DG454, DG455, DG456 Vishay Siliconix High Voltage 4 Quad SPST CMOS Analog Switch DESCRIPTION FEATURES The DG454 series has four independently selectable high voltage (44 V) SPST switches, each with a typical on resistance of 4 and a typical flatness of 0.2 , ideal parameters for low distortion audio signal switching. The DG454 (NC) and DG455 (NO) are identical except for the digital logic control input, which is inverted as shown in the Truth Table. The DG456 has two normally closed and two normally open switches. These are high voltage switches that are fully specified with dual supplies at ± 5 V and ± 15 V and a single supply of 12 V. Fast switching speeds coupled with high signal bandwidth makes these parts suitable for video switching applications. All digital inputs have 0.8 V and 2.4 V logic thresholds ensuring low voltage TTL/CMOS compatibility. Each switch conducts equally well in both directions when on and can handle an input signal range that extends to the supply voltage rails. The DG454 DG455 and DG456 are pin compatible with the DG411, DG412 and DG413, except they require no VL supply. • • • • • • • • • • • • Low on-resistance (4 typical) On-resistance flatness (0.2 typical) 100 mA continuous current 44 V supply maximum rating ± 15 V analog signal range Fully specified at supply voltages of ± 5 V, 12 V and ± 15 V No VL required Fast switching speed: - ton 80 ns - toff 60 ns TTL/CMOS compatible ESD protection 2 kV Pin compatible with DG411, DG412, and DG413, except no VL required Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 APPLICATIONS • • • • • • • Audio and video signal switching Precision automatic test equipment Precision data acquisition Relay replacement Communications systems Automotive and avionics applications Sample and hold systems FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION IN1 DG454 DG456 TSSOP16 and SOIC16 TSSOP16 and SOIC16 1 16 IN2 D1 2 15 D2 S1 3 14 S2 V- 4 13 V+ GND 5 12 N.C. S4 6 11 S3 D4 7 10 D3 IN4 8 9 IN3 IN1 1 16 IN2 D1 2 15 D2 S1 3 14 S2 V- 4 13 V+ GND 5 12 N.C. S4 6 11 S3 D4 7 10 D3 IN4 8 9 IN3 Top View Top View TRUTH TABLE TRUTH TABLE Logic DG454 DG455 Logic SW1, SW4 SW2, SW3 0 On Off 0 Off On 1 Off On 1 On Off Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 For technical questions, contact: [email protected] www.vishay.com 1 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG454, DG455, DG456 Vishay Siliconix ORDERING INFORMATION Temp. Range Package Part Number 16 Pin TSSOP DG454EQ-T1-E3 DG455EQ-T1-E3 DG456EQ-T1-E3 16 Pin Narrow SOIC DG454EY-T1-E3 DG455EY-T1-E3 DG456EY-T1-E3 DG454, DG455, DG456 - 40 °C to 125 °Ca Notes: a. - 40 °C to 85 °C datasheet limits apply. ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise noted) Parameter Limit V+ to VGND to VDigital Inputsa, Unit 44 25 V (V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first VS, VD Continuous Current (D, S only) 100 Peak Current, S or D (Pulsed 1 ms, 10 % Duty Cycle) 300 Storage Temperature mA - 65 to 150 Power Dissipation (Package)b Thermal Resistance (Package)b 16 Pin TSSOPc 450 16 Pin Narrow SOICd 600 16 Pin TSSOP 178 16 Pin Narrow SOIC 125 ESD (HBM) °C mW °C/W 2 kV Notes: a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board. c. Derate 5.6 mW/°C above 70 °C. d. Derate 8 mW/°C above 75 °C. SPECIFICATIONS FOR DUAL SUPPLIES Parameter Test Conditions Unless Specified V+ = 15 V, V- = - 15 V VIN = 2.4 V, 0.8 Va Temp.b VANALOG Full RON IS = - 10 mA, VD = - 10 V to + 10 V Room Full 3.8 5.3 8.3 5.3 7.3 RON IS = - 10 mA, VD = ± 10 V Room Full 0.12 0.5 1 0.5 0.5 Room Full 0.25 0.5 0.5 0.5 0.5 Room Full ± 0.1 - 0.5 - 20 0.5 20 - 0.5 - 2.5 0.5 2.5 Room Full ± 0.1 - 0.5 - 20 0.5 20 - 0.5 - 2.5 0.5 2.5 Room Full ± 0.1 -1 - 40 1 40 -1 -5 1 5 Symbol - 40 °C to 125 °C - 40 °C to 85 °C Typ.c Unit Min.d Max.d Min.d 15 - 15 Max.d Analog Switch On-Resistance On-Resistance Match On-Resistance Flatness Switch Off Leakage Current Channel On Leakage Current Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 RFLATNESS IS = - 10 mA, VD = - 5 V, 0 V, + 5 V IS(off) VD = ± 10 V, VS = 10 V ID(off) ID(on) ± Analog Signal Rangee VS = VD = ± 10 V - 15 For technical questions, contact: [email protected] 15 V nA www.vishay.com 2 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG454, DG455, DG456 Vishay Siliconix SPECIFICATIONS FOR DUAL SUPPLIES Parameter Symbol Test Conditions Unless Specified V+ = 15 V, V- = - 15 V VIN = 2.4 V, 0.8 Va Temp.b - 40 °C to 125 °C - 40 °C to 85 °C Typ.c Unit Min.d Max.d Min.d Max.d Digital Control Input Current, VIN Low IIL VIN Under Test = 0.8 V Full 0.005 - 0.5 0.5 - 0.5 0.5 Input Current, VIN High IIH VIN Under Test = 2.4 V Full 0.005 - 0.5 0.5 - 0.5 0.5 Input Capacitancee CIN f = 1 MHz Room 7 Turn-On Time tON Room Full 88 118 160 118 144 Turn-Off Time tOFF RL = 300 , CL = 35 pF VS = ± 10 V, See Figure 2 Room Full 69 97 120 97 112 µA pF Dynamic Characteristics Break-Before-Make Time Delay tD DG456 only, VS = 10 V RL = 300 , CL = 35 pF Room 18 Charge Injectione Q Vg = 0 V, Rg = 0 , CL = 1 nF Room 22 Room - 60 Room - 85 Off Isolation e OIRR Channel-to-Channel Crosstalke XTALK Source Off Capacitancee Drain Off Capacitance e Channel On Capacitancee Total Harmonic Distortione RL = 50 , CL = 5 pF f = 1 MHz pC dB CS(off) Room 31 CD(off) Room 34 Room 103 Room 0.04 Room Full 25 Room Full - 0.001 - 0.5 -5 - 0.5 -5 Room Full - 25 - 100 - 100 - 100 - 100 Temp.b Typ.c f = 1 MHz CD(on) THD Signal = 5 VRMS, 20 Hz to 20 kHz, RL = 600 ns pF % Power Supplies Power Supply Current I+ Negative Supply Current I- Ground Current V+ = 16.5 V, V- = - 16.5 V VIN = 0 or 5 V IGND 100 100 100 100 µA SPECIFICATIONS FOR DUAL SUPPLIES Parameter Symbol Test Conditions Unless Specified V+ = 5 V, V- = - 5 V VIN = 2.4 V, 0.8 - 40 °C to 125 °C - 40 °C to 85 °C Va Unit Min.d Max.d Min.d Max.d -5 5 -5 5 Analog Switch Analog Signal Rangee VANALOG Full RON V+ = + 5 V, V- = - 5 V IS = - 10 mA, VD = - 3.5 V to + 3.5 V Room Full 3.8 11 15 11 12 RON V+ = + 5 V, V- = - 5 V, IS = - 10 mA, VD = ± 3.5 V Room Full 0.13 0.5 1 0.5 0.5 Turn-On Timee tON Room Full 170 200 296 200 256 Turn-Off Timee tOFF RL = 300 , CL = 35 pF VS = 3 V, See Figure 2 Room Full 66 96 124 96 113 On-Resistance On-Resistance Match V Dynamic Characteristics Break-Before-Makee Time Delay tD DG456 only, VS = 3 V RL = 300 , CL = 35 pF Room 98 Charge Injectione Q Vg = 0 V, Rg = 0 , CL = 1 nF Room 8 Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 For technical questions, contact: [email protected] ns pC www.vishay.com 3 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG454, DG455, DG456 Vishay Siliconix SPECIFICATIONS FOR DUAL SUPPLIES Parameter Symbol Test Conditions Unless Specified V+ = 5 V, V- = - 5 V - 40 °C to 125 °C - 40 °C to 85 °C Temp.b Typ.c Unit Min.d a VIN = 2.4 V, 0.8 V Max.d Min.d Max.d Power Supplies Power Supply Current I+ Negative Supply Current I- Ground Current VIN = 0 or 5 V IGND Room Full 14 100 100 100 100 Room Full - 0.001 - 0.5 -5 - 0.5 -5 Room Full - 14 - 100 - 100 - 100 - 100 µA SPECIFICATIONS FOR UNIPOLAR SUPPLIES Parameter Symbol Test Conditions Unless Specified V+ = 12 V, V- = 0 V VIN = 2.4 V, 0.8 Va - 40 °C to 125 °C - 40 °C to 85 °C b Temp. Typ. c Unit Min.d Max.d Min.d Max.d Analog Switch Analog Signal Rangee On-Resistance On-Resistance Match On-Resistance Flatness VANALOG Full 12 12 RON IS = - 10 mA, VD = 0 V to + 10 V Room Full 5.5 8.1 12.4 8.1 10.4 RON IS = - 10 mA, VD = + 10 V Room Full 0.14 0.5 1 0.5 0.5 RFLATNESS IS = - 10 mA, VD = 0 V, + 5 V, + 10 V Room Full 0.94 1.5 1.7 1.5 1.5 Room Full 132 162 238 162 210 Room Full 61 91 117 91 105 Room 70 Room 1 Room Full 25 Room Full - 0.001 - 0.5 -5 - 0.5 -5 Room Full - 25 - 100 - 100 - 100 - 100 V Dynamic Characteristics Turn-On Time tON Turn-Off Time tOFF RL = 300 , CL = 35 pF VS = 8 V, See Figure 2 Break-Before-Make Time Delay tD DG456 only, VS = 8 V RL = 300 , CL = 35 pF Charge Injectione Q Vg = 0 V, Rg = 0 , CL = 1 nF ns pC Power Supplies Power Supply Current I+ Negative Supply Current I- Ground Current IGND V+ = 13.5 V, V- = 0 V VIN = 0 or 5 V 100 100 100 100 µA Notes: a. VIN = input voltage to perform proper function. b. Room = 25 °C, Full = as determined by the operating temperature suffix. c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. e. Guaranteed by design, not subject to production test. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 For technical questions, contact: [email protected] www.vishay.com 4 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG454, DG455, DG456 Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) 8 20 RON - On-Resistance (Ω) ± 5.0 V RON - On-Resistance (Ω) TA = + 25 °C IS = 10 mA TA = + 25 °C IS = 10 mA 7 6 ± 10 V 5 ± 12 V ± 13.5 V ± 15 V ±8V 4 ± 20 V 3 15 V+ = 5 V V+ = 8 V 10 V+ = 10.8 V V+ = 12 V V+ = 15 V 5 V+ = 20 V V+ = 36 V 2 1 - 20 0 - 15 - 10 -5 0 5 10 15 0 20 4 8 On-Resistance vs. VD and Dual Supply Voltage 20 24 28 32 36 12 V+ = + 15 V V- = - 15 V IS = 10 mA 9 10 RON - On-Resistance (Ω) 7 6 + 125 °C 5 + 85 °C 4 + 25 °C 3 V+ = + 12 V V- = 0 V IS = 10 mA 11 8 RON - On-Resistance (Ω) 16 On-Resistance vs. VD and Single Supply Voltage 10 - 40 °C 9 + 125 °C 8 + 85 °C 7 6 + 25 °C 5 2 4 1 3 0 - 15 12 VCOM - Analog Voltage (V) VCOM - Analog Voltage (V) - 40 °C 2 - 10 -5 0 5 10 0 15 2 4 6 8 10 12 VD - Analog Voltage (V) VCOM - Analog Voltage (V) On-Resistance vs. VD and Temperature On-Resistance vs. VD and Temperature 10 000 100 000 ID (off) Leakage Current (pA) Leakage Current (pA) 10 000 1000 100 ID (on) IS (off) 10 ID (off) 1000 100 ID (on) IS (off) 10 V+ = + 13.2 V V- = 0 V V+ = + 15 V V- = - 15 V 1 - 60 - 40 - 20 0 20 40 60 80 100 120 140 1 - 60 - 40 - 20 0 Temperature (°C) Leakage Current vs. Temperature Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 20 40 60 80 100 120 140 Temperature (°C) Leakage Current vs. Temperature For technical questions, contact: [email protected] www.vishay.com 5 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG454, DG455, DG456 Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) 140 275 CL =1 nF Drain 120 225 80 tON V = ± 5 V 200 V+ = + 5 V V- = - 5 V 60 tON/tOFF (ns) Q - Charge Injection (pC) 250 V+ = + 15 V V- = - 15 V 100 40 20 175 150 125 0 tON V = ± 15 V 100 - 20 75 V+ = + 12 V V- = - 0 V - 40 - 60 - 20 - 15 - 10 -5 0 5 10 tOFF V = ± 5 V tOFF V = ± 15 V 50 15 25 - 55 20 - 35 - 15 Analog Voltage (V) 5 25 45 65 85 105 125 Temperature (°C) Switching Time vs. Temperature and Dual Supply Voltage Charge Injection vs. Analog Voltage 350 200 180 T = 25 °C 300 160 250 tON/tOFF (ns) tON/tOFF (ns) 140 120 100 tON tOFF 80 200 tON V = + 12 V 150 100 tOFF V = + 12 V 60 50 40 20 4 6 8 10 12 14 16 18 0 - 55 20 - 35 - 15 Dual Supply Voltage (V) 5 25 45 65 85 105 125 Temperature (°C) Switching Time vs. Temperature and Single Supply Voltage Switching Time vs. Dual Supply Voltage 100 m 350 300 V+ = + 15 V V- = - 15 V 10 m T = 25 °C Supply Current (A) tON/tOFF (ns) 250 200 150 tON 1m I+ 100 µ IGND 10 µ 100 I- tOFF 1µ 50 100 n 0 5 10 15 20 25 30 35 Single Supply Voltage (V) Switching Time vs. Single Supply Voltage Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 40 10 100 1K 10K 100K 1M 10M Input Switching Frequency (Hz) Supply Current vs. Input Switching Frequency For technical questions, contact: [email protected] www.vishay.com 6 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG454, DG455, DG456 Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) 10 3.0 0 Loss - 10 Loss, OIRR, X Talk (dB) V T - Switching Threshold (V) 2.5 DG454, DG455, DG456 2.0 1.5 1.0 - 20 - 30 - 40 OIRR - 50 - 60 XTalk - 70 - 80 V+ = + 15 V V- = - 15 V R L = 50 Ω - 90 0.5 - 100 - 110 100K 0.0 0 5 10 15 20 25 30 35 1M 10M 40 100M 1G Frequency (Hz) Supply Voltage (V) Insertion Loss, Off-Isolation, Crosstalk vs. Frequency Switching Threshold vs. Supply Voltage TEST CIRCUITS + 15 V Logic Input tr < 5 ns tf < 5 ns 3V 50 % 0V V+ ± 10 V S tOFF D Switch Input* VO VS VO 90 % IN RL 300 Ω V- GND CL 35 pF 90 % 0V tON - 15 V Note: CL (includes fixture and stray capacitance) Logic input waveform is inverted for switches that have the opposite logic sense control RL VO = V S RL + R DS(on) Figure 1. Switching Time + 15 V Logic Input V+ VS1 S1 D1 VS2 Switch Output IN2 RL1 300 Ω V- GND 90 % VO2 D2 S2 50 % 0V VS1 VO1 VO1 IN1 3V RL2 300 Ω CL2 35 pF CL1 35 pF Switch Output 0V VS2 VO2 0V 90 % tD tD - 15 V CL (includes fixture and stray capacitance) Figure 2. Break-Before-Make (DG456) Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 For technical questions, contact: [email protected] www.vishay.com 7 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG454, DG455, DG456 Vishay Siliconix TEST CIRCUITS ΔVO + 15 V VO INX V+ Rg OFF D S IN Vg ON OFF VO CL 1 nF 3V V- GND OFF INX ON Q = ΔVO x CL OFF -15 V Figure 3. Charge Injection + 15 V C V+ D1 S1 VS Rg = 50 Ω 50 Ω IN1 0 V, 2.4 V S2 D2 VO NC 0 V, 2.4 V RL IN2 GND XTALK Isolation = 20 log V- C VO - 15 V VS C = RF bypass Figure 4. Crosstalk + 15 V C V+ C VO D S VS + 15 V Rg = 50 Ω 0 V, 2.4 V V+ S RL 50 Ω IN GND V- Meter IN C HP4192A Impedance Analyzer or Equivalent 0 V, 2.4 V D - 15 V GND Off Isolation = 20 log V- VO C VS C = RF Bypass Figure 5. Off-Isolation - 15 V Figure 6. Source/Drain Capacitances Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?74473. Document Number: 74473 S12-2498-Rev. F, 22-Oct-12 For technical questions, contact: [email protected] www.vishay.com 8 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information Vishay Siliconix SOIC (NARROW): 16ĆLEAD JEDEC Part Number: MS-012 MILLIMETERS 16 15 14 13 12 11 10 Dim A A1 B C D E e H L Ĭ 9 E 1 2 3 4 5 6 7 8 INCHES Min Max Min Max 1.35 1.75 0.053 0.069 0.10 0.20 0.004 0.008 0.38 0.51 0.015 0.020 0.18 0.23 0.007 0.009 9.80 10.00 0.385 0.393 3.80 4.00 0.149 0.157 1.27 BSC 0.050 BSC 5.80 6.20 0.228 0.244 0.50 0.93 0.020 0.037 0_ 8_ 0_ 8_ ECN: S-03946—Rev. F, 09-Jul-01 DWG: 5300 H D C All Leads e Document Number: 71194 02-Jul-01 B A1 L Ĭ 0.101 mm 0.004 IN www.vishay.com 1 Package Information Vishay Siliconix TSSOP: 16-LEAD DIMENSIONS IN MILLIMETERS Symbols Min Nom Max A - 1.10 1.20 A1 0.05 0.10 0.15 A2 - 1.00 1.05 0.38 B 0.22 0.28 C - 0.127 - D 4.90 5.00 5.10 E 6.10 6.40 6.70 E1 4.30 4.40 4.50 e - 0.65 - L 0.50 0.60 0.70 L1 0.90 1.00 1.10 y - - 0.10 θ1 0° 3° 6° ECN: S-61920-Rev. D, 23-Oct-06 DWG: 5624 Document Number: 74417 23-Oct-06 www.vishay.com 1 PAD Pattern www.vishay.com Vishay Siliconix RECOMMENDED MINIMUM PAD FOR TSSOP-16 0.193 (4.90) 0.171 0.014 0.026 0.012 (0.35) (0.65) (0.30) (4.35) (7.15) 0.281 0.055 (1.40) Recommended Minimum Pads Dimensions in inches (mm) Revision: 02-Sep-11 1 Document Number: 63550 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Application Note 826 Vishay Siliconix RECOMMENDED MINIMUM PADS FOR SO-16 RECOMMENDED MINIMUM PADS FOR SO-16 0.372 (9.449) 0.152 0.022 0.050 0.028 (0.559) (1.270) (0.711) (3.861) 0.246 (6.248) 0.047 (1.194) Recommended Minimum Pads Dimensions in Inches/(mm) Return to Index APPLICATION NOTE Return to Index www.vishay.com 24 Document Number: 72608 Revision: 21-Jan-08 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000