video program is PG-13 rated in MPAA Rating, then this bit is set high
PG: When incoming video program is PG rated in MPAA Rating, then this bit is set high
G: When incoming video program is G rated in MPAA Rating, then this bit is set high
N/A: When incoming video program is N/A rated in MPAA Rating, then this bit is set high
2−72
2.12.8 VDP General Line Mode and Line Address Register
Subaddress
80 0600h–80 0611h
(default line mode = FFh, address = 00h)
Subaddress
7
6
5
4
3
80 0600h
Line address 1
80 0601h
Line mode 1
80 0602h
Line address 2
80 0603h
Line mode 2
80 0604h
Line address 3
80 0605h
Line mode 3
80 0606h
Line address 4
80 0607h
Line mode 4
80 0608h
Line address 5
80 0609h
Line mode 5
80 060Ah
Line address 6
80 060Bh
Line mode 6
80 060Ch
Line address 7
80 060Dh
Line mode 7
80 060Eh
Line address 8
80 060Fh
Line mode 8
80 0610h
Line address 9
80 0611h
Line mode 9
2
1
0
Line address x [7:0]: Line number to be processed by a VDP set by a line mode register (default 00h)
Line mode x [7:0]:
Bit 7:
0 = Disabled filters
1 = Enabled filters for teletext and CC (Null byte filter) (default)
Bit 6:
0 = Send sliced VBI data to registers only (default)
1 = Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO (default)
Bit 5:
0 = Allow VBI data with errors in the FIFO
1 = Do not allow VBI data with errors in the FIFO (default)
Bit 4:
0 = Disabled error detection and correction
1 = Enabled error detection and correction (teletext only) (default)
Bit 3:
0 = Field 1
1 = Field 2 (default)
Bits [2:0]:
000 = Teletext (WST625, Chinese teletext, NABTS 525)
001 = CC (US, Europe, Japan, China)
010 = WSS (525, 625)
011 = VITC
100 = VPS (PAL only), EPG (NTSC only)
101 = USER 1
110 = USER 2
111 = Reserved (active video) (default)
2−73
2.12.9 VDP VPS/Gemstar Data Register
Subaddress
80 0700h–80 070Ch
VPS: Read only
Subaddress
7
6
5
4
3
80 0700h
VPS byte 1
80 0701h
VPS byte 2
80 0702h
VPS byte 3
80 0703h
VPS byte 4
80 0704h
VPS byte 5
80 0705h
VPS byte 6
80 0706h
VPS byte 7
80 0707h
VPS byte 8
80 0708h
VPS byte 9
80 0709h
VPS byte 10
80 070Ah
VPS byte 11
80 070Bh
VPS byte 12
80 070Ch
VPS byte 13
2
1
0
These registers contain the entire VPS data line except the clock run-in code or the start code.
Gemstar: Read only
Subaddress
7
6
5
4
3
80 0700h
Gemstar frame code
80 0701h
Gemstar byte 1
80 0702h
Gemstar byte 2
80 0703h
Gemstar byte 3
80 0704h
Gemstar byte 4
80 0705h
Reserved
80 0706h
Reserved
80 0707h
Reserved
80 0708h
Reserved
80 0709h
Reserved
80 070Ah
Reserved
80 070Bh
Reserved
80 070Ch
Reserved
2
1
0
2.12.10 VDP FIFO Read Register
Subaddress
90 1904h
Read only
7
6
5
4
3
2
1
0
FIFO data [7:0]
FIFO data [7:0]: This register is provided to access VBI FIFO data through the host port. All forms of teletext data come
directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or from the FIFO.
If the host port is to be used to read data from the FIFO, then bit 0 (host access enable) in the FIFO output control
register at subaddress C0h must be set to 1.
2−74
2.12.11 Interrupt Configuration Register
Subaddress
B0 0060h
Default
00h
7
6
5
Reserved
4
3
2
Polarity
1
0
Reserved
Polarity: Interrupt terminal polarity
0 = Active high (default)
1 = Active low
2−75
2−76
3 Electrical Specifications
3.1 Absolute Maximum Ratings†
Supply voltage range:
IOVDD to I/O GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2 V
A33VDD (see Note 1) to A18GND (see Note 2) . . . . . . . . . . . . . . . . −0.3 V to 3.6 V
A18VDD (see Note 3) to A33GND (see Note 4) . . . . . . . . . . . . . . . . . . −0.2 V to 2 V
Digital input voltage, VI to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V
Digital output voltage, VO to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V
Analog input voltage range AIN to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2 V
Operating free-air temperature, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. CH1_A33VDD, CH2_A33VDD, CH3_A33VDD, CH4_A33VDD
2. CH1_A33GND, CH2_A33GND, CH3_A33GND, CH4_A33GND
3. CH1_A18VDD, CH2_A18VDD, CH3_A18VDD, CH4_A18VDD, A18VDD_REF, PLL_A18VDD
4. CH1_A18GND, CH2_A18GND, CH3_A18GND, CH4_A18GND
3.2 Recommended Operating Conditions
MIN
NOM
MAX
UNIT
IOVDD
DVDD
Digital supply voltage
3
3.3
3.6
V
Digital supply voltage
1.65
1.8
1.95
V
AVDD33
AVDD18
Analog supply voltage
3
3.3
3.6
V
Analog supply voltage
1.65
1.8
1.95
V
VI(P-P)
VIH
Analog input voltage (ac-coupling necessary)
0.5
1
2
V
VIL
IOH
Digital input voltage low (Note 2)
Output current, Vout = 2.4 V
−4
−8
mA
IOL
TA
Output current, Vout = 0.4 V
6
8
mA
Operating free-air temperature
0
Digital input voltage high (Note 1)
0.7 IOVDD
V
0.3 IOVDD
70
V
°C
NOTES: 1. Exception: 0.7 AVDD18 for XTAL1 terminal
2. Exception: 0.3 AVDD18 for XTAL1 terminal
3.2.1
Crystal Specifications
CRYSTAL SPECIFICATIONS
Frequency
Frequency tolerance
MIN
NOM
MAX
14.31818
UNIT
MHz
±50
ppm
3−1
3.3 Electrical Characteristics
For minimum/maximum values: IOVDD = 3.0 V to 3.6 V, DVDD = 1.65 V to 1.95 V, AVDD33 = 3.0 V to 3.6 V,
AVDD18 = 1.65 V to 1.95 V, TA = 0°C to 70°C
For typical values: IOVDD = 3.3 V, DVDD = 1.8 V, AVDD33 = 3.3 V, AVDD18 = 1.8 V, TA = 25°C
3.3.1
DC Electrical Characteristics
PARAMETER
TEST CONDITIONS
MIN
TYP
CVBS
6
RGB and CVBS
6
IDDIO(D)
3.3-V IO digital supply current
IDD(D)
1.8-V digital supply current
IDD33(A)
3.3-V analog supply current
IDD18(A)
1.8-V analog supply current
PTOT
Total power dissipation (normal operation)
PSAVE
PDOWN
Total power dissipation (power save)
100
Total power dissipation (power down)
11
Ilkg
Ci
Input leakage current
VOH
VOL
Output voltage high
CVBS
UNIT
mA
66.2
RGB and CVBS
mA
67
CVBS
16
RGB and CVBS
47.8
CVBS
79.3
RGB and CVBS
240
CVBS
mA
mA
334.5
RGB and CVBS
Input capacitance
MAX
mW
730
mW
mW
By design
10
µA
8
pF
0.8 IOVDD
V
Output voltage low
0.2 IOVDD
V
NOTE 1: Measured with a load of 10 kΩ in parallel to 15 pF.
3.3.2
Analog Processing and A/D Converters
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
Zi
Ci
Input impedance, analog video inputs
By design
Input capacitance, analog video inputs
By design
Vi(pp)
∆G
Input voltage range
Ccoupling = 47 nF
DNL
Differential nonlinearity
AFE only
INL
Integral nonlinearity
AFE only
Fr
Frequency response
Multiburst (60 IRE)
XTALK
Crosstalk
1 MHz
SNR
Signal-to-noise ratio, all channels
1 MHz, 1.0 VP-P
54
GM
Gain match (Note 1)
Full scale, 1 MHz
1.1%
NS
Noise spectrum
Luma ramp (100 kHz to full, tilt-null)
−58
dB
DP
Differential phase
Modulated ramp
0.5
°
DG
Differential gain
Modulated ramp
±1.5%
Gain control range
NOTE 1: Component inputs only
3−2
200
UNIT
0.50
kΩ
10
pF
1
2
V
0.75
1.0
LSB
1
2.5
LSB
−6
6
−0.9
dB
dB
−50
dB
dB
1.5%
3.3.3
Timing
3.3.3.1 Clocks, Video Data, Sync Timing
TEST CONDITIONS
(see Note 1)
PARAMETER
Duty cycle DATACLK
MIN
TYP
MAX
45%
50%
55%
UNIT
t1
t2
High time, DATACLK
18.5
ns
Low time, DATACLK
18.5
ns
t3
t4
Fall time, DATACLK
90% to 10%
4
ns
Rise time, DATACLK
10% to 90%
4
ns
10
ns
t5
Output delay time
NOTE 1: CL = 15 pF
t2
t1
VOH
DATACLK
VOL
t3
t4
VOH
Y, C, AVID, VS, HS, FID
Valid Data
Valid Data
VOL
t5
Figure 3−1. Clocks, Video Data, and Sync Timing
3−3
3.3.3.2 I2C Host Port Timing
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
µs
t1
t2
Bus free time between STOP and START
t3
t4
Data setup time
100
ns
Setup time for a (repeated) START condition
0.6
µs
t5
t6
Setup time for a STOP condition
0.6
ns
Hold time (repeated) START condition
0.6
µs
t7
t8
Rise time VC1(SDA) and VC0(SCL) signal
250
Fall time VC1(SDA) and VC0(SCL) signal
250
ns
Cb
Capacitive load for each bus line
I2C clock frequency
400
pF
400
kHz
fI2C
1.3
Data hold time
0
0.9
Stop Start
Stop
VC1 (SDA)
Data
t1
t6
t7
VC0 (SCL)
t3
t2
Change
Data
t8
Figure 3−2. I2C Host Port Timing
3−4
t6
t4
t5
µs
ns
4 Example Register Settings
The following example register settings are provided only as a reference. These settings, given the assumed input
connector, video format, and output format, set up the TVP5146 decoder and provide video output. Example register
settings for other features and the VBI data processor are not provided here.
4.1 Example 1
4.1.1
Assumptions
Input connector:
Composite (VI_1_A) (default)
Video format:
NTSC (J, M), PAL (B, G, H, I, N) or SECAM (default)
NOTE: NTSC-443, PAL-Nc, and PAL-M are masked from the autoswitch process by default.
See the autoswitch mask register at address 04h.
Output format:
4.1.2
10-bit ITU-R BT.656 with embedded syncs (default)
Recommended Settings
Recommended I2C writes: For the given assumptions, only one write is required. All other registers are set up by
default.
I2C register address 08h = Luminance processing control 3 register
I2C data 00h = Optimizes the trap filter selection for NTSC and PAL
I2C register address 0Eh = Chrominance processing control 3 register
I2C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
I2C register address 34h = Output formatter 2 register
I2C data 11h = Enables YCbCr output and the clock output
NOTE: HS/CS, VS/VBLK, AVID, FID, and GLCO are logic inputs by default. See output
formatter 3 and 4 registers at addresses 35h and 36h, respectively.
4−1
4.2 Example 2
4.2.1
Assumptions
Input connector:
S-video [VI_2_C (luma), VI_1_C (chroma)]
Video format:
NTSC (J, M, 443), PAL (B, G, H, I, M, N, Nc) and SECAM
Output format:
10-bit 4:2:2 YCbCr with discrete sync outputs
4.2.2
Recommended Settings
Recommended I2C writes: This setup requires additional writes to output the discrete sync 10-bit 4:2:2 data, HS, and
VS, and to autoswitch between all video formats mentioned above.
I2C register address 00h = Input select register
I2C data 46h = Sets luma to VI_2_C and chroma to VI_1_C
I2C register address 04h = Autoswitch mask register
I2C data 3Fh = Includes NTSC 443 and PAL (M, Nc) in the autoswitch
I2C register address 08h = Luminance processing control 3 register
I2C data 00h = Optimizes the trap filter selection for NTSC and PAL
I2C register address 0Eh = Chrominance processing control 2 register
I2C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
I2C register address 33h = Output formatter 1 register
I2C data 43h = Selects the 10-bit 4:2:2 output format
I2C register address 34h = Output formatter 2 register
I2C data 11h = Enables YCbCr output and the clock output
I2C register address 36h = Output formatter 4 register
I2C data AFh = Enables HS and VS sync outputs
4−2
4.3 Example 3
4.3.1
Assumptions
Input connector:
Component [VI_1_B (Pb), VI_2_B (Y), VI_3_B (Pr)]
Video format:
NTSC (J, M, 443), PAL (B, G, H, I, M, N, Nc) and SECAM
Output format:
20-bit 4:2:2 YCbCr with discrete sync outputs
4.3.2
Recommended Settings
Recommended I2C writes: This setup requires additional writes to output the discrete sync 20-bit 4:2:2 data, HS, and
VS, and to autoswitch between all video formats mentioned above.
I2C register address 00h = Input select register
I2C data 95h = Sets Pb to VI_1_B, Y to VI_2_B, and Pr to VI_3_B
I2C register address 04h = Autoswitch mask register
I2C data 3Fh = Includes NTSC 443 and PAL (M, Nc) in the autoswitch
I2C register address 08h = Luminance processing control 3 register
I2C data 00h = Optimizes the trap filter selection for NTSC and PAL
I2C register address 0Eh = Chrominance processing control 2 register
I2C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
I2C register address 33h = Output formatter 1 register
I2C data 41h = Selects the 20-bit 4:2:2 output format
I2C register address 34h = Output formatter 2 register
I2C data 11h = Enables YCbCr output and the clock output
I2C register address 36h = Output formatter 4 register
I2C data AFh = Enables HS and VS sync outputs
4−3
4−4
5 Application Information
5.1 Application Example
XTAL1
XTAL2
C_0
FID
14.31818 MHz
CL2
C_1
C_2
2.2 kΩ
HS/CS
A3.3VDD
CL1
VS/VBLK
2.2 kΩ
XTAL2
A1.8VDD
IOVDD3.3V
C_3
C_4
C_5
XTAL1
DVDD1.8V
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
VI_1_A
0.1 µF (2)
0.1 µF (3)
VI_2A
VI_2B
VI_2C
75 Ω (3)
0.1 µF (3)
VI_3A
VI_3B
VI_3C
75 Ω (3)
0.1 µF (3)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
TVP5146PFP
CH2_A18VDD
A18VDD_REF
A18GND_REF
CH3_A18VDD
CH3_A18GND
VI_3_A
VI_3_B
VI_3_C
CH3_A33GND
CH3_A33VDD
Y_5
Y_6
Y_7
Y_8
Y_9
DGND
DVDD
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
CH4_A33VDD
0.1 µF
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
C_6
C_7
C_8
C_9
Y_0
Y_1
Y_2
Y_3
Y_4
0.1 µF
Y_5
Y_6
Y_7
Y_8
Y_9
0.1 µF
0.1 µF
39
40
75 Ω (3)
C_6/RED
C_7/GREEN
C_8/BLUE
C_9/FSO
DGND
DVDD
Y_0
Y_1
Y_2
Y_3
Y_4
IOGND
IOVDD
VI_1_B
VI_1_C
CH1_A33GND
CH1_A33VDD
CH2_A33VDD
CH2_A33GND
VI_2_A
VI_2_B
VI_2_C
CH2_A18GND
CH4_A33GND
VI_4A
CH4_A18GND
CH4_A18VDD
AGND
DGND
SCL
SDA
INTREQ
DVDD
DGND
PWDN
RESETB
FSS
AVID
GLCO/I2CA
IOVDD
IOGND
DATACLK
1
2
CH1_A18GND
CH1_A18VDD
PLL_A18GND
PLL_A18VDD
XTAL2
XTAL1
VS/VBLK
HS/CS
FID
C_0
C_1
DGND
DVDD
C_2
C_3
C_4
C_5
IOGND
IOVDD
0.1 µF (3)
VI_1A
VI_1B
VI_1C
63
62
61
0.1 µF (2)
0.1 µF (2)
0.1 µF
VI_4A
75 Ω
0.1 µF
IOVDD
10 kΩ
GLCO/I2CA
2
1
3
GND
2.2 kΩ (2)
0.1 µF
0.1 µF
0.1 µF
DATACLK
GLCO/I2CA
AVID
FSS
RESETB
PWDN
I2C Address selection
1−2 Base Addr. 0xBA
2−3 Base Addr. 0xB8
INTREQ
SDA
SCL
10 kΩ
NOTE: If XTAL1 is connected to clock source, input voltage high must be 1.8 V.
Terminals 69 and 71 must be connected to ground through pulldown resistors.
Figure 5−1. Application Example
5−1
5.2 Designing With PowerPADt Devices
The TVP5146 device is housed in a high-performance, thermally enhanced, 80-terminal PowerPAD package (TI
package designator: 80PFP). Use of the PowerPAD package does not require any special considerations except to
note that the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic thermal and electrical
conductor. Therefore, if not implementing the PowerPAD PCB features, the use of solder masks (or other assembly
techniques) may be required to prevent any inadvertent shorting by the exposed thermal pad of connection etches
or vias under the package. The recommended option, however, is not to run any etches or signal vias under the
device, but to have only a grounded thermal land as explained in the following paragraphs. Although the actual size
of the exposed die pad may vary, the minimum size required for the keep-out area for the 80-terminal PFP PowerPAD
package is 8 mm × 8 mm.
It is recommended that there be a thermal land, which is an area of solder-tinned copper, underneath the PowerPAD
package. The thermal land varies in size, depending on the PowerPAD package being used, the PCB construction,
and the amount of heat that needs to be removed. In addition, the thermal land may or may not contain numerous
thermal vias depending on PCB construction.
Other requirements for using thermal lands and thermal vias are detailed in the PowerPADt Thermally Enhanced
Package technical brief, TI literature number SLMA002, available via the TI Web pages at URL http://www.ti.com.
For the TVP5146 device, this thermal land must be grounded to the low-impedance ground plane of the device. This
improves not only thermal performance but also the electrical grounding of the device. It is also recommended that
the device ground terminal landing pads be connected directly to the grounded thermal land. The land size must be
as large as possible without shorting device signal terminals. The thermal land may be soldered to the exposed
thermal pad using standard reflow soldering techniques.
While the thermal land may be electrically floated and configured to remove heat to an external heat sink, it is
recommended that the thermal land be connected to the low impedance ground plane for the device. More
information can be obtained from the TI Recommendations for PHY Layout applicaton report, TI literature number
SLLA020.
PowerPAD is a trademark of Texas Instruments.
5−2
6 Mechanical Data
PFP (S-PQFP-G80)
PowerPAD PLASTIC QUAD FLATPACK
0,27
0,17
0,50
60
0,08 M
41
40
61
Thermal Pad
(see Note D)
80
21
1
0,13 NOM
20
Gage Plane
9,50 TYP
12,20
SQ
11,80
14,20
SQ
13,80
0,25
0,15
0,05
0°−ā 7°
0,75
0,45
1,05
0,95
Seating Plane
1,20 MAX
0,08
4146925/B 08/03
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion.
This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad
Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding
recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. Falls within JEDEC MS-026
PowerPAD is a trademark of Texas Instruments.
6−1