ISSN 1423-7369 March 2002 PAUL SCHERRER INSTITUT LT Scientific Report 2001 Volume VII Swiss Light Source ed. by: Heinz-Josef Weyer, Marlen Bugmann CH-5232 Villigen PSI Switzerland Phone: 0 5 6 / 3 1 0 21 11 Telefax: 0 5 6 / 3 1 0 21 99 http://www.psi.ch/sls TABLE OF CONTENTS INTRODUCTION A. Wrulich 1 SLS ACCELERATOR 3 ACHIEVEMENTS OF THE SLS COMMISSIONING 4 BEAM DYNAMICS STUDIES ON AN EXTENSION OF SLS FOR GENERATION OF SUB-PICOSECOND X-RAY PULSES 9 A. Streun, M. Böge, J. Chrin, M. Dach, M. Dehler, C. Gough, W. Joho, T. Korhonen, S. Leemann, A. Lüdeke, M. Mailand, P. Marchand, M. Muñoz, M. Pedrozzi, L. Rivkin, W. Portmann, T. Schilcher, V. Schlott, L. Schulz, B. Singh, G. Singh, D. Sütterlin, A. Wrulich A. Streun, B. Singh, G. Singh, G. Ingold, V. Schlott ON THE USE OF CORBA IN HIGH LEVEL BEAM DYNAMICS APPLICATIONS 12 M. Böge, J. Chrin VACUUM CONDITIONING AND LIFETIME IMPROVEMENT 14 L. Schulz, A. Streun SLS THIRD HARMONIC SUPERCONDUCTING RF SYSTEM 16 P. Marchand, M. Pedrozzi, A. Anghel (CRPP Lausanne) BEAM POSITION STABILIZATION 18 M. Böge, T. Schilcher OPERATION OF THE SLS STORAGE RING RF SYSTEM 20 P. Marchand, M. Pedrozzi, J. Cherix, C. Geiselhart, W. Portmann, W. Tron RESULTS OF SURVEY AND ALIGNMENT 22 F.Q. Wei, K. Dreyer, H. Umbricht SLS OPERATION 24 A. Lüdeke OPERATING EXPERIENCE WITH THE SLS POWER SUPPLIES 25 F. Jenni, M. Horvat, L. Tanner RESULTS FROM THE HORIZONTAL POSITION MEASUREMENT SYSTEM 28 V. Schlott STATUS OF THE H LS SYSTEM 30 S. Zelenika BEAM BASED ALIGNMENT MEASUREMENTS 32 M. Böge HIGH LEVEL SOFTWARE AND OPERATOR INTERFACE 34 A. Lüdeke, M. Böge, J. Chrin MEASUREMENT AND COMPENSATION OF LINEAR OPTICAL DISTORTIONS 36 M. Böge, A. Streun COMMISSIONING RESULTS FOR THE SLS TRANSVERSE MULTIBUNCH FEEDBACK 37 TOP-UP OPERATION EXPERIENCE 39 M. Dehler, P. Pollet, T. Schilcher, V. Schlott, R. Bressanutti, D. Bulfone, M. Lonza, L. Zambón (Sincrotrone Trieste) M. Muñoz STATUS OF THE SLS CONTROL SYSTEM 41 BEAMLINES, OVERVIEW 43 BEAMLINE AND USERS ASPECTS 44 S. Hunt, M. Dach, M. Grunder, M. Heiniger, C. Higgs, M. Janousch, R. Kappeler, T. Korhonen, R. Krempaská, J. Krempasky, A. Liideke, D. Maden, T. Pal, W. Portmann, H. Pruchova, D. Vermeulen J.F. van der Veen, R. Abela BEAMLINES, DETAILS 47 SURFACE / INTERFACE SPECTROSCOPY BEAMLINE 48 SURFACE / INTERFACE MICROSCOPY BEAMLINE 50 THE MATERIALS SCIENCE BEAMLINE 52 COMMISSIONING OF THE PROTEIN CRYSTALLOGRAPHY BEAMLINE X06SA 54 LAYOUT OF THE MICROXAS BEAMLINE: DESIGN STUDY 56 L. Patthey, M. Shi, J. Krempasky, T. Schmidt, U. Flechsig, C. Quitmann, R.Betemps, M. Botkine, R. Abela C. Quitmann, U. Flechsig, G. Ingold, R. Krempaská, J. Krempasky, F. Nolting, L. Patthey, T. Schmitt B.D. Patterson, Th. Bortolamedi, Q. Chen, F. Gozzo, M. Kropf, M. Lange, D. Maden, B. Schmitt, P.R. Willmott C. Schulze-Briese, T. Tomizaki, C. Pradervand, R. Schneider, M. Janousch, W. Portmann, Q. Chen, G. Ingold, D. Rossetti, B. Frauenfelder, C. Zumbach, P. Hottinger, Ch. Brönnimann, E.F. Eikenberry D. Grolimund, A.M. Scheidegger, R. Abela, J.F. van der Veen INSERTION DEVICES: FIRST EXPERIENCES 58 G. Ingold, T. Schmidt INSERTION DEVICES: CONTROL HARDWARE 64 W. Bulgheroni, T. Korhonen, Ch. Vollenweider, G. Ingold, T. Schmidt CONCEPTUAL DESIGN: SUB-PICOSECOND HARD X-RAY SOURCE G. Ingold, A. Streun, B. Singh, R. Abela, P. Beaud, G. Knopp, L. Rivkin, V. Schlott, Th. Schmidt, H. Sigg, J.F. van der Veen, A. Wrulich, S. Khan (BESSY Berlin) INSERTION DEVICES: COMPUTER CONTROL 66 T. Korhonen, B. Kalantari, W. Bulgheroni, C. Vollenweider, G. Ingold, T. Schmitt STATUS OF THE MYTHEN DETECTOR SYSTEM 71 STATUS OF THE PILATUS PROJECT 73 MILLISECOND-SHUTTER FOR EXPOSURE CONTROL 75 B. Schmitt, Ch. Brönnimann, E.F. Eikenberry, M. Naef, F. Gozzo, D. Maden, B.D. Patterson, R. Horisberger, J. Rothe, S. Streuli, J. Welte Ch. Brönnimann, E.F. Eikenberry, R. Horisberger, G. Hülsen, M. Näf, B. Schmitt, S. Streuli C. Pradervand, D. Rossetti THE BEAMLINES DATA ACQUISITION AND CONTROL SYSTEM 76 FIRST RESULTS FROM THE X-RAY TOMOGRAPHIC MICROSCOPY STATION 79 J. Krempasky, D. Vermeulen, D. Maden, M. Janousch, R. Krempaská, T. Korhonen, W. Portmann, M. Grunder, S. Hunt M. S t a m p a n o n i (PSI/ETHZ), G. Borchert (PSI, IKP Jülich), R. Abela, B.D Patterson, S. Hunt, D. V e r m e u l e n , P. W y s s ( E M P A ) , P. Rüegsegger (ETHZ) BRAGG-MAGNIFIER: HIGH PERFORMANCE X-RAY DETECTOR FOR XTM 82 SPIN-RESOLVED FERMI-SURFACE MAPPING ON Ni(111) 85 SCIENTIFIC REPORTS 87 M. Stampanoni (PSI/ETHZ), G. Borchert (PSI, IKP Jülich), R. Abela (PSI), P. Rüegsegger (ETHZ) M. Hoesch, M. Muntwiler (PSI/ University of Zurich), V.N. Petrov (St. Petersburg Techn. University), M. Hengsberger, W. Auwärter, T. Greber, J. Osterwalder (University of Zurich) DIRECT OBSERVATION OF CHARGE ORDER IN EPITAXIAL FILM OF NdNi0 88 STRUCTURAL DISORDER BELOW THE M ETAL-INSULATOR TRANSITION IN Ca Ru0 89 PROPAGATION OF A FOCUSED X-RAY BEAM WITHIN A PLANAR X-RAY WAVEGUIDE 90 DYNAMICS OF CONFINED COLLOIDS 92 TIME-RESOLVED EXAFS WITH SINGLE X-RAY PULSES AT 1 KHZ 94 UNCOMPENSATED SPINS IN ANTIFERROMAGNETIC NIO COUPLED TO A FERROMAGNET 97 PEEM MEASUREMENT OF MICROSTRUCTURED NIO THIN FILMS 98 3 U. Staub, G.I. Meijer (IBM-Rueschlikon), F. Fauth (ESRF), R. Allenspach (IBM-Rueschlikon), J.G. Bednorz, J. Karpinski, S.M. Kazakov (ETHZ), L. Paolasini, F. d'Acapito (ESRF) 2 4 U. Staub, B. Schmitt, F. Gozzo, T. Bortolamedi, K. Conder, C. Hörmann (University of Erlangen), P. Pattison (University of Lausanne), D. Sheptyakov J.H.H. Bongaerts, G.H. Wegdam (University of Amsterdam), M. Drakopoulos (ESRF), C. David, H. Keymeulen, T. Lackner, J.F. van der Veen (PSI/ETHZ) J.H.H. Bongaerts, J. Miguel (University of Amsterdam) U. Flechsig, J.F. van der Veen (PSI/ETHZ) C. Bressler, M. Chergui, F. Van Mourik (University of Lausanne), M. Saes (PSI/University of Lausanne), R. Abela, D. Grolimund (PSI), R.W. Falcone, S.L. Johnson, A.M. Lindenberg (UC Berkeley), P.A. Heimann, R.W. Schoenlein (ALS) F. Nolting, H. Ohldag (LBNL/SSRL), E. Arenholz (LBNL), A. Scholl (LBNL), A T . Young (LBNL), J. Stöhr (SSRL) F. Nolting, L. Heydermann, P.R. Willmott HIGH RESOLUTION TESTS OF THE SLS POWDER DIFFRACTOMETER F. Gozzo, Th. Bortolamedi, M. Lange, D. Maden, J. Rothe, B. Schmitt, J. Welte, B.D. Patterson 99 RESIDUAL STRESS ANALYSIS IN CUBIC LPPS ZIRCONIA COATINGS USING SYNCHROTRON RADIATION X-RAY DIFFRACTION (XRD) 102 NOVEL MATERIALS GROWN WITH PULSED LASER ABLATION EPITAXY 104 Th. Bortolamedi, M. Lange, D. Maden, B. Schmitt, B.D. Patterson, F. Gozzo, M. Loch, G. Barbezat (Sulzer Metco Wohlen) P.R. Willmott, B.D. Patterson, D. Rossetti APPENDIX 106 1 INTRODUCTION A. OVERVIEW Y e a r 2 0 0 1 s a w t h e t r a n s f e r of t h e S L S f r o m c o n s t r u c tion to c o m m i s s i o n i n g a n d o p e r a t i o n . After h a v i n g s t o r e d t h e first b e a m a l r e a d y in D e c e m b e r 2 0 0 0 , f r o m J a n u a r y 2 0 0 1 o n the c o m m i s s i o n i n g of t h e full a c c e l erator c o m p l e x w a s restarted a n d c o n t i n u e d up t o J u l y 2 0 0 1 , so that f r o m A u g u s t 1 o n , 7 0 % of t h e r u n n i n g t i m e c o u l d be d e d i c a t e d t o u s e r o p e r a t i o n . s t O n O c t o b e r 1 9 , the S L S w a s officially o p e n e d . A n e x t r a o r d i n a r y c e r e m o n y t o o k place, w h e r e several h u n d r e d g u e s t s w e r e t r e a t e d t o a m i x t u r e of optical, a c o u s t i c a l a n d culinary delights. th HIGHLIGHTS M a j o r highlights in 2 0 0 1 w e r e the full c o m m i s s i o n i n g of the a c c e l e r a t o r s y s t e m s , t h e a c h i e v e m e n t of all specified p a r a m e t e r s of the s t o r a g e ring a n d further o p t i m i s a t i o n of Linac u n d B o o s t e r in o r d e r to g u a r a n tee a reliable o p e r a t i o n of t h e injection c h a i n . F u r t h e r m o r e , o p e r a t i o n of t h e four initial b e a m l i n e s w a s started. I m p o r t a n t p r o g r e s s w a s m a d e in the o p timization of t h e protein c r y s t a l l o g r a p h y a n d material s c i e n c e b e a m l i n e s , allowing t h e a c c e s s of e x p e r t users d u r i n g the s e c o n d half of year 2 0 0 1 . Storage Ring Commissioning All global m a c h i n e p a r a m e t e r s , as e n e r g y , c u r r e n t a n d emittance have been achieved according to specifications. B e a m p e r f o r m a n c e p a r a m e t e r s , a s c l o s e d orbit d e v i a tion, beta beat, s p u r i o u s d i s p e r s i o n a n d e m i t t a n c e c o u p l i n g w e r e o p t i m i z e d a n d a n excellent p e r f o r m a n c e characteristics c o u l d be r e a c h e d with n e w d e v e l o p e d c o r r e c t i o n a l g o r i t h m s . A s l o w orbit f e e d b a c k s y s t e m w a s set in o p e r a t i o n , w h i c h is d y n a m i c a l l y c o r r e c t i n g the global orbit, t h u s stabilizing the s o u r c e point positions of insertion d e v i c e s a s well as b e n d i n g m a g n e t s . Short a n d long t e r m stabilities of < 1 urn at t h e locations of t h e insertion d e v i c e s a n d a n e n e r g y stability of 2 10" w e r e a c h i e v e d . 5 A prototype m u l t i - b u n c h f e e d b a c k s y s t e m w a s t e s t e d a n d r e v e a l e d p r o m i s i n g behaviour. Further t e s t s a n d the full s y s t e m integration are b e i n g p e r f o r m e d . Critical o p e r a t i o n m o d e s of t h e s t o r a g e ring w e r e installed a n d g o o d p e r f o r m a n c e w a s r e a c h e d . T o p - u p injection b e c a m e t h e favourite o p e r a t i o n m o d e of t h e u s e r s , d u e t o its e x t r e m e l y beneficial effect o n b e a m stability by c o n s t a n t t h e r m a l load on b e a m l i n e optics and machine equipment. For t h e l o w - g a p o p e r a t i o n m o d e c o u l d be verified, that the lifetime r e d u c t i o n d u e t o elastic b e a m - g a s scattering c a n be h a n d l e d d o w n t o 4 m m g a p a n d the injection efficiency c a n be m a i n t a i n e d at this low g a p for a Wrulich m i n i m i z e d c o u p l i n g of t h e b e t a t r o n m o t i o n horizontal a n d vertical plane. between T h e n e w d e v e l o p m e n t s , w h i c h w e r e p e r f o r m e d to r e a c h high position stability, as the digital p o w e r s u p ply controller a n d t h e f o u r - c h a n n e l B P M e l e c t r o n i c s , r e v e a l e d v e r y satisfactory p e r f o r m a n c e . In c o m b i n a tion with t o p up, t h e s e n e w d e v e l o p m e n t s are the g u a r a n t e e for the e x c e p t i o n a l l o n g - t e r m position s t a bility. T h e d e s i g n v a l u e s for t h e v a c u u m p r e s s u r e a n d the b e a m lifetime c o u l d be a c h i e v e d after o n l y 6 m o n t h s of o p e r a t i o n . T h e g o o d results d e m o n s t r a t e that t h e c o n c e p t of stainless steel a n t e c h a m b e r with integrated c o p p e r a b s o r b e r s a n d t h e external b a k e out w a s s u c cessful. Beamlines T h e four b e a m l i n e s of the initial p h a s e are b a s e d o n insertion d e v i c e s , w h i c h w e r e installed in 2 0 0 1 , b e g i n ning with t h e m i n i - g a p w i g g l e r for the material s c i e n c e b e a m l i n e in April. All of t h e m are high p e r f o r m a n c e d e v i c e s , c o n s i s t i n g b e s i d e s the w i g g l e r of a n in v a c u u m mini u n d u l a t o r a n d t w o twin helical d e v i c e s . T h e transition f r o m c o m m i s s i o n i n g t o user o p e r a t i o n started a l r e a d y in M a y 2 0 0 1 with the first o p e r a t i o n of t h e protein c r y s t a l l o g r a p h y line. For t h e protein c r y s t a l l o g r a p h y b e a m l i n e , t h e novel c o n c e p t of p r o d u c i n g hard X - r a y s f r o m the higher h a r m o n i c s of an in v a c u u m insertion d e v i c e c o u l d be s u c c e s s f u l l y set in o p e r a t i o n . First b e a m f r o m the U 2 4 u n d u l a t o r w a s available in M a y 2 0 0 1 . T h e u n d u l a t o r s p e c t r u m , m e a s u r e d at 10 m m g a p , s h o w e d g o o d a g r e e m e n t with theory. It c o u l d be d e m o n s t r a t e d that t o p up o p e r a t i o n h a s no d e t r i m e n t a l effect o n the data quality e v e n w i t h o u t gating t h e data collection. S e v e r a l M A D a n d S A D e x p e r i m e n t s w e r e carried out. Expert u s e r g r o u p s a l r e a d y s o l v e d a n u m b e r of structures. T h e wiggler of t h e material s c i e n c e b e a m l i n e ( M S ) w a s installed in J u l y 2 0 0 1 . A l r e a d y before that, first light w a s t a k e n f r o m the b e n d i n g m a g n e t in M a y in o r d e r t o c h e c k t h e a l i g n m e n t of the optical c o m p o n e n t s . O n l y after installation of a rotating h i g h - p o w e r c a r b o n filter, t h e insertion d e v i c e c o u l d be c l o s e d to t h e m i n i m u m g a p a n d it w a s possible to e x p e r i m e n tally d e t e r m i n e t h e w i g g l e r s p e c t r u m o v e r the full r a n g e . In N o v e m b e r a n d D e c e m b e r 2 0 0 1 e x p e r t u s e r s w e r e starting with e x p e r i m e n t s : t h e X T M c o l l a b o r a t i o n , 9 p o w d e r diffraction u s e r s , 2 r e f l e c t o m e t r y u s e r s a n d 1 s p e c t r o s c o p y user. For the S u r f a c e a n d interface s p e c t r o s c o p y b e a m l i n e (SIS), t h e twin u n d u l a t o r U E 2 1 2 a n d t h e optics of the b e a m l i n e are o p e r a t i o n a l a n d provide light with high resolution a n d high spectral purity. T h e e x p e r i m e n t a l station with t h e h i g h - r e s o l u t i o n p h o t o e l e c t r o n s p e c t r o m e t e r w a s installed in spring 2 0 0 1 . T h e 2 c o m m i s s i o n i n g of the b e a m l i n e started in A u g u s t 2 0 0 1 , w h e n the first s p e c t r u m w a s m e a s u r e d by an energy scan of the monochromator. The e l e c t r o m a g n e t i c twin u n d u l a t o r w a s installed in J u n e a n d in O c t o b e r the q u a s i p e r i o d i c m o d e c o u l d be t e s t e d , resulting in a p h o t o n b e a m with high spectral purity of less than 0.5% higher harmonic contamination. T h e m a j o r c o m p o n e n t s of the s u r f a c e a n d interface m i c r o s c o p y b e a m l i n e ( S I M ) w e r e installed a n d c o m m i s s i o n i n g w a s s t a r t e d . T h e m i c r o s c o p e w a s delivered in M a r c h 2 0 0 1 a n d within 3 d a y s first i m a g e s c o u l d be t a k e n . T h e first e l e m e n t of t h e U E 5 6 p e r m a n e n t m a g net twin u n d u l a t o r w a s c o m p l e t e d in O c t o b e r . P h a s e errors b e l o w 3 d e g r e e s allow w o r k at higher h a r m o n ics with m o d e s t loss in intensity. A first flux c u r v e w a s m e a s u r e d in D e c e m b e r . NEW DEVELOPMENTS AND UPGRADING A s part of an u p g r a d e p r o g r a m , t h r e e central m a g n e t s of the triplet b e n d a c h r o m a t structure of the s t o r a g e ring will be r e p l a c e d by s u p e r b e n d s . T h e y are a c o m bination of e l e c t r o m a g n e t a n d p e r m a n e n t m a g n e t s with a field e n h a n c e m e n t in the central region f r o m 1.4 to 3.1 T e s l a a n d a c o r r e s p o n d i n g shift of t h e critical energy. In this w a y , a flux i n c r e a s e of m o r e t h a n o n e o r d e r of m a g n i t u d e is a c h i e v e d for h i g h e r p h o t o n e n ergies. T h e d e v e l o p m e n t of the s u p e r c o n d u c t i n g higher harm o n i c cavity w a s p r o g r e s s i n g a c c o r d i n g t o s c h e d u l e . Fabrication a n d cold t e s t s of the cavity w e r e c o m pleted, revealing satisfactory behaviour. By l e n g t h e n ing the b u n c h a n d t h e r e f o r e r e d u c i n g t h e c h a r g e c o n c e n t r a t i o n , this s y s t e m will further i m p r o v e the b e a m lifetime, w h i c h is d o m i n a t e d by T o u s c h e k s c a t t e r i n g . T h e F E M T O project is targeting t h e g e n e r a t i o n of s u b p i c o s e c o n d optical p u l s e s by b e a m slicing. It c o n s i s t s of a m o d u l a t o r w i g g l e r for laser b e a m slicing a n d a radiator undulator - of t h e u X A S b e a m l i n e - for t h e e m i s s i o n . Both of t h e m will be i m p l e m e n t e d in o n e of the extra long straight s e c t i o n s (11 m ) of t h e S L S , m i n i m i z i n g in this w a y the b e a m deterioration b e t w e e n m o d u l a t o r a n d radiator. P r o g r e s s w a s m a d e in c o n c e p t u a l i s i n g the X - r a y a b sorption spectroscopy beamline. Several optical s c h e m e s , o p t i m i z e d for m i c r o f o c u s s i n g , w e r e e v a l u a t e d with r e s p e c t to spatial resolution, p h o t o n flux a n d e n e r g y resolution. A m i n i - g a p i n - v a c u u m u n d u l a t o r will s e r v e as radiation s o u r c e . OUTLOOK In year 2 0 0 2 , the total n u m b e r of shifts per m o n t h will i n c r e a s e steadily. For t h e first half year, a n a v e r a g e of 5 9 shifts per m o n t h is e n v i s a g e d , w h e r e f r o m a b o u t 8 0 % will be d e d i c a t e d to user o p e r a t i o n . 3 SLS ACCELERATOR 4 ACHIEVEMENTS OF THE SLS COMMISSIONING A. Streun, A. Lüdeke, M. Böge, J. Chrin, M. Dach, M. Dehler, C. Gough, W. Joho, T. Korhonen, S. Leemann, M. Mailand, R Marchand, M. Muñoz, M. Pedrozzi, L. Rivkin, W. Portmann, T. Schilcher, V. Schlott, L Schulz, B. Singh, G. Singh, D. Sütterlin, A. Wrulich Commissioning of the storage ring started in December 2000, the most important performance figures were achieved until dune 2001. The four initial beamlines came into operation between duly and November. Since August 1 , 2001 SLS operates to 70 % for users. We will summarize the achievements on storage ring performance and agreement with the design calculations concerning lattice calibration, stored beam current and lifetime. Further improvements on linac and booster, already commissioned in 2000, will be mentioned. st TIME SCHEDULE C o m m i s s i o n i n g of t h e S L S 100 M e V linac [21] a n d t h e 2.4 G e V b o o s t e r s y n c h r o t r o n [15] to d e s i g n perform a n c e w a s d o n e b e t w e e n M a r c h a n d April, resp. f r o m July to S e p t e m b e r 2 0 0 0 . First s t o r e d b e a m in t h e ring w a s o b t a i n e d by Dec. 15, 2 0 0 0 [22]. M a i n c o m m i s s i o n i n g of t h e s t o r a g e ring w a s d o n e f r o m J a n u a r y to July 2 0 0 1 , s o that the m a c h i n e c o u l d start to run 7 0 % for u s e r s f r o m A u g u s t 1 , 2 0 0 1 , a s scheduled. Betaferons X/dP [m] [m] • 1 0 4 « 0. 1 1 1 4 t h e i n - v a c u u m u n d u l a t o r U 2 4 (on loan f r o m Spring-8) for protein c r y s t a l l o g r a p h y ( P X ) , t h e e l e c t r o m a g n e t i c twin u n d u l a t o r U E 2 1 2 for surface a n d interface s p e c t r o s c o p y (SIS) a n d t h e A p p l e t y p e twin undulator U E 5 6 for surface a n d interface m i c r o s c o p y ( S I M ) . Table 1 : S L S s t o r a g e ring p a r a m e t e r s Energy 2.4 GeV m Circumference 288 RF frequency 500 MHz Tunes Natural c h r o m a t i c i t i e s Momentum compaction Radiation loss per t u r n Damping times Emittance Relative e n e r g y s p r e a d B u n c h length 20.41 / 8 . 1 9 -66 / -21 6.510" 4 512 keV 9.0/9.0/4.5 5.0 8.610" 4 ms nmrad 4 mm COMMISSIONING MILESTONES F i g . 1 : S L S s t o r a g e ring optics: o n e sixth of the ring (i.e. 9 6 m or 2 arcs) is s h o w n . (ß , r] solid, ß dotted) x y F e b . 2 8 100 m A of s t o r e d b e a m c u r r e n t r e a c h e d , operation in all lattice optics: relaxed, s t a n d a r d low e m i t t a n c e a n d distributed d i s p e r s i o n THE SLS STORAGE RING Apr. 8 T h e S L S s t o r a g e ring is a 12 T B A (triple-bend a c h r o mat) ( 8 7 l 4 ° / 8 ° ) lattice with six s h o r t straights of 4 m length, t h r e e m e d i u m o n e s of 7 m a n d t h r e e long o n e s of 11 m. Four cavities of 6 5 0 kV p e a k voltage occ u p y t w o s h o r t straights, injection o c c u p i e s o n e long straight. T h e lattice is d e s i g n e d to provide an emitt a n c e of 5 n m r a d at 2.4 G e V with d i s p e r s i o n free straights a n d « 4 n m r a d w h e n a l l o w i n g s o m e dispers i o n . 174 q u a d r u p o l e s with i n d e p e n d e n t p o w e r s u p plies g r o u p e d into 2 2 soft families allow for a large flexibility, 120 s e x t u p o l e s in 9 families are carefully bala n c e d to provide large d y n a m i c a p e r t u r e s . E a c h 7 2 horizontal a n d vertical c o r r e c t o r s a n d 7 2 B P M s control t h e orbit, 6 s k e w q u a d r u p o l e s in 3 families s u p p r e s s c o u p l i n g . Figure 1 a n d table 1 s h o w lattice f u n c t i o n s a n d list basic p a r a m e t e r s of t h e o p t i c s presently u s e d . A p r . 2 6 M e a s u r e m e n t a n d c o r r e c t i o n of b e t a f u n c t i o n s A n initial set of four insertion d e v i c e s c o n s i s t s of t h e high field w i g g l e r W 6 1 for m a t e r i a l s s c i e n c e ( M S ) , First single b u n c h o p e r a t i o n May 4 Orbit c o r r e c t i o n d o w n t o m i c r o n levels Jun. 5 D e s i g n c u r r e n t of 4 0 0 m A r e a c h e d J u n . 2 3 First t o p up injection J u l . 10 PX b e a m l i n e operational J u l . 19 1 Hz orbit f e e d b a c k operational Aug. 9 First o p e r a t i o n of m u l t i b u n c h f e e d b a c k s y s t e m Aug. 9 M S b e a m l i n e operational A u g . 10 SIS beamline operational N o v . 2 1 S I M b e a m l i n e operational 5 LATTICE CALIBRATION Circumference Several c i r c u m f e r e n c e m e a s u r e m e n t s b a s e d on orbit c o r r e c t i o n or s e x t u p o l e c e n t e r i n g by variation of R F freq u e n c y c o n f i r m e d t h e d e s i g n v a l u e within 0.5 m m . 2 0 5 r e s o n a n c e limiting t h e e n e r g y a c c e p t a n c e a n d with it t h e lifetime [35]. Fc = 4.9965413e+08 Hz 0.40 r Emittances and energy spread I m a g i n g of t h e X - r a y part of t h e s y n c h r o t r o n radiation by m e a n s of a p i n h o l e c a m e r a c o n f i r m e d t h e d e s i g n v a l u e of t h e horizontal e m i t t a n c e . T h e vertical e m i t t a n c e is c r e a t e d parasitically by lattice imperfections. S i m u l a t i o n s p r e d i c t e d a m o s t likely v a l u e n e a r 15 p m r a d [3]. M e a s u r e m e n t s with t h e pinhole c a m e r a g a v e larger v a l u e s a r o u n d 7 5 p m - r a d . F r o m difference orbit m e a s u r e m e n t s of r m s vertical disp e r s i o n a n d T o u s c h e k lifetime m e a s u r e m e n t s [35] valu e s of 2 0 to 3 0 p m r a d w e r e d e r i v e d . P r e c i s e m e a s u r e m e n t s of t h e e n e r g y s p r e a d c o u l d not yet b e d o n e . H o w e v e r b o t h pinhole c a m e r a i m ages and photon spectra taken from the U24 undulator [28] indicate, that t h e effective e n e r g y s p r e a d c o u l d b e larger t h a n t h e d e s i g n v a l u e by 5 0 to 1 0 0 % ( d e p e n d i n g on the operation mode). Working point For m o s t of t h e y e a r 2 0 0 1 a w o r k i n g point ( h o r i z o n tal/vertical tune) at 2 0 . 3 8 / 8 . 1 6 , deviating f r o m t h e d e s i g n 2 0 . 8 2 / 8 . 2 8 but providing a l m o s t e q u a l e m i t t a n c e , w a s u s e d . R e c e n t l y a n even better point w a s f o u n d at 2 0 . 4 1 / 8 . 1 9 . H i g h e s t injection efficiency a n d b e a m lifet i m e a r e t h e criteria for o p t i m i z a t i o n . T h e t u n i n g r a n g e is quite large: In t h e horizontal t h e integer 2 0 c a n b e a p p r o a c h e d to 0.05, t h e half integer 2 0 . 5 to 0.005. T h e n o n - s y s t e m a t i c third integer 2 0 | h a s to b e c r o s s e d quickly in o r d e r to k e e p t h e b e a m . In t h e vertical t h e integer 8 c a n b e a p p r o a c h e d by 0 . 0 1 . T h e b e a m is not lost o n t h e half integer 8.5 but s h o w s s o m e s t o c h a s t i c m o t i o n indicating a rather narrow r e s o n a n c e a n d stabilization d u e to d e t u n i n g . A n alternative w o r k i n g point to r e d u c e t h e vertical b e a m s i z e w a s f o u n d at 2 0 . 3 8 / 1 1 . 1 6 . T h e p e r f o r m a n c e in t e r m s of injection efficiency a n d e m i t t a n c e is similar to t h e s t a n d a r d w o r k i n g point at 2 0 . 3 8 / 8 . 1 6 , but for large s t o r e d b e a m current, a n horizontal instability w a s o b s e r v e d , w h i c h c o u l d not b e s u p p r e s s e d by i n c r e a s e d c h r o m a t i c i t y [31]. T h i s p h e n o m e n o n r e q u i r e s further investigation. Chromaticities T h e c h r o m a t i c i t i e s w e r e m o v e d by d e s i g n f r o m t h e natural -66/-21 to + 1 / + 1 a n d f o u n d to b e + 1 . 6 / + 0 . 5 with t h e theoretical s e x t u p o l e settings. H o w e v e r b e a m stability at large c u r r e n t s requires i n c r e a s e to a p p r o x . + 5 / + 5 (see b e l o w ) . T h e variation of t u n e with m o m e n t u m deviation s h o w s excellent a g r e e m e n t with t h e o r y a s s h o w n in f i g u r e 2. T h e s t r o n g n e g a t i v e horizontal s e c o n d order c h r o m a t i c i t y m a k e s t h e n o n - s y s t e m a t i c third integer n mh I -6 -4 0 -2 dp/p 1 2 4 [%] F i g . 2: Fractional t u n e s a s a f u n c t i o n of relative m o m e n t u m d e v i a t i o n . A f r e q u e n c y variation of + 1 0 / - 1 2 k H z t r a n s l a t e s to a m o m e n t u m deviation of - 4 . 7 / + 3 . 0 % d u e to t h e large nonlinear m o m e n t u m c o m p a c t i o n : a = 6.5 • 1 0 ~ , ai = 4.6 • 1 0 ~ . T h e solid lines s h o w t h e T R A C Y [1] s i m u l a t i o n , t h e d i a m o n d s a r e m e a s u r e m e n t s , u p p e r c u r v e is horizontal. 4 3 a Betafunctions S i n c e all 1 7 4 q u a d r u p l e s at S L S a r e e q u i p p e d with individual p o w e r s u p p l i e s , it w a s straightforward to m e a s u r e t h e b e t a f u n c t i o n s at e a c h q u a d r u p o l e f r o m t u n e variation. Individual q u a d r u p o l e gradient e r r o r s w e r e fitted to t h e m e a s u r e m e n t s . T h e inverse of t h e s e e r r o r s w a s a d d e d to t h e g r a d i e n t s a n d t h e b e t a f u n c t i o n s w e r e m e a s u r e d a g a i n . Eventually, t h e r m s deviation of m e a s u r e d to d e s i g n b e t a f u n c t i o n s a c h i e v e d w a s only 4 % in t h e horizontal a n d 3 % in t h e vertical [5]. BEAM CURRENT W h e n increasing the stored beam current towards the d e s i g n v a l u e of 4 0 0 m A , t h r e e p r o b l e m s h a d to b e overcome: Higher order cavity modes Higher o r d e r m o d e s ( H O M s ) in t h e four cavities, leading to s u d d e n b e a m loss b e y o n d s o m e t h r e s h o l d current, h a d to b e d e t u n e d by m e a n s of cavity t e m p e r a t u r e v a r i ation a n d t h e H O M f r e q u e n c y shifters in o r d e r not to c o i n c i d e with t h e b e a m s p e c t r u m [17]. Presently, b e a m c u r r e n t s u p to 3 0 0 m A a r e routinely s t o r e d , w h e r e a s r e p r o d u c t i o n of t h e 4 0 0 m A requires s o m e d e d i c a t e d effort o n H O M s u p p r e s s i o n . Multibunch instability Above s o m e threshold current depending on the o p e r a t i n g c o n d i t i o n s , a p p e a r s a vertical instability. T h i s l e a d s to s h a k i n g of t h e b e a m a n d s u b s e q u e n t l o s s e s of large s e c t i o n s f r o m t h e s t o r e d b u n c h train. 6 T h e instability is still u n d e r investigation. It s h o w s s i g n a t u r e s of both ion t r a p p i n g a n d resisitive wall impedance. Indications for ion t r a p p i n g : • T h e t h r e s h o l d c u r r e n t for o n s e t of t h e oscillations i n c r e a s e s with i m p r o v e d v a c u u m conditions. • T h e t h r e s h o l d c u r r e n t i n c r e a s e s with t h e length of a g a p in t h e b u n c h train, b e c a u s e ions t r a p p e d in t h e electrostatic potential of t h e b e a m c a n b e d e s t a b i l i z e d by t h e gap. • Appearently, l o s s e s o c c u r mainly f r o m t h e b u n c h train's tail r e g i o n , w h e r e t h e s h a k i n g of t h e b e a m is e x p e c t e d t o h a v e largest a m p l i t u d e s . Indications for resistive wall i m p e d a n c e : • T h e negative b e t a t r o n s i d e b a n d s of t h e revolution h a r m o n i c s in t h e b e a m s p e c t r u m a r e s t r o n g e r t h a n t h e positive s i d e b a n d s , w h i c h is typical for a n interaction with t h e resistivity of t h e v a c u u m chamber. • T h u s , t h e t h r e s h o l d c u r r e n t is larger if t h e vertical t u n e is b e l o w a n integer t h a n a b o v e . • T h e situation a g g r a v a t e d after installation of t h e 10 m long stainless steel v a c u u m c h a m b e r for t h e SIS-undulator. • M A F I A - s i m u l a t i o n s p r e d i c t e d only 3 u n s t a b l e m o d e s without, but 2 0 with t h e n a r r o w v a c u u m c h a m b e r s installed. T h e r e a r e t w o w a y s t o s u p p r e s s t h e instability: • I n c r e a s e of horizontal a n d vertical c h r o m a t i c i t i e s t o large positive v a l u e s a s + 5 . However, t h e req u i r e d i n c r e a s e of s e x t u p o l e s t r e n g t h l e a d s to a deterioration of t h e d y n a m i c a p e r t u r e a n d with it t o reduction of injection efficiency. • O p e r a t i o n of t h e t r a n s v e r s e m u l t i b u n c h f e e d b a c k s y s t e m ( T M B F ) [9]: In fact, first o p e r a t i o n of t h e T M B F p r o v i d e d a r e d u c t i o n of t h e c h r o m a t i c i t y req u i r e d t o s u p p r e s s t h e instability. C o m m i s s i o n i n g of t h e s y s t e m is in p r o g r e s s [10]. LIFETIME D e p e n d i n g on t h e o p e r a t i o n m o d e , b e a m lifetime is d o m i n a t e d either by elastic s c a t t e r i n g o n residual g a s nuclei or by T o u s c h e k effect, i.e. s c a t t e r i n g of e l e c t r o n s within t h e b u n c h . A n o t h e r non-negligible contribution is b r e m s s t r a h l u n g on residual g a s nuclei. M e a s u r e m e n t s of lifetime w h i l e m o v i n g a s c r a p e r into t h e b e a m isolated t h e elastic s c a t t e r i n g c o n t r i b u tion. Variations of R F voltage, t u n e a n d single b u n c h c u r r e n t w e r e d o n e t o investigate t h e T o u s c h e k lifetime. T h e measurements show a very good agreement with theory. T o u s c h e k lifetime t u r n e d out to b e limited by an e n e r g y a c c e p t a n c e restriction d u e to t h e proximity of t h e 2 0 | r e s o n a n c e (see a b o v e ) . T h e d é p e n d a n c e o n R F v o l t a g e p r o v i d e d a n e s t i m a t e for t h e vertical e m i t t a n c e of a p p r o x . 3 0 p m r a d [35], [27]. Presently, a b e a m lifetime of a p p r o x . 10 h o u r s is a c h i e v e d with 2 0 0 m A of b e a m c u r r e n t distributed o n 3 9 0 of 4 8 0 available buckets. BEAM STABILITY T h e c l o s u r e of t h e four kicker injection b u m p [11 ] h a s b e e n o p t i m i z e d , leaving a b e t a t r o n oscillation of t h e s t o r e d b e a m , w h i c h a m o u n t s to only 150 ¿¿m h o r i z o n tally ( r m s f r o m all B P M s for next t u r n s following injection). T h e jitter of t h e s t o r e d b e a m d u e to t h e b o o s t e r ' s 3 Hz r a m p i n g c y c l e w a s m e a s u r e d t o b e ss 0.3 ¿¿m at t h e location of t h e insertion d e v i c e s . P h a s e oscillations of t h e R F a r e well b e l o w 1° over t h e w h o l e f r e q u e n c y r a n g e u p to 1 0 0 k H z . T h e a m p l i t u d e s f r o m 5 0 Hz a n d h a r m o n i c v i b r a t i o n s in d i s p e r s i v e regions a r e of t h e order of 1 m i c r o n . A 1 Hz orbit f e e d b a c k [2] h a s b e e n installed t o s t a bilize position a n d a n g l e of t h e b e a m in t h e insertion d e v i c e s at levels of 0.6 ¿¿m a n d 0.3 ¿¿rad over a p e r i o d of an e x p e r i m e n t a l shift [4]. T h e b e a m intensity is kept c o n s t a n t at t h e 0.1 % level by m e a n s of t o p - u p injection every few s e c o n d s [19]. INSERTION DEVICES Installation d a t e s of t h e insertion d e v i c e s for t h e four initial b e a m l i n e s [12] • April Thermal problems 10, 2 0 0 1 : in v a c u u m u n d u l a t o r U24 in straight 6 S . D u e t o a m i s s t e e r i n g of t h e b e a m orbit, b e n d i n g m a g net radiation m i s s i n g t h e a b s o r b e r s c a n lead to local o v e r h e a t i n g of t h e v a c u u m c h a m b e r , w h i c h o n c e even c a u s e d a leak. After installation of several t e m p e r a t u r e s e n s o r s all over t h e v a c u u m c h a m b e r , an orbit w a s taylored by introducing d e d i c a t e d b u m p s for m i n i m i z a t i o n of v a c u u m c h a m b e r h e a t i n g . • July 2 5 , 2 0 0 1 : first m o d u l e of t h e e l e c t r o m a g n e t i c elliptic twin u n d u l a t o r U E 2 1 2 in straight 9L. D u e t o t h e s t r o n g e r vertical f o c u s i n g , t h e alternative o p t i c s with t h e w o r k i n g point at 2 0 . 3 8 / 1 1 . 1 6 c o u l d o p e r a t e w i t h o u t t h e s e orbit b u m p s [31]. • Nov. 12, 2 0 0 1 : first m o d u l e of t h e S a s a k i t y p e elliptic twin u n d u l a t o r U E 5 6 in straight 11L. • July 3 0 , 2 0 0 1 : w i g g l e r W 6 1 in straight 4 S with v a c u u m c h a m b e r of inner height 12 m m . • Oct. 15, 2 0 0 1 : s e c o n d m o d u l e of U E 2 1 2 . • J a n . 7, 2 0 0 2 : r e d u c t i o n of W 6 1 c h a m b e r to 8 m m . 7 • July 2 0 0 2 : stalled. s e c o n d m o d u l e of U E 5 6 to b e in- S t u d i e s on h o w c l o s i n g a n d o p e n i n g t h e insertion d e v i c e s affects t h e s t o r e d b e a m h a v e b e e n s t a r t e d a n d i m p l e m e n t a t i o n of f e e d f o r w a r d t a b l e s is in p r o g r e s s . T h i s c o n c e r n s calculation of local c o r r e c t i o n s of t h e insertion d e v i c e s ' orbit distortion f r o m orbit r e s p o n s e m e a s u r e m e n t s a n d t u n e shift c o m p e n s a t i o n s . U p to n o w all insertion d e v i c e s w e r e f o u n d to h a v e little i m pact o n t h e orbit a n d t o c a u s e rather small t u n e shifts in a g r e e m e n t with t h e p r e d i c t i o n s [30], [29]. LINAC IMPROVEMENTS In t h e b e g i n n i n g , t h e linac w a s o p e r a t i n g in m u l t i - b u n c h m o d e , providing a train of b u n c h e s of low c h a r g e . In o r d e r t o c r e a t e s h a r p g a p s in t h e b e a m s t o r e d in t h e ring, t h e alternative m o d e t o p r o v i d e highly c h a r g e d single b u n c h e s [21] h a s b e e n o p t i m i z e d further a n d m e a n w h i l e is u s e d routinely. A t r a n s m i s s i o n efficiency of 9 0 % t h r o u g h t h e linac h a s b e e n a c h i e v e d . After ± 1 % e n e r g y filtering 6 5 % r e m a i n for injection into t h e booster. Infrared c o h e r e n t transition radiation h a s b e e n c o u pled out, c o h e r e n c e w a s p r o v e n by o b s e r v a t i o n of t h e s q u a r e d é p e n d a n c e of intensity on b u n c h c h a r g e . M e a s u r e m e n t s a r e in p r o g r e s s to d e t e r m i n e t h e b u n c h length f r o m t h e c o h e r e n t s p e c t r u m . A l r e a d y now, t h e c o h e r e n t radiation intensity p r o v i d e s a g o o d signal for efficient o p t i m i z a t i o n of t h e linac p h a s e s . O p t i m i z a t i o n of linac a n d transferlines w a s c o m p l i c a t e d by persistent multipacting in t h e 5 0 0 M H z prebuncher, s i n c e t h e r e s p o n s i b l e c o m p a n y w a s not able t o repair or r e p l a c e it d u r i n g 2 0 0 1 . BOOSTER IMPROVEMENTS C u r r e n t d e p e n d e n t b e a m l o s s e s on t h e b o o s t e r r a m p in single b u n c h o p e r a t i o n lead to t h e c o n c l u s i o n , that t h e head-tail instability d e s t r o y s t h e b e a m d u e t o a d r o o p of c h r o m a t i c i t i e s d u r i n g a c c e l e r a t i o n f r o m s e x t u p o l a r fields c r e a t e d by e d d y c u r r e n t s in t h e b e a m pipe [20]. P r o g r a m m i n g t h e w a v e f o r m s of t h e s e x t u p o l e p o w e r supplies to compensate the calculated time-dependent e d d y c u r r e n t s r e m o v e d this p r o b l e m . Current-independent b e a m losses on the ramp w e r e d u e to c r o s s i n g a third integer r e s o n a n c e , s i n c e t h e t u n e originally w a s s w e e p i n g over a w i d e r a n g e (—> f i g u r e 4 in [15]). Interactive editing of t h e q u a d r u p o l e w a v e f o r m s kept t h e t u n e s c o n s t a n t at d e s i g n v a l u e s over t h e w h o l e r a m p a n d t h u s a v o i d e d t h e s e losses. T h e transfer efficiency f r o m b o o s t e r to s t o r a g e ring a m o u n t s to 100 % at n o m i n a l ring chromaticities, red u c i n g to a p p r o x . 8 0 % at i n c r e a s e d c h r o m a t i c i t i e s for s u p p r e s s i o n of t h e m u l t i - b u n c h instability [36]. CONCLUSION T h e S L S s t o r a g e ring h a s b e e n c o m m i s s i o n e d to d e s i g n p e r f o r m a n c e well within t i m e s c h e d u l e . Most i m p o r t a n t p e r f o r m a n c e i s s u e s c o n c e r n i n g b e a m current, e m i t t a n c e , b e a m stability a n d lifetime h a v e b e e n a c h i e v e d . T h e linear m a c h i n e is well u n d e r s t o o d a n d c o r r e c t e d . A l s o t h e non-linear m a c h i n e s h o w s e x c e l lent a g r e e m e n t with theory. T h e investigation of collective effects is in p r o g r e s s . The achievements on the performance are based o n strict quality control for fabrication of m a g n e t s , girde r s a n d o t h e r c o m p o n e n t s , robust m e c h a n i c a l c o n c e p t s a n d p r e c i s e a l i g n m e n t [37], reliable a n d flexible digital p o w e r s u p p l i e s [13], [14], rich a n d powerful d i a g nostic s y s t e m s including t u r n by t u r n B P M s [24] a n d /xs-shutter c a m e r a s [26], flexible a n d powerful e n v i r o n m e n t s for m a c h i n e control a n d application d e v e l o p m e n t [6], [7], [8], [16], a n d , last but not least, a high s e n s e of responsibility f r o m all PSI e m p l o y e e s . T h e S L S c o m m i s s i o n i n g w a s p r e s e n t e d at international e v e n t s [32], [33] a n d r e c e i v e d great a c k n o w l edgement from the accelerator community. OUTLOOK 7 0 % of t h e 5 0 0 0 hrs of S L S o p e r a t i o n s c h e d u l e d for 2 0 0 2 a r e d e d i c a t e d to u s e r s . T h e r e m a i n i n g 3 0 % for m a c h i n e d e v e l o p m e n t will b e d e v o t e d mainly t o t h e following t a s k s : • f u r t h e r investigation of t h e m u l t i b u n c h instability a n d routine o p e r a t i o n of t h e t r a n s v e r s e multibunch feedback system, • reoptimization of injection after r e p l a c e m e n t of t h e linac s u b h a r m o n i c prebuncher, • f u r t h e r m e a s u r e m e n t s a n d c o m p e n s a t i o n of linear a n d non-linear effects f r o m insertion d e v i c e s , • full o p e r a t i o n of t h e d y n a m i c a l i g n m e n t s y s t e m [25], [34], [23], [38] including b e a m b a s e d B P M calibration a n d b e a m b a s e d girder a l i g n m e n t , • c o m m i s s i o n i n g of t h e 3 r d h a r m o n i c s u p e r c o n d u c t i n g cavity [18] t o b e installed by J u n e , • i m p l e m e n t a t i o n a n d c o m m i s s i o n i n g of t h e fast (100 Hz) orbit f e e d b a c k s y s t e m [2]. 8 R E F E R E N C E S [1] M. B ö g e , Update on TRACY-2 SLS-TME-TA-1999-0002. documentation, [2] M. B ö g e et al., Fast Closed Orbit Control in SLS Storage Ring, PAC'99, N e w York 1999. the [3] M. B ö g e , M. M u ñ o z , A. S t r e u n , Studies on imperfections in the SLS storage ring, EPAC'00, V i e n n a 2000. [4] M. B ö g e , Beam position stabilization, tific R e p o r t 2 0 0 1 , V o l u m e V I I . PSI S c i e n - [5] M. B ö g e , Measurement and compensation of linear optical distortions, PSI Scientific R e p o r t 2 0 0 1 , Volume VII. [6] M. B ö g e et al., Commissioning of the SLS using CORBA beased Beam Dynamics Applications, PAC'01, Chicago 2 0 0 1 . [7] M. B ö g e a n d J . C h r i n , On the Use of CORBA in High Level Software Applications at the SLS, ICALEPCS'01, San Jose 2 0 0 1 . [8] M. B ö g e a n d J . C h r i n , On the Use of CORBA in High Level Software Applications at the SLS, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [9] D. Bulfone et al., Exploitation of the Integrated Digital Processing and Analysis of the ELETTRA/SLS Transverse Multi-Bunch Feedback System, P A C ' 0 1 , C h i c a g o 2 0 0 1 . [10] M. Dehler, Commissioning results for the SLS transverse multi-bunch feedback, PSI Scientific Report 2 0 0 1 , Volume VII. [11] C. G o u g h a n d M. M a i l a n d , Septum and Kicker Systems for the SLS, P A C ' 0 1 , C h i c a g o 2 0 0 1 . [12] G. Ingold a n d T. S c h m i d t , Insertion devices: experiences, PSI Scientific R e p o r t 2 0 0 1 , ume VII. first Vol- [13] F. J e n n i a n d L. Tanner, Digitally Controlled SLS Magnet Power Supplies, P A C ' 0 1 , C h i c a g o 2 0 0 1 . [14] F. J e n n i , Operating experience with the SLS power supplies, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [15] W. J o h o , The SLS mance, booster at its design perfor- PSI Scientific R e p o r t 2 0 0 0 , V o l u m e V I I . [16] A. L ü d e k e , M. B ö g e , J . C h r i n , High level software and operator interface, PSI Scientific R e p o r t 2 0 0 1 , Volume VII. [19] M. M u ñ o z , Top-up operation experience, entific R e p o r t 2 0 0 1 , V o l u m e V I I . PSI Sci- [20] M. M u ñ o z a n d W. J o h o , Eddy current effects SLS booster, S L S - T M E - T A - 1 9 9 8 - 0 0 1 0 . [21] M. Pedrozzi, SLS pre-injector, port 2 0 0 0 , V o l u m e V I I . in the PSI Scientific R e - [22] L. Rivkin, First beam in the SLS storage Scientific R e p o r t 2 0 0 0 , V o l u m e V I I . ring, PSI [23] V. Schlott, Results from the horizontal position measurement system, PSI Scientific R e p o r t 2 0 0 1 , Volume VII. [24] V. Schlott et al., Commissioning of the SLS BPM System, P A C ' 0 1 , C h i c a g o 2 0 0 1 . [25] V. Schlott et al., Dynamic EPAC'00, Vienna 2000. Alignment at Digital SLS, [26] V. Schlott et al.. SLS Linac Diagnostics Commissioning Results, B I W ' 0 0 , C a m b r i d g e 2 0 0 0 . [27] L. S c h u l z , provement, ume VII. Vacuum conditioning and lifetime imPSI Scientific R e p o r t 2 0 0 1 , Vol- [28] C. S c h u l z e - B r i e s e , Protein crystallography, Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [29] B. S i n g h , Effects dynamics of SLS, of insertion devices on the PSI beam SLS-TME-TA-2001-0169. [30] B. S i n g h a n d A. S t r e u n , Effects of insertion devices on SLS beam dynamics, PSI Scientific R e port 2 0 0 0 , V o l u m e V I I . [31] G. S i n g h , Some SLS working points with lower in bending magneis,SLS-TME-TA-2001-0177. ß z [32] A. S t r e u n et al., Commissioning of the Swiss Source, P A C ' 0 1 , C h i c a g o 2 0 0 1 . Light [33] A. S t r e u n et al., Commissioning of the Swiss Source, S S I L S ' 0 1 , S h a n g h a i 2 0 0 1 . Light [34] A. S t r e u n et al., Beam Stability and Dynamic Align- ment at SLS, S S I L S , S h a n g h a i 2 0 0 1 . [35] A. S t r e u n , Beam lifetime in the SLS storage SLS-TME-TA-2001 -0191. ring, [36] A. S t r e u n , SLS booster-to-ring transferline optics for optimum injection efficiency, SLS-TME-TA2002-0193. [37] F. W e i , Results of survey and alignment, entific R e p o r t 2 0 0 1 , V o l u m e V I I . PSI Sci- [17] P. M a r c h a n d et al., Operation of the SLS storage ring RF system, PSI Scientific R e p o r t 2 0 0 1 , Volume VII. [38] S. Z e l e n i k a et al., The SLS storage ring support and alignment systems, N I M A 4 6 7 - 4 6 8 (2001) 9 9 . [18] P. M a r c h a n d et al., SLS third harmonic superconducting RF system, PSI Scientific R e p o r t 2 0 0 1 , Volume VII. S L S annual reports, internal reports and conference contributions may be obtained from http://slsbd.psi.ch/pub/slsnotes 9 BEAM DYNAMICS STUDIES ON AN EXTENSION OF SLS FOR GENERATION OF SUB-PICOSECOND X-RAY PULSES A. Streun, We will describe a basic of the SLS storage for emission aperture ring: of short degradation of the modulator layout B. Singh, for an insertion It consists beam to produce of a modulator ( < 100 fs) X-ray pulses. and vertical G. Singh, G. Ingold, V. Schlott emittance and halo formation wiggler Results increase will be sub-picosecond for laser beam of calculations will be presented. optical slicing pulses in one and a radiator on side-effects Open problems straight undulator concerning dynamic concerning guiding discussed. lator U 1 7 ( 1 1 7 p e r i o d s of 17 m m , L O T p e a k field, INTRODUCTION 4 m m g a p ) [2], T h e t e c h n i q u e of b e a m slicing d e m o n s t r a t e d earlier at A L S [7], u s e s a s h o r t - p u l s e ( f e m t o s e c o n d range) laser • vertical m a g n e t c h i c a n e m a d e f r o m t w o vertically to m o d u l a t e t h e e n e r g y of t h e e l e c t r o n s in a thin slice of d e f l e c t i n g d i p o l e pairs, b r a c k e t i n g t h e modulator, t h e b u n c h d u r i n g interaction inside a wiggler, c a l l e d "the in o r d e r to c r e a t e vertical d i s p e r s i o n for spatial m o d u l a t o r " . Variation of d i s p e r s i o n t h e n t r a n s l a t e s t h e s e p a r a t i o n of e n e r g y - m o d u l a t e d b e a m s l i c e s in e n e r g y m o d u l a t i o n into a spatial (horizontal or t r a n s - t h e radiator, v e r s e ) s e p a r a t i o n , t h u s e x t r a c t i n g t w o s m a l l satellite b e a m s (of positive a n d n e g a t i v e e n e r g y deviation) f r o m the core beam. In a s u b s q u e n t undulator, c a l l e d "the radiator", all b e a m s emit s y n c h r o t r o n radiation. T h e ¿ í X A S b e a m l i n e p l a n n e d for S L S [6] will prov i d e a point to point m i c r o f o c u s o p t i c s for i m a g i n g t h e radiation s o u r c e to t h e e x p e r i m e n t , a n d t h u s is suitable • additional f o c u s s i n g for p r o v i d i n g foci both in t h e m o d u l a t o r and in t h e radiator in o r d e r to k e e p t h e b e a m s m a l l e n o u g h to avoid l o s s e s at t h e w i g g l e r a n d u n d u l a t o r g a p s a n d for m a t c h i n g t h e e l e c t r o n b e a m ' s p h a s e s p a c e to t h e p h o t o n b e a m ' s diffraction phase space. to extract t h e s h o r t p u l s e s f r o m t h e spatially s e p a r a t e d A d d i n g f o c u s s i n g to o n e straight r e d u c e s t h e m a c h i n e satellite b e a m s . T h e r e f o r e , t h e F E M T O - b e a m l i n e will periodicity f r o m 3 to 1 , t h u s d e s t r o y i n g t h e s e x t u p o l e b e d e v e l o p e d in c o n j u n c t i o n w i t h a n d a s a f u r t h e r ex- p a t t e r n , carefully b a l a n c e d to p r e s e r v e t h e r e q u i r e d dy- t e n s i o n of t h e ¿ í X A S b e a m l i n e in s e c t o r 5 of t h e S L S . namic aperture while performing the necessary chro- F E M T O is e x p e c t e d to b e c o m e o p e r a t i o n a l late 2 0 0 4 , maticity c o r r e c t i o n s [1]. T h e distortion of m a c h i n e s y m - i.e. o n e y e a r after c o m m i s s i o n i n g of t h e ¿ í X A S b e a m - m e t r y h o w e v e r c a n b e m i n i m i z e d by a p p l i c a t i o n of t h e line. s o - c a l l e d "71-trick": All o p t i c s m o d i f i c a t i o n s a r e c o n f i n e d A n o v e r v i e w of c o n c e p t s a n d e x p e c t e d p e r f o r m a n c e b e t w e e n s e x t u p o l e pairs in t h e a r c s a d j a c e n t to t h e H e r e , w e will report only straight 5 L . T h e r e f o r e no optical f u n c t i o n at a n y sex- o n t h e b e a m d y n a m i c s a s p e c t s t r e a t e d in 2 0 0 1 , c o n - t u p o l e will b e affected. T h e b e t a t r o n p h a s e a d v a n c e s cerning studies on how the proposed insertions can be i n t r o d u c e d by t h e m o d i f i c a t i o n a r e exactly i m p l e m e n t e d into t h e S L S s t o r a g e ring a n d h o w they horizontally a n d is given e l s e w h e r e [2], [3]. affect t h e s t o r e d b e a m . = tt vertically. = 0 S i n c e in a r e g u - lar ( n o n - s k e w ) lattice all n o r m a l m u l t i p o l e s c o n t a i n only e v e n p o w e r s of t h e vertical c o o r d i n a t e y, t h e n o n - l i n e a r CONCEPTUAL DESIGN T h e S L S s t o r a g e ring h a s t h r e e long straight s e c t i o n s of 11.76 m g r o s s length: straight 1L is u s e d for injection, b e a m d y n a m i c s r e m a i n s basically u n c h a n g e d [12]. Basic layout 9 L for t h e U E 2 1 2 t w i n undulator, a n d 5 L , still empty, is Figure d e s i g n a t e d to b e u s e d for t h e ^ X A S / F E M T O i n s e r t i o n s . straight 5 L b e t w e e n t h e a d j a c e n t s e x t u p o l e s S L B - 0 4 1 shows and SLB-05: Concept P r e s e n t i n s e r t i o n d e v i c e s w e r e e x p e c t e d to affect t h e b e a m only little in t e r m s of orbit d i s t o r t i o n , t u n e shifts and dynamic aperture deterioration (causing reduced lifetime a n d injection efficiency) [8]. O n g o i n g c o m m i s s i o n i n g of t h e i n s e r t i o n s installed s o far, c o n f i r m s this e x p e c t a t i o n [4]. Installation of t h e F E M T O i n s e r t i o n w a s e x p e c t e d to b e c o m e m o r e c h a l l e n g i n g , s i n c e t h e following e l e m e n t s m o d u l a t o r w i g g l e r W 1 1 0 (18 p e r i o d s of 110 m m , 2.5 T p e a k field, 7.5 m m gap) a n d radiator u n d u - corresponding modification of T h e central q u a d r u p o l e triplet a n d in- c r e a s e d s t r e n g t h s of t h e existing d o u b l e t s at e n t r y a n d exit p r o v i d e t h e additional f o c u s s i n g . The asymmet- ric c h i c a n e , b r a c k e t i n g t h e modulator, w a s d e s i g n e d to c r e a t e a p u r e spatial s e p a r a t i o n (i.e. suppress- ing a n y additional a n g u l a r s e p a r a t i o n ) of t h e satellite b e a m s . A s s u m i n g a laser p e r f o r m a n c e p r o v i d i n g a n e n e r g y m o d u l a t i o n of ± 1 3 M e V [2], a vertical d i s p e r s i o n of 8.8 m m c r e a t e d in t h e radiator is suitable to s e p a r a t e t h e satellites by h a v e to b e i n s e r t e d into t h e straight: • the Ay with S y = ±48¿iin = ±5S y t h e r m s p h o t o n b e a m height ( d o m i n a t e d by diffraction) [5], a n d t h e factor 5 a criterion for sufficient s e p a r a t i o n f o u n d at A L S [7]. 10 Belafunctions [ml • 1 0 X/dP (ml • 0. 0 DisDersion of stored beam BetaY / . Dispersion Df satellite beams |.I / •2 \ , . BetaX -4 QGm QHm VB1 VB2 Modulator VB3 VB4 Qm Qc Qr "--i Chicane magnets Radiator QGr QHr NI/ Triplet F i g . 1 : M i n i - b e t a lattice with c h i c a n e for p u r e spatial b e a m s e p a r a t i o n . T h e m o d u l a t o r W 1 1 0 a n d t h e radiator U 1 7 are installed in t h e long straight s e c t i o n 5L. T h e total length of t h e lattice s e c t i o n s h o w n a m o u n t s to 14.84 m. Dynamic aperture T h e lattice modification a l o n e (i.e. e x c l u d i n g the m o d ulator a n d radiator fields) virtually d o e s not affect at all t h e d y n a m i c a p e r t u r e of the m a c h i n e , t h u s p r o v i n g that t h e 'V-trick" w o r k s . M a r g i n a l deteriorations are d u e t o a slight i n c r e a s e of t h e total integrated s e x t u p o l e s t r e n g t h (for c o m p e n s a t i o n of the additional chromaticity c r e a t e d by t h e additional f o c u s s i n g ) a n d d u e to a deviation of A$ f r o m 7T for particles with large m o m e n t u m deviat i o n s of \Ap/p\ > 6 % (which is b e y o n d the e n e r g y acc e p t a n c e in any c a s e ) . y Detailed tracking s t u d i e s w e r e m a d e to predict the d y n a m i c a p e r t u r e d e c r e a s e a n d t o investigate the different c o n t r i b u t i o n s [9]: S i n c e t h e b e a m is relatively w i d e inside the m o d u l a t o r a n d t h e radiator, t h e r e w a s s o m e c o n c e r n , that the d y n a m i c a p e r t u r e will b e aff e c t e d by the horizontal off-axis field d e c r e a s e d u e to t h e finite pole w i d t h . Also, t h e c h i c a n e m a g n e t s d e s i g n including their multipole c o n t e n t s a n d realistic a s s u m p tions o n t h e field e r r o r s of the insertion d e v i c e s w e r e i n c l u d e d . T h e c a l c u l a t i o n s did not s h o w significant dyn a m i c a p e r t u r e d e g r a d a t i o n for ideal insertion d e v i c e s with pole w i d t h s a s p l a n n e d . After application of realistic field errors, a 10 % d e c r e a s e of t h e horizontal a p e r t u r e w a s f o u n d . A possible i m p a c t on injection effic i e n c y h a s to be s t u d i e d further. Emittance increase T h e vertical e m i t t a n c e p r o d u c t i o n f r o m t h e c h i c a n e vertical d i p o l e s a m o u n t s t o 0.6 p m r a d , T h i s contribution is negligible c o m p a r e d t o the « 2 5 p m - r a d f r o m other lattice imperfections. T h u s , the c h i c a n e m a g n e t s c o u l d be m a d e s t r o n g e r if larger s e p a r a t i o n is r e q u i r e d - a s long a s t h e available s p a c e is sufficient. T h e p r e s e n t layout c o n t a i n s c h i c a n e m a g n e t s of 30 c m length with a m a x i m u m field of 0.43 T. Modulator beam T h e d i s p e r s i o n b u m p c a u s e s a n equivalent orbit excursion e x t e n d i n g u p t o 16 m m inside t h e modulator, s e e figure 1. T h u s , the m o d u l a t o r h a s to b e e l e v a t e d a n d p i t c h e d in o r d e r t o g u i d e the electron b e a m t h r o u g h its n a r r o w gap. T h i s , however, c a u s e s the p h o t o n b e a m of the m o d u l a t o r t o p r o p a g a t e at a vertical a n g l e of - 4 . 5 m r a d a n d to finally hit t h e m a g n e t array of the radiator, w h i c h will be a m i n i - g a p i n - v a c u u m undulator. S i n c e t h e m o d u l a t o r b e a m will c o n t a i n a p p r o x . 10 k W of X - r a y s , this solution is u n a c c e p t a b l e . M o d i f i e d layo u t s have b e e n s u c c e s s f u l l y d e v e l o p e d [10] in o r d e r to i n c r e a s e t h e m o d u l a t o r b e a m a n g l e in o r d e r t o s t o p it before r e a c h i n g the radiator. However, t h e s e layouts lead t o a n e n t a n g l e m e n t of orbit a n d f o c u s s i n g , w h i c h c o m p l i c a t e s m a c h i n e o p e r a t i o n . F u r t h e r m o r e , it w o u l d be desirable to g u i d e t h e m o d u l a t o r b e a m out of the ring instead of d u m p i n g it, s i n c e it m a y be useful for exp e r i m e n t s too. Further w o r k is in p r o g r e s s t o evaluate t h e b e s t option. Beam halo After travelling t h r o u g h t h e radiator, t h e satellite b e a m slices will stretch (due to m o m e n t u m c o m p a c t i o n ) , filam e n t a n d slowly m e r g e with t h e c o r e b e a m t h r o u g h radiation d a m p i n g . In the m e a n t i m e they will f o r m a halo, w h i c h m a y disturb other u s e r s a n d provide substantial b a c k g r o u n d to s u b s e q u e n t laser s h o t s for the F E M T O driven e x p e r i m e n t . Prelimary s t u d i e s indicate, that the d i s t u r b a n c e of other u s e r s will b e negligible. T h e b a c k g r o u n d c a n be s u p p r e s s e d , if for e a c h interaction of t h e laser with the electron b e a m the laser is s y n c h r o n i z e d t o a n e w b u n c h (out of a p p r o x . 4 0 0 b u n c h e s stored) a n d if the e x p e r i m e n t is g a t e d d u r i n g t h e laser pulse. G i v e n a laser repetition rate of less t h a n 10 k H z , t h e halo will d a m p d o w n c o m p l e t e l y f r o m o n e s h o t to t h e next [11 ]. If t h e m a c h i n e o p e r a t e s in a c a m s h a f t m o d e with o n e or a few h i g h - c h a r g e b u n c h e s f r e q u e n t l y sliced a n d a l o w - c h a r g e train s e r v i n g other e x p e r i m e n t s , a n e q u i l i b r i u m halo will f o r m . A n e s t i m a t e of t h e b a c k g r o u n d signal f r o m this halo r e q u i r e s f u r t h e r studies. Diagnostics M o m e n t u m c o m p a c t i o n of t h e a r c s will i n c r e a s e (resp. d e c r e a s e ) the t i m e of flight of t h e satellite with positive (resp. negative) e n e r g y c h a n g e . T h u s , at the e n t r a n c e of the central 14° dipole B X - 0 5 in t h e T B A following the straight 5L, t h e satellites will have a t e m p o r a l s p a c i n g of ± 5 0 fs with a c o r r e s p o n d i n g dip in t h e c o r e b e a m bet w e e n . First s i m u l a t i o n s have s h o w n , that t h e c o h e r e n t far-infrared (FIR) radiation (A > 30/xm) f r o m this t i m e s t r u c t u r e will p e a k out f r o m t h e i n c o h e r e n t b a c k g r o u n d f r o m t h e c o r e b e a m , a n d t h u s provide an excellent tool for optimization of m a t c h i n g , a l i g n m e n t , laser s y n c h r o nisation, etc. T h e r e f o r e , the d i a g n o s t i c s b e a m l i n e at t h e dipole B X - 0 5 will be e x t e n d e d by a FIR p a t h t o exploit t h e c o h e r e n t s y n c h r o t r o n radiation. 11 CONCLUSION AND OUTLOOK A basic layout h a s b e e n f o u n d to realize t h e F E M T O insertion for c r e a t i o n of s u b - p i c o s e c o n d optical p u l s e s in o n e long straight of t h e S L S s t o r a g e ring. Dyn a m i c a p e r t u r e c a l c u l a t i o n s indicate compatibility with t h e g e n e r a l m a c h i n e p e r f o r m a n c e . T h e p r o b l e m of halo f o r m a t i o n f r o m u s e d satellite b e a m s a n d the p r o b l e m of g u i d i n g out or blocking t h e s t r o n g radiation f r o m the m o d u l a t o r w i g g l e r require further investigations in o r d e r to provide a c o m p l e t e proof of feasibility f r o m the b e a m d y n a m i c s point of view. REFERENCES [ I ] J . B e n g t s s o n et al., Increasing the energy tance of high brightness synchrotron light rings, N I M A 4 0 4 (1998) 2 3 7 . accepstorage [2] G. Ingold et al., Sub-picosecond optical pulses the SLS storage ring, P A C ' 0 1 , C h i c a g o 2 0 0 1 . at [3] G. Ingold et al., Conceptual design: subpicosecond hard X-ray source, PSI Scientific R e port 2 0 0 1 , V o l u m e V I I . [4] G. Ingold a n d T. S c h m i d t , Insertion devices: first experiences, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [5] W. J o h o , Radiation properties TME-TA-1995-0004. of an undulator, SLS- [6] A. S c h e i d e g g e r , D.Grolimund et al. Layout of the micro XAS beamline: design study, PSI Scientific R e port 2 0 0 1 , V o l u m e V I I . [7] R.W. S c h o e n l e i n et al., Generation of Femtosecond Pulses of Synchrotron Radiation, Science 2 8 7 (2000) 2 2 3 7 a n d A p p l . Phys. B71 (2000) 1 . [8] B. S i n g h , Effects of insertion devices on the dynamics of SLS, S L S - T M E - T A - 2 0 0 1 - 0 1 6 9 . beam [9] B. S i n g h , SLS storage ring non-linear dynamics with FEMTO insertion in one straight section, S L S TME-TA-2001-0181. [10] G. S i n g h , FEMTO: TME-TA-2001-0179. Modification of Layout, SLS- [ I I ] G. S i n g h , FEMTO: Preliminary studies on effects of background electron pulses, S L S - T M E - T A - 2 0 0 1 0180. [12] Y. W u et al., Mini-Beta Lattice for the Femtosecond X-Ray Source at the ALS, EPAC'OO, V i e n n a 2000. 12 ON THE USE OF CORBA IN HIGH LEVEL BEAM DYNAMICS APPLICATIONS M. Böge, J. Chrin Beam dynamics (BD) applications at the SLS have benefitted from a distributed computing environment in which the Common Object Request Broker Architecture (CORBA) forms the middleware layer and access point to several different software components for use in building high level software applications at the SLS. A suite of remote CORBA server objects provides the client with a convenient and uniform interface to the CDEV (Common DEVice) controls library, the TRACY accelerator physics package, the Oracle database and an event logging facility. Use is made of methods provided by the CORBA Portable Object Adaptor (POA) for accessing ORB functions, such as object reactivation and object persistence, the Implementation Repository (IMR) for the automatic reactivation of servers, and the CORBA Event Service for the propagation of controls and physics data. An account of the CORBA framework, as used by applications in the commissioning and first operation of the SLS, is presented. MOTIVATION CORBA ARCHITECTURE S e v e r a l high-level b e a m d y n a m i c s ( B D ) a p p l i c a t i o n s h a v e b e e n d e v e l o p e d for t h e o p e r a t i o n a n d m o n i t o r i n g of t h e S L S a c c e l e r a t o r facilities. Fig. 1 c a p t u r e s typical c o m p o n e n t s r e q u i r e d by B D applications. T h e i r n u m ber a n d d e m a n d o n c o m p u t e r r e s o u r c e s m o t i v a t e d , in part, a d e s i r e for a distributed c o m p u t i n g e n v i r o n m e n t . T o this e n d , t h e C o m m o n O b j e c t R e q u e s t B r o k e r ( C O R B A ) [1], a n e m e r g i n g s t a n d a r d for distributed object c o m p u t i n g ( D O C ) , h a s b e e n e m p l o y e d . Its u s e at t h e S L S h a s a l l o w e d us t o realize t h e potential benefits of distributed c o m p u t i n g a n d t o s i m u l t a n e o u s l y exploit f e a t u r e s inherent to C O R B A , s u c h a s t h e interoperability b e t w e e n o b j e c t s , i m p l e m e n t e d in different l a n g u a g e s a n d on different p l a t f o r m s . C o m p l e x t a s k s , s u c h a s t h e m o d e l l i n g of t h e S L S a c c e l e r a t o r s , c a n t h u s b e h a n d l e d by d e d i c a t e d c o m p u t e r s a n d d e v e l o p e d into r e u s a b l e c o m p o n e n t s w h i c h c a n b e acc e s s e d t h r o u g h r e m o t e m e t h o d invocations. D e v e l o p ing t h e entire suite of B D c o m p o n e n t s as C O R B A o b j e c t s , further e l e v a t e s t h e level at w h i c h a p p l i c a t i o n s a r e d e s i g n e d a n d i m p l e m e n t e d . P l a t f o r m s hosting high-level s o f t w a r e a p p l i c a t i o n s a r e no l o n g e r limited to t h e libraries a n d e x t e n s i o n s available t o t h e host o p e r a t i n g s y s t e m a s t h e introduction of a C O R B A m i d d l e w a r e layer s e r v e s to extend the developers c h o s e n p r o g r a m m i n g l a n g u a g e . B D application d e v e l o p e r s are, h e n c e f o r t h , a b l e to f o c u s o n t h e s p e c i f i c s of t h e application at h a n d , s u c h a s d e t e r m i n i n g userfriendly g r a p h i c a l interfaces, rather t h a n s t r u g g l e with t h e intricate internals of n u m e r o u s a p p l i c a t i o n p r o g r a m interfaces. T h e m o s t f u n d a m e n t a l c o m p o n e n t of C O R B A is t h e O b j e c t R e q u e s t B r o k e r ( O R B ) w h o s e t a s k is to facilitate c o m m u n i c a t i o n b e t w e e n o b j e c t s . G i v e n a n Intero p e r a b l e O b j e c t R e f e r e n c e ( I O R ) , t h e O R B is a b l e to locate t a r g e t o b j e c t s a n d t r a n s m i t d a t a t o a n d f r o m r e m o t e m e t h o d invocations. T h e interface t o a C O R B A o b j e c t is s p e c i f i e d using t h e C O R B A Interface Definition L a n g u a g e (IDL). A n IDL c o m p i l e r t r a n s l a t e s t h e IDL definition into a n application p r o g r a m m i n g lang u a g e , s u c h a s C + + or J a v a , g e n e r a t i n g IDL s t u b s a n d s k e l e t o n s that provide t h e f r a m e w o r k for clients i d e a n d s e r v e r - s i d e p r o x y c o d e , respectively. C o m p i lation of a p p l i c a t i o n s incorporating IDL s t u b s p r o v i d e s a s t r o n g l y - t y p e d Static Invocation Interface (Sil). C o n versely, a m o r e flexible c o m m u n i c a t i o n m e c h a n i s m c a n b e e s t a b l i s h e d t h r o u g h t h e u s e of t h e D y n a m i c Invocation Interface (DM) a n d t h e D y n a m i c S k e l e t o n Interface (DSI) allowing o b j e c t s to b e c r e a t e d w i t h o u t prior k n o w l e d g e of t h e IDL interface. In s u c h c a s e s , a d e s c r i p t i o n of t h e interface is retrieved at r u n t i m e f r o m a n Interface R e p o s i t o r y (IFR), a d a t a b a s e c o n t a i n i n g t h e pertinent m e t a d a t a . R e q u e s t s a n d r e s p o n s e s b e t w e e n o b j e c t s a r e d e l i v e r e d in a s t a n d a r d f o r m a t d e f i n e d by t h e Internet I n t e r - O R B Protocol (MOP), a communications protocol w h i c h a d h e r e s to t h e C O R B A G e n e r a l I n t e r - O R B Protocol ( G I O P ) s p e c i f i cation a n d , a s s u c h , a c t s a s t h e b a s e for C O R B A interoperability o n t h e internet. R e q u e s t s a r e m a r s h a l l e d in a platform i n d e p e n d e n t f o r m a t , by t h e client s t u b (or in t h e DM), a n d u n m a r s h a l l e d o n t h e s e r v e r - s i d e into a platform specific f o r m a t by t h e IDL s k e l e t o n (or in t h e D S I ) a n d t h e o b j e c t adaptor, w h i c h s e r v e s as a m e diator b e t w e e n a n object's i m p l e m e n t a t i o n , t h e servant, a n d its O R B , t h e r e b y d e c o u p l i n g user c o d e f r o m O R B p r o c e s s i n g . In its m a n d a t o r y v e r s i o n , t h e Portable Object Adaptor (POA) provides C O R B A objects with a c o m m o n set of m e t h o d s for a c c e s s i n g O R B f u n c t i o n s , ranging f r o m user a u t h e n t i c a t i o n t o o b j e c t activation a n d object p e r s i s t e n c e . It's m o s t basic task, h o w e v e r , is to c r e a t e object r e f e r e n c e s a n d to disp a t c h O R B r e q u e s t s a i m e d at t a r g e t o b j e c t s t o their r e s p e c t i v e s e r v a n t s . T h e c h a r a c t e r i s t i c s of t h e P O A a r e d e f i n e d at c r e a t i o n t i m e by a set of P O A policies. A s e r v e r c a n host a n y n u m b e r of P O A s , e a c h with its o w n set of policies t o g o v e r n t h e p r o c e s s i n g of req u e s t s . A m o n g t h e m o r e a d v a n c e d f e a t u r e s of t h e Fig. 1 : D O C c o m p o n e n t s s e r v i n g B D a p p l i c a t i o n s . 13 P O A is t h e s e r v a n t m a n a g e r w h i c h a s s u m e s t h e role of reactivating s e r v e r o b j e c t s ( s e r v a n t s ) as t h e y are r e q u i r e d . It also p r o v i d e s a m e c h a n i s m to s a v e a n d restore an object's state. T h i s , c o u p l e d with t h e u s e of the I m p l e m e n t a t i o n R e p o s i t o r y ( I M R ) that h a n d l e s the a u t o m a t e d start a n d restart of s e r v e r s , realizes object persistency. B D a p p l i c a t i o n s are c o n s e q u e n t l y guara n t e e d the s e r v i c e s t h e y require [2]. ing S Q L s t a t e m e n t s h a v e b e e n p r o v i d e d that p e r f o r m d a t a b a s e retrieval a n d m o d i f i c a t i o n o p e r a t i o n s . Interestingly, d a t a b a s e a c c e s s t h r o u g h the C O R B A interf a c e (with data m a r s h a l l i n g ) t a k e s half t h e t i m e t h a n that t h r o u g h the J D B C A P I . A C O R B A m e s s a g e server has been developed using t h e U N I X syslog logging facility, profiting directly f r o m t h e reliability of s t a n d a r d U N I X s e r v i c e s . R u n - t i m e m e s s a g e s are s e n t to the logger with v a r i o u s priority levels, the t h r e s h o l d for w h i c h c a n be a d j u s t e d dyn a m i c a l l y for a n y g i v e n servant. S T O R A G E RING OPERATION F i g . 2 : T h e C O R B A client-server a r c h i t e c t u r e . Fig. 2 s h o w s t h e c o m p o n e n t s of the C O R B A a r c h i tectural m o d e l . T h e O R B c o r e is i m p l e m e n t e d a s a r u n t i m e library linked into client-server a p p l i c a t i o n s . A reactive, e v e n t - b a s e d , f o r m of p r o g r a m m i n g is a l s o s u p p o r t e d by the C O R B A E v e n t Service w h i c h prov i d e s s e r v i c e s for the c r e a t i o n a n d m a n a g e m e n t of C O R B A e v e n t c h a n n e l s . T h e s e m a y be u s e d by CORBA supplier/consumer clients t o propagate e v e n t s a s y n c h r o n o u s l y on a p u s h or pull basis. Event c h a n n e l s are c r e a t e d a n d registered with the C O R B A N a m i n g Service, allowing clients t o obtain o b j e c t refe r e n c e s in the usual m a n n e r . C o m m u n i c a t i o n is a n o n y m o u s in that the s u p p l i e r d o e s not require k n o w l e d g e of the receiving c o n s u m e r s . T h e C O R B A E v e n t Service h a s b e e n usefully e m p l o y e d in t h e m o n i t o r i n g of h a r d w a r e d e v i c e s a n d in the distribution of recalibrated data t o client c o n s u m e r s . SERVER SYNOPSIS Several o b j e c t s , typically of persistent type, h a v e b e e n d e v e l o p e d u s i n g t h e C O R B A p r o d u c t M I C O [3], a fully c o m p l i a n t i m p l e m e n t a t i o n of t h e C O R B A 2.3 s t a n d a r d . T h e s e r v i c e s t h e s e o b j e c t s provide are briefly r e p o r t e d here. A n e x p a n d e d d e s c r i p t i o n , t o g e t h e r with s p e c i f i c a t i o n s of t h e h a r d w a r e a n d s y s t e m c o m p o n e n t s of the s e r v e r hosts, a p p e a r s e l s e w h e r e [4]. A d e d i c a t e d host r u n s the s e r v e r s that p e r f o r m t h e c o m p u t e r intensive m o d e l l i n g of t h e S L S a c c e l e r a t o r s . P r o c e d u r e s utilise the c o m p l e t e T R A C Y a c c e l e r a t o r p h y s i c s library, e n a b l i n g clients to e m p l o y t e s t e d accelerator o p t i m i z a t i o n p r o c e d u r e s online. T h e C D E V ( C o m m o n D E V i c e ) C + + c l a s s c o n t r o l s library p r o v i d e s the A P I to the E P I C S - b a s e d a c c e l e r a t o r d e v i c e control s y s t e m . T h e C D E V s e r v e r s u p p l i e s functionality for both s y n c h r o n o u s a n d a s y n c h r o n o u s interactions with the control s y s t e m . A d a t a b a s e s e r v e r p r o v i d e s a c c e s s to O r a c l e ins t a n c e s t h r o u g h the O r a c l e T e m p l a t e Library ( O T L ) a n d t h e O r a c l e Call Interface ( O C I ) . M e t h o d s e x e c u t - S e v e r a l a p p l i c a t i o n s , written m a i n l y in T c l / T k or J a v a , h a v e b e e n s u c c e s s f u l l y i n t r o d u c e d for the c o m m i s s i o n i n g a n d o p e r a t i o n of the S L S b o o s t e r a n d s t o r a g e rings [5], m a k i n g a m p l e u s e of t h e C O R B A f r a m e w o r k provided. Server objects were extensively tested t h r o u g h invocations initiated by a variety of client proce s s e s . O p e r a t o r intervention w a s m i n i m a l . Clients w e r e able t o interact s p o n t a n e o u s l y with the m a n y s e r v e r s a n d to display their e v e n t data. T h i s is e x e m plified by the s l o w global orbit f e e d b a c k s y s t e m (3 Hz s a m p l i n g rate), w h i c h is both a c o n s u m e r t o e v e n t g e n e r a t e d d a t a a n d a party to r e m o t e m e t h o d s invoc a t i o n s o n a variety of s e r v e r s . CONCLUSION T h e C O R B A m i d d l e w a r e h a s s e r v e d to e x t e n d the capabilities of the p r o g r a m m i n g l a n g u a g e s u s e d by B D application d e v e l o p e r s , t h e r e b y elevating t h e level at w h i c h high-level s o f t w a r e a p p l i c a t i o n s are d e s i g n e d a n d i m p l e m e n t e d . T h e p o w e r a n d flexibility of the P O A , c o u p l e d with t h e s e r v e r activation r e c o r d s s t o r e d within the IMR, h a s b e e n exploited to provide a robust a n d m o d u l a r C O R B A b a s e d client-server f r a m e w o r k . T h e m o d e l h a s b e e n p r o v e d t o be both reliable a n d stable by the m a n y a p p l i c a t i o n s d e p l o y e d in the c o m m i s s i o n i n g a n d first o p e r a t i o n of t h e S L S . REFERENCES [1] CORBA, http://www.omg.org/ [2] M. B ö g e , J. Chrin, SLS-TME-TA-2001-0183, http://slsbd.psi.ch/pub/slsnotes/ [3] MICO, http://www.mico.org/ [4] M. B ö g e , J. Chrin, SLS-TME-TA-2000-0162, http://slsbd. psi . c h / p u b / s l s n o t e s / [5] M. B ö g e , J . C h r i n , M. M u ñ o z , A. S t r e u n , S L S - T M E - T A - 2 0 0 1 - 0 1 8 2 , http://slsbd.psi.ch/pub/slsnotes/ 14 VACUUM CONDITIONING AND LIFETIME IMPROVEMENT L. Schulz, A. Streun The ultra-high vacuum system of the SLS storage ring consists of a full antechamber design with stainless steel vacuum chambers [1]. After an external bakeout at 250 °C the installation under vacuum in the storage ring was completed in 2000. The design values for the beam lifetime and the vacuum pressure at 400 A could be achieved after half a year of operation. INTRODUCTION T h e e l e c t r o n b e a m lifetime d e p e n d s s t r o n g l y o n t h e p r e s s u r e in t h e ring v a c u u m s y s t e m . T h e v a c u u m p r e s s u r e is d o m i n a t e d by t h e p h o t o d e s o r p t i o n of t h e s y n c h r o t r o n light. T h e p h o t o n s w h i c h are s t o p p e d by the p h o t o n a b s o r b e r s or t h e wall of t h e v a c u u m c h a m b e r p r o d u c e p h o t o e l e c t r o n s with e n e r g i e s f r o m s o m e 10 e V up to f e w K e V . T h e s e p h o t o e l e c t r o n s c a n d e s o r b residual g a s m o l e c u l e s f r o m the c h a m b e r w a l l s . T h e d e s o r p t i o n rate is t i m e d e p e n d e n t a n d dec r e a s e s as a f u n c t i o n of t h e a c c u m u l a t e d b e a m d o s e . u s e d s h o w u n u s u a l correlations with t h e b e a m c u r r e n t w h i c h are not s h o w n by t h e r e a d i n g s of the c o r r e s p o n d i n g sputter ion p u m p s . All g a u g e s are so called active g a u g e s w h e r e t h e e l e c t r o n i c s is c o n n e c t e d d i rectly t o t h e s e n s o r . It s e e m s that t h e e l e c t r o n i c s of t h e g a u g e s with b a d r e a d i n g s are sensitive to radiation. T h i s n e e d s , h o w e v e r , further investigation. T h e highest p r e s s u r e r e a d i n g s (Fig. 1) c a n b e f o u n d in t h e R F - c a v i t y straights, t h e injection straight a n d t h e ID c h a m b e r s 0 4 S a n d 1 1 M . T h e a v e r a g e p r e s s u r e is c a l c u l a t e d via t h e f o l l o w i n g e q u a t i o n : VACUUM PRESSURE <P>= Total Pressure T h e total p r e s s u r e in t h e S L S s t o r a g e ring is m o n i t o r e d with c o l d c a t h o d e g a u g e s . A l s o t h e p u m p current of t h e sputter ion p u m p s c a n be u s e d a s a n indication for the v a c u u m p r e s s u r e . T w o g a u g e s are installed in e a c h of the v a c u u m s e c t i o n s of the 12 m a g net a r c s . T h e 12 straight s e c t i o n s are e q u i p p e d w i t h o n e or t w o g a u g e s . Cavity 1+2 Cavity 3+4 ID-Chamber 11M • b ID-Chamber 04S Injection Straight • • H e r e i n is P¡ t h e p r e s s u r e m e a s u r e d with t h e individual c o l d c a t h o d e g a u g e s . T h e f a c t o r F¡ is t a k e n f r o m the m o d e l for the p r e s s u r e distribution [2] a n d r e p r e s e n t s t h e ratio b e t w e e n t h e a v e r a g e p r e s s u r e a n d the c o r r e s p o n d i n g p r e s s u r e in t h e m o d e l at t h e position of t h e g a u g e . AX,, s t a n d s for the length of t h e v a c u u m s e c - tion for w h i c h t h e p r e s s u r e r e a d i n g is r e p r e s e n t a t i v e . D u e to the s y n c h r o t r o n - r a d i a t i o n driven g a s d e s o r p tion, the a v e r a g e p r e s s u r e is a linear f u n c t i o n of t h e total b e a m current. T h e ratio b e t w e e n p r e s s u r e rise a n d b e a m c u r r e n t d e c r e a s e s with i n c r e a s i n g t h e a c cumulated beam dose. Fig. 2 s h o w s t h e e v o l u t i o n of t h e d y n a m i c p r e s s u r e d P / d l as a f u n c t i o n of t h e a c c u m u l a t e d b e a m d o s e w h i c h h a s t h e e x p e c t e d d e c r e a s e of - 2 / 3 ( s h o w n in t h e plot with a d o u b l e l o g a r i t h m i c scale). • • • ZA pressure P(s) — average pressure <P> 50 100 150 200 250 300 s[m] Fig. 1 : L o n g i t u d i n a l p r e s s u r e distribution after 100 A h at 3 5 0 m A ; d a t a t a k e n in J u l y 2 0 0 1 . Fig. 1 s h o w s a s n a p s h o t of t h e longitudinal distribution of t h e total p r e s s u r e in t h e ring at a b e a m c u r r e n t of 3 5 0 m A a n d after an a c c u m u l a t e d b e a m d o s e of 100 A h . In total, 3 9 c o l d c a t h o d e g a u g e s are installed in t h e s t o r a g e ring. For t h e calculation of the a v e r a g e p r e s s u r e t h e r e a d i n g s of o n l y 30 g a u g e s c a n be u s e d . H o w e v e r , 4 g a u g e s h a v e a g r o u n d short a n d c a n o n l y be r e p l a c e d after v e n t i n g of the c o r r e s p o n d i n g v a c u u m s e c t i o n s . T h e o t h e r five g a u g e s w h i c h c a n n o t be É 1.0E-07 10 Beam Dose [A h] Fig. 2 : D y n a m i c p r e s s u r e d P / d l a s a f u n c t i o n of a c c u mulated beam dose. 15 T h e t e m p o r a r y i n c r e a s e o f t h e d y n a m i c p r e s s u r e in Fig. 2 is c o r r e l a t e d w i t h v a c u u m s h u t d o w n s a n d t h e installation of insertion d e v i c e c h a m b e r s . N 2 Equivalent Pressure R e l e v a n t for the b e a m lifetime is t h e residual g a s c o m p o s i t i o n in t h e v a c u u m s y s t e m . D u e t o the q u a d ratic d e p e n d e n c y of t h e elastic s c a t t e r i n g and Bremsstrahlungs scattering gas c o m p o n e n t s with a high a t o m i c m a s s n u m b e r Z h a v e a h i g h e r influence o n t h e b e a m lifetime. T h e partial p r e s s u r e s for h y d r o gen ( P 2 7 0 % , Z=1) and carbon monoxide ( P o 3 0 % , Z = 7 ) are the m a i n c o n t r i b u t i o n s to t h e S L S v a c u u m . H S C s T h e n i t r o g e n e q u i v a l e n t p r e s s u r e is better s u i t e d t h a n the total p r e s s u r e t o s h o w t h e c o r r e l a t i o n b e t w e e n b e a m lifetime a n d p r e s s u r e . Fig. 3 s h o w s t h e n i t r o g e n e q u i v a l e n t p r e s s u r e a s a f u n c t i o n of t i m e w h i c h is e x t r a p o l a t e d f r o m t h e v a l u e s for t h e d y n a m i c p r e s s u r e and the corresponding base pressure and a beam c u r r e n t of 4 0 0 m A . m a c h i n e ' s e n e r g y a c c e p t a n c e d u e t o t h e large n e g a tive h o r i z o n t a l s e c o n d o r d e r c h r o m a t i c i t y . M o v i n g t h e h o r i z o n t a l t u n e f r o m 2 0 . 3 8 to 2 0 . 4 2 i n c r e a s e d t h e lattice e n e r g y a c c e p t a n c e f r o m a p p r o x . ± 2 % to ± 3 % a n d t h u s d o u b l e d t h e lifetime. V a r i a t i o n of R F v o l t a g e a n d c o m p a r i s o n w i t h t r a c k i n g s t u d i e s a l l o w e d t o e s t i m a t e the vertical e m i t t a n c e t o a p p r o x . 30 p m r a d , w h i c h is in a g r e e m e n t w i t h ex- p e c t a t i o n s a n d earlier d i f f e r e n c e orbit m e a s u r e m e n t s . A v a r i a t i o n of t h e single b u n c h c u r r e n t i n d i c a t e d turb u l e n t b u n c h l e n g t h e n i n g b e y o n d a t h r e s h o l d of 1.1 m A per b u n c h . T h i s h o w e v e r n e e d s f u r t h e r i n v e s tigation. B e y o n d 2.2 m A of single b u n c h current, a n e x t r a o r d i nary linear i n c r e a s e of p r e s s u r e w i t h c u r r e n t w a s o b s e r v e d , w h i c h is not c a u s e d by g a s d e s o r p t i o n , but p r o b a b l y by m i c r o w a v e h e a t i n g of the v a c u u m c h a m ber. jpr-^ B e a m D o s e [A h ] % \ \ F i g . 3: F i g . 4 : P r o d u c t of total b e a m lifetime a n d b e a m cur- N 2 e q u i v a l e n t p r e s s u r e at a c u r r e n t of 4 0 0 m A At t h e e n d of t h e c o m m i s s i o n i n g p h a s e , in t h e m i d d l e of A u g u s t , after 6 m o n t h s of o p e r a t i o n , a v a l u e in t h e r a n g e of 2-10" m b a r for the N e q u i v a l e n t p r e s s u r e at 400 m A was achieved. 9 2 B E A M LIFETIME Total Lifetime rent v s b e a m d o s e . CONCLUSIONS T h e d e s i g n v a l u e s for the v a c u u m p r e s s u r e a n d t h e b e a m lifetime c o u l d be a c h i e v e d after 6 m o n t h s of o p e r a t i o n . T h e results s h o w that the c o n c e p t of t h e s t a i n l e s s steel a n t e c h a m b e r d e s i g n w i t h e x t e r n a l bakeout was successful. S i m u l t a n e o u s l y w i t h t h e i m p r o v e m e n t of v a c u u m p r e s s u r e a l s o a n i n c r e a s e in t h e total lifetime of t h e elect r o n b e a m c o u l d b e o b s e r v e d . Fig. 4 s h o w s t h e prog r e s s i o n of the p r o d u c t of total b e a m lifetime a s a f u n c t i o n of t h e a c c u m u l a t e d b e a m d o s e . ACKNOWLEDGEMENTS Analysis of Beam Lifetime REFERENCES S c r a p e r e x p e r i m e n t s p r o v e d the s q u a r e d e p e n d a n c y of elastic s c a t t e r i n g g a s lifetime o n the s c r a p e r p o s i tion in g o o d a g r e e m e n t w i t h t h e o r y a n d a l l o w e d t o calibrate t h e m e a s u r e d a v e r a g e p r e s s u r e . [1] L. S c h u l z , T. Bieri, N. Gaiffi, The SLS Vacuum System, PSI Scientific R e p o r t 2 0 0 0 , V o l u m e V I I . [2] G . H e i d e n r e i c h , L. S c h u l z , P. W i e g a n d , Vacuum System for the Swiss Light Source, Proc. E P A C 1998. [3] A. S t r e u n , Beam Lifetime in the SLS Storage Ring, S L S - T M E - T A - 2 0 0 1 - 0 1 9 1 , D e c e m b e r 2 0 0 1 . After s u b t r a c t i n g of t h e elastic s c a t t e r i n g c o n t r i b u t i o n , the T o u s c h e k lifetime w a s i n v e s t i g a t e d a s f u n c t i o n of v a r i o u s p a r a m e t e r s [3]. V a r i a t i o n of t h e b e t a t r o n t u n e s r e v e a l e d , t h a t t h e n o n s y s t e m a t i c t h i r d - i n t e g e r r e s o n a n c e 3 Q = 61 limits t h e X T h e a u t h o r s w o u l d like t o t h a n k the S L S c r e w w h o h a v e i n c r e a s e d t h e total b e a m d o s e in m a n y long a n d b o r i n g l a u n d r y shifts. 16 SLS THIRD HARMONIC SUPERCONDUCTING RF SYSTEM P. Marchand, M. Pedrozzi, INTRODUCTION P r e s e n t l y , t h e R F s y s t e m of t h e S L S s t o r a g e ring c o n sists of f o u r 5 0 0 M H z c o p p e r cavities t h a t c a n g e n e r ate a total R F v o l t a g e of 2.4 M V a n d deliver 2 4 0 k W t o the b e a m . T h i s s y s t e m p r o v e d t o b e quite reliable in o p e r a t i o n d u r i n g t h e y e a r 2 0 0 1 [1]. In o r d e r t o f u r t h e r i m p r o v e t h e b e a m lifetime, w h i c h is d o m i n a t e d by T o u s c h e k s c a t t e r i n g , it is p l a n n e d t o implement a complementary 3rd harmonic RF system for l e n g t h e n i n g t h e b u n c h e s a n d t h e r e f o r e r e d u c i n g their c h a r g e d e n s i t y [2]. S i n c e t h e b o u n d a r y c o n d i t i o n s are similar t o t h o s e at E L E T T R A , t h e t w o institutes decided to search for a c o m m o n approach. T h e chos e n solution is t h e u s e of a n idle s u p e r c o n d u c t i n g s y s t e m b a s e d o n a "scaling t o 1.5 G H z " of t h e 3 5 0 M H z t w o - c e l l - c a v i t y d e v e l o p e d at S a c l a y f o r t h e S O L E I L project [ 3 ] . In O c t o b e r 1 9 9 9 , P S I , S i n c r o t r o n e Trieste and C E A Saclay concluded a collaboration a g r e e m e n t , t h e s o - c a l l e d S U P E R - 3 H C Project, w i t h the o b j e c t i v e of d e s i g n i n g a n d p r o d u c i n g t w o c o m p l e t e c r y o m o d u l e s , o n e f o r E L E T T R A a n d o n e f o r S L S [4]. T h e cavity c o n s i s t s of t w o N b / C u cells, e n c l o s e d in their L H e r e s e r v o i r s ; o n t h e t u b e b e t w e e n t h e t w o cells a r e l o c a t e d t h e c o u p l e r s f o r t h e d a m p i n g of t h e H i g h e r O r d e r M o d e ( H O M ) i m p e d a n c e s (Fig. 1). E a c h cell is e q u i p p e d w i t h its o w n f r e q u e n c y tuner, a m e c h a n i c a l s y s t e m , d r i v e n by a s t e p p i n g m o t o r , w h i c h c h a n g e s t h e cell l e n g t h within t h e limits of t h e elastic d e f o r m a t i o n ( ± 5 0 0 k H z r a n g e , 10 H z a c c u r a c y ) . In t h e idle cavity, t h e b e a m - i n d u c e d v o l t a g e (V ° c A f l ) is directly c o n t r o l l e d v i a t h e f r e q u e n c y t u n e r s . W i t h a cavity v o l t a g e of 8 0 0 k V (4 M V / m ) , o n e a n t i c i p a t e s a b u n c h - l e n g t h e n i n g f a c t o r of a b o u t 3 a n d t h a t s h o u l d result in 2 - 3 t i m e s longer b e a m lifetime. b e a m HOM DAMPING In o r d e r t o p r e v e n t t h e e x c i t a t i o n of c o u p l e d b u n c h instabilities, a n efficient d a m p i n g of all t h e cavity H O M ' s is r e q u i r e d in a f r e q u e n c y r a n g e 1.5 - 3.6 G H z . T h i s is a c h i e v e d by u s i n g six c o a x i a l H O M c o u p l e r s (two f o r t h e longitudinal m o d e s , f o u r f o r t h e t r a n s v e r s e m o d e s ) , l o c a t e d o n t h e t u b e c o n n e c t i n g t h e t w o cells a n d a r r a n g e d a s s h o w n in Fig. 1 [ 5 ] . T h e o p t i m i s a t i o n w a s p e r f o r m e d in t w o s t e p s : first, t h e "best" position of the c o u p l e r s o n t h e t u b e w a s d e t e r m i n e d u s i n g t h e c o m p u t e r c o d e U R M E L a n d t h e n t h e s e n s i t i v e parts of the c o u p l e r s (A, B, C, D, E, F in Fig. 2 ) w e r e o p t i m i s e d by " c u t a n d try iterations" o n a c o p p e r cavity m o d e l . For t h e longitudinal (resp. t r a n s v e r s e ) m o d e s t h e loop axis is parallel (resp. p e r p e n d i c u l a r ) t o t h e b e a m axis. T h e m e a s u r e d i m p e d a n c e s after o p t i m i s a t i o n a r e s h o w n in F i g . 3; o n l y o n e t r a n s v e r s e m o d e e x c e e d s the s p e c i f i c a t i o n by a b o u t 1 5 % . M e a s u r e m e n t s o n t h e model also demonstrated that the fundamental m o d e rejection of t h e c o u p l e r s w a s large e n o u g h (> 2 0 d B ) . However, computation with the HFSS code pointed A. Anghel (CRPP Lausanne) out t h a t it w a s quite s e n s i t i v e t o t h e filter g a p t o l e r a n c e of t h e t r a n s v e r s e m o d e c o u p l e r s . A m e c h a n i s m f o r a d j u s t i n g this p a r a m e t e r will t h e r e f o r e b e u s e d f o r t u n i n g t h e final c o u p l e r s o n c e m o u n t e d o n t h e cavity. Long. Mode couplers Cavity He reservoir Transv. Mode couplers F i g . 1 : S U P E R - 3 H C cavity w i t h H O M c o u p l e r s . A-Filter Line B - Off-Axis Line C - Axis Line D - Stub E - Gap Line F - Capacitive Gap F i g . 2 : S U P E R - 3 H C H O M coupler. Requirements : Max. 7k.ÖhIH.GHJ^ Long, modes [kß.GHz] 6 4 2 0 2.47 2.53 2.61 2.69 2.83 2.98 3.08 3.18 3.36 3.59 160 Requirements : Max. 130 M / m 120 - Transv. modes [kii/m] 40 0 .72 1.72 1.93 2.06 2.10 2.15 2.30 2.50 2.71 2.87 F i g . 3: Measured H O M impedances vs frequency. CRYOGENIC SYSTEM Fig. 4 s h o w s a s c h e m e of t h e c r y o m o d u l e c o o l i n g system. T h e LHe from the dewar enters the cryomodule t h r o u g h a p h a s e s e p a r a t o r ( P S 1 ) . T h e t w o cavity r e s e r v o i r s a r e t h e n filled w i t h L H e at 4 . 5 K f r o m t h e 17 b o t t o m ; t h e y are c o n n e c t e d o n t h e t o p by a c o m m o n v e s s e l ( P S 2 ) , w h i c h r e c u p e r a t e s the cold G H e . Part of this c o l d G H e is r e t u r n e d b a c k to the refrigerator w h i l e the rest is u s e d t o cool t h e c o p p e r t h e r m a l shield (65 K) a n d t h e t w o cavity e x t r e m i t y t u b e s (4.5 3 0 0 K). T h e inner t u b e a n d H O M c o u p l e r s are c o n d u c t i o n c o o l e d at 4.5 K. L a y e r s of s u p e r - i n s u l a t i o n , p l a c e d on the s h i e l d , r e d u c e t h e r a d i a t e d heat f r o m the r o o m t e m p e r a t u r e parts. T h e m a x i m u m anticip a t e d c r y o g e n i c h e a t load of t h e different parts are listed in T a b l e 1 (for V = 8 0 0 kV, l = 400 mA). Compressor b e a m T h e c r y o g e n i c s o u r c e is a H E L I A L 1 0 0 0 refrigeratorliquefier f r o m A I R L I Q U I D E . It c o n s i s t s of a s c r e w c o m p r e s s o r with oil r e m o v a l unit, a t u r b i n e - c o l d - b o x and the associated control-command system. The 5 0 0 I d e w a r , the c r y o g e n i c transfer lines a n d t h e v a l v e - b o x are a l s o parts of the A I R L I Q U I D E s u p p l y . T h e s y s t e m is d e s i g n e d t o s i m u l t a n e o u s l y p r o v i d e (in m i x e d m o d e ) m o r e t h a n 7.5 l/h of liquefaction d u t y a n d 6 5 W of refrigeration p o w e r at 4 . 5 K. T h a t is 5 0 % m o r e t h a n the a n t i c i p a t e d r e q u i r e m e n t ( T a b l e 1 ). T h e o p e r a t i o n w i t h " w a r m c r y o m o d u l e " is c o n s i d e r e d as a p o s s i b l e o p t i o n (in c a s e of c r y o - s o u r c e failure, for instance). A t r o o m t e m p e r a t u r e , a l t h o u g h t h e cavity is d e t u n e d a n d t h e i n d u c e d v o l t a g e is largely r e d u c e d , the b e a m c a n d e p o s i t a f e w 100 W into the cavity. T h e c o l d - b o x is t h e n isolated ( v a l v e s L C V 5 a n d P C V 2 c l o s e d ) a n d the c o m p r e s s o r e n s u r e s a circulation of " w a r m " G H e ; the lines "T" (inlet) a n d " S " (outlet) are p r o v i d e d for this p u r p o s e . Line "T" is a l s o u s e d t o m i x G H e with L H e a n d t h u s control t h e t e m p e r a t u r e of t h e fluid at t h e input of the c r y o m o d u l e d u r i n g t h e c o o l d o w n p r o c e s s . For e a c h o p e r a t i o n m o d e , all t h e relev a n t v a l u e s of p r e s s u r e , L H e level, t e m p e r a t u r e , G H e a n d L H e f l o w are either r e g u l a t e d or m o n i t o r e d by a PLC, using the various sensors and controlled valves of t h e s y s t e m . Components Load 2 R F cells 22 W F i g . 4 : S c h e m e of t h e c r y o g e n i c s y s t e m . 0 2 4 F i g . 5: M e a s u r e d Q 0 6 8 10 12 (at 4 . 5 K) v s field for the 2 cells. Comments Directly in LHe bath 2 L-couplers 3 W Cooled by conduction 4 T-couplers 8.5 W Cooled by conduction 2 Extrem, tubes Cryomodule static losses Cryo-lines 0.2 W 5.1 W With 2 x 0.05 g/s cold GHe With 0.071 g/s cold GHe in thermal shield (65K) 6.5 W Tot. refrigeration p o w e r at 4.5 K : 45.3 W Tot. GHe f l o w : 1.171 g/s -> 5.2 l/h of liquefaction T a b l e 1 : C r y o g e n i c load (4 M V / m , 4 0 0 m A , Q : 2 1 0 ) . 0 8 F i g . 6: C r y o m o d u l e a s s e m b l y (L = 1.1 m, 0 = 0.8 m ) . PROJECT STATUS AND TIME SCHEDULE T h e fabrication a n d c o l d t e s t s of the S L S cavity at C E R N w e r e c o m p l e t e d in O c t o b e r . Fig. 5 s h o w s t h e m e a s u r e d Q (at 4.5 K) v s a c c e l e r a t i n g field [6]. A t t h e o p e r a t i n g field of 4 M V / m , Q is a b o u t 2.6 1 0 for both cells. T h e o t h e r c o m p o n e n t s of t h e c r y o m o d u l e are u n d e r f a b r i c a t i o n . T h e c o m p l e t e c r y o m o d u l e (Fig. 6 ) will be a s s e m b l e d a n d t e s t e d in F e b r u a r y - M a r c h at S a c l a y . T h e delivery of the c r y o m o d u l e a s well a s the c r y o - s o u r c e is s c h e d u l e d for April a n d t h e installation in t h e S L S during the s h u t d o w n s of M a y / J u n e 2 0 0 2 . REFERENCES [1] P. M a r c h a n d et al., P A C 9 9 , p. 9 8 6 Scientific Report 2 0 0 1 , V o l u m e V I I . [2] P. M a r c h a n d , P A C 9 9 , p. 9 8 9 . [3] S. C h e l et al., E P A C 2 0 0 0 , p. 2 0 4 6 . [4] M. S v a n d r l i k et al., E P A C 2 0 0 0 , p. 2 0 5 1 . [5] P. B o s l a n d et al., p r e s e n t e d at P A C 2 0 0 1 . [6] R. Losito, C E R N , private c o m m u n i c a t i o n . 0 0 8 and PSI 18 BEAM POSITION STABILIZATION M. Böge, T. Schilcher As a first step towards the implementation of a DSP based Fast Orbit Feedback operating at sampling rates of 4 KHz, a Slow Orbit Feedback has been implemented which corrects orbits at rates < 3 Hz. It reuses thoroughly tested components of the normal orbit correction application. Short and long term orbit stability of < 1 \xm at the locations of the insertion devices has been achieved in the horizontal and vertical plane. Path-length changes are adjusted using the RF frequency as an additional corrector within the SVD based correction algorithm. As a result a long term energy stability of dP/P « 2e-5 has been obtained. INTRODUCTION It is vital for a s u c c e s s f u l user o p e r a t i o n to r e p r o d u c e a n d stabilize a previously e s t a b l i s h e d reference orbit ("Golden Orbit") within 1/1 Oth of t h e vertical b e a m size c o r r e s p o n d i n g to « 1 ¿¿m at the location of the insertion d e v i c e s (IDs). A s a c o n s e q u e n c e , the digital B P M [1] a n d c o r r e c t o r h a r d w a r e [2] have b e e n d e s i g n e d in o r d e r to allow for the i m p l e m e n t a t i o n of a Fast Orbit F e e d b a c k ( F O F B ) that is able to s u p p r e s s residual orbit oscillations u p to « 100 Hz with a t t e n u a t i o n factors of > 10 [3]. T h e F O F B i m p o s e s tight c o n s t r a i n t s o n the capabilities a n d reliability of t h e involved s u b s y s t e m s s i n c e the f e e d b a c k loop r u n s at a s a m p l i n g rate of 4 K H z on the D S P level of t h e B P M h a r d w a r e . In o r d e r to gain e x p e r i e n c e with the v a r i o u s s u b s y s t e m s , a S l o w Orbit F e e d b a c k ( S O F B ) with m u c h relaxed r e q u i r e m e n t s ( < 3 Hz c o r r e c t i o n rate) h a s b e e n i m p l e m e n t e d , c o m m u n i c a t i n g with t h e u n d e r l y i n g h a r d w a r e c o m p o n e n t s t h r o u g h a " C D E V Server" w h i c h is c o n n e c t e d to t h e E P I C S b a s e d control s y s t e m [4, 5]. GLOBAL ORBIT CORRECTION AND SOFB Global c l o s e d orbit c o r r e c t i o n in t h e S L S s t o r a g e ring is b a s e d on t h e Singular Value D e c o m p o s i t i o n ( S V D ) t e c h n i q u e w h i c h m a k e s " M o s t Effective C o r r e c t o r " a n d " M I C A D O " like long range c o r r e c t i o n s c h e m e s o b s o l e t e . For t h e horizontal orbit c o r r e c t i o n it is crucial to take into a c c o u n t p a t h - l e n g t h effects by c o r r e c t i n g off-energy orbits with t h e R F frequency. T h e difference of the original orbit a n d t h e S V D fitted off-energy part, w i t h a deviation of d P / P c o r r e s p o n d i n g to a f r e q u e n c y c h a n g e df, is s u b m i t t e d to the orbit c o r r e c t i o n . S i n c e the b e g i n n i n g of the c o m m i s s i o n i n g , this s c h e m e h a s b e e n s u c c e s s f u l l y a p p l i e d to p e r f o r m o p e r a t o r i n d u c e d c o r r e c t i o n s . D u e to the m o d u l a r i t y of the b e a m d y n a m i c s software e n v i r o n m e n t [6], thoro u g h l y t e s t e d software c o m p o n e n t s c o u l d be r e u s e d to i m p l e m e n t a S l o w Orbit F e e d b a c k ( S O F B ) . In this c a s e t h e o p e r a t o r is " r e p l a c e d " by a client p r o g r a m " F e e d b a c k Client" w h i c h initiates an orbit c o r r e c t i o n at a given f r e q u e n c y (see Fig. 1). Console Event @ 0.5Hz CORBA Server Event ® 2Hz Model Server F i g . 1 : S c h e m a t i c V i e w of t h e S O F B : the " F e e d b a c k Client" on t h e " M o d e ! Server" level r e p l a c e s the o p e r a tor driven G U I "oco Client" o n the " C o n s o l e " level. T h e client g e t s B P M d a t a f r o m t h e " B P M Server", a s k s the " T R A C Y Server" for t h e c o r r e s p o n d i n g m o d e l p r e d i c t e d c o r r e c t o r settings a n d a p p l i e s t h e c o r r e c t i o n t h r o u g h t h e " C D E V Server". ing over 6 4 orbit s a m p l e s , c o r r e s p o n d i n g to a n interval of 2 m s , it is possible to get " s t r o b o s c o p i c " position r e a d i n g s at a rate of 3 Hz w i t h an error < 0.5 um. T h e " B P M Server" in Fig. 1 monitors, collects a n d s e n d s the B P M d a t a to t h e " F e e d b a c k Client" at 2 Hz. B P M s disa b l e d on the E P I C S level are a u t o m a t i c a l l y e x c l u d e d f r o m the S O F B loop. T h e s a m e h o l d s for c o r r e c t o r s w h i c h have r e a c h e d their m a x i m u m s t r e n g t h . T h e " T R A C Y Server" p r e d i c t s a c o r r e c t o r p a t t e r n w h i c h res t o r e s the " G o l d e n Orbit" d e f i n e d by t h e "oco Client". Finally, the " C D E V Server" a p p l i e s t h e p r o p o s e d correction, w h i c h is t o g g l i n g b e t w e e n the horizontal a n d vertical p l a n e s . Fine t u n i n g of t h e f e e d b a c k loop is d o n e t h r o u g h a low p a s s filter, c o r r e c t i n g on t h e avera g e over several s u c c e s s i v e B P M d a t a sets, a n d gain a d j u s t m e n t . By default t h e S O F B a v e r a g e s over 3 d a t a s e t s a n d a p p l i e s 7 5 % of t h e p r o p o s e d c o r r e c t i o n . T h u s a full S O F B c y c l e t a k e s 3 s. It r e m a i n s to be a d d e d that t h e S O F B r u n s only for o n e previously set B P M g a i n . T h i s e n s u r e s that t r a n s i e n t s visible at c u r r e n t i n d u c e d B P M gain c h a n g e s are not s e e n by t h e S O F B . SOFB RESULTS SOFB IMPLEMENTATION For the S O F B the digital B P M s y s t e m is o p e r a t e d in a n injection t r i g g e r e d " 2 5 0 m s r a m p e d m o d e " . By a v e r a g - Fig. 2 d o c u m e n t s the p e r f o r m a n c e of t h e S O F B over 12 h o u r s of user o p e r a t i o n . After a c c u m u l a t i n g a current of 3 2 0 m A , t h e t o p - u p m o d e is e n t e r e d [7, 8]. Dur- 19 ing 9 h o u r s of t o p - u p o p e r a t i o n t h e S O F B stabilizes t h e orbit t o R M S v a l u e s of « 1 with r e s p e c t t o t h e " G o l d e n Orbit" in b o t h p l a n e s . T h e R F f r e q u e n c y is corrected by df w h e n e v e r |df | e x c e e d s 5 H z c o r r e s p o n d i n g t o d P / P w 2 e - 5 . In this particular c a s e a f r e q u e n c y correction is p e r f o r m e d every « 4 5 m i n . P l e a s e note that t h e horizontal R M S v a l u e i n c r e a s e s ( s e e " s a w t o o t h " in F i g . 2) w h i l e df is n o t a p p l i e d . F i g . 3 s h o w s t h e 320 mA top-up dP/P - 2 e - 5 ¡ NrSNIs urn laps IAHIDI-BPM:OFB-XHMS ( - Z 1 . 2 9 ) VAL=1.016Z1 x R M S D f difference orliit lARIDI-BPMiÖFB-VRMS " ( 0 , 5 0 ) V A I 0.r.79G!)» y R M S of difference orbit ARIDI-BPM:ÖFB-DF ( 1 8 0 . ? 0 ) VAI-Il proposed frequency change < «ARIDI-BPM:OFB-XMEAN (-35, 15) VAL—0.120508 x mean difference orbit !SARIDI-BPM:OFB-YMEAN (-14, 36) VAL—0.0100528 y mean difference orbit j [5] A . L ü d e k e , M. B ö g e , J . C h r i n , High Level Software and Operator Interface, P S I Scientific R e p o r t 2 0 0 1 , VII. [6] M. B ö g e , J . C h r i n , On the Use of CORBA in High Level Beam Dynamics Applications at the SLS, P S I Scientific R e p o r t 2 0 0 1 , V I I . [7] A . S t r e u n et al., Achievements of the SLS Commissioning, P S I Scientific R e p o r t 2 0 0 1 , V I I . [8] M. M u ñ o z , Top-up Operation, 2001, VII. P S I Scientific R e p o r t ARÍDI-BPM-05SB •> U24 y reí position • a) x RMS orbit E 824 x=(-21:29|um y RMS orbit y=[0:50| um '06:39:34, 5.5252) 4- •» M O * (Hours) * I 9 j H + x position [urn] F i g . 2 : S c r e e n s h o t depicting R M S v a l u e s of t h e horizontal ("x R M S " ) a n d vertical ("y R M S " ) deviations f r o m t h e " G o l d e n Orbit" of « 1 f i m d u r i n g a 9 hour " t o p - u p " run at 3 2 0 m A . T h e p r o p o s e d f r e q u e n c y c o r r e c t i o n df is a p p l i e d w h e n p a s s i n g a t h r e s h o l d of 5 H z c o r r e s p o n d ing t o a n e n e r g y deviation d P / P « 2 e - 5 . variation of t h e orbit position at t h e location of ID U 2 4 over 13 h o u r s of t o p - u p o p e r a t i o n . T h e v a l u e s a r e e x t r a p o l a t e d f r o m t h e r e a d i n g s of t h e a d j a c e n t B P M u p s t r e a m . T h e d e v i a t i o n s f r o m t h e " G o l d e n Orbit" a r e well fitted by G a u s s i a n distributions with 2 n d m o m e n t s of a = 0.5 fim a n d a = 0.7 fim, respectively. x y 2500 2000 1500 1000 500 x position [urn] 5000 ARIDI-BPM-Q5SB -> U24 - ,.Mikc¿~u£a.i>ml.: C) 3500 3000 2500 2000 1500 1000 REFERENCES 500 [1] V. Schlott et al., Digital BPM System - Proof of Functionality, P S I Scientific R e p o r t 2 0 0 0 , V I I . [2] F. J e n n i , H. Horvat, L. Tanner, Precision Power Supplies, 3500 3000 4000 S h o r t a n d long t e r m orbit stabilities of < 1 ¿¿m at t h e location of t h e IDs a n d a n e n e r g y stability of d P / P « 2 e - 5 h a v e b e e n a c h i e v e d . T h e s u c c e s s f u l c o m m i s s i o n i n g of t h e S O F B is a n i m p o r t a n t s t e p t o w a r d s t h e i m p l e m e n tation of t h e F O F B . ílüí<xS=a.5.2.um)...: 4000 4500 OUTLOOK ARIDI-BPM-Q5SB -> U24 • 4500 of the SLS P S I Scientific R e p o r t 2 0 0 0 , V I I . [3] M. B ö g e , Transverse Stabilization PSI Scientific R e p o r t 1998, V I I . of the SLS Beam, [4] S. Hunt et al., Status of the SLS Control PSI Scientific R e p o r t 2 0 0 1 , V I I . System, 0 820 822 824 y position [urn] F i g . 3: S c a t t e r p l o t a) of t h e p r o j e c t e d orbit position at t h e location of ID U 2 4 t a k e n at a s a m p l i n g rate of 1 H z over a 13 hour t o p - u p r u n a n d c o r r e s p o n d i n g hist o g r a m s for t h e horizontal b) a n d vertical c) b e a m m o tion. T h e 2 n d m o m e n t s of t h e G a u s s i a n distributions a r e fitted t o b e a = 0.5 ¿¿m a n d a = 0 . 7 ¿¿m, r e s p e c tively. x y 20 OPERATION OF THE SLS STORAGE RING RF SYSTEM P. Marchand, M. Pedrozzi, d. Cherix, C. Geiselhart, W. Portmann, W. Tron The RF system of the SLS storage ring consists of four 500 MHz power plants. The installation of the last plant was completed in the eady 2001. Improved versions of phase, amplitude and tuning loops have been implemented as well as additional filtering in the klystron HV power supplies. Presently, the four plants can operate up to 320 mA of stored beam, without excitation of cavity Higher Order Modes (HOM). The design current of 400 mA was reached in spite of the weak excitation of one longitudinal HOM. INTRODUCTION T h e R F s y s t e m of t h e S L S s t o r a g e ring c o m p r i s e s four 5 0 0 M H z p o w e r plants, w h i c h c a n g e n e r a t e a total R F v o l t a g e of 2.4 M V a n d deliver 2 4 0 k W into t h e b e a m [1]. E a c h plant c o n s i s t s m a i n l y of a single cell c o p p e r c a v i t y of t h e E L E T T R A t y p e p o w e r e d w i t h a 180 k W klystron amplifier. T h e m o d u l a r i t y of t h e R F s y s t e m a l l o w e d u s t o operate u p t o m o r e t h a n 3 0 0 m A u s i n g t h r e e plants o u t of four. T h i s flexibility largely simplified t h e m a i n t e n a n c e a n d u p g r a d i n g of the s y s t e m d u r i n g t h e o p e r a t i o n . For i n s t a n c e , t h e b r e a k d o w n of a p o w e r c o u p l e r in S e p tember had minimum impact on the operation, which c o u l d restart after a relatively short intervention; t h e c o u p l e r w a s r e p l a c e d d u r i n g t h e next s c h e d u l e d shutd o w n . T h e failure w a s d u e t o a r c i n g o n t h e c e r a m i c w i n d o w , p r o b a b l y c a u s e d b y a small metallic c h i p introduced during the mounting. O n e p a s s i v e c a v i t y w a s a l s o t e m p o r a r i l y u s e d a s "a d i a g n o s t i c tool" f o r m e a s u r e m e n t s of t h e s y n c h r o n o u s phase a n d synchrotron frequency. Upgrading Electronic'racks Klystron c °° l i n 9 r a c k F i g . 1 : S t o r a g e ring R F plants 1 a n d 2. The RF voltage amplitude, phase a n d the frequency t u n i n g of t h e c a v i t y a r e r e g u l a t e d b y m e a n s of t h r e e control loops. T h e t u n i n g loop k e e p s c o n s t a n t t h e fundamental mode frequency by mechanical change of t h e c a v i t y l e n g t h . In o r d e r t o c o p e with t h e Higher O r d e r M o d e s ( H O M ) , that c o u l d drive c o u p l e d b u n c h instabilities, t w o a d d i t i o n a l t u n i n g m e a n s a r e u s e d : a fine control of t h e c a v i t y t e m p e r a t u r e a n d a plunger. Insertion of filters at t h e o u t p u t of t h e klystron H V s w i t c h e d p o w e r s u p p l i e s significantly r e d u c e d t h e v o l t a g e ripple g e n e r a t e d at high f r e q u e n c y , e s p e c i a l l y in t h e critical r a n g e of 4 - 12 k H z . T a b l e 2 s h o w s t h e ripple spectral c o m p o n e n t s after filtering; t h e overall v a l u e is less t h a n 0.6 % . p p KlystronVoltage Klystron Current [1-2] kHz 38 kV 5.3 A 6V 45.7 kV 5.3 A 5 Vrms m s [2-4] kHz [4-12] kHz > 12 kHz 4.5 Vrms 3.5 Vrms 23 Vrms 3.5 Vrms 10 Vrms 5V m s OPERATION RESULTS T a b l e 2 : Ripple of t h e H V s w i t c h e d p o w e r s u p p l i e s . General T h e phase a n d amplitude loops were also modified for i n c r e a s i n g their b a n d w i d t h u p t o 4 k H z . T h e residual R F p h a s e noise, m e a s u r e d after t h e s e i m p r o v e m e n t s , w a s less t h a n 0 . 5 ° in t h e f r e q u e n c y r a n g e 0 - 4 0 k H z . E n d of J a n u a r y 2 0 0 1 , t h e fourth s t o r a g e ring plant w a s c o m m i s s i o n e d a n d t h e four cavities w e r e s i m u l t a n e o u s l y p o w e r e d f o r o p e r a t i o n with b e a m . All plants h a v e r u n f o r m o r e t h a n 3 0 0 0 h o u r s with a l o w failure rate. T y p i c a l c a v i t y w o r k i n g c o n d i t i o n s f o r a stored b e a m of 2 0 0 m A a r e s h o w n in T a b l e 1 . Nb. of active cavities Gap voltage [kV] Incident power [kW] Reflected power [kW] Vacuum level [mbar] 4 550 71 1 5.10" 9 3 650 105 2 6.10" 9 In 2 0 0 2 , t h e m a i n s t o r a g e ring 5 0 0 M H z s y s t e m will b e c o m p l e m e n t e d with a third h a r m o n i c idle s u p e r - c o n d u c t i n g cavity, w h i c h will l e n g t h e n t h e b u n c h e s a n d c o n s e q u e n t l y i m p r o v e t h e b e a m lifetime [2]. HIGHER ORDER MODE TUNING T h e interaction of t h e b e a m with a c a v i t y H O M i m p e d a n c e c a n lead t o C o u p l e d B u n c h Instabilities ( C B I ) . T h e C B I g r o w t h rate, G d e p e n d s o n t h e f r e q u e n c y detuning between the H O M resonance a n d the coupled b u n c h m o d e f r e q u e n c i e s : m T a b l e 1 : C a v i t y w o r k i n g c o n d i t i o n s with 2 0 0 m A . It is w o r t h w h i l e t o note that a t t h e b e g i n n i n g of t h e s t o r a g e ring c o m m i s s i o n i n g t h e c a v i t y vacuum r e a c h e d a b o u t 1.10 " m b a r with o n l y a f e w m A of s t o r e d b e a m a n d this v a c u u m p r e s s u r e c o n t i n u o u s l y improved during the operation. 7 p p I R 1 + 2ô m 21 I is t h e s t o r e d b e a m current, R , Q a n d v are res p e c t i v e l y t h e H O M s h u n t i m p e d a n c e , quality factor a n d f r e q u e n c y ; v (p = 1,2,...°°) are t h e c o u p l e d b u n c h mode frequencies: b sn m n p \v longitudinal c a s e s P-v ±i : rw situation c o u l d certainly be i m p r o v e d , u s i n g t h e p l u n g e r a s third d e g r e e of f r e e d o m for t u n i n g t h e H O M ; this r e q u i r e s f u r t h e r i n v e s t i g a t i o n s with d e d i c a t e d b e a m t i m e . M o r e o v e r , t r a n s v e r s e a n d longitudinal f e e d b a c k s will be s o o n i m p l e m e n t e d that will c o n tribute t o d a m p the C B I . transverse case V, Cav4 - 400 mA - Plunger fully out w h e r e v , Vß a n d v are t h e s y n c h r o t r o n , b e t a t r o n a n d revolution f r e q u e n c i e s , respectively. rev s T h e stability is e n s u r e d if t h e C B I g r o w t h rate is l o w e r t h a n t h e natural radiation d a m p i n g rate. F o l l o w i n g t h e t e c h n i q u e d e v e l o p e d at E L E T T R A [3], the H O M t u n i n g is c o n t r o l l e d via t h e cavity t e m p e r a ture, w h i c h c a n be s e t b e t w e e n 3 6 ° C a n d 7 0 ° C w i t h a c c u r a c y better t h a n ± 0.1 ° C . For a n y c h a n g e of t e m p e r a t u r e , the t u n i n g loop k e e p s c o n s t a n t the f u n d a m e n t a l f r e q u e n c y by m e c h a n i c a l d e f o r m a t i o n of the cavity. T h e effective H O M f r e q u e n c y shift per d e g r e e is t h u s : 36 38 40 42 46 50 52 54 56 58 60 62 64 Temperature (°C) F i g . 2 : Cavity 4 H O M t e m p e r a t u r e m a p . L dT a m = Sv dT Jeff CAV 3 • 400 mA - plunger fully out T = Sv /b~T ( o p e n loop) a n d v is t h e /Sv , m m0 0 0 0 0 fundamental m o d e frequency. T h e H O M p a r a m e t e r s of e a c h cavity w e r e m e a s u r e d at low p o w e r a n d u s e d t o calculate their f r e q u e n c y v e r s u s t e m p e r a t u r e ; a s a n e x a m p l e , the longitudinal m o d e p a r a m e t e r s of cavity 4 are listed in T a b l e 3. Mode v (40 C) MHz L0 499.822 1 -9.4 86 13578 1168. L1 948.046 0.62 -10.4 29 26453 767.1 L2 1058.485 -0.3 -19.2 0.9 6048 5.4 L3 1420.62 -2.29 -43.7 5.0 30224 151.1 L4 1514.216 -0.5 -32.2 4.3 4400 18.9 CONCLUSIONS L5 1606.873 -3.83 -57.2 8.9 40888 363.9 L6 1874.467 -0.404 -33.6 0.4 37328 14.9 L7 1947.189 -2.3 -52.4 1.9 16884 32.1 L8 2071.967 -8. -100.0 0.1 15000 1.5 L9 2123.04 -8.47 -107 7.9 29763 235.1 T h e S L S R F s y s t e m h a s p r o v e n to be quite reliable during its first y e a r of o p e r a t i o n . T h e m a j o r t r o u b l e c a m e f r o m the b r e a k d o w n of a cavity p o w e r coupler, p r o b a b l y d u e t o a b a d m o u n t i n g . Presently, 3 2 0 m A c a n be s t o r e d w i t h o u t H O M e x c i t a t i o n ; t h e d e s i g n c u r r e n t of 4 0 0 m A w a s r e a c h e d w i t h a w e a k excitation of o n e longitudinal H O M . T h e s u p p r e s s i o n of the rem a i n i n g H O M e x c i t a t i o n at full b e a m c u r r e n t requires further o p t i m i s a t i o n of cavities 2 a n d 3. m R/Q o OCm kHzTC ii Q Rsm m ka 36 T a b l e 3: C a v i t y 4 longitudinal m o d e p a r a m e t e r s . F r o m the c a l c u l a t e d H O M f r e q u e n c i e s w e c o u l d t h e n c o m p u t e t h e C B I g r o w t h rates a n d p r o d u c e t e m p e r a ture m a p s as s h o w n in Fig. 2 a n d 3, for e a c h cavity. A s a n e x a m p l e , the g r a p h in Fig. 2 s h o w s a large s t a ble t e m p e r a t u r e w i n d o w (53 - 5 9 ° C ) for cavity 4 a n d that w a s e x p e r i m e n t a l l y c o n f i r m e d in o p e r a t i o n w i t h b e a m . In t h e s a m e w a y , a stable w o r k i n g point w a s easily f o u n d for cavity 1 . O n t h e o t h e r h a n d , o n l y v e r y n a r r o w stable w i n d o w s w e r e f o u n d for cavity 2 a n d 3 (Fig. 3) a n d that resulted in a w e a k excitation of a longitudinal H O M a b o v e 3 2 0 m A of s t o r e d b e a m . T h e 38 40 42 50 52 54 56 58 60 62 64 Temperature (°C) F i g . 3: Cavity 3 H O M t e m p e r a t u r e m a p . REFERENCES [1] P. M a r c h a n d et al, P A C 9 9 , p. 9 8 6 . [2] P. M a r c h a n d et al, SZ.S Third Superconducting RF System, PSI Reprot 2 0 0 1 , V o l u m e VII. [3] M. S v a n d r l i k et al, E P A C 9 6 , p. 1 1 4 4 . harmonic Scientific 22 RESULTS OF SURVEY AND ALIGNMENT F.Q. Wei, K. Dreyer, OVERVIEW T h e S w i s s Light S o u r c e ( S L S ) , a third g e n e r a t i o n light s o u r c e , is a high-brilliance m a c h i n e d e s i g n e d for ext r e m e l y low e m i t t a n c e , a n d is, t h e r e f o r e , highly s e n s i tive to a l i g n m e n t errors. T h e S L S c o n s i s t s of linac, booster, s t o r a g e ring, t r a n s f e r lines a n d b e a m lines. T h e i r n e t w o r k a n d s e v e r a l h u n d r e d s of m a g n e t s a n d other c o m p o n e n t s of m a c h i n e a n d t h e b e a m lines w e r e m e a s u r e d a n d a l i g n e d in t h e last 3 y e a r s m a i n l y by u s i n g t h e laser t r a c k e r L T D 5 0 0 a n d o t h e r s u r v e y i n s t r u m e n t s . A relative a c c u r a c y of o n e t e n t h of millim e t e r h a s b e e n a c h i e v e d for m o s t m a g n e t s a n d s o m e other c o m p o n e n t s . In t h e first a t t e m p t , t h e injected b e a m p a s s e d t h r o u g h both, t h e b o o s t e r in J u l y 2 0 0 0 a n d t h e s t o r a g e ring in D e c e m b e r 2 0 0 0 w i t h all c o r r e c t o r s s w i t c h e d off. O n the third d a y of t h e s t o r a g e ring c o m m i s s i o n i n g a 2 m A e l e c t r o n b e a m w a s s t o r e d w i t h a lifetime of 8 h o u r s . In A u g u s t 2 0 0 1 , t h e S L S w e n t into o p e r a t i o n t h r e e y e a r s after g r o u n d b r e a k i n g of t h e S L S b u i l d i n g . T h e p h o t o n b e a m s of t h e four initial b e a m lines h a v e b e e n a l i g n e d to their e n d stations. H. Umbricht network was measured again with the LTD500. The s t a n d a r d d e v i a t i o n of t h e s e c o n d m e a s u r e m e n t s w a s 0 . 0 7 9 m m . T h e t u n n e l n e t w o r k w a s m e a s u r e d in J a n u a r y 2 0 0 0 for t h e 3rd t i m e . A t this t i m e t h e s h i e l d ing wall of the t u n n e l w a s c o m p l e t e d . All wall references were fixed. Therefore, the environmental condit i o n s w e r e better. T h e s t a n d a r d d e v i a t i o n of t h e 3rd m e a s u r e m e n t s w a s 0 . 0 7 3 m m . In A u g u s t of 2 0 0 0 a n d J a n u a r y of 2 0 0 1 the t u n n e l a l i g n m e n t n e t w o r k w a s m e a s u r e d before a n d after the final a l i g n m e n t of the s t o r a g e ring. T h e s t a n d a r d deviation of t h e last t w o t u n n e l n e t w o r k m e a s u r e m e n t s w a s 0.066 m m . A better result of t h e a l i g n m e n t n e t w o r k w a s r e a c h e d bec a u s e t h e e n v i r o n m e n t a l c o n d i t i o n s b e c a m e better a n d our m e a s u r e m e n t t e a m b e c a m e m o r e e x p e r i enced. DS F i g . 2 D e f o r m a t i o n s of t h e t u n n e l n e t w o r k f r o m July 1999 to January 2 0 0 1 . EXPERIMENTAL NETWORK F i g . 1 : A l i g n m e n t T e a m in a h u t c h of the Crystallography Beamline. Protein TUNNEL NETWORK Up to n o w , t h e t u n n e l n e t w o r k h a s b e e n m e a s u r e d 5 t i m e s for the first t i m e in M a y 1 9 9 8 . A precision level N 3 i n s t r u m e n t w a s u s e d t o m e a s u r e t h e e l e v a t i o n s of the t u n n e l n e t w o r k . At the s a m e t i m e , t h e n e t w o r k w a s m e a s u r e d w i t h the L T D 5 0 0 u s i n g s o f t w a r e A x y z . T h e m e a s u r e m e n t s w e r e p e r f o r m e d in 5 3 stations n e a r b y e a c h floor r e f e r e n c e . A t least t w o floor r e f e r e n c e s a n d t w o wall r e f e r e n c e s of e a c h side, f o r w a r d a n d backw a r d w e r e m e a s u r e d at e a c h s t a t i o n . At that t i m e , the s h i e l d i n g w a l l w a s not c o m p l e t e d . Civil e n g i n e e r i n g w o r k w a s g o i n g on n e a r b y a n d 12 wall r e f e r e n c e s w e r e m i s s i n g . B e c a u s e of the poor e n v i r o n m e n t a l c o n d i t i o n s the s t a n d a r d d e v i a t i o n ( 1 a ) of t h e first m e a s u r e m e n t s w a s 0 . 0 9 3 m m . In J u l y 1 9 9 9 t h e t u n n e l T h e e x p e r i m e n t n e t w o r k m e a s u r e d for t h e first t i m e in July 1 9 9 9 by u s i n g T h e o d o l i t e T D A 5 0 0 5 . T h e e x p e r i m e n t a r e a w a s free for s u r v e y at that t i m e . T h e s t a n d a r d d e v i a t i o n (1 a ) of the m e a s u r e m e n t s w a s 0.352 m m . T h e e x p e r i m e n t n e t w o r k w a s m e a s u r e d S e p t e m b e r 2 0 0 1 by T h e o d o l i t e T D A 5 0 0 5 a n d L a s e r t r a c k e r L T D 5 0 0 . S e v e r a l a r e a s of the e x p e r i m e n t a l hall w e r e c o v e r e d . M a n y a d d i t i o n a l r e f e r e n c e s w a r e a d d e d inside of t h e b e a m line h u t c h e s . S o m e t e m p o rary r e f e r e n c e s h a d t o be a d d e d . T h e s t a n d a r d d e v i a tion of t h e m e a s u r e m e n t s w a s 0 . 3 5 4 m m at this t i m e . T h e m a x i m u m d e v i a t i o n of t h e e x p e r i m e n t n e t w o r k f r o m J u l y 1 9 9 9 to S e p t e m b e r 2 0 0 1 is a b o u t 2 m m . S T O R A G E RING T h e S L S s t o r a g e ring c o n s i s t s of 4 8 girders. All t h e q u a d r u p o l e s , s e x t u p o l e s a n d B P M s are well f i x e d o n t h e g i r d e r s u s i n g f o r c e d c e n t e r m o u n t i n g s y s t e m s . In o r d e r t o c h e c k t h e p o s i t i o n s of the m a g n e t s on g i r d e r s in r e s p e c t t o t h e p o s i t i o n s of 4 girder r e f e r e n c e s , all m e c h a n i c a l c e n t e r s of the q u a d r u p o l e s a n d s e x t u p o l e s of the s t o r a g e ring w e r e m e a s u r e d by t h e laser t r a c k e r L T D 5 0 0 . A s t a n d a r d d e v i a t i o n of t h e p o s i t i o n s of m e c h a n i c a l c e n t e r s of t h e m a g n e t s in r e s p e c t t o positions of t h e girder r e f e r e n c e s w a s 0.044 m m a n d 0.030 m m in t h e radial direction a n d in t h e vertical direction respectively. 23 Each quadrupole and sextupole has two reference h o l e s on t h e t o p r e f e r e n c e s u r f a c e . Positions of t h e r e f e r e n c e s of all c o m p o n e n t s o n a girder with r e s p e c t to t h e t u n n e l n e t w o r k w e r e m e a s u r e d by t h e laser t r a c k e r L T D 5 0 0 . T h e g e n e r a l d e v i a t i o n s of t h e girder position in r e s p e c t t o its ideal positions w e r e c a l c u lated by a n IDL p r o g r a m . T h e girder w a s a d j u s t e d by the m o v e r s y s t e m . A s t a n d a r d d e v i a t i o n of 0.1 m m ( 1 a ) of the r e f e r e n c e p o s i t i o n s w a s r e a c h e d after 2 or 3 iterations of the a b o v e m e a s u r e m e n t a n d adjustm e n t . A s t a n d a r d d e v i a t i o n of the r e f e r e n c e positions on all 4 8 g i r d e r s w i t h r e s p e c t t o t h e ideal positions w a s 0.085 m m a n d 0.040 m m in t h e radial direction a n d in t h e vertical direction respectively. M o s t c o m p o n e n t s of t h e b e a m lines h a v e s e v e r a l r e f e r e n c e holes. T h e y c a n be u s e d for positioning t h e c o m p o n e n t s w i t h r e s p e c t t o t h e s t o r a g e ring position. T h e final a l i g n m e n t will b e realised by t h e s y n c h r o t r o n radiation b e a m itself. SLS survey and alignment group supported the b e a m lines o n t h e f o l l o w i n g t a s k s : F i g . 3: D e v i a t i o n s of the r e f e r e n c e positions o n 4 8 girders of the s t o r a g e ring w i t h r e s p e c t t o t h e ideal positions. • providing a g e n e r a l a l i g n m e n t n e t w o r k in t h e e x p e r i m e n t a l hall, • a d d i n g a d d i t i o n a l local a l i g n m e n t during t h e c o n s t r u c t i o n p h a s e , • supplying the general information about c o m ponent references and adjusting systems, • m a r k i n g the positions of b e a m axis a n d s u p port feet o n t h e floor, • pre-aligning a n d calibrating c o m p o n e n t s fore installation, • aligning c o m p o n e n t s d u r i n g installation, • a d j u s t i n g c o m p o n e n t s during t h e c o m m i s s i o n ing of the b e a m lines. networks be- A L I G N M E N T OF LINAC, T R A N S F E R LINE A N D BOOSTER T h e r e are at least 3 r e f e r e n c e h o l e s o n t h e top of e a c h c o m p o n e n t of the Linac, t h e transfer line, a n d the booster. All the c o m p o n e n t s w e r e f i x e d o n their s u p p o r t s individually. T h e s a m e a l i g n m e n t instrum e n t a t i o n L T D 5 0 0 is u s e d to m e a s u r e the positions of the c o m p o n e n t r e f e r e n c e s a n d to adjust directly into their ideal positions. S t a n d a r d d e v i a t i o n s of t h e positions of all t h e b o o s t e r r e f e r e n c e s w i t h r e s p e c t to t h e ideal positions w e r e 0 . 0 5 7 m m a n d 0.045 m m in t h e radial direction a n d in t h e vertical direction r e s p e c tively. F i g . 4 : D e v i a t i o n s of t h e positions of all t h e b o o s t e r c o m p o n e n t r e f e r e n c e s in r e s p e c t to t h e ideal positions. ALIGNMENT OF THE B E A M LINES T h e f o u r existing b e a m lines, the M a t e r i a l s S c i e n c e B e a m l i n e , t h e Protein C r y s t a l l o g r a p h y B e a m l i n e , t h e Surfaces/interfaces Spectroscopy Beamline, and the S u r f a c e s / I n t e r f a c e s M i c r o s c o p y B e a m l i n e , c o n s i s t of insertion d e v i c e s , f r o n t e n d s , m o n o c h r o m a t o r s , mirror b o x e s , slits, a n d e x p e r i m e n t a l stations. F i g . 5: P r e - a l i g n m e n t of Insertion D e v i c e 9 L . F i g . 6: T h e vertical pole d e v i a t i o n s of the device 9L. insertion T h e S L S survey and alignment group has successfully p o s i t i o n e d all c o m p o n e n t s of t h e four b e a m lines w i t h high a c c u r a c y . T h e p h o t o n b e a m s w e r e g u i d e d t h r o u g h t h e optics until t o t h e e n d stations w i t h i n short t i m e for all b e a m l i n e s currently in o p e r a t i o n . REFERENCES [1] F . Q . W e i et al, Survey and Alignment for the Swiss Light Source, 6 International W o r k s h o p on Accelerator Alignment, Grenoble, October, 1999. t h 24 SLS OPERATION A. Lüdeke August 2001 saw the official start of user operation at the SLS. Already before that date, pilot users started taking data at the first beamlines. With the transition from SLS commissioning to user operation, the demands on the machine operation shifted from maximum flexibility to optimal reliability. INTRODUCTION USER OPERATION REQUIREMENTS T h e transition f r o m c o m m i s s i o n i n g t o user o p e r a t i o n of t h e S L S started a l r e a d y in M a y 2 0 0 1 with the first o p e r a t i o n of t h e protein c r y s t a l l o g r a p h y b e a m l i n e [1]. Since then, more and more beam-time was dedicated to user o p e r a t i o n , as s h o w n in Fig. 1. T h e default o p e r a t i o n m o d e for s y n c h r o t r o n light users is t h e t o p - u p m o d e . In this m o d e , the u n a v o i d a b l e l o s s e s of t h e e l e c t r o n b e a m in t h e s t o r a g e ring are c o m p e n s a t e d by re-injecting in s h o r t t i m e intervals of 2 0 to 120 s e c o n d s , to k e e p t h e b e a m c u r r e n t stable w i t h i n less t h a n 1 %. N o r m a l o p e r a t i o n w o u l d n e e d refilling j u s t a f e w t i m e s per day. T h e t o p - u p m o d e p r o v i d e s e x c e l l e n t stability for the s t o r a g e ring a n d t h e b e a m l i n e s , s i n c e all t y p e s of drifts d u e to v a r i a b l e t h e r m a l loads are m i n i m i z e d . O n t h e other h a n d , it requires t o o p e r a t e t h e injector c o n t i n u o u s l y . T h e r e fore, the stability of t h e injector s y s t e m h a s t o be m u c h higher t h a n for o t h e r light s o u r c e s . T o i m p r o v e this stability will be crucial for user o p e r a t i o n in 2 0 0 2 . 60 r—. T 5 0 -- o - o J o U - o 2 o < o 2 - o , o ^ o < C o O T o O o Z o Q . • Machine Shifts • U s e r Shifts F i g . 1 : M o n t h l y shift a l l o c a t i o n for t h e S L S In 2 0 0 2 , t h e total n u m b e r of shifts per m o n t h will inc r e a s e steadily. T a r g e t e d for the first half of 2 0 0 2 is an a v e r a g e of 5 9 shifts per m o n t h , w h e r e 4 7 shifts or 8 0 % will be d e d i c a t e d t o o p e r a t i o n for u s e r s . T h e m a c h i n e shifts will be u s e d to c h a r a c t e r i z e a n d o p t i m i z e the m a c h i n e a n d t o integrate n e w insertion d e v i c e s . ORGANIZATION OF THE OPERATION U s e r o p e r a t i o n is a l r e a d y fully a u t o m a t e d a n d d o e s not n e e d intervention by an operator. Still t w o o p e r a t o r s n e e d t o be p r e s e n t for safety r e a s o n s , t r o u b l e s h o o t i n g , a n d for the control of insertion d e v i c e s o n d e m a n d of the u s e r s . T h e n u m b e r of p e r s o n s for m a c h i n e o p e r a t i o n d e p e n d s o n t h e p r o g r a m a n d varies b e t w e e n t w o a n d f o u r p e o p l e . For the c o m m i s s i o n i n g a p p r o x . 30 p e o p l e f r o m the m a c h i n e c r e w participated in t h e o p e r a t i o n for up t o 2 0 % of their t i m e . S i n c e last O c t o b e r the training of full t i m e o p e r a t o r s s t a r t e d . F r o m n o w o n , t h e shifts will be m a n n e d by o n e o p e r a t o r a n d o n e m e m b e r of t h e m a c h i n e staff. T h i s allows for c o v e r i n g t h e a d d i t i o n a l shifts a n d s u p p o r t i n g t h e training of t h e full t i m e o p erators. T h e reliability of m a c h i n e o p e r a t i o n is d e t e r m i n e d by t h e reliability of all s u b s y s t e m s a n d by t h e p r o c e d u r e s t o e s t a b l i s h a certain o p e r a t i o n m o d e . M o d i f i c a t i o n s of a n y s u b s y s t e m c a n require adjustm e n t s t o the s e t - u p s for an o p e r a t i o n m o d e a n d a l s o t o t h e p r o c e d u r e s to re-establish a s e t - u p . D u r i n g t h e commissioning these changes occurred frequently, d u e t o t h e o n g o i n g e n h a n c e m e n t s of m a n y s u b s y s t e m s . H o w e v e r , for the user o p e r a t i o n stable a n d relia b l e s e t - u p p r o c e d u r e s are r e q u i r e d to e n s u r e t h e r e p r o d u c t i o n of all m a c h i n e p a r a m e t e r s . T h e r e f o r e it is crucial to q u i c k l y c o m m u n i c a t e a n y m o d i f i c a t i o n , in o r d e r t o p r e p a r e test p r o c e d u r e s for d e p e n d e n t s u b s y s t e m s . W e will u s e the O r a c l e d a t a b a s e t o collect all m o d i f i c a t i o n s a n d to a u t o m a t i c a l l y c o m m u n i c a t e t h e m t o t h e relevant p e o p l e . SUMMARY T h e S L S is currently in t h e transition f r o m c o m m i s s i o n i n g to user o p e r a t i o n . T h e flexibility, that w a s n e e d e d for the rapid build up of t h e m a c h i n e , m u s t n o w be t r a d e d with the reliability that is r e q u i r e d t o o p e r a t e it as a user facility. T h e training of full t i m e o p e r a t o r s a n d o b l i g a t o r y p r o c e d u r e s for m o d i f i c a t i o n s will help us t o e n s u r e reliable o p e r a t i o n s . REFERENCES [1] A. S t r e u n , Commissioning of the Swiss Source, h t t p : / / s l s b d . p s i . c h / p u b / c o m m / [2] M. M u ñ o z , Top-up operation, port 2 0 0 1 , V o l u m e V I I . Light PSI Scientific R e - 25 OPERATING EXPERIENCE WITH THE SLS POWER SUPPLIES F. Jenni, By the end of at 7 A/ 24 V look identical, pleasing. The countered. M. Horvat, L. Tanner 2001, the SLS is using more than 580 digitally controlled power supplies. Their ratings start for the smallest and go up to 950 A / 1000 V for the largest. For the operators, all of them independent of their ratings. The experience of more than one year of operation is very chosen concept proved to meet the specifications. Only few hardware failures were en- INTRODUCTION T h e S L S is t h e first a c c e l e r a t o r w h e r e all t h e m a g n e t p o w e r s u p p l i e s ( P S ) a r e c o n t r o l l e d digitally. C o n t r o l principle a n d h a r d w a r e h a v e b e e n d e v e l o p e d a n d built f r o m s c r a t c h , i.e. t h e r e w a s no p r e v i o u s e x p e r i e n c e with s u c h a s t r u c t u r e at P S I . F u r t h e r m o r e , t h e w h o l e d e v e l o p m e n t a n d p r o d u c t i o n h a d to b e d o n e w i t h i n a v e r y short t i m e s p a n . All t h e p o w e r electronic h a r d w a r e w a s d e s i g n e d by P S I . T h e controller h a r d w a r e a n d t h e high precision A D - c o n v e r t e r w h e r e s p e c i f i e d by PSI in detail. T w o e x t e r n a l c o m p a n i e s m a d e t h e final d e s i g n . All P S w e n t into o p e r a t i o n o n t i m e . v o l t a g e s t e p s (20 u V = 2 p p m ) at t h e input. T h e t o p g r a p h s h o w s t h e v a l u e s of 50 s a m p l e s per s e c o n d (sps). E a c h of t h e s a m p l e s is t h e a v e r a g e v a l u e of 4 0 0 0 d a t a points ( o v e r s a m p l i n g ) . T h e b o t t o m g r a p h is m a d e of 5 0 0 s p s c o r r e s p o n d i n g t o a n a v e r a g e of 4 0 0 data points. W i t h t h e d e v e l o p e d digital control unit a resolution t o 1 p p m is possible. ADC Resolution: @ 50 samples/s (1V offset, 2ppm (20uV) steps) E 9-12 o E T h e P S in t h e t r a n s f e r line linac t o b o o s t e r w h e r e t u r n e d on in s u m m e r 1 9 9 9 , t h o s e in t h e b o o s t e r in spring 2 0 0 0 a n d t h o s e of t h e s t o r a g e ring in late a u t u m n 2 0 0 0 . In 2 0 0 1 , 8 4 additional units for insertion d e v i c e s w e r e i m p l e m e n t e d . T h i s leads t o 18 m o n t h s of e x p e r i e n c e with t h e first b a t c h . mm t I > 2 o i 60 80 100 120 Time [min] N o p r o b l e m s w e r e e n c o u n t e r e d with functionality, d y n a m i c s a n d precision of t h e P S . All t h e d e m a n d s w h e r e s u r p a s s e d . A c h i e v e d precision a n d stability a r e c o n v i n c i n g . Further e x t e n s i o n s of t h e functionality a r e p o s s i b l e by s i m p l e s o f t w a r e d o w n l o a d s . F u r t h e r m o r e , no substantial h a r d w a r e p r o b l e m s o c c u r r e d . A s it is c o m m o n with s u c h a n u m b e r of d e v i c e s , s o m e indiv i d u a l c o m p o n e n t failures h a d to b e f i x e d . ADC Resolution: @ 500 samples/s (1V offset, 2ppm (20uV) steps) STATUS P r e c i s i o n o f t h e PS T h e c u r r e n t m e a s u r e m e n t is t h e crucial o p e r a t i o n for t h e precision a n d stability of t h e P S . T h i s t a s k is perf o r m e d with a direct c u r r e n t t r a n s f o r m e r ( D C C T ) foll o w e d by an a n a l o g t o digital c o n v e r t e r ( A D C ) . Both o p e r a t i o n s a r e s i t u a t e d in t h e f e e d b a c k path of t h e control loop. D C C T s a r e a v a i l a b l e with a v e r y high precision, according to individual requirements. T h e r e f o r e , t h e A D - c o n v e r s i o n d e t e r m i n e s t h e final precision of t h e digital c o n t r o l l e d P S . M e a s u r e m e n t s on a s t a n d a r d A D C - c a r d u n d e r o p e r a t i n g c o n d i t i o n s s h o w t h e a c h i e v e d results. R e s o l u t i o n a n d s h o r t - t e r m s t a b i l i t y (< 6 0 s ) T h e current measurements are m a d e m u c h faster t h a n n e c e s s a r y . T h i s a l l o w s t h e u s e of an o v e r s a m pling t e c h n i q u e : t h e m e a s u r e d v a l u e s a r e filtered digitally. T h e low pass characteristic of t h e P S perf o r m s an a d d i t i o n a l filtering. Fig. 1 c o n f i r m s t h e high r e s o l u t i o n of t h e c o n v e r t e r c a r d . T h e g r a p h s s h o w t h e digital v a l u e for v e r y s m a l l 0 20 40 60 80 100 120 140 160 Time [min] Fig 1 A D C input signal for 2 p p m input v o l t a g e s t e p s . Long-term stability Fig. 2 s h o w s t h e filtered m e a s u r e d v a l u e o v e r 1 0 0 0 h o u r s . T h e l o n g - t e r m stability for t h e first 1 0 0 0 h is better t h a n 30 p p m . 26 ADC Long term stability: 1000h ADC Temperature-sensitivity @ 4.5V input voltage E " Q. a. • g 10 Q. E ion £ 4 "S (D Q-20 0 100 200 300 400 500 600 Time [h] 700 800 900 1000 F i g . 2 : L o n g - t e r m m e a s u r e m e n t o v e r 1 0 0 0 h. T h i s drift c o r r e s p o n d s t o t h e s p e c i f i c a t i o n d a t a o f t h e o n b o a r d r e f e r e n c e . It c o u l d drastically be r e d u c e d w i t h a b u r n i n . T h e drift d e c r e a s e s w i t h t i m e after s e v e r a l h u n d r e d h o u r s . T h i s w a s c o n f i r m e d with a s u b s e q u e n t m e a s u r e m e n t : in a n o t h e r 1 0 0 0 h t h e drift w a s in a r a n g e of + 3 p p m . H o w e v e r , this is a l s o w i t h i n t h e drift r a n g e of t h e u s e d i n s t r u m e n t . 20 25 30 Time [h] F i g . 4 : T e m p e r a t u r e sensitivity of t h e A D C ( 1 0 ° C t o 5 0 ° C ) . T h e d a s h e d line is t h e a m b i e n t t e m p e r a t u r e . Hardware A brief o v e r v i e w o f e n c o u n t e r e d p r o b l e m s is g i v e n below: Linearity Power converter: T h r e e different p o w e r s t a g e s w e r e burnt. O n l y in o n e c a s e t h e r e a s o n w a s a s c e r t a i n e d : a loose s c r e w led t o a n electrical arc. T h e non-linearity of t h e A D C c a u s e s a n a b s o l u t e error, d e p e n d i n g o n t h e input v o l t a g e . W i t h a d e v i a t i o n b e t w e e n + 9 p p m a n d - 1 4 p p m ( s e e Figure 3) t h e a n a l o g t o digital c o n v e r s i o n is v e r y g o o d - t h e error is less t h a n 1/3 L S B of t h e u s e d A D C ! Control hardware: T w o systematic problems on the digital signal p r o c e s s o r c a r d h a d t o be m o d i f i e d : a m i s s i n g i n t e r c o n n e c t i o n o n t h e printed circuit a n d a s e r i e s of w e a k d c / d c c o n v e r t e r s . B e s i d e that, a p proximately 10 D S P a n d 10 A D C - c a r d s failed. Auxiliary electrical system: A b l o c k e d ventilator a n d 3 auxiliary p o w e r s u p p l i e s n e e d t o be r e p l a c e d . ADC Linearity Cooling system: A burst flexible pipe at t h e w a t e r cooled mains transformer caused a t w o day shut d o w n o f t h e s t o r a g e ring b e n d P S . i-^ia. j -4 -3 -2 Alarms of the magnet interlock system o- Off.* a j -1 0 1 Input Voltage [V] 2 3 4 5 F i g . 3: Linearity of a n a l o g t o digital c o n v e r s i o n o v e r the full input r a n g e . Temperature sensitivity The voltage temperature sensitivity in be r e d u c e d above 45°C, r e f e r e n c e u s e d f o r t h e A D C s h a d t o be stabilized. Thereby, the temperaturethe operation range (20°C to 45°C) could d o w n t o 0.5 p p m / ° C . ( B e l o w 1 5 ° C a n d t h e error i n c r e a s e s a s s h o w n in F i g . 4.) T h e m a g n e t interlock s y s t e m s u p e r v i s e s t h e m a g n e t coil t e m p e r a t u r e a n d t h e w a t e r f l o w t h r o u g h t h e coils. In c a s e of a failure t h e p o w e r s u p p l i e s w e r e t u r n e d off. A n u m b e r o f P S s h u t d o w n s w e r e c a u s e d by m a g n e t interlocks: s o m e of t h e s e a l a r m s w h e r e justified, o t h e r s w e r e c a u s e d by d y n a m i c p r e s s u r e d r o p s in t h e w a t e r s y s t e m . W i t h i m p r o v e m e n t s in t h e m a g n e t cooling system these alarms vanished. T h e s e interrupts w e r e m i s i n t e r p r e t e d a s P S e r r o r s by t h e m a c h i n e o p e r a t o r s in t h e early d a y s o f o p e r a t i o n . Mishandlings T h e great flexibility of t h e n e w controllers c a u s e d a l s o s o m e m i s h a n d l i n g s . N o n e of t h e m c a u s e d a n y d a m age to the PS. 27 Accelerator operation REFERENCES T h e stable a n d reliable o p e r a t i o n of all m a g n e t P S w a s a prerequisite for t h e f a s t p r o g r e s s in t h e c o m m i s s i o n i n g of t h e S L S . E v e r y drift in a n y P S w o u l d directly influence t h e quality of t h e e l e c t r o n b e a m . S i n c e all o b s e r v e d drifts are well w i t h i n t h e e x p e c t e d r a n g e , a n y m e d i u m t e r m drift a b o v e t h e s p e c i f i c a t i o n s of a n y P S of t h e s t o r a g e ring c a n b e e x c l u d e d . T h e f e a t u r e to r e a d out e n h a n c e d d i a g n o s t i c s s u c h a s the m a g n e t r e s i s t a n c e is a great help t o s p e e d u p t h e s e a r c h of error s o u r c e s . [1] G. Irminger, M. Horvat, F. J e n n i , H.U. B o k s b e r ger, A 3Hz, 1MW Bending Magnet Power Supply for the Swiss Light source (SLS); E P 2 F o r u m 9 8 ; Electrical P o w e r T e c h n o l o g y in E u r o p e a n P h y s ics R e s e a r c h . [2] F. J e n n i , H.U. B o k s b e r g e r , G. Irminger, DC-Link Control for a 1MVA-3Hz Single Phase Power Supply, IEEE Power Electronics Specialists Conference, 1999. [3] J . C a r w a r d i n e , F. L e n k s z u s , Trends in the Use of Digital Technology for Control and Regulation of Power Supplies, International C o n f e r e n c e o n A c celerator a n d L a r g e E x p e r i m e n t a l P h y s i c s C o n trol S y s t e m s , 1999. [4] M. E m m e n e g g e r , F. J e n n i , A Fully Digital PWM for Highest Precision Power Supplies, European Power Electronics Conference, 2001 [5] L. T a n n e r , F. J e n n i , Digital Control precision accelerator power supplies cle A c c e l e r a t o r C o n f e r e n c e . CONCLUSION T h e digital c o n t r o l l e d p o w e r s u p p l i e s in t h e S L S h a v e p r o v e n their functionality, precision a n d reliability. T h e y are well a c c e p t e d by the m a n a g e m e n t a n d by the t e c h n i c a l staff. for highest 2 0 0 1 Parti- 28 RESULTS FROM THE HORIZONTAL POSITION MEASUREMENT SYSTEM V. Schlott A measuring system for monitoring the horizontal positions of the SLS storage ring girders stalled and commissioned during the year 2001. Its integration into the concept of dynamic described and first results, indicating girder motions, are presented. INTRODUCTION M a n y s t e p s h a v e b e e n u n d e r t a k e n at the S w i s s Light S o u r c e ( S L S ) t o provide s y n c h r o t r o n radiation of h i g h est quality u n d e r e x t r e m e l y s t a b l e a n d r e p r o d u c i b l e conditions. Apart from conventional surveying and fiducialization of individual i t e m s , an innovative a l i g n m e n t a n d stability c o n c e p t h a s b e e n d e v e l o p e d to m o n i t o r a n d c o r r e c t m e c h a n i c a l m o t i o n s of s t o r a g e ring c o m p o n e n t s like m a g n e t s u p p o r t s t r u c t u r e s (girders), b e a m position m o n i t o r s ( B P M ) a n d insertion dev i c e s (ID) to a m i c r o m e t e r level. T h e m a i n f e a t u r e s of this c o n c e p t are: (1 ) M a g n e t s u p p o r t s t r u c t u r e s h a v e b e e n o p t i m i z e d by m e a n s of F E M n u m e r i c a l s i m u l a t i o n s for m a x i m u m stiffness a n d high e i g e n f r e q u e n c i e s , m i n i m i z i n g t h e influence of g r o u n d m o t i o n s a n d their a m p l i f i c a t i o n on t h e e l e c t r o n b e a m [ 1 ] . has been alignment inis MONITORING HORIZONTAL POSITIONS OF THE S L S S T O R A G E RING GIRDERS T h e H P S m e a s u r e s relative m o v e m e n t s of the S L S s t o r a g e ring g i r d e r s by u s i n g dial g a u g e s with linear e n c o d e r s of the R e n i s h a w R G H 2 4 Z 5 0 A 0 0 A t y p e . T h e resolution of the s e n s o r s is 0.5 urn a n d their w o r k i n g r a n g e c o v e r s ± 2.5 m m . O n e a c h s i d e of a s e c t o r t h e dial g a u g e s are t o u c h i n g r e f e r e n c e poles, w h i l e within a s e c t o r the s e n s o r s are m o u n t e d on lever a r m s b e l o w t h e b e n d i n g m a g n e t s (see Fig. 1). T h u s , the H P S r e c o n s t r u c t s the virtual "train link", w h i c h is f o r m e d by t h e m a g n e t positioning c o n c e p t of t h e S L S . An in-house developed low cost electronics (< 1 k C H F / c h a n n e l ) interfaces directly into the E P I C S - b a s e d control s y s t e m , w h e r e the position r e a d i n g s are a r c h i v e d . T h e c o m p l e t e s y s t e m w a s installed in the S L S s t o r a g e ring t u n n e l d u r i n g fall of 2 0 0 0 a n d is o p e r a t i o n a l s i n c e the b e g i n n i n g of 2 0 0 1 . (2) Multipole m a g n e t s w e r e not a l i g n e d individually, but w e r e p l a c e d in r e f e r e n c e t o precisely m a c h i n e d a l i g n m e n t rails on t h e g i r d e r s [ 2 ] . W i t h t h e b e n d i n g m a g n e t s bridging a d j a c e n t girders, a virtual "train link" is f o r m e d a r o u n d the s t o r a g e ring. (3) M o n i t o r i n g of vertical a s well as horizontal position c h a n g e s of the g i r d e r s a n d B P M s t a t i o n s is prov i d e d by t h r e e i n d e p e n d e n t m e a s u r e m e n t s y s t e m s : a h y d r o s t a t i c leveling s y s t e m ( H L S ) [ 3 ] , a h o r i z o n tal positioning s y s t e m ( H P S ) [ 3 ] , a n d a B P M p o s i tion m o n i t o r i n g s y s t e m ( P O M S ) [ 4 , 5 ] . (4) R e p o s i t i o n i n g of t h e s t o r a g e ring g i r d e r s to t h e d e s i r e d "train link" is p o s s i b l e t h r o u g h a girder m o v e r s y s t e m [ 6 ] , w h i c h p r o v i d e s 2 urn resolution within an o p e r a t i n g w i n d o w of ± 2.5 m m . It is t h e r e f o r e possible to a p p l y a S V D (single v a l u e decomposition) based dynamic alignment procedure [ 7 ] , w h i c h a l l o w s t o c o r r e c t l o n g - t e r m drifts of s t o r a g e ring c o m p o n e n t s m e c h a n i c a l l y . In this c a s e , H L S a n d H P S are u s e d to d e t e r m i n e m i s a l i g n m e n t s a n d t h e girder m o v e r s act a s c o r r e c t o r s . C o n s e q u e n t l y , it is possible t o r e d u c e t h e a v e r a g e s t r e n g t h of t h e S L S s t o r a g e ring c o r r e c t o r m a g n e t s , w h i c h are t h e n a g a i n fully a v a i l a b l e for e l e c t r o n b e a m orbit c o r r e c t i o n s within f e e d b a c k loops. T h i s report p r e s e n t s first results of t h e H P S d u r i n g t h e c o m m i s s i o n i n g period a n d early user o p e r a t i o n of the S L S . T h e H P S data are c o r r e l a t e d to the s t o r a g e ring t u n n e l t e m p e r a t u r e , w h i c h is e x p e c t e d t o c a u s e m o s t of t h e drifts. F i g . 1 : H P S set-up a n d s e n s o r . Weekly Temperature Cycles T h e t e m p e r a t u r e in the S L S s t o r a g e ring t u n n e l is stabilized by a n air c o n d i t i o n i n g s y s t e m to a b o u t ± 0 . 1 °C [ 8 ] . Still, t e m p e r a t u r e c h a n g e s of a b o u t 0.5 °C are o b s e r v e d b e t w e e n w e e k l y o p e r a t i o n a n d w e e k e n d s , w h e r e t h e m a c h i n e is u s u a l l y s h u t - d o w n . S u c h typical t e m p e r a t u r e profiles of t h e s t o r a g e ring t u n n e l are s h o w n in t h e u p p e r g r a p h s of Fig. 2 a n d 3. A t i m e period b e t w e e n O c t o b e r a n d D e c e m b e r 2 0 0 1 h a s b e e n s e l e c t e d including t w o s h u t d o w n s inb e t w e e n ( w e e k s 4 2 a n d 4 3 / 2 0 0 1 a n d w e e k 4 6 / 2 0 0 1 ). It is clearly visible, that t h e horizontal positions of the g i r d e r s follow t h e t e m p e r a t u r e c y c l e s of t h e s t o r a g e ring t u n n e l . T h e H P S s e n s o r s (in this e x a m p l e t h e o n e s f r o m girder 1 of s e c t o r 0 6 a n d girder 2 of s e c t o r 07) show readings of up to ± 1 0 u m . Since c o r r e s p o n d i n g r e a d i n g s f r o m the H L S s y s t e m h a v e 29 not b e e n o b s e r v e d [ 9 ] , t h e H P S d a t a c a n be interpreted as pure horizontal girder m o t i o n s . S e n s o r r e a d i n g s t o t h e s a m e direction indicate d i s p l a c e m e n t s (sector 0 6 ) , w h i l e r e a d i n g s in o p p o s i t e directions p r e s u m e y a w s (sector 0 7 ) of t h e r e s p e c t i v e g i r d e r s . U n d e r well s t a b i l i z e d t e m p e r a t u r e c o n d i t i o n s d u r i n g the w e e k l y o p e r a t i o n periods, h o w e v e r , t h e H P S r e a d i n g s p r o v e that t h e S L S s t o r a g e ring g i r d e r s a n d t h u s a l s o t h e m a g n e t positions are stable o n a m i c r o m e t e r level. 25 I i 24 23 22 0.10 05.05.01 / 0.04 I 71ri r:|... iPdLT3 \—¡%| 0.00 -0.02 10/14/2001 10/30/2001 11/14/2001 11/30/2001 Time Period (Oct. 2001 - Dec. 2001) 12/16/2001 F i g . 2 : U p p e r g r a p h : t e m p e r a t u r e profile of s e c t o r 0 6 of the s t o r a g e ring t u n n e l d u r i n g a t i m e period between Oct. and Dec. 2 0 0 1 . Lower graph: c o r r e s p o n d i n g H P S d a t a f r o m girder 1 of sector 0 6 . S e n s o r r e a d i n g s t o t h e s a m e direction indicate a girder d i s p l a c e m e n t . 25.5 25.0 S 24.5 g- 24.0 P 23.5 0.10 0.08 — 0.06 •e ¡0.04 REFERENCES [1] P. W i e g a n d , S L S S R Girder: Vibration and Analysis Tests, S L S - T M E - T A - 2 0 0 0 - 0 1 5 3 . Modal [2] R. R u l a n d , S L S - H a n d b o o k , C h a p t e r 7. [3] V. S c h l o t t et al., Dynamic Alignment at SLS, Proc. E P A C ' 2 0 0 0 , V i e n n a , J u n e 2 0 0 0 . S e e also: http://accelconf.web.cern.ch/accelconf/e00/PAPE RS/WEP4A17.pdf -r- -HPS1-G2-Sec07 HPS2-G2-Sec07 ..../y^\ .„ 2L [4] V. Schlott, Monitoring of Mechanical Drifts at SLS using Linear Encoders, PSI Scientific R e p o r t 1998, V o l u m e VII. [5] V. S c h l o t t et al., Commissioning of the SLS Digital BPM System, Proc. P A C ' 2 0 0 1 , C h i c a g o , J u n e 2 0 0 1 . S e e also: http://accelconf.web.cern.ch/AccelConf/p01/PAP ERS/WPAH134.PDF [6] P. W i e g a n d , S L S S R Girder Mover: Test of the Control System, S L S - T M E - T A - 2 0 0 0 - 0 1 4 5 . [7] A. S t r e u n , Algorithms for Girder Positioning, TME-TA-1999-0016, October 1999. [8] W . J o h o , private c o m m u n i c a t i o n . [9] S. Z e l e n i k a , private c o m m u n i c a t i o n . S e e also: /LA V) a 0.02 I 10/14/2001 10/20/2001 11/30/2001 For a c o r r e c t identification of girder m o t i o n s like roll a n d pitch, b o t h H L S a n d H P S d a t a h a v e t o be c o n s i d e r e d . Still, a s u r v e y of s t o r a g e ring c o m p o n e n t s at t h e e n d of t h e y e a r 2 0 0 1 c o n f i r m s substantial roll of g i r d ers in s o m e locations [10]. S u c h m o v e m e n t s s h o w up in t h e H P S data as indicated in Fig. 4 . A detailed a n a l y s i s of m e c h a n i c a l d i s p l a c e m e n t s in t h e s t o r a g e ring t u n n e l a n d tests w i t h d y n a m i c a l i g n m e n t are s c h e d u l e d for the y e a r 2 0 0 2 . s. ö o.oo -0.02 09.08.01 F i g . 4 : L o n g - t e r m drift of girder 3 of s e c t o r 0 7 . HPS2-G1-Sec06 , 0.06 06/16/2001 07/27/2001 Time Period (Year 2001 ) -HPS1-G1-Sec06 0.08 ' 0.02 m - Temp:06 10/30/2001 11/14/2001 11/302001 12/16/2001 Time Period (Od. 2001 - Dec. 2001) F i g . 3: U p p e r g r a p h : t e m p e r a t u r e profile of sector 0 7 of t h e S L S s t o r a g e ring t u n n e l during t h e s a m e t i m e period as in f i g . 2. L o w e r g r a p h : c o r r e s p o n d i n g H P S data f r o m girder 2 of sector 0 7 . R e a d i n g s of s e n s o r s to o p p o s i t e directions indicate a y a w of the girder. L o n g - t e r m Drifts A p a r t f r o m t h e w e e k l y t e m p e r a t u r e c y c l e s , w h i c h are e x p e c t e d t o d i s a p p e a r as s o o n as the S L S will b e o p e r a t e d w i t h o u t interruptions d u r i n g t h e w e e k e n d s , s u b stantial l o n g - t e r m drifts of s o m e girders in t h e s t o r a g e ring h a v e b e e n m e a s u r e d by t h e H P S during t h e y e a r 2001. S. Z e l e n i k a , Status of the HLS System, Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [10] F. W e i , Survey and Magnet Position Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . Stability, SLS- PSI PSI 30 STATUS OF THE H LS SYSTEM S. Zelenika The experience gained so far on the Hydrostatic Levelling System shows that micrometric range accuracies are indeed achievable, creating the preconditions for the beam-based alignment mode of operation of the SLS storage ring. However, the long-term behaviour of the HLS system is characterised by significant drifts. The progress achieved so far in establishing the causes of such behaviour is briefly outlined. INTRODUCTION T h e capacitive proximity g a u g e - b a s e d H y d r o s t a t i c Levelling S y s t e m ( H L S - Fig. 1) w a s d e v e l o p e d by t h e E. M e i e r & Partner c o m p a n y as part of t h e S L S stora g e ring position m o n i t o r i n g s y s t e m with t h e final g o a l of h a v i n g a reliable vertical position f e e d b a c k signal for t h e f o r e s e e n b e a m - b a s e d a l i g n m e n t m o d e of o p eration. All t h e p r e l i m i n a r y results s h o w e d that t h e a i m e d m i crometric range resolutions a n d accuracies have been r e a c h e d [1]. H o w e v e r , t h e l o n g - t i m e b e h a v i o u r of the H L S s y s t e m h a s r e v e a l e d drifts of c o n s i d e r a b l e m a g nitude. [1] h a v e b e e n met, a n d t h e r e f o r e this m o d e of o p e r a tion will be t e s t e d in t h e near f u t u r e . Long-term behaviour T h e l o n g - t e r m b e h a v i o u r of the H L S r e a d i n g s , important t o m o n i t o r the s t o r a g e ring position stability a n d t h u s to e v e n t u a l l y a l l o w t h e m a i n t e n a n c e of t h e stora g e ring location in s p a c e b a s e d o n s e n s o r s rather t h a n traditional t o p o g r a p h i c i n s t r u m e n t s , h a s s h o w n millimetre r a n g e drifts on s e v e r a l pots a l r e a d y after f e w w e e k s of o p e r a t i o n (Fig. 2) [3]. 0.25 x - E E, ID O) c '•5 (B O-rings o a 49 sensor plate touching point F i g . 1 : S c h e m a t i c r e p r e s e n t a t i o n of the H L S pot interior. SHORT- AND LONG-TERM BEHAVIOUR OF THE HLS Short-term behaviour T h e H L S s y s t e m w a s put into o p e r a t i o n in the last quarter of the y e a r 2 0 0 0 . S i n c e t h e n , p r e l i m i n a r y tests on t h e b e h a v i o u r of t h e s y s t e m c o m p a r e d to laser tracker and mover encoder measurements have s h o w n that t h e H L S allows t o a c h i e v e reliable m i c r o metric a c c u r a c y data with relative errors in t h e 1 % r a n g e . T h e only d r a w b a c k s e e m s to be the relatively long settling t i m e s n e e d e d t o a c h i e v e t h e c o r r e c t r e a d i n g s o n t h e h e a v e , s i n c e in this c a s e t h e w a t e r c o n t a i n e d in t h e H L S pots of t h e m o v e d girders h a s to f l o w in/out f r o m t h e w h o l e s t o r a g e ring. In t h e c a s e of pitch a n d roll m o t i o n s , t h e w a t e r is basically redistributed only in the H L S pots of t h e m o v e d girder, limiting the settling t i m e s t o less t h a n 5 m i n [2]. T h e results of the p e r f o r m e d tests indicate t h u s that the p r e c o n d i t i o n s t o a c h i e v e b e a m - b a s e d a l i g n m e n t 65 97 113 129 145 161 177 Pot number F i g . 2 : Relative c h a n g e of t h e r e a d i n g s on all pots of t h e s t o r a g e ring d u r i n g 3 w e e k s in s p r i n g 2 0 0 1 . S o m e of t h e o b s e r v e d drifts h a v e b e e n t r a c e d b a c k to t h e p o o r fixation a n d a l i g n m e n t of t h e piping n e t w o r k w h i c h , w h e n c o u p l e d w i t h the rather h i g h w a t e r level in t h e pipes at that t i m e , has led t o t h e c r e a t i o n of a Bernoulli t u b e effect, i.e. t o t h e m o n i t o r i n g of t h e local p r e s s u r e differences b e t w e e n t h e t h u s c r e a t e d t u b e sections. H o w e v e r , e v e n w h e n a d d i t i o n a l pipe s u p p o r t s h a v e b e e n a d d e d , t h e p r o b l e m s still p e r s i s t e d . It w a s t h u s s u p p o s e d that this p h e n o m e n o n c o u l d be d u e t o t h e e v e n t u a l f o r m a t i o n of f o g a b o v e the w a t e r level, w h i c h c o u l d influence t h e r e s p e c t i v e dielectric c o n s t a n t [3]. A t h o r o u g h s t u d y of the t h e o r e t i c a l a s p e c t s of the airw a t e r m i x t u r e s has a l l o w e d t o e x c l u d e this as t h e p o s s i b l e c a u s e of the p r o b l e m s . H e n c e , it b e c a m e i n c r e a s i n g l y clear that t h e o b s e r v e d drifts w e r e not r e l a t e d t o t e m p e r a t u r e or p r e s s u r e effects at the pots t h e m s e l v e s , but rather to h u m i d i t y build-up s o m e w h e r e at t h e g u a r d - t o - s e n s o r interface ( p r o b a b l y at t h e insulator c e r a m i c b e t w e e n t h e s e t w o c o m p o n e n t s - s e e Fig. 1), w h i c h results in a parasitic capacitance. S i n c e t h e c h a n g e of the material of the insulator plate (glass, q u a r t z a n d different t y p e s of c e r a m i c s h a v e b e e n tried) did not a l l o w t o s o l v e the p r o b l e m [3], a 31 trial to a d d a silicone O-ring b e t w e e n t h e g u a r d a n d the s e n s o r (Fig. 1), t h u s h i n d e r i n g t h e h u m i d i t y p a t h to the c e r a m i c insert, w a s p e r f o r m e d a n d h a s led t o e n c o u r a g i n g results. In fact, a n initial p r o t o t y p e series of 15 p o t s m o d i f i e d with t h e additional O-ring s h o w e d r e a d i n g s stable w i t h i n ± 1 0 urn ( w h i c h w a s the req u i r e d a c c u r a c y r a n g e ) o v e r s e v e r a l w e e k s . All t h e pots h a v e t h e r e f o r e b e e n m o d i f i e d a c c o r d i n g l y . In o r d e r t o investigate t h e s e h y p o t h e s e s , t h e f o l l o w i n g m o d i f i c a t i o n s h a v e b e e n tried: • O n s o m e pots h o l e s h a v e b e e n a d d e d t o t h e g u a r d s to facilitate t h e e v a p o r a t i o n of h u m i d i t y r e a c h i n g t h e c e r a m i c plates. T h e results o b t a i n e d show meaningful improvements. • T h e a d o p t i o n of longer c e r a m i c plates (bringing t h e s e n s o r s closer t o t h e w a t e r s u r f a c e ) s e e m s t o i n c r e a s e the stability of the results (especially if c o m b i n e d w i t h t h e a b o v e m e n t i o n e d h o l e s in t h e g u a r d s ) , w h i c h c o u l d be r e l a t e d to t h e i n c r e a s e d level of the signal ( c a p a c i t a n c e ) b e i n g m e a s u r e d in this c a s e . • S o m e pots h a v e b e e n t r e a t e d with disinfecting m e d i a ("fungi killers") leading t o uncertain results. • T o t h e d e m i n e r a l i s e d w a t e r u s e d as the w o r k i n g fluid in t h e H L S , an alcohol solution is a d d e d , a n d t h e fluid level is t h e n i n c r e a s e d up t o the point w h e r e t h e s e n s o r / g u a r d s u r f a c e s are f l u s h e d w i t h it. It is h o p e d that this action c o u l d kill the m y cells, a n d t h e p r e l i m i n a r y results of s u c h trials s e e m t o be e n c o u r a g i n g . -5.70 6.8.01 20.8.01 3.9.01 17.9.01 1.10.01 15.10.01 Time F i g . 3: R e a d i n g s o n a stable pot o v e r 2.5 m o n t h s . T h e ripples (± 20 urn r a n g e ) that c a n be o b s e r v e d are p r o b a b l y attributable t o real g r o u n d m o t i o n . D e s p i t e t h e g o o d results o b t a i n e d initially w i t h t h e d e s c r i b e d s o l u t i o n , after a t i m e period o n t h e m o n t h s s c a l e , r o u g h l y half of t h e pots r e m a i n e d stable (Fig. 3) w h i l e t h e o t h e r half started drifting a g a i n (Fig. 4). S e v eral trials w e r e p e r f o r m e d to try t o s o l v e the o b s e r v e d p r o b l e m . A n a t t e m p t to c o m p e n s a t e for t h e drifts electronically w a s not s u c c e s s f u l . T h e introduction of silica-gel at t h e pots' e l e c t r o n i c s level w a s a l s o p r o v e n to be u n s u c c e s s f u l [3]. S e v e r a l of t h e s e tests are still u n d e r w a y but, g i v e n t h e high t i m e c o n s t a n t n e e d e d t o obtain a n y m e a n ingful results, no final c o n c l u s i o n is available yet. CONCLUSIONS T h e H L S s y s t e m h a s p r o v e n t o be an a c c u r a t e tool for m o n i t o r i n g t h e s h o r t - t e r m positioning of the g i r d e r s , c r e a t i n g t h u s t h e p r e c o n d i t i o n s for t h e b e a m - b a s e d a l i g n m e n t m o d e of o p e r a t i o n of the S L S s t o r a g e ring. H o w e v e r , the s y s t e m p r o v e d not t o be reliable o n t h e l o n g e r t i m e s c a l e s , h i n d e r i n g t h e possibility t o u s e it a s a m o n i t o r of g e o l o g i c a l a n d t h e r m a l d i s t u r b a n c e s of t h e s t o r a g e ring positions. S e v e r a l trials are u n d e r w a y in o r d e r t o t a c k l e this p r o b l e m . REFERENCES 24.6.01 29.7.01 2.9.01 7.10.01 Time F i g . 4 : E x a m p l e of a drifting pot. It is w o r t h noticing that t h e a n a l o g u e v a l u e s on all t h e drifting pots are drifting t o t h e s a m e direction. Two hypotheses have thus been formulated: •=> T h e p r o b l e m c o u l d be d u e t o t h e residual h u m i d i t y p a s s i n g t h r o u g h the O-ring (silicone h a s a w a t e r a b s o r p t i o n of c a . 0.2 % ) a n d still b e i n g acc u m u l a t e d at t h e g u a r d - t o - s e n s o r interface at the level of t h e c e r a m i c plate. •=> T h e r e a s o n for t h e drifts c o u l d b e attributed t o t h e m y - c e l l s of t h e f u n g i o b s e r v e d u n d e r a m i c r o s c o p e on t h e s u r f a c e s of both the s e n s o r s a n d t h e guards. T h e my-cells could then create "water c h a n n e l s " (the p r o b l e m is t h e r e f o r e e v e n in this c a s e , at least indirectly, related to h u m i d i t y effects) i n d u c i n g a g a i n a parasitic c a p a c i t a n c e . [1] S. Z e l e n i k a et. al, The SLS Storage Ring Support and Alignment Systems, N u c l e a r Instr. M e t h . P h y s . R e s . A 4 6 7 - 4 6 8 , pp. 99-102 (2001). [2] A. S t r e u n , Private Communication. [3] E. Meier, Private Communications. 32 BEAM-BASED ALIGNMENT MEASUREMENTS M. Böge First beam-based alignment measurements have been carried out at the SLS storage ring which allow to calibrate the zero readings of the 72 BPMs with respect to the magnetic centers of adjacent quadrupoles. The presented results show that the vertical quadrupole-BPM offsets are gaussian distributed with a standard deviation of 0.24 mm. quadrupole INTRODUCTION BPM T h e B P M stations in t h e S L S s t o r a g e ring a r e rigidly a t t a c h e d t o t h e girders a n d s e r v e a s s u p p o r t s for t h e v a c u u m s y s t e m . A c c o r d i n g t o t h e s p e c i f i c a t i o n s of t h e B P M s u p p o r t a n d t h e s t r a i g h t n e s s rulers o n t h e girders, t h e q u a d r u p o l e - B P M offsets a r e k n o w n t o within ± 5 0 / i m [1]. T h e p r e s e n t e d b e a m - b a s e d a l i g n m e n t t e c h n i q u e allows t o m e a s u r e t h e s e offsets for t h e a d j a c e n t q u a d r u p o l e - B P M c o m b i n a t i o n s with / i m p r e c i s i o n . T h e s e offsets c a n b e u s e d t o calibrate t h e m e c h a n ical positioning s y s t e m ( P O M S ) w h i c h m o n i t o r s relative position c h a n g e s of B P M s with respect t o a d j a c e n t q u a d r u p o l e s u s i n g linear e n c o d e r s [2]. beam with bump ......3». beam } bpm \ y J;__V bpmJ y y q BEAM-BASED ALIGNMENT (BBA) PROCEDURE F i g . 1 : Illustration of t h e b e a m - b a s e d a l i g n m e n t t e c h n i q u e a p p l i e d t o t h e q u a d r u p o l e s with a d j a c e n t B P M s . T h e a p p l i e d m e t h o d [3, 4] is b a s e d o n t h e well k n o w n fact that if t h e s t r e n g t h of a single q u a d r u p o l e q in t h e ring is c h a n g e d , t h e resulting difference in t h e c l o s e d orbit Ay(s) is p r o p o r t i o n a l t o t h e original offset y of t h e b e a m at q. BBA RESULTS q T h e e q u a t i o n for t h e resulting difference orbit is: Ay"(s) - (k(s) + Ak(s))Ay(s) = Ak(s)y (s). 0 T h e difference orbit is t h u s given by t h e c l o s e d orbit form u l a for a single kick, but c a l c u l a t e d w i t h t h e p e r t u r b e d optics including Afc(s). F r o m t h e m e a s u r e d difference orbit t h e kick a n d t h u s y c a n b e easily d e t e r m i n e d a n d c o m p a r e d t o t h e n o m i n a l orbit y in t h e B P M a d j a c e n t t o t h e q u a d r u p o l e , yielding t h e offset b e t w e e n B P M a n d q u a d r u p o l e axis. T h e precision of t h e m e t h o d is v e r y m u c h i m p r o v e d by t a k i n g difference orbit d a t a for several local b e a m positions y v a r i e d with a n orbit b u m p . T h e principle of t h e m e t h o d is illustrated in Fig. 1. T h e error of t h e n o m i n a l position y for w h i c h t h e b e a m g o e s t h r o u g h t h e c e n t e r of t h e q u a d r u p o l e is t h e n g i v e n by t h e resolution of t h e B P M s y s t e m . In t h e S L S stora g e ring, a difference orbit with a n a m p l i t u d e of 5 / i m c a n b e clearly r e s o l v e d [5]. T h i s results in a resolution for t h e local kick of « 0 . 2 5 /¿rad for q u a d r u p o l e s at vertical b e t a v a l u e s of 2 0 m . S i n c e a c h a n g e in q u a d r u p o l e s t r e n g t h of Akl = 0.02 r r r c a u s i n g a t u n e variation 5v = 0.03, is possible w i t h o u t losing t h e b e a m , a m i n i m u m b e a m offset of y ¿ „ = 15 /¿m c a n b e e a s ily d e t e c t e d . Taking several d a t a points by v a r y i n g a local b u m p , t h e q u a d r u p o l e - t o - B P M a l i g n m e n t c a n b e d o n e w i t h a precision of « 5 / i m . H o w e v e r s o m e of t h e q u a d r u p o l e s a r e at low b e t a v a l u e s of 2 . 5 m w h i c h red u c e s t h e precision of t h e m e a s u r e m e n t t o « 4 0 / i m . q o p m q b p m 1 9 > m In o r d e r t o h a v e a well d e f i n e d t u n e variation {5v = ± 0 . 0 2 5 ) d u r i n g t h e b e a m - b a s e d a l i g n m e n t m e a s u r e m e n t , t h e previously m e a s u r e d a v e r a g e b e t a f u n c tions [6] a r e u s e d t o d e t e r m i n e t h e a l l o w e d c h a n g e of q u a d r u p o l e s t r e n g t h . A hysteresis c o r r e c t i o n restores 0.014 r ARfDI-BPÏVl-O/'yEfit(offset = 47.5 + - 0.5nm) - 0.012 CM £ o 0) o c < <D D 0.01 - local b u m p s c a n 0.008 0.006 - B P M offset 0.004 - 47.5u.rn 0.002 - -0.4 -0.3 -0.2 -0.1 0 Ybpm l 0.1 m m 0.2 0.3 0.4 l F i g . 2 : B B A d a t a for B P M A R I D I - B P M - 0 7 M E s h o w i n g a vertical B P M offset of 4 7 . 5 /¿m w i t h respect t o t h e a d j a c e n t q u a d r u p o l e A R I M A - Q M D - 0 7 at a b e t a function of 18 m . t h e orbital t u n e s after e a c h q u a d r u p o l e variation c y c l e , in o r d e r t o m i n i m i z e t h e residual distortions of t h e linear optics. Fig. 2 s h o w s t h e result of a single vertical B P M offset m e a s u r e m e n t for A R I D I - B P M - 0 7 M E . After t a k i n g a refe r e n c e orbit, t h e a d j a c e n t q u a d r u p o l e A R I M A - Q M D - 0 7 33 is c h a n g e d by Akl = 0.017 m followed by a variation of a local orbit b u m p of ± 0 . 4 m m . T h e s q u a r e of t h e s t a n d a r d deviation of t h e difference orbit, e x c l u d ing A R I D I - B P M - 0 7 M E , v e r s u s t h e B P M reading is fitt e d by a p a r a b o l a . T h e difference b e t w e e n t h e minim u m of t h e fit a n d t h e z e r o r e a d i n g of t h e B P M d e t e r m i n e s t h e B P M offset. In this c a s e t h e m e a s u r e m e n t reveals an offset of 4 7 . 5 ¡im within a n error of ± 0 . 5 um. Fig. 3 s u m m a r i z e s t h e result for 6 6 vertical B P M offsets with m e a s u r e m e n t error v a r i a t i o n s bet w e e n < 1 urn a n d 5 0 pm. T h e offset distribution is fitted by a g a u s s i a n shifted by - 0 . 1 1 m m with a s t a n d a r d deviation of 0.24 m m . T h r e e B P M s s h o w offsets larger t h a n 0.5 m m . T h e offsets h a v e b e e n fed into _ —i 1 present kick kick change sum kick 0.4 - 1 — Q . ! • ¡P r hipli. i il (¡i 50 100 150 200 250 s fml F i g . 4: C o m p a r i s o n of actual c o r r e c t o r settings ("present kick") for a flat orbit a n d p r e d i c t i o n s for t h e c o r r e c t i o n of t h e vertical B P M offsets ("kick c h a n g e " ) indicating a possible R M S kick r e d u c t i o n of 2 0 % . T h e s q u a r e s ( " s u m kick") d e n o t e t h e differences. OUTLOOK 1 '-. 1 fit (<y>=-0,11 mm, V<y'>=0,24 mm) Several B B A m e a s u r e m e n t s h a v e b e e n p e r f o r m e d in 2 0 0 1 indicating a n B P M offset variation of « 10 % over several m o n t h s . D u e t o path length effects in t h e horizontal plane, t h e p r e s e n t e d m e t h o d n e e d s t o b e m o d i fied in o r d e r t o d e t e r m i n e t h e horizontal B P M offsets. T h e "dynamic" beam-based alignment based on the m o d u l a t i o n of q u a d r u p o l e c u r r e n t s , at < 1 0 Hz [7], o b s e r v i n g t h e m o d u l a t i o n f r e q u e n c y c o m p o n e n t in t h e resulting orbit [8] h a s not b e e n c a r r i e d out yet. REFERENCES [1 ] F. Q. W e i et al., SLS Survey and Alignment PSI Scientific R e p o r t 2 0 0 0 , V I I . in 2000, [2] V. Schlott, Monitoring of Mechanical Drifts at SLS Using Linear Encoders, PSI Scientific R e p o r t 1998, VII. -0.5 0 vertical BPM offset Tmrnl F i g . 3: Vertical B P M offsets with respect to a d j a c e n t q u a d r u p o l e s in t h e S L S s t o r a g e ring. T h e offset distribution is fitted by a g a u s s i a n shifted by - 0 . 1 1 m m w i t h a s t a n d a r d deviation of 0.24 m m . T h e m e a s u r e m e n t error v a r i e s b e t w e e n < 1 pm a n d 5 0 pm. a n S V D b a s e d global orbit c o r r e c t i o n c o d e in o r d e r to determine the corresponding corrector pattern. T h e s e c o r r e c t o r p r e d i c t i o n s ("kick c h a n g e " ) c a n b e c o m p a r e d t o t h e actual c o r r e c t o r settings ("present kick") for a flat orbit. Fig. 4 d e p i c t s both p a t t e r n s a n d their difference ( " s u m kick"). It c a n b e s e e n that they a r e "anticorrelated" resulting in a 2 0 % r e d u c t i o n of t h e R M S c o r r e c tor kick f r o m 0.15 m r a d to 0.12 m r a d . F u r t h e r m o r e t h e m e a n c o r r e c t o r kick of - 0 . 0 1 4 m r a d is r e m o v e d . [3] P. Röjsel, A Beam Position Measurement System Using Quadrupole Magnets Magnetic Centra as the Position Reference, Nucí. Instr. M e t h . , A 3 4 3 , 1994. [4] R. B r i n k m a n n , M. B ö g e , Beam-Based and Polarization Optimization in the HERA Ring, Proc. EPAC 9 4 , L o n d o n , 1994. Alignment Electron [5] V. Schlott et al., Digital BPM System - Proof of Functionality, PSI Scientific R e p o r t 2 0 0 0 , V I I . [6] M. B ö g e , A. S t r e u n , Measurement tion of Linear Optical Distortions, port 2 0 0 1 , V I I . and CompensaPSI Scientific R e - [7] H. U. B o k s b e r g e r et al., Power Supplies for SLS, PSI Scientific R e p o r t 1999, V I I . [8] R. S c h m i d t , Misalignments from k-Modulation, Proc. 3 r d W o r k s h o p o n L E P P e r f o r m a n c e , C E R N S L / 9 3 - 1 9 , 1993. 34 HIGH LEVEL SOFTWARE AND OPERATOR INTERFACE A. Lüdeke, M. Böge, d. Chrin The commissioning of the Swiss Light Source, including the first four insertion devices, was accomplished within a time period of 18 months. First user operation was already manifest before the official end of commissioning in August 2001. Integration of all subsystems into the control system and a high degree of automation was a prerequisite to meeting the tight time schedule. A balanced distribution of functionality between high level and low level applications allowed for short development cycles and added to the high reliability and reproducibility of applications. Essential high level procedures, once verified, were encapsulated and migrated to lower levels whenever feasible. This served to reduce the number of parameters required to set-up the machine and allowed standard EPICS tools to be used for the display, archiving and processing of complex physical values. INTRODUCTION T h e c o n s t r u c t i o n a n d c o m m i s s i o n i n g of t h e S w i s s Light S o u r c e w a s c o m p l e t e d within a v e r y tight t i m e s c h e d u l e . T h e t o p priority w a s to deliver a p p l i c a t i o n s in d u e t i m e a n d to a p p l y e n h a n c e m e n t s on t h e fly w h e n e v e r n e e d e d during c o m m i s s i o n i n g . C e r t a i n s u b s y s t e m s , including c o r r e s p o n d i n g high level a p p l i c a tions, w e r e delivered by external c o m p a n i e s s u b s y s t e m s , e.g. t h e Linac a n d t h e 5 0 0 MHz R F - s y s t e m . APPLICATION ENVIRONMENT T h e application e n v i r o n m e n t , s h o w n in Fig. 1, w a s c h o s e n to e n a b l e a fast a n d flexible d e v e l o p m e n t of high level a p p l i c a t i o n s . GUI Cfavaj Corba 3 GUI Server GUI Wftk) Corba î Model I CDEV î C D E V ~cÄ~ ; ¡ Gateway CA f OrbiO Oracle. -Server' FB .-Analysis. -""Tracy\ Server •' -Servar Beam Dynamics Environment GUI GUI GUI (tciflN) tmedm) ODD CDEV I CA CA Gateway CA EPICS records SNL device/driver sub "Hardware" (DSPs, Controllers, SPS,...) Controls Environment F i g . 1 : T h e S L S application e n v i r o n m e n t . A p p l i c a t i o n s in the " C o n t r o l s E n v i r o n m e n t " u s e t h e C o m m o n D e v i c e ( C D E V ) m i d d l e - w a r e [1]. C o n t r o l functionality is i m p l e m e n t e d in the Experimental P h y s i c s a n d Industrial Control S y s t e m ( E P I C S ) [2], a tool-kit t o build large, distributed control s y s t e m s , d e v e l o p e d a n d m a i n t a i n e d by a large c o l l a b o r a t i o n . The beam dynamics group has developed a C o m m o n Object Request Broker Architecture ( C O R B A ) envir o n m e n t to s u p p o r t their n e e d s for multiple c o n n e c tivity. T h e s o called model-server p r o v i d e s for the graphical user interfaces ( G U I s ) as well a s o t h e r client/server a p p l i c a t i o n s a c c e s s t o t h e E P I C S b a s e d control s y s t e m , the O r a c l e d a t a b a s e , t h e T r a c y a c c e l erator s i m u l a t i o n tools a n d a n e v e n t server. Details of this e n v i r o n m e n t c a n be f o u n d in [3]. OPERATOR INTERFACE M a n y generic a p p l i c a t i o n s f r o m t h e E P I C S c o l l a b o r a tion w e r e put t o g o o d effect at the S L S . A p p l i c a t i o n s for handling a l a r m s , s a v i n g a n d restoring m a c h i n e setu p s , archiving data a n d building G U I s w e r e a l r e a d y m a d e available. M a n y o t h e r applications, including m o s t of the p h y s i c s applications, w e r e h o w e v e r d e v e l o p e d i n - h o u s e . T h e c o n t r a c t o r s for t h e Linac a n d the 5 0 0 M H z R F s y s t e m a l s o delivered G U I s for their systems. T h e variety of i n d e p e n d e n t prototype high level a p p l i c a t i o n s , d e v e l o p e d during c o m m i s s i o n i n g , led t o a diversity of o p e r a t o r interfaces. A style g u i d e w a s e s t a b l i s h e d t o simplify their u s a g e , e.g. help m e n u s for accessing web documentation. Nevertheless, since t h e p r o g r a m m i n g l a n g u a g e s u s e d varied in their s u p port for G U I building b l o c k s , a p p e a r a n c e s still differed considerably between applications. Furthermore m a i n t e n a n c e of c u s t o m i z e d G U I s is likely to prove t i m e c o n s u m i n g in t h e long t e r m . T o help t a c k l e t h e s e p r o b l e m s , essential p r o c e d u r e s are d e c o u p l e d f r o m t h e G U I a n d , o n c e verified, are m i g r a t e d t o low level a p p l i c a t i o n s w h e r e v e r feasible. T h e s e low level a p p l i c a t i o n s are i m p l e m e n t e d either a s a s e r v e r a p p l i c a t i o n in the C O R B A e n v i r o n m e n t a n d / o r a s an E P I C S d a t a b a s e r e c o r d resident in V M E . O p e r a t o r Interfaces c a n c o n s e q u e n t l y be r e p l a c e d by m o r e g e n e r i c application built f r o m a c o m m o n set of GUI widgets. EXAMPLE: MAGNET OPTICS CONTROL A particular f e a t u r e of the S L S s t o r a g e ring is the individual p o w e r i n g of all 174 q u a d r u p o l e m a g n e t s . T h i s allows v e r y flexible a d j u s t m e n t s of the f o c u s i n g at the e x p e n s e of i n c r e a s e d p a r a m e t e r s p a c e . F r o m t h e start of the ring c o m m i s s i o n i n g , a n Interactive Data L a n g u a g e (IDL) G U I (see Fig. 2 ) w a s u s e d t o set elem e n t s of t h e m a g n e t optics t o v a l u e s b a s e d o n t h e o retical calculations. A f e w optics p a r a m e t e r s c o u l d t h e n be a d j u s t e d for the online t u n i n g of the m a c h i n e . 35 EXAMPLE: LIFETIME CALCULATION Ü5IÍ Storage Bong Optics Müde : d2e ^ : shift gx lir o.ooaooooü : S h i f t CXby jil.OOOOO : : - 0.OS! - D.Oll reset! » D.0l{ . 0.OS! - 0.5 - D.l{ r e l e t T h e e l e c t r o n b e a m lifetime w a s c a l c u l a t e d f r o m a p r e cise c u r r e n t m e a s u r e m e n t , using a V o l t m e t e r r e a d o u t via G P I B , with an u p d a t e period of t w o s e c o n d s . Sextupole Correction * O.ll * 0.5 i shift gr ir jo.250000 1 __!__1 iiJLÜil lteset j _ _ y ______ Shift CY by jO.50O000 - 0.5 - O.l! reset !j jjJWllj i_>JJ)lj * O.ll * 0.5 F i g . 2 : M a g n e t o p t i c s application "Tset" M a c h i n e optics w e r e first s e l e c t e d f r o m a m e n u butt o n . A d j u s t a b l e p a r a m e t e r s i n c l u d e d : horizontal- a n d vertical t u n e shift, horizontal- a n d vertical c h r o m a t i c i t y shift, a s e x t u p o l e - a n d a global e n e r g y s c a l i n g . T h e n o m i n a l optics v a l u e s a n d all matrix p a r a m e t e r s required for the calculation of m a g n e t s e t - c u r r e n t s w e r e c o d e d into t h e G U I . A n e l e c t r o n b e a m c o u l d c o n s e quently be s t o r e d a n d a c c u m u l a t e d within the first d a y s of c o m m i s s i o n i n g . O n e d r a w b a c k , h o w e v e r , w a s that t h e actual m a c h i n e state w a s k n o w n only t o t h e a p p l i c a t i o n . O n c e the G U I w a s c l o s e d , t h e r e w a s no e a s y w a y to d e d u c e t h e actual optics f r o m t h e m a g n e t c u r r e n t settings. T h i s w a s s o l v e d by m i g r a t i n g functionality t o an E P I C S d a t a b a s e . T h e n o m i n a l m a g n e t c u r r e n t s of the o p t i c s a n d the a d j u s t m e n t m a t r i c e s are n o w g e n e r a t e d by t h e optics s i m u l a t i o n application in a s t a n d a r d E P I C S s n a p s h o t f o r m a t . T h i s c a n be d o w n l o a d e d t o t h e m a c h i n e u s i n g s t a n d a r d s a v e a n d restore tools. T h e r e fore newly d e v e l o p e d optics c a n be easily a p p l i e d t o the m a c h i n e , w i t h o u t t h e n e e d to c h a n g e application c o d e . T h e actual settings of t h e m a c h i n e for a g i v e n optics are t h u s r e d u c e d to a s m a l l n u m b e r of physical p a r a m e t e r s that are m a p p e d to E P I C S c h a n n e l s . S t a n d a r d E P I C S t o o l s c a n t h u s be u s e d to control, s a v e , restore, archive a n d v i e w t h e s e c h a n n e l s . T h e o p e r a t o r interface of the optics control is i m p l e m e n t e d using t h e g e n e r i c p r o g r a m "panel.tcl" (see Fig. 3). rile Setup Channels A limitation h o w e v e r w a s that data w a s only g e n e r a t e d w h i l e the G U I w a s r u n n i n g . T h e r e f o r e the a p p r o v e d a l g o r i t h m w a s ported to C a n d i m p l e m e n t e d at a lowlevel a s an E P I C S d e v i c e s u p p o r t routine. All p a r a m e t e r s of t h e lifetime calculation are n o w available t h r o u g h E P I C S c h a n n e l s that c a n be controlled a n d r e a d by s t a n d a r d a p p l i c a t i o n s , r e m o v i n g the n e e d for t h e c u s t o m i z e d lifetime G U I . T e s t s of an alternative f a s t e r r e a d o u t of the c u r r e n t m e a s u r e m e n t are n o w in p r o g r e s s . T h e i n c r e a s e d s a m p l e rate will allow lifetime m e a s u r e m e n t s b e t w e e n injections w h e n in "top-up" o p e r a t i o n m o d e [4]. SUMMARY T h e m a i n goal of the a p p l i c a t i o n s d e v e l o p e d w a s to e n a b l e t h e s u c c e s s f u l c o m m i s s i o n i n g of the light s o u r c e in t i m e . T h e d e s i r e d functionality w a s d e l i v e r e d in a t i m e l y m a n n e r a n d s h o w n to w o r k reliably. T h e m a i n f o c u s of high level a p p l i c a t i o n s n o w is to i m p r o v e the maintainability of the s y s t e m t h r o u g h inc r e a s e d modularity, i.e. by d e c o u p l i n g essential p r o c e d u r e s f r o m the G U I a n d t o s t a n d a r d i z e the o p e r a t o r interface. REFERENCES Tune Shift Panel Me\ Used Optic Name T h e c a l c u l a t i o n , c o n t r o l , test a n d c o m p a r i s o n of different a l g o r i t h m s w e r e i m p l e m e n t e d in a c u s t o m i z e d J a v a a p p l i c a t i o n . T h e first s t e p in integrating this a p p l i cation t o the control s y s t e m w a s to e x p o r t the c a l c u lated lifetime to o t h e r a p p l i c a t i o n s via an E P I C S soft c h a n n e l . T h i s already a l l o w e d s t a n d a r d E P I C S a p p l i c a t i o n s to be u s e d for archiving the lifetime for later a n a l y s i s a n d to display lifetimes in a real-time strip chart t o g e t h e r with o t h e r c o r r e l a t e d c h a n n e l s . Info Help [1] J . C h e n et al., An Object-Oriented for Developing Device Control ICALEPCS 1995, Chicago, USA. [2] S.A. Lewis, The Experimental Physics and trial Control System, LBNL, April http://csg.lbl.gov/EPICS/OverView.pdf [3] M. B ö g e , J . C h r i n , On the use of Corba in high level beam dynamics applications at the SLS, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [4] M. M u ñ o z , Top-up operation, port 2 0 0 1 , V o l u m e V I I . D2R Set Energy- (E-QS) Bend Energy (E-B) Use Energy from h i i H n j y SI:HIIIII| HHI l u r Choose Optic Panel /devl Setup Haine ni thf Optir Hnminal hnnrgy nominal nor. I une nominal vur. Tuuu lieV .t. W)t E OS I .01 toggle in Qujdrupule SulUuqs llnr. Tune Shift 10.000 J Vur. lunu Slufl I d . VI ."» .* - Suxlupolu Suturai:, Mor. Chrom. Shift Humiliai luir, f l i n m i H l . Ver. Chrom. Shift Humiliai ver. • ImmiHl. Sextupol Scaling 10.COO * Mi nil:. F i g . 3: T h e g e n e r i c panel.tcl application, here c o n f i g ured for control of t h e S L S ring m a g n e t optics. A notable a d v a n t a g e of this a p p r o a c h is that pertinent m a c h i n e p h y s i c s data is s t o r e d in units that are m e a n i n g f u l to t h e a c c e l e r a t o r physicist, rather t h a n in units specific t o t h e native control s y s t e m . Class Library Applications, Indus2000, PSI Scientific R e - 36 MEASUREMENT AND COMPENSATION OF LINEAR OPTICAL DISTORTIONS M. Böge, A. Streun In the SLS storage ring the measured linear optical functions differ from the model predictions because of focussing errors of the 174 quadrupoles. In order to minimze these linear optical distortions a SVD based correction algorithm has been implemented. The algorithm uses the quadrupoles as "beta function correctors" taking advantage of the fact that they are individually powered. Residual beta beats of 4% in the horizontal and 3 % in the vertical plane have been obtained. INTRODUCTION In o r d e r to o p t i m i z e t h e p e r f o r m a n c e of t h e S L S s t o r a g e ring a g o o d u n d e r s t a n d i n g of t h e linear optics is n e c e s sary. W h e n e v e r possible, k n o w n differences b e t w e e n t h e real m a c h i n e a n d t h e u n d e r l y i n g m o d e l s h o u l d b e m i n i m i z e d . For this r e a s o n , t h e 174 individually p o w e r e d q u a d r u p o l e s in S L S s t o r a g e ring h a v e b e e n u s e d as " b e t a function c o r r e c t o r s " . BETA FUNCTION MEASUREMENT A n i m p o r t a n t ingredient for t h e s u c c e s s f u l c o m p e n s a tion of t h e linear optical distortions is t h e p r e c i s e m e a s u r e m e n t of t h e a v e r a g e b e t a f u n c t i o n s at t h e location of t h e q u a d r u p o l e s . T h e p r e s e n t e d p r o c e d u r e m a k e s u s e of t h e fact that a b e t a t r o n t u n e c h a n g e 5v is related t o t h e p e r t u r b a t i o n 5k(s) of t h e f o c u s s i n g s t r e n g t h a n d t h e b e t a function ß(s) a r o u n d t h e ring: 8v = -±- ideal optics within t h e error of t h e b e t a m e a s u r e m e n t if t h e q u a d r u p o l e s a r e t h e only s o u r c e of t h e optics perturbation. RESULTS Fig. 1 s h o w s t h e result of a b e t a c o r r e c t i o n r e d u c i n g t h e b e t a beat in t h e horizontal a n d vertical p l a n e by a factor of 2 with r e m a i n i n g b e a t s of « 4 % a n d « 3 % , r e s p e c tively. T h e q u a d r u p o l e s t r e n g t h variation Sk/k « 1.5e-3 with respect t o t h e d e s i g n s t r e n g t h k is c o n s i s t e n t with m a g n e t m e a s u r e m e n t s [1]. jß(s)ök(s)ds. T h u s a c h a n g e in t h e s t r e n g t h Sk(s ) of q u a d r u p o l e q allows t h e a v e r a g e b e t a function ß(s ) at position s to b e m e a s u r e d , by o b s e r v i n g 5v as a function of Sk(s ). T h e error of this m e a s u r e m e n t d e f i n e s t h e limit for t h e c o r r e c t i o n of t h e linear optics p e r t u r b a t i o n s . T h u s a sophisticated procedure has been implemented which t a k e s into a c c o u n t k n o w n m a g n e t i c hysteresis effects a n d restores t h e b e t a t r o n t u n e s rather t h a n t h e original q u a d r u p o l e c u r r e n t s . In a d d i t i o n , t h e q u a d r u p o l e s a r e m e a s u r e d " m a g n e t family" w i s e in o r d e r t o m i n i m i z e t h e residual optical p e r t u r b a t i o n s . In o r d e r t o i n c r e a s e t h e precision further, t h e t u n e is o b s e r v e d for 5 different c u r r e n t s . T h e b e t a f u n c t i o n s a r e t h e n d e r i v e d f r o m a least s q u a r e fit. A s a result a v e r a g e m e a s u r e m e n t errors of « ± 1 % h a v e b e e n a c h i e v e d . q q q q BETA CORRECTION A L G O R I T H M T h e information a b o u t t h e horizontal a n d vertical b e t a beat ößi at t h e position of t h e ¿th q u a d r u p o l e c a u s e d by a s t r e n g t h p e r t u r b a t i o n Skj of t h e j ' t h q u a d r u p o l e is c o n t a i n e d in t h e ( 2 * 1 7 4 ) x 1 7 4 sensitivity matrix S: 0 50 100 150 s [m] 200 250 F i g . 1 : M e a s u r e d a v e r a g e b e t a f u n c t i o n s ( s q u a r e s ) at t h e location of 1 7 4 q u a d r u p o l e s in c o m p a r i s o n to t h e m o d e l of t h e u n p e r t u r b e d optics (solid lines). REFERENCES w h i c h c a n b e d e r i v e d f r o m t h e m o d e l . A S i n g u l a r Value D e c o m p o s i t i o n ( S V D ) t e c h n i q u e is t h e n u s e d t o "invert" S a n d d e t e r m i n e t h e Skj as a f u n c t i o n of t h e ößi. F e e d ing -5kj into t h e " b e t a f u n c t i o n c o r r e c t o r s " restores t h e [1] B. J a k o b , C h . Vollenweider, J . A. Zichy, Production and Measurement of the Magnets for Booster and Storage Ring, PSI Scientific R e p o r t 1999, V I I . 37 COMMISSIONING RESULTS FOR THE SLS TRANSVERSE MULTIBUNCH FEEDBACK R. Bressanutti, M. Dehler, P. Pollet, T. Schilcher, V. Schlott D. Bulfone, M. Lonza, L. Zambón (Sincrotrone Trieste) A wide band bunch-by-bunch transverse multi-bunch feedback, developed in collaboration with ELETTRA (Sincrotrone Trieste), has been installed at the SLS. We describe the main hardware and software components, present the first commissioning results and give the present status of the system as well as an outlook on future developments. c u r r e n t s y s t e m w a s s e t u p a n d c o m m i s s i o n e d first for t h e vertical plane. INTRODUCTION Beam Beam. F i g . 1 : Block d i a g r a m of S L S t r a n s v e r s e m u l t i - b u n c h feedback. The SLS Transverse Multi-Bunch Feedback System [1] c o n s i s t s of a w i d e - b a n d b u n c h - b y - b u n c h s y s t e m , w h e r e t h e positions of the 4 8 0 b u n c h e s , s p a c e d 6 0 c m (=2 n s e c ) apart, are c o r r e c t e d individually. W i d e b a n d position signals c o m i n g f r o m a special t w o button B P M p i c k u p are c o n v e r t e d to b a s e b a n d (0 - 2 5 0 M H z ) f o l l o w e d by s a m p l i n g with a fast 8 bit, 5 0 0 M S / s e c A n a l o g - t o - D i g i t a l C o n v e r t e r ( A D C ) . In o r d e r t o be able to p r o c e s s t h e data rate, de-multiplexig is u s e d c o n v e r t i n g the 8 bit, 5 0 0 M S / s e c data flux t o 6 F P D P (Front Panel D a t a Port) c h a n n e l s being 3 2 bit w i d e a n d 21 M S / s e c fast. E a c h c h a n n e l leads t o a m u l t i - p r o c e s s o r b o a r d containing four TI-TMS320C6201 Digital Signal P r o c e s s o r s ( D S P ) . In the c u r r e n t s e t u p , o n e D S P t a k i n g all the d a t a f r o m o n e of the c h a n n e l s ( c o r r e s p o n d i n g to 8 0 b u n c h e s ) s e r v e s for on-line diagnostics, whereas the remaining three DSP c o n c u r r e n t l y calculate corrective kick v a l u e s . T h e c u r r e n t D S P s o f t w a r e allows for setting of Finite I m p u l s e R e s p o n s e ( F I R ) filters with up to 5 t a p s [2]. T h e m o s t basic d e s i g n is a 3 t a p filter, w h e r e the coefficients are c h o s e n to reject the b e a m h a r m o n i c s at the multiples of t h e revolution f r e q u e n c y a n d to provide the right p h a s e at t h e b e t a t r o n f r e q u e n c y . T h e f r e q u e n c y d e p e n d e n c y of s u c h a filter t o g e t h e r with that of a m o r e a d v a n c e d 5 t a p filter h a v i n g a n i m p r o v e d noise b e h a v i o u r is s h o w n in Fig. 2. T h e o p e n loop d e l a y b e t w e e n B P M p i c k u p a n d kicker comes out t o be roughly 4 revolution periods. bp. S i l i « . yf- j . y y % /^y t \ , - . \ \ • f/fO ^ ! , T * i is'S tîSSF :::::::::: - '4-vi ö "3 1 mo Fig. 2: Amplitude and phase versus normalized f r e q u e n c y ( D e s i g n p h a s e - 5 0 d e g r e e s at a b e t a t r o n t u n e of 0.18 m a r k e d by t h e d a s h e d line) for the basic 3 t a p filter (red) a n d a n o p t i m i z e d 5 tap filter ( g r e e n ) . T h e kick data is r e c o m b i n e d following a s y m m e t r i c multiplexing s c h e m e a n d t r a n s m i t t e d to a fast eight-bit 5 0 0 M S / s e c Digital-to-Analog C o n v e r t e r ( D A C ) . T h e a n a l o g signal is a m p l i f i e d by a w i d e - b a n d R F p o w e r amplifier before being applied t o the b e a m using a stripline kicker. For the n e c e s s a r y s y n c h r o n i z a t i o n t o the a c c e l e r a t o r s y s t e m , a flexible t i m i n g s y s t e m is e m p l o y e d . A n o v e r v i e w of t h e w h o l e s y s t e m is s h o w n in Fig. 1 . CLOSED LOOP RESULTS The effect of m u l t i - b u n c h instabilities is most p r o n o u n c e d in the vertical plane, since e.g. resistive wall i m p e d a n c e s are s t r o n g e r in that plane a n d t h e b e a m size is s m a l l e r vertically t h a n horizontally. S o t h e F i g . 3: Pin hole c a m e r a i m a g e s of a 8 0 m A b e a m with f e e d b a c k off (left) a n d on (right). A basic 3 tap filter algorithm was used. 38 T h e feedback has been characterized and the f e e d b a c k loop c l o s e d . D u e t o an e r r o n e o u s protection circuit in the p o w e r amplifiers, w h i c h s w i t c h e d off t h e a m p l i f i e r s at higher c u r r e n t s , w e c o u l d a s yet run the f e e d b a c k only at b e a m c u r r e n t s b e l o w 150 m A , a restriction, w h i c h h a s b e e n r e m o v e d s i n c e . Fig. 3 s h o w s the effect of t h e f e e d b a c k o n t h e 8 0 m A b e a m exhibiting vertical c o u p l e d - b u n c h instabilities a s s e e n via a pin hole c a m e r a . DIAGNOSTIC MEASUREMENTS A n i m p o r t a n t a d v a n t a g e of the s y s t e m is t h e u s e of six of t h e 2 4 D S P a s an on-line diagnostic tools. T h e s e allow c o n c u r r e n t l y t a k i n g b u n c h - b y - b u n c h data w i t h o u t disrupting the f e e d b a c k o p e r a t i o n . 8e+06 7e+06 6e+06 •e < 5e+06 4e+06 •o ^ 3e+06 2e+06 1e+06 0 Ii f/fO F i g . 4 : C o u p l e d - b u n c h a m p l i t u d e s p e c t r a of a 8 0 m A vertically instable b e a m with m u l t i - b u n c h f e e d b a c k off/on. F r e q u e n c y is n o r m a l i z e d to the revolution f r e q u e n c y (1.04 M h z ) of t h e b e a m . In Fig. 4 , w e s e e a g a i n t h e effect of running with f e e d b a c k o n a n d off, this t i m e in the Fourier s p e c t r u m of the b e a m m o t i o n . Not t h e w h o l e s p e c t r u m f r o m 0 t o 2 4 0 t i m e the revolution f r e q u e n c y is s h o w n , but o n l y the interesting r e g i o n , w h e r e w e h a v e c o u p l e d - b u n c h m o d e s . T h e distribution of the f r e q u e n c i e s s e e m t o indicate, that the d o m i n a n t c a u s e of t h e instabilities is b u n c h - t o - b u n c h c o u p l i n g d u e to resistive l o s s e s in t h e ring c h a m b e r . 5000 4500 4000 •4-. <c CD 2500 •o 2000 Q. E 1500 < Fast Ion Instability? A b u n c h - b y - b u n c h T M B F s y s t e m b a s e d o n D S P s for t h e p r o c e s i n g of the data c o m i n g f r o m all 4 8 0 b u n c h e s in t h e S L S s t o r a g e ring h a s b e e n installed. A s of today, c o m m i s s i o n i n g h a s only b e e n d o n e o n the vertical plane. T h e s y s t e m h a s b e e n s h o w n to be a n effective c u r e a g a i n s t c o u p l e d - b u n c h instabilities a l l o w i n g in addition for v a l u a b l e on-line d i a g n o s t i c s . It w a s originally p l a n n e d t o h a v e t h e f e e d b a c k o p e r a t i o n a l for all t h r e e p l a n e s . N o w , the p r o g r e s s of t h e project h a s b e e n i m p e d e d by p r o b l e m s with the o n l y available supplier of A D C a n d D A C b o a r d s , w h o s t o p p e d selling t h e s e . S i n c e a l s o other a c c e l e r a t o r laboratories e x p r e s s e d c o n s i d e r a b l e interest in t h e s e c o m p o n e n t s , an i n - h o u s e d e v e l o p m e n t project for t h e s e t y p e s of A D C s a n d D A C s h a s b e e n s t a r t e d . In parallel, the last p r e p a r a t i o n s for t h e h a r d w a r e of the longitudinal f e e d b a c k , amplifier a n d kicker, are d o n e . T h e full s y s t e m , c o n s i s t i n g of t h r e e f e e d b a c k s for the horizontal, vertical a n d longitudinal plane e a c h , is e x p e c t e d t o be o p e r a t i o n a l in a u t u m n 2 0 0 2 . REFERENCES 3500 3000 S y s t e m s o f t w a r e f e a t u r e s , w e did not yet e m p l o y , are t h e f o l l o w i n g . Filter f u n c t i o n s c a n be set individually for e a c h D S P calculating t h e kicks for 4 0 b u n c h e s . S e l e c t i n g a n t i d a m p i n g filter coefficients destabilizing this s u b s e t of t h e b u n c h p o p u l a t i o n g i v e s an e a s y a n d for the user n o n d i s t u r b i n g w a y of m e a s u r i n g b e t a t r o n t u n e s . T r a n s i e n t s of instable b u n c h m o d e s c a n be m e a s u r e d via a fast s w i t c h i n g of the filter f u n c t i o n s while measuring. CONCLUSION CL < A different c a s e is s h o w n in Fig. 5. T h e f e e d b a c k w a s s w i t c h e d off a n d t h e a m p l i t u d e of t h e resistive wall instabilities w a s r e d u c e d by a n i n c r e a s e d c h r o m a t i c i t y setting in the ring optics. W i t h t h e s e r e m o v e d f r o m the s p e c t r u m , t w o other effects s h o w up. T h e first is a n a r r o w b a n d c o u p l e d - b u n c h oscillation at f/fo=120. T h i s is actually not d u e t o a t r a n s v e r s e but to a longitudinal b e a m oscillation s h o w i n g up slightly the t r a n s v e r s e s i g n a l . T h e s o u r c e is k n o w n t o be a cavity higher o r d e r m o d e ( M o d e L9). T h e s e c o n d p e a k is a wide band resonance spanning several bunch m o d e s c e n t e r i n g a r o u n d f/fo=20. A s u s p e c t for this c o u l d be a fast ion instability, w h e r e ions t r a p p e d in t h e ring c h a m b e r get e x c i t e d by t h e p a s s i n g b e a m . [1] D. Bulfone et al., Design Considerations ELETTRA Transverse Multi-Bunch PAC'99, N e w Y o r k , M a r c h 1999. [2] M. L o n z a et al., Digital Processing Electronics for the ELETTRA transverse Multi-Bunch Feedback System, Proc. I C A L E P C S ' 9 9 , T r i e s t e , O c t o b e r 1999. Cavity HOM / 1000 500 F i g . 5: C o u p l e d - b u n c h a m p l i t u d e s p e c t r a (1=120 m A ) , here with resistive wall instabilities r e d u c e d by high c h r o m a t i c i t y ( F e e d b a c k off). for the Feedback, 39 TOP-UP OPERATION EXPERIENCE M. Muñoz The top-up and frequent filling operation modes have been the standard mode of operation for users at the SLS for the last year, providing stable conditions of operation, solving limitations in lifetime due to the Touscheck effect and providing better thermal stability. We review the perfomance of the SLS in this mode. INTRODUCTION T h e u s e of f r e q u e n t filling o p e r a t i o n m o d e s is o n e of the d e s i r e d c h a r a c t e r i s t i c s of m o d e r n s y n c h r o t r o n light s o u r c e s . T h e S L S is d e s i g n e d to provide a flexible injection s c h e m e , able t o o p e r a t e in the s o called t o p up a n d f r e q u e n t injection m o d e s . Both m o d e s w e r e t e s t e d early d u r i n g the c o m m i s s i o n i n g a n d t h e latter n o w runs routinely as t h e s t a n d a r d m o d e for user operation, showing a good performance. Positive f e e d b a c k f r o m S L S u s e r s p r o v e s that c o n t i n u o u s refilling p r o v i d e s excellent c o n d i t i o n s for s y n c h r o t r o n radiation e x p e r i m e n t s , a n d is t h e r e f o r e a n i m p o r t a n t f e a t u r e of a m o d e r n s y n c h r o t r o n light source. T h e u s e of t o p - u p / f r e q u e n t filling s o l v e s s o m e of t h e p r o b l e m s that m o d e r n S L s o u r c e s h a v e to f a c e : 1. T o u s c h e c k limited lifetime, 2. further r e d u c t i o n s o n lifetime d u e t o s m a l l g a p , insertion d e v i c e s , 3. b e a m stability. H o w e v e r , t h e u s e of t o p - u p h a s s o m e i m p l i c a t i o n s o n the d e s i g n of t h e injector s y s t e m , requires g o o d d i a g nostics a n d h a s s o m e effect o n u s e r s e x p e r i m e n t s . W e review h o w t h e s e p r o b l e m s h a v e b e e n s o l v e d at the S L S a n d the p e r f o r m a n c e a c h i e v e d in t h e last year. —ARI DI-PCT:C U RRE NT I 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 «'f»J.n2tH° 1 4 : 4 5 , s o c F i g . 1 : C o n t i n u o u s refilling for 3 h o u r s . T h e plot s h o w s t h e c u r r e n t r e a d i n g for a 3 h o u r s interval. In both s c e n a r i o s , t h e g a p s of the insertion d e v i c e s r e m a i n c l o s e d d u r i n g injection a n d t h e s h u t t e r s r e m a i n open. A n o t h e r a d v a n t a g e of t o p - u p o p e r a t i o n is t h e inc r e a s e d t h e r m a l stability. T h e c o n s t a n t heat load in the optical e l e m e n t s i m p r o v e s the p e r f o r m a n c e of the e x p e r i m e n t s . O n t h e m a c h i n e side, the t h e r m a l stability r e d u c e s the drift of the different e l e m e n t s , t h u s d e c r e a s i n g c l o s e d orbit distortions. A n o t h e r a d d e d benefit is that c o n s t a n t c u r r e n t o v e r a long t i m e in the s t o r a g e rings a s s u r e s that the B P M are kept at c o n s t a n t g a i n , providing m o r e reliable i n f o r m a t i o n . W H A T IS T O P - U P T o p - u p c o n s i s t of t h e a l m o s t c o n t i n u o u s r u n n i n g of t h e injection s y s t e m , in o r d e r to inject a single s h o t in t h e s t o r a g e ring at periodic intervals in o r d e r t o k e e p a c o n s t a n t current. T y p i c a l f i g u r e s for t h e c u r r e n t stability are a 0.3 %. For t h e S L S v a l u e s of c u r r e n t a n d lifetime (12 h at 2 0 0 m A ) , this c o r r e s p o n d s to a n inj e c t i o n at r o u g h l y 2 m i n u t e s interval, whit a n injected c h a r g e of 0.5 m A . In o r d e r t o r e d u c e the injection repetition rate, t o d e c r e a s e t h e r e q u i r e d injected c h a r g e a n d not to perturb t o o m u c h the e x p e r i m e n t at the b e a m l i n e s , a different a p p r o a c h is to inject e a c h t i m e , the c u r r e n t in t h e ring r e a c h e s a lower limit, a n d to k e e p the injection r u n n i n g until it r e a c h e s a n u p p e r limit. T h i s is t h e s o called f r e q u e n t injection m o d e . A typical o p e r a t i o n m o d e for the S L S is t o k e e p t h e c h a r g e b e t w e e n 2 0 0 a n d 201 m A , with a n injection cycle e v e r y 5 m i n u t e s , a n d with d u r a t i o n of t h e injection p r o c e s s b e t w e e n 10 a n d 15 s e c o n d s (see Fig. 1). TOP-UP AT THE SLS T h e p l a n n e d u s e of top-tp at S L S h a d i m p o r t a n t c o n s e q u e n c e s o n t h e d e s i g n of t h e injection c h a i n . T h e S L S b o o s t e r [1] r e p r e s e n t s a v e r y g o o d s o l u t i o n , providing a v e r y low e m i t t a n c e b e a m , with flexible p o w e r s u p p l i e s a n d excellent low c u r r e n t diagnostic. T h e p u l s e d m a g n e t s (injection k i c k e r s a n d s e p t u m ) in t h e s t o r a g e ring are a l s o v e r y a d v a n c e d a n d suited for top-up operation. T h e first trials with t o p - u p injection w e r e p e r f o r m e d in J u n e 2 0 0 1 , a n d s u b s e q u e n t laundry shifts w e r e d o n e u s i n g it. For user o p e r a t i o n s , it w a s d e c i d e d to s w i t c h t o f r e q u e n t injection m o d e in t h e m i d d l e of S e p t e m b e r 2 0 0 1 . A f t e r w a r d s , this m o d e h a s b e e n c o n s i d e r e d to be o n e of the s t a n d a r d m o d e s for user o p e r a t i o n a n d t h e p r e f e r r e d o n e for s o m e of t h e e x p e r i m e n t s . T h e c o m b i n a t i o n of the low e m i t t a n c e b e a m c o m i n g f r o m t h e booster, the w e l l - m a t c h e d t r a n s f e r line a n d t h e k i c k e r s allow g o o d injection efficiency ( a l m o s t 100 % efficiency c a n be r e a c h e d after o p t i m i s a t i o n w i t h o u t p r o b l e m s ) . T h i s c a n be r e a c h e d by a c l o s e d 40 injection b u m p that r e d u c e s the d i s t u r b a n c e in the s t o r e d b e a m , a n d i n c r e a s e s t h e b e a m stability at t h e s o u r c e point. Fig. 2 s h o w s the position of the s y n c h r o t r o n light s o u r c e at t h e b e a m l i n e 6 S during a t o p up r u n . T h e stability is a s g o o d a s the o n e w i t h o u t t o p up, with no visible effect of t h e injection k i c k e r s . Beam xtabUUy, M m - ?.SS:I, K„ = 11.3:1, //«-iannídi ¡5/09/01 fSS-í Position F i g . 2 : B e a m stability at protein c r y s t a l l o g r a p h y b e a m line 6 S during a t o p - u p r u n . F i g . 3: T h e plot s h o w s t h e c u r r e n t during a 2 4 h o u r period in t h e S L S s t o r a g e ring, running c o n t i n u o u s filling m o d e . REFERENCES [1] W . J o h o , M. M u ñ o z et al., The SLS Booster chrotron, E P A C 1998. [2] L. E m e r y , Top-up at APS. Specifications and Operating Experience, p r o c e e d i n g s of " T o p - u p Inj e c t i o n W o r k s h o p " , 9-8 M a r c h , D a r e s b u r y L a b o ratory, UK. PROBLEMS T h e t o p - u p o p e r a t i o n at t h e S L S r e q u i r e s certain preconditions. In o r d e r t o h a v e a low f r e q u e n c y of injection, w e m u s t e n s u r e a high injection c h a r g e a n d g o o d injection efficiency. T h i s requires a stable injection system. A n o t h e r point t o c o n s i d e r is the effect of the injection perturbation o v e r t h e s t o r e d b e a m . In our c a s e , this effect is s m a l l , but p r o b l e m s in t h e data acquisition at the e x p e r i m e n t c a n be s o l v e d by gating t h e d e t e c t o r during the injection, a solution a l r e a d y a d o p t e d at t h e A P S [2]. CONCLUSION The SLS m o d e for t a n c e by effect the drifts. w a s o p e r a t e d in t o p - u p or f r e q u e n t injection t h e last six m o n t h , s h o w i n g a g o o d a c c e p the u s e r s . T h i s m o d e h a s a v e r y beneficial machine performance, reducing the thermal T h e o p e r a t i o n of S L S in f r e q u e n t injection m o d e h a s b e e n a s u c c e s s . Fig. 3 s h o w s a typical plot of c u r r e n t v a l u e s of during a 2 4 hour r u n , with a g o o d c u r r e n t stability. Syn- 41 STATUS OF THE SLS CONTROL SYSTEM S. Hunt, M. Dach, M. Grunder, M. Heiniger, C. Higgs, M. Janousch, R. Kappeler, T. Korhonen, R. Krempaska, J. Krempasky, A. Luedeke, D. Maden, T. Pal, W. Portmann, H. Pruchova, D. Vermeulen The machine and beamline control system consist of 150 VME crates running Epics on Motorola Power PC processors. The network is based on switched 100 Mbit/sec and Gigabit Ethernet technology. Consoles and servers are PCs running Linux. To achieve high availability of the control system, emphasis has been put on software engineering and the use of a relational database for all system configuration. Most hardware channels are directly connected to VME input/output cards rather than using a field-bus, and this has resulted in higher performance, better reliability, and reduced costs. Any of the 100V00 data channels can be archived at high speed, and the resulting data accessed through the Web. The VME input/output cards can be 'hot-swapped' in case of failure, and have circular buffers for post-mortem analysis in case of beam loss. Having all machine parameters available through the control system in a consistent and easy to use manner has contributed to the fast and successful commissioning of the machine. CONTROL SYSTEM ARCHITECTURE E q u i p m e n t interface level M o n i t o r a n d control of e q u i p m e n t is via t h e direct c o n nection to 150 V M E c r a t e s r u n n i n g E p i c s [1]. S t a n d a r d I/O m o d u l e s provide interfaces for a n a l o g u e a n d digital input a n d o u t p u t as well a s m o t o r control, t e m perature m e a s u r e m e n t , serial line c o n n e c t i o n , scaler m o d u l e s a n d position e n c o d e r s . M o s t interfaces are industry p a c k (IP) m o d u l e s m o u n t e d o n h o t - s w a p V M E 6 4 X carrier b o a r d s . C o n n e c t i o n to signals is on t h e rear of the crate using 8 0 m m d e e p transition m o d ules. Network T h e S L S c o n t r o l s n e t w o r k is a 100 Mbit s w i t c h e d E t h e r n e t network, with s o m e 1 Gbit c o n n e c t i o n s . T h e n e t w o r k is isolated, with no routing to t h e rest of the institute or t o the Internet. S o m e d e v i c e s s u c h as t h e file a n d d a t a b a s e s e r v e r s are o n both t h e private a n d g e n e r a l network, allowing t h e e x c h a n g e of data t o office a n d central s y s t e m s . Operator interface level T h e o p e r a t o r interface level c o n s i s t s of Linux P C s u s e d as c o n s o l e s a n d s e r v e r s . C o n s o l e s in t h e control r o o m h a v e four s c r e e n s e a c h , a n d a n u m b e r of single s c r e e n c o n s o l e s , w h i c h a l s o act as boot s e r v e r s , are located in t h e t e c h n i c a l gallery a n d on b e a m lines. HIGHLIGHTS Timing T h e c o n t r o l s t i m i n g s y s t e m [3] is a high p e r f o r m a n c e d e s i g n b a s e d on the A P S t i m i n g s y s t e m . Its high resolution a n d low jitter p e r f o r m a n c e allows t h e a c c u rate s y n c h r o n i z a t i o n of h a r d w a r e signals a n d s o f t w a r e a c r o s s t h e S L S control s y s t e m . Its u s e simplifies the o p e r a t i o n of t h e m a c h i n e allowing c o m p l e x s e q u e n c e s of e v e n t s to be c a r r i e d out by c h a n g i n g v e r y f e w par a m e t e r s . Its integration into E p i c s m e a n s t i m i n g par a m e t e r s c a n be t r e a t e d j u s t like a n y o t h e r control s y s t e m variable. Online model server T h e on-line m o d e l server a n d p h y s i c s a p p l i c a t i o n s are p r o v i d e d by t h e b e a m d y n a m i c s g r o u p [4]. T h e m o d e l server c a n read the b e a m positions a n d actual m a g n e t s t r e n g t h s f o r m the control s y s t e m a n d c a n v e r y a c c u r a t e l y predict the effects of p r o p o s e d n e w settings before t h e y are i m p l e m e n t e d . T h e v e r y close a g r e e m e n t of t h e m o d e l a n d m a c h i n e m a k e it possible t o a c h i e v e v e r y g o o d m a c h i n e p e r f o r m a n c e including b e a m stability. Integration of Beamlines B e a m l i n e c o n t r o l s [5] are h a n d l e d by t h e s a m e h a r d w a r e a n d s o f t w a r e u s e d for m a c h i n e c o n t r o l s . A s well a s r e d u c i n g c o s t s a n d d e v e l o p m e n t t i m e this h a s e n a b l e d c o n t r o l s e n g i n e e r s to w o r k o n either s y s t e m a s priorities dictate Integration of sub-systems with turn-key controls Both, the Linac a n d t h e R F m o d u l a t o r s y s t e m s w e r e delivered by industry a s turn k e y c o n t r a c t s [2]. T h e s e s y s t e m s w e r e delivered with an E p i c s control s y s t e m m a k i n g it s i m p l e t o integrate into t h e global control system. Moving physics applications and parameters into the control system Calculation of s o m e m a c h i n e p a r a m e t e r s h a s b e e n m o v e d f r o m high-level a p p l i c a t i o n s into the low-level control s y s t e m [6]. T h i s p r o v i d e s m o r e stability a n d higher p e r f o r m a n c e . It a l s o allows t h e u s e of our s t a n d a r d tools s u c h as t h e archiver, a l a r m h a n d l e r a n d s a v e - r e s t o r e tools. Digital p o w e r s u p p l y control Control of t h e 5 0 0 b o o s t e r a n d s t o r a g e ring m a g n e t s is c a r r i e d out using individual fully digital p o w e r s u p p l i e s . T h i s h a s c o n t r i b u t e d t o t h e v e r y high stability of the e l e c t r o n b e a m . Interface to the V M E c r a t e s f r o m the p o w e r s u p p l y controller is via a c u s t o m d e s i g n e d optical serial link. All internal control p a r a m e t e r s a n d 42 r e a d i n g s c a n be read a n d set via this link a n d a p p e a r as s t a n d a r d Epics p r o c e s s v a r i a b l e s . Hot s w a p and post m o r t e m analysis M o s t of o u r I/O m o d u l e s s u p p o r t t h e f e a t u r e s of hot s w a p a n d h a v e h a r d w a r e buffers for p o s t - m o r t e m analysis following loss of b e a m or o t h e r e v e n t s . T h e a n a l o g u e input m o d u l e s a l s o s u p p o r t o v e r - s a m p l i n g of data t o give 18-bit resolution a n d noise r e d u c t i o n by averaging. Relational database A n O r a c l e relational d a t a b a s e is u s e d for s y s t e m c o n figuration, a n d o p e r a t i o n a l m a n a g e m e n t . F e a t u r e s p r o v i d e d include g e n e r a t i n g c o n f i g u r a t i o n files (Archiving, C d e v , etc.), reporting of b u g s a n d s y s t e m failures, t r a c k i n g the location of all h a r d w a r e m o d u l e s , a n d g e n e r a t i n g E p i c s substitution files. U s e r s interrogate a n d m o d i f y d a t a b a s e t a b l e s using a W e b interface. REASONS FOR SUCCESS Standardization W e h a v e s u c c e e d e d in s t a n d a r d i z i n g o n a s m a l l n u m ber of different h a r d w a r e m o d u l e s . T h e s a m e h a r d w a r e is u s e d t o m o n i t o r a n d control a large variety of devices. This has reduced development time and m a k e s m a i n t e n a n c e easier. T h e s a m e v e r s i o n of s o f t w a r e is l o a d e d into all s y s t e m s a n d regularly a u t o m a t i c a l l y u p d a t e d . T h i s includes low-level softw a r e (Epics s y s t e m c o d e a n d drivers), a s well a s s y s t e m c o d e , application c o d e , a n d c o n f i g u r a t i o n files on Linux s e r v e r s a n d w o r k s t a t i o n s . W h e n a d e v e l o p e r c h a n g e s an application on r e q u e s t t h e c h a n g e s are distributed t o all s y s t e m s . Not b u i l d i n g h a r d w a r e in h o u s e W h e r e possible, c o m m e r c i a l off the shelf m o d u l e s h a v e b e e n u s e d . W h e r e s u c h m o d u l e s w e r e not available to m e e t o u r r e q u i r e m e n t s , c o n t r a c t s w e r e p l a c e d with industry for d e s i g n a n d p r o d u c t i o n of t h e n e c e s s a r y m o d u l e s . C o n t r a c t s for d e s i g n a n d p r o d u c t i o n of V M E a n d industry p a c k m o d u l e s n o w include the provision of Epics drivers. T h i s h a s further r e d u c e d t h e t i m e for testing a n d integration into t h e control s y s t e m . No Fieldbus By h a v i n g direct c o n n e c t i o n using V M E I/O rather t h a n using a fieldbus level, the s y s t e m is simpler, m o r e robust a n d h a s higher p e r f o r m a n c e . C o s t per c h a n n e l is low d u e to high signal densities, a n d m a i n t e n a n c e a n d d e b u g g i n g are easier. Not making major software developments By largely using existing s o f t w a r e c o m p o n e n t s , w e h a v e b e e n able t o c o n c e n t r a t e on solving t h e c o n t r o l s p r o b l e m s n e e d e d for e a c h s u b s y s t e m . T h i s h a s m e a n t w e w e r e able t o deliver w o r k i n g c o n t r o l s s y s t e m s early in t h e project, a n d did not e x p e r i e n c e any m a j o r p r o b l e m s bringing t h e s y s t e m into o p e r a t i o n . E v e n w h e n s o m e t o o l s did not provide all of t h e f e a t u r e s w e w o u l d h a v e ideally liked, w e h a v e lived with a slightly r e d u c e d functionality, rather that e m b a r k o n major developments. REFERENCES [1] L. Dalesio et al., The Experimental Physics Industrial Control System Architecture: Past, sent and Futur, I C A L E P C S 1993, Berlin. and Pre- [2] S. Hunt, Purchasing Accelerator Subsystems Turnkey Components, ICALEPCS 2001, Jose. as San [3] T. K o r h o n e n , M. Heiniger, Timing System of the Swiss Light Source, I C A L E P C S 2 0 0 1 , S a n J o s e . [4] M. B ö g e , J . C h r i n , On the use Level Software Applications ICALEPCS 2001, San Jose. of Corba in at the High SLS, [5] J . K r e m p a s k y et al., The SLS Beamlines Data Acquisition and Control System , I C A L E P C S 2 0 0 1 , San Jose. [6] A. L u e d e k e , System integration of high level cations during commissioning of the Swiss Source, I C A L E P C S 2 0 0 1 , S a n J o s e . appliLight 43 BEAMLINES, OVERVIEW 44 BEAMLINES AND USER ASPECTS J.F. van der Veen, STATUS OF THE BEAMLINES T h e important target of " p h o t o n s o n s a m p l e " at t h e S L S by A u g u s t 2 0 0 1 c o u l d be met, t h a n k s t o t h e d e d i c a t e d i n v o l v e m e n t of the S L S c r e w a n d o u r coll e a g u e s within P S I . T h e c o l l a b o r a t i o n s w i t h B E S S Y , S P R I N G - 8 , E L E T T R A a n d A P S , as well as with coll e a g u e s f r o m S w i s s universities a n d E T H greatly c o n tributed t o t h e s u c c e s s . M i l e s t o n e s in 2 0 0 1 : • T h e insertion d e v i c e s W 6 1 (wiggler), U 2 4 (inv a c u u m u n d u l a t o r ) , o n e unit of U E 5 6 ( S a s a k i / A P P L E - l l t y p e u n d u l a t o r ) a n d t h e t w o units of U E 2 1 2 ( e l e c t r o m a g n e t i c u n d u l a t o r ) h a v e b e e n installed in t h e s t o r a g e ring. T h e influence of t h e insertion d e v i c e s o n t h e e l e c t r o n orbit h a s b e e n studied and minimized. • T h e optics of the m a t e r i a l s s c i e n c e ( M S ) b e a m line h a s b e e n c o m m i s s i o n e d a n d the t o m o g r a p h y a n d p o w d e r diffraction stations are n o w in o p e r a t i o n . T h e s u r f a c e d i f f r a c t o m e t e r will be installed in J a n u a r y 2 0 0 2 . T h e large heat load g e n e r a t e d by t h e w i g g l e r at a g a p of 11.5 m m is h a n d l e d by a rotating c a r b o n filter. In 2 0 0 2 , t h e w i g g l e r g a p will be r e d u c e d further. • First b e a m o n the protein c r y s t a l l o g r a p h y ( P X ) b e a m l i n e w a s d e t e c t e d in M a y 2 0 0 1 . T h e c o m m i s s i o n i n g of t h e o p t i c s t o o k place in J u n e a n d July, a n d t h e first h i g h - r e s o l u t i o n d a t a w e r e collected o n J u l y 12. T h e i n - v a c u u m undulator, on loan f r o m S P R I N G - 8 , p e r f o r m s well a n d h a s b e e n o p e r a t e d w i t h o u t r e d u c t i o n of b e a m lifetime at g a p s d o w n t o 6.5 m m . A total of 7 0 user shifts w a s d e l i v e r e d t o 14 different g r o u p s , 6 of t h e m f r o m industry. • At the b e a m l i n e for s u r f a c e a n d interface s p e c t r o s c o p y (SIS), t h e u n d u l a t o r a n d the e l e c t r o n energy analyser have been commissioned and the first p h o t o e m i s s i o n d a t a h a v e b e e n t a k e n . O p e r a t i o n of the U E 2 1 2 in t h e a p e r i o d i c m o d e led to a s u b s t a n t i a l r e d u c t i o n of higher h a r m o n i c s in the p h o t o e m i s s i o n s p e c t r a . T h i s allows for d e t a i l e d s t u d i e s of the F e r m i - e d g e of m a t e r i a l s , essentially free of b a c k g r o u n d . • T h e b e a m l i n e for s u r f a c e a n d interface m i c r o s c o p y ( S I M ) r e c e i v e d the u n d u l a t o r U E 5 6 in November 2001. Despite the late start, substantial progress was made with the c o m m i s s i o n i n g of the optics. T h e first flux c u r v e s were measured. Earlier in t h e year, the photoemission microscope was commissioned. S o o n , t h e first pilot e x p e r i m e n t s will t a k e p l a c e . R. Abela • First m e a s u r e m e n t s w e r e m a d e with t h e pixel and microstrip detectors. The point-spread f u n c t i o n of the pixel d e t e c t o r is excellent. First priority n o w is r e d u c i n g t h e p e r c e n t a g e of d e a d pixels. T h e microstrip d e t e c t o r w a s e m p l o y e d t o r e c o r d p o w d e r diffraction data a s a f u n c t i o n of time. • T h e t o p - u p m o d e of m a c h i n e o p e r a t i o n w a s u s e d succesfully and is b e c o m i n g the favourite o p e r a t i o n m o d e for user runs. F i g . 1 : B e a m l i n e layout at t h e S L S PLANNING OF NEW BEAMLINES AND STATIONS S u b s t a n t i a l p r o g r e s s w a s m a d e in t h e p l a n n i n g a n d d e s i g n of n e w b e a m l i n e s : • T h e optical layout of the u n d u l a t o r b e a m l i n e for m i c r o - X A F S h a s b e e n m a d e a n d t h e d e s i g n report h a s b e e n c o m p l e t e d at t h e e n d of t h e year. • A start h a s b e e n m a d e with t h e F E M T O - p r o j e c t , a i m e d at realising f e m t o s e c o n d p u l s e s u s i n g e l e c t r o n - b e a m slicing t e c h n i q u e s . T h e m a c h i n e group has studied how the electron b e a m properties w o u l d b e affected by t h e p l a c e m e n t of t h e m o d u l a t o r , radiator a n d t h e d i s p e r s i v e s e c t i o n in a single long straight s e c t i o n . F r o m the point of v i e w of e l e c t r o n b e a m optics, t h e r e s e e m to be no m a j o r o b s t a c l e s . E x t r e m e l y c h a l l e n g i n g will b e the s e p a r a t i o n of t h e s l i c e d b e a m f r o m t h e m a i n beam. • P r e p a r a t i o n s for a c o l l a b o r a t i o n with c o l l e a g u e s from LURE and SOLEIL have been made. This involves t h e realisation of a n u n d u l a t o r b e a m l i n e at S L S for m i c r o - X A F S e x p e r i m e n t s in t h e soft X ray r e g i o n . T h i s d e m a n d i n g e n e r g y r e g i m e includes the a b s o r p t i o n e d g e s of a n u m b e r of environmentally important elements. 45 • A b e n d i n g m a g n e t b e a m l i n e will be d e v o t e d to m a c h i n e d i a g n o s t i c s a n d for t e s t s of optical c o m p o n e n t s . T h e b e a m l i n e will be r e a l i s e d in 2002. • A t t h e e n d of 2 0 0 1 , a start w a s m a d e with t h e t e c h n i c a l layout of a b e n d i n g - m a g n e t b e a m l i n e for infrared s p e c t r o s c o p y , at a later s t a g e t o b e c o m b i n e d with V U V - s p e c t r o s c o p y . T h e f o l l o w i n g n e w s t a t i o n s are p l a n n e d : • • A t t h e S I M b e a m l i n e , a station for soft X - r a y r e s o n a n t s c a t t e r i n g s t u d i e s of m a g n e t i s m a n d c o r r e l a t e d - e l e c t r o n s y s t e m s (in c o l l a b o r a t i o n with colleagues from CNRS, Grenoble). B e l o w are s o m e user statistics (status O c t o b e r 2 0 0 1 ). Distribution of user groups over disciplines Life sciences Materials science Environmental sciences Chemistry, energy research Surface science 0 5 10 15 20 25 30 Nr. of groups A t a s i d e b r a n c h of t h e S I S b e a m l i n e , a station for X - r a y interference lithography. T h i s activity is led by the L a b o r a t o r y for Micro- a n d N a n o t e c h n o l o g y ( L M N ) at P S I . USER ASPECTS In 2 0 0 1 , v a r i o u s specialist user g r o u p s c o n v e n e d at S L S . T h e g e n e r a l u s e r s m e e t i n g , held o n N o v e m b e r 14 a n d 15, w a s a t t e n d e d by m o r e t h a n 100 p e r s o n s . Furthermore: • T h e S L S w a s officially i n a u g u r a t e d on 19 O c t o ber 2 0 0 1 , in t h e p r e s e n c e of Federal Councillor Ruth D r e i f u s s . • A proposal review committee has been formed, chair Prof. W . D . S c h n e i d e r (Univ. L a u s a n n e ) . • A call for p r o p o s a l s for pilot e x p e r i m e n t s w a s s e n t out in Juni 2 0 0 1 to e x p e r t u s e r s . A b o u t 4 0 p r o p o s a l s w e r e s u b m i t t e d , of w h i c h a n u m b e r rec e i v e d b e a m t i m e o n the M S a n d P X b e a m l i n e s . • A f o r m a l call for p r o p o s a l s w a s s e n t t o E u r o p e a n s c i e n c e m a g a z i n e s for p u b l i c a t i o n . T h e call a p p e a r s in J a n u a r - F e b r u a r y 2 0 0 2 . D e a d l i n e for a p plication is 8 M a r c h 2 0 0 2 . • A n u m b e r of p h a r m a c e u t i c a l c o m p a n i e s h a v e u s e d o u r P X b e a m l i n e . C o n t r a c t s for proprietary u s e in 2 0 0 2 h a v e b e e n s i g n e d . Geographical distribution of SLS user groups EUrB 'rAci^taen (3» pg tm <9 m F i g . 2 : Statistics of (potential) u s e r s of S L S 46 47 BEAMLINES, DETAILS 48 SURFACE / INTERFACE SPECTROSCOPY BEAMLINE L. Patthey, M. Shi, J. Krempasky, T. Schmidt, R. U. Flechsig, Abela C. Quitmann, R. Betemps, M. Botkine, In this contribution we report on the status of the Surface and Interface Spectroscopy beamline (SIS), which is under commissioning at the SLS. This beamline is allows studies of the electronic and atomic structure of surfaces and interfaces over a wide temperature range. The twin undulator UE212 and the optics of the beamline are operational and provide light with high-energy resolution and with low higher-harmonic content. The first measurements have been performed with the photoelectron spectrometer. Using the quasiperiodic scheme of the UE212 the strong rejection of higher harmonic radiation required for high-resolution photoemission experiment was achieved. T h e S u r f a c e a n d Interface S p e c t r o s c o p y b e a m l i n e (SIS) p r o v i d e s a state-of-the-art e x p e r i m e n t a l set-up to s t u d y t h e electronic a n d a t o m i c structure of surf a c e s . T h e b e a m l i n e h a s b e e n d e s i g n e d for high p h o t o n e n e r g y resolution with low h a r m o n i c c o n t a m i nation a n d v a r i a b l e light polarization. T h e r e f o r e , this b e a m l i n e is well suited for h i g h - r e s o l u t i o n p h o t o e m i s s i o n , a n g l e - r e s o l v e d ultra-violet p h o t o e l e c t r o n s p e c t r o s c o p y ( A R U P S ) , p h o t o e l e c t r o n diffraction, F e r m i surface mapping, X-ray absorption spectroscopy ( X A S ) a n d X - r a y e m i s s i o n s p e c t r o s c o p y ( X E S ) exp e r i m e n t s . T h e p h o t o n e n e r g y r a n g e is 1 0 - 8 0 0 e V with a n overall resolving p o w e r E/AE > 1 0 0 0 0 . T h e b e a m l i n e is d e s c r i b e d in m o r e detail in r e f e r e n c e s [ 1 2]. EXPERIMENTAL STATION T h e e x p e r i m e n t a l station (Fig. 1) h a s b e e n d e l i v e r e d a n d installed at PSI in t h e spring of 2 0 0 1 by P I N K V a c u u m , G e r m a n y . T h e e x p e r i m e n t a l station is e q u i p p e d with a h i g h - r e s o l u t i o n p h o t o e l e c t r o n s p e c t r o m e t e r S E S - 2 0 0 2 f r o m G a m m a d a t a with a d e m o n strated resolution of 1.7 m e V [3]. A precision m a n i p u lator e q u i p p e d with a H e - f l o w cryostat f r o m low t e m perature facilities g r o u p at PSI [4] a n d a high precision s a m p l e rotation s t a g e [5] is m o u n t e d o n the e x p e r i m e n t a l station. T h i s m a n i p u l a t o r a l l o w s for a n g l e - r e s o l v e d m e a s u r e m e n t s o v e r 2n s t e r a d i a n d o w n t o 10 K. At present, t h e a c h i e v e d resolution o n solid s a m p l e s is 8.6 m e V (Fig. 2), t h e s p e c t r u m is r e c o r d e d with H e l a radiation. T h e X A S s p e c t r o m e t e r will be installed in m i d d l e 2 0 0 2 w h i l e t h e X E S s p e c t r o m e t e r is s c h e d u l e d for e n d 2 0 0 2 . F i g . 1 : S i d e v i e w of t h e e x p e r i m e n t a l station installed on t h e large rotating p l a t f o r m . ' ^ =i ' ~ S >> ' -\ ' \ ' ' ' • Cu (110) Fermi edge hv-21.2eV T " 10.5 K B i n d i n g Energy ( m e V ) Fig. 2: Fermi edge photoemission C u ( 1 1 0 ) at low t e m p e r a t u r e . spectrum from BEAMLINE OPTICS T h e m o n o c h r o m a t o r [2] of t h e b e a m l i n e c o m b i n e s normal-incidence (NIM) and grazing-incidence (PGM) g r a t i n g s a n d o p e r a t e s with vertically a n d horizontally collimated beam. The monochromator (Jenoptik, G e r m a n y ) , t h e mirror c h a m b e r s (Bestec, G e r m a n y ) , g r a t i n g s , a n d t h e m i r r o r s (Carl Z e i s s , G e r m a n y ) w e r e d e l i v e r e d in D e c e m b e r 2 0 0 0 . Until e n d of J u l y 2 0 0 1 , 49 all optical components were installed. The c o m m i s s i o n i n g of t h e S I S b e a m l i n e started in A u g u s t 2 0 0 1 . Fig. 3 s h o w s t h e s p e c t r u m of t h e U E 2 1 2 u n d u l a t o r m e a s u r e d b y a n e n e r g y s c a n of t h e monochromator. T h e fundamental and the harmonics up t o t h e 9 o r d e r a r e clearly visible. F o r this measurement the monochromator was scanned from h v = 2 0 e V u p t o 1 2 6 e V with a fixed f o c u s c o n s t a n t of Cff = 2 . 0 . T h e u n d u l a t o r U E 2 1 2 w a s o p e r a t e d at a c o n s t a n t c u r r e n t I = 7 0 A l e a d i n g t o a f u n d a m e n t a l at hv = 2 3 . 5 e V . T h e p e a k s in t h e figure a r e labeled b y the u n d u l a t o r h a r m o n i c a n d t h e grating diffraction order. t h h a r m o n i c signal is s u p p r e s s e d b y a f a c t o r of m o r e t h a n 1 2 5 (for t h e 3 r d h a r m o n i c ) a n d t h e b a c k g r o u n d at E is r e d u c e d b y a f a c t o r of 3 5 . U s i n g t h e q u a s i periodic m o d e results in a p h o t o n b e a m of high spectral purity with less t h a n 0.5 % h i g h e r h a r m o n i c contamination. F Ag4d fundamental (hv-23.2 eV) U 2 1 2 energy scan U2l2curren1:70A Ag 4dfromhigher harminc light: ring c u r r e n t : 1 6 m A 2nd. harmonic (hv-46.4 eV) a p e r t u r e : (D.3 x 1.5) m Ctl: 2.0 3rd. harmonic (hv-69.6 eV) g r a t i n g : 30O.'mm A. / —I -10 1 1 -20 -30 Binding Energy (eV) I— -50 Fig. 4 : P h o t o e m i s s i o n s p e c t r u m r e c o r d e d with t h e U E 2 1 2 o p e r a t i n g in n o r m a l - (blue) a n d q u a s i p e r i o d i c m o d e (red). photon energy OV) REFERCENCES Fig. 3 : E n e r g y s c a n of t h e m o n o c h r o m a t o r s h o w i n g the s p e c t r u m of the U E 2 1 2 undulator. [1] L. Patthey, T. Schmidt, U. F l e c h s i g , C. Q u i t m a n n , M. S h i , R. B e t e m p s , M. B o t k i n e , R. A b e l a , Surface and Interface: SPECTROSCOPY beamline, P S I Scientific Report 2 0 0 0 , V o l u m e V I I , 6 0 . [2] U. F l e c h s i g , L. Patthey, C. Q u i t m a n n , Plane Grating Monochromators for the SLS soft x-ray beamlines, P S I Scientific Report 2 0 0 0 , V o l u m e VII, 62. [3] T e s t e d with g a s cell a n d m o n o c h r o m a t i z e d H e plasma UV source from Gammadata Scienta. [4] P. Boni, B. v a n d e n Brandt, P. Hautle, J.A. K o n ter, S . M a n g o , M. Zolliker, A compact helium flow cryostat for TASP, P S I Scientific R e p o r t 1 9 9 8 , V o l u m e III, 7 3 . [5] P. A e b i , private [6] T . S c h m i d t , G . Ingold, A . Imhof, B.D. P a t t e r s o n , L. Patthey, C. Q u i t m a n n , C. S c h u l z e - B r i e s e , R. A b e l a , N u c l . Inst, a n d M e t h . A 4 6 7 - 4 6 8 (2001) 126-129. INSERTION DEVICE T h e twin U E 2 1 2 u n d u l a t o r c o n s i s t of t w o e l e c t r o m a g net u n d u l a t o r s [6] m a n u f a c t u r e d b y B u d k e r Institute of N u c l e a r P h y s i c s in N o v o s i b i r s k , R u s s i a . T h e t w o u n d u l a t o r s w e r e installed in t h e S L S t u n n e l in J u n e 2 0 0 1 a n d in O c t o b e r 2 0 0 1 , respectively. T h e y a r e both in o p e r a t i o n . T h e q u a s i p e r i o d i c m o d e w a s t e s t e d for t h e first t i m e in O c t o b e r 2 0 0 1 . In this m o d e , t w o separate power supplies are used to power the U E 2 1 2 , a c u r r e n t of U = 6 0 A a n d l = 7 2 A, respectively. T h i s setting p r o v i d e s a n a m p l i t u d e m o d u l a t i o n of t h e m a g n e t i c field o p t i m i z e d t o r e d u c e the overall h a r m o n i c c o n t a m i n a t i o n . T h e h a r m o n i c contamination was measured using the p h o t o e m i s s i o n signal of 4 d state of a solid silver s a m p l e a n d is s h o w n in Fig. 4 . T h e signal a b o v e t h e F e r m i e n e r g y ( E ) is entirely d u e t o h i g h e r - o r d e r light e m i t t e d b y t h e undulator. In t h e periodic m o d e (blue) the light f r o m higher h a r m o n i c s g i v e s a n u n d e s i r a b l e 4 d s i g n a l a b o v e E a n d a n important b a c k g r o u n d at E . W i t h t h e q u a s i p e r i o d i c m o d e (red), t h e h i g h e r 2 F F F communication. 50 SURFACE / INTERFACE MICROSCOPY BEAMLINE C. Quitmann, U. Flechsig, G. Ingold, R. Krempaska, J. Krempasky, F. Nolting, L. Patthey, T. Schmidt All major components of the Surface/Interface Microscopy (SIM) beamline have been installed and commissioning has started successfully. The photoemission electron microscope (PEEM) has delivered first images. The optics and the undulator were installed and first undulator light was successfully guided through the entire beamline allowing preliminary checks of the different components. INTRODUCTION T h e S u r f a c e / I n t e r f a c e : M i c r o s c o p y ( S I M ) B e a m l i n e will a l l o w t o s t u d y t h e electronic a n d g e o m e t r i c structure of s u r f a c e s o n a n a n o m e t e r s c a l e [ 1 ] . B e c a u s e of t h e large flexibility in the light polarization it is particularly well suited for dichroic e x p e r i m e n t s o n m a g n e t i c s a m ples. T h e m a i n d e s i g n p a r a m e t e r s are g i v e n in T a b l e 1. Photon energy 95 - 2 0 0 0 e V Photon energy resolution hv / A h v > 5 0 0 0 Polarization Linear: (-6° t o 186°) Circular: right or left Spatial resolution 30 - 1 0 0 nm Photoelectron energy resolution 0.15 e V Sample temperature 120 K < T < 1 8 0 0 K D u r i n g t h e first c o m m i s s i o n i n g period t h e e n e r g y a n a lyzer is not installed t o r e d u c e t h e c o m p l e x i t y of t h e i n s t r u m e n t . It will be a d d e d in 2 0 0 2 . Optics T h e optical layout is b a s e d on a p l a n e g r a t i n g m o n o c h r o m a t o r with c o l l i m a t e d light [ 2 ] . T h e quality of t h e mirrors a n d g r a t i n g s w a s t e s t e d in c o l l a b o r a t i o n with t h e m e t r o l o g y l a b o r a t o r i e s at E L E T T R A a n d E S R F . All optical c o m p o n e n t s m e t or e x c e e d e d t h e s p e c i f i c a tions. By S e p t e m b e r 2 0 0 1 , the m e c h a n i c s a n d optics w e r e installed, a l i g n e d , a n d r e a d y for c o m m i s s i o n i n g . Fig. 2 s h o w s a n inside v i e w of t h e radiation s h i e l d e d Pb-hutch. T a b l e 1 : D e s i g n p a r a m e t e r s of S I M b e a m l i n e a n d t h e PEEM microscope. STATUS Microscope T h e m i c r o s c o p e (Fig. 1) w a s d e l i v e r e d in M a r c h by ELMITEC Elektronenmikroskopie GmbH. It w a s installed a n d within 3 d a y s d e l i v e r e d first i m a g e s . F i g . 2 : Inside v i e w of the P b - h u t c h s h o w i n g t h e collim a t i n g mirror c h a m b e r , the p r i m a r y radiation s h i e l d , an a p e r t u r e unit, a n d t h e m o n o c h r o m a t o r (left to right). All m a j o r c o m p o n e n t s are installed a n d first tests w e r e successful. Insertion device T h e t w o u n d u l a t o r s U E 5 6 are b e i n g built in c o l l a b o r a tion with B E S S Y [ 3 ] . U s i n g t w i n u n d u l a t o r s will a l l o w rapid helicity s w i t c h i n g [ 1 ] . T h e first d e v i c e w a s c o m pleted in O c t o b e r 2 0 0 1 a n d w a s installed d u r i n g t h e N o v e m b e r s h u t - d o w n . It is s h o w n in Fig. 3. T h e p h a s e error is b e l o w 3° a l l o w i n g o p e r a t i o n o n t h e h i g h e r u n dulator h a r m o n i c s w i t h o u t significant loss of intensity. T h e s e c o n d d e v i c e is b e i n g a s s e m b l e d a n d will be installed in m i d 2 0 0 2 . F i g . 1 : T o p v i e w of t h e S I M e n d s t a t i o n s h o w i n g t h e P E E M a n d t h e a s s o c i a t e d r a c k s for e l e c t r o n i c s . T h e light e n t e r s t h e m i c r o s c o p e f r o m the right h a n d s i d e . 51 C o m m i s s i o n i n g will c o n t i n u e in F e b r u a r y 2 0 0 2 after u p g r a d i n g t h e c o o l i n g s y s t e m of t h e optics a n d after t h e installation of a s e c o n d g r a t i n g ( 1 2 0 0 / m m ) . T e s t s of the twin u n d u l a t o r c o n c e p t for helicity s w i t c h i n g [ 1 , 3] will b e p e r f o r m e d after installation of the s e c o n d U E 5 6 in the s u m m e r . P L A N S FOR 2002/2003 Beamline After c o m p l e t i n g t h e c o m m i s s i o n i n g w o r k v a r i o u s upg r a d e s will be installed. T h e s e include a s e p a r a t e p r e p a r a t i o n c h a m b e r for s a m p l e p r e p a r a t i o n in U H V a n d i m p r o v e d r e f o c u s o p t i c s u s i n g b e n d a b l e mirrors. User operation F i g . 3: U n d u l a t o r U E 5 6 / I prior to its installation. A s e c o n d identical d e v i c e is b e i n g a s s e m b l e d . T h e t w i n u n d u l a t o r s will a l l o w rapid helicity s w i t c h i n g . Commissioning results T h e s h o r t t i m e b e t w e e n t h e u n d u l a t o r installation a n d the Christmas s h u t - d o w n w a s u s e d for a first c o m m i s s i o n i n g p e r i o d . Light w a s g u i d e d t h r o u g h t h e b e a m l i n e a n d first p r e l i m i n a r y t e s t s w e r e p e r f o r m e d . A first flux c u r v e m e a s u r e d using a S i - d i o d e b e h i n d t h e r e f o c u s mirror is s h o w n in Fig. 4 . For a m a g n e t i c g a p of 18.0 m m , the f u n d a m e n t a l of the u n d u l a t o r is l o c a t e d at hv = 113.8 e V . T h i s p h o t o n e n e r g y a n d t h e w i d t h of 3 % F W H M a s well a s the s i d e - b a n d s w h i c h are visible in this l o g a r i t h m i c plot a g r e e well with t h e c a l c u lated p e r f o r m a n c e of t h e U E 5 6 ( 3 2 p e r i o d s ) . S m a l l a m o u n t s of higher o r d e r light are visible at h i g h e r photon energy. F i g . 4 : First flux c u r v e m e a s u r e d after the r e f o c u s mirror at t h e S I M b e a m l i n e with a single u n d u l a t o r a n d 3 0 m A ring current. A s i d e f r o m the f u n d a m e n t a l at 113.8 e V , h i g h e r o r d e r radiation is visible at 143 e V a n d 151 e V . U n d u l a t o r s i d e - b a n d s c a n be s e e n o n both s i d e s of t h e f u n d a m e n t a l . After finishing t h e basic c o m m i s s i o n i n g w o r k t h e b e a m l i n e will be t e s t e d in c o o p e r a t i o n with u s e r s during a set of pilot e x p e r i m e n t s . In t h e s e c o n d half of 2 0 0 2 t h e first regular u s e r s will be able t o p e r f o r m e x p e r i m e n t s at this b e a m l i n e . REFERENCES [1] C. Q u i t m a n n , U. F l e c h s i g , L. Patthey, T. S c h m i d t , G. Ingold, M. H o w e l l s , M. J a n o u s c h , R. A b e l a , Surface Science 480 (2001) 173-179. [2] U. F l e c h s i g , L. Patthey, C. Q u i t m a n n , N u c l . Instr. Meth. A 467-468 (2001 ) 4 7 9 - 4 8 1 . [3] T. S c h m i d t , G. Ingold, A. Imhof, B.D. P a t t e r s o n , L. Patthey, C. Q u i t m a n n , C. S c h u l z e - B r i e s e , R. A b e l a , N u c l . Instr. M e t h . A 4 6 7 - 4 6 8 ( 2 0 0 1 ) 126-129. 52 THE MATERIALS SCIENCE BEAMLINE B.D. Patterson, Th. Bortolamedi, The Materials Science test user operation. Beamline Q. Chen, F. Gozzo, M. Kropf, P.R. Willmott M. Lange, saw "first light" in 2001 and is presently INTRODUCTION T h e Materials S c i e n c e B e a m l i n e [1] at t h e S w i s s Light S o u r c e is d e s i g n e d to provide a high flux of hard X - r a y s (5-40 k e V ) into a s m a l l s p o t ( 1 x 1 m m ) at o n e of t h r e e experimental stations: X-ray T o m o g r a p h i c M i c r o s c o p y ( X T M - 32 m f r o m t h e s o u r c e ) , P o w d e r Diffraction ( P D - 36 m ) a n d S u r f a c e Diffraction ( S D - 4 1 m ) . Fig. 1 p r e s e n t s a s c h e m a t i c plan of t h e b e a m l i n e optics, s h o w i n g ( f r o m left to right): t h e w i g g l e r s o u r c e point, t h e first (verticallyc o l l i m a t i n g ) mirror, the first m o n o c h r o m a t o r crystal, the s e c o n d (horizontally-focusing) m o n o c h r o m a t o r crystal, t h e s e c o n d (vertically-focusing) mirror a n d t h e f o c u s point (at o n e of the t h r e e e x p e r i m e n t a l stations). 2 F i g . 1 : S c h e m a t i c plan of the b e a m l i n e optics. D. Maden, undergoing B. Schmitt, commissioning and "first light". T h i s n o n - o p t i m i z e d bending-magnet radiation w a s t h e n u s e d t o c h e c k the a l i g n m e n t of the optical elements, principally the two Si(111) m o n o c h r o m a t o r crystals, a n d a m o n o c h r o m a t i c b e a m w a s s u c c e s s f u l l y t r a n s m i t t e d . All s u c h m a n i p u l a t i o n s b e c a m e m u c h easier in July with t h e t r e m e n d o u s i n c r e a s e in flux p r o d u c e d by t h e W 6 1 m i n i g a p wiggler. T h i s d e v i c e w a s installed with t h e largest of the t h r e e available v a c u u m c h a m b e r s . S o o n after, first test m e a s u r e m e n t s w e r e m a d e with t h e t w o d e t e c t o r s y s t e m s of t h e p o w d e r d i f f r a c t o m e t e r a n d with t h e X T M s y s t e m . T h e m a g n e t i c field s t r e n g t h , a n d h e n c e the hard X ray flux, i n c r e a s e s a p p r o x i m a t e l y e x p o n e n t i a l l y as t h e w i g g l e r g a p is d e c r e a s e d . A l t h o u g h t h e installed v a c u u m c h a m b e r a l l o w e d a g a p of 18 m m , a n d t h e S L S m a c h i n e c o u l d p r o d u c e in e x c e s s of 2 0 0 m A of stable b e a m current, w e w e r e limited t o g a p s of 2 5 m m a n d c u r r e n t s of 50 m A until w e c o u l d install o u r h i g h p o w e r c a r b o n filter in t h e f r o n t - e n d s y s t e m . T h i s rotating d e v i c e , d e s i g n e d at PSI a n d d e s c r i b e d in t h e contribution of G. H e i d e n r e i c h , et al., n o w lets us w o r k at the m i n i m u m g a p a l l o w e d by t h e w i g g l e r c h a m b e r . Installed in t h e f r o n t - e n d at t h e s a m e t i m e w e r e t w o p h o t o n b e a m position m o n i t o r s , to p e r m i t r e c o r d i n g t h e vertical b e a m position with m i c r o m e t e r accuracy. MILESTONES A l o n g with t h e o t h e r p h a s e - l S L S b e a m l i n e s , t h e M a terials S c i e n c e B e a m l i n e s a w "first light" a n d underw e n t c o m m i s s i o n i n g in 2 0 0 1 . T h e f o l l o w i n g w e r e t h e major milestones: 18.05.01 First light ( f r o m a b e n d i n g m a g n e t ) 10.07.01 Monochromatic beam 26.07.01 W i g g l e r installed 17.08.01 P D : microstrip d e t e c t o r 22.08.01 PD: analyser detector 03.09.01 XTM 15.10.01 Rotating C-filter a n d b e a m m o n i t o r s 20.11.01 Horizontally f o c u s i n g crystal T h e s h i e l d e d a n d control h u t c h e s h a d b e e n installed earlier, a l o n g w i t h t h e f r o n t - e n d s a f e t y s y s t e m a n d the m a j o r optical c o m p o n e n t s . W h e n the radiation s y s t e m b e c a m e o p e r a b l e , it w a s p o s s i b l e t o p l a c e a f l u o r e s c e n t s c r e e n b e h i n d a w i n d o w in t h e optics hutch a n d t o o p e n t h e f r o n t - e n d shutter, p r o d u c i n g WIGGLER SPECTRUM C h a n g i n g the e n e r g y of t h e b e a m l i n e o p t i c s r e q u i r e s the precise c h a n g e in setting of 11 s t e p p i n g m o t o r s . T h i s p r o c e d u r e h a s b e e n integrated into a single, user-friendly E P I C S c o m m a n d , with w h i c h it w a s p o s sible to e x p e r i m e n t a l l y d e t e r m i n e t h e w i g g l e r s p e c t r u m ( e x p r e s s e d in m o n o c h r o m a t i c p h o t o n s per s e c o n d exiting t h e o p t i c s h u t c h ) . Fig. 2 s h o w s a c o m p a r i s o n of this m e a s u r e d flux with the prediction for the g a p a n d m a c h i n e c u r r e n t u s e d (violet c u r v e ) . Note that p h o t o n s w e r e o b s e r v e d o v e r the entire s p e c i f i e d e n e r g y r a n g e . " A s set" refers to an intensity m e a s u r e m e n t i m m e d i a t e l y after u s i n g t h e automatic energy change program, and "optimized" refers to s u b s e q u e n t fine t u n i n g . T h e r e m a i n i n g difference b e t w e e n e x p e r i m e n t a n d prediction is attributed t o a c u r v a t u r e of the first m o n o c h r o m a t o r crystal, d u e t o i m p r o p e r m o u n t i n g . T h e r e m a i n i n g theoretical c u r v e s in Fig. 2 s h o w future e x p e c t a t i o n s , w h e n t h e n a r r o w e r w i g g l e r c h a m b e r s are installed a n d higher m a c h i n e c u r r e n t s b e c o m e s t a n d a r d . 53 BL-4S F l u x (Nov. 2001) 's™ l—1—1 : / c o o y j —1 1—i / / ^—_ 1 50 m A ~ - - // ! 1 ¡ 1 ! •• • ^ ""^-^ 0,5 mm ! ih r i ; i r f ¡ 1—1— 1 1 i u 50 m A ? mm as set \ " \ ! !—! -j i 1 to m a n y potential b e a m l i n e u s e r s . T h e X T M g r o u p w i s h e s to use p h a s e c o h e r e n c e to e n h a n c e the c o n trast of w e a k l y - s c a t t e r i n g biological a n d o t h e r l o w - Z s a m p l e s , a n d s e v e r a l g r o u p s h a v e e x p r e s s e d interest in e x p l o r i n g c o h e r e n t diffraction p h e n o m e n a . T h e large effective horizontal s o u r c e size p r e s e n t e d by t h e w i g g l e r basically d e s t r o y s all c o h e r e n c e in t h e horizontal direction. T h a t t h e vertical c o h e r e n c e is not d e s t r o y e d , in spite of the n u m e r o u s b e a m l i n e w i n d o w s , optical e l e m e n t s , a n d a b o v e all t h e rotating c a r b o n filter, is d e m o n s t r a t e d by a h i g h - r e s o l u t i o n r a d i o g r a m t a k e n with t h e X T M s y s t e m (Fig. 4 ) . 1 0 10 20 30 40 50 E (keV) F i g . 2: Predicted and measured wiggler fluxes. FOCUSING OPTICS W i t h the v e r y helpful addition of a h o m e - m a d e "X-ray eye", c o n s i s t i n g , in a single m o d u l e , of a scintillator, a l e a d - g l a s s protection plate, a s h o r t - w o r k i n g - l e n g t h lens, a n d a f r a m e - g r a b b i n g C C D c a m e r a , it w a s p o s sible to o p t i m i z e t h e f o c u s i n g optics (crystal 2 a n d mirror 2). A n o p t i m a l l y f o c u s e d s p o t at 15 k e V p h o t o n e n e r g y is s h o w n in Fig. 3. Focused Spot, 15 keV 1 I 1 I 1 I 11 1 I 1 I 11 Y M i l l ' • ' ' * • ' ' F i g . 4: A high-resolution X T M image showing interference lines indicative of vertical c o h e r e n c e (courtesy of M. S t a m p a n o n i , E T H Z ) . T h e i m a g e is of a 15 \im d i a m e t e r t u n g s t e n w i r e in a 100 [im d i a m e t e r b o r o n s h e a t h , a n d it w a s t a k e n at 1 7 k e V , with a s a m p l e - d e t e c t o r d i s t a n c e of 6 0 c m . C l o s e i n s p e c t i o n s h o w s fine horizontal interference stripes, s u g g e s t i n g a vertical c o h e r e n c e length of s e v e r a l t e n s of urn. 1111 Ved ¡cal "PILOT" USER OPERATION Hori :ontal • • • • ' -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 Distance (mm) In N o v e m b e r a n d D e c e m b e r , 2 0 0 1 , the b e a m l i n e h o s t e d t h e X T M c o l l a b o r a t i o n , 9 p o w d e r diffraction users, 2 reflectometry users and 1 spectroscopy user. ACKNOWLEDGEMENT F i g . 3: V e r t i c a l a n d horizontal s c a n s t h r o u g h a foc u s e d s p o t at t h e P D s t a t i o n . T h e resulting s p o t size, d e f i n e d by t h e full w i d t h s at half m a x i m u m , is s m a l l e r t h a n 6 0 0 x 6 0 0 u r n . 2 COHERENCE A l t h o u g h not an original d e s i g n g o a l , t h e p h a s e c o h e r e n c e of the h a r d X - r a y light is of great i m p o r t a n c e T h e b e a m l i n e g r o u p w i s h e s t o sincerely t h a n k their m a n y c o l l e a g u e s w i t h i n t h e S L S a n d at PSI at large for their c h e e r f u l a n d e x p e r t a s s i s t a n c e . REFERENCE [1] B.D.Patterson, R. A b e l a , Chimia, 55, 5 3 4 ( 2 0 0 1 ) . J.F. v a n der V e e n , 54 COMMISSIONING OF THE PROTEIN CRYSTALLOGRAPHY BEAMLINE X06SA C. Schulze-Briese, T. Tomizaki, C. Pradervand, R. Schneider, M. danousch, W. Portmann, G. Ingold, D. Rossetti, B. Frauenfelder, C. Zumbach, P. Hottinger, Ch. Brönnimann, E.F. Q. Chen, Eikenberry The protein crystallography beamline (PX) X06SA was commissioned in 2001 and will become available for regular user operation in March 2002. All major hardware components and the integrated data acquisition and control system work well, and the major operational goals - micro-focussing, highresolution diffraction and MAD - could be achieved. The novel concept of producing hard X-rays from the higher harmonics of an in-vacuuminsertion device on a medium energy synchrotron could be realised without problems and it was demonstrated that top-up operation has no detrimental effect on the data quality even without gating the data collection. A number of structures were solved, both de-novo and by molecular replacement. The K-goniometer, the MAR flat panel detector, a prototype pixel detector and the p-diffractometer will become available in 2002. Substantial improvements are envisaged for beam diagnostics and data management. INTRODUCTION Optical system T h e S L S protein c r y s t a l l o g r a p h y b e a m l i n e w a s c o m missioned with a reduced hardware and software c o n f i g u r a t i o n , n a m e l y t h e U 2 4 undulator, t h e final optical s e t u p , t h e h i g h - r e s o l u t i o n d i f f r a c t o m e t e r w i t h a single (|>-axis a n d M A R i m a g e plate a n d C C D d e t e c t o r s . T h e i n t e g r a t e d control a n d d a t a a c q u i s i t i o n s y s t e m w a s c o m m i s s i o n e d s i m u l t a n e o u s l y w i t h first user e x p e r i m e n t s . A total of 7 0 user shifts w a s delive r e d t o 14 g r o u p s , 6 of t h e m f r o m industry. In a first test of t h e m i c r o - f o c u s s i n g capabilities of the optical s y s t e m , t h e b e a m w a s f o c u s s e d to 2 5 by 3 8 u r n o n J u l y 1 1 . T h e v a l u e s later i m p r o v e d t o 2 0 by 3 0 u r n . After the installation of a n i m p r o v e d sagittal b e n d e r w i t h a significantly better crystal, t h e d e s i g n v a l u e s of 10 by 2 5 | j m w e r e r e a c h e d . T h e b e a m s i z e c a n be a d j u s t e d i n d e p e n d e n t l y in t h e horizontal a n d vertical p l a n e , in o r d e r t o f o c u s o n the d e t e c t o r or to match the sample dimensions. The energy reproducibility of t h e m o n o c h r o m a t o r is better t h a n 0.1 e V a n d v i b r a t i o n s are s m a l l e r t h a n 0.15 u r a d r m s . T h e limited positional stability of t h e s y s t e m d u r i n g e n e r g y s c a n s will b e i m p r o v e d by t h e installation of C V D - d i a m o n d b a s e d X - r a y b e a m position m o n i t o r s in 2002. COMMISSIONING U24 First b e a m f r o m the U 2 4 u n d u l a t o r w a s a v a i l a b l e in the o p t i c s h u t c h in late M a y 2 0 0 1 . T h e u n d u l a t o r spectrum measured with a 10-mm gap showed good a g r e e m e n t w i t h t h e o r y ( s e e Fig. 1 ). T h e a b s o l u t e flux s e e m s to b e w i t h i n a f a c t o r of t w o w i t h t h e o r y . It s h o w e d that t h e p h o t o n flux d e l i v e r e d by t h e u n d u l a t o r crucially d e p e n d s o n t h e a l i g n m e n t of the e l e c t r o n b e a m position a n d a n g l e w i t h the a p e r t u r e s in t h e front e n d . M o r e o v e r , it c o u l d be d e m o n s t r a t e d that by m i n i m i s i n g the orbit b u m p in the straight s e c t i o n 6 S the lifetime r e m a i n s c o n s t a n t d o w n t o t h e m i n i m a l g a p of 6.5 m m . X06S ID Stan, M mm Gap ~\ 2 t h 2 2 Detectors D a t a a c q u i s i t i o n s t a r t e d w i t h a n i m a g e plate d e t e c t o r kindly p r o v i d e d by t h e PSI Structural B i o l o g y G r o u p . A l t h o u g h it is well suited for large unit cell s t r u c t u r e s , its r e a d - o u t t i m e e x c e e d s typical data a c q u i s i t i o n t i m e s of 2-20 s e c o n d s per f r a m e by m o r e t h a n o n e o r d e r of m a g n i t u d e . T h e m a r C C D d e t e c t o r w a s installed in early S e p t e m b e r a n d a data set of T h a u m a t i n w a s c o l l e c t e d within 1.5 h o u r at a b e a m c u r r e n t of 2 0 m A , yielding a n e l e c t r o n d e n s i t y m a p of 1.3 Â resolution. T h e m a r C C D will b e u p g r a d e d t o t h e n e w m a r Flat P a n e l D e t e c t o r o n c e this d e t e c t o r b e c o m e s a v a i l a b l e . T h e d e c i s i o n t o p u r c h a s e this d e t e c t o r i n s t e a d of t h e Large A r e a C C D D e t e c t o r [1], w a s t a k e n in c o n s e n s u s w i t h user r e p r e s e n t a t i v e s . It is m a i n l y m o t i v a t e d by t h e o u t s t a n d i n g p o i n t - s p r e a d f u n c t i o n , t h e large d y n a m i c r a n g e , the large n u m b e r of r e s o l v a b l e diffraction orders, the e a s e of o p e r a t i o n a n d t h e v e r y g o o d test results a l r e a d y o b t a i n e d w i t h a p r o t o t y p e of t h e F P D . 10 12 14 IS IB F i g . 1 : Measured and theoretical spectrum with a gap of 10 m m . T h e t h e o r e t i c a l c u r v e i n c l u d e s a p h a s e error of 2.5 ° a n d a n e l e c t r o n e n e r g y s p r e a d of 1.8 %o. A first test of a single m o d u l e of t h e P I L A T U S pixel d e t e c t o r d e m o n s t r a t e d its o u t s t a n d i n g point s p r e a d f u n c t i o n a n d its potential for fine sliced data a c q u i s i tion. A further test u s i n g a b o a r d of 3 m o d u l e s a l l o w e d t h e collection of a full d a t a set by t r a n s l a t i n g the d e vice in the vertical direction [2]. 55 Diffractometers T h e d e s i g n of t h e H i g h - R e s o l u t i o n d i f f r a c t o m e t e r follows t h e i n n o v a t i v e c o n c e p t of G . R o s e n b a u m [3]. It is e q u i p p e d with a high s p e e d , high precision <|)-axis w i t h fully m o t o r i s e d g o n i o m e t e r h e a d , a h i g h - r e s o l u t i o n s a m p l e m o u n t i n g m i c r o s c o p e with c o n d e n s e r illumination a n d a fast Si-drift f l u o r e s c e n c e detector. T h e k g o n i o m e t e r is currently b e i n g installed at t h e H i g h R e s o l u t i o n diffractometer, w h i l e t h e u-diffractometer will be d e l i v e r e d b y t h e e n d of t h e year. facto s t a n d a r d b e a m l i n e control G U I at t h e E S R F , t o facilitate t h e familiarisation of t h e u s e r s (Fig. 3). j£_ ttttw í*# WÈ9ÊÊÊ IStlllili^lllIÄÄ11I inm S T f P / J I t H IHt I ' P EJE*.™ i HE. n u n H _^i.TO.-isL-n.«-|""»> Hipe*,,» N u * - T, ftfufti > uncut ( m / ) 90 i-WI'I. t-.ipiíNfjmin-iffl) iMiiiin&tiM Ufr •F t- ; innuiHiit i>j Iuni. H i i m s . r i . i im us Operation a n d First Results t ^ i i ^ u n . (\a fitttr« B e a m stability w a s f o u n d t o be g o o d a n d not t o b e affected by t h e c o n t i n u o u s injection in t o p - u p m o d e . A p r e l i m i n a r y investigation s h o w e d o n l y a negligible influence of t h e injection m o d e o n t h e data quality. H e n c e , t o p - u p m o d e h a s b e c o m e t h e favourite o p e r a t i o n m o d e for u s e r runs. Several M A D a n d S A D experiments were carried out at t h e Hg L e d g e a n d at t h e S e K-edge. T h e a n o m a l o u s P a t t e r s o n m a p s w e r e of g o o d quality a n d a l l o w e d t h e p h a s i n g of large s t r u c t u r e s e v e n with small a n o m a l o u s signals. M o r e t h a n 15 s t r u c t u r e s were solved by molecular replacement. I rffPrm-HU l^nmnttir-i 1 Limn ttniiiliHi I- "ri l~ .*-_rB»lii.ii^Hrlíi*r»jj il II • ivflliilioiillrfMiritlpqi övwtapitteö} ^testeh^l^###.imB tKni.irv f un* (wL'Imt.)-' i II tM.tttlllXMinr*,!;! 'l VU**._n. tft i-ny liwai>) ' l um B {HlllO UiiMina.lt (up in « i , rh.».» joo • G0ZC000 irnvi ti«v fn t t n i f 4¡n*itji«s. ~ f ..I ii lWTl-ilf IHl-lMLlvt M r It w a s possible t o resolve m o r e t h a n 3 1 0 diffraction o r d e r s , b e i n g e q u i v a l e n t to a spot s e p a r a t i o n of 6.5 pixel by f o c u s s i n g t h e b e a m o n t h e m a r C C D detector. II -.lr.l-t.l-. tutll» I» ùnr>tn*ft-ij p i f f ( H _ f * u BG3 MB available : : Hm«H ....iH Sl B « » K TK <tTK i I» 1,1ml • bU-luiMttftl, i M t I Kp F i g . 3: S n a p s h o t of a b e a m l i n e control G U I . M o n i t o r i n g t h e d e v i c e p a r a m e t e r s in real t i m e a n d b r o a d c a s t i n g t h e m to t h e clients w e r e not u s e d to a v o i d u n e x p e c t e d n e t w o r k p r o b l e m s . T h i s f e a t u r e will be installed before start of regular user o p e r a t i o n t o realise a u t o l o g g i n g a n d c o m m a n d script g e n e r a t i o n . SOFTWARE AND THE BACKUP F i g . 2 : a) Part of a diffraction pattern b ) M a g n i f i e d v i e w of reflections c o r r e s p o n d i n g t o a cell axis of m o r e t h a n 4 0 0 Â at a d e t e c t o r d i s t a n c e of 2 0 0 m m . The integrated data acquisition system T h e b e a m l i n e control s e r v e r a n d t h e clients w o r k e d well during t h e c o m m i s s i o n i n g . T h e m a r C C D , t h e P I L A T U S detector, t h e h i g h resolution C C D c a m e r a , m a c h i n e p a r a m e t e r s , all t h e m o t o r s a n d t h e s e n s o r s on t h e b e a m l i n e a r e c o n t r o l l e d or m o n i t o r e d b y t h e s e r v e r s i m u l t a n e o u s l y t h r o u g h G U I o r C U I clients. T h e d e a d t i m e (<5 s e c ) b e t w e e n e x p o s u r e s w a s highly o p t i m i s e d f o r t h e m a r C C D . T h u s , it e n a b l e s u s e r s to collect a data v o l u m e of m o r e t h a n 5 0 G B ( 6 0 0 0 i m a g e s ) p e r d a y . S i n c e c o m m i s s i o n i n g started, n o softw a r e failures w e r e o b s e r v e d d u r i n g user's data collection s e q u e n c e s . T h i s p r o v e s that t h e client s e r v e r s y s t e m is fairly reliable for practical user e x p e r i m e n t s . C o m m a n d script g e n e r a t o r a n d history d a t a b a s e a r e a l s o t e s t e d u s i n g a local d a t a b a s e s e r v e r r u n n i n g o n an S G I w o r k s t a t i o n . S i n c e g r o u p a c o u n t s a n d t h e virtual u s e r office w e r e not i m p l e m e n t e d during t h e c o m m i s s i o n i n g , t h e s e r v e r worked without database connection. T h e appearance of t h e G U I client w a s build similar to P r o D C [4], a de The C C P 4 package, M O S F L M , and X D S were installed o n t h e central s e r v e r f o r data p r o c e s s i n g . A Linux cluster with 2 C P U s a n d s e v e r a l G i g a b y t e s of m e m o r y will be p u r c h a s e d v e r y s o o n . Initial p h a s i n g software, s u c h a s S O L V E , S n B a n d S H E L X will be a l s o installed to a c h i e v e t h e m a x i m u m efficiency of S A D a n d M A D e x p e r i m e n t s . U s e r s will h a v e different accounts on the beamline and PSI network. However, t h e s a m e c o m p u t i n g e n v i r o n m e n t with s o p h i s t i c a t e d security will be d e d i c a t e d to t h e u s e r s . D L T t a p e s a n d F T P a c o u n t s with p a s s w o r d s a r e available t o t h e u s e r s . Industrial u s e r s w e r e p l e a s e d with t h e security of t h e s y s t e m . F T P w a s v e r y useful t o t r a n s f e r small d a t a s e t s to r e s p o n d to u r g e n t r e q u e s t s f r o m u s e r s . T h e P S I L T O t a p e library with a s t o r a g e c a p a c i t y of 2 5 T B will b e c o m e available m i d 2 0 0 2 t o store users' d a t a s e t s for l o n g e r p e r i o d s . REFERENCES [1] C. S c h u l z e - B r i e s e et a l . , 2000, Volume VII. PSI Scientific [2] C. B r ö n n i m a n n et a l . , PSI Scientific R e p o r t 2 0 0 0 , Volume VII. [3] http://www.esrf.fr/computing/bliss/gui/prodc [4] http://www.sbc.anl.gov Report 56 LAYOUT OF THE MICROXAS BEAMLINE: DESIGN STUDY D. Grolimund, A.M. Scheidegger, J.F. van der Veen, R. Abela Over the past few years, the advancement of X-ray Absorption Spectroscopy (XAS) towards an indispensable analytical tool resulted in a substantial demand for synchrotron-based beam line facilities optimized for XAS experiments. In view of the importance of micro-scale processes in different scientific disciplines, there has been a considerable effort to develop high-resolution analytical X-ray probes in the hard X-ray regime using state-of-the-art X-ray focusing devices. The design of the micro XAS beamline is conceptualized to yield monochromatic X-ray beams with high energy resolution combined with dynamic microfocusing capabilities. A description of the facility concept and the optical layout is provided INTRODUCTION T h e m i c r o X A S b e a m l i n e project is a joint effort of t h e S w i s s X A S U s e r C o m m u n i t y for a n X - r a y a b s o r p t i o n s p e c t r o s c o p y b e a m l i n e at the S w i s s Light S o u r c e (SLS) T h e project is s u p p o r t e d by 2 6 r e s e a r c h g r o u p s at P S I , o t h e r N a t i o n a l R e s e a r c h L a b o r a t o r i e s (EAWAG, EMPA, W S L , and IUL), a n d Swiss Universities ( E T H Z , E P F L , Universities of G e n e v a , L a u s a n n e , B a s e l , a n d B e r n ) , w h i c h all c o n t r i b u t e d a scientific c a s e t o the m i c r o X A S p r o p o s a l . T h e m i c r o X A S b e a m l i n e at the S L S is d e s i g n e d as a n analytical facility d e d i c a t e d t o s y n c h r o t r o n b a s e d m i c r o - b e a m X - r a y a b s o r p t i o n s p e c t r o s c o p y . T h e optical c o n c e p t is o p t i m i z e d r e g a r d i n g m i c r o f o c u s i n g with a spatial resolution in t h e o r d e r of 1x1 u r n u s i n g a high resolution m o n o c h r o m a t i c X - r a y b e a m of e n e r g i e s ranging f r o m 4 k e V t o ~ 1 8 k e V (with a n e n e r g y r e s o l u tion A E / E < 1 0 " ) . T h e b e a m c h a r a c t e r i s t i c s fulfill all t h e n e c e s s i t i e s r e q u i r e d for o p t i m i z e d X A S m e a s u r e m e n t s s u c h a s spatial stability, high p h o t o n flux a n d flux d e n sity, high e n e r g y r e s o l u t i o n , a n d m i n i m i z e d c o n t a m i nation by high e n e r g y radiation ( h a r m o n i c s ) . B e s i d e s h i g h - r e s o l u t i o n X A S a n d related t e c h n i q u e s , a d d i t i o n a l e x p e r i m e n t a l capabilities include X - r a y F l u o r e s c e n c e ( X R F ) a n d 2 D / 3 D i m a g i n g t e c h n i q u e s . Finally, it is f o r e s e e n that t h e m i c r o X A S b e a m l i n e will be l o c a t e d in a long straight s e c t i o n e q u i p p e d with a radiator a n d in addition a m o d u l a t o r (Fig. 1). T h i s c o n f i g u r a t i o n a l l o w s for p r o d u c i n g f e m t o - s e c o n d X - r a y p u l s e s t o s t u d y t i m e - d e p e n d e n t p h e n o m e n a in c o n d e n s e d m a t t e r relevant t o p h y s i c s , c h e m i s t r y , biology, or e n v i ronmental science. 2 4 PROPOSED BEAMLINE LAYOUT S e v e r a l optical s c h e m e s w e r e e v a l u a t e d in r e s p e c t to spatial r e s o l u t i o n , p h o t o n flux, e n e r g y r e s o l u t i o n , c o s t s , c o m p l e x i t y a n d m e c h a n i c a l stability, a n d a f a v o r e d optical layout of t h e m i c r o X A S b e a m l i n e h a s b e e n identified. T h e s c h e m a t i c s of t h e p r o p o s e d layout of t h e S L S m i c r o X A S b e a m l i n e is d e p i c t e d in Fig. 2. A mini-gap, invacuum undulator (U17) s e r v e s a s radiation s o u r c e [2]. T h e front-end i n c l u d e s S L S s t a n d a r d radiation F i g . 1 : Floor plan of t h e S L S s h o w i n g the existing b e a m l i n e s a n d p r o p o s e d location of t h e m i c r o X A S beamline. s a f e t y e q u i p m e n t as well as a n a p e r t u r e s y s t e m to r e d u c e b r e m s s t r a h l u n g a n d total radiation p o w e r [ ]. T h e s e a p e r t u r e s in t h e f r o n t - e n d d e f i n e t h e m a x i m a l angular extension of the photon beam to 2 5 0 x 100 u r a d . T h e first optical e l e m e n t , a toroidal mirror, is located at a d i s t a n c e of ~ 1 6 m f r o m the m i d point of t h e undulator. T h i s w a t e r - c o o l e d d e v i c e is o p e r a t e d in g r a z i n g - i n c i d e n c e m o d e , d y n a m i c a l l y bent, a n d p r o d u c e s a horizontal 1.3:1 f o c u s i n g a n d a c o l l i m a t i o n of t h e b e a m in t h e vertical d i r e c t i o n . B e t w e e n this mirror a n d its horizontal f o c u s point at - 3 1 m , the monochromator is p l a c e d at - 2 0 m . T h i s fixed-exit c r y o g e n i c - c o o l e d d e v i c e is e q u i p p e d with t w o s e t s of m o n o c h r o m a t o r crystals, n a m e l y S i ( 1 1 1 ) a n d S i ( 2 2 0 ) . A t the horizontal f o c u s point t h e b e a m is p a s s i n g a d y n a m i c 'roller-blade' slit system before e n t e r i n g t h e Kirkpatrick-Baez (KB) mirror system. Using such a two-step strategy to focus the X-ray b e a m , the d e s i g n g o a l of a final s p o t s i z e of 1x1 u r n c a n be a c h i e v e d a n d e v e n s u r p a s s e d . H o w e v e r , t h e m a x i m i z e d p h o t o n flux d e n s i t y is a l r e a d y r e a c h e d at a b e a m size of - 6 x 1 u m . A n y further r e d u c t i o n of s p o t size results in a c o r r e s p o n d i n g r e d u c t i o n in total p h o t o n flux. T h e b e a m l i n e c o n c e p t is b a s e d o n a n o p e n d e s i g n p h i l o s o p h y a n d will b e c o m p a t i b l e with t h e possibility of f u t u r e d e v e l o p m e n t s . For e x a m p l e , m u l tiplayer optics a n d diffractive f o c u s i n g optics are inv e s t i g a t e d a s potential f u t u r e optical d e v i c e s . 3 2 2 2 57 side view crystal point distance between elements [mm] 13971 I 0 2009 4000 1 1 13971 15980 110O0 1 4000 1 19980 30980 distance to source point [mm] 200 1 34980 200 1 35180 1 35380 F i g . 2: S c h e m a t i c r e p r e s e n t a t i o n of t h e p r o p o s e d optical layout of t h e m i c r o X A S b e a m l i n e at S L S . N o t e that t h e toroidal mirror f o c u s e s t h e b e a m in t h e horizontal direction (1.3:1 d e m a g n i f i c a t i o n ) but c o l l i m a t e s t h e X - r a y s in t h e vertical direction. T h e e x p e r i m e n t a l station will b e e q u i p p e d with 2 optical b e n c h e s . T h e first b e n c h will host m e a s u r e m e n t s , w h i c h d o not n e c e s s a r i l y require a m i c r o - b e a m (e.g., in-situ studies and non-standard techniques s u c h a s laser i n d u c e d f e m t o - s e c o n d a p p l i c a t i o n s ) . T h e s e c o n d optical b e n c h is hosting t h e K B mirror pair a n d is d e d i c a t e d to m i c r o b e a m a p p l i c a t i o n s . T h e b e a m l i n e will b e e q u i p p e d with m o t o r i z e d s a m p l e s t a g e s (xyz, <p, 0), w h i c h s h o u l d a l l o w - in addition t o m i c r o X A S a n d X R F - m a p p i n g - for t e c h n i q u e s s u c h as G r a c i n g - l n c i d e n c e X - r a y A b s o r p t i o n Fine S t r u c t u r e (GI-XAFS) and X-ray Standing W a v e s (XSW). A mot o r i z e d optical m i c r o s c o p e a n d a C C D c a m e r a will b e available for b e a m m o n i t o r i n g a n d s a m p l e a l i g n m e n t . Detector s y s t e m s a v a i l a b l e in a first p h a s e are a multie l e m e n t G e (or SiLi) solid-state d e t e c t o r a n d a S t e r n H e a l d d e t e c t o r s y s t e m . E l e m e n t a l distributions c a n be m a p p e d with a spatial r e s o l u t i o n of 1x1 u r n using a high s p e e d x - y - z s c a n n i n g s t a g e with e n e r g y dispersive f l u o r e s c e n c e d e t e c t i o n . 2 REFERENCES [] A . M . S c h e i d e g g e r , R. Prins, Joint proposal Swiss XAS user community for an EXAFS line for heterogeneous and dilute systems Swiss Light Source (SLS), 2 0 0 0 . [] G. Ingold et al., Hard X-ray insertion devices for high brightness/high flux: U24, U17, W60, PSI Scientific R e p o r t 1 9 9 9 , V o l u m e V I I . [] Q. C h e n et al., S L S frontends for insertion device beamlines, PSI Scientific R e p o r t 1 9 9 9 , V o lume VII. 1 2 3 by the beamat the 58 INSERTION DEVICES: FIRST EXPERIENCES G. Ingold, T. Schmidt In 2001, we concentrated on the construction, the magnetic measurement and the installation of 5 Insertion Devices (IDs) (including the ID vacuum chamber) serving 4 beamlines. The commissioning of all IDs and the conditioning of the chambers went smoothly. Whatever the gap value, the effect of all the IDs on the closed orbit is small and within specification in terms of magnetic field errors acting on the trajectory of the electron beam. An important goal has been reached with the UE212 electromagnetic elliptical undulators. Operated in the quasi-periodic field mode, the spectral flux on harmonic 3 is suppressed by more than two orders of magnitude as compared to a convential undulator. Such a suppression is needed to allow photoemission experiments at the Fermi edge planned at the SIS-beamline. The commissioning of the elliptical polarized operation mode of both the UE212 twin-undulator (SIS-beamline) and the UE56 twinundulator (SIM-beamline) is in progress. At the PX beamline, the U24 in-vacuum undulator is now routinely operated at higher harmonics, demonstrating that the concept of using small-gap, short-period undulators to extend the high brightness radiation at medium energy light sources is valid. The short-period wiggler W61 installed at the MS-beamline operates at a minimum gap of 11.5 mm using a vacuum chamber with 8 mm beam stay-clear aperture. INTRODUCTION T h e I D - b a s e d p h o t o n s o u r c e s [1] at t h e S L S c o v e r t h e e n e r g y r a n g e 10 e V to 4 0 keV. T h e e n e r g y r a n g e 10 e V to 18 k e V is c o v e r e d by u n d u l a t o r s , a n d for p h o t o n e n e r g i e s u p to 4 0 keV, a hybrid wiggler is e m p l o y e d . To a c h i e v e high flux a n d b r i g h t n e s s at a s t o r a g e ring of 2.4 GeV, s m a l l - g a p u n d u l a t o r s a n d w i g g l e r s h a v e to b e installed. T h e notable f e a t u r e s of t h e I D - b a s e d p h o t o n s o u r c e s at t h e S L S are: • For soft X - r a y s : (i) T h e u s e of elliptical t w i n - u n d u l a t o r s with variable linear a n d circular polarisation in t h e e n e r g y r a n g e 8 e V - 2 keV, allowing oppositely p o l a r i z e d , rapidly s w i t c h e d (0.01-1 k H z ) b e a m s u n d e r o t h e r w i s e identical conditions, (ii) A q u a s i - p e r i o d i c field c o n f i g u r a tion is u s e d to s u p p r e s s t h e spectral flux on higher harm o n i c s to allow p h o t o e m i s s i o n s p e c t r o s c o p y at 10 eV. • For h a r d X - r a y s : (i) T h e u s e of s m a l l - g a p , s h o r t p e r i o d u n d u l a t o r s to e x t e n d t h e high b r i g h t n e s s s y n c h r o t r o n radiation to ~ 18 keV, o p e r a t i n g o n higher h a r m o n i c s (9th-13th). (ii) T h e u s e of a small p e r i o d wiggler o p t i m i z e d for high horizontal flux in t h e e n e r g y r a n g e 5-40 keV. F i g . 1 : D o w n left, right side: T h e U E 2 1 2 elliptical t w i n u n d u l a t o r (10 m ) , installed in t h e S L S s t o r a g e ring. T h e m a g n e t c h i c a n e for fast polarization s w i t c h i n g will b e installed b e t w e e n t h e undulator s e c t i o n s . A b o v e : Elect r o m a g n e t i c iron y o k e of o n e s e c t i o n (4.55 m) o p e r a t e d D C to p r o v i d e ( quasi-periodic) vertical a n d horizontal m a g n e t i c fields. In t h e y e a r 2 0 0 1 , t h e following IDs h a v e b e e n installed: • U 2 4 u n d u l a t o r ( i n - v a c u u m ) , April 10, 2 0 0 1 ; s h o r t straight s e c t i o n 6 S ; S P r i n g - 8 (JP)/PSI c o l l a b o r a t i o n ; P X - b e a m l i n e [2]. • U E 2 1 2 / 1 ( e l e c t r o m a g n e t i c , D C ) elliptical undulator, July 3 0 , 2 0 0 1 ( U E 2 1 2 / 2 N o v e m b e r 12, 2 0 0 1 ) ; long straight s e c t i o n 9 L ; d e s i g n : E L E T T R A ( l ) / P S I , c o n s t r u c t i o n : B I N P N o v o s i b i r s k (RU); S I S - b e a m l i n e [3]. • W 6 1 Wiggler, July 3 0 , 2 0 0 1 ; s h o r t straight s e c t i o n 4 S ; d e s i g n : P S I , c o n s t r u c t i o n : Danfysik ( D K ) ; M S b e a m l i n e [4]. • U E 5 6 / 1 ( S a s a k i / A P P L E II type) elliptical undulator, N o v e m b e r 12, 2 0 0 1 ; m e d i u m straight s e c t i o n 1 1 M ; P S I / B E S S Y (D) c o l l a b o r a t i o n ; S I M - b e a m l i n e [5]. In this paper we report on relevant issues con- 59 SOFT X-RAYS T. Schmidt, G. Ingold, W. Bulgheroni, G. Heidenreich, A. Imhof, B. Jakob, A. Keller, T. Korhonen, L. Patthey, L Pochmann, M. Rohrer, C. Quitmann, L. Schulz, C. Vollenweider, P. Wiegand and R. Abela (PSI); J. Bahrdt, H. Bäcker, W. Frentrup, A. Gaupp (BESSY, D); P. Vobly, E. Antokhine, A. Utkin (BINP, Ru) THE ELLIPTICAL UNDULATOR UE212 T h e e l e c t r o m a g n e t i c undulator U E 2 1 2 c o n s i s t s of t w o identical s e g m e n t s U E 2 1 2 / 1 a n d U E 2 1 2 / 2 (Fig. 1) o p e r a t e d D C to p r o d u c e variable linear a n d elliptical polarized light in t h e e n e r g y range 8-800 eV. In addition, the I -20 i i i -10 F i g . 2: Top: Vertical a n d horizontal first field integrals in t h e region ± 2 0 m m horizontally, m e a s u r e d for the U E 2 1 2 / 2 undulator for t h e vertical field in t h e range of 0.05-0.5 T ( 3 0 - 1 4 5 A ) . B o t t o m : Vertical field integrals for horizontal fields of ± 0 . 0 5 T a n d ± 0 . 1 T m e a s u r e d with z e r o a n d m a x i m u m vertical field. (An arbitrary dipole offset is u s e d to displace the g r a p h s for clarity.) 6- c e r n i n g the c o n s t r u c t i o n , the m a g n e t i c m e a s u r e m e n t s a n d t h e first c o m m i s s i o n i n g results. T h e description of t h e ID drive a n d control s y s t e m d e v e l o p e d at the S L S is given in t w o s e p a r a t e p a p e r s [6, 7]. For all IDs, w e s p e c i f i e d t h e 1 ( 2 ) field integrals to stay within h < ± 1 0 G c m ( l < ± 1 0 G c m ) in a ' g o o d field region' of x = ± 2 0 m m horizontally for both t h e vertical a n d horizontal field c o m p o n e n t . O n axis, before (after) c o m p e n s a t i o n the first a n d s e c o n d field integral h a s to stay b e l o w 100 G - c m (30 G c m ) a n d 5 • 1 0 G c m (2 • 1 0 G c m ) repectively for both field c o m p o n e n t s . s t 2 4 2 3 nd 2 4 2 2 W h a t e v e r t h e g a p v a l u e , the m e a s u r e d effect of the IDs on t h e c l o s e d orbit before c o m p e n s a t i o n is < 3 0 urn ( < 50¿¿m) for t h e u n d u l a t o r s (small g a p w i g g l e r ) , c o n s i s t e n t with the m a g n e t i c field error specification. U s i n g c o r r e c t o r coils at both the up- a n d d o w n s t r e a m e n d of the ID, the o b s e r v a b l e b e a m d i s p l a c e m e n t is c o r r e c t e d to < I0¿¿m (after c o m p e n s a t i o n ) to allow the e x p e r i m e n t e r to v a r y t h e g a p at will, o n c e t h e b e a m distortion is m i n i m i z e d to ~ l ^ m by t h e slow orbit f e e d b a c k [8]. T h e m e a s u r e d lifetime (12 h o u r s at 2 0 0 m A ) is determ i n e d by the b e a m stay-clear a p e r t u r e of the c h a m b e r installed in the long straight section 9 L a n d d o e s not c h a n g e w h e n t h e g a p of the U 2 4 i n - v a c u u m undulator is c l o s e d to 6.5 m m . At t h e PX b e a m l i n e this u n d u lator is n o w routinely o p e r a t e d at higher h a r m o n i c s (7th-11th) to r e a c h 8 - 1 2 . 7 keV. F i g . 3: P h o t o e m i s s i o n s p e c t r u m m e a s u r e d at t h e S I S b e a m l i n e using a quasi-periodic vertical field m o d u l a tion in the undulator U E 2 1 2 / 1 in c o m p a r i s o n to t h e periodic field m o d e . T h e s u p p r e s s i o n on h a r m o n i c 2 a n d 3 for e n e r g i e s c l o s e to the F e r m i e d g e is o p t i m i z e d by c h a n g i n g t h e c u r r e n t ratio of t w o different circuits for the vertical poles. u n d u l a t o r s c a n be o p e r a t e d in a quasi-periodic m o d e using field a m p l i t u d e m o d u l a t i o n , w h e r e a s u b s e t of vertical poles is p o w e r e d by a different current using t w o m a i n p o w e r supplies. After c o n s t r u c t i o n at BINP, Novosibirsk, t h e u n d u l a t o r s have b e e n m e a s u r e d at PSI both m e c h a n i c a l l y (using a H P laser interferometer) a n d m a g n e t i c a l l y (using a Hall-probe array a n d a flip-coil s y s t e m built by B I N P a n d a s t r e t c h e d w i r e s y s t e m a s well a s a p u l s e d w i r e s y s t e m built by PSI). For both fields, t h e first t w o poles at the e x t r e m e t i e s are t u n e d to t a k e saturation effects d u r i n g a field r a m p into a c c o u n t . L o n g coils are u s e d to c o r r e c t for a dipole a n d a s k e w q u a d r u p o l e c o m p o n e n t . Both t h e m e c h a n i c a l a n d the m a g n e t i c t o l e r a n c e s w e r e within s p e c i f i c a t i o n s (Fig. 2 ) . For linear polarization, after c o m p e n s a t i o n , a 60 c l o s e d orbit distortion of ~ 10¿*m (rms) h a s b e e n m e a s u r e d vertically a n d horizontally. For p h o t o e m i s s i o n spectroscopy, a n i m p o r t a n t feature t e s t e d so far is the q u a s i - p e r i o d i c m o d e [9] to s u p p r e s s t h e higher h a r m o n i c c o n t e n t at the f u n d a m e n t a l e n e r g y after t h e m o n o c h r o m a t o r . T h e q u a s i - p e r i o d i c field m o d ulation, for t h e first t i m e u s e d in a n e l e c t r o m a g n e t i c u n dulator, c a n b e o p t i m i z e d for s u p p r e s s i o n of t h e 2 n d , 3rd or e v e n higher h a r m o n i c s by adjusting the excitation c u r r e n t s . C o m p a r e d to t h e periodic m o d e , a s u p p r e s s i o n of 1/125 h a s b e e n m e a s u r e d for the 3rd h a r m o n i c (Fig. 3). THE ELLIPTICAL UNDULATOR UE56 A first S a s a k i / A P P L E II u n d u l a t o r U E 5 6 / 1 with a period of 5 6 m m h a s b e e n installed for t h e S I M b e a m l i n e (Fig.4). In c o l l a b o r a t i o n with BESSY, the s e c o n d u n d u lator U E 5 6 / 2 is currently u n d e r c o n s t r u c t i o n . F i g . 5: U n d u l a t o r U E 5 6 / 1 installed with g a p c l o s e d in t h e s t o r a g e ring. F r o m left to right: C o r r e c t o r coil, t a p e r s e c t i o n (inside the e n d box of t h e ID v a c u u m c h a m b e r ) , limit s w i t c h e s , multipole c o r r e c t o r ('magic finger') a n d p e r m a n e n t m a g n e t arrays ( N d F e B ) . 0 ° a n d 9 0 ° . T h e large m a g n e t i c f o r c e s t e n d to p u s h t h e g a p m e c h a n i c a l l y o p e n w h e n t h e m a g n e t arrays are shifted. A C s e r v o m o t o r s o p e r a t e d in c l o s e d loop (feedback) are u s e d to k e e p t h e g a p v a l u e at its setpoint r e g a r d l e s s of t h e highly nonlinear m a g n e t i c forces d u e to the shift m o t i o n [6, 7 ] . F i g . 4: U n d u l a t o r U E 5 6 / I installed in straight s e c t i o n 11M T h e d e v i c e s are p u r e - p e r m a n e n t m a g n e t ( p p m ) s t r u c t u r e s . T h e m a g n e t a s s e m b l y is split into four m a g net arrays. Two m a g n e t arrays, o n e of the u p p e r a n d o n e of the lower m a g n e t arrays are s i m u l t a n e o u s l y disp l a c e d longitudinally. T h e a s s o c i a t e d m o t i o n is c a l l e d 'the p h a s i n g ' or 'shift m o t i o n ' . A parallel shift results in a c h a n g e of the circular polarization f r o m left to right h a n d side. T h e anti-parallel shift p r o v i d e s linearly polarized light with a variable declination a n g l e b e t w e e n Magnetically, t h e S a s a k i / A P P L E ll-type u n d u l a t o r s are v e r y d e m a n d i n g d e v i c e s . For a c o m b i n e d g a p a n d shift m o t i o n , o n e e x p e c t s to o b s e r v e t h r e e c l a s s e s of p e r t u r b a t i o n s to t h e b e a m : c l o s e d orbit distortion, t u n e shifts ( a n d a s s o c i a t e d b e t a t r o n beat) a n d a possible red u c t i o n of the d y n a m i c a p e r t u r e resulting in a s h o r t e r lifetime. A p r o p e r s h i m m i n g a n d a l i g n m e n t as well as a suitable d e s i g n of t h e e x t r e m e t i e s to p r o d u c e a disp l a c e m e n t free trajectory e n s u r e a small c l o s e d orbit distortion. To control t h e field integrals within t h e s p e c ified limits, 2 - m a g n e t m o d u l e s have b e e n m o v e d vertically a n d horizontally (Virtual s h i m m i n g ' ) by 0.1 m m d u r i n g the m a g n e t i c m e a s u r e m e n t . In a s e c o n d step, multiple trim m a g n e t s are used('multipole corrector' or ' m a g i c finger'), installed at t h e e x t r e m e t i e s are u s e d . H a v i n g o p t i m i z e d the field integral distribution for shift - 2 8 m m (elliptical polarization) as s h o w n in Fig.5, the field integrals c h a n g e for shift 0 m m (linear polarization). T h i s c h a n g e , still within t h e s p e c i f i e d limits, is d u e to t h e non-unit p e r m e a b i l i t y of N d F e B ('¿t-1 effect'). To c o r r e c t for this c h a n g e , m a g n e t s w a p p i n g rather t h a n virtual s h i m m i n g s h o u l d be a p p l i e d for field o p t i m i z a tion. D e p e n d i n g o n t h e shift, a p h a s e error of 2 . 2 ° - 2 . 6 ° has been measured. A l t h o u g h the U E 5 6 / 1 u n d u l a t o r h a s not b e e n corrected for the ¿t-1 effect, its influence on t h e b e a m is s m a l l : Before c o m p e n s a t i o n , a c l o s e d orbit distortion of A x ~ 10 ¿*m (rms) ( A y ~ 30 ¿*m (rms)) is o b s e r v e d horizontally (vertically) for the g a p (shift) range 18-150 m m (-28 m m to + 2 8 m m ) . U s i n g c o r r e c t o r coils (feedforward c o r r e c t i o n ) , the distortion is r e d u c e d to < 5 ¿*m ( r m s ) for both p l a n e s . T h e vertical t u n e shift m e a s u r e d is AQ = 0 . 0 0 2 . C h a n g i n g t h e shift f r o m - 2 8 m m to 2 8 m m , the y 61 t w e e n S P r i n g - 8 a n d PSI a n d is n o w routinely opera t e d at t h e PX b e a m l i n e in t h e e n e r g y range 8 14 k e V (Fig. 7). O u r e x p e r i e n c e c o n f i r m s that t h e c o n c e p t of e x t e n d i n g high b r i g h t n e s s u n d u l a t o r radiation at m e d i u m e n e r g y light s o u r c e s to 5-18 keV o p e r a t i n g o n higher h a r m o n i c s is valid. 100 n -40 1 1 1 -20 0 x [mm] 20 r 40 Fig. 6: Top: Vertical a n d horizontal first field integrals in t h e region ± 4 0 m m horizontally, m e a s u r e d for the U E 5 6 / 1 u n d u l a t o r at m i n i m u m g a p (15 m m ) in t h e horizontal linear p o l a r i z e d field m o d e (shift -28 m m ) . Bott o m : C h a n g e of t h e first field integrals w h e n t h e shift is c h a n g e d f o r m -28 m m to 0 m m (vertical field). T h i s c h a n g e , still within t h e s p e c i f i e d limits for the field integrals, is d u e the non-unity p e r m e a b i l i t y of N d F e B effect'). m e a s u r e d horizontal t u n e c h a n g e is A Q ^ - 0 . 0 0 1 5 . THE MAGNET CHICANE Both t h e U E 5 6 a n d the U E 2 1 2 elliptical t w i n - u n d u l a t o r s will be o p e r a t e d in the ' c h i c a n e m o d e ' or in t h e ' p h a s e m a t c h e d m o d e ' u s i n g a 7 - m a g n e t c h i c a n e . In the chic a n e m o d e , t h e e l e c t r o n trajectory is parallel d i s p l a c e d by 1.6 m m (i.e. 10a of the horizontal b e a m size) t o allow a rapid s w i t c h i n g of the polarization in the b e a m line. To o p e r a t e the t w i n - u n d u l a t o r s as a single device, b o t h s e g m e n t s have to be p h a s e m a t c h e d t o g u a r a n t e e c o n s t r u c t i v e interference of the light f r o m the t w o u n d u l a t o r s . A n a n g u l a r kick of 3.3 m r a d is p r o d u c e d by a 0.2 T field in the dipole c h i c a n e m a g n e t s . For both b e a m l i n e s , t h e c h i c a n e will b e installed in t h e s u m m e r of 2 0 0 2 . HARD X-RAYS G. Ingold, T. Schmidt, W. T. Korhonen, B. Patterson, L. L. Schulz, C. Schulze-Briese, lenika and R. Abela (PSI); T. Tanaka (SPring-8, Jp) Bulgheroni, A. Keller, Pochmann, M. Rohrer, C. Vollenweider, S. ZeT. Hará, H. Kitamura, THE UNDULATOR U24 (IN-VACUUM) T h e i n - v a c u u m undulator U 2 4 is a joint project be- Fig. 7: U n d u l a t o r U 2 4 ( i n - v a c u u m ) installed at the S L S s t o r a g e ring. T h e d e v i c e is m o u n t e d o n motorized m o v e r s for in-situ a l i g n m e n t . Szintillator p a d d l e s m o u n t e d at the d o w n s t r e a m e n d are u s e d to m o n i t o r t h e e l e c t r o n b e a m loss rate. T h e u n d u l a t o r h a s t w o r e m o t e l y - c o n t r o l l e d motorizations. T h e m a i n o n e is d e d i c a t e d to m a g n e t i c - g a p t u n i n g f r o m 6.5 to 3 8 m m at a m a x i m u m s p e e d of 1 m m / s a n d a resolution of 1 urn. T h e o t h e r o n e vertically translates a n d levels the full m a g n e t a s s e m b l y for a p r e c i s e c e n t e r i n g a n d a l i g n m e n t with r e s p e c t t o the e l e c t r o n b e a m . It is e x p e c t e d that in e x t r e m e situations t h e g a p will be t h e limiting a p e r t u r e . T h i s m a y result in a possible s c r a p i n g of t h e e l e c t r o n b e a m by t h e m a g net assembly. To c o n s t a n t l y m o n i t o r the loss rate, w e have installed t w o scintillator p a d d l e s d o w n s t r e a m of t h e undulator. T h e ID interlock m o n i t o r s t h e e l e c t r o n b e a m position at the up- a n d d o w n s t r e a m t a p e r transitions a n d auto- matically o p e n s the g a p or d u m p s the b e a m o n c e the e l e c t r o n b e a m trajectory e x c e e d s critical limits both in a n g l e a n d d i s p l a c e m e n t . I m p e d a n c e effects m a y c a u s e an e x c e s s i v e h e a t i n g at t h e j u n c t i o n b e t w e e n t h e flexible transitions a n d t h e m a g n e t a s s e m bly. N e w flexible, w a t e r c o o l e d t a p e r transitions have b e e n d e v e l o p e d a n d t e s t e d for t h e g a p range 6-40 m m 62 p e r i o d of 17 m m a r e o p t i m i z e d to r e a c h a brilliance of 1.8 • 1 0 p h o t o n s / s / m m / m r a d at a r o u n d 14 keV. T h e first U 1 7 undulator will r e p l a c e t h e U 2 4 d e v i c e p r e s e n t l y installed at t h e P X - b e a m l i n e , t h e s e c o n d o n e will b e installed in s e c t i o n 5 L for t h e n e w ¿¿XAS-beamline. T h e c o n c e p t u a l d e s i g n is f i n i s h e d a n d t h e specification for a W T O call for t e n d e r is in p r e p a r a t i o n . A 2 - a x e s ID drive a n d control s y s t e m d e v e l o p e d for s e r v o - m o t o r s o p e r a t e d in c l o s e d loop [6, 7] will b e u s e d to control t h e g a p parallelism to < 5 ¡im in t h e g a p r a n g e 4 - 5 0 m m . 1 8 2 2 THE WIGGLER W61 Fig. 8: U n d u l a t o r U 2 4 : M a g n e t i c array a n d flexible taper ( w a t e r c o o l e d ) inside t h e v a c u u m v e s s e l . (Fig. 8). .JJ24 I at 8 mm, B = 0.644 T, 240 x 54 ¡xrad? T h e w i g g l e r W 6 1 , n o w in routine o p e r a t i o n at t h e M S b e a m l i n e , h a s b e e n d e s i g n e d for m a x i m u m horizontal flux density in t h e e n e r g y r a n g e 5 - 4 0 keV. A m a x i m u m field at a s h o r t p e r i o d (61 m m ) h a d to b e a c h i e v e d . T h e w i g g l e r h a s b e e n built a n d magnetically m e a s u r e d by D A N F Y S I K . PSI w a s r e s p o n s i b l e for t h e electrical part of ID a n d control s y s t e m . It presently o p e r a t e s at a m i n i m u m g a p of 11.5 m m u s i n g a small g a p v a c u u m c h a m ber (Al, 8 m m a p e r t u r e ) built by A P S . Later a f i x e d - g a p c h a m b e r ( a p e r t u r e 5 m m ) will b e installed to allow a m i n i m u m g a p of 8 m m a n d a m a g n e t i c field of 1.85 T. B e c a u s e of t h e high field at small g a p s , t h e m a g n e t i c 1.5*10 10 11 12 Energy 13 14 [keV] Fig. 9: M e a s u r e d spectral flux of t h e U 2 4 i n - v a c u u m u n d u l a t o r at 8 m m m a g n e t i c g a p . F r o m t h e c e n t e r e n e r g y a n d w i d t h of t h e 9th a n d 11th h a r m o n i c , t h e electron b e a m e n e r g y a n d e n e r g y s p r e a d is d e t e r m i n e d as 2.44(2) G e V a n d 0.17 - 0 . 2 1 % respectively. T h e m a g n e t structure, built a n d m e a s u r e d by S P r i n g - 8 , is a hybrid s t r u c t u r e with 5 7 p e r i o d s of 2 4 m m . U s i n g N d F e B m a g n e t m a t e r i a l , a field of 0.83 T is r e a c h e d at t h e p r e s e n t m i n i m u m g a p of 6.5 m m . At 8 m m g a p , a m a g n e t i c t a p e r < 2 G (i.e. m e c h a n i c a l g a p t a p e r < 2 ¿¿m) h a s b e e n m e a s u r e d . T h e p h a s e error is < 2 . 5 ° for t h e relevant g a p r a n g e 6.5-20 m m . T h e vertical a n d horizontal first integrals, m e a s u r e d with a flip coil, a r e w i t h i n ± 2 5 G - c m in a ± 2 0 m m horizontal region. T h e m e a s u r e d c l o s e d orbit distortion is s m a l l , < 1 0 ¿¿ni (rms) ( < 3 ¿¿m (rms)) before (after) c o m p e n s a tion in both p l a n e s for t h e g a p r a n g e 6.5-38 m m . T h e lifetime at low (40 m A ) a n d high (200 m A ) c u r r e n t is not affected, it e v e n i n c r e a s e s at small g a p s . THE UNDULATOR U17 (IN-VACUUM) T h e s u c c e s s of t h e U 2 4 o p e r a t i o n h a s resulted in t h e l a u n c h i n g of t h e p r o d u c t i o n of t w o n e w i n - v a c u u m u n dulators, e a c h 2 m long. T h e hybrid u n d u l a t o r s with a Fig. 10: T h e s h o r t p e r i o d w i g g l e r W 6 1 installed at t h e S L S s t o r a g e ring. Two m o t o r i z e d a x e s a r e u s e d to m o v e t h e m a g n e t i c arrays. T h e small g a p ID v a c u u m c h a m b e r ( a p e r t u r e 8 m m ) is rigidly m o u n t e d o n t w o c o l u m n s to allow a n a l i g n m e n t b e l o w 0.1 m m . 63 |W61 g -100 ^ j ^ 7.5mm 11mm ~ > -15mm ^ ^ -200 -20 -10 0 x [mm] 10 20 F i g . 12: Vertical a n d horizontal field integrals in t h e region ± 2 0 m m horizontally, m e a s u r e d for t h e w i g g l e r W 6 1 at o p e r a t i n g g a p s of 7.5 m m , 11 m m a n d 15 m m (remark: A n arbitrary dipole offset is u s e d in t h e f i g u r e to d i p l a c e t h e g r a p h s for clarity REFERENCES [1] G. Ingold, T. S c h m i d t , Insertion Devices for SLS, PSI Scientific R e p o r t 1 9 9 9 , Vol. II; G. Ingold, T. S c h m i d t , Photon Sources Based on Insertion Devices at SLS, PSI Scientific R e p o r t 2 0 0 0 , Vol. V I I . F i g . 11 : W i g g l e r W 6 1 : G a p o p e n position. A lead shield p r o t e c t s t h e linear e n c o d e r for t h e g a p reading a g a i n s t possible radiation d a m a g e . s h i m m i n g of t h e d e v i c e w a s a c h a l l e n g i n g task. For t h e relevant g a p r a n g e of 7.5 - 15 m m , t h e m e a s u r e d first field integrals a r e within t h e s p e c i f i e d limits for t h e reg i o n ± 1 5 m m horizontally a n d e x c e e d t h e limits slightly c l o s e to ± 2 0 m m (Fig. 12). In t h e g a p r a n g e 1 2 - 1 5 0 m m t h e c l o s e d orbit distortion m e a s u r e d before (after) c o m p e n s a t i o n is < 5 0 í¿m (rms) ( < 1 5 ¿¿m ( r m s ) ) . T h e vertical t u n e shift is A Q = 0 . 0 0 3 5 at 12 m m gap. Effects o n t h e lifetime a r e not o b s e r v e d . [2] C. S c h u l z e - B r i e s e et al., Commissioning tein Crystallography beamline X06SA, tific R e p o r t 2 0 0 1 , V I I . [3] B. Patterson et al., The Materials PSI Scientific R e p o r t 2 0 0 1 , V I I . Science of the ProPSI S c i e n - beamline, [4] L. Patthey et al., Status of the Surface and Interface: Spectroscopy beamline, PSI Scientific R e p o r t 2 0 0 1 , VII. [5] U. F l e c h s i g , G. Ingold, R. K r e m p a s k a , J . K r e m pasky, F. Nolting, L. Patthey, C. Q u i t m a n n , T. S c h m i d t , The Surface/Interface: Microsciopy; Beamline, PSI Scientific R e p o r t 2 0 0 1 , V I I . y SUMMARY In 2 0 0 1 five IDs h a v e b e e n installed at t h e S L S s t o r a g e ring. No effects o n t h e lifetime h a v e b e e n o b s e r v e d for g a p s a s low a s 6.5 m m . C l o s e d orbit d i s t o r t i o n s i n d u c e d by m a g n e t i c field c h a n g e s in t h e IDs a r e c o m p e n s a t e d by f e e d f o r w a r d local c o r r e c t i o n coils, with a residual b e a m m o t i o n b e l o w I 5 ^ m . Together with t h e s l o w orbit f e e d b a c k all IDs a r e t r a n s p a r e n t to t h e elect r o n b e a m . T h e elliptical u n d u l a t o r U E 5 6 / 2 a n d t h e chic a n e s y s t e m will b e installed in s u m m e r 2 0 0 2 . W o r k o n t h e next p h a s e of I D - c o n s t r u c t i o n h a s s t a r t e d , n a m e l y t w o i n - v a c u u m u n d u l a t o r s a n d o n e S a s a k i / A P P L E II t y p e elliptical undulator. [6] W. B u l g h e r o n i , T. K o r h o n e n , C. Vollenweider, G. Ing o l d , T. S c h m i d t , Insertion Devices: Control Hardware, PSI Scientific R e p o r t 2 0 0 1 , V I I . [7] T. K o r h o n e n , B. Kalantari, W. B u l g h e r o n i , C. Vollenweider, G. Ingold, T. S c h m i d t , Insertion Devices: Computer Control, PSI Scientific R e p o r t 2 0 0 1 , V I I . [8] M. B ö g e , T. Schilcher, Beam Position Stabilization, PSI Scientific R e p o r t 2 0 0 1 , V I I . [9] S. H a s h i m o t o , S. S a s a k i , Concept of a New Undulator that will Suppress the Rational Harmonics, Nucl. Instr. a n d M e t h o d s A 3 6 1 , 1995. 64 INSERTION DEVICES: CONTROL HARDWARE W. Bulgheroni, T. Korhonen, In the past two years an ID drive and control to operate stepper incremental encoders. of one micron magnetic motors during continuous energy and polarization for local control the several is designed tons. For elliptically operation G. Ingold, has been developed in open to operate gap and shift movements scans as required and to monitor in EPICS, system loop and servo-motors The drive system forces reaching implemented in open C. Vollenweider, Schmidt that uses a flexible or closed loop (feedback) up to 8 axes synchronously in the presence polarized user applications. according to industrial the systems A Programmable safety standards. ring and for the control architecture with with a of highly non-linear, undulators, for specific used for the control of the storage T. allows linear precision non-uniform continuous Logic Unit is used The remote control of the monochromators is in beamlines. ID E L E C T R I C A L C A B I N E T INTRODUCTION T h e m a g n e t i c field of a p e r m a n e n t m a g n e t (pm) inser- o Motor Control : tion d e v i c e (ID) is t u n e d by t h e m e c h a n i c a l m o v e m e n t of several m a g n e t a r r a y s in t h e p r e s e n c e of highly n o n - ÜX4S C ütlttol : : linear, n o n - u n i f o r m m a g n e t i c f o r c e s of several t o n s : Displav • Planar I D s ( h y b r i d / p p m t y p e ) : vertical m o v e m e n t of a r r a y s for t h e g a p c h a n g e (i.e. t h e c h a n g e of t h e p h o ton energy). • Elliptical I D s ( S a s a k i / A P P L E II t y p e ) : in addition to t h e g a p c h a n g e t h e r e is t h e longitudinal 'shift' m o v e m e n t of t h e m a g n e t a r r a y s (i.e. t h e c h a n g e of t h e p h o t o n polarization). F i g . 1 : Layout of t h e c o n t r o l s y s t e m for t h e insertion d e v i c e s installed at t h e S L S . B e s i d e s t h e p r e c i s i o n r e q u i r e d , t h e ID d r i v e s y s t e m h a s to b e reliable a n d safe a c c o r d i n g to industrial s t a n dards. either s t e p p e r m o t o r s or s e r v o - m o t o r s , h a v e to o p e r a t e synchronuously. 4 - A x i s D r i v e : In c a s e of a n elliptical undulator, 4 a x e s Permanent Magnet Devices a r e o p e r a t e d s y n c h r o n o u s l y in t h e f e e d b a c k m o d e to For w i g g l e r s a positional p r e c i s i o n of ~ 1 0 ¿¿m is usually allow for flexible e n e r g y a n d polarization s c a n s . sufficient, w h e r e a s for t u n a b l e u n d u l a t o r s a p r e c s i s i o n 8 - A x i s D r i v e : U s i n g a 7 - m a g n e t c h i c a n e , t h e elliptical of a few m i c r o n s is r e q u i r e d . Electrical m o t o r s a r e u s e d twin-undulators UE56/1 and UE56/2 can be operated for t h e m o v e m e n t of t h e m a g n e t arrays. T h e d r i v e s y s - either in t h e ' c h i c a n e m o d e ' for fast polarization s w i t c h - t e m a n d control d e v e l o p e d for IDs installed at t h e S L S ing or in t h e ' p h a s e m a t c h e d m o d e ' , w h e r e b o t h u n d u - ID's [1] is d e s i g n e d for flexibility a n d a l l o w s - b a s e d o n lators a r e c o u p l e d to o n e d e v i c e . In t h e ' p h a s e m a t c h e d a c o m m o n a r c h i t e c t u r e a n d d e p e n d i n g o n t h e specific m o d e ' 8 - a x e s h a v e to b e o p e r a t e d s y n c h r o n o u s l y in t h e requirement - two options: feedback mode. • T h e u s e of s t e p p e r m o t o r s o p e r a t e d in o p e n loop. P r g r a m m a b l e L o g i c C o n t r o l : T h e e s s e n t i a l part of t h e • T h e u s e of s e r v o - m o t o r s o p e r a t e d in o p e n or c l o s e d ID c o n t r o l is t h e P L C unit ( S i m a t i c - S 7 / 3 0 0 S P S ) . It h a s loop ( f e e d b a c k ) . several f u n c t i o n s : T h e basic d e s i g n of t h e c o n t r o l s y s t e m is d e s c r i b e d m o v e m e n t of 2 c o u p l e d a x e s , (2) t h e local c o n t r o l , (3) by [2]: t h e limit s w i t c h c o n t r o l , (4) t h e e m e r g e n c y s t o p ( m e - M o t o r s : Stepper motors and servo-motors, manufac- c h a n i c a l h a r d w a r e protection) a n d (4) t h e c o m m u n i - t u r e d by S I G - P o s i t e c h / B e r g e r L a h r . B o t h t y p e s u s e b a - c a t i o n to t h e higher level ( r e m o t e ) c o m p u t e r c o n t r o l (1) t h e a x e s control ( s y n c h r o n o u s sically t h e s a m e p o w e r amplifier unit (Twin-Line S e r i e s ) (VME/VXworks/EPICS). w h i c h a l l o w s a c o m m o n d e s i g n for t h e m o t o r c o n t r o l . Axes control: Linear P L C control unit: L a g error d e t e c t i o n a n d s y n c h r o n i z - Encoders Incremental linear encoders are Critical safety f e a t u r e realized by t h e u s e d for t h e g a p ( H e i d e n h a i n U L S 3 0 0 C w i t h r e a d - o u t ing error d e t e c t i o n d u r i n g t h e o p e r a t i o n of t w o c o u p l e d e l e c t r o n i c s E X E 9 3 2 ) a n d shift ( H e i d e n h a i n L S 4 0 6 C axes. w i t h r e a d - o u t e l e c t r o n i c s E X E 4 0 6 C ) position c o n t r o l . shift m o v e m e n t a r e i m m e d i a t e l y s t o p p e d a s s o o n a s To prevent m e c h a n i c a l d a m a g e , t h e g a p - a n d T h e position s i g n a l s a r e directly t r a n s f e r r e d to t h e V M E p r e s e t limit v a l u e s a r e e x c e e d e d . For error c o r r e c t i o n , c r a t e v i a t h e IK342 b o a r d ( H e i d e n h a i n ) . t h e a x e s control b e c o m e s d i s a b l e d to allow s i n g l e a x i s D r i v e A x i s : A drive a x i s ( g a p or shift m o v e m e n t ) c o n - adjustments. sists of o n e m o t o r including a rotary e n c o d e r , o n e b r a k e a n d o n e linear e n c o d e r ( i n c r e m e n t a l ) . 2-Axis Drive: B o t h t h e g a p ( e n e r g y c h a n g e ) a n d t h e shift m o t i o n (polarization c h a n g e ) a r e a c t i v a t e d by 2 a x e s . B o t h m o t o r s , R e m o t e C o n t r o l : T h e ID c o m p u t e r control [3] is b a s e d o n E P I C S a n d is also u s e d for t h e c o n t r o l of t h e b e a m lines a n d t h e a c c e l e r a t o r s y s t e m s . E a c h ID is e q u i p p e d 65 drive s y s t e m ) . R e m o t e control v i a V M E / E P I C S / O M S , a x e s control is active. (5) S c a n n i n g m o d e : a s (4), but t h e g a p - a n d shift a x e s a r e m o v e d c o n t i n u o u s l y over a w i d e r a n g e (the r a n g e is s u b d i v i d e d in small intervalls s t o r e d in t h e O M S - c o n t r o l l e r c a r d ) . V e l o c i t y C o n t r o l : R o t a r y e n c o d e r s (incremental) o n t h e m o t o r s a r e u s e d for t h e m o t o r velocity control (feedb a c k m o d e ) by t h e m o t o r amplifier unit. P o s i t i o n C o n t r o l : T h e g a p - a n d shift position is m e a s u r e d a n d c o n t r o l l e d in a r e d u n d a n t w a y : (1) T h e (inc r e m e n t a l ) rotary e n c o d e r s i g n a l s f r o m t h e m o t o r s a r e u s e d for t h e position control by t h e P L C unit. (2) T h e h i g h - r e s o l u t i o n linear (incremental) e n c o d e r s a r e u s e d for t h e position control v i a V M E / E P I C S / O M S . L i m i t S w i t c h e s : (1) M i n / M a x limit s w i t c h e s for t h e g a p a n d s h i f t - m o v e m e n t , r e a d by t h e m o t o r p o w e r amplifier unit a n d t h e P C L control unit. (2) H o m e limit s w i t c h e s , c o n t r o l l e d by t h e P L C , u s e d for referencing t h e linear e n c o d e r s . (3) Interlock limit s w i t c h e s , c o n t r o l l e d by t h e P L C , u s e d by t h e m a c h i n e safety interlock s y s t e m . (4) C h a m b e r protection s w i t c h e s , c o n t r o l l e d by t h e P L C , u s e d to prevent a collision b e t w e e n m a g n e t arrays a n d the vacuum chamber. Electromagnetic Devices F i g . 2: Electrical c a b i n e t for a 4 - a x e s ID drive a n d c o n trol (elliptical u n d u l a t o r U E 5 6 ) . Left side: T o u c h p a n n e l (top), P L C (middle) a n d m o t o r amplifier units ( b o t t o m ) . Right side: V M E c r a t e (top), g a p a n d shift reading display (middle, not yet installed) a n d E X E - b o x e s for t h e linear e n c o d e r s (bottom). with t w o V M E c r a t e s o p e r a t i n g u n d e r V X w o r k s . T h e O M S 5 8 m o t o r controller c a r d ( O r e g o n M i c r o s y s t e m s ) is u s e d to o p e r a t e u p to 8 m o t o r s , either s t e p p e r or s e r v o m o t o r s , a n d u p to 8 linear e n c o d e r s v i a t h e 8 - c h a n n e l O M S - I 0 5 8 input/output c a r d . O p e r a t i o n M o d e s : (1) S e t - u p m o d e : local control v i a t h e P L C control unit. U s e d for t h e a d j u s t m e n t of a single a x i s to c o r r e c t t h e lag a n d s y n c h r o n i z i n g error of t w o c o u p l e d a x e s (axes control not active). A l s o u s e d for referencing t h e linear e n c o d e r s . (2) M a n u a l m o d e : a s (1 ), but t h e a x e s control is active ( c o u p l e d a x e s a r e o p e r a t e d s y n c h r o n o u s l y ) . (3) M i c r o - s t e p m o d e : local c o n trol v i a V M E / E P I C S / O M S . T h e a x e s control is active. G a p - a n d shift c h a n g e s in 1 /xm, 10 /xm a n d 100 /xm intervalls, u s e d for m a g n e t i c m e a s u r e m e n t s , for alignm e n t a n d for t h e a d j u s t m e n t of limit s w i t c h e s . (4) S t o p - a n d G o m o d e : g a p - a n d shift c h a n g e s in small intervalls (also in s y n c h r o n i s m with t h e m o n o c h r o m a t o r T h e e l e c t r o m a g n e t i c elliptical t w i n - u n d u l a t o r s U E 2 1 2 / 1 a n d U E 2 1 2 / 2 a r e f i x e d - g a p d e v i c e s . Instead of a m e c h a n i c a l m o v e m e n t of m a g n e t i c arrays, t h e m a g n e t i c field is t u n e d v i a D C c u r r e n t s . By properly a d j u s t i n g t h e c u r r e n t in t h e vertical a n d horizontal iron poles, t h e d e v i c e s c a n b e o p e r a t e d in t h e linear/circular polarization m o d e a n d in t h e p e r i o d i c / q u a s i p e r i o d i c field m o d e . For t h e vertical (horizontal) field, 2 (1 ) m a i n p o w e r s u p plies of 145 A / 7 5 V ( ± 1 2 0 A / 6 0 V) a r e u s e d . In a d dition, t r i m c u r r e n t s a r e a p p l i e d to c o r r e c t for s t e e r i n g a n d multipole errors. Including t h e p o w e r s u p p l i e s for t h e 7 - m a g n e t c h i c a n e , 3 7 digital p o w e r s u p p l i e s h a v e to b e c o n t r o l l e d [4]. T h e p o w e r supplies, built by P S I , a r e t h e s a m e a s for all t h e S L S m a g n e t s [5]. To c o n trol hysteresis a n d end-field c o m p e n s a t i o n effects for reproducible field settings, all ID p o w e r s u p p l i e s track e a c h other d u r i n g a field ramp. REFERENCES [1] G. Ingold, T. S c h m i d t , Insertion Devices installed at the SLS (Phase I), PSI Scientific R e p o r t 2 0 0 1 , V I I . [2] W. B u l g h e r o n i , P. Perren, vice Pflichtenheft: Undulator Dezember 2000. SLS - Insertion DeUE56, T M - 9 3 - 0 0 - 1 0 , [3] T. K o r h o n e n , B. Kalantari, W. B u l g h e r o n i , C. Vollenweider, G. Ingold, T. S c h m i d t , Insertion Devices: Computer Control, PSI Scientific R e p o r t 2 0 0 1 , V I I . [4] A. L u e d e k e et. al., Digital Power Supplies for the Swiss Light Source, I C A L E P S C S 2 0 0 1 , S a n J o s e , California, U S A . [5] F. J e n n i , M. Horvat, L. Tanner, Precision of the SLS Power Supplies, PSI Scientific R e p o r t 2 0 0 0 , V I I . 66 CONCEPTUAL DESIGN: SUB-PICOSECOND HARD X-RAY SOURCE G. Ingold, A. Streun, B. Singh, R. Abela, P. Beaud, D. Grolimund, G. Knopp, L. Rivkin, T. Schmidt, H. Sigg, J.F. van der Veen, A. Wrulich S. Khan (BESSY, Berlin) V. Schlott, We propose to develop at the SLS a facility for sub-picosecond X-ray pulses based on an electron-beam slicing method based on the characteristics of the U17 as the radiator. The undulator is foreseen to be the one planned for the micro-XAFS/diffraction beamline. The facility will enable time-dependent studies of the structural dynamics of condensed matter and photochemistry and will complement time resolved studies in the pico- and nanosecond range planned at the photoelectron-microscopy beamline for soft X-rays. INTRODUCTION T h e e l e c t r o n - b e a m slicing m e t h o d , recently d e m o n s t r a t e d [1] at t h e A L S , Berkeley, is b a s e d on t h e p h y s i c s of a s e e d e d low-gain F E L . T h i s p h y s i c s is k n o w n for 2 0 y e a r s . T h e slicing m e t h o d t a k e s a d v a n t a g e of m o d e r n ultrafast optical lasers to p r o d u c e a s u b - p i c o s e c o n d e l e c t r o n b u n c h of low c h a r g e in a s t o r a g e ring. T h e laser interacts with t h e e l e c t r o n b e a m in a w i g g l e r ('modulator'), resonantly t u n e d to t h e laser w a v e l e n g t h . In a d i s p e r s i v e s e c t i o n , t h e e n e r g y m o d u l a t e d e l e c t r o n s originating f r o m t h e l a s e r / e - b e a m interaction region bec o m e spatially s e p a r a t e d to p r o d u c e a s u b - p i c o s e c o n d X-ray p u l s e in t h e 'radiator' ( b e n d i n g m a g n e t or u n d u lator). H e n c e ultrafast optical lasers c a n b e u s e d to e x t e n d optical s t u d i e s to include X-ray t e c h n i q u e s s u c h a s X-ray a b s o r p t i o n s p e c t r o s c o p y (for local c h e m i c a l a n d m a g n e t i c information) a n d X-ray diffraction (for structural information), with t i m e resolution b e l o w 100 fs. A t o m i c resolution with 100 fs p u l s e s is a c h i e v e d with h a r d X - r a y s (10 keV) rather t h a n with soft X - r a y s (1 keV). To start e x p e r i m e n t s in this r e g i m e , t h e c o n s t r u c tion of a s u b - p i c o s e c o n d undulator radiation ( S P U R ) s o u r c e for h a r d X - r a y s ( 1 0 0 fs, 5-17 k e V ) , b a s e d o n t h e l a s e r / e - b e a m slicing ( L E B S ) is p r o p o s e d [2, 3]. T h e e x p e c t e d a v e r a g e flux a n d brilliance u s i n g a 5 k H z laser is given in Figure 6. S u c h a s o u r c e w o u l d b e s u p e r i o r to existing s o u r c e s ( L a s e r P l a s m a S o u r c e , T h o m p s o n / C o m p t o n Scattering, LEBS using bending m a g n e t radiation) in t e r m s of p u l s e l e n g t h , tunability, a v a r a g e flux a n d a v e r a g e brilliance. C o m p a r e d to f u t u r e 4th g e n e r a t i o n light s o u r c e s ( S A S E X - R a y F E L , E R L / P E R L ([Photo-injected] E n e r g y R e c o v e r y Linac), t h e p r o p o s e d facility is a low p e r f o r m a n c e X-ray s o u r c e . It is an i n t e r m e d i a t e s t e p t o w a r d s 4 t h g e n e r a t i o n X-ray user facilities (both in t e r m s of t h e d e v e l o p m e n t a n d t h e u s e of s u c h s o u r c e s ) , w h i c h m a y b e c o m e available at t h e e n d of this d e c a d e . SUB-PICOSECOND X-RAY SOURCE For t h e c o n s t r u c t i o n of a S P U R b e a m l i n e b a s e d o n L E B S , t h e S L S s t o r a g e ring offers several a d v a n t a g e s : (1) T h e b e a m e n e r g y of 2.4 G e V is low e n o u g h for a n e n e r g y m o d u l a t i o n of at least 0 . 5 % u s i n g a m o d e r n f e m t o s e c o n d laser s y s t e m (800 n m , 5 0 fs, 1 m J / p u l s e , 1-5 k H z ) . (2) T h e b e a m e n e r g y is high e n o u g h to p r o d u c e sufficient h a r d X - r a y s u p to 17 keV by t h e u s e of higher u n d u l a t o r h a r m o n i c s (11th/13th) in t h e radiator. (3) Instead of u s i n g t w o s e c t o r s s e p a r a t e d by an a c h r o m a t i c arc s e c t i o n , t h e S P U R s o u r c e will b e installed in o n e long straight s e c t i o n (5L, 11 m ) . T h i s p r o v i d e s t h e s m a l l e s t t e m p o r a l s t r e t c h i n g of t h e e l e c t r o n b u n c h slice (due to t h e n o n - i s o c h r o n i c i t y of t h e S L S s t o r a g e ring) a n d t h u s t h e s h o r t e s t X-ray p u l s e s ( < 100 fs). (4) T h e low e m i t t a n c e optics allows t h e installation of a p p r o p r i a t e small g a p , s h o r t p e r i o d w i g g l e r s a n d u n d u l a t o r s ( i n - v a c u u m ) to m a t c h t h e required radiation c h a r a c t e r i s t i c s . T h e S P U R s o u r c e s h o w n in Figure 1, c o n s i s t s of t h e f e m t o s e c o n d optical laser s y s t e m (high repetition rate, high a v e r a g e p o w e r ) , t h e m o d u l a t o r (wiggler), t h e d i s p e r s i v e s e c t i o n ( c h i c a n e ) , a n d t h e radiator (undulator). It will b e installed in sector 5 a s a n e x t e n s i o n to t h e h a r d X-ray /xXAS b e a m l i n e . A basic optical layout of t h e s o u r c e that leaves t h e non-linear b e a m d y n a m ics basically u n c h a n g e d h a s b e e n f o u n d . Dynamic a p e r t u r e c a l c u l a t i o n s indicate compatibility with t h e g e n e r a l m a c h i n e p e r f o r m a n c e [4]. A 4 - m a g n e t c h i c a n e a d j a c e n t to t h e m o d u l a t o r p r o v i d e s a vertical d i s p e r s i o n of 8.8 m m at t h e radiator, resulting in a 5<r t r a n s v e r s e spatial s e p a r a t i o n (48 /xm) of t h e sliced e l e c t r o n s f r o m t h e c o r e b e a m . S u b - p i c o s e c o n d (~ 2 0 0 fs) radiation 200 fs X-ray/IR Diagnostic Fig. 1 : T h e w i g g l e r (modulator) w i t h a vertical 4m a g n e t c h i c a n e a n d t h e small g a p u n d u l a t o r (radiator) a r e installed in o n e straight s e c t i o n . A q u a d r u p o l e triplet splits t h e long straight s e c t i o n 5 L into t w o s h o r t straights to install t w o small g a p IDs. will b e available also at t h e c e n t e r b e n d i n g m a g n e t B X - 0 5 in t h e arc s e c t i o n i m m e d i a t e l y d o w n s t r e a m of s e c t o r 5 L . T h e diagnostic b e a m l i n e u n d e r c o n s t r u c t i o n at B X - 0 5 will exploit t h e c o h e r e n t IR radiation e m i t t e d by t h e sliced e l e c t r o n b u n c h to m o n i t o r relevant s o u r c e parameters such as the pulse length, the time structure a n d t h e laser s y n c h r o n i z a t i o n . In a s e c o n d B X - 0 5 67 outlet, s u b - p i c o s e c o n d X-ray p u l s e s will b e available o n e order of m a g n i t u d e less in intensity c o m p a r e d to the SPUR source. \ a. % 0.01 0.008 0.006 0.004 Design Parameters 0.002 T h e p r e s e n t c o n c e p t u a l d e s i g n of t h e S P U R s o u r c e is b a s e d on t h e following p a r a m e t e r s : • T k s a p p h i r e l a s e r : 8 0 0 n m ( f u n d a m e n t a l ) , 18 optical c y c l e s , 5 0 fs [ F W H M ] , 1 m J / p u l s e , 5 W, 5 k H z . • M o d u l a t o r : small g a p , s h o r t p e r i o d w i g g l e r W 1 1 0 0 l l l l l i i -0.002 -0.004 -0.006 -0.008 -0.01 0.3 -0.2 —i i i i -0.1 i i i i i i i i i i 0.1 0.2 LASER: T I : S A P P H I R E F i g . 3: C a l c u l a t e d m o m e n t u m a n d spatial distribution of t h e electron b u n c h following interaction with t h e laser in t h e modulator. A n e n e r g y m o d u l a t i o n > 0 . 5 % is required. 1 ST H A R M O N I C WAVELENGTH A I 800 N M ENERGY/PULSE A ¿ 1 (3) PULSE LENGTH tl NO. OPTICAL CYCLES 0.3_ x 10 z / m MJ 50 FS M 18 L REPETITION RATE F¿ 1-5 K H Z (PHASE 1 ) 5 - 1 0 KHZ (PHASE 2) ENERGY M O D U L A T I O N A E : MODULATOR W H O > 12 M E V (= 5 a) E F i g . 2: L a s e r p a r a m e t e r s . (possibly i n - v a c u u m ) , r e s o n a n t to t h e laser f u n d a m e n tal, p e r i o d 110 m m , g a p 7.5 m m , p e a k field 2.5 T, K-parameter 25.6, length 2 m, n u m b e r of p e r i o d s 18 ( m a t c h e d to t h e n u m b e r of optical laser c y c l e s ) . • R a d i a t o r : small gap, s h o r t p e r i o d undulator U 1 7 (inv a c u u m ) , p e r i o d 17 m m , g a p 4 m m , p e a k field 1 T, X-ray e n e r g y r a n g e 5-17 k e V ( 3 . - 1 1 . h a r m o n i c ) , length 2 m, n u m b e r of p e r i o d s 117. • C h i c a n e : 4 - m a g n e t c h i c a n e , length 0.3 m, field 0.43 T, vertical d i s p e r s i o n 8.8 m m . T h e vertical disp l a c e m e n t of t h e s t o r e d b e a m in t h e m o d u l a t o r is u s e d to s e p a r a t e a n d block t h e high p o w e r wiggler radiation. • E n e r g y m o d u l a t i o n : A E > 12 M e V (0.5%), laser energy 1 mJ/pulse. • S l i c i n g e f f i c i e n c y : 5 . 5 x l 0 ~ (5 k H z , 4 0 0 b u n c h e s ) , d e f i n e d a s t h e n u m b e r of e l e c t r o n s with AE > 0 . 5 % / s e c o n d / b e a m c u r r e n t (400 m A ) . By n u m e r i c a l integration w e c a l c u l a t e AE = —efv±E(x, t)dt w h e r e v± is t h e electron t r a n s v e r s e velocity a n d E(x, t) t h e electrical field of t h e laser. T h e waist of t h e laser b e a m at t h e c e n t e r of t h e m o d u l a t o r is typically 2 0 0 /im (H) x 2 0 0 ixm (V) (see Figure 3). undulator h a r m o n i c s ( U 2 4 undulator ( i n - v a c u u m ) , currently installed at t h e P X - b e a m l i n e [6]). • B a c k g r o u n d s u p p r e s s i o n : (i) A c h o p p e r c l o s e to t h e i n t e r m e d i a t e i m a g e of t h e s o u r c e is u s e d to m a t c h t h e duty c y c l e of t h e X-ray b e a m to t h e laser s y s t e m , (ii) G a t e d ( ~ 2 ns) d e t e c t o r s have to b e u s e d to s u p p r e s s b a c k g r o u n d X - r a y s v i a "laser o n / laser off" difference m e a s u r e m e n t s (on individual p u l s e s ) . Laser System T h e f e m t o s e c o n d optical laser s y s t e m will s e r v e dual p u r p o s e of providing laser p u l s e s for slicing a s well a s (tunable) " p u m p " p u l s e s for s a m p l e excitation. Initial exp e r i m e n t a l e x p e r i e n c e with t h e s u b - p i c o s e c o n d X-ray s o u r c e c a n b e g a i n e d with a reliable c o m m e r c i a l s y s t e m ( p h a s e 1 ). W e e x p e c t that a 5 0 fs T i : s a p p h i r e laser s y s t e m b a s e d on t h e c h i r p e d p u l s e amplification [5] with an a v e r a g e p o w e r of 3 W (1 m J / p u l s e , 3 k H z ) will c o m m e r c i a l l y b e available at t h e e n d of y e a r 2 0 0 1 . T h e d e s i g n of this laser s y s t e m shall allow an u p g r a d e in t e r m s of p u l s e e n e r g y a n d repetition rate ( p h a s e 2 ) . For t h e u p g r a d e , a s y s t e m will be d e v e l o p e d deliver- 9 • P u l s e s e p a r a t i o n : (i) Spatial s e p a r a t i o n , 4 8 iim, 5as e p a r a t i o n (vertical) in t h e radiator (separation of t h e sliced e l e c t r o n s f r o m t h e c o r e b e a m ) ; 1.3:1 d e m a g nified i n t e r m e d i a t e i m a g e of t h e s o u r c e in t h e b e a m line; spatial s e p a r a t i o n of t h e s u b - p i c o s e c o n d X-ray p u l s e s with a pair of slits d i s p l a c e d 5a a b o v e t h e o p tical axis, (ii) S e p a r a t i o n in e n e r g y : t h e s u b - p i c o s e c o n d X - r a y s a r e blue-shifted in e n e r g y with respect to t h e h a r m o n i c energy. For t h e 7th (11th) h a r m o n i c t h e s u p p r e s s i o n of t h e l o n g - p u l s e X-ray flux is e s t i m a t e d to be 2 x 1 0 ( 2 x 1 0 ) , b a s e d o n t h e m e a s u r e m e n t of higher _ 2 _ 1 50 fs 100 MHz/1 nJ 200 ps 100MHz/100pJ 200 ps 1 kHz/ 1.5 mJ 50 fs 1 kHz/1 mj F i g . 4: F e m t o s e c o n d T k s a p p h i r e laser s y s t e m . ing p u l s e s of 5 0 fs scalable in pulse e n e r g y to 3 m J (to a c c o u n t for diffraction effects at t h e laser interaction point) a n d in repetition rate to 10 k H z . S u c h a s y s t e m c o u l d be b a s e d o n a d e s i g n s h o w n in Figure 5. S u b - P i c o s e c o n d X-Ray Pulses T h e S P U R s o u r c e is d e s i g n e d to deliver 100 fs, 810 k e V X-ray p u l s e s with a n a v e r a g e flux of 2 x 1 0 p h o t o n s / s e c / 0 . 1 % b w a n d a v e r a g e brilliance of 6 68 to compressor 1.5 m j / 1 0 kHz Pump F i g . 5: S c h e m a t i c v i e w of t h e d o u b l e t w o - p a s s T i : s a p p h i r e 10 k H z amplifier. P: polarizer; FR: Faraday rotator. 5 x 10 1 0 p h o t o n s / s e c / m m / m r a d / 0 . 1 % b w . To c a l c u l a t e 2 2 Short Pulses: Hard X - Rays Flux: F [ p h / s e c / 0 . 1 % bw] 2 2 Brilliance: B [ p h / s e c / m m / m r a d / 0 . 1 % bw] N hi/ [keV] 1 3 5 7 9 11 13 1.5 4.6 7.7 10.8 13.9 16.9 20.0 Flux [100 fs, 5 kHz] 1.8E+7 6.5E+6 2.3E+6 8.0E+5 3.3E+5 1.3E+5 4.8E+4 Brilliance [100 fs, X-ray signal: spatial s e p a r a t i o n ( m a s k ) , s e p a r a t i o n by e n e r g y ( m o n o c h r o m a t o r ) a n d s e p a r a t i o n in t i m e (gating, "laser o n / l a s e r off" difference m e a s u r e m e n t s ) . (5) Diagnostic t o o l s h a v e t o b e available to c h a r a c t e r i z e b o t h t h e optical laser b e a m ( F E L g a i n , s y n c h r o n i z a t i o n ) a n d t h e s u b - p i c o s e c o n d X-ray p u l s e s ( f r o m c o h e r e n t IR radiation). (6) T h e c h i c a n e v a c u u m c h a m b e r w h i c h c o n n e c t s t h e m o d u l a t o r a n d radiator v a c u u m s y s t e m (including w a t e r - c o o l e d p h o t o n a b s o r b e r s to block u n w a n t e d radiation), h a s to b e d e s i g n e d carefully. For t h e S P U R s o u r c e to function at p e a k perform a n c e , several c o m p l e x s y s t e m s n e e d to o p e r a t e s i m u l t a n e o u s l y including t h e laser s y s t e m , laser s y n c h r o n i z a t i o n (~ 1-2 ps), t h e small g a p m o d u lator (possibly i n - v a c u u m ) , t h e i n - v a c u u m radiator (operating o n higher h a r m o n i c s ) [6], diagnostic tools a n d i n s t u m e n t a t i o n (autoVcross-correlator, (X-ray) streak camera, gated detectors) and the beamline o p t i c s (chopper, c r y o g e n i c a l l y c o o l e d d o u b l e crystal monochromator). 5 kHz] 3.5E+11 1.8E+11 7.0E+10 2.5E+10 9.0E+9 3.3E+9 1.2E+9 F i g . 6: A v e r a g e flux a n d b r i g h t n e s s of t h e s u b p i c o s e c o n d X-ray p u l s e s for t h e U 1 7 u n d u l a t o r (integ r a t e d over 0.25 m r a d (H) x 0.05 m r a d (V)). t h e a v e r a g e flux a n d b r i g h t n e s s , t h e laser slicing effic i e n c y h a s b e e n t a k e n into a c c o u n t a s well a s t h e red u c t i o n of b r i g h t n e s s d u e t o t h e u n d u l a t o r p h a s e error, t h e e m i t t a n c e a n d t h e e n e r g y s p r e a d of t h e e l e c t r o n beam. Critical Issues (1) T h e spatial s e p a r a t i o n of t h e sliced e l e c t r o n s f r o m t h e c o r e b e a m n e e d s to b e o p t i m i z e d b e y o n d 5a by i n c r e a s i n g t h e laser e n e r g y (to 3 m J ) a n d / o r t h e d i s p e r s i o n of t h e c h i c a n e (both spatial a n d a n g u l a r dispersion). (2) T h e a v e r a g e s u b - p i c o s e c o n d X-ray flux a n d brilliance is directly p r o p o r t i o n a l to t h e laser repetition rate. T h e r e is a trade-off b e t w e e n backg r o u n d s u p p r e s s i o n a n d laser repetition rate (i.e. t h e t i m e n e e d e d t o d a m p t h e b e a m halo) w h i c h m a y only b e e v a l u a t e d experimentally. T h e laser s h o u l d h a v e e n o u g h m a r g i n b o t h in p u l s e e n e r g y a n d repetition rate. (3) For c r e a t i n g a c l e a n i n t e r m e d i a t e i m a g e of t h e s o u r c e , t h e quality of t h e X-ray optics ( s p e c u l a r reflections, s l o p e errors) will b e crucial. A p o s s i b l e d e g r a d a t i o n of t h e spatial s e p a r a t i o n d u e to imperfect X-ray o p t i c s n e e d s to b e e v a l u a t e d by ray tracing calculations. (4) B e c a u s e t h e overall slicing efficiency is v e r y low (~ 5-10E-9), several m e t h o d s n e e d to b e a p p l i e d s i m u l t a n e o u s l y t o isolate t h e s u b - p i c o s e c o n d T h e s o u r c e will b e c o n s t r u c t e d a l o n g construction schedule (2002-2004). a 3 year REFERENCES [1] R.W. S c h o e n l e i n , S. C h a t t o p a d h y a y , H.H. C h o n g , T.E. Glover, P.A. H e i m a n n , C.V. S h a n k , A.A. Z h o lents, M.S. Zolotorev, Generation of Femtosecond Pulses of Synchrotron Radiation, SCIENCE 287 (2000) 2 2 3 7 a n d A p p l . Phys. B 71 (2000) 1. [2] FEMTO-second pulses of synchrotron radiation at the SLS, p r o p o s a l , F E M T O 1 2 . 0 1 . 0 1 , S L S , PSI Villigen, J a n u a r y 9, 2 0 0 1 a n d G. Ingold, T. S c h m i d t , Photon Sources based on Insertion Devices at SLS, PSI Scientific R e p o r t 2 0 0 0 , V o l u m e V I I . [3] G. Ingold, A. S t r e u n , B. S i n g h , R. A b e l a , P. B e a u d , G. K n o p p , L. Rivkin, V. Schlott, T. S c h m i d t , H. S i g g , J.F. v a n der V e e n , A. W r u l i c h , Sub-Picosecond Optical Pulses at the SLS Storage Ring, Proc. PAC 2 0 0 1 , C h i c a g o , p. 2 6 5 6 a n d Proc. 2 1 s t ICFA B e a m D y n a m i c s W o r k s h o p o n L a s e r - B e a m Interactions, http://nslserver.physics.sunysb.edu/icfa/Papers/ collection.htm, W2-2.pdf [4] A. S t r e u n , B. S i n g h , G. S i n g h , G. Ingold, V. Schlott, Beam Dynamics Studies on an Extension of SLS for Generation of sub-picosecond X-Ray Pulses, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [5] D. S t r i c k l a n d , G. M o u r o u , A p p l . Phys. B 5 8 (1985) 2 1 1 ; M. Pessot, P. M a i n e , G. M o u r o u , Opt. C o m m u n . 6 2 (1987) 4 1 9 ; P. M a i n e , D. Strickland, P. B a d o , M. Pessot, G. M o u r o u , I E E E J. Q u a n t . Electron. 2 4 (1988) 3 9 8 . [6] G. Ingold, T. S c h m i d t , Insertion Devices: First Experiences, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . 69 INSERTION DEVICES: COMPUTER CONTROL T. Korhonen, B. Kalantari, W. Bulgheroni, C. Vollenweider, G. Ingold, T. Schmidt In the initial phase of the Swiss Light Source, 5 (6) insertion devices (ID) have been installed [1] for the first 4 beamlines. The control system for all the ID's follows, where possible, an uniform concept to allow a rapid installation and maintenance schedule, while at the same time allowing for a variety in operational requirements. The components of the control system include the gap drive system with encoders [2], temperature monitoring, beam position monitoring, power supply controllers for corrector magnets [3] and a timing module [4]. The gap drive system requirements range from micron-level accuracy to driving double undulators in synchronism with each other and also with the other beamline elements. The control system is implemented in EPICS, using mostly readily available driver and device support modules plus standard records. Permanent Magnet Devices T h e control of t h e m a g n e t array position is the centerpiece of a n insertion d e v i c e control s y s t e m . For the W 6 1 w i g g l e r a n d t h e U E 5 6 p o l a r i z e d twin-undulator, t h e control s y s t e m h a d to be d e v e l o p e d i n - h o u s e . A l t h o u g h the d e v i c e s are quite different, w e strived to find a c o m m o n d e s i g n that c o u l d b e u s e d a s a b a s i s for f u ture d e v e l o p m e n t s . Essentially the control c o n s i s t s of a drive s y s t e m to m o v e the m a g n e t arrays vertically (gap, to c h a n g e the p h o t o n e n e r g y ) a n d / o r longitudinally (shift, to c h a n g e t h e p h o t o n polarization) including a position m e a s u r e m e n t s y s t e m to m o n i t o r the actual g a p a n d shift setpoints. T h e positions are typically m e a s u r e d by e n c o d e r s . T h e p h i l o s o p h y w a s to have a g a p m e a s u r i n g d e v i c e a s c l o s e a s possible to t h e real m e c h a n i c a l gap. To have a high precision over a large range, w e d e c i d e d to u s e linear i n c r e m e n t a l e n c o d e r s m a n u f a c t u r e d by H e i d e n h a i n [6]. T h e s e l e c t e d e n c o d e r s ( U L S 3 0 0 ) have high-precision a b s o l u t e reference m a r k s . T h i s all o w s a high reproducibility of the g a p setting. For the m o t o r controller w e s e l e c t e d to u s e the O r e g o n M i c r o s y s t e m s O M S 5 8 m o t o r controller c a r d [9]. T h i s c a r d h a d a g o o d s o f t w a r e s u p p o r t f r o m the E P I C S c o m munity a n d w a s already in u s e at S L S b e a m l i n e c o n trols. O n e big a d v a n t a g e w a s also that this c a r d h a s s u p p o r t for b o t h s e r v o a n d s t e p p e r m o t o r s , with e s s e n tially the s a m e s o f t w a r e interface, so w e c o u l d u s e a large part of the software for b o t h t h e s e r v o a n d stepper m o t o r - b a s e d s y s t e m s . For the d e v e l o p m e n t of the g a p drive w e d e c i d e d to build a n " I D - t e s t s t a n d " , a m e c h a n i c a l m o d e l of a n ID w i t h w h i c h a l l o w e d us to try a n d d e b u g the control s y s t e m before h a v i n g the actual d e v i c e s . T h e test s y s t e m h a d only t h e g a p drive a n d t h e linear e n c o d e r s for t w o a x e s (the m a g n e t i c f o r c e s b e i n g s i m u l a t e d by c o m p e n s a t i n g s p r i n g s ) , but t u r n e d out to be a n e x t r e m e l y v a l u able d e v e l o p m e n t tool. W i t h o u t the t e s t s t a n d it w o u l d have b e e n a l m o s t impossible to m e e t t h e c o n s t r u c t i o n time schedule. For t h e W 6 1 , it w a s sufficient to have s t e p p e r m o t o r s a n d a n o p e n loop control with t h e capability to m o n i tor t h e linear e n c o d e r s a n d , if necessary, do a position correction. T h e device has two axes with two separate m o t o r s that have to run s y n c h r o n o u s l y to k e e p the taper, i.e., t h e inclination a n g l e of the m a g n e t arrays, I 1 V 1 Rotary encoder US (left Rotary encoder DS (left Linear encoder US (right Linear encoder DS (right \ J Mi \l i / 1 ^ scale)^" scale/ — scale) scale) fi \ ; ! \ / F i g . 1 : Elliptical u n d u l a t o r U E 5 6 : g a p c h a n g e (i.e. p h o t o n e n e r g y ) d u r i n g a d y n a m i c a l c h a n g e of the shift m o d e (i.e. p h o t o n polarization). O n c e t h e four drive a x e s are o p e r a t e d in a c l o s e d loop position control using t h e linear e n c o d e r s , the m e a s u r e d d y n a m i c a l g a p c h a n g e s stay b e l o w l ^ m over t h e full range of t h e shift travel ( ± 2 8 m m ) . c l o s e to zero. T h e U E 5 6 t w i n - u n d u l a t o r h a s m o r e d e m a n d i n g r e q u i r e m e n t s . T h e s e d e v i c e s have t h e p o s s i bility to c h a n g e t h e light polarization f r o m linear to elliptical by shifting u p p e r a n d lower m a g n e t a r r a y s longitudinally relative to e a c h other (shift m o d e ) . T h e large m a g n e t i c f o r c e s (several tons) p u s h t h e g a p m e c h a n i cally o p e n w h e n the m a g n e t arrays are shifted. T h e diff e r e n c e h a d b e e n m e a s u r e d to b e a l m o s t 3 0 0 m i c r o n s (Figure 1), w h i c h is not a c c e p t a b l e for user o p e r a t i o n . T h e s y s t e m t h u s required c l o s e d - l o o p position c o n t r o l , w i t h four a x e s to control simultaneously. T h e drive s y s tem uses AC servomotors. The conventional way would be to u s e rotary e n c o d e r s o n the m o t o r s for t h e position f e e d b a c k , but to get the required high p r e c i s i o n , w e d e c i d e d to do a f e e d b a c k directly f r o m the linear e n c o d e r s . T h i s is m o r e difficult to t u n e , b e c a u s e the e n tire m e c h a n i c a l s y s t e m is i n c l u d e d in t h e f e e d b a c k loop a n d the c o m p o n e n t s c a n n o t be t u n e d individually. H o w ever, this simplifies the additional s o f t w a r e b e c a u s e the regulation is directly b a s e d on t h e g a p r e a d i n g a n d no f u r t h e r c o r r e c t i o n s are n e e d e d to a c c o u n t for b a c k l a s h , b e n d i n g a n d c r e e p . W e have a c h i e v e d l ^ m precision a n d repeatability for t h e U E 5 6 g a p - a n d shift drive. T h e polarization m o d e c a n be c h a n g e d d y n a m i c a l l y a n d the 70 feedback keeps the gap value (and hence the photon e n e r g y ) to its setpoint r e g a r d l e s s of the highly nonlinear m a g n e t i c f o r c e s arising f r o m t h e m a g n e t array shift m o t i o n to c h a n g e the p h o t o n polarization. T h i s feature will be crucial for a s i m u l t a n e o u s s c a n n i n g of t h e u n d u lator g a p a n d t h e m o n o c h r o m a t o r energy. In a d d i t i o n , in c a s e of the i n - v a c u u m U 2 4 undulator, it s e r v e s a s a n indicator of possible p r o b l e m s in the w a t e r c o o l i n g circuit. In this device, t h e control p r o g r a m c o n stantly m o n i t o r s the t e m p e r a t u r e a n d if it rises a b o v e a s p e c i f i e d t h r e s h o l d , the g a p is a u t o m a t i c a l l y o p e n e d . T h e t e m p e r a t u r e s are m e a s u r e d with t h e r m o c o u p l e s a n d G r e e n s p r i n g [7] t h e r m o c o u p l e IP c a r d s . Electromagnetic Devices An electromagnetic UE212 twin-undulator has been installed in the long straight s e c t i o n 9 L . T h e s e d e v i c e s have no m o v i n g g a p but i n s t e a d the c u r r e n t s of t h e e l e c t r o m a g n e t s n e e d to be c o n t r o l l e d for vario u s m o d e s of o p e r a t i o n : linear/circular polarization a n d p e r i o d i c / q u a s i - periodic field setting. For t h e control the s a m e digital p o w e r s u p p l i e s are u s e d a s for all t h e S L S m a g n e t s . T h e r e f o r e m o s t of the control s y s t e m develo p e d for the s t o r a g e ring m a g n e t s c a n be u s e d . To control hysteresis a n d end-field c o m p e n s a t i o n effects, all p o w e r s u p p l i e s track e a c h o t h e r d u r i n g a field ramp. Additional systems For t h e o p e r a t i o n of the insertion d e v i c e s , additional m o n i t o r i n g s y s t e m s are n e c e s s a r y to g u a r a n t e e the safety of the o p e r a t i o n a n d to o p t i m i z e t h e performance. Beam Position Monitors For m o n i t o r i n g the b e a m position c l o s e to t h e insertion d e v i c e , w e u s e a s e p a r a t e b e a m position m o n i t o r s y s t e m , c o n s i s t i n g of pick-up e l e c t r o d e s , a B P M p r o c e s s ing m o d u l e (Bergoz) [5] a n d an ( S L S s t a n d a r d ) A D C to r e c o r d t h e positions. T h e m a i n p u r p o s e of t h e s e B P M s is to provide s i g n a l s to an external interlock s y s t e m that w o u l d d u m p the b e a m if t h e b e a m orbit h a d a too large position offset or s t e e r i n g a n g l e at t h e insertion device. In a d d i t i o n , t h e s e B P M s have p r o v e n to be v e r y v a l u able to m o n i t o r t h e effect of the IDs o n t h e b e a m bec a u s e they are s i t u a t e d c l o s e to the ID, giving direct information of the b e a m orbit at that location. Further s t u d y is still n e e d e d to fully u n d e r s t a n d t h e r e s p o n s e a n d calibration of this (analog) B P M s y s t e m . Beam Loss Monitors B e a m loss m o n i t o r s have b e e n installed near the insertion devices. Especially critical is the small g a p u n d u l a t o r U 2 4 ( i n - v a c u u m ) o p e r a t i n g at g a p s a s small a s 6.5 m m , w h e r e large a r e a scintillator p a d d l e s have b e e n installed. T h e scintillator p a d d l e s are v e r y s e n sitive to the b e a m loss rate with a fast t i m e r e s p o n s e . T h e y p r o v e d to b e v e r y useful d u r i n g c o m m i s s i o n i n g . T h e o u t p u t f r o m the b e a m loss m o n i t o r s are T T L signals. Its f r e q u e n c y p r o v i d e s the loss rate. T h e T T L s i g n a l s are read out with a (SIS [8]) m u l t i c h a n n e l scaler into E P I C S c h a n n e l s . Correctors E a c h ID h a s horizontal a n d vertical c o r r e c t o r m a g n e t s p l a c e d c l o s e to the d e v i c e u p s t r e a m a n d d o w n s t r e a m . T h e s e c o r r e c t o r s are u s e d to m i n i m i z e the effect of the residual kicks f r o m t h e ID at different settings. T h e corrector v a l u e s for e a c h g a p setting follow b r e a k p o i n t tables that have b e e n m e a s u r e d d u r i n g c o m m i s s i o n i n g of e a c h device. Magnetic Field Monitoring For control of t h e hysteresis of the U E 2 1 2 electrom a g n e t i c t w i n - u n d u l a t o r s d u r i n g small field variations, t h e m a g n e t i c fields will be m o n i t o r e d on-line u s i n g H a l l - p r o b e s installed in small p o r t s of t h e v a c u u m a n t e c h a m b e r c l o s e to the b e a m axis. User Interface A l t h o u g h t h e d e v i c e s are v e r y different, m u c h effort h a s b e e n m a d e to m a k e t h e m look similar to t h e o p e r a t o r a n d to hide t h e (different levels of) c o m p l e x i t y b e h i n d a c o m m o n o p e r a t i n g interface. Basically, only a m i n i m u m of information is p r e s e n t e d o n the o p e r a t o r display. T h e o p e r a t o r n o r m a l l y c a n only switch t h e m o t o r drives o n or off a n d to set t h e g a p to t h e r e q u i r e d value. Before t u r n i n g o n the p o w e r for instance, the d e v i c e s go internally t h r o u g h a s e r i e s of c h e c k s a n d settings (the g a p setpoint is s y n c h r o n i s e d with the actual g a p value, for instance) before t h e m o t o r p o w e r is t u r n e d o n . REFERENCES [1] G. Ingold, T. S c h m i d t , Insertion Devices installed at the SLS (Phase I), PSI Scientific R e p o r t 2 0 0 1 , V I I . [2] W. B u l g h e r o n i , T. K o r h o n e n , C. Vollenweider, G. Ing o l d , T. S c h m i d t , Insertion Devices: Gap Control Hardware, PSI Scientific R e p o r t 2 0 0 1 , V I I . [3] A. L u e d e k e et.al.,Digital Power Supplies for the Swiss Light Source, I C A L E P C S ' 0 1 , S a n J o s e , C a l ifornia, U S A . [4] T. K o r h o n e n , M. Heiniger, Timing System of the Swiss Light Source, I C A L E P C S ' 0 1 , S a n J o s e , C a l ifornia, U S A . [5] B e r g o z SA., BPM system user's Manual. [6] H e i d e n h a i n G m B H . w w w . h e i d e n h a i n . c o m [7] S B S G r e e n s p r i n g , w w w . g r e e n s p r i n g . c o m Temperature measurement M o n i t o r i n g of the v a c u u m c h a m b e r t e m p e r a t u r e is a safety m e a s u r e a g a i n s t h e a t i n g w h e n t h e orbit is b a d . [8] SISGmBH.www.sis.de [9] O r e g o n M i c r o s y s t e m s , Co.. w w w . o m s m o t i o n . c o m 71 STATUS OF THE MYTHEN DETECTOR SYSTEM B. Schmitt, Ch. Brönnimann, E.F. Eikenberry, M. Naef, F. Gozzo, D. Maden, B.D. Patterson, R. Horisberger, J. Rothe, S. Streuli, J. Welte, C. Hörmann (University of Erlangen) A detector module of the MYTHEN detector (Microstrip System for Time resolved experiments) was installed at the powder diffraction station [1,2] of the Material Science beamline [3]. The module was successfully tested and first user experiments were performed showing the potential of the detector system. Due to the large angular coverage and the fast readout time, the microstrip detector allows major improvements for time-resolved measurements. DETECTOR SYSTEM STATUS T h e M Y T H E N d e t e c t o r s y s t e m c o v e r s , in parallel, an a n g u l a r r a n g e of 6 0 ° in 26. T h e n u m b e r of c h a n n e l s is 1 5 0 0 0 . T h e pitch of the strips on the s e n s o r s is 5 0 u.m, w h i c h c o r r e s p o n d s t o an intrinsic a n g u l a r resolution of 0 . 0 0 4 ° . T h e d i a m e t e r of t h e capillary, h o w e v e r , limits the a n g u l a r resolution (e.g. 0.011° for a 0.1 m m c a p i l lary). D u r i n g s u m m e r 2 0 0 1 , 13 m o d u l e s w e r e f a b r i c a t e d . T h e m o d u l e s w o r k well, h o w e v e r , d u e t o an u n e x p e c t e d p r o b l e m with the w i r e b o n d i n g , t h e s e m o d u l e s h a v e a rather large n u m b e r of d e a d c h a n n e l s ( 4 % 1 7 % per m o d u l e ) . READOUT ELECTRONICS T h e d e t e c t o r s y s t e m c o n s i s t s of 12 s u b - m o d u l e s e a c h having 1 2 8 0 c h a n n e l s . T h e d e t e c t o r m o d u l e s are c o n n e c t e d t o a d e t e c t o r control b o a r d that routes all t h e control signals c o m i n g f r o m a V M E pattern g e n e r a t o r to t h e m o d u l e s . It a l s o distributes t h e s u p p l y v o l t a g e s to t h e m o d u l e s a n d t r a n s m i t s the data c o m i n g f r o m the m o d u l e s to a digital input c a r d . T h e input c a r d at the m o m e n t is a V M E m o d u l e w h i c h will ultimatetly be r e p l a c e d by a PCI c a r d installed in a P C . Fig. 1 s h o w s six m o d u l e s a n d the d e t e c t o r control b o a r d . T h e d e t e c t o r control b o a r d will be t e s t e d in F e b r u a r y 2 0 0 2 . In M a r c h 2 0 0 2 , the d e t e c t o r control b o a r d t o g e t h e r with 12 m o d u l e s will be installed. A d d i t i o n a l m o d u l e s will be built to s u c c e s s i v e l y replace t h e m o d ules with n e w m o d u l e s h a v i n g less d e a d c h a n n e l s . In A u g u s t 2 0 0 1 , the entire d e t e c t o r m e c h a n i c s a n d o n e m o d u l e w a s installed at the b e a m l i n e . T h e m o d u l e w a s s u c c e s s f u l l y t e s t e d a n d h a s b e e n routinely u s e d for m e a s u r e m e n t s . FIRST M E A S U R E M E N T S T h e first u s e r e x p e r i m e n t ( p e r f o r m e d with I. Müller, University M ü n s t e r ) w a s a t i m e resolved e x p e r i m e n t to s t u d y the t i m e d e p e n d e n c e of c h e m i c a l p h a s e s during t h e h a r d e n i n g p r o c e s s of c e m e n t . Fig. 2 s h o w s the result. Cement Hardening, 132 keV -iJL ft A 11 X~ ~ J L F i g . 1 : Six d e t e c t o r m o d u l e s a n d the d e t e c t o r control b o a r d . T h e m o d u l e s will be c o n n e c t e d to t h e detector control b o a r d t h r o u g h flat b a n d c a b l e s . T h e d e t e c t o r control b o a r d routes t h e control signals t o the m o d u l e s a n d t h e data t o a n input m o d u l e . T h e r e a d o u t t i m e of t h e entire d e t e c t o r s y s t e m will be 2 4 4 u s . During readout, t h e data rate will be 150 M B y t e s per s e c o n d . T h e d a t a v o l u m e will be 3 5 k B y t e s per i m a g e . T h e n u m b e r of i m a g e s per s e c o n d is limited by t h e s t o r a g e rate of the PC to a b o u t 1 0 0 0 i m a g e s per s e c o n d . ll, K 7 30 min L a -J—i^, 6 A 8 9 "* ,5mfc m l n 10 1 2©[DEG] F i g . 2 : T i m e d e p e n d e n c e of different p h a s e s during the cement hardening process. 72 Data w e r e repetitively a c c u m u l a t e d for periods of 30 s e c o n d s . In that w a y t h e h a r d e n i n g p r o c e s s w a s closely m o n i t o r e d for t h e first hour during w h i c h structural c h a n g e s h a p p e n o v e r a short t i m e s c a l e (seco n d s to m i n u t e s ) . After t h e first hour, t h e r e a c t i o n s s l o w d o w n significantly a n d only m e a s u r e m e n t s at s e v e r a l h o u r s t i m e interval a r e n e c e s s a r y . T h e data w e r e c o r r e c t e d with a flat field illumination to c o r r e c t for differential inefficiencies of t h e c h a n n e l s . M o r e internal a n d external u s e r s u s e d t h e microstrip d e t e c t o r for test m e a s u r e m e n t s . S e e for e x a m p l e U. S t a u b [4]. REFERENCES [1] F. F a u t h , T h e P o w d e r Diffraction E n d S t a t i o n , P S I Scientific Report 2 0 0 0 , V o l u m e V I I . [2] F. G o z z o , High Resolution Tests at the SLS Powder Diffractometer, PSI Scientific R e p o r t 2 0 0 1 , Volume VII. [3] B.D. P a t t e r s o n , The Material Science PSI Scientific Report 2 0 0 1 , V o l u m e V I I . [4] U. S t a u b , Structural Disorder below the MetalInsulator Transition in Ca2Ru04, PSI Scientific Report 2 0 0 1 , V o l u m e VII. Beamline, 73 STATUS OF THE PILATUS PROJECT Ch. Brönnimann, E.F. Eikenberry, R. Horisberger, G. Hülsen, M. Näf, B. Schmitt, S. Streuli A large step in the development of a quantum-limited large-area pixel detector (PILATUS) was accomplished by manufacturing the first modules, each consisting of one silicon sensor plate and 16 CMOS readout chips. The performance of the modules is well adapted to the needs of protein crystallography: X-rays above 6 keV with peak count rates exceeding 500 kBq/pixel can be detected in single photon counting mode. An excellent point spread function together with a short read out time of 5 ms are other properties of this new type of detector. To demonstrate the potential of this detector, data were taken at the PX-Beamline 6S with an assembly of 3 modules. T h e last year w a s d e d i c a t e d to the fabrication of t h e first pixel m o d u l e s . U p o n arrival of t h e P I L A T U S C M O S w a f e r s in M a y 2 0 0 1 a n d s u c c e s s f u l c o m p l e t i o n of basic tests, the p r o c e s s i n g for b u m p b o n d i n g w a s started at P S I . T h i s p r o c e s s i n g of t h e C M O S w a f e r s involves: p h o t o l i t h o g r a p h y for U B M ( U n d e r b u m p Metal), sputtering of U B M , i n d i u m e v a p o r a t i o n , lift off a n d dicing of t h e w a f e r s . For the s e n s o r w a f e r s : p h o tolithography for i n d i u m e v a p o r a t i o n , i n d i u m e v a p o ration, lift off a n d dicing of the w a f e r s . T h e s e s t e p s w e r e s u c c e s s f u l l y e s t a b l i s h e d o n 8 C M O S a n d 20 sensor wafers. O n A u g u s t 8 t h , the first single chip m o d u l e w a s t e s t e d a n d i m a g i n g c o u l d be p e r f o r m e d with a F e s o u r c e (6 k e V ) . In parallel, t h e r e a d o u t - e l e c t r o n i c s a n d the s o f t w a r e w e r e p r e p a r e d for t h e o p e r a t i o n of a 16-chip m o d u l e . O n A u g u s t 16th, t h e first multi-chip m o d u l e w a s m a n u f a c t u r e d a n d t e s t e d in the lab. It c o n s i s t s of 16 c h i p s containing 5 7 4 6 2 pixels. 5 5 T h e p e r f o r m a n c e of t h e m o d u l e s is r e m a r k a b l e : with an o p t i m i s e d t h r e s h o l d t r i m m i n g a l g o r i t h m , a m i n i m u m t h r e s h o l d of < 1 0 0 0 e" (3.6 k e V ) with a variation of 8 8 e" c o u l d be a c h i e v e d . fe • I l l l i l i M B l l V ' » * ' « * » * *¿* v**<ti* 1 «8 « f r o m 2.3 % initially to b e l o w 0.4 %. H o w e v e r , usually o n e of t h e 16 c h i p s w a s d a m a g e d during the b u m p b o n d i n g p r o c e s s . W e believe that this w a s c a u s e d by Si particles r e m a i n i n g after w a f e r dicing. By i m p r o v i n g t h e c l e a n i n g p r o c e d u r e s a n d optical i n s p e c t i o n s prior t o the b u m p - b o n d i n g p r o c e s s , w e e x p e c t that this p r o b l e m will be s o l v e d . A n o t h e r crucial s t e p w a s p e r f o r m e d by g r o u p i n g 3 m o d u l e s t o g e t h e r to f o r m a b a n k (Fig. 1 ). M a n y d i a g nostic f e a t u r e s are i n c o r p o r a t e d : E a c h pixel c a n be a d d r e s s e d for t h r e s h o l d t r i m m i n g , calibration or m o n i toring of its a n a l o g s i g n a l . R e a d o u t of the s t o r e d data is d o n e in parallel a n d t a k e s 5 m s , after w h i c h the detector is r e a d y to start t h e next e x p o s u r e . T h e data are intermediately s t o r e d o n the s o - c a l l e d b a n k control b o a r d (visible t o w a r d the b a c k in Fig. 1), f r o m w h e r e t h e y are r e a d into a V M E F I F O m o d u l e . T h e a s s e m b l y w a s s u c c e s s f u l l y t e s t e d at t h e protein c r y s t a l l o g r a p h y b e a m l i n e 6 S . W i t h a K B r s o l u t i o n , flat field calibrations w e r e p e r f o r m e d at 12 k e V . ^ i. I • • • 1 1 1 F i g . 1 : T h e a s s e m b l y of 3 pixel m o d u l e s t o g e t h e r with their r e a d o u t electronics. T h e x-ray s e n s o r s are in the immediate foreground. The active area is 2 4 0 x 3 4 m m a n d c o n s i s t s of 1 7 2 3 8 6 pixels. It is the largest pixel a s s e m b l y of its kind currently available. 2 T h e quality of the b u m p b o n d i n g w a s steadily i m p r o v e d . T h e n u m b e r of m i s s i n g b u m p b o n d s d r o p p e d F i g . 2 : Diffraction pattern of a lyzozyme crystal rec o r d e d with the pixel detector at 12 k e V . T h e oscillation is 1 ° with 2 s e x p o s u r e t i m e . T h e c o m p l e t e diffraction pattern w a s o b t a i n e d by r e c o r d i n g data at 7 vertical positions. 74 A c o m p l e t e d a t a s e t f r o m a l y z o z y m e crystal w a s t a k e n with t h e pixel detector. For that, the d e t e c t o r w a s m o v e d in t h e vertical direction; at e a c h of 7 positions an oscillation r a n g e of 5 0 ° w a s c o v e r e d in 1 ° s t e p s with 2 s e x p o s u r e t i m e . T h e pixel detector w a s opera t e d u n d e r t h e control P C of the high resolution diffractometer. S o m e p r o b l e m s r e m a i n c o n c e r n i n g the yield of t h e r e a d o u t c h i p s . T h e c h i p s d e l i v e r e d up t o n o w h a v e on a v e r a g e ~ 5 % d e a d pixels, d u e to d e f e c t s in both t h e a n a l o g a n d the digital part. T h e f a c t o r y will p r o c e s s 10 m o r e w a f e r s with i m p r o v e d yield. A n overall d e f e c t rate of a b o u t 3 % d e a d pixels (including b u m p b o n d i n g plus d e f e c t s o n t h e s e n s o r ) c a n be e x p e c t e d for t h e next m o d u l e s w h i c h will be built. T h e p r o d u c t i o n p h a s e of t h e 2 0 m o d u l e s for t h e 1 0 0 0 x 1 0 0 0 d e t e c t o r will start in M a r c h , 2 0 0 2 . Until t h e n , t h e quality of t h e b u m p - b o n d i n g will be i m p r o v e d by the e x p e r i e n c e w h i c h is being g a i n e d by fabricating the 10 first m o d u l e s . In o r d e r t o s p e e d up the m a n u facturing p r o c e s s , a r e d e s i g n of t h e r e a d o u t e l e c t r o n ics is being u n d e r t a k e n . T h e T V X - s o f t w a r e s y s t e m a n d Data flexible, running reliably a n d stably. quisition of the data is still d o n e via standard SLS V M E - C P U system, placed soon. acquisition is v e r y However, the acthe relatively s l o w w h i c h will be re- A n i m p o r t a n t contribution w a s m a d e by our c o l l a b o rators, the S P r i n g 8 Detector G r o u p . H. T o y o k a w a participated in t h e c o m i s s i o n i n g of the d e t e c t o r s during a 2 m o n t h visit t o the S L S . W e w o u l d like t o t h a n k F. G l a u s ( L M N ) a n d M. H o r i s b e r g e r ( L N S ) for their p r e p a r a t i o n s for the b u m p b o n d i n g , C h . Bühler for the m a n u f a c t u r i n g of t h e B C B a n d J . R o t h e for t h e m e chanics. 75 MILLISECOND-SHUTTER FOR EXPOSURE CONTROL C. Pradervand, D. Rossetti The precise exposure of samples to the x-ray beam is needed ms-shutter was developed to control the exposure time. INTRODUCTION W i t h m o d e r n s y n c h r o t r o n s , t h e n e e d t o control t h e e x p o s u r e t i m e of the s a m p l e s to t h e x - r a y s b e c o m e m o r e important. A s e x p o s u r e t i m e s get shorter, t h e c o o r d i n a t i o n b e t w e e n spindle m o v e m e n t a n d s h u t t e r o p e n i n g n e e d s to be m o r e a c c u r a t e in o r d e r to m i n i m i z e errors a n d get r e p r o d u c i b l e e x p o s e d i m a g e s . For t i m e r e s o l v e d x - r a y e x p e r i m e n t s , w h e r e v e r y short e x p o s u r e s are r e q u i r e d , a fast s h u t t e r c a n isolate a single b u n c h f r o m a b u n c h train. SYSTEM OVERVIEW A s i n g l e - s h o t shutter w a s d e v e l o p e d a n d built at t h e S L S . It c o n s i s t s of a m e c h a n i c a l shutter, w h i c h c o n trols t h e e x p o s u r e a n d control e l e c t r o n i c s that drive the s h u t t e r a n d c a n easily be interfaced t o a n y control s y s t e m . T h i s s h u t t e r is b a s e d o n a d e s i g n u s e d in a s h u t t e r train for t i m e r e s o l v e d e x p e r i m e n t s [1] a n d h a s b e e n r e d e s i g n e d a n d o p t i m i z e d in t e r m s of s p e e d , size a n d manufacturability. for reliable data acquisition. A single-shot blade c o r r e s p o n d s to a solid block of o v e r 9 m m thickn e s s in p e r p e n d i c u l a r g e o m e t r y . T h e blade c a n a l s o be c o a t e d to i n c r e a s e t h e a b s o r p t i o n of higher e n e r g y x-rays. DRIVE ELECTRONICS A p a r t f r o m the m e c h a n i c a l g e o m e t r y of t h e shutter, t h e m a i n r e a s o n for t h e s p e e d is t h e s p e c i a l drive e l e c t r o n i c s . Driving the s o l e n o i d m a g n e t s s i m p l y by t u r n i n g t h e m o n or off w o u l d result in a rather s l o w m o t i o n of t h e s h u t t e r d u e t o t h e s l o w m a g n e t i z a t i o n of t h e coils. S p e c i a l drive e l e c t r o n i c s w e r e d e v e l o p e d a n d o p t i m i z e d in o r d e r t o a c h i e v e fast s w i t c h i n g t i m e s . A n o t h e r f u n c t i o n of t h e e l e c t r o n i c s is to allow for a s i m p l e interface t o a control s y s t e m . T h e shutter is controlled by a T T L signal. 0 V c l o s e s the shutter a n d 5 V o p e n s t h e shutter. Fig. 2 s h o w s t h e T T L pulse a n d t h e resulting o p e n i n g f u n c t i o n for a 2 m s e x p o s u r e m e a s u r e d w i t h a laser b e a m of a b o u t 1 m m size. : 6 A: @: : DESCRIPTION : i.96ms 1.98ms : : A: @: : : 280mV 1.40 V * . 1 j ] T h e m s - s h u t t e r c o n s i s t s of t w o m a i n parts, the m e c h a n i c a l shutter a n d t h e drive electronics. T h e shutter itself is a s m a l l steel blade, w h i c h c a n t o g g l e a r o u n d a n a x i s s u p p o r t e d by t w o ball b e a r i n g s . f - - :chi s.oo v 11 : : -\ 2.00 V : : : : : : ] - M 1.00ms A Ch1 S : iï^^.oooooms 2.30 Vi j F i g . 2 : O p e n i n g f u n c t i o n of the shutter F i g . 1 : m s - s h u t t e r in a n o p e n v i e w T h e blade is driven by t w o s o l e n o i d m a g n e t s a n d h a s a travel of 2 m m . T h e a d v a n t a g e of this d e s i g n o v e r o n e with only o n e s o l e n o i d m a g n e t a n d a s p r i n g retraction is a s y m m e t r i c a l o p e n i n g f u n c t i o n a n d higher speed. The geometry was optimised to operate the s h u t t e r near the f o c a l s p o t of the b e a m , for b e a m s i z e s b e l o w 1 m m vertically a n d 4 m m horizontally. In the c l o s e d position the blade is at a s h a l l o w a n g l e . At this a n g l e , with a vertical size b e a m of 5 0 0 urn, the M i n i m a l o p e n t i m e s of a b o u t 8 0 0 u s h a v e b e e n a c h i e v e d . A l t h o u g h t h e o p e n t i m e is s o m e w h a t b e a m size d e p e n d e n t , t h e o p e n i n g f u n c t i o n f o l l o w s the T T L pulse v e r y w e l l , with a f i x e d ( g e o m e t r y - d e p e n d e n t ) d e l a y of a b o u t 2 m s . T h e rise t i m e a n d fall t i m e of the o p e n i n g resp. closing e d g e are a b o u t 3 0 0 u s . T h e y are c o n s t a n t , g i v e n by the g e o m e t r y a n d drive elect r o n i c s a n d are not d e p e n d e n t o n the o p e n t i m e . REFERENCES [1] D. B o u r g e o i s et al., Feasibility and Realization of Single-Pulse Laue Diffraction on Macromolecular Crystals at ESRF, J . S y n c h r o t r o n R a d . 3, 6 5 (1996). 76 THE BEAMLINES DATA ACQUISITION AND CONTROL SYSTEM J. Krempasky, D. Vermeulen, D. Maden, M. Janousch, R. Krempaská, T. Korhonen, W. Portmann, M. Grunder, S. Hunt The commissioning of the first four beamlines (Protein Crystallography, Material Science, Surfaces/Interfaces Spectroscopy and Surfaces/Interfaces Microscopy) at SLS started in April 2001 and by the end of November 2001 all of them delivered beam to their experimental environments. This very tight time schedule clearly indicates that the EPICS control system toolkit provided valuable help in the beamline commissioning. An important aspect of the SLS beamlines is the fact that they benefit from the same EPICS based control system as the SLS machine. This involves both hardware and software and allows smooth integration of several sub-systems (monochromator, insertion device, beam diagnostics etc). "The Experiment" Usage of s y n A p p s package o n the SLS Beamlines T h e bulk of c u s t o m b e a m l i n e control software is t a k e n f r o m s y n A p p s p a c k a g e [2]. It i n c l u d e s softw a r e s u p p o r t for m o t o r s , s c a l e r s , optical tables, slits, multidimensional scans, multichannel analyzers and m i s c e l l a n e o u s d e v i c e s . T h e s u p p o r t for m o t o r s (both s t e p p i n g a n d s e r v o m o t o r s ) p r o v i d e d by the E P I C S m o t o r r e c o r d , fits well with the O r e g o n Micro S y s t e m s V M E 5 8 family of intelligent m o t i o n controls, g e n e r a l l y u s e d for m o t i o n control o n all b e a m l i n e s . A m o n o c h r o m a t o r c a n b e c o n s i d e r e d as a collection of s u c h m o t o r s . T h e y c a n b e driven a c c o r d i n g to s p e c i a l t a b l e s or analytic e x p r e s s i o n s d e f i n e d by E P I C S cale r e c o r d s . EPICS Hardware (VME Crates) F i g . 1 : S c h e m a t i c a l layout of a b e a m l i n e e x p e r i m e n t . T h e functionality of the s u b - s y s t e m s resides in V M E c r a t e s s e e n o n t h e lower part of t h e figure. O n t h e u p p e r part t h e r e are b e a m l i n e clients d o i n g the e x p e r i m e n t s i m p l e m e n t e d as s i m p l e scripts. INTRODUCTION T h e c o n t r o l s a n d d a t a acquisition s y s t e m of t h e S L S b e a m l i n e s is closely integrated with t h e m a c h i n e c o n trol s y s t e m . It is b a s e d o n E P I C S , a client-server toolkit with C A ( C h a n n e l A c c e s s ) s e r v e r s r u n n i n g o n V M E proc e s s o r s ( P o w e r P C ) , a n d clients r u n n i n g Linux ( R e d H a t 6.2) or N T P C s [1]. T h e position a n d functionality of t h e V M E c r a t e s follow the b e a m l i n e t o p o l o g y (typically f r o n t - e n d , m o n o c h o m a t o r , b e a m l i n e optics, e x p e r i m e n tal station 1 , 2...) a n d clearly d e t e r m i n e a b e a m l i n e s u b - s y s t e m (see Fig. 1). T h e total n u m b e r of V M E c r a t e s per b e a m l i n e is 4-5. S o m e s u b - s y s t e m s have b e e n (will be) d e l i v e r e d a l r e a d y with E P I C S drivers, for e x a m p l e t h e J e n o p t i k Plane G r a t i n g M o n o c h r o m a t o r and C O P H E E ( C o m p l e t e PHotoEmission Experiment) e x p e r i m e n t a l station. T h e i r inclusion into t h e b e a m l i n e E P I C S e n v i r o n m e n t is straightforward, w h i c h greatly facilitates a n d s p e e d s u p the b e a m l i n e c o m m i s s i o n i n g . A n o t h e r v e r y useful s u p p o r t f r o m s y n A p p s is t h e so c a l l e d sscan E P I C S r e c o r d . It allows for a d y n a m i c c o n figuration of v a r i o u s t y p e s of s c a n s b a s e d on E P I C S p r o c e s s variables. T h i s feature is of particular interest for b e a m l i n e c o m m i s s i o n i n g w h e r e o n e c a n p e r f o r m a r u n - t i m e c o n f i g u r a t i o n of 1 D / 2 D s c a n s with several p o sitioners, d e t e c t o r s a n d d e t e c t o r triggers. T h e s c a n results c a n b e a u t o m a t i c a l l y s a v e d f r o m t h e V M E Inp u t / O u t p u t C o n t r o l l e r ( I O C ) to a file s e r v e r - a n o t h e r v e r y useful feature c a l l e d saveData f r o m the s y n A p p s p a c k a g e (there is o n e d e d i c a t e d file s e r v e r for e a c h beamline). S i m p l y put, o n e c a n p e r f o r m s i m p l e or s o p h i s t i c a t e d s c a n s w i t h o u t involving c o d i n g o n s o m e clients. Usage of SDDS o n the SLS Beamlines T h e Material S c i e n c e B e a m l i n e at the S L S is currently m a k i n g extensive u s e of the S D D S (Self D e s c r i b i n g D a t a Set) [3] utilities a n d E P I C S c l i e n t - b a s e d a p p l i c a tions d e v e l o p e d at t h e A P S for b e a m l i n e t u n i n g a n d d a t a acquisition s c a n s of t h e p o w d e r diffractometer. In particular, the G U I interfaces to t h e S D D S software, s u c h a s q u i c k E x p e r i m e n t [4], have f o u n d a c c e p t a n c e by t h e b e a m l i n e scientists d u r i n g t h e early s t a g e s of b e a m c o m m i s s i o n i n g . At a later date, it is i n t e n d e d that m o r e s c i e n c e - o r i e n t e d s o f t w a r e will b e i n t r o d u c e d . T h i s will also m o s t likely b e c o u p l e d with a m o v e to N e X u s [5], w h i c h is strongly s u p p o r t e d by t h e n e u t r o n scattering c o m m u n i t y at P S I . 77 IMPLEMENTING NON-EPICS HARDWARE CCD Camera D e s p i t e t h e fact that t h e e x p e r i m e n t a l stations m a y b e b a s e d o n a n o n - E P I C S h a r d w a r e a n d software, t h e r e are several possible w a y s h o w to include t h e m into a n E P I C S s y s t e m . In this c o n t e x t w e will briefly d e s c r i b e a C C D c a m e r a distributed architecture, a n d t h e E P I C S i m p l e m e n t a t i o n of the S c i e n t a - G a m m a d a t a e l e c t r o n a n a l y s e r for t h e Surfaces/Interfaces S p e c troscopy beamline. CCD camera distributed architecture A n e x p e r i m e n t or d i a g n o s t i c s b a s e d o n a C C D c a m e r a d a t a acquisition a n d control c o n s i s t s typically of h e t e r o g e n o u s h a r d w a r e a n d software. In c o l l a b o r a tion with E L E T T R A , an o p e n s y s t e m h a s b e e n develo p e d , w h e r e different s o f t w a r e c o m p o n e n t s related to C C D d a t a acquisition a n d e v a l u a t i o n , are integrated into a single G U I by m e a n s of C O R B A . A C C D c a m e r a C O R B A s e r v e r i m p l e m e n t s all functionalities of the C C D c a m e r a a n d is r u n n i n g on a W i n d o w s N T operating s y s t e m . T h e client p r o v i d e s a s i m p l e a n d intuitive graphical user interface giving a user t h e possibility to control t h e C C D c a m e r a by initializing, setting or getting C C D p a r a m e t e r s , or displaying an i m a g e . T h e user interface p r o v i d e s also a utility for s i m p l e i m a g e p r o c e s s ing s u c h as a d j u s t i n g c o n t r a s t a n d b r i g h t n e s s , creating a h i s t o g r a m of an i m a g e or p e r f o r m i n g arithmetic o p e r a t i o n s o n i m a g e s . Typically an e x p e r i m e n t b a s e d o n C C D is a s e q u e n c e of s i m p l e o p e r a t i o n s for t h e i m p l e m e n t a t i o n of w h i c h a scripting l a n g u a g e is w e l c o m e . T h e bulk of o p e r a t i o n s o n C C D c a m e r a a n d E P I C S c o n trol s y s t e m is i m p l e m e n t e d in a J a v a c l a s s c a l l e d " O p e r a t i o n s " (see Fig. 2). By interpreting the script a p h y s i cist c a n m a k e a n i m a g e - b a s e d e x p e r i m e n t w i t h s i m p l e script p r o g r a m s . Controlling the Scienta electron analyser T h e heart of t h e e x p e r i m e n t a l a p p a r a t u s for t h e Surfaces/Interfaces S p e c t r o s c o p y b e a m l i n e is a S c i e n t a G a m m a d a t a e l e c t r o n analyser. T h e control p h i l o s o p h y for this a n a l y s e r (as s u p p l i e d by the c o m p a n y ) , is a rather m o n o l y t h i c a p p l i c a t i o n . O n o n e side it allows for s u p p l y i n g additional functionality, but on the other s i d e it did not fit into a client-server m o d e l . T h i s w a s a s e rious o b s t a c l e not only for i m p l e m e n t i n g e x p e r i m e n t s , w h e r e t h e a n a l y s e r is c o n s i d e r e d to b e j u s t o n e part of t h e w h o l e e x p e r i m e n t a l setup. T h e u s e of t h e E P I C S Portable C h a n n e l A c c e s s ( A c t i v e X C A ) [6] for invoking the analyser operation-specific functions from the Scie n t a native c o d e t u r n e d out to b e t h e m o s t s i m p l e s o lution. T h e additional c o d i n g required just the initialization of t h e E P I C S p r o c e s s variables a n d i m p l e m e n t i n g their event h a n d l e r s . In this w a y w e p l a n t e d E P I C S proc e s s variables into t h e S c i e n t a a p p l i c a t i o n , w h i c h a l lows us n o w to s e e t h e S c i e n t a a n a l y s e r as a virtual E P I C S IOC. setCCDParameterO getlmageO displaylmage() savelmageQ F i g . 2: S c h e m a t i c a l layout of a distributed architecture for controlling C C D c a m e r a including d a t a acquisition (upper part) a n d h a n d l i n g (lower p a r t ) . DATA S T O R A G E A N D H A N D L I N G In v i e w of t h e different a m o u n t s a n d rates of d a t a a flexible s c h e m e for the a c q u i s i t i o n , s t o r a g e a s well as h a n d l i n g of t h e d a t a h a s b e e n d e v e l o p e d . T h e different b e a m l i n e s p r o d u c e d a t a at rates r a n g i n g f r o m several M b y t e s / h o u r to 8 0 M b y t e s / s e c . T h e total a m o u n t of acc u m u l a t e d d a t a r a n g e s f r o m G b y t e s to several h u n d r e d G b y t e s per d a y / e x p e r i m e n t . E a c h b e a m l i n e h a s a d e d i c a t e d file s e r v e r of u p to 3 0 0 G b y t e of available s t o r a g e , w h i c h c a n b e easily e x t e n d e d to m o r e t h a n 1 T b y t e . S i n c e t h e b e a m l i n e is c o n t r o l l e d f r o m a private network, t h e file s e r v e r is e q u i p p e d with t w o n e t w o r k c a r d s that are c o n n e c t e d to t h e private S L S - n e t w o r k a n d t h e PSI n e t w o r k respectively (see Fig. 3). All d a t a that h a s to leave t h e S L S h a s to go t h r o u g h this file server. Currently, a tape-library is b e i n g set-up as a central m e d i u m - t e r m s t o r a g e facility. It h a s a s t o r a g e c a p a c ity of 3 0 T b y t e s . U s e r s c a n , u p o n request, transfer their d a t a to this m e d i u m . Also, they have t h e possibility to m a k e c o p i e s of their d a t a to o t h e r m a s s - s t o r a g e m e d i a like DLT or DAT. For the large v o l u m e d a t a (more t h a n 100 Gbyte) a n d c o m m e r c i a l users, N e t w o r k A t t a c h e d S t o r a g e ( N A S ) or h o t - s w a p p a b l e d i s k s c a n be h o o k e d u p to t h e d a t a - a c q u i s i t i o n c o m p u t e r s . U s e r a c c e s s to t h e c o m p u t e r s o n the private S L S - n e t is g r a n t e d t h r o u g h individual g r o u p a c c o u n t s , w h i c h are c o n n e c t e d to individual a c c o u n t s on the P S I - d o m a i n t h r o u g h t h e g r o u p - i d . T h e u s e r s at t h e b e a m l i n e c a n d e c i d e o n t h e level of security for their data. PSI-Net 100 Mbit DAT DLT DVD Tape Library j PSI-Net 1 Gbit FTP Server F i g . 3: S c h e m a t i c a l layout of b e a m l i n e d a t a s t o r a g e and handling. CONCLUSIONS T h e c h o i c e of t h e E P I C S control s y s t e m toolkit o n t h e S L S b e a m l i n e s clearly helps us to m e e t t h e tight t i m e s c h e d u l e of their c o m m i s s i o n i n g . T h e g e n e r i c s o l u tions p r o v i d e d by E P I C S in principle help us to avoid any c o d i n g . T h u s t h e software m a i n t e n a n c e a c r o s s t h e b e a m l i n e s is m i n i m a l . A n o t h e r v e r y i m p o r t a n t a s p e c t is t h e fact that e v e n b e a m l i n e o p e r a t o r s with no or m i n imal k n o w l e d g e a b o u t E P I C S c a n actively participate in their c o m m i s s i o n i n g . T h e g o a l of t h e b e a m l i n e c o n trols g r o u p is to k e e p this p h i l o s o p h y valid also for the e x p e r i m e n t a l stations. T h e u s e of t h e C O R B A archit e c t u r e t u r n s o u t to b e a g o o d a p p r o a c h for i m p l e m e n t ing e x p e r i m e n t s b a s e d o n several h e t e r o g e n e o u s s u b s y s t e m s . T h e s a m e a p p l i e s for t h e Portable C h a n n e l A c c e s s ( A c t i v e X C A ) . It allows for s e e i n g the s p e c i a l ins t r u m e n t a t i o n functionalities living as E P I C S p r o c e s s variables. In either c a s e , it is possible to i m p l e m e n t v a r i o u s e x p e r i m e n t s u s i n g s i m p l e scripts w h i c h acc e s s i n s t r u m e n t a t i o n - s p e c i f i c functionalities distributed o n t h e c o m p u t e r n e t w o r k . T h e w i d e variety of A P I s (tcl/Tk, IDL, O c t a v e , perl...) for E P I C S a n d C O R B A is a n o t h e r benefit for this s o l u t i o n . REFERENCES [1] S. H u n t et al., Status of the SLS PSI Scientific R e p o r t 1 9 9 9 , V I I . Control System, [2] http://www.apl.anl.gov/xfd/bcda/documentation.html [3] http://www.aps.anl.gov/asd/oag/manuals/ [4] http://www.aps.anl.gov/asd/newsletter/newltr22.html [5] T h e N e X u s ( N e u t r o n & X-ray D a t a F o r m a t ) H o m e Page: http://lnsOO.psi.ch/NeXus [6] http://mesa53.lanl.gov/lansce8/Epics/PC/ ActiveXCAServer/Default.htm 79 FIRST RESULTS FROM THE X-RAY TOMOGRAPHIC MICROSCOPY STATION M. Stampanoni (PSI, ETHZ), G. Borchert (PSI, IKP Jülich), R. Abela, B.D. Patterson, S. Hunt, D. Vermeulen, P. Wyss (EMPA), P. Rüegsegger (ETHZ) The X-Ray Tomographic Microscopy (XTM) device has been installed successfully at the Material Science Beamline MS of the Swiss Light Source (SLS). First radiographic projections as well as tomographic scans using both absorption and phase contrast have been acquired showing spatial resolution down to the micrometer range. The instrumentation will be used for structure and chemical analysis of new materials and biological samples. INTRODUCTION X - r a y c o m p u t e r t o m o g r a p h y is a p o w e r f u l t e c h n i q u e , w h i c h p r o v i d e s v o l u m e t r i c d a t a of s a m p l e s by m a p ping their t h r e e d i m e n s i o n a l X - r a y a t t e n u a t i o n . It c a n be u s e d to s t u d y p h y s i c a l a n d c h e m i c a l characteristics of the s a m p l e s in 3 D . Originally d e v e l o p e d for clinical u s e in radiology, X - r a y c o m p u t e r t o m o g r a p h y h a s n o w r e a c h e d u n e x p e c t e d b r o a d a p p l i c a t i o n fields t h a n k s t o s y n c h r o t r o n radiation. T h e high flux of s y n c h r o t r o n radiation e n a b l e s h i g h - r e s o l u t i o n t r a n s m i s s i o n e x a m i nations in t h e m i c r o m e t e r r a n g e w i t h a r e a s o n a b l e e x p o s u r e t i m e . E n e r g y tunability of the s y n c h r o t r o n beam makes element-specific measurements possible. T h e high d e g r e e of c o h e r e n c e e x t e n d s t h e c l a s s i cal a b s o r p t i o n t o m o g r a p h y c o n c e p t s t o e d g e - e n h a n c e d a n d p h a s e - s e n s i t i v e investigations. T h e d e sign g o a l s of t h e S L S - i n s t r u m e n t w e r e f o c u s e d o n t h r e e o b j e c t i v e s : high precision s a m p l e h a n d l i n g t o a l l o w m e c h a n i c a l tests in real-time, high efficient p h o t o n d e t e c t i o n with fast, l o w - n o i s e r e a d o u t t o a l l o w rapid m e a s u r e m e n t s , a n d spatial resolution in the r a n g e of 5 m i c r o m e t e r s t o 5 0 0 n m . THE SOURCE T h e m i n i g a p w i g g l e r s o u r c e of the Material S c i e n c e ( M S ) b e a m l i n e will radiate a total of 8.40 k W a n d prod u c e a c o n t i n u o u s s p e c t r u m of p h o t o n s with a critical e n e r g y of 7.9 k e V . T h e a n g u l a r a c c e p t a n c e in m o n o c h r o m a t i c m o d e (5 - 4 0 k e V ) , d e t e r m i n e d by a f i x e d c o l l i m a t o r in t h e f r o n t - e n d , is 0.23 m r a d vertical by 2.5 m r a d horizontal. A p o l y c h r o m a t i c "pink b e a m " m o d e , up to 3 2 k e V , will be a l s o a v a i l a b l e . Vertical c o l l i m a t i o n a n d f o c u s i n g is p r o v i d e d by v a r i a b l e a n g l e , v a r i a b l e - c u r v a t u r e cylindrical mirrors, w h i c h a l s o s e r v e to e l i m i n a t e h i g h e r o r d e r h a r m o n i c s . M o n o c h r o m a t i z a t i o n is p e r f o r m e d by a fixed-exit d o u b l e crystal m o n o c h r o m a t o r s i t u a t e d b e t w e e n t h e t w o mirrors. T h e s e c o n d m o n o c h r o m a t o r crystal will be b e n t to p r o v i d e horizontal f o c u s s i n g . T h e mirrors c o n s i s t of 1 m long Si b l a n k s w h i c h are R h - c o a t e d . T h e y c a n be tilted up to 5 m r a d a n d bent ( 5 < R < 3 0 k m ) , as required for the desired photon energy. T h e double-crystal m o n o c h r o m a t o r c o n s i s t s of t w o S i ( 1 1 1 ) crystals w h i c h c a n be precisely p o s i t i o n e d a n d o r i e n t e d in t h e X - r a y b e a m . T w o s u c c e s s i v e B r a g g reflections deliver p h o t o n s with a n i n h e r e n t e n e r g y resolution of 0.014 %. T h e optical s y s t e m will p r o d u c e a m o n o c h r o m a t i c spectral flux d e n s i t y at 10 k e V of a p p r o x i m a t e l y 1 0 1 3 p h o t o n s / s / 0 . 1 % b w w h i c h will be f o c u s s e d into a s p o t at the e x p e r i m e n t a l stations of m i n i m u m size of 1 m m . T h a n k s t o the t o p - u p injection m o d e , t h e intensity will be kept c o n s t a n t to a level of 10" t o 1 0 ^ , a n d the a p p l i c a t i o n of the m o s t recent ring c o n s t r u c tion t e c h n o l o g i e s s h o u l d p r o v i d e a v e r y stable b e a m [1,2]. T h e s o u r c e - t o - s a m p l e d i s t a n c e for X T M is 3 5 m e t e r s , giving raise t o a d e g r e e of c o h e r e n c e c o m p a r a b l e t o o t h e r s y n c h r o t r o n radiation s o u r c e s [3]. For this r e a s o n p h a s e - c o n t r a s t i m a g i n g , e d g e - e n h a n c e m e n t t o m o g r a p h y a n d h o l o t o m o g r a p h y c a n be c a r r i e d o u t in addition to the classical a b s o r p t i o n tomography. 2 3 XTM DEVICE In a first step, w e installed a n i n s t r u m e n t b a s e d o n a s t a n d a r d d e t e c t o r m e t h o d for routine i n v e s t i g a t i o n s of a w i d e s p e c t r u m of s a m p l e s . T h i s i n s t r u m e n t is int e n d e d for large o b j e c t s a n d r e s o l u t i o n s of the o r d e r of 2-5 urn. In a s e c o n d step, a fully n o v e l d e t e c t o r s y s t e m (the s o called B r a g g m a g n i f i e r ) will be installed a n d will provide a j u m p in t e r m s of spatial resolution a n d q u a n t u m efficiency. T h e s t a n d a r d d e t e c t o r c o m b i n e s a t r a n s p a r e n t l u m i n e s c e n t s c r e e n (scintillator) with a diffraction-limited m i c r o s c o p e optics, w h i c h magnifies the X-ray image onto a high-performance C C D of Pixel V i s i o n , Inc. Different C e - d o p e d Y A I 0 ( Y A G ) single crystal scintillator s c r e e n s with thickn e s s e s b e t w e e n 1.8 a n d 5 0 urn, d e p o s i t e d o n a 190 urn inactive Y A G are available for v a r i o u s effic i e n c y n e e d s a n d spatial r e s o l u t i o n s r e q u i r e m e n t s . T h e m i c r o s c o p e optics m a n u f a c t u r e d by O p t i q u e P e ter a l l o w s for a quick c h a n g e b e t w e e n different field of v i e w s a n d v a l u e s of spatial resolution. T h e d e t e c t o r is e q u i p p e d with a revolver, w h i c h c a n a c c o m m o d a t e t h r e e different high-quality diffraction-limited and a b e r r a t i o n - c o r r e c t e d o b j e c t i v e s . T h e m i c r o s c o p e itself c a n be a d j u s t e d in o r d e r t o e l i m i n a t e roll errors. T h e f o c u s i n g m e c h a n i s m is controlled by a 5 0 0 - s t e p P h y tron m o t o r (driven in halfstep m o d e ) that a l l o w s for m a t c h i n g the d e p t h of f o c u s of a b r o a d variety of o b j e c t i v e s . T h e C C D c a m e r a is e q u i p p e d w i t h a T h o m s o n T h 7 8 9 9 M full f r a m e c h i p , w h i c h provides 2 0 4 8 x 2 0 4 8 pixels of 14 u.m pitch a n d multiple o u t p u t s . T h a n k s t o fiber-optic c o n n e c t i o n s b e t w e e n t h e c a m e r a a n d t h e controlling c o m p u t e r , t h e chip is r e a d - o u t through four outputs simultaneously and independently at a s p e e d that v a r i e s f r o m 2.5 to 10 M p i x e l per 3 5 1 2 80 s e c o n d . T h i s a l l o w s for a f u l l - f r a m e r e a d o u t w i t h i n 2 5 0 m s . T h e c a m e r a h a s a n optical shutter for reducing a f t e r g l o w a n d g h o s t effect. T h e entire d e t e c t i o n s y s t e m h a s a theoretical pixel size of 0.35 urn ( w h e n the 2 0 x objective c o m b i n e d with the 2x o c u l a r is u s e d ) with a field of v i e w of 0.7 m m . If t h e 2x objective is u s e d , a field of v i e w of 7 x 7 m m is g u a r a n t e e d . T h e d e t e c t o r unit is m o u n t e d o n a 3-axis s y s t e m of S c h n e e b e r g e r : this a l l o w s for a l i g n m e n t of the detector with r e s p e c t t o t h e b e a m a s well as the t r a n s l a t i o n of the w h o l e unit a l o n g t h e b e a m direction. T h e s t r o k e of this t r a n s l a t i o n is 1 1 2 4 m m a l l o w i n g for the s a m p l e d e t e c t o r d i s t a n c e t o be i n c r e a s e d up to 1 m , m a k i n g edge-enhanced imaging and holotomography possible. T h e X T M d e v i c e installed at t h e M S B e a m l i n e is d e p i c t e d in Fig. 1 . o Objective 2x O Objective 4x a Objective 10x • Objective 20x 2 100 200 300 400 500 600 Spatial resolution [Ip/mm] O F i g . 2 : M T F r e s p o n s e of t h e d e t e c t o r for a Y A G : C e scintillator with d o p e d s c r e e n of 1.8 urn t h i c k n e s s for different o b j e c t i v e s . 11.8 microns a 20 microns o 51 microns o F i g . 1 : X T M Device at t h e M S B e a m l i n e : clearly visible f r o m left to right are t h e d e t e c t o r unit (1), t h e s a m ple h o l d e r (2) a n d t h e shutter/slits a s s e m b l y (3). B e a m c o m e s f r o m t h e right. FIRST RESULTS T h e Modulation Transfer Function (MTF) quantitatively d e s c r i b e s the p e r f o r m a n c e of the detector in t e r m s of spatial r e s o l u t i o n . T h e M T F of t h e s y s t e m h a s b e e n o b t a i n e d by t h e o v e r s a m p l i n g of a 100 urn thick t a n t a l u m e d g e . S o m e results are g i v e n in Fig. 2 a n d 3. 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1 fc— A— A O < 0 » 100 A 1 3ü*5a5 200 300 400 500 600 Spatial Resolution [Ip/mm] F i g . 3: M T F r e s p o n s e for the 2 0 x objective for different t h i c k n e s s e s of the C e - d o p e d Y A G s c r e e n . Fig. 2 a n d 3 s h o w spatial resolution d o w n t o 1 m i c r o m e t e r for a 1 0 % M T F r e s p o n s e . Exploiting the c o h e r e n t p r o p e r t i e s of t h e s y n c h r o t r o n radiation, w e w e r e a b l e t o a c q u i r e s o m e e d g e - e n h a n c e d r a d i o g r a p h i c projections. Fig. 4 s h o w s o n e of them. 81 lililí F i g . 4 : E d g e - e n h a n c e d r a d i o g r a p h i c projection of a fly's h e a d t a k e n at 9 k e V . T h e d i s t a n c e b e t w e e n s a m ple a n d d e t e c t o r w a s 100 m m . First hints of p u r e c o h e r e n t i m a g i n g a r e illustrated in Fig. 5, w h i c h d e p i c t s a 100 \im thick b o r o n fibre with a 15 [im t u n g s t e n c o r e a c q u i r e d at 1 5 k e V . F r a m e (A) s h o w s t h e fibre's projection w h e n t h e s a m p l e - d e t e c t o r d i s t a n c e is 5 0 m m . In t h e s e c o n d i t i o n s , only t h e parts of t h e s a m p l e a r e clearly h i g h l i g h t e d ( e d g e - e n h a n c e d ) that s h o w a big c h a n g e in t h e refractive index F r a m e (B) s h o w s t h e s a m e fibre w h e n t h e d i s t a n c e is inc r e a s e d up to 6 0 0 m m . Interference f r i n g e s d u e t o t h e c o h e r e n t o v e r l a p p i n g of X - r a y w a v e s a r e clearly visible. (A) F i g . 6: R e c o n s t r u c t e d slice ( 2 0 4 8 x 2 0 4 8 ) of a n ext r e m e l y o s t e o p o r o t i c b o n e at 12 k e V . T y p i c a l artefacts d u e t o t h e insufficient n u m b e r of projection a r e clearly visible. DISCUSSION and O U T L O O K T h e X T M d e v i c e h a s b e e n s u c c e s s f u l l y installed at t h e Material S c i e n c e B e a m l i n e . T h e m e a s u r e d p e r f o r m a n c e of t h e s t a n d a r d d e t e c t o r a g r e e s with t h e t h e o retical c a l c u l a t e d v a l u e s . Spatial resolution b e t w e e n 1 a n d 5 UJTI a r e easily r e a c h e d with a field of v i e w r a n g ing f r o m 7 m m t o 0.7 m m . First r a d i o g r a p h i c projections b o t h in a b s o r p t i o n a n d p h a s e - c o n t r a s t m o d e h a v e b e e n o b t a i n e d . A first r o u g h t o m o g r a m h a s b e e n a c q u i r e d s h o w i n g t h e feasibility of t h e project. In t h e near f u t u r e , additional effort will b e i n v e s t e d in t h e c o m m i s s i o n i n g of t h e s a m p l e h o l d e r ( E M P A ) a n d in t h e d e v e l o p m e n t of a user-friendly interface for t h e X T M s t a t i o n . W e e x p e c t to b e 100 % u s e r - o p e r a t i v e in July 2 0 0 2 . REFERENCES [1] B.D. P a t t e r s o n et al., The Materials Beamline, PSI Scientific R e p o r t 1 9 9 9 , VII, p. 6 4 . [2] M. S t a m p a n o n i et al., Computer Microtomography, PSI Scientific R e p o r t 2 0 0 0 , V o l u m e V I I , p. 8 1 . [3] T. W e i t k a m p et al., An imaging and graphy facility at the ESRF beamline 99, Vol. 3772. (B) F i g . 5: (A) E d g e - e n h a n c e d r a d i o g r a p h i c projection of t h e b o r o n fibre a c q u i r e d at a s a m p l e - d e t e c t o r d i s t a n c e of 5 0 m m . (B) S a m e fibre at 6 0 0 m m d i s t a n c e . At t h e t i m e of writing this contribution t h e definitive s a m p l e h o l d e r is e n t e r i n g t h e final c o n s t r u c t i o n p h a s e a n d will b e t r a n s f e r r e d t o t h e S L S in late J a n u a r y 2 0 0 2 . N e v e r t h e l e s s , a primitive s i n o g r a m of a n ext r e m e l y o s t e o p o r o t i c b o n e c o u l d b e a c q u i r e d (500 projections only, no pitch a n d roll c o r r e c t i o n ) delivering t h e first r e c o n s t r u c t e d t o m o g r a p h i c slice of t h e S L S , d e p i c t e d in Fig. 6. Science Volume microtomoID22, S P I E 82 BRAGG-MAGNIFIER: HIGH PERFORMANCE X-RAY DETECTOR FOR XTM M. Stampanoni (PSI, ETHZ), G. Borchert (PSI, IKP Jülich), R. Abela (PSI), P. Rüegsegger (ETHZ) In X-Ray Tomographic Microscopy (XTM) experiments, the resolution of the standard detector method based on a scintillating screen and microscope optics is restricted by scintillator properties, optical light transfer, and CCD granularity. These factors impose a practical limit of about one micrometer, while the progressing research demands urgently an advance in the submicron region. A break-through in this respect is being achieved by a novel detector type. It uses the properties of asymmetric Bragg reflection to increase the cross section of the reflected X-ray beam. A suitable combination of correspondingly cut Bragg crystals yields an image magnification that even at higher energies may surpass a factor of 1000. Simulations as well as first experimental characterizations of the magnifying unit are presented. INTRODUCTION SIMULATIONS In o r d e r t o efficiently s u r p a s s t h e m i c r o m e t e r barrier in t e r m s of spatial resolution, a n o v e l d e t e c t i o n s y s t e m is b e i n g d e v e l o p e d . T h e a p p r o a c h for a c h i e v i n g s u b m i c r o m e t e r resolution is t o m a g n i f y t h e i m a g e with X - r a y optics a n d t o d e t e c t it with a l o w - r e s o l u t i o n , high-effic i e n c y detector, t h u s i m p r o v i n g both resolution a n d efficiency. T h e optics m u s t h a v e s u b m i c r o n r e s o l u t i o n , efficiency a n d i m a g e fidelity. B r a g g diffraction f r o m a n a s y m m e t r i c a l l y cut crystal p r o d u c e s o n e - d i m e n s i o n a l m a g n i f i c a t i o n (Fig. A ) . A s e c o n d diffraction f r o m a n other crystal with t h e s a m e m a g n i f i c a t i o n factor but p e r p e n d i c u l a r diffraction plane p r o d u c e s u n i f o r m t w o d i m e n s i o n a l m a g n i f i c a t i o n (Fig. 1B) [1]. T o build t h e B r a g g m a g n i f i e r at t h e S L S , s e v e r a l B r a g g crystals f r o m Si a n d G e h a v e b e e n s t u d i e d . For practical r e a s o n s , Si ( 2 2 0 ) crystals w e r e s e l e c t e d for both crystals of t h e s e t u p . T h e r o c k i n g c u r v e s for the i n c o m i n g a n d reflected b e a m are s h o w n in Fig. 2 [2]. s i n ( # +<x) s sin(#„ -a) 30 Fig. 2: Theoretical 23.1 k e V . (A) out C1 (B) curve of Si(220) F i g . 1 : (A) T h e c r o s s s e c t i o n of t h e i n c o m i n g b e a m d is m a g n i f i e d by a f a c t o r M to p r o d u c e t h e o u t g o i n g b e a m d . a is t h e a s y m m e t r y a n g l e , i.e. t h e a n g l e b e t w e e n crystal s u r f a c e a n d lattice p l a n e s . (B) By a n a p p r o p r i a t e c o m b i n a t i o n of t w o a s y m m e t r i c diffraction crystals C 1 a n d C 2 a t w o - d i m e n s i o n a l total m a g n i f i cation (the p r o d u c t of the linear m a g n i f i c a t i o n M) c a n be o b t a i n e d . i n at T h e w h o l e M S B e a m l i n e (wiggler s o u r c e , R h m i r r o r s , d o u b l e - c r y s t a l m o n o c h r o m a t o r a n d slits) w a s s i m u lated with t h e ray-tracing p r o g r a m S h a d o w [3]. For c o l l i m a t e d b e a m delivery c o n f i g u r a t i o n , t h e a n g u l a r d i v e r g e n c e F W H M at the e x p e r i m e n t d o e s not t r e s p a s s 2 0 u r a d , s e e Fig. 3. A c o m p a r i s o n with t h e relev a n t r o c k i n g c u r v e implies that the first Si (220) B r a g g crystal will a c c e p t 9 5 % of t h e i n c o m i n g intensity. W i t h this realistic s o u r c e distribution, the c o m p l e t e B r a g g m a g n i f i e r h a s b e e n s i m u l a t e d . In t h e s i m u l a t i o n , t h e b e a m is c o l l i m a t e d by a slit t o a 1 x 1 m m profile, j u s t before i m p i n g i n g on t h e first crystal of t h e B r a g g M a g nifier. Fig. 4 s h o w s t h e final intensity distribution at t h e locus of t h e detector. T h e results of the s i m u l a t i o n s u g g e s t that with s u c h a s e t u p a linear m a g n i f i c a t i o n of a f a c t o r of 30 in both d i m e n s i o n s is feasible. 2 C2 o u t rocking 35 83 CHARACTERIZATION Both S i ( 2 2 0 ) crystals h a v e b e e n c h a r a c t e r i z e d at the Seifert station of the P S I , s e e Fig 5. T h e C u X - r a y t u b e of the d e v i c e h a s b e e n run at 4 0 k e V a n d 4 0 m A , with a Ni filter for r e m o v i n g b r e m s s t r a h l u n g c o n t a m i nation. T h e m e a s u r e m e n t s h a v e b e e n d o n e in t h e "high r e s o l u t i o n " c o n f i g u r a t i o n w h i c h i m p l i e s t h e u s e of a multilayer mirror for c o l l i m a t i o n as well as a M R B C - 4 G e ( 4 4 0 ) m o n o c h r o m a t o r c o n s i s t i n g in t w o G e r m a n i u m c h a n n e l cuts: the resulting b e a m d i v e r g e n c e w a s a b o u t 5". F i g . 3: M S - b e a m l i n e d i v e r g e n c e is less t h a n 2 0 u r a d at t h e locus of t h e e x p e r i m e n t . A x i s ' s units are radians. F i g . 5: S e t u p for t h e crystal c h a r a c t e r i z a t i o n at t h e Seifert station. 1 . T u b e . 2. Multilayer. 3. M o n o c h r o m a t o r 4 . C r y s t a l . 5. Detector. F i g . 4 : Intensity distribution in t h e final i m a g e p l a n e . M a g n i f i c a t i o n is a b o u t a f a c t o r 3 0 . A x i s ' s units are c m . C o n s e q u e n t l y t h e realization of the e x p e r i m e n t a l s e t u p h a s b e e n s t a r t e d . T h e crystals h a v e b e e n prep a r e d in c o l l a b o r a t i o n w i t h t h e Institut für Kristallz ü c h t u n g , Berlin, with an a n g u l a r a c c u r a c y of a b o u t o n e m i n u t e of arc a n d a s u r f a c e r o u g h n e s s of better t h a n 1 | j m . After a high quality polishing of their b a c k side, t h e crystals h a v e b e e n fixed by optical c o n t a c t ing o n a high precision g l a s s s u p p o r t p e r f o r m e d by Z e i s s . In this w a y , no m e c h a n i c a l d e f o r m a t i o n of t h e crystals t h e m s e l v e s c a n occur. For e a c h crystal unit the m e c h a n i c a l m o u n t i n g a l l o w s an adjustment a r o u n d e a c h rotation axis. T h e m o v e m e n t that c o r r e s p o n d s t o t h e B r a g g a n g l e c a n be p e r f o r m e d in s t e p s of .05 a r c s e c t o c o p e with t h e v e r y n a r r o w r o c k i n g c u r v e at 2 3 . 1 k e V (Fig. 2). In a d d i t i o n , t h e s e c o n d crystal c a n be p o s i t i o n e d by m e a n s of a X Y - t a b l e [4]. 0 -I -12 1 -8 1 -4 1 1 0 4 1 1 8 12 ArcSeconds F i g . 6: M e a s u r e d r o c k i n g c u r v e s of t h e S i ( 2 2 0 ) c r y s tals at 23.1 k e V . 84 W e m e a s u r e d t h e r o c k i n g c u r v e s of both crystals on different p l a c e s of t h e s u r f a c e . T h e w i d t h s of t h e measured rocking curves were comparable to the theoretical c a l c u l a t i o n s , d e m o n s t r a t i n g that t h e crystals b e h a v e a l m o s t like ideal crystals. S o m e of t h e results are g i v e n in Fig. 6. DISCUSSION A N D OUTLOOK After e x t e n s i v e s i m u l a t i o n s , S i ( 2 2 0 ) crystals h a v e b e e n c h o s e n t o build t h e m a g n i f y i n g X - r a y optic of t h e B r a g g M a g n i f i e r unit w h i c h will be installed at t h e B e a m l i n e M S . It h a s b e e n s h o w n that m a g n i f i c a t i o n s up t o 1 0 0 0 x c a n easily be r e a c h e d at e n e r g i e s well a b o v e 2 0 k e V . T h e resulting m a g n i f i e d i m a g e c a n be o b s e r v e d with t h e help of a s t a n d a r d X T M detector. First e x p e r i m e n t a l t e s t s o n t h e p r e p a r e d c r y s t a l s pair s h o w g o o d a g r e e m e n t with the t h e o r e t i c a l predictions. Next s t e p s will be a d d i t i o n a l crystal c h a r a c t e r i z a t i o n s ( t o p o g r a p h i c a l investigation) a s well a s t h e integration in t h e w h o l e X T M s y s t e m . W e look f o r w a r d to p e r f o r m first t e s t s in t h e first q u a r t e r of 2 0 0 2 . synchrotron-based REFERENCES [1] M. K u r i y a m a et al., Hard X-Ray Microscope With Submicrometer Spatial Resolution, J . R e s . Natl. Inst. S t a n d . T e c h n o l . 9 5 , 5 5 9 ( 1 9 9 0 ) , pp. 5 5 9 574. [2] S. B r e n n a n , P. C o w a n , R e v . Sei. Instr. 6 3 , 8 5 0 (1992). [3] del Rio M. S a n c h e z , R. D e j u s , S P I E , vol. 3 4 4 8 , 230(1998). [4] M. S t a m p a n o n i et al., Computer Microtomography, PSI Scientific R e p o r t 2 0 0 0 , V o l u m e V I I , p. 8 1 . 85 SPIN-RESOLVED FERMI-SURFACE MAPPING ON Ni(111) M. Hoesch, M. Muntwiler (PSI / University M. Hengsberger, W. Auwärter, of Zurich), T. Greber, V. N. Petrov (St. Petersburg Techn. J. Osterwalder (University of Zurich) University) First results from the spin-resolved photoelectron spectrometer COPHEE are presented. The spin character of electronic states at the Fermi level of nickel metal was measured by angle-resolved ultraviolet photoelectron spectroscopy on the Ni(111) surface. The direction of sample magnetisation was determined through the individual components of the polarisation vector and polarimetry of electrons photoemitted from spin-split bands at the Fermi level directly revealed their spin character. INTRODUCTION C O P H E E , the COmplete PHotoEmission Experiment w a s n a m e d b e c a u s e it d e t e r m i n e s all p r o p e r t i e s of the p h o t o e l e c t r o n s , e n e r g y , m o m e n t u m a n d spin [1]. It f e a t u r e s a full t h r e e - d i m e n s i o n a l e l e c t r o n s p i n - p o larimeter c o n s i s t i n g of t w o o r t h o g o n a l Mott d e t e c t o r s mounted on a hemispherical electron energy analyser. A t w o - a x i s s a m p l e g o n i o m e t e r a l l o w s for choosing any photoelectron emission angle above the s u r f a c e . T h e i n s t r u m e n t w a s c o m p l e t e d in 2 0 0 1 a n d is currently o p e r a t e d s t a n d - a l o n e at the p h y s i c s institute at Z u r i c h University u s i n g a high flux He lamp. Nickel is a s t r o n g f e r r o m a g n e t with a c o m p l e t e l y filled majority d - b a n d . Its b a n d s t r u c t u r e is k n o w n f r o m calculations a n d a large s e t of a n g l e - r e s o l v e d p h o t o e l e c tron s p e c t r o s c o p y data [2]. In t h e s e data, t h e s p i n c h a r a c t e r of individual b a n d s is inferred f r o m c o m p a r i s o n with the c a l c u l a t i o n s a n d t h r o u g h the o b s e r v a t i o n of spin-split b a n d s w h i c h s h o w identical d i s p e r s i o n apart f r o m an e n e r g e t i c splitting. C O P H E E a i m s at direct o b s e r v a t i o n of t h e s p i n c h a r a c t e r of t h e s e b a n d s for (i) identification of spin-character, (ii) quantitative p o l a r i m e t r y a n d (iii) a d d i t i o n a l c o n t r a s t w h e r e different b a n d s o v e r l a p . T h e nickel s a m p l e s e r v e s as a test c a s e for t h e a p p a r a t u s . T H E Ni(111) S A M P L E Macroscopic spin-polarimetry from a ferromagnet requires a m a g n e t i s e d s a m p l e . In o r d e r t o a c h i e v e a s i z e a b l e r e m n a n t m a g n e t i s a t i o n a n d t o r e d u c e stray m a g n e t i c fields, t h e m a g n e t i c flux m u s t be kept inside the s a m p l e . For this p u r p o s e , t h e s a m p l e is s h a p e d as a c l o s e d f r a m e . T o fit t h e p i c t u r e - f r a m e s h a p e into the limited s p a c e o n t h e s a m p l e holder, a d e s i g n w a s made which closes the sample below the polished (111) s u r f a c e (Fig. 1). T h e coil w o u n d a r o u n d t h e b o t t o m part of the f r a m e is u s e d for heating with a s m a l l D C c u r r e n t a n d for reversibly m a g n e t i s i n g the s a m p l e by h i g h - c u r r e n t p u l s e s . T h e ( 1 1 1 ) s u r f a c e of nickel b e a r s t h e difficulty that the [111] e a s y axis of m a g n e t i s a t i o n is p e r p e n d i c u l a r to t h e s u r f a c e a n d at t h e s a m e t i m e the s u r f a c e m a g netisation is m o s t l y in p l a n e . T h e m a g n e t i s a t i o n a l o n g the s u r f a c e is a l s o f a v o u r a b l e for t h e e x p e r i m e n t b e c a u s e t h e p i c t u r e - f r a m e s h a p e c a n be e m p l o y e d . O u r s a m p l e p r o v e d t o be r e m n a n t l y m a g n é t i s a b l e , h o w ever a s i n g l e d o m a i n state c o u l d not be a c h i e v e d . a; b) F i g . 1 : Picture f r a m e N i ( 1 1 1 ) s a m p l e , (a) P h o t o g r a p h of t h e s a m p l e with t h e p o l i s h e d s u r f a c e o n the left a n d t h e f i l a m e n t coil for heating a n d m a g n e t i s i n g w o u n d a r o u n d the b o t t o m part of t h e s a m p l e f r a m e , (b) S c h e m a t i c d r a w i n g of t h e N i ( 1 1 1 ) picture f r a m e s a m p l e a s m o u n t e d o n the s a m p l e holder. T h e a r r o w indicates t h e m a g n e t i s a t i o n v e c t o r M. MAGNETISATION DIRECTION AND MAGNITUDE T h e t h r e e - d i m e n s i o n a l Polarimeter of C O P H E E a l l o w s for the d e t e r m i n a t i o n of t h e m a g n e t i s a t i o n v e c t o r at a n y setting of the g o n i o m e t e r . E a c h of t h e t w o Mott d e t e c t o r s m e a s u r e s a set of s c a t t e r i n g a s y m m e t r i e s , w h i c h are p r o p o r t i o n a l t o t h e polarisation c o m p o n e n t s of the p h o t o e l e c t r o n s . T h e u s e of t w o Mott d e t e c t o r s s p a n s all c o m p o n e n t s of t h e t h r e e d i m e n s i o n a l polaris a t i o n s p a c e . T o investigate the m a g n e t i c p r o p e r t i e s of the s a m p l e w e p e r f o r m e d p o l a r i m e t r y of the s e c o n d a r y e l e c t r o n s e m i t t e d at 2 e V kinetic e n e r g y in norm a l e m i s s i o n u p o n excitation with U V light f r o m t h e He l a m p . T h e s e e l e c t r o n s are p o l a r i s e d parallel t o t h e s a m p l e m a g n e t i s a t i o n with a d e g r e e of polarisation of a p p r o x . 8 % for a fully m a g n e t i s e d s a m p l e [3]. Fig. 2 s h o w s t h e m e a s u r e d a s y m m e t r i e s in t w o o r t h o g o n a l Mott d e t e c t o r s a s a f u n c t i o n of t h e rotation a n g l e of the s a m p l e . A t t h e m a x i m a of the s i n e - m o d u l a t e d a s y m m e t r i e s the sensitive a x e s of the Mott d e t e c t o r s m a t c h the m a g n e t i s a t i o n direction. T h e a m p l i t u d e of the m o d u l a t i o n s h o w s that the s a m p l e m a g n e t i s a t i o n is a p p r o x . 15 % t o 2 5 % of t h e s a t u r a t i o n m a g n e t i s a tion. Further details o n t h e interpretation are g i v e n in [4]- 86 s e e n in 2 0 0 2 . T h e i n s t r u m e n t will t h e n benefit f r o m a freely t u n e a b l e p h o t o n e n e r g y , w h i c h o p e n s t h e c h o i c e of a n y /(-vector in b a n d - s t r u c t u r e m a p p i n g a n d f r o m t h e flexibility in c h o o s i n g t h e light polarisation. 1500 1400 5L 8. 1300- 1200 -S 1100 - 0.5 0.0 F i g . 2 : Mott s c a t t e r i n g a s y m m e t r i e s as m e a s u r e d by the t w o o r t h o g o n a l P o l a r i m e t e r s of C O P H E E (black a n d w h i t e circles) for s e c o n d a r y e l e c t r o n s e m i t t e d at 2 e V in n o r m a l e m i s s i o n f r o m N i ( 1 1 1 ) . T h e s a m p l e w a s rotated ((p-angle) a b o u t t h e s a m p l e n o r m a l t o v a r y the in-plane m a g n e t i s a t i o n direction. SPIN-RESOLVED FERMI-SURFACE MAPPING T h e F e r m i - s u r f a c e of Nickel f e a t u r e s s h e e t s d u e t o minority d - b a n d s a n d a large s p - b a n d e l e c t r o n surf a c e . O n the N i ( 1 1 1 ) s u r f a c e , a pair of spin-split s p b a n d s is s e e n a r o u n d t h e [-1-1 2] a z i m u t h with a pair of d - b a n d s near by. In this g e o m e t r y , the t w o Mott detectors measure the spin-polarisation almost e q u i v a l e n t l y a n d a direct c r o s s c h e c k i n g is p o s s i b l e . Fig. 3 s h o w s s p i n - r e s o l v e d p h o t o e m i s s i o n d a t a . T h e s p i n - c h a r a c t e r of the b a n d is clearly r e v e a l e d t h r o u g h the sign of the Mott d e t e c t o r a s y m m e t r y . T h e t w o asymmetry curves were measured quasi-simultan e o u s l y by 2 Hz s w i t c h i n g b e t w e e n t h e t w o d e t e c t o r s . T h e y fall precisely o n t o p of e a c h other. -0.5 -1.0 -1.5 1 -40 0 20 r 40 Angle <p (deg.) F i g . 3: Spin-resolved photoemission data from N i ( 1 1 1 ) e x c i t e d with Hel ( h v = 2 1 . 2 e V ) . T h e u p p e r part s h o w s t h e p h o t o e l e c t r o n intensity a n d t h e lower part t h e m e a s u r e d a s y m m e t r y as a f u n c t i o n of the a z i m u t h a l e m i s s i o n a n g l e <p near g r a z i n g e m i s s i o n . Black a r r o w s m a r k t h e k n o w n a s s i g n m e n t of t h e p e a k s t o (minority) d - b a n d s a n d spin-split s p - b a n d s . Data f r o m t w o Mott d e t e c t o r s are s h o w n by black a n d white squares. REFERENCES [1] M. H o e s c h et al., PSI Scientific Volume VII. [2] T . J . K r e u t z et al., P h y s . Rev. B 5 8 ( 1 9 9 8 ) 1 3 0 0 and references therein [3] M. L a n d o l t in P o l a r i z e d E l e c t r o n s in S u r f a c e S c i e n c e , e d . R. F e d e r W o r l d Scientific, 1 9 8 5 [4] M. H o e s c h et al., s u b m i t t e d t o J . E l e c t r o n S p e c trosc. Rel. P h e n . CONCLUSION AND OUTLOOK T h e d a t a p r e s e n t e d in this a n n u a l report s h o w that C O P H E E p e r f o r m s to e x p e c t a t i o n a n d d e m o n s t r a t e its capability t o m e a s u r e s p i n - r e s o l v e d F e r m i - s u r f a c e data a n d t o d e t e r m i n e t h e direction of s p i n - p o l a r i s a tion. T h e e x p e r i m e n t w a s o p e r a t e d s t a n d - a l o n e u s i n g a high-flux He l a m p . T r a n s f e r of the a p p a r a t u s to t h e s e c o n d port of t h e S I S b e a m l i n e at t h e S L S is f o r e - -20 I Report 2000, 87 SCIENTIFIC REPORTS 88 DIRECT OBSERVATION OF CHARGE ORDER IN EPITAXIAL FILM OF NdNi0 3 U. Staub, G.I. Meijer (IBM-Rueschlikon), F. Fauth (ESRF), R. Allenspach (IBM-Rueschlikon), J. G. Bednorz, J. Karpinski, S.M. Kazakov (ETHZ), L. Paolasini, F. d'Acapito (ESRF) The first direct observation of charge order of M ' and Ni by resonant X-ray scattering experiments in an epitaxial film of NdNi0 is reported. A quantitative value of 6+ & = 0.45 ± 0.04 e was obtained. The temperature dependence of the charge order deviates significantly from those of the magnetic moment and crystallographic structure. This might be an indication of a difference in their fluctuation time scales. These observations are discussed in terms of the temperature-driven metal-insulator transition in the RN1O3 family. 3 + < 5 3-8 3 O n e of t h e l o n g - s t a n d i n g i s s u e s a s s o c i a t e d with s t r o n g l y c o r r e l a t e d e l e c t r o n s y s t e m s is the m i c r o s c o p i c origin of the metal-to-insulator transitions a n d the n a t u r e of the g r o u n d state. A p r o t o t y p e b a n d w i d t h controlled metal-insulator transition is RNi0 3 (R=La Lu or Y ) with distorted p e r o v s k i t e structure. T h e n o m i n a l v a l e n c e of Ni is 3+ with d-electron c o n figuration t e a n d spin S = 1/2. R N i 0 h a s a s m a l l c h a r g e - t r a n s f e r e n e r g y a n d c a n be r e g a r d e d a s a selfd o p e d Mott insulator. N d N i 0 exhibits a t h e r m a l l y driven m e t a l - i n s u l a t o r transition at a n d a further t r a n sition t o l o n g - r a n g e a n t i f e r r o m a g n e t i c T | =T = 2 0 0 K. A s s o c i a t e d with T is a slight but a b r u p t e x p a n s i o n of the c r y s t a l l o g r a p h i c unit cell, w h i c h c a u s e s a n a r r o w ing of t h e b a n d w i d t h , e v e n t u a l l y l e a d i n g t o t h e o p e n ing of a g a p at t h e F e r m i s u r f a c e . 6 2 g 1 g 3 3 M N m Resistivity m e a s u r e m e n t s of the 500-Â-thick N d N i 0 film s h o w s a first-order m e t a l - i n s u l a t o r transition at a p p r o x i m a t e l y 170 K. T h e r e s o n a n t X - r a y scattering e x p e r i m e n t s ( I D 2 0 , E S R F ) f o c u s e d on reflections of t y p e (Ohl) a n d (hOI), with h a n d I o d d . In Pbnm s y m metry, t h e s e reflections h a v e no c o n t r i b u t i o n f r o m the Ni site. Fig. 1 s h o w s t h e e n e r g y d e p e n d e n c e of the (105) a n d ( 0 1 5 ) reflections. T h e s p e c t r u m of the ( 1 0 5 ) s h o w s a s t r o n g m a x i m u m [ m i n i m u m for (015)] at 8 3 4 4 e V , a p p r o x i m a t e l y 10 e V a b o v e t h e Ni K - e d g e ( 8 3 3 3 e V ) . T h i s s h o w s that t h e s e reflections c o n t a i n a significant contribution f r o m t h e electronic s t a t e s of the Ni ions. A b o v e T i , t h e scattering is i n d e p e n d e n t of the e n e r g y , a n d t h e r e n o l o n g e r is a r e s o n a n t c o n tribution f r o m Ni. 3 scattering f a c t o r s of t h e Nil a n d N i sites are o b t a i n e d . T h e e n e r g y shift b e t w e e n t h e N i a n d Ni -site scattering f a c t o r s at t h e Ni K-edge is f o u n d t o be 0.90 ± 0.08 e V , w h i c h relates to a c h a r g e o r d e r of Ô+ & = 0.42 ± 0.04 e in t h e g r o u n d state. X A S s p e c t r o s c o p y f o u n d that t h e Ni a v e r a g e e l e c t r o n i c state is a m i x t u r e of a p p r o x i m a t e l y 7 0 % 3 d a n d 30 % 3 d L , c o r r e s p o n d i n g t o Ni| a n d N i v a l e n c e s of a p p r o x i m a t e l y 3+ a n d 2 . 5 + , r e s p e c t i v e l y 0 a n d 6~ 0.5 e). M r M 7 8 M T h e c h a r g e - o r d e r o r d e r p a r a m e t e r c a n be e x t r a c t e d f r o m the t e m p e r a t u r e d e p e n d e n c e of t h e integrated X ray intensity of the ( 1 0 5 ) reflection. T h e structural a n d m a g n e t i c o r d e r p a r a m e t e r s are identical, t h e c h a r g e o r d e r o r d e r p a r a m e t e r , h o w e v e r , b e h a v e s differently. T h i s m a y indicate a difference in t h e f l u c t u a t i o n t i m e s c a l e s of t h e m a g n e t i c m o m e n t a n d structure a s c o m pared to the charge. In c o n c l u s i o n , w e directly o b s e r v e c h a r g e o r d e r ( N i a n d N i ) at the m e t a l - i n s u l a t o r transition in N d N i 0 with Ni, is 3 d a n d N i a 5 0 % m i x t u r e of 3 d a n d 3 d L . 3 + 8 3 - 5 3 7 7 M 8 11.0 r"">—i—i—i—i—i—i—i—i—I—i—i—i—1—g—i—1—1—1—g—i—i—i—i—i 2.0 M T h e structure f a c t o r of the ( 0 1 5 ) a n d ( 1 0 5 ) reflections c o n t a i n s differences of t w o Ni sites w h e n t h e s y m m e try is l o w e r e d b e l o w T | . A n e n e r g y d e p e n d e n c e of t h e B r a g g reflections at t h e Ni K-edge o n l y o c c u r s w h e n the c o r r e s p o n d i n g scattering f a c t o r s of t h e s e t w o sites are different. T h e r e f o r e , our data directly p r o v e that N d N i 0 h a s a l o n g - r a n g e c h a r g e - o r d e r e d g r o u n d state with t h e t w o distinct Ni sites, N i ' a n d N i . M 7.5 r 8330 1 8340 1 8350 8360 8370 1.0 8380 3 3 + 8 energy (eV) 3 - 5 R e s o n a n t X - r a y scattering in c o m b i n a t i o n with X - r a y a b s o r p t i o n ( X A S ) is u s e d t o d e t e r m i n e t h e size of this c h a r g e o r d e r a n d t h e site-selective electronic structure of t h e Ni ions. W i t h use of the K r a m e r s - K r o n i g relation, t h e site-selective real a n d i m a g i n a r y parts of t h e F i g . 1 : E n e r g y d e p e n d e n c e of the ( 1 0 5 ) a n d ( 0 1 5 ) reflections of N d N i 0 with c - c polarization in the insulating state at 2 0 K. 3 89 STRUCTURAL DISORDER BELOW THE METAL-INSULATOR TRANSITION IN CA Ru0 2 U. Staub, B. Schmitt, F. Gozzo, T. Bortolamedi, P. Pattison (University 4 K. Conder, C. Hörmann of Lausanne), D. (University of Erlangen), Sheptyakov Results of powder diffraction (X-ray and neutron) on Ca Ru0 are reported. Unusual line shapes h,k,l, depending broadenings of reflections are observed below the metal insulator transition. This is interpreted in terms of a slight oxygen non-stochiometry leading to different electronic regions and correspondingly regions of different structural distortions. 2 Layered perovskite ruthenates have attracted conside r a b l e interest s i n c e t h e d i s c o v e r y of s u p e r c o n d u c t i v ity in S r R u 0 , t h e o n l y isostructural a n a l o g u e t o t h e high-Tc m a t e r i a l s a n d p r o p o s e d p - w a v e s u p e r c o n ductor. T h e s u b s t i t u t i o n of S r b y C a l e a d s t o rather different p h y s i c a l p r o p e r t i e s . C a R u 0 is a Mott i n s u lator w i t h a t h e r m a l d r i v e n m e t a l - i n s u l a t o r transition at T i = 3 4 0 K, s t r o n g l y d e p e n d e n t o n t h e e x a c t o x y g e n s t o c h i o m e t r y . A s s o c i a t e d w i t h T i is a first-order structural p h a s e transition w i t h significant c h a n g e s in the lattice c o n s t a n t s . 2 4 2 4 M M 4 Fig. 2 s h o w s a s e c t i o n of a h i g h - r e s o l u t i o n pattern t a k e n at the S w i s s N o r w e g i a n b e a m l i n e at t h e E S R F . A r e a s o n a b l e m o d e l t o d e s c r i b e t h e p e a k s h a p e is to i n t r o d u c e u n c o r r e l a t e d strain w i t h a t r i a n g u l a r d i s t r i b u tion of d - s p a c i n g s , w h i c h is a rather u n u s u a l c a s e . S u c h a s i m p l e m o d e l c a n qualitatively d e s c r i b e t h e p e a k s h a p e s a n d b r o a d e n i n g s o b s e r v e d in t h e h i g h r e s o l u t i o n p a t t e r n . T h e o b s e r v e d strain is likely a s s o ciated with a small oxygen non-stochiometry, which effects "locally" t h e e l e c t r o n i c s t r u c t u r e a n d l e a d s to a distribution of T a n d c o r r e s p o n d i n g t o a distribution of lattice distortions. O x y g e n i n d u c e d d i s o r d e r (strain) h a s b e e n f o u n d in h i g h - T s u p e r c o n d u c t o r s P b S r Y i _ C a C u 0 [1] a n d a n o r d e r e d distortions are f o u n d in t h e i n c o m m e n s u r a t e B Í 2 2 1 2 s u p e r c o n d u c t o r s [2]. T o o b t a i n m o r e i n f o r m a t i o n o n the o x y g e n n o n - s t o chiometry, w e have performed high-resolution neutron diffraction e x p e r i m e n t s at H R P T at S I N Q . T h e s t u d y of t h e t e m p e r a t u r e d e p e n d e n c e of t h e distortion will a l l o w u s t o get m o r e insight in t h e v e r y u n u s u a l structural a n d e l e c t r o n i c b e h a v i o u r . F u r t h e r a n a l y s i s a n d e x p e r i m e n t s are in p r o g r e s s . M ! Fig. 1 s h o w s a s m a l l s e c t i o n of t h e X - r a y diffraction pattern of C a R u 0 t a k e n w i t h t h e n e w l y d e v e l o p e d strip d e t e c t o r at the S L S M a t e r i a l s S c i e n c e b e a m l i n e . T h e pattern e x h i b i t s n a r r o w lines a b o v e T , w h i c h shift significantly a n d b r o a d e n w h e n g o i n g t h r o u g h T | . T h e reflections h a v e s t r a n g e h,k,l, d e p e n d e n t line s h a p e s a n d b r o a d e n i n g s , w h i c h c a n n o t be e x p l a i n e d s i m p l y b y a G a u s s i a n distribution of lattice strain. 2 4 M M c x x 3 2 2 8 Ca,Ru0 . I.... I... H, 4 -1—n—i—i—j—i—n—i—\—i—i—i—r-|—i—i—i—i—|—n—i—r~\- Ca Ru0 295 K 2 4800 4 4000 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 20 (°) F i g . 2 : Diffraction pattern of C a R u 0 2 4 t a k e n at t h e S N B L of the E S R F (line; t r i a n g u l a r m o d e l ) . F i g . 1 : Diffraction pattern of C a R u 0 t a k e n w i t h t h e strip d e t e c t o r at t h e M a t e r i a l s S c i e n c e b e a m l i n e (SLS). 2 4 REFERENCES [1] U. S t a u b et al., P h y s . Rev. B 5 7 , 5 5 3 5 ( 1 9 9 8 ) . [2] A. Y a m a m o t o et al., P h y s . , Rev. B 4 2 , 4 2 2 8 (1990). 90 PROPAGATION OF A FOCUSED X-RAY BEAM WITHIN A PLANAR X-RAY WAVEGUIDE J.H.H. Bongaerts, C. David, G.H. Wegdam H. Keymeulen, (University of Amsterdam), M. Drakopoulos T. Lackner, J.F. van der Veen (PSI/ETHZ) Recently w e have developed a tunable x-ray w a v e g u i d e [1,2] t o p e r f o r m d y n a m i c a n d static x-ray diffraction e x p e r i m e n t s o n thin fluids c o n f i n e d within the g u i d i n g layer of t h e w a v e g u i d e . T h e typical w a v e g u i d e g a p s are b e t w e e n 5 0 n m a n d a f e w m i c r o n s . S i n c e the s c a t t e r i n g v o l u m e d e c r e a s e s at decreasing gap width and the electron-density c o n t r a s t is v e r y s m a l l for s o m e v e r y interesting s y s t e m s , t h e s c a t t e r e d intensity c a n be e x t r e m e l y low. In o r d e r t o e n h a n c e t h e flux inside t h e w a v e g u i d e , w e u s e d a o n e - d i m e n s i o n a l t r a n s m i s s i o n Fresnel z o n e plate ( F Z P ) lens to f o c u s x rays of an e n e r g y of 13.3 k e V o n t o t h e e n t r a n c e of our x - r a y w a v e g u i d e . T h e rays are incident f r o m the side u n d e r a g r a z i n g a n g l e (Fig. 1). Fig. 2 s h o w s a s c a n n i n g e l e c t r o n m i c r o g r a p h of the F Z P - l e n s . T h e structure w a s patt e r n e d by u s e of e l e c t r o n b e a m l i t h o g r a p h y a n d s u b s e q u e n t w e t c h e m i c a l e t c h i n g of a < 1 1 0 >-oriented silicon s u b s t r a t e , a l l o w i n g for a high a s p e c t ratio of t h e o u t e r F r e s n e l z o n e s . T h e height of the ridges is 5.5 urn. At 13.3 k e V , t h e path length difference b e t w e e n t h e t r e n c h e s a n d ridges s h o u l d be 16.8 urn in o r d e r to o b tain a p h a s e shift TT w h i c h yields the m a x i m u m effic i e n c y of the lens. By rotating t h e orientation of t h e lens by 7 0 . 9 d e g r e e s , w e c a n t u n e this p a t h length difference t o this o p t i m a l c o n d i t i o n . T h e tunability of the lens m a k e s t h e lens suitable for a large e n e r g y r a n g e . T h i s m e t h o d is d e s c r i b e d in ref. [3]. W e f o u n d an e x p e r i m e n t a l lens efficiency of 3 2 . 6 %, w h i c h is c o m p a r a b l e to t h e m a x i m u m theoretical efficiency for a perfect lens of 37.4 % w h e n t a k i n g a b s o r p t i o n into account. (ESRF), In Fig. 3, t h e transmitted intensity through a w a v e g u i d e of 3 0 0 n m w i d t h is s h o w n as a f u n c t i o n of the vertical lens position. T h e maximum flux e n h a n c e m e n t inside t h e w a v e g u i d e is a factor 54 a n d t h e F W H M is 1.03 urn. T h i s w i d t h c o r r e s p o n d s t o the gain f a c t o r 54, if a G a u s s i a n s h a p e of t h e i m a g e at the w a v e g u i d e is a s s u m e d . In Fig. 4 , t h e n u m e r i c a l l y c a l c u l a t e d a n d t h e m e a s u r e d far field intensity distributions l(0j,0 ) are s h o w n as a f u n c t i o n of i n c i d e n c e a n g l e 0, a n d exit a n g l e 0 - T h e w a v e g u i d e g a p w i d t h is 9 5 7 n m . T h e different w a v e g u i d e m o d e s s h o w up as m a x i m a a l o n g the d i a g o n a l . T h e horizontal w i d t h of the d i a g o n a l c o r r e s p o n d s to t h e a n g u l a r distribution e x p e c t e d f r o m t h e lens height a n d focal l e n g t h . A l s o , a l o n g t h e d i a g o n a l a w e a k beating period c a n be s e e n , w h i c h is indicative of m u l t i m o d e interference. T h i s r e d u c e d visibility is a n indication that t h e b e a m is partially c o h e r e n t . T h e vertical t r a n s v e r s e c o h e r e n c e length in o u r situation w a s 8 0 m i c r o n s at the position of the lens, w h i c h itself is 2 0 0 m i c r o n h i g h . At large w a v e g u i d e w i d t h s , t h e i n t e n sity in t h e w a v e g u i d e is not fully c o h e r e n t , w h i l e at g a p s m u c h s m a l l e r t h a n 3 5 0 n m (the o u t e r m o s t z o n e w i d t h ) , t h e intensity is fully c o h e r e n t in t h e vertical direction. e e T h e results of this e x p e r i m e n t s h o w that it is p o s s i b l e t o e n h a n c e t h e flux inside a p l a n a r w a v e g u i d e by a f a c t o r 5 4 , a n d at g a p settings b e l o w the o u t e r m o s t z o n e w i d t h , t h e intensity is still fully c o h e r e n t . T h i s enables a large r a n g e of c o h e r e n t scattering e x p e r i m e n t s to be p e r f o r m e d in s m a l l s c a t t e r i n g v o l u m e s at greatly e n h a n c e d flux. Standing wave i FZP lens Waveguide entrance F i g . 1 : S c h e m a t i c of the e x p e r i m e n t a l s e t u p . T h e F Z P - l e n s f o c u s e s a 2 0 0 m i c r o n incident b e a m into a c a . 1 m i c r o n size s p o t at t h e e n t r a n c e of t h e w a v e g u i d e , w h e r e t h e w a v e g u i d e m o d e s are e x c i t e d . By rotating t h e lens a r o u n d its axis, t h e p h a s e shift b e t w e e n t h e t r e n c h e s a n d ridges c a n be t u n e d t o t h e d e s i r e d t h e p h o t o n e n e r g y . T h e focal length of the lens is 74 c m at 13.3 k e V . F i g . 2 : Electron m i c r o g r a p h of a o n e - d i m e n s i o n a l z o n e plate lens, w h i c h is u s e d t o f o c u s t h e b e a m . T h e lens c o n s i s t s of a r e c t a n g u l a r pattern of t r e n c h e s a n d ridges o n a 5 urn thick silicon m e m b r a n e . T h e o u t e r m o s t z o n e w i d t h is 3 5 0 n m . T h e height of t h e ridges is 5.5 urn. T h e lens s i z e p e r p e n d i c u l a r t o the stripes is 2 0 0 urn a n d a l o n g t h e stripes 2.5 m m . 91 REFERENCES 0.000 0.005 0.010 0.015 z-position (mm) 0.020 F i g . 3: Total transmitted intensity through the w a v e g u i d e as a f u n c t i o n of t h e vertical lens position z for a w a v e g u i d e gap W=300 nm. The profile r e p r e s e n t s t h e i m a g e of the u n d u l a t o r source, c o n v o l u t e d w i t h the g a p w i d t h of the w a v e g u i d e a n d the diffraction limited resolution of the F Z P lens. F i g . 4 : T h e intensity distribution in t h e far field /(0,,0 ) as a f u n c t i o n of i n c i d e n c e a n g l e 0, a n d exit a n g l e 0 for a 9 5 7 n m w a v e g u i d e g a p with a p r e - f o c u s e d b e a m . T o the left is s h o w n a n u m e r i c a l calculation for a partially c o h e r e n t b e a m , as e x p e c t e d f r o m t h e b e a m properties. T o t h e right a r e s h o w n t h e e x p e r i m e n t a l data. T h e b r o a d e n e d d i a g o n a l is c a u s e d by t h e a n g u l a r distribution in t h e c o n v e r g i n g f o c u s e d w a v e s . e e [1] M.J. Z w a n e n b u r g , H.G. Ficke, H. N e e r i n g s , J . F . v a n der V e e n , Rev. Sei. I n s t r u m . 7 1 , 1 7 2 3 (2000). [2] M.J. Z w a n e n b u r g , J . F . P e t e r s , J . H . H . B o n g a e r t s , S.A. d e V r i e s , D.L. A b e r n a t h y , J . F . v a n d e r V e e n , P h y s . Rev. Lett. 8 2 , 1 6 9 6 ( 1 9 9 9 ) . [3] C. D a v i d , B. N o e h a m m e r , E. Ziegler, A p p l . P h y s . Lett. 7 9 , 1 0 8 8 ( 2 0 0 1 ) . 92 DYNAMICS OF CONFINED COLLOIDS J.H.H. Bongaerts, U. Flechsig, J. Miguel (University J.F. van der Veen of Amsterdam), (PSI/ETHZ) We have performed x-ray photon correlation spectroscopy (XPCS) experiments on colloidal which are confined within a planar x-ray waveguide. We observed that the confinement induces time non-exponential decay of the time correlation function <l(0)l(t)>. INTRODUCTION S u s p e n s i o n s of colloidal particles in a liquid s h o w a p h a s e b e h a v i o u r that in a n u m b e r of r e s p e c t s is similar t o that of m o l e c u l a r liquids a n d solids [1]. T h e COLloid m a y b e fluid, crystalline or glassy, d e p e n d i n g o n the particle v o l u m e c o n c e n t r a t i o n a n d t h e s t r e n g t h a n d r a n g e of the interaction potential. In a d d i t i o n , t h e p r e s e n c e of c o n f i n i n g w a l l s h a s t o b e t a k e n into c o n s i d e r a t i o n . A single wall i n d u c e s an o r d e r i n g of the colloidal particles in layers parallel to the w a l l , t w o o p p o s i n g w a l l s at s m a l l d i s t a n c e E N H A N C E this layering effect [2]. In g e n e r a l , t h e structure of a fluid is m o d i f i e d in a n a r r o w g a p b e t w e e n t w o s u r f a c e s . T h i s h a s farREACHING c o n s e q u e n c e s for the lubricating and THEOLOGICAL p r o p e r t i e s of S U C H f l u i d s . Directly related t o the structural m o d i f i c a t i o n s are c h a n g e s in t h e d y n a m i c properties of the fluid. T h e c o n f i n e m e n t is e x p e c t e d t o s l o w d o w n t h e particle diffusion in t h e directions parallel a n d p e r p e n d i c u l a r t o the w a l l s [3]. W a l l - i n d u c e d c h a n g e s in t h e h y d r o d y n a m i c f l o w field a r o u n d t h e particles a n d / o r structural r e a r r a n g e m e n t s within t h e colloid m a y be r e s p o n s i b l e . H o w e v e r , direct e x p e r i m e n t a l e v i d e n c e for t h e s e m e c h a n i s m s is lacking. W e h a v e d e v e l o p e d a n e w m e t h o d of d e t e c t i n g structural r e a r r a n g e m e n t s within c o n f i n e d fluids (Fig. 1) [2]. It e m p l o y s t h e w a v e g u i d i n g of x - r a y s within t h e g a p b e t w e e n t h e c o n f i n i n g surf a c e s . A t t h e e n t r a n c e of t h e p l a n a r w a v e g u i d e a single t r a n s v e r s e electric ( T E ) m o d e is e x c i t e d . T h e d e n sity v a r i a t i o n s within t h e fluid t h e n give rise to c o h e r ent s c a t t e r i n g into o t h e r m o d e s . By m e a s u r i n g t h e distribution of t h e intensity s c a t t e r e d into t h e different m o d e s , o n e d e r i v e s t h e d e n s i t y profile a c r o s s t h e g a p b e t w e e n t h e plates. W e h a v e d e m o n s t r a t e d the validity of this a p p r o a c h for colloidal s u s p e n s i o n s of small silica particles c o n f i n e d w i t h i n a g a p of a f e w h u n d r e d nanometers. Recently, w e e x t e n d e d o u r i n - w a v e g u i d e s t u d i e s t o the t i m e d o m a i n , by p e r f o r m i n g x - r a y p h o t o n c o r r e l a tion s p e c t r o s c o p y ( X P C S ) m e a s u r e m e n t s o n t h e c o n fined c o l l o i d . T i m e correlation f u n c t i o n s w e r e m e a s ured for fixed m o m e n t u m t r a n s f e r q p e r p e n d i c u l a r to the w a v e g u i d e p l a n e , c o r r e s p o n d i n g to specific w a v e g u i d e m o d e s , a n d as a f u n c t i o n of q in t h e p l a n e of the w a v e g u i d e . T h e m e a s u r e m e n t s w e r e p e r f o r m e d at b e a m l i n e I D 1 0 A of E S R F , G r e n o b l e . M o n o d i s p e r s e silica s p h e r e s of 2 1 0 n m d i a m e t e r w e r e d i s s o l v e d in a w a t e r - g l y c e r o l m i x t u r e h a v i n g a viscosity of 3 c P . T h e s u s p e n s i o n , h a v i n g a v o l u m e c o n c e n t r a t i o n of 7 % , w a s c o n f i n e d b e t w e e n t w o flat silica s u r f a c e s w h i c h f o r m the b o u n d a r i e s of the x - r a y w a v e g u i d e . T h e particles a long- length of the w a v e g u i d e w a s 5 m m . W e s e l e c t e d an e n e r g y of 13.2 k e V with a S i ( 1 1 1 ) m o n o c h r o m a t o r . A t r a n s v e r s e l y c o h e r e n t b e a m w a s s e l e c t e d by a 8 m i c r o n pinhole. T h e s c a t t e r i n g v e c t o r in all e x p e r i m e n t s b e l o w is in t h e plane of the c o n f i n i n g s u r f a c e s (Fig. 1 ). A t g a p s b e l o w 2.5 m i c r o n s , w e o b s e r v e d l o n g - t i m e tails in t h e correlation f u n c t i o n s at small m o m e n t u m transfer. W e c h e c k e d w h e t h e r t h e s e tails w e r e i n d e e d c a u s e d by t h e c o n f i n e m e n t by c h a n g i n g t h e path length t h r o u g h t h e w a v e g u i d e . T h i s w a s d o n e by t r a n s l a t i n g the w a v e g u i d e p e r p e n d i c u l a r t o t h e b e a m (Fig. 1). In this w a y t h e path length t h r o u g h t h e w a v e g u i d e relative t o that in t h e collar ( a l m o s t 1 m m w i d e ) a r o u n d t h e c o n f i n e m e n t a r e a is c h a n g e d . W e f o u n d that t h e l o n g t i m e tail d i s a p p e a r e d a s w e m o v e d further a w a y f r o m the c e n t e r of the w a v e g u i d e . T h i s is proof that t h e l o n g - t i m e tail is c a u s e d by the w a v e g u i d e . T o g e t h e r with t h e fact that t h e long t i m e tail is q - d e p e n d e n t , this is s t r o n g e v i d e n c e that w e are not looking at a n e x p e r i m e n t a l artefact. Fig. 2 s h o w s c o r r e l a t i o n f u n c t i o n s m e a s u r e d for t h r e e different g a p settings at a single in-plane m o m e n t u m t r a n s f e r (q//= 4 . 6 5 10" n m " ) . A s the g a p is d e c r e a s e d , t h e correlation f u n c t i o n s d e c r e a s e s l o w e r a n d d e v i a t e m o r e f r o m a single e x p o n e n t i a l d e c a y . H e n c e , w e s e e a clear effect of c o n f i n e m e n t o n t h e mobility of partic l e s in the plane of the s u r f a c e s . H y d r o d y n a m i c eff e c t s as well as structural c h a n g e s within t h e c o n f i n i n g s p a c e m a y play a role. A n a l y s i s is in p r o g r e s s . 3 1 ± / ; F i g . 1 : T o p v i e w (top) a n d side v i e w ( b o t t o m ) of t h e scattering g e o m e t r y . T h e dark a r e a r e p r e s e n t s the fluid. T h e fluid f o r m s a collar a r o u n d t h e c o n f i n e d a r e a . T h i s results in a s u p e r p o s i t i o n of t h e s c a t t e r i n g f r o m t h e c o n f i n e d fluid w i t h that f r o m the bulk fluid. T h e total length t h r o u g h t h e fluid with collar is c a . 6.5 m m , w h i l e t h e m a x i m u m w a v e g u i d e length is 5 mm. 93 REFERENCES • i i 11 lili) 10" 2 i i i 11 inj 10" 1 10° i i 111 inj i i 11 ilia; i i 11 ilia; 10 10 Time (ms) 1 10 2 i i 11 lili) 10 3 i i 11 ini| 10 4 5 F i g . 2 : T i m e correlation f u n c t i o n s g - 1 for different g a p s e t t i n g s W , m e a s u r e d at q = 4 . 6 5 10 " n m " . T h e dyn a m i c s p e c k l e c o n t r a s t w a s typically 4 0 %. For c o m p a r i s o n , t h e correlation f u n c t i o n s h a v e b e e n n o r m a l ized t o o n e . 2 fí 3 1 A s t h e g a p is c l o s e d , t h e correlation f u n c t i o n d e c a y s slower. A t t h e s m a l l e s t g a p of 7 0 0 n m w i d t h , t h e d e c a y t i m e is a f a c t o r 3 longer t h a n at a g a p of 1.3 m i c r o n w i d t h . For a bulk fluid, t h e correlation f u n c tions c a n be fitted t o a single e x p o n e n t i a l d e c a y . W i t h the f u n c t i o n s s h o w n h e r e , this is not p o s s i b l e . A single e x p o n e n t i a l fit w a s m a d e to the first part of t h e W = 1 . 8 urn correlation f u n c t i o n in o r d e r to d e m o n s t r a t e the d e v i a t i o n . [1] S e e e.g., W . K . K e g e l , A. v a n B l a a d e r e n , S c i e n c e 287, 291 (2000). [2] M.J. Z w a n e n b u r g , J . H . H . B o n g a e r t s , J . F . P e t e r s , D.O. Riese a n d J . F . v a n der V e e n ; P h y s . Rev. Lett. 8 5 , 5 1 5 4 ( 2 0 0 0 ) . [3] I. P a g o n a b a r r a g a , M.H.J. Hägen, C P . Lowe, D. F r e n k e l , P h y s . R e v . E 5 9 , 4 4 5 8 ( 1 9 9 9 ) . 94 TIME-RESOLVED EXAFS WITH SINGLE X-RAY PULSES AT 1 KHZ C. Bressler, M. Chergui, F. Van Mourik (University of M. Saes (PSI, University of Lausanne), R. Abela, D. Grolimund, (PSI), R.W. Falcone, S.L. Johnson, A.M. Lindenberg (UC P.A. Heimann, R.W. Schoenlein (ALS) Lausanne), Berkeley), We have performed test experiments at the Femtosecond X-Ray Beamline 5.3.1 (ALS) to assess its utility for studying condensed phase dynamics in liquids using X-ray absorption. The pump-probe scheme is applied with a fs-laser (pump) and hard X-ray pulses (probe). We have improved the setup to allow efficient single pulse laser excitation as well as low-noise X-ray detection up to 3.2 kHz repetition rate while maintaining spatial overlap in situ between both beams. The discussed scheme will soon allow pumpprobe experiments on a wide class of systems with picosecond (current SR pulse width) and femtosecond resolution at the future time-sliced beamline for microdiffraction and XAS at the SLS. INTRODUCTION W e are currently d e v e l o p i n g a s c h e m e to exploit p u l s e d x - r a y for structural d y n a m i c s s t u d i e s at b e a m line 5.3.1 via t i m e - r e s o l v e d X - r a y a b s o r p t i o n ( E X A F S and X A N E S ) techniques. X-ray absorption (XAS) t e c h n i q u e s , s u c h as e x t e n d e d x - r a y a b s o r p t i o n fine structure ( E X A F S ) a n d x - r a y a b s o r p t i o n n e a r e d g e structure (XANES) spectroscopies deliver local structural i n f o r m a t i o n [1]. W h i l e X A N E S is c o m p l i c a t e d t o interpret f r o m a structural point of v i e w , it c o n t a i n s rather s i m p l e p h e n o m e n a like t h e c h e m i c a l shift, w h i c h d e s c r i b e s t h e o x i d a t i o n state of t h e a t o m . O n t h e o t h e r h a n d , E X A F S delivers a detailed picture of t h e local e n v i r o n m e n t , a n d i n t e r a t o m i c s e p a r a t i o n s c a n n o w a d a y s be d e t e r m i n e d with a n a c c u r a c y d o w n to 100 f m [2]. In a d d i t i o n , E X A F S r e q u i r e s no periodic s t r u c t u r e s (as r e q u i r e d in x-ray diffraction), a n d c a n be readily a p p l i e d t o d i s o r d e r e d s y s t e m s , e.g., liquids. L a s e r - p u m p S R - p r o b e e x p e r i m e n t s d e p e n d on the available n u m b e r of X - r a y p h o t o n s per single pulse at the repetition rate of t h e exciting laser, w h i c h is t y p i cally 1 k H z for c o m m e r c i a l a m p l i f i e d fs-lasers. T h e r e f o r e , s u c h e x p e r i m e n t s c a n u s e only a b o u t 10" - 10" of the a v a i l a b l e p h o t o n flux at a s y n c h r o t r o n with its m u c h h i g h e r p u l s e repetition rate of 100 5 0 0 M H z . W e h a v e p e r f o r m e d c a l c u l a t i o n s of t h e exp e c t e d p u m p - p r o b e signal for a g i v e n c o n d e n s e d p h a s e c h e m i c a l s y s t e m [3,4], w h i c h a l s o u n d e r l i n e the g e n e r a l utility of t i m e - r e s o l v e d X A S in c o n d e n s e d phase dynamics research. 5 s p o n d s to t h e static (= u n e x c i t e d ) s a m p l e , w h i l e t h e o t h e r X - r a y p u l s e s m o n i t o r the t r a n s m i s s i o n following p h o t o e x c i t a t i o n at a n a d j u s t a b l e t i m e delay. T h e r e fore, the g a t e d integrator delivers a n o u t p u t of alternatively l a s e r - p u m p e d a n d u n p u m p e d intensities, w h i c h are t h e n r e a d into t h e c o m p u t e r a n d a p p r o p r i ately s o r t e d . W i t h this s c h e m e w e c a n r e c o r d h i g h quality E X A F S s p e c t r a of the p h o t o i n d u c e d c h a n g e s . I n d e e d , a careful a n a l y s i s of t h e m e a s u r e d noise s h o w s that w e h a v e nearly a c h i e v e d t h e s h o t noise limit in this c o n f i g u r a t i o n . T h e m e a s u r e d noise is c o n s i d e r a b l y r e d u c e d o v e r o t h e r m e t h o d s , w h i c h include additional s y s t e m a t i c noise s o u r c e s . T h e s t e p - s c a n ning m o n o c h r o m a t o r i n d u c e s vibrations, w h i c h result in a rather c o n s t a n t noise s o u r c e o n t h e t r a n s m i t t e d intensity. T h i s is c o n s i d e r a b l y r e d u c e d , w h e n no o p tics m o v e , a n d t h e d e c r e a s i n g s t o r a g e ring c u r r e n t is o b s e r v e d by a c o r r e s p o n d i n g b r o a d e n i n g of t h e pulse height distribution. In a d d i t i o n , using our latest d e v e l o p m e n t by m e a s u r i n g the difference s p e c t r a during a m o n o c h r o m a t o r s c a n r e d u c e s the noise e v e n m o r e . After correcting t h e statistically d e r i v e d effective flux for the limited X - r a y a b s o r p t i o n in the 30 urn thick A P D , o u r m e a s u r e m e n t s are v e r y c l o s e t o t h e s p e c i fied flux of this b e a m l i n e [5]. 6 EXPERIMENTAL APPROACH T h e A L S camshaft mode c o n s i s t s of a c l o s e - p a c k e d m u l t i b u n c h train f o l l o w e d by a 1 0 0 ns e m p t y s e c t i o n . In this e m p t y s e c t i o n a ten-fold d e n s e r single e l e c t r o n b u n c h is p l a c e d , w h o s e x - r a d i a t i o n ( d e t e c t e d with a n A P D b e h i n d the s a m p l e ) w e single out with a g a t e d integrator ( o p e n i n g w i n d o w c a . 2 0 ns). In o r d e r t o r e c o r d high-quality s p e c t r a in a p u m p - p r o b e c o n f i g u ration w e h a v e e m p l o y e d the f o l l o w i n g s c h e m e : T h e g a t e d integrator is t r i g g e r e d at t w i c e the laser repetition rate, so that e v e r y s e c o n d X - r a y p u l s e c o r r e - RESULTS A N D DISCUSSION W i t h o u r n e w difference-signal d e t e c t i o n s c h e m e w e m a k e best u s e of the X - r a y s o u r c e , s i n c e the rec o r d e d noise o n t h e s e s p e c t r a c o r r e s p o n d nearly entirely t o t h e e x p e c t e d s h o t n o i s e limit. But w e c a n a l s o r e c o r d high-quality E X A F S w i t h o u t e m p l o y i n g the difference m e a s u r e m e n t t e c h n i q u e . Fig. 1 illustrates this for the c a s e of a q u e o u s iodide. T h e e n e r g y s p e c t r u m h a s a l r e a d y b e e n t r a n s f o r m e d into k-space (Fig. 1a), but t h e original d a t a h a s not b e e n t r e a t e d (e.g., s m o o t h e d or Fourier-filtered). T h i s s p e c t r u m r e p r e s e n t s a single s c a n a c c u m u l a t i n g 2 5 0 0 single X ray p u l s e s per d a t a point. T h e fit ( a n d its Fourier t r a n s f o r m , Fig. 1b) delivers a nice a g r e e m e n t with t h e literature, a n d t h e a c c u r a c y for d e t e r m i n i n g t h e nearest n e i g h b o r shell of o x y g e n a t o m s is better t h a n 10 p m [4]. 95 F i g . 1 : Static E X A F S a b o v e t h e L e d g e of iodine of a q u e o u s iodide ( N a l c o n c e n t r a t i o n : 0.7 mol/l, t h i c k n e s s : 0.1 m m ) . Original d a t a ( o p e n circles), a n d their fit (solid line) is s h o w n in a ) , a n d t h e Fourier t r a n s f o r m s h o w i n g t h e n e a r e s t n e i g h b o r l-O d i s t a n c e in b) (solid line). For c o m p a r i s o n , a s i m u l a t i o n of t h e e x p e c t e d E X A F S of a t o m i c iodine is s h o w n ( d a s h e d c u r v e in a)) t o g e t h e r w i t h its Fourier t r a n s f o r m ( d a s h e d c u r v e in b)). 3 7100 7120 7140 7160 Fe'"(CN) Te"(CN) \ 6 / 7200 static e x p . 6 \ 7180 ^ / a ) Fig. 1 a l s o illustrates t h e potential for m e a s u r i n g t h e n e a r e s t - n e i g h b o r d i s t a n c e in p h o t o g e n e r a t e d i o d i n e radicals. T h e l-O d i s t a n c e s h o u l d c h a n g e c o n s i d e r a bly u p o n p h o t o d e t a c h m e n t . V a l u e s for iodine a r e c u r r e n t l y u n k n o w n , but in a t h e o r e t i c a l s t u d y of a q u e o u s Br radicals t h e p r e d i c t e d B r - 0 d i s t a n c e c h a n g e d f r o m 3 3 5 p m for t h e ion to c a . 2 8 0 p m for t h e neutral radical [6]. A s s u m i n g a similar r e d u c t i o n in t h e iodineo x y g e n d i s t a n c e s w o u l d result in a p r o n o u n c e d c h a n g e in t h e E X A F S s i g n a l , a s s h o w n in t h e d a s h e d c u r v e s in Fig. 1 . Exploiting o u r d i f f e r e n c e m e a s u r e m e n t t e c h n i q u e w e have attempted to measure the photoinduced chemical shift d u e to U V p h o t o i o n i z a t i o n of t h e c e n t r a l Fe a t o m in a q u e o u s [ F e " ( C N ) ] " with a s y n c h r o n i z e d fs laser. T h e c h e m i c a l shift of c a . 1 e V a r o u n d t h e Fe K e d g e w a s o b s e r v e d in static s a m p l e s c o n t a i n i n g e i ther [ F e " ( C N ) ] " or [Fe"'(CN) ] " (concentration 0.2 mol/l, s a m p l e t h i c k n e s s 0.1 m m ) , a s illustrated in Fig. 2 a ) a n d b). T h e n w e e x c i t e d a liquid j e t with t h e reactant s p e c i e s [ F e " ( C N ) ] " o n l y w i t h 100 jj,J of 2 6 6 n m light, a n d r e c o r d e d t h e t r a n s i e n t c h a n g e s . D u e t o t h e low e x c i t a t i o n yield of b e l o w 0.4 % w e c o u l d not o b s e r v e t h e c h e m i c a l shift o n t h e 100 ps t i m e s c a l e (Fig. 2 c) a n d d)). H o w e v e r , w i t h i m p r o v e d statistics e x p l o i t i n g t h e first 100 ns of t h e m u l t i b u n c h train f o l l o w i n g p h o t o e x c i t a t i o n w e did o b s e r v e a p h o t o i n d u c e d c h a n g e in t h e X A S . In Fig. 3 a ) , t h e a v e r a g e of 2 0 s p e c t r a is s h o w n for e a c h , t h e u n p u m p e d a n d t h e p u m p e d s a m p l e (offset for clarity). Fig. 3 b) s h o w s t h e d i f f e r e n c e signal of Fig. 3 a ) t o g e t h e r with a s i m u l a t i o n a s s u m i n g l a s e r - i n d u c e d e v a p o r a t i o n of c a . 100 n m of t h e 0.1 m m thick s a m ple. W h i l e this nicely r e p r o d u c e s t h e majority of t h e m e a s u r e d d i f f e r e n c e s p e c t r u m , w e still o b s e r v e s o m e d i s c r e p a n c y a r o u n d t h e 1s -> 4 p pre e d g e f e a t u r e , a s s h o w n in t h e residual s p o e c t r u m in Fig. 3 c). T h e 4 6 -v^N. Laser on At = 1 0 0 p s 6 • L a s e r off 1 f y s ^ y ^ ' 7120 7140 7160 7180 Photon Energy / eV 6 6 -1.0 7100 4 7200 F i g . 2 : Static (a a n d b) a n d t i m e - r e s o l v e d X A S (c a n d d) of a q u e o u s h e x a c y a n o f e r r a t e samples m e a s u r e d at b e a m l i n e 5 . 3 . 1 . 4 3 96 d o u b l e m i n i m u m s h a p e of d e c r e a s e d t r a n s m i s s i o n (clearly visible in t h e s m o o t h e d s p e c t r u m ) indicates a b r o a d e n i n g of this f e a t u r e , w h i c h h a s b e e n o b s e r v e d in t e m p e r a t u r e - d e p e n d e n t X A N E S studies. The e l e v a t e d t e m p e r a t u r e of the l a s e r - h e a t e d s a m p l e c o u l d a c c o u n t for this o b s e r v a t i o n . ACKNOWLEDGMENTS W h i l e our c u r r e n t sensitivity d o e s not a l l o w t o u n a m b i g u o u s l y o b s e r v e t h e c h e m i c a l shift for less t h a n 0.4 % e x c i t e d s p e c i e s , c u r r e n t i m p r o v e m e n t s on t h e laser e x c i t a t i o n p r o c e s s will permit us to b o o s t the p r o d u c t yield into t h e 1-5 % r a n g e . REFERENCES 7100 7100 7120 7120 7140 7140 7160 7160 7180 7180 T h i s w o r k w a s f i n a n c e d b y the F N R S via c o n t r a c t N o . F N - 2 0 0 0 - 0 1 5 9 1 4 6 . 9 9 / 1 , b y t h e Swiss Light Source, the Advanced Light Source, a n d by t h e U n i v e r s i t y of Lausanne. [1] E.A. S t e r n , S . M . H e a l d , in: H a n d b o o k on S y n c h r o t r o n R a d i a t i o n , V o l . 1B, E d : E. E. K o c h , North H o l l a n d ( 1 9 8 3 ) , pp. 9 5 5 fff; B. K. A g a r w a l , X - R a y Spectroscopy, Springer (1991). [2] U. B u o n t e m p o , A. Filipponi, P. P o s t o r i n o , R. Z a c c a r i , J . C h e m . P h y s . 108, 4 1 3 1 ( 1 9 9 8 ) . [3] C. Bressler, M. S a e s , M. C h e r g u i , P. P a t t i s o n , R. A b e l a , Nucl. I n s t r u m . M e t h . A 4 6 7 - 4 6 8 , 1444 (2001). [4] C. Bressler, M. S a e s , M. C h e r g u i , D. G r o l i m u n d , R. A b e l a , P. P a t t i s o n , J . C h e m . P h y s . 116, 2 9 5 4 (2002). [5] C. Bressler, M. S a e s , M. C h e r g u i , D. G r o l i m u n d , R. A b e l a , t o a p p e a r in: F e m t o c h e m i s t r y a n d F e m t o b i o l o g y , e d . A. D o u h a l , W o r l d Scientific (2002). [6] M. R o e s e l o v a , U. Kaldor, P. J u n g w i r t h , J . P h y s . Chem. A104, 6523 (2000). 7200 7200 X-Ray Probe Energy / eV F i g . 3: Time-resolved XAS (At = 100 n s ) (a), difference s p e c t r u m t o g e t h e r with t r a n s i e n t s i m u l a t i o n (b), a n d residue of the d a t a c o m p a r e d t o t h e simulation. 97 UNCOMPENSATED SPINS IN ANTIFERROMAGNETIC NIO COUPLED TO A FERROMAGNET F. Nolting, H. Ohldag (LBNUSSRL), E. Arenholz J. Stöhr (LBNL), (SSRL) A. Scholl (LBNL), A.T. Young (LBNL), Hysteresis loops of uncompensated Ni spins in antiferromagnetic NiO have been measured absorption spectroscopy demonstrating the sensitivity of this technique. The measurements formed at an elliptically polarizing undulator beamline at the Advanced Light Source. INTRODUCTION EXPERIMENT T h e s a m p l e s t u d i e d w a s a multilayer of alternating films of 3 n m C o a n d 50 n m N i O g r o w n o n S i . T h e s u r f a c e ( C o on t o p ) w a s c a p p e d with a 1.5 n m Ru layer to p r e v e n t its o x i d a t i o n . T h e e a s y axis of the C o layer w a s in t h e p l a n e of the s a m p l e a n d a n e x c h a n g e bias field of 1 7 5 O e w a s o b t a i n e d . T h e X A S s p e c t r a w e r e d e t e r m i n e d by m e a s u r i n g the s a m p l e current. T h e s a m p l e w a s m o u n t e d in g r a z i n g i n c i d e n c e in t h e g a p of a n e l e c t r o m a g n e t , w h i c h c a n s w i t c h a m a g n e t i c field u p to 3 0 0 0 O e with 1 H z a n d h a s the m a g n e t i c field a l o n g t h e polarization v e c t o r of the circularly p o l a r i z e d light. T h e h y s t e r e s i s l o o p s for Ni as well a s for C o w e r e d e t e r m i n e d by v a r y i n g t h e m a g n e t i c field f r o m - 3 0 0 0 O e t o + 3 0 0 0 O e a n d b a c k in 50 O e s t e p s . A t e a c h m a g n e t i c field t h e a b s o r p t i o n signal at t h e L a n d L e d g e for a fixed polarization is m e a s u r e d . Next, the m e a s u r e m e n t is r e p e a t e d with o p p o s i t e polarization. T h e hysteresis loop is c a l c u lated by t a k i n g the ratio of both polarizations for e a c h e d g e a n d t h e n c a l c u l a t i n g the difference b e t w e e n L a n d L loop. 2 3 2 0.6 0.4 ' I . Ni ; M V \ \ X -04 -0.6 -0.8 -1.0 I Jyiiiu a w j w \\\ 1 . . . . . . . "nI "FT -3000 -2000 -1000 1000 2000 3000 1 1 1 1 1 1 15 10 ^ 5 ^ n CD T h e investigation of m a g n e t i c multilayers is a n active r e s e a r c h a r e a , d r i v e n by t h e interesting p h y s i c s a s s o ciated w i t h s u c h s t r u c t u r e s a n d their a p p l i c a t i o n in t h e m a g n e t i c s t o r a g e industry. W h i l e the interface itself is s u p p o s e d to d o m i n a t e t h e m a g n e t i c b e h a v i o r of t h e entire s y s t e m , the identification a n d c h a r a c t e r i z a t i o n of its m a g n e t i c p r o p e r t i e s r e m a i n s an e x p e r i m e n t a l c h a l l e n g e . A p r o m i n e n t e x a m p l e is t h e s o - c a l l e d exc h a n g e bias effect, w h i c h is t h e directional c o u p l i n g b e t w e e n t h e s p i n s in a n a n t i f e r r o m a g n e t a n d t h o s e in an a d j a c e n t f e r r o m a g n e t , for a r e v i e w s e e [1]. A n i m portant p a r a m e t e r in m o d e l l i n g t h e e x c h a n g e b i a s effect is t h e p o s s i b l e e x i s t e n c e of u n c o m p e n s a t e d s p i n s in t h e a n t i f e r r o m a g n e t n e a r t h e interface. R e cently, w e d e m o n s t r a t e d t h e e x i s t e n c e of u n c o m p e n s a t e d Ni s p i n s in t h e C o / N i O s y s t e m with X M C D [2] a n d P E E M [3] m e a s u r e m e n t s a n d related t h e m to an o x i d a t i o n / r e d u c t i o n effect at t h e interface. H e r e w e p r e s e n t h y s t e r e s i s l o o p s of e x c h a n g e b i a s e d C o / N i O multilayer m e a s u r e d with X - r a y a b s o r p t i o n s p e c t r o s c o p y ( X A S ) . T h e e x p e r i m e n t w a s p e r f o r m e d at t h e elliptically polarizing u n d u l a t o r b e a m l i n e 4 . 0 . 2 of t h e A d v a n c e d Light S o u r c e , Berkeley, U S A . 3 I 1.0 0.8 with X-ray were per- s - \ o \ 1 1 5 -10 -15 20 C v. 1 • -3000 • -2000 , -100 0 0 I 1000 . I . 2000 I 3000 Applied Field (Oe) F i g . 1 : H y s t e r e s i s loop for C o a n d Ni m e a s u r e d with XAS. T h e resulting l o o p s for C o a n d Ni are s h o w n in Fig. 1. T h e data d e m o n s t r a t e s nicely that it is p o s s i b l e to m e a s u r e t h e m a g n e t i c b e h a v i o u r of t h e small a m o u n t of u n c o m p e n s a t e d Ni s p i n s at the C o / N i O interface. Both l o o p s h a v e t h e s a m e c h a r a c t e r i s t i c s h o w i n g a strong c o u p l i n g of t h e f e r r o m a g n e t i c C o m o m e n t s a n d t h e u n c o m p e n s a t e d Ni s p i n s , a n d h e n c e c a n n o t explain the e x c h a n g e bias. Yet, w h e t h e r a small fraction of t h e s e m o m e n t s is p i n n e d , that is t h e Ni h y s t e r e s i s loop is not s a t u r a t e d in o n e direction, c a n n o t be excluded from these measurements. ACKNOLEDGMENTS S a m p l e s w e r e p r o d u c e d by Matt C a r e y at I B M , A l maden, USA. REFERENCES [1] J . N o g u é s , I.K. Schuller, J . M a g n . M a g n . Mater. 192, 2 0 3 ( 1 9 9 9 ) . [2] F. N o l t i n g , E. A r e n h o l z , A . T . Y o u n g , A. S c h o l l , H. O h l d a g , J . Stöhr, A L S C o m p e n d i u m 2 0 0 0 , LBNL publication, 47838. [3] H. O h l d a g , T . J . Regan, J . Stöhr, A. S c h o l l , F. Nolting, J. Lüning, C. S t a m m , S. A n d e r s , R. L. W h i t e , P h y s . Rev. Lett. 8 7 , 2 4 7 2 0 1 ( 2 0 0 1 ) . 98 PEEM MEASUREMENT OF MICROSTRUCTURED NIO THIN FILMS F. Nolting, L. Heyderman, P.R. Willmott First results of domain patterns in NiO films grown on structured substrates are presented. Si(001) was structured with various shapes ranging in size from 150 nm to 8 pm and NiO was then deposited using pulsed reactive crossed-beam laser ablation. INTRODUCTION T h e c u r r e n t interest in m i c r o s t r u c t u r e d multilayers is driven by their interesting p h y s i c s as well as by their a p p l i c a t i o n in t h e m a g n e t i c - s t o r a g e industry. A p r o m i nent e x a m p l e is t h e s o - c a l l e d e x c h a n g e bias effect, w h i c h is t h e directional c o u p l i n g b e t w e e n t h e s p i n s in an a n t i f e r r o m a g n e t a n d t h o s e in a n a d j a c e n t ferrom a g n e t (For a r e v i e w s e e [1]). T h e d o m a i n s t r u c t u r e of t h e a n t i f e r r o m a g n e t is e x p e c t e d to play a crucial role a n d s t u d i e s h a v e b e e n m a d e to d e t e r m i n e t h e effect of the m i c r o s t r u c t u r e o n t h e e x c h a n g e bias [2]. S o far, t h e s e m e a s u r e m e n t s w e r e either not spatially r e s o l v e d or w e r e not able t o i m a g e the d o m a i n structure of t h e a n t i f e r r o m a g n e t directly. H e r e w e report o n a first s t u d y t o m e a s u r e t h e d o m a i n s t r u c t u r e in a m i crostructured antiferromagnet. esting i n f o r m a t i o n a b o u t t h e f o r m a t i o n of antiferromagnetic domains, an almost unexplored area. EXPERIMENT W e s t u d i e d a 4 0 n m NiO film g r o w n on s t r u c t u r e d Si(001 ). T h e s t r u c t u r e s c o n s i s t e d of four different arrays: d o t s , rings, t r i a n g l e s a n d r e c t a n g l e s , r a n g i n g in size f r o m 150 n m t o 8 urn. 100 n m high s t r u c t u r e s w e r e p r o d u c e d in silicon by e l e c t r o n b e a m l i t h o g r a p h y with C r lift-off f o l l o w e d by reactive ion e t c h i n g . A 3 n m T i N buffer layer a n d 4 0 n m NiO film w e r e d e p o s i t e d using p u l s e d reactive c r o s s e d - b e a m laser ablation [3] on t h e Si s u b s t r a t e . P o w d e r X R D s u g g e s t e d heteroepitaxial g r o w t h . S p e c t r o m i c r o s c o p i c m e a s u r e m e n t s w e r e p e r f o r m e d at the A d v a n c e d Light S o u r c e , U S A , u s i n g t h e p h o t o e m i s s i o n e l e c t r o n m i c r o s c o p e ( P E E M ) at t h e b e n d i n g m a g n e t b e a m l i n e 7.3.1.1 [4]. T u n i n g t h e p h o t o n e n ergy to the NiO L edge w e obtained the topographic P E E M i m a g e s h o w n in Fig. 1a of a n a r e a with rings, triangles a n d r e c t a n g u l a r s t r u c t u r e s . A n i m a g e of the a n t i f e r r o m a g n e t i c structure, w h i c h w a s o b t a i n e d e m ploying t h e X M L D effect at the NiO L e d g e , is s h o w n in Fig. 1b. A p p a r e n t l y , t h e d o m a i n s are s m a l l e r t h a n the spatial resolution of the P E E M . A f e w bright a r e a s in t h e overall d a r k i m a g e a p p e a r indicating a r e a s with different a v e r a g e orientations of the a n t i f e r r o m a g n e t i c axis. S p e c t r a r e c o r d e d in the bright a n d d a r k a r e a (Fig. 1c) c o n f i r m the m a g n e t i c origin of t h e c o n t r a s t difference. M o r e o v e r , t h e y s h o w the high quality of t h e N i O films. T h e bright lines in t h e i m a g e are artefacts of the i m a g e p r o c e s s i n g . T h e r e s e e m s to be no correlation b e t w e e n t h e t o p o g r a p h i c a n d a n t i f e r r o m a g netic structure. Photon energy (eV) F i g . 1 : a) T o p o g r a p h i c a n d b) m a g n e t i c P E E M i m a g e of the N i O film, c) Local s p e c t r a r e c o r d e d in t h e bright a n d dark a r e a . 3 2 In t h e f u t u r e , w e will o p t i m i s e t h e s a m p l e s t o f u r t h e r e x p l o r e the influence of t h e m i c r o s t r u c t u r e o n the exc h a n g e bias. T h e s e s t u d i e s c o u l d a l s o deliver inter- ACKNOWLEDGMENTS S u p p o r t at t h e P E E M f r o m A. S c h o l l , A L S , is gratefully acknowledged. REFERENCES [1] J . N o g u é s , I.K. Schuller, J . M a g n . M a g n . Mater. 192, 2 0 3 ( 1 9 9 9 ) . [2] A. M o u g i n et al. A p p l . P h y s . 8 9 , 6 6 0 6 ( 2 0 0 1 ) . [3] P.R. W i l l m o t t , J.R. Huber, Rev. M o d . P h y s . 7 2 , 315(2000). [4] S. A n d e r s et al., (1999). Rev. Sei. Instrum. 70, 3973 99 HIGH RESOLUTION TESTS OF THE SLS POWDER DIFFRACTOMETER F. Gozzo, Th. Bortolamedi, M. Lange, D. Maden, J. Rothe, B. Schmitt, J. Welte, B.D. Patterson Standard Si and LaB powders and a Si(111) single crystal were used to test the resolution of the multicrystal analyser detection system of the powder diffractometer on the SLS Materials Science Beamline. A 20linewidth of better than 0.005° with the single crystal and better than 0.01° with the LaB powder were measured. 6 6 INTRODUCTION T h e p o w d e r d i f f r a c t o m e t e r at t h e S L S M a t e r i a l s S c i ence (MS) beamline has two independent detection s y s t e m s : a multicrystal a n a l y s e r detector, for high a n g u l a r resolution (better t h a n 0.005°), a n d a w i d e a n g l e , Si microstrip d e t e c t o r for h i g h - s p e e d (sub-millis e c o n d ) d a t a acquisition at a n g u l a r resolution better t h a n 0.02°. W e report here o n t h e h i g h - r e s o l u t i o n m o d e of o p e r a t i o n . Details o n t h e microstrip d e t e c t o r are f o u n d in a s e p a r a t e c o n t r i b u t i o n by B. S c h m i t t et al. [1]. Optics tuning and resolution tests were performed using t w o s t a n d a r d p o w d e r s f r o m t h e U.S. N a t i o n a l Institute of S t a n d a r d s a n d T e c h n o l o g y ( N I S T ) (Si 6 4 0 c a n d L a B 6 6 0 a ) a n d a S i ( 1 1 1 ) single crystal. 6 MULTICRYSTAL ANALYSER-DETECTOR T h e S L S multicrystal a n a l y s e r detector is b a s e d on a d e s i g n by H o d e a u et al [2]. Five S i ( 1 1 1 ) crystals are m o u n t e d o n a H u b e r d o u b l e g o n i o m e t e r with a 2° intercrystal offset in 29. T h e s e c o n d a x i s of the d o u b l e g o n i o m e t e r m o v e s a s y s t e m of five scintillator-photomultiplier d e t e c t o r s as a unit. It is s u p p l i e d by S C I O N I X ( N e t h e r l a n d s ) a n d c o n s i s t s N a l ( T I ) scintillator crystals ( 0 2 0 m m , 2 m m thick) optically c o u p l e d t o H a m a m a t s u R 1 9 2 4 p h o t o m u l t i p l i e r s , e a c h of w h i c h is f o l l o w e d by a p r e a m p l i f i e r ( g a i n : 30 m V / k e V with 50 O h m t e r m i n a t i o n ) . Fig. 1 s h o w s a d r a w i n g of t h e a n a l y z e r - d e t e c t o r set up. Scintillators/photomultipliers offset a l l o w s t h e o p e r a t o r t o satisfy t h e B r a g g c o n d i tion at a g i v e n i n c o m i n g p h o t o n e n e r g y for all t h e five c h a n n e l s t o g e t h e r , by s i m p l y rotating t h e d o u b l e g o n i o m e t e r in a 2:1 ratio. During t h e a c q u i s i t i o n of a 26 s c a n , t h e five a n a l y s e r d e t e c t o r c h a n n e l s intercept diffraction p e a k s o n e after the other, yielding indep e n d e n t 26 s c a n s . T h e statistics are t h u s i n c r e a s e d by a f a c t o r of five w i t h o u t i n c r e a s i n g t h e d a t a acquisition t i m e , with t h e o n l y r e q u i r e m e n t of m e r g i n g t h e data at t h e e n d of t h e m e a s u r e m e n t . T h e five S i ( 1 1 1 ) crystals h a v e to b e carefully m o u n t e d o n t h e d o u b l e g o n i o m e t e r a n d their a n g u l a r offset m a n u a l l y a d j u s t e d t o be v e r y c l o s e t o t h e n o m i n a l 2° value. Although the data merging process can accept arbitrary offsets, the m o u n t i n g m u s t be precise for t h e following reasons: • t h e relative positions of the crystals on t h e g o n i o m e t e r plate h a v e b e e n c h o s e n to m i n i m i z e beam shadowing. • for e a c h p h o t o n e n e r g y , t h e r e exists an o p t i m u m c r y s t a l - t o - d e t e c t o r d i s t a n c e , for w h i c h the diffracted b e a m s hit t h e c e n t e r of e a c h scintillator, but o n l y if t h e s y s t e m of five crystals is s y m m e t r i c with r e s p e c t t o t h e central crystal. T h e o p t i m u m d i s t a n c e , as a f u n c t i o n of t h e p h o t o n e n e r g y , is o b t a i n e d by translating the scintillators a l o n g a t r a n s l a t i o n s t a g e , a s s h o w n in Fig. 1. Fig. 2 s h o w s t h e result of a g r a p h i c a l d e t e r m i n a t i o n of the o p t i m u m c r y s t a l - t o - d e t e c t o r d i s t a n c e as a f u n c t i o n of e n e r g y , t o g e t h e r with a fit t o an e x p o n e n t i a l f u n c t i o n . ; S i ( l l l ) crystal-to-detector optimum distance Si(111) crystals © Calculated points with AUTOCAD ™™»fitwith an ExpDecay3 function He c h a m b e r translation stage 5000 10000 15000 20000 25000 30000 35000 40000 45000 E n e r g y [eV] Fig. 1 : The SLS five-channel analyser-detector up. set E a c h a n a l y s e r crystal c o r r e s p o n d s t o a particular d e tector c h a n n e l . M o u n t i n g t h e crystals at an a n g u l a r Fig. 2: The optimum, energy-dependent, detector d i s t a n c e . crystal-to- 100 RESOLUTION TESTS V e r y h i g h - r e s o l u t i o n s t u d i e s , s u c h a s crystallographic investigations or m i c r o s t r u c t u r e d e t e r m i n a t i o n s , require b o t h high e n e r g y resolution a n d high a n g u l a r resolution, since b o t h c o n t r i b u t i o n s directly influence the diffraction p e a k line s h a p e . T h e M S b e a m l i n e o p t i c s is d e s c r i b e d in a s e p a r a t e contribution by P a t t e r s o n et al. [3]. It c o n s i s t s of a d o u b l e crystal m o n o c h r o m a t o r , p r e c e d e d by a cylindrical mirror, w h i c h c o l l i m a t e s t h e incident radiation in the vertical direction, f o l l o w e d by a s e c o n d cylindrical mirror, w h i c h f o c u s e s t h e b e a m at t h e s a m p l e position. T h e e n e r g y resolution (AX/X < 2 x 1 0 " ) d e p e n d s , therefore, o n t h e quality a n d c u r v a t u r e of the first mirror. T h e a n g u l a r resolution, on t h e other h a n d , d e p e n d s o n t h e residual vertical a n d horizontal diverg e n c e at the s a m p l e position a n d t h e intrinsic a n a lyser/detector a n g u l a r resolution. T h e latter d e p e n d s on the S i ( 1 1 1 ) crystal quality (rocking curve w i d t h ) a n d the p r e s e n c e of s t r e s s a n d c u r v a t u r e i n d u c e d d u r i n g the m o u n t i n g of the crystals o n t o their m e c h a n i c a l s u p p o r t s . T h e Si ( 1 1 1 ) crystals w e r e p r e - c h a r a c t e r i z e d using a Seifert X R D 3 0 0 3 P T S - H R diffractometer at PSI a n d c h e c k e d a g a i n s t i n d u c e d c u r v a t u r e a n d s t r e s s using different g l u e s . R o c k i n g c u r v e w i d t h s better t h a n 0 . 0 0 2 ° w e r e m e a s u r e d w i t h C u K radiation, a n d t h e effects of c u r v a t u r e a l o n g t h e entire crystal s u r f a c e w e r e f o u n d to be b e l o w 0 . 0 0 5 ° , w h e n using E p o t e c n y E 7 0 7 . a parallel b e a m at t h e s a m p l e position ( s e c o n d mirror flat). T h e s a m e crystal w a s u s e d to test the overall r e s o l u tion with t h e m u l t i - a n a l y s e r detector. Fig. 4 s h o w s oo20 s c a n s of the ( 1 1 1 ) reflection at 1 2 k e V . U s i n g t h e f r o n t - e n d slits, w e r e d u c e d t h e 0.23 m r a d b e a m diverg e n c e by f a c t o r s of 30 a n d 8 0 , resulting in m e a s u r e d F W H M linewidths of 0 . 0 0 4 7 ° a n d 0 . 0 0 2 5 ° in 29. T h e s h a r p e s t linewidth r e p r o d u c e s , within t h e a c c u r a c y of t h e rotation s t a g e s (±2 a r c s e c ) , t h e e x p e c t e d r o c k i n g c u r v e w i d t h for Si(111 ) at this e n e r g y . 4 a Fig. 3 s h o w s t h e effect of mirror c u r v a t u r e on t h e e n e r g y a n d a n g u l a r resolution. & 300000 >> nrei 200000 100000 -18.94 -18.93 -18.92 -18.91 -18.90 -18.89 -18.88 -18.87 -18.86 40000 (111) ÎT 30000 *«« 20000 S 10000 s -2* 0.0025° • 1 -18.94 -18.93 -18.92 -18.91 -18.90 -18.89 -18.88 -18.87 -18.86 2 e(deg) F i g . 4 : Si ( 1 1 1 ) co-20 s c a n s using t h e multi-crystal a n a l y s e r d e t e c t o r with 7.7 (top) a n d 2.9 ( b o t t o m ) m i croradian beam divergence. R e s o l u t i o n t e s t s with p o w d e r s w e r e p e r f o r m e d using t h e t w o n e w s t a n d a r d p r o d u c t s f r o m N I S T : t h e Si 6 4 0 c a n d L a B 6 6 0 a p o w d e r s . W i t h t h e Si p o w d e r , w e w e r e not able t o m e a s u r e (111) linewidths s m a l l e r t h a n a p p r o x i m a t e l y 0 . 0 1 3 ° at 12 k e V p h o t o n e n e r g y . W e interpret this v a l u e a s t h e intrinsic p e a k w i d t h , s i n c e it r e m a i n e d u n c h a n g e d after t u n i n g t h e b e a m l i n e optics. 6 U s i n g the n e w s t r e s s - f r e e L a B 6 6 0 a N I S T s t a n d a r d p o w d e r , w e w e r e a b l e t o m e a s u r e at 12 k e V linewidths b e l o w 0.01° with fairly r e l a x e d o p t i c s ( b e a m d i v e r g e n c e r e d u c e d only by a factor of 5 a n d f o c u s e d b e a m ) - s e e Fig. 5. H o w e v e r , w e w e r e o n c e a g a i n limited by t h e intrinsic p o w d e r linewidth, since flattening t h e s e c o n d mirror t o collimate the b e a m at t h e s a m p l e position p r o d u c e d only a d e c r e a s e in flux w i t h o u t a n y r e d u c t i o n in linewidth. 6 <o (deg) F i g . 3: Effect of mirror c u r v a t u r e o n e n e r g y a n d a n g u lar resolution. T h e effects on t h e r o c k i n g curve w i d t h of the singlecrystal Si (333) B r a g g reflection w e r e o b s e r v e d using a w i d e - a c c e p t a n c e Si p h o t o d i o d e as detector. T h e crystal w a s m o u n t e d o n a H u b e r Eulerian cradle in d i s p e r s i v e c o n f i g u r a t i o n , at t h e s a m p l e position of the diffractometer, in o r d e r to be sensitive t o t h e incident beam divergence. The smaller energy and angular s p r e a d s c o r r e s p o n d , a s e x p e c t e d , to a c o l l i m a t e d vertical b e a m o n the first crystal (first mirror bent) a n d U s i n g t h e L a B s a m p l e , w e s t u d i e d t h e d e p e n d e n c e of t h e linewidth o n 20. 6 T h i s d e p e n d e n c e is k n o w n a s t h e Instrumental R e s o lution F u n c t i o n (IRF), for w h i c h S a b i n e has determ i n e d analytical e x p r e s s i o n s in for multi-crystal s p e c t r o m e t e r s a n d parallel b e a m optics [4]. Fig. 6 s h o w s t h e e x p e r i m e n t a l IRF d e t e r m i n e d at 1 2 k e V , with a vertically-focused b e a m . 101 REFERENCES -40.20 -40.18 -40.16 -40.14 -40.12 -40.10 -40.08 2 G (deg) F i g . 5: Diffraction intensity f r o m t h e ( 3 0 0 ) reflection of the s t a n d a r d N I S T L a B p o w d e r . [1] B. S c h m i t t , Ch. Brönnimann, E.F. E i k e n b e r r y , M. Naef, F. G o z z o , B.D. P a t t e r s o n , R. Horisberger, Status of the MYTHEN Detector System, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e V I I . [2] J.L. H o d e a u , P. Bordet, M. A n n e , A. Prat, A . N . Fitch, E. D o o r y h e e , G . V a u g h a n , A. F r e u n d , Nine Crystal Multi-analyser Stage for High Resolution Powder Diffraction between 6 and 40 keV, Proc. S P I E 3 4 4 8 ( 1 9 9 8 ) , 3 5 3 . [3] B.D. P a t t e r s o n et. al., The SLS Materials Science Beamline, PSI Scientific R e p o r t 2 0 0 1 , V o l u m e VII. [4] T . M . S a b i n e , J . A p p l . Cryst. 2 0 ( 1 9 8 7 ) , 173. 6 ACKNOWLEDGEMENT 60 We thank H. G r i m m e r , D. G r u e t z m a c h e r and D. C l e m e n s for their c o m p e t e n t h e l p at t h e PSI Seifert d i f f r a c t o m e t e r a n d S. C o c k e r t o n , Crystal Scientific, for his v a l u a b l e s u g g e s t i o n s on strain-free m o u n t i n g of single crystals. LaB 660a M S T stau dard powd er • 0 À \ 6— 20 40 •* w 60 80 2 e (deg) F i g . 6: E x p e r i m e n t a l i n s t r u m e n t a l resolution f u n c t i o n m e a s u r e d at 12 k e V . PLANS FOR THE FUTURE W e plan to p e r f o r m t h e f o l l o w i n g m e a s u r e m e n t s : • A s y s t e m a t i c s t u d y of t h e Instrumental R e s o l u t i o n F u n c t i o n for different e n e r g i e s a n d a s a f u n c t i o n of different optics p a r a m e t e r s , using a s t a n d a r d r e f e r e n c e s a m p l e with s m a l l intrinsic linewidth. • A s t u d y of the size a n d s h a p e of the b e a m s p o t at the s a m p l e position for different optics parameters. 102 RESIDUAL STRESS ANALYSIS IN CUBIC LPPS ZIRCONIA COATINGS USING SYNCHROTRON RADIATION X-RAY DIFFRACTION (XRD) Th. Bortolamedi, We studied residual lised) zirconia flects the presence direction normal stress at 8.1 and M. Lange, D. Maden, B. Schmitt, B.D. Patterson, M. Loch, G. Barbezat (Sulzer Metco, Wohlen) fields in Low Pressure 13.2 keV. of residual stress to the coating Plasma For both energies, gradients and/or Sprayed (LPPS) sin y/plots show 2 a variation F. coatings Gozzo of cubic a non-linear of in-plane mechanical which properties re- in the surface. INTRODUCTION g r a p h y d i r e c t i o n . For (hkl) p l a n e s parallel t o t h e sur- K n o w i n g the residual s t r e s s field in c o a t e d c o m p o n e n t s is a p r i m a r y r e q u i r e m e n t for their c o r r e c t d e s i g n a n d p r o d u c t i o n . A d h e s i o n , for i n s t a n c e , s t r o n g l y d e p e n d s o n t h e residual s t r e s s a n d , in particular, o n the residual s t r e s s m i s m a t c h b e t w e e n c o a t i n g a n d s u b s t r a t e . T h e u s e of S y n c h r o t r o n R a d i a t i o n ( S R ) X R D is particular useful t o p r o b e c o a t i n g s a n d t h i n f i l m s at different p e n e t r a t i o n d e p t h s . X R D p r o v i d e s a n o n d e s t r u c t i v e t e c h n i q u e for i n v e s t i g a t i n g t h e strain distribution in c o a t e d c o m p o n e n t s , f r o m w h i c h t h e s t r e s s distribution c a n be o b t a i n e d using a s u i t a b l e m e c h a n i cal m o d e l l i n g [1]. T h e r e a r e m a n y b e n e f i t s of using s y n c h r o t r o n radiation i n s t e a d of a c o n v e n t i o n a l X - r a y t u b e . T h e y a r e a s s o c i a t e d w i t h t h e high brilliance, t h a t drastically r e d u c e s t h e m e a s u r e m e n t t i m e , the v a r i able w a v e l e n g t h a n d m o n o c h r o m a t i c i t y , a n d highly parallel (line or point) b e a m . f a c e , \j/=0. T h e information d e p t h tells u s h o w a n g l e 6, t h e \\i tilting a n g l e a n d the p h o t o n through the linear a b s o r p t i o n It s h o u l d , t h e r e f o r e , be c o m p a r e d with t h e s u r f a c e roughness (1.29 u,m in o u r s a m p l e s ) a n d the overall f i l m thickn e s s , a n d t a k e n into a c c o u n t in t h e c h o i c e of the w o r k i n g p h o t o n e n e r g y . Fig. 1 s h o w s t h e i n f o r m a t i o n d e p t h a s a f u n c t i o n of the \\i tilting a n g l e , c a l c u l a t e d for several photon energies. 16KeV — - - — «. _ — ; •— 12KeV - lOKeV —•8.1 KeV — 7KeV «S. «S. "x R e c e n t a d v a n c e s in P l a s m a S p r a y t e c h n o l o g y h a v e led t o i m p r o v e d p r o c e s s c o n t r o l , a l l o w i n g the d e p o s i tion of v e r y t h i n , d e n s e a n d h o m o g e n e o u s c e r a m i c layers [2]. T h e c o a t i n g t h i c k n e s s usually r a n g e s f r o m t e n s of m i c r o n s t o s e v e r a l m i l l i m e t e r s , d e p e n d i n g o n the s p e c i f i c u s e . T h e c o a t i n g t e s t e d is 2 0 % Yttria-stabilised Z i r c o n i a ( Y - S Z ) with a t h i c k n e s s of a b o u t 2 0 u,m o n a s t a i n l e s s steel X 5 C r N i 1 8 - 1 0 s u b s t r a t e , grit b l a s t e d w i t h a l u m i n u m o x i d e b e a d s ( d i a m e t e r r a n g e 1 5 0 - 4 2 5 u,m) to i m p r o v e the c o a t i n g ' s a d h e s i o n . T h e m a i n L P P S f e a t u r e s a r e high d e n s i t y (6 g / c m ) a n d low p o r o s i t y (less t h a n 2 % ) . F u r t h e r m o r e , the L P P S t e c h n i q u e , in c o m p a r i s o n with P V D a n d C V D [3] l e a d s t o i n - p l a n e s t r e s s fields, which frequently are equibiaxial (e.g. <*ii= O 2 2 . <*33= o¡j=0 w i t h i * j ) , b e c a u s e , d u r i n g c o o l i n g , the p l a s m a d r o p l e t s c o n t r a c t or e x p a n d a l o n g a p l a n a r d i r e c t i o n . T h e s e c o a t i n g s w e r e d e p o s i t e d by S u l z e r M e t c o in t h e f r a m e w o r k of a j o i n t S L S - S u l z e r M e t c o r e s e a r c h project. 2 W h e n i n v e s t i g a t i n g residual s t r e s s g r a d i e n t s , a n i m portant p a r a m e t e r t o c o n s i d e r is the a v e r a g e i n f o r m a where energy, coefficient. Plasma spray and sample parameters e_ sinflcosy the d e p t h of a n a l y s i s c h a n g e s a s a f u n c t i o n of t h e B r a g g EXPERIMENTAL SETUP tion d e p t h , d e f i n e d a s (Yttria-stabi- behavior, u, is t h e linear a b s o r p t i o n coefficient a n d \\i is t h e tilting a n g l e [4]. \\i is d e f i n e d a s the a n g l e b e t w e e n t h e n o r m a l to the s u r f a c e a n d t h e n o r m a l to t h e s e l e c t e d crystallo- • x • . 0 o i . 10" ; 20" . . 30° ; 40° . i 50" . n \ 1 "TW* • 60" X 70" 80° 90° Tilting angle (y) F i g . 1 : Y - S Z I n f o r m a t i o n d e p t h v e r s u s \j/ tilting a n g l e s , f o r different p h o t o n e n e r g i e s . T h e sin yr 2 method and experiment The most popular experimental X R D approach to the e v a l u a t i o n of residual s t r e s s e s in polycrystalline m a t e rials is t h e sin \j/ 2 method. For e a c h s e l e c t e d (hkl) c r y s t a l l o g r a p h i c d i r e c t i o n , diffraction d a t a a r e c o l l e c t e d at different \j/ tilting a n g l e s . T h e m e t h o d r e q u i r e s a 6 26 s c a n f o r e v e r y y a n g l e a r o u n d t h e s e l e c t e d diffraction p e a k a n d , in o r d e r to e m p h a s i z e t h e p e a k shifts, it is i m p o r t a n t to w o r k at t h e h i g h e s t p o s s i b l e 26 a n g l e . T h e e x p e r i m e n t s w e r e p e r f o r m e d using t h e h i g h r e s o l u t i o n d e t e c t o r s y s t e m of t h e p o w d e r d i f f r a c t o m e ter at the SLS Materials Science Beamline. T w o p h o t o n e n e r g i e s w e r e c h o s e n , 8.1 a n d 13.2 e V , t o i n v e s t i g a t e different p e n e t r a t i o n d e p t h s . 8.1 e V ( c o r r e s p o n d i n g t o t h e C u Koc radiation) w a s c h o s e n to have a comparison with m e a s u r e m e n t s performed w i t h t h e PSI Seifert® diffractometer, a n d 13.2 e V a s the highest energy ( m a x i m u m penetration depth) be- 103 fore exciting a s t r o n g a b s o r p t i o n e d g e , w h i c h w o u l d have produced a severe fluorescence background. p r o p e r t i e s ) c o n c e r n s , t h e r e f o r e , c o n c e r n i n g m o s t l y the first layers b e l o w t h e c o a t i n g s u r f a c e . W e note that t h e c h o i c e of the c r y s t a l l o g r a p h i c direction t o s t u d y t h e residual s t r e s s , f o l l o w e d , in this c a s e , an additional criterion with r e s p e c t t o the o n e des c r i b e d a b o v e (high 29 v a l u e for high sensitivity t o shifts). In fact, this c o a t i n g is not a perfect isotropic m a t e r i a l , a n d t h e r e f o r e t h e (331) c r y s t a l l o g r a p h i c direction is a g o o d c o m p r o m i s e b e t w e e n high stiffness ( H = 0 ) a n d high c o m p l i a n c e ( H = 1 ) directions. U s i n g the K r ö n e r m o d e l [5], w e h a v e : W e a l s o note that no splitting w a s o b s e r v e d in t h e sin \j/ plots for positive a n d n e g a t i v e \\t tilting a n g l e s , indicating t h e a b s e n c e of s h e a r s t r e s s c o m p o n e n t s . 2 2 2 2 3x(h k — 2 2 2 + hl + kl) Ö 2 ï 2 T~i 2 2 (h +k +l ) H(33i) 0 . 8 1 . = RESULTS A N D DISCUSSION P r e l i m i n a r y t e x t u r e m e a s u r e m e n t s p e r f o r m e d using the PSI Seifert® diffractometer d e m o n s t r a t e d t h e a b s e n c e of t e x t u r e in t h e films. Figure 2 s h o w s t h e (331 ) diffraction intensity at different \j/ a n g l e s a n d 13.2 k e V . T h e o b s e r v e d p e a k shift indicates the p r e s e n c e of residual s t r e s s . E q u i v a l e n t data w e r e c o l l e c t e d at 8.1 k e V . 0.0 0.2 0.6 0.4 Sin 0.8 Ï.0 ~\y F i g . 3: Sin \j/ plot for Y - S Z c o a t i n g m e a s u r e d by S R X R D at t w o e n e r g i e s a l o n g t h e (331 ) c r y s t a l l o g r a p h i c direction. 2 A d d i t i o n a l investigations a n d data a n a l y s i s are b e i n g p e r f o r m e d in o r d e r t o better u n d e r s t a n d t h e origin of t h e o b s e r v e d effects. REFERENCES 46.6° 46.8° 47.0° 47.2° 47.4° 47.6° 47.8° 48.0° 48.2° Angle (26) F i g . 2 : P e a k shift with \j/ tilting in Y - S Z d u e to p r e s e n c e of the in-plane residual s t r e s s . Fig. 3 s h o w s t h e sin \j/ plots o b t a i n e d f r o m t h e (331 ) B r a g g reflection at 8.1 a n d 13.2 k e V . T h e plots s h o w a c u r v a t u r e in t h e sin \j/ t r e n d for high \j/ tilting a n g l e s . T h i s b e h a v i o r c o u l d be e x p l a i n e d by t h e p r e s e n c e of residual s t r e s s g r a d i e n t s ( i n c r e a s i n g c o m p r e s s i o n b e l o w t h e c o a t i n g t o p s u r f a c e ) a n d / o r a variation of the in-plane m e c h a n i c a l p r o p e r t i e s with d e p t h . T h e higher d e g r e e of c u r v a t u r e o b s e r v e d at 8.1 k e V c a n be e x p l a i n e d in t e r m s of lower a v e r a g e p e n e t r a t i o n d e p t h at l o w e r p h o t o n e n e r g i e s . T h e o b s e r v e d effect (stress g r a d i e n t or variation of in-plane m e c h a n i c a l [1] I.C. N o y a n , J . B . C o h e n , R e s i d u a l s t r e s s - M e a s urement by diffraction and interpretation, S P R I N G E R - V E R L A G , 1987. [2] M. L o c h , G. B a r b e z a t , Spraying thin coating very quickly, S U L Z E R T E C H N I C A L R E V I E W 2/99, 1999 pp.12-15. www.sulzermetco.com/ [3] P. S c a r d i , M. L e o n i , Y.H Dong, Texture determination in highly stressed PVD films, A D V . X ray A N A L . , 4 2 ( 1 9 9 9 ) p p . 4 9 2 - 5 0 1 . [4] C. G e n z e l , Conference 2001). [5] V. H a u k , Structural a n d residual s t r e s s a n a l y s i s by n o n d e s t r u c t i v e m e t h o d s - E v a l u a t i o n a p p l i c a tion a s s e s s m e n t , E L S E V I E R A m s t e r d a m ( 1 9 9 7 ) . 2 2 Proceedings pp.33-34, of the Size-Strain Trento (December III 2-5, ACKNOWLEDGEMENT W e t h a n k H. G r i m m e r for his c o m p e t e n t help at t h e PSI Seifert diffractometer. W e a l s o t h a n k P. S c a r d i for his v a l u a b l e s u g g e s t i o n s a n d d i s c u s s i o n s during c o u r s e of this w o r k . 104 NOVEL MATERIALS GROWN WITH PULSED LASER ABLATION EPITAXY P.R. Willmott, B.D. Patterson, D. Rossetti Pulsed reactive crossed beam laser ablation (PRCLA) has been used to synthesize novel hard materials and structures. In addition, a new in-situ growth chamber based on PRCLA and pulsed laser deposition has been designed for use in conjunction with a five-circle diffractometer in the surface diffraction station of the Materials Science Beamline. The chamber has the largest reported Be-window for access to a large region of reciprocal space, while maintaining flexibility and in-situ processing capabilities. INTRODUCTION a n d low coefficient of friction (C = Z r C N i _ ) , r e s p e c tively. T h e m u l t i l a y e r s t r u c t u r e c o u l d be s i m p l y realised b y u s i n g a m u l t i p l e - c o m p o n e n t a b l a t i o n rod of ZrA//Ti a n d m e t h a n e / n i t r o g e n g a s m i x t u r e s . T h e h a r d n e s s of t h e s e s t r u c t u r e s s h o w e d a n i m p r o v e d h a r d n e s s c o m p a r e d to bilayer s t r u c t u r e s ( A B ) of a p p r o x i m a t e l y 1 5 % . E x p e r i m e n t s are p l a n n e d to f u r t h e r i n c r e a s e their h a r d n e s s (see Fig. 2 ) . x A n i m p o r t a n t c h a l l e n g e in m o d e r n c o n d e n s e d m a t t e r p h y s i c s is t h e d i s c o v e r y a n d c h a r a c t e r i z a t i o n of n o v e l t e c h n o l o g i c a l m a t e r i a l s [1]. M a n y of t h e s e m a t e r i a l s h a v e c o m p l i c a t e d s t o i c h i o m e t r i e s a n d crystal struct u r e s t h a t w o u l d be i m p o s s i b l e t o g r o w u s i n g e s t a b lished t h e r m a l t e c h n i q u e s . T e c h n i q u e s t h a t c a n g r o w films f a r f r o m t h e r m a l e q u i l i b r i u m m a y b e c a p a b l e of p r o d u c i n g n o n t h e r m a l s t a t e s i n a c c e s s i b l e to t h e r m a l routes. P u l s e d laser d e p o s i t i o n ( P L D ) is s u c h a t e c h nique [2]. A n a d a p t a t i o n of P L D in w h i c h the a d d i t i o n of a g a s pulse p r o v i d e s i m p o r t a n t f u n d a m e n t a l a n d t e c h n o l o g i c a l benefits has b e e n d e v e l o p e d at t h e U n i v e r s i t y of Z u r i c h (see Fig. 1 ). x n ablation target F i g . 2 : A c o m p a r i s o n of h a r d n e s s of s i n g l e layer Z r N a n d ZrCo.6N .4 a n d m u l t i l a y e r f i l m s . T h e w h i t e b a r s c o r r e s p o n d t o t h e p u r e nitrides ( x = 0 ) , w h i l e the b l a c k bars are for c a r b o n i t r i d e films with x = 0 . 6 . 0 F i g . 1 : T h e principle of p u l s e d reactive c r o s s e d - b e a m laser a b l a t i o n . T h e t e c h n i q u e is c a l l e d p u l s e d reactive c r o s s e d - b e a m laser a b l a t i o n ( P R C L A ) a n d h a s b e e n d e m o n s t r a t e d for a w i d e r a n g e of t e c h n o l o g i c a l m a t e r i a l s . S o m e e x a m p l e s are n o w g i v e n . LABORATORY EXPERIMENTS Novel superhard multilayer structures have been g r o w n u s i n g P R C L A , b a s e d o n transition m e t a l c a r b o nitrides [3,4]. T h e s t r u c t u r e s h a v e a n ( A B A C ) fourlayer periodicity, where every second layer (A = V C N i _ ) is a n ultrathin layer of softer m a t e r i a l , w h i c h i m p r o v e s t h e e f f i c i e n c y of t e r m i n a t i o n of m i c r o crack propagation. T h e o t h e r m a t e r i a l s , B a n d C, w e r e c h o s e n for their h i g h h a r d n e s s (B = T i C x N ^ ) n x x T h e s e c o n d e x a m p l e is t h e p r o d u c t i o n of thin layers of the optically active garnet Nd,Cr:Gd Sc2Ga Oi2 ( N d , C r : G S G G ) , a v e r y efficient infrared lasing m e d i u m , w h i c h c o u l d offer exciting n e w possibilities a s a n active w a v e g u i d e or m i c r o l a s e r if i n c o r p o r a t e d into S i - t e c h n o l o g y . N d , C r : G S G G h a s a unit cell of 160 a t o m s a n d c o n t a i n s six different e l e m e n t s . 3 3 D e s p i t e its c o m p l e x c h e m i c a l a n d c r y s t a l l o g r a p h i c n a t u r e , thin films of ( N d , C r : G S G G ) c o u l d be g r o w n h e t e r o e p i t a x i a l l y o n S i ( 0 0 1 ) u s i n g P L D [5]. T h e l u m i n e s c e n c e p r o p e r t i e s of the films w a s e s s e n t i a l l y i d e n tical to t h a t of the bulk m a t e r i a l , s h o w n in Fig. 3. 105 IN-SITU S U R F A C E DIFFRACTION T h e flexibility a n d p u l s e d n a t u r e of P L D a n d P R C L A m a k e it an ideal t e c h n i q u e for in-situ s t u d i e s of thin film g r o w t h u s i n g x - r a y diffraction. In the last year, a d e d i c a t e d in-situ facility for x-ray s t u d i e s of films g r o w n by P L D a n d P R C L A in t h e S u r f a c e Diffraction Station of the Materials S c i e n c e B e a m l i n e at the S w i s s Light S o u r c e has b e e n d e s i g n e d . T h e facility will c o n s i s t of a five-circle d i f f r a c t o m e t e r a n d a n ultrahigh v a c u u m P L D c h a m b e r h i g h - p e r f o r m a n c e analytical m a t e r i a l s s y n t h e s i s [6]. techniques with novel F i g . 4 : O v e r v i e w of the c h a m b e r d e s i g n t o be u s e d for in-situ s u r f a c e diffraction studies of n o v e l films a n d s t r u c t u r e s g r o w n by P L D a n d P R C L A . TRANSFER OF EQUIPMENT i 650 f i i t i 700 i t i f t 750 i i i I i i i 800 i I i 850 I I I 900 wavelength [nm] F i g . 3: L u m i n e s c e n c e s p e c t r a of N d , C r : G S G G e x c i t e d by 4 4 2 - n m light f r o m a H e - C d laser. T h e t o p c u r v e is for t h e P L D - g r o w n f i l m , the m i d d l e c u r v e is for the bulk ablation target, a n d t h e b o t t o m c u r v e w a s r e c o r d e d for excitation at g r a z i n g i n c i d e n c e t o t h e bulk s u r f a c e . T h e differences in the s p e c t r a at 7 5 0 a n d 8 0 0 ~ n m are e x p l a i n e d by self a b s o r p t i o n of f l u o r e s c e n c e in t h e bulk a n d t h e r m a l p r o m o t i o n . including a large b e r y l l i u m w i n d o w , w h i c h is t r a n s p a r ent t o x - r a y s a n d a l l o w s 190° a z i m u t h a l a n d 50° polar s c a n n i n g of t h e diffracted signal. M o v e m e n t of t h e s a m p l e s u r f a c e is p e r f o r m e d u s i n g a h e x a p o d a n d is d e c o u p l e d f r o m t h e c h a m b e r b o d y by a rotation feedthrough and edge-welded bellows. Sample t r a n s f e r is p o s s i b l e w i t h o u t b r e a k i n g t h e v a c u u m by using a load lock. A t e c h n i c a l d i a g r a m of the c h a m b e r is s h o w n in Fig. 4 . T h e a p p a r a t u s h a s b e e n d e s i g n e d t o be c o m p a t i b l e with o t h e r e q u i p m e n t a n d b e a m l i n e s at t h e S L S , w h e r e i m p o r t a n t s y n e r g i e s are f o r e s e e n . T h i s facility t h e r e f o r e r e p r e s e n t s a u n i q u e o p p o r t u n i t y of m a r r y i n g T h e in-situ s t u d i e s will b e c o m p l e m e n t e d by ex-situ film g r o w t h in a c o n t i n u a t i o n of w o r k p r e v i o u s l y c a r r i e d out at t h e P h y s i c a l C h e m i s t r y Institute ( P C I ) of the University of Z u r i c h . T h e ultra-high v a c u u m d e p o s i t i o n e q u i p m e n t at t h e PCI w a s t r a n s f e r r e d in O c t o b e r 2 0 0 1 t o the S w i s s Light S o u r c e , a n d a s e c o n d n e w ex-situ c h a m b e r h a s b e e n d e s i g n e d a n d is b e i n g c o n s t r u c t e d for c o m p l e m e n t a r y r e s e a r c h to t h e in-situ studies mentioned above. REFERENCES [1] E.W. P l u m m e r , Ismail, R. Matzdorf, A.V. M e l e c h k o , J.D.R. Z h a n g , P r o g . Surf. Sei. 6 7 , 17(2001). [2] P.R. W i l l m o t t , J.R. Huber, Rev. M o d . P h y s . 72, 315(2000). [3] S . - H . J h i , J . I h m , S . G . L o u i e , M.L. C o h e n , N a t u r e 3 9 9 , 132 ( 1 9 9 9 ) . [4] P.R. W i l l m o t t , H. S p i l l m a n n , A p p l . Surf. Sei., in press. [5] P.R. W i l l m o t t , P. M a n o r a v i , Phys. A 70, 4 2 5 (2000). [6] R. F e i d e n h a n s ' l , Surf. Sei. R e p . 10, 105 ( 1 9 8 9 ) . K. Holliday, Appl. 106 APPEND X PUBLICATIONS P.A. A l e k s e e v , E.V. N e f e o d o v a , U. S t a u b , J . M . Mignot, V.N. Lazukov, P. S a d i k o v , L. S o d e r h o l m , S.R. W a s s e r m a n n , Y . B . P a d e r n o , N.Y. S h i t s e v a l o v a , A. M u r a n i , Low-Energy Magnetic Response and Yb Valence in the Kondo Insulator YbB , P h y s . R e v . B 63, 064411 (2001). G. L o d a , M. L o n z a , F. M a z z o l i , G. M i a n , N. P a n g o s , R. S e r g o , V. S m a l u k , R. T o m m a s i n i , L. T o s i , L. Z a m b ó n , M. Dehler, R. Ursic, First Commissioning Results of the ELETTRA Transverse Multi-Bunch Feedback, Proc. D I P A C ' 0 1 , G r e n o b l e , F r a n c e , 6 6 (2001). 12 A. B a d e r t s c h e r , M. D a u m , P.F.A. G o u d s m i t , M. J a n o u s c h , P.-R. Kettle, J . K o g l i n , V . E . M a r k u s h i n , J . S c h o t t m ü l l e r , Z . G . Z h a o , Experimental Verification of Coulomb de-excitation in Pionic Hydrogen, Europ h y s . Lett., 5 4 ( 2 0 0 1 ) . J . Bahrdt, W . Frentrup, A. G a u p p , M. S c h e e r , W . G u d a t , G. Ingold, S. S a s a k i , Elliptically Polarizing Insertion Devices at BESSY II, N I M A 4 6 7 - 4 6 8 , 21 (2001). J . Bahrdt, W . Frentrup, A. G a u p p , M. S c h e e r , W . G u d a t , G. Ingold, S. S a s a k i , A Quasi-Periodic Hybrid Undulator at BESSY II, N I M A 4 6 7 - 4 6 8 ( 2 0 0 1 ). M. B ö g e , J . C h r i n , CORBA Objects for SLS Subjects, Proc. 3 Int. W o r k s h o p o n P e r s o n a l C o m p u t e r a n d Accelerator Control Systems ( P C a P A C 2000), DESY, Hamburg, Germany. r d J.H.H. Bongaerts, M.J. Z w a n e n b u r g , F. Z o n t o n e J . F . v a n der V e e n , Propagation of Coherent X Rays in a Multi-Step Index Waveguide, J. Appl. Phys. 90, 94 (2001). C. Bressler, M. S a e s , M. C h e r g u i , R. A b e l a , P. P a t t i s o n , Optimizing a Time-Resolved X-Ray Absorption Experiment, Nucl. I n s t r u m . M e t h . A 4 6 7 - 4 6 8 , 1444 (2001). C. Bressler, M. S a e s , M. C h e r g u i , D. G r o l i m u n d , R. A b e l a , P. Pattison, Towards Structural Dynamics in condensed Chemical Systems Exploiting Ultrafast Time-Resolved X-Ray Absorption Spectroscopy, J. C h e m . Phys. 116, 2955 (2001). C. Bressler, M. S a e s , M. C h e r g u i , R. A b e l a , D. G r o l i m u n d , P.A. H e i m a n n , R.W. S c h o e n l e i n , S.L. J o h n s o n , A . M . L i n d e n b e r g , R.W. F a l c o n e , High sensitive XAS WithSingle, X-Ray Pulses at 1kHz, C o m p e n d i u m of U s e r A b s t r a c t s a n d T e c h n i c a l R e ports 2 0 0 0 at t h e A d v a n c e d Light S o u r c e ( 2 0 0 1 ). C. Bressler, M. S a e s , M. C h e r g u i , R. A b e l a , R.W. F a l c o n e , P.A. H e i m a n n , S.L. J o h n s o n , A.M. Lindenberg, R.W. S c h o e n l e i n , M. Hertlein, Chemical Dynamics Applications Exploiting the Femtosecond X-Ray Beamline 5.3.1., C o m p e n d i u m of U s e r A b s t r a c t s a n d T e c h n i c a l R e p o r t s 2 0 0 0 at t h e A d v a n c e d Light S o u r c e ( 2 0 0 1 ). C. B r ö n n i m a n n , R. Baur, E.F. E i k e n b e r r y , S. K o h o u t , M. Lindner, B. S c h m i t t , R. H o r i s b e r g e r , A Pixel ReadOut Chip for the PILATUS Project, N u c l . Instr. M e t h . Phys., Res. A 465, 235 (2001). D. B u l f o n e , C.J. B o c c h e t t a , R. B r e s s a n u t t i , A. C a r n i e l , G. C a u t e r o , A. Fabris, A. G a m b i t t a , D. G i u r e s s i , D. Bulfone, R. B r e s s a n u t t i , M. L o n z a , L. Z a m b ó n , M. Dehler, The ELETTRA/SLS Transverse Multibunch Feedback, Proc. S h a n g h a i S y m p o s i u m on Int e r m e d i a t e - E n e r g y Light S o u r c e s , S h a n g h a i , C h i n a , September 2001. R. B r e s s a n u t t i , D. B u l f o n e , M. L o n z a , V. S m a l u k , L. Z a m b ó n , M. Dehler, R. Ursic Exploitation of the Integrated Digital Processing and Analysis of the ELETTRA/SLS Transverse Multi-Bunch Feedback System, Proc. P A C 0 1 , C h i c a g o , U S A , 1 2 6 7 ( 2 0 0 1 ) . T. D ü t e m e y e r , C. Q u i t m a n n , M. Kitz, K. D ö r n e m a n n , L.S.O. J o h a n s s o n , B. Reihl, Photoelectron Imaging Using an Ellipsoidal Display Analyzer, Pev. Sei. Instr. 72, 2638 (2001). M.K. Fix, M. S t a m p a n o n i , P. M a n s e r , E.J. B o r n , R. Mini, P. R ü e g s e g g e r , A Multiple Source Model for 6 MV Photon Beam Dose Calculations using Monte Carlo, Physics in Medicine and Biology, 4 6 , 1 4 0 7 (2001). U. F l e c h s i g , L. Patthey, C. Q u i t m a n n , Extended SX700 Type Monochromator Combining Normal and Grazing Incidence Optics for a New Undulator Beamline at SLS, N u c l . Instr. M e t h . A 4 6 7 - 4 6 8 , 4 7 9 ( 2 0 0 1 ) . G. Ingold, A. S t r e u n , B. S i n g h , R. A b e l a , P. B e a u d , G. K n o p p , L. Rivkin, V. Schlott, T. S c h m i d t , H. S i g g , J.F. v a n d e r V e e n , A. W r u l i c h , Sub-Picosecond Optical Pulses at the SLS Storage Ring, Proc. P A C 2 0 0 1 , Chicago, USA, 2656. H. L a m m e r t , F. Senf, F. E g g e n s t e i n , U. F l e c h s i g , R. Follath, S. Hartlaub, T. Noll, G. R e i c h a r d t , J.S. S c h m i d t , M. W e i s s , T. Z e s c h k e , W . B . P e a t m a n , W . G u d a t , Engineering Aspects for the Conception of the BESSY II Beamlines, N u c l . Instr. M e t h . A 4 6 7 - 4 6 8 488 (2001). G.P. L a i s a s , M. Dehler, E. Tsilis, I.G. Tigelis Numerical Code for the Calculation of High-Frequency Waves in a Gyrotronbeam Tunnel, Proc. Int. C o n f e r e n c e on Infrared a n d Millimeter W a v e s I R M M W 2 0 0 1 , Toulouse, France, August 2 0 0 1 . U. Lienert, S. Keitel, W . C a l i e b e C. S c h u l z e - B r i e s e , H.F. P o u l s e n , Souce Size Conserving Broad Band Monochromators of Fixed Exit Geometry for High Energy Synchrotron Radiation, NIM A 467-468, 659 (2001). S t e p h e n W . L o v e s e y a n d U. S t a u b , Reply to Comment on Magnetoelastic Model for the Relaxation of Lanthanide Ions in YBa Cu 0 . Observed by Neutron Scattering, P h y s . Rev. B 6 4 , 0 6 6 5 0 2 ( 2 0 0 1 ) . 2 3 7 5 107 C. M o r i n , H. I k e u r a - S e k i g u c h i , T. T y l i s z c z a k , R. C o r n e l i u s , J.L. B r a s h , A . P . H i t c h c o c k , A. S c h o l l , F. Nolting, G. A p p e l , D.A. W i n e s e t t , K. K a z n a c h e y e v , H. A d e , X-Ray Spectre-microscopy of Immiscible Polymer Blends: Polystyrene-Poly(methyl methacrylate), J . Electron S p e c t r o s c . 1 2 1 , 2 0 3 ( 2 0 0 1 ) . M. Muntwiler, W Auwärter, F. B a u m b e r g e r , M. H o e s c h , T. G r e b e r , J . O s t e r w a l d e r , Determining Adsorbate Structures from Substrate Emission X-Ray Photoelectron Diffraction, Surf. Sei. 4 7 2 , 125 ( 2 0 0 1 ) . H. O h l d a g , A. S c h o l l , F. Nolting, S. A n d e r s , F.U. Hillebrecht, J . Stohr, Spin Reorientation at the Antiferromagnetic NiO(001) Surface in Response to an Adjacent Ferromagnet, P h y s . Rev. Lett. 8 4 , 3 4 6 2 (2001). H. O h l d a g , T . J . R e g a n , J . Stöhr, A. S c h o l l , F. N o l t i n g , J . L ü n i n g , C. S t a m m , S. A n d e r s , R.L. W h i t e , Spectroscopic Identification and Direct Imaging of Interfacial Magnetic Spins, P h y s . Rev. Lett. 8 7 , 2 4 7 2 0 1 ( 2 0 0 1 ) . B. P a t t e r s o n R. A b e l a , J . F . v a n d e r V e e n , Materials Science at the Swiss Light Source, C h i m i a , 5 5 , 5 3 4 (2001). C. Q u i t m a n n , U. F l e c h s i g , L. Patthey, T. S c h m i d t , G. Ingold, M. H o w e l l s , M. J a n o u s c h , R. A b e l a , A Beamline for Time Resolved Photoelectron Microscopy on Magnetic Materials at the Swiss Light Source, S u r f a c e S c i e n c e 4 8 0 , 173 ( 2 0 0 1 ) . T.J. Regan, H. O h l d a g , C. S t a m m , F. Nolting, J . L ü n i n g , J . Stöhr, R. L. W h i t e , Chemical Effects at Metal/Oxide Interfaces Studied by X-Ray-Absorption Spectroscopy, P h y s . Rev. B 6 4 , 2 1 4 4 2 2 ( 2 0 0 1 ) . B. Roessli, J . S c h e f e r , G. P e t r a k o v s k i i , B. O u l a d d i a f , M. B o e h m , U. S t a u b , A. V o r o t i n o v , L. B e z m a t e r n i k h , Formation of a Magnetic Soliton Lattice in Copper Metaborate, P h y s . Rev. Lett. 8 6 , 1 8 8 5 ( 2 0 0 1 ) . B. R o e s s l i , U. S t a u b , A. A m a t o , D. H e r l a c h , P. P a t t i s o n , K. S a b l i n a , G.A. P e t r a k o v s k i i , Magnetic Phase Transition in Double Spin-Chain Compound LiCu 0 , Physica B 296, 306 (2001). 2 2 V. Schlott, M. D a c h , M. Dehler, R. K r a m e r t , P. Pollet, T. Schilcher, M. Ferianis, R. D e M o n t e , A. K o s i c e k , R. Ursic, Performance of the Digital BPM System for the Swiss Light Source, Proc. D I P A C ' 2 0 0 1 , G r e n o b l e , France, 69 (2001). V. Schlott, C. D a v i d , A. J a g g i , A Zone Plate Based Beam Monitor for the Swiss Light Source, Proc. D I P A C ' 2 0 0 1 , G r e n o b l e , F r a n c e , 133 ( 2 0 0 1 ) . V. Schlott, M. D a c h , M. Dehler, R. K r a m e r t , P. Pollet, T. Schilcher, A. K o s i c e k , R. Ursic, R. D e M o n t e , M. Ferianis, Commissioning of the SLS Digital BPM System, Proc. P A C ' 2 0 0 1 , C h i c a g o , U S A , 2 3 9 7 ( 2 0 0 1 ) . T. S c h m i d t , G. Ingold, A. Imhof, B.D. P a t t e r s o n , L. Patthey, C. Q u i t m a n n , C. S c h u l z e - B r i e s e , R. A b e l a , Insertion devices at the Swiss Light Source (Phase I), N u c l . Instr. M e t h . A 4 6 7 - 4 6 8 , 1 2 6 ( 2 0 0 1 ) . B. S c h m i t t ( O P A L C o l l a b o r a t i o n , G. A b b i e n d i et al.), Precise Determination of Z Resonance Parameters at LEP: "Zedometry", Eur. P h y s . J . C 19, 5 8 7 , 2 0 0 1 . A. S c h o l l , F. Nolting, J . Stohr, T. R e g a n , J . L u n i n g , J . W . S e o , J.-P. L o c q u e t , J . F o m p e y r i n , S. A n d e r s , H. O h l d a g , H.A. P a d m o r e , Exploring the Microscopic Origin of Exchange Bias with Photoelectron Emission Microscopy, J . A p p l . P h y s . 8 9 , 7 2 6 6 ( 2 0 0 1 ) . A. S c h o l l , F. Nolting, J . Stohr, J . L u n i n g , J . W . S e o , J . P. L o c q u e t , J. Fompeyrin, S. A n d e r s , H. O h l d a g , H.A. P a d m o r e , Studies of the Magnetic Structure at the Ferromagnet-Antiferromagnet Interface, J . S y n c h r . R a d . 8, 101 ( 2 0 0 1 ) . H.C. S c h r ö d e r , A. B a d e r t s c h e r , P.F.A. G o u d s m i t , M. J a n o u s c h , H.J. Leisi, E. M a t s i n o s , D. S i g g , Z . G . Z h a o , D. C h a t e l l a r d , J.P. Egger, K. G a b a t h u l e r , P. Hauser, L.M. S i m o n s , A . J . Rusi El H a s s a n i , The Pion-Nucleon Scattering Lengths from Pionic Hydrogen and Deuterium, Eur. P h y s . J . , C 2 1 ( 2 0 0 1 ) . C. S c h u l z e - B r i e s e , B. Ketterer, C. P r a d e r v a n d , C h . B r ö n n i m a n n , C. D a v i d , R. Horisberger, A. P u i g M o l i n a , H. G r a a f s m a , A CVD-Diamond Based Beam Profile Monitor for Undulator Radiation, NIM A 467468, 230 (2001). F. Senf, F. E g g e n s t e i n , U. F l e c h s i g , R. Follath, S. Hartlaub, H. L a m m e r t , T. Noll, J.S. Schmidt, G. Reichardt, O. S c h w a r z k o p f , M. W e i s s , T. Z e s c h k e , W . G u d a t , Performance of the First Undulator Beamline U49-1-SGM at BESSY II, N u c l . Instr. M e t h . A, 467-468, 474(2001). H. S p i l l m a n n , P.R. W i l l m o t t , M. M o r s t e i n , P.J. U g g o w i t z e r , ZrN, Zr Al N and Zr Ga N thin Films Novel Materials for Hard Coatings Grown using Pulsed Laser Ablation. A p p l . P h y s . A. 7 3 , 4 4 1 ( 2 0 0 1 ) . x y x y M. S t a m p a n o n i , M.K. Fix, P. F r a n c o i s , P. R ü e g s e g g e r , Computer Algebra for X-Ray Spectral Reconstruction between 6 and 25 MV, M e d i c a l P h y s i c s , 2 8 , 3 2 5 (2001). U. S t a u b , B.D. P a t t e r s o n , C. S c h u l z e - B r i e s e , F. F a u t h , M. S h i , L. S o d e r h o l m , G . B . M . V a u g h a n , A. O c h i a i , Direct Observation of 1-Dimensional Charge Order below the First Order "Metal-Insulator" Transition in Yb4As , E u r o p h y s . Lett. 5 3 , 72 ( 2 0 0 1 ) . 3 U. S t a u b , M. S h i , A.G. O'Conner, M.J. K r a m e r , M. K n a p p , The Site-Specific Electronic Structure of Pr in Pr . Ba + Cu 0 . , P h y s . Rev. B 6 3 , 1 3 4 5 2 2 ( 2 0 0 1 ) . 1 x 2 x 3 7 s U. S t a u b , O. Z a h a r k o , H. G r i m m e r , M. Horisberger, F. d ' A c a p t i o , Real Part EXAFS from Multilayer Bragg Reflections: A Promising new EXAFS Technique, E u r o p h y s . Lett 56, 2 4 1 ( 2 0 0 1 ) . U. S t a u b , C. S c h u l z e - B r i e s e , P.A. A l e k s e e v , M. H a n f l a n d , S. Pascarelli, V. H o n k i m ä k i , O . D . C h i s t y a k o v , Simultaneous Determination of the Electronic and Chemical Structures in CeNi Cus. at High Pressures, J . Phys.: C o n d e n s . M a t t e r 13, 1 1 5 1 1 (2001). x x 108 S. Z e l e n i k a , F. D e B o n a , Analytical and Experimental Characterisation of High-Precision Flexura! Pivots, Proc. 2 E U S P E N Int. Conf., T u r i n , Italy, 7 8 2 ( 2 0 0 1 ) . n d S. Z e l e n i k a et. al, 77?e SZ.S Storage Ring Support and Alignment Systems, N u c l e a r Instr. M e t h . P h y s . R e s . A 467-468, 99 (2001). INVITED T A L K S R. A b e l a , Structural Dynamics with Current and Future X-Ray Sources, T I N X W o r k s h o p , Berlin, G e r many, 5.09.2001. R. A b e l a , Status of the Swiss Light Source, U s e r s M e e t i n g , T r i e s t e , Italy, 6 . 1 2 . 2 0 0 1 . IX Elettra E.F. E i k e n b e r r y , PILATUS: A 2-D Pixel Detector for Protein Crystallography, V e r t e x 2 0 0 1 , B r u n n e n , Switzerland, 24.-28.09.2001. F. G o z z o , The Materials Science Beamline at the Swiss Light Source, D e p a r t m e n t of C r y s t a l l o g r a p h y , U n i v e r s i t y of Bari, Italy, 1 9 . 1 1 . 2 0 0 1 . M. H o e s c h , COPHEE, the Complete PhotoEmission Experiment, Journée Photoemission de Apin, LURE, Orsay, France, 18.05.2001. G. Ingold, Sub-Picosecond Optical Pulses at the SLS Storage Ring, 2 1 I C F A B e a m D y n a m i c W o r k s h o p o n L a s e r - B e a m Interactions, S t o n y B r o o k , U S A , 1 1 . 15.06.2001. s t G. Ingold, Sub-Picosecond Optical Pulses at the SLS Storage Ring, W o r k s h o p o n t h e G e n e r a t i o n a n d U s e s of V U V a n d Soft X - R a y C o h e r e n t P u l s e s , L u n d S w e den, 17.-20.07.2001. M. J a n o u s c h , vxWorks Cross-Compilation, EPICS C o l l a b o r a t i o n M e e t i n g , P S I , Villigen, S w i t z e r l a n d , 8.10.05.2001. A. L i i d e k e , Magnet Control at the SLS, E P I C S C o l laboration M e e t i n g , P S I , Villigen, S w i t z e r l a n d , 7.10.05.2001. P. M a r c h a n d , M. P e d r o z z i , Status of the SLS RF System, 5 E S L S M e e t i n g , B E S S Y , Berlin, G e r m a n y 27.-28.09.2001. t h P. M a r c h a n d , M. S v a n d e r l i k , SUPER-3HC Cavity at ELETTRA and SLS, 5 E S L S M e e t i n g , B E S S Y , Berlin, G e r m a n y 2 7 . - 2 8 . 0 9 . 2 0 0 1 . t h F. Nolting, Exploring the Ferromagnetic-Antiferromagnetic Interface using PEEM, T h i r t e e n t h Int. Conf. on V a c u u m Ultraviolet R a d i a t i o n P h y s i c s , T r i e s t e , Italy, 23.-27.07.2001. F. Nolting, Spectromicroscopy Studies of Magnetic Multilayers using Polarization dependent PEEM, S e m i n a r in E x p e r i m e n t a l P h y s i c s , U n i v e r s i t y of Z u r i c h , Switzerland, 31.05.2001. F. Nolting, Synchrotron Radiation Applications in Solid State Physics, S e m i n a r IBM R ü s c h l i k o n , S w i t z e r l a n d , 4.12.2001. T. Pal, Software Engineering, EPICS Collaboration M e e t i n g , P S I , Villigen, S w i t z e r l a n d , 7 . - 1 0 . 0 5 . 2 0 0 1 . T. Pal, The ORACLE Database at the Swiss Light Source, E P I C S C o l l a b o r a t i o n M e e t i n g , P S I , Villigen, Switzerland, 7.-10.05.2001. B. P a t t e r s o n , Research at the Swiss Light Source, S w i s s G r o u p for M a s s S p e c t r o m e t r y , N e u c h â t e l , Switzerland, 26.10.01. T. S c h m i d t , Concepts of Insertion Devices at the SLS, W o r k s h o p o n R e s e a r c h with S y n c h r o t r o n R a d i a t i o n , University of E r l a n g e n , G e r m a n y , 1 9 . - 2 0 . 0 7 . 2 0 0 1 . B. S c h m i t t , MYTHEN: A Microstrip Detector for Time Resolved X-Ray Experiments, Vertex 2 0 0 1 , Brunnen, Switzerland, 23.-28.09.2001. C. S c h u l z e - B r i e s e , New Opportunities for Diffraction Experiments at the Swiss Light Source, 2 0 Europ. Crystallography Meeting ECM20, Krakow, Poland, 25.-31.08.01. t h C. S c h u l z e - B r i e s e , Status of the SLS Protein Crystallography Beamline, 1 5 Regio Meeting, Sörenberg, Switzerland, 27.09.01. t h M. S t a m p a n o n i , Computer Microtomography at the Swiss Light Source, W o r k s h o p o n R e s e a r c h with S y n c h r o t r o n R a d i a t i o n , Univerisity of E r l a n g e n , G e r m a n y , 19.-20.07.2001. M. S t a m p a n o n i , X-Ray Computer Microtomography at the Swiss Light Source, Institut for N u c l e a r P h y s i c s , IKP S e m i n a r , F o r s c h u n g s z e n t r u m Jülich, G e r m a n y , 9.11.2001. U. S t a u b , 1-d Charge Order Down of the Bond Valence 12.02.2001. in Yb4As3; The break Sum, E S R F , F r a n c e , U. S t a u b , Probing Magnetic Materials: Where the XRay meets the Neutron, T e c h n . University of Berlin, Germany, 25.04.2001. U. S t a u b , Synchrotron Radiation Applications in Solid State Physics, IBM Rüschlikon, Switzerland, 4.12.2001. J.F. v a n der V e e n , Prospects for Coherency-Based Materials Analysis at the Swiss Light Source, K o r e a n Swiss W o r k s h o p on Novel Coherence-Based Radiology Techniques, 27.-31.03.2001. J.F. v a n der V e e n , The Swiss Light Source, S P G J a h restagung, EMPA, Dübendorf, 2.-3.05.2001. J.F. v a n der V e e n , 77?e Swiss Light Source, Confer e n c e , A p p l i c a t i o n s et P e r s p e c t i v e s d e l'Utilisation d u R a y o n n e m e n t S y n c h r o t r o n en S c i e n c e s d e la V i e , E n v i r o n n e m e n t et M é d e c i n e ' , C N R S , Paris, F r a n c e , 8.-9.05.2001. J.F. v a n der V e e n , Applications of Synchrotron tion, C E R N A c c e l e r a t o r S c h o o l , P r u h o n i c e , Republic, 9 . - 1 7 . 0 5 . 2 0 0 1 . RadiaCzech 109 J . F . v a n der V e e n , Die Synchrotron Lichtquelle Schweiz: Neue Perspektiven für die Materialwissenschaften, W o r k s h o p ' X - R a y s in M a t e r i a l s S c i e n c e ' , EMPA, Dübendorf, Switzerland, 7.06.2001. F. Nolting, Exploring Antiferromagnetic Surfaces and Thin Films using Photoemission Electron Microscopy Resonant Soft X-Ray Scattering in Condensed Matter Physics, P S I , Villigen, S w i t z e r l a n d , 2 9 . - 3 0 . 0 3 . 2 0 0 1 . J . F . v a n der V e e n , X-Ray Waveguides and Confined Fluids, Gordon Research Conference on X-Ray Physics, Connecticut, USA, 22.-27.07.2001. V. Schlott, Performance of the Digital BPM System for the Swiss Light Source, DIPAC'2001, Grenoble, France, 13.-15.05.2001. J . F . v a n der V e e n , Structure and Dynamics of Confined Fluids, E S R F , G r e n o b l e , F r a n c e , 2 . 1 0 . 2 0 0 1 . V. Schlott, The SLS Digital System BPM System, 9 A n n u a l W o r k s h o p on E u r o p e a n S y n c h r o t r o n Light S o u r c e s ( E S L S 9), K a r l s r u h e , G e r m a n y , 8 . - 9 . 1 1 . 2 0 0 1 . J . F . v a n der V e e n , Structural Analysis of Condensed Matter by Use of Coherent X-Ray Beams, International S y m p o s i u m ' R ö n t g e n ' s Heritage', W ü r z b u r g , Germany, 11.-15.12.2001. t h L. S c h u l z , Stainless Steel Vacuum Chambers, S h a n g h a i S y m p o s i u m o n Intermediate E n e r g y Light Sources, Shanghai, China, 24.-26.09.2001 P.R. W i l l m o t t , Pulsed Reactive Crossed-Beam Laser Ablation, D e p a r t m e n t of C r y s t a l l o g r a p h y , E T H Z u r i c h , Switzerland, 11.01.2001. C. S c h u l z e - B r i e s e , Recent Advances at the Swiss Light Source, B i o z e n t r u m , University of B a s e l , Switzerland, 27.11.01. P.R. W i l l m o t t , Pulsed Reactive Crossed-Beam Ablation, D e p a r t m e n t of P h y s i c a l C h e m i s t r y , sity of J e n a , G e r m a n y , 1 8 . 0 1 . 2 0 0 1 . Laser Univer- M. S t a m p a n o n i , X-Ray Tomographic Microscopy at the Swiss Light Source, Proc. S P I E ' s 4 6 t h A n n u a l M e e t i n g in S a n D i e g o , C A , U S A , 2 8 . 0 7 . - 3 . 0 8 . 2 0 0 1 . P.R. W i l l m o t t , Herstellung dünner Schichten aus ungewöhnlichen Materialien mit Hilfe intensiver Laserstrahlung, A n t r i t t s v o r l e s u n g , University of Z u r i c h , Switzerland, 7.05.2001 M. S t a m p a n o n i , The X-Ray Tomographic Microscopy Device of the SLS, 2 S L S U s e r s M e e t i n g , P S I , Villigen, Switzerland, 14.-15.11.2001. P.R. W i l l m o t t , A Novel Nonthermal Epitaxial Growth Technique for In-Situ X-Ray Surface Diffraction Studies at the SLS, X - r a y W o r k s h o p , E M P A , D ü b e n d o r f , Switzerland, 7.06.2001. P.R. W i l l m o t t , Design and Synthesis of Novel Materials and Structures using Pulsed Laser Deposition, Cola01 Conference on Laser Ablation, Tokyo, Japan, 1.10.2001. P.R. W i l l m o t t , Design and Synthesis of Novel Materials and Structures using Pulsed Laser Deposition, U n i v e r s i t y of Z u r i c h , S w i t z e r l a n d , 1 3 . 1 2 . 2 0 0 1 . ORAL PRESENTATIONS R. A b e l a , Femtosecond Users Meeting, PSI, 15.11.2001. Pulses at the SLS, 2 Villigen, S w i t z e r l a n d , n d SLS 14.- M. B ö g e , Commissioning of the SLS Using CORBA Based Beam Dynamics Applications, PAC 2 0 0 1 , Chicago, USA, 18.-22.6.2001. M. B ö g e , CORBA/CDEV Framework for ABS Applications, W o r k s h o p on A u t o m a t e d B e a m S t e e r i n g a n d Shaping (ABS) 2 0 0 1 , San Jose, USA, 3.-4.12.2001. J . C h r i n , On The Use of CORBA in High-Level Software Applications at the SLS, 8 ICALEPCS, San Jose, CA, USA, 27.-30.11.2001. t h F. G o z z o , High Resolution at the SLS Materials Science Beamline Powder Endstation, 2 SLS Users M e e t i n g , P S I , Villigen, S w i t z e r l a n d , 1 3 . - 1 5 . 1 1 . 2 0 0 1 . n d A. L ü d e k e , System Integration of High Level Applications during the Commissioning of the Swiss Light Source, 8 ICALEPCS, San Jose, CA, USA, 27.30.11.2001. t h n d U. S t a u b , Direct Observation of 1-Dimensional Charge Order below the Metal-Insulator Transition in Yb4As3, 6th E u r o c o n f o r e n c e o n Properties of C o n d e n s e d Matter p r o b e d with X - r a y s c a t t e r i n g (Electron C o r r e l a tions and Magnetism), Patras, Greece, 21.25.09.2001. U. S t a u b , Formation of a Magnetic Soliton Lattice in CuB204, S w i s s - D a n i s h W o r k s h o p o n N e u t r o n Scatt e r i n g , P S I , Villigen, S w i t z e r l a n d , 1 6 . - 1 7 . 1 0 . 2 0 0 1 . A. S t r e u n , Commissioning of the Swiss Light Source, Particle A c c e l e r a t o r C o n f e r e n c e 2 0 0 1 , C h i c a g o , U S A , 18.-22.06.2001. A. S t r e u n , Commissioning of the Swiss Light Source, S h a n g h a i S y m p o s i u m o n Intermediate E n e r g y Light Sources, Shanghai, China, 24.-26.09.2001. A. S t r e u n , Beam Stability and Dynamic Alignment at SLS, S h a n g h a i S y m p o s i u m on I n t e r m e d i a t e E n e r g y Light S o u r c e s , S h a n g h a i , C h i n a , 2 4 . - 2 6 . 0 9 . 2 0 0 1 . A. S t r e u n , Commissioning of the Swiss Light Source, 9 A n n u a l W o r k s h o p on E u r o p e a n S y n c h r o t r o n Light S o u r c e s ( E S L S 9), K a r l s r u h e , G e r m a n y , 8 . - 9 . 1 1 . 2 0 0 1 . t h J.F. v a n der V e e n , Status of the SLS, W o r k s h o p o n Soft X - r a y S c a t t e r i n g in C o n d e n s e d Matter P h y s i c s , P S I , Villigen, S w i t z e r l a n d , 2 9 . - 3 0 . 0 3 . 2 0 0 1 . J.F. v a n der V e e n , Die Synchrotron Lichtquelle Schweiz, ein Neues Licht zur Erforschung der Materie, Inaugural L e c t u r e , E T H Z u r i c h , 4 . 0 5 . 2 0 0 1 . J.F. v a n der V e e n , Interface Science at the Swiss Light Source, 16. PSI T a g e s s y m p o s i u m E l e k t r o c h e m i s c h e E n e r g i e s p e i c h e r u n g , P S I , Villigen, Switzerland, 23.10.2001. 110 J . F . v a n der V e e n , Research at the SLS or How to Become a User, 2 S L S U s e r s M e e t i n g , P S I , V i l l i g e n , Switzerland, 14.-15.11.2001. n d P.R. W i l l m o t t , Future Trends for In-House Research at the Surface Diffraction Station at the Swiss Light Source Materials Science Beamline. X S D Meeting, P S I , Villigen, S w i t z e r l a n d , 7 . 1 1 . 2 0 0 1 . P.R. W i l l m o t t , Nonthermal Thin Film Growth at the Surface Diffraction Station at the SLS Source Materials Science Beamline, 2 SLS Users Meeting, PSI, Villigen, S w i t z e r l a n d , 1 3 . - 1 4 . 1 1 . 2 0 0 1 . n d POSTERS F. D'Acapito, Charge Order Driven Metal-Insulator Transition in NdNi03, 2 0 0 1 S w i s s W o r k s h o p o n M a t e rials with N o v e l Electronic Properties, L e s Diablarets, Switzerland, 1.-3.10.2001. P. W y s s , M. S t a m p a n o n i , X-Ray Tomographic Microscopy (XTM) at the Swiss Light Source, S L S U s e r s M e e t i n g , P S I , Villigen, S w i t z e r l a n d , 1 4 . - 1 5 . 1 1 . 2 0 0 1 P.R. W i l l m o t t , H. S p i l l m a n n , Gas-Phase Mechanisms in the Growth of ZrCyN-i.y Thin Films by Pulsed Reactive Crossed-Beam Laser Ablation, Cola01 Conference on Laser Ablation, Tokyo, Japan, 4.10.2001. S. Z e l e n i k a , F. De B o n a , Analytical and Experimental Characterisation of High-Precision Flexural Pivots, 2 E U S P E N Int. Conf., T u r i n , Italy, 2 7 . - 3 1 . 0 5 . 2 0 0 1 . n d J.H.H. Bongaerts, M.J. Z w a n e n b u r g , M. d e V r i e s , J . M i g u e l , U. F l e c h s i g , C. D a v i d , G. W e g d a m , J.F. v a n der V e e n , Structure and Dynamics of Colloidal Fluids Confined in a Planar X-Ray Waveguide, Gordon Res e a r c h C o n f e r e n c e on X - R a y P h y s i c s , C o n n e c t i c u t , USA, 22.-27.07.2001. C. G o u g h , M. M a i l a n d , Septum and Kicker Systems for the SLS, PAC'2001, Chicago, USA, 18.22.06.2001. M. H o e s c h , M. Muntwiler, M. H e n g s b e r g e r , T. G r e b e r , J . O s t e r w a l d e r , Design of a Complete Photoemission Experiment, V U V XIII C o n f e r e n c e , T r i e s t e , Italy, 24.07.2001. A. L i i d e k e , Application of Digital Regulated Power Supplies for Magnet Control at the Swiss Light Source, 8 ICALEPCS, San Jose, CA, USA, 27.30.11.2001. t h F. Nolting, A PEEM Study of Small Agglomerates of Colloidal Iron Oxide Nanocrystals, 13* Int. Conf. o n V a c u u m Ultraviolet R a d i a t i o n P h y s i c s , T r i e s t e , Italy, 23.-27.07.2001. B.D. P a t t e r s o n , P.R. W i l l m o t t , F. G o z z o , R. A b e l a , J . F . v a n der V e e n , X-Ray Physics at the Swiss Light Source, Gordon Research Conference on X-Ray Physics, Connecticut, USA, 22.-27.07.2001. TEACHING ACTIVITIES B. P a t t e r s o n , Festkörperphysik W S 2000/2001. I, University of Z u r i c h , B. P a t t e r s o n , Festkörperphysik SS 2001. II, University of Z u r i c h , B. P a t t e r s o n , Festkörperphysik W S 2001/2002. I, University of Z u r i c h , C. Q u i t m a n n , Photoelectron sanne, SS 2 0 0 1 . Microscopy, L. R i v k i n , J . Ulbricht, Teilchenbeschleuniger tektoren der Hochenergiephysik, W S 2001/2002. H.J. W e y e r , Forschung an Synchrotronstrahlungsanlagen, University of B a s e l , S S 2 0 0 1 . J.F. v a n der V e e n , Physik W S 2001/2002. I, E T H Z u r i c h , V. Schlott, C. D a v i d , A. J a g g i , A Zone Plate Based Beam Monitor for the Swiss Light Source, DIPAC'2001, Grenoble, France, 13.-15.05.2001. DIPLOMAS M. S t a m p a n o n i , R. A b e l a , P. W y s s , P. R ü e g s e g g e r , Edge-Enhanced Radiography of Biological Samples, S L S I n a u g u r a t i o n , P S I ; Villigen, 1 9 . 1 0 . 2 0 0 1 . U. S t a u b , G.I. Meijer, F. F a u t h , R. A l l e n s p a c h , G. B e d n o r z , J . K a r p i n s k i , S. K a z a k o v , L. P a o l a s i n i , und DeETH Zurich, L. R i v k i n , Beam Dynamics with Synchrotron Radiation, A c c e l e r a t o r P h y s i c s C o u r s e , C E R N A c c e l e r a t o r S c h o o l , Seville, S p a i n , O c t o b e r 2 0 0 1 . P.R. W i l l m o t t , Laser und Laserspektroskopie, sity of Z u r i c h , S S 2 0 0 1 . V. Schlott, M. D a c h , M. Dehler, R. K r a m e r t , P. Pollet, T. Schilcher, A. K o s i c e k , R. Ursic, R. D e M o n t e , M. Ferianis, Commissioning of the SLS Digital BPM System, P A C ' 2 0 0 1 , C h i c a g o , U S A ; 1 8 . - 2 2 . 0 6 . 2 0 0 1 . Lau- R. Reiser, Physik, Abteilung Machinenbau, Hochs c h u l e für T e c h n i k , W i r t s c h a f t u n d V e r w a l t u n g , Z ü r i c h . C. Q u i t m a n n , U. F l e c h s i g , F. Nolting, L. Patthey, T. S c h m i d t , G. Ingold, M. J a n o u s c h , R.Abela, J . F . v a n der V e e n , A Beamline for Photoelectron-Microscopy at the Swiss Light Source (SLS), 1 3 Int. Conf. V a c u u m Ultraviolet R a d i a t i o n P h y s i c s , T r i e s t e , 2 3 . 27.07.2001. t h EPF Univer- P.R. W i l l m o t t , Strukturaufklärung in Physik, Chemie, und Biologie mit Hilfe Synchrotronstrahlung - Eine Einführung, University of Z u r i c h , W S 2 0 0 1 / 2 0 0 2 . S. K o h o u t , Messungen am Auslesechip für den PILATUS Detektor, B e t r e u u n g : C. B r ö n n i m a n n . L e i t u n g : H. Keller, University of Z u r i c h , W S 2 0 0 0 / 2 0 0 1 . S. C. L e e m a n n , Precise Energy Calibration Measurement at the SLS Storage Ring by Means of Resonant Spin Depolarization, B e t r e u u n g : M. B o e g e , L. Rivkin. L e i t u n g : R. Eichler, W S 2 0 0 1 / 2 0 0 2 . D. S c h m i d i g , Hochauflösende Szintillatoren für Röntgen-Mikrotomographie mit Synchrotronstrahlung, B e t r e u u n g : M. S t a m p a n o n i . L e i t u n g : P. R ü e g s e g g e r , ETH Zurich, W S 2000/2001. 111 M E M B E R S H I P S IN E X T E R N A L C O M M I T T E S T. Pal • H.J. W e y e r C o n s u l t i n g Editor, S y n c h r o t r o n R a d i a t i o n N e w s O R A C L E Users Group, CERN-IT, Geneva J.F. van der Veen L. R i v k i n • EPAC2002, S P C Chairman, Organizing tee • A P A C 2 0 0 1 , Scientific P r o g r a m C o m m i t t e e • E P S 1 2 , International P r o g r a m C o m m i t t e e • C E R N Accelerator School, Program Committee • Joint Universities Committee • SOLEIL Machine Advisory Committee • W o r k i n g G r o u p of t h e G e r m a n S c i e n c e C o u n c i l ( W i s s e s c h a f t s r a t ) for t h e e v a l u a t i o n of t h e F E L projects at D E S Y ( H a m b u r g ) a n d B E S S Y ( B e r l i n ) Accelerator School, Commit- Program • S c i e n c e A d v i s o r y C o u n c i l for E L E T T R A , t r o n e T r i e s t e , Italy • Scientific C o m m i t t e e for Inorganic a n d A n a l y t i c a l Chemistry, Science Foundation Flanders, Belgium • M e m b e r of R e v i e w P a n e l , A L S , Berkeley. • Editorial B o a r d of P r o g r e s s in S u r f a c e S c i e n c e A. W r u l i c h • EPAC2002, SPC, Organizing Committee • T A C C h a i r m a n , T e c h n i c a l A d v i s o r y C o m m i t t e e for D I A M O N D , UK. • Scientific A d v i s o r y C o m m i t t e e for B E S S Y II, Berlin, Germany. • A d v i s o r y P a n e l for t h e E L E T T R A , T r i e s t e , Italy. • C o - E d i t o r of t h e ' J o u r n a l of S y n c h r o t r o n R a d i a t i o n ' . • International A d v i s o r y C o m m i t t e e for I N D U S II • Scientific C o u n c i l for D E S Y V. S c h l o t t • DIPAC'2001, Program Committee A. Streun • S h a n g h a i S y m p o s i u m on I n t e r m e d i a t e E n e r g y Light S o u r c e s , P r o g r a m C o m m i t t e e , S h a n g h a i , China. Sincro-