TLE9867QXA20 Data Sheet

TLE9867QXA20
Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
BE-Step
Data Sheet
Rev. 1.0, 2015-04-30
Automotive Power
TLE9867QXA20
Table of Contents
Table of Contents
1
1.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
3.1
3.2
Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Generation Unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
19
21
22
22
23
24
6
6.1
6.2
6.2.1
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
25
26
27
28
28
28
28
7
7.1
7.2
7.2.1
System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
30
30
30
8
8.1
8.2
8.2.1
ARM Cortex M3 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
32
32
33
9
9.1
9.2
9.2.1
9.3
9.3.1
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DMA Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
34
35
35
36
36
10
Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11
11.1
11.2
11.2.1
11.3
Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
2
38
38
38
38
39
Rev. 1.0, 2015-04-30
TLE9867QXA20
Table of Contents
12
12.1
12.2
12.2.1
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13.1
13.2
Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
14
14.1
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.1.1
14.3.2
14.3.2.1
14.3.3
14.3.3.1
GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE9867QXA20 Port Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
44
44
44
46
47
47
47
49
49
51
51
15
15.1
15.1.1
15.1.2
15.2
15.2.1
15.2.2
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52
52
52
52
52
53
54
16
16.1
16.2
16.2.1
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
55
55
55
17
17.1
17.2
17.3
17.3.1
Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer3 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
56
56
56
56
18
18.1
18.2
18.2.1
Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
58
58
59
19
19.1
19.2
19.2.1
19.3
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
60
60
60
61
20
20.1
20.2
20.2.1
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
62
63
63
Data Sheet
3
40
40
40
40
Rev. 1.0, 2015-04-30
TLE9867QXA20
Table of Contents
21
21.1
21.2
21.2.1
High-Speed Synchronous Serial Interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64
64
65
65
22
22.1
22.2
22.2.1
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
66
66
67
23
23.1
23.2
23.2.1
23.2.2
Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Core Module Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
68
68
68
69
24
24.1
24.2
24.2.1
10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
70
70
71
25
25.1
25.2
25.2.1
High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
72
72
72
26
26.1
26.2
26.2.1
26.2.2
Bridge Driver (incl. Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
73
73
74
74
27
27.1
27.2
27.2.1
Current Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
75
75
75
28
28.1
28.2
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
H-Bridge Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
29
29.1
29.1.1
29.1.2
29.1.3
29.1.4
29.1.5
29.2
29.2.1
29.2.2
29.2.3
29.2.4
29.2.4.1
29.2.5
29.3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PMU I/O Supply (VDDP) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PMU Core Supply (VDDC) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDDEXT Voltage Regulator (5.0V) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Load Sharing Scenarios of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
4
79
79
79
82
83
85
85
86
86
88
89
91
91
91
93
Rev. 1.0, 2015-04-30
TLE9867QXA20
Table of Contents
29.3.1
29.4
29.4.1
29.5
29.5.1
29.5.2
29.5.3
29.6
29.6.1
29.7
29.7.1
29.8
29.8.1
29.8.2
29.8.3
29.8.3.1
29.9
29.9.1
29.9.2
29.10
29.11
29.11.1
29.12
29.12.1
29.13
29.13.1
Oscillators and PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
DC Parameters of Port 0, Port 1, TMS and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DC Parameters of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SSC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
System Voltage Measurement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Central Temperature Sensor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ADC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ADC2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ADC1 - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Electrical Characteristics VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
30
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
31
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Data Sheet
5
Rev. 1.0, 2015-04-30
Microcontroller with LIN and H-Bridge MOSFET Driver
for Automotive Applications
1
TLE9867QXA20
Overview
Summary of Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
32 bit ARM Cortex M3 Core
– up to 24 MHz clock frequency
– one clock per machine cycle architecture
On-chip memory
– 64 kByte Flash including
– 4 kByte EEPROM (emulated in Flash)
– 512 Byte 100 Time Programmable Memory (100TP)
– 6 kByte RAM
– Boot ROM for startup firmware and Flash routines
On-chip OSC and PLL for clock generation
– PLL loss-of-lock detection
MOSFET driver including charge pump
10 general-purpose I/O Ports (GPIO)
5 analog inputs, 10-bit A/D Converter (ADC1)
16-bit timers - GPT12, Timer 2, Timer 21 and Timer 3
Capture/compare unit for PWM signal generation (CCU6)
2 full duplex serial interfaces (UART) with LIN support (for UART1 only)
2 synchronous serial channels (SSC)
On-chip debug support via 2-wire SWD
1 LIN 2.2 transceiver
1 high voltage monitoring input
Single power supply from 5.5 V to 27 V
Extended power supply voltage range from 3 V to 28 V
Low-dropout voltage regulators (LDO)
High speed operational amplifier for motor current sensing via shunt
5 V voltage supply for external loads (e.g. Hall sensor)
Core logic supply at 1.5 V
Programmable window watchdog (WDT1) with independent on-chip clock source
Power saving modes
– MCU slow-down Mode
– Sleep Mode
– Stop Mode
– Cyclic wake-up Sleep Mode
Power-on and undervoltage/brownout reset generator
Type
Package
TLE9867QXA20
VQFN-48-31
Data Sheet
VQFN-48-31
Marking
6
Rev. 1.0, 2015-04-30
TLE9867QXA20
Overview
•
•
•
•
•
•
•
Overtemperature protection
Short circuit protection
Loss of clock detection with fail safe mode entry for low system power consumption
Temperature Range TJ: -40 °C up to 150 °C
Package VQFN-48 with LTI feature
Green package (RoHS compliant)
AEC qualified
Data Sheet
7
Rev. 1.0, 2015-04-30
TLE9867QXA20
Overview
1.1
Abbreviations
The following acronyms and terms are used within this document. List see in Table 1.
Table 1
Acronyms
Acronyms
Name
AHB
Advanced High-Performance Bus
APB
Advanced Peripheral Bus
CCU6
Capture Compare Unit 6
CGU
Clock Generation Unit
CMU
Cyclic Management Unit
CP
Charge Pump for MOSFET driver
CSA
Current Sense Amplifier
DPP
Data Post Processing
ECC
Error Correction Code
EEPROM
Electrically Erasable Programmable Read Only Memory
EIM
Exceptional Interrupt Measurement
FSM
Finite State Machine
GPIO
General Purpose Input Output
H-Bridge
Half Bridge
ICU
Interrupt Control Unit
IEN
Interrupt Enable
IIR
Infinite Impulse Response
LDM
Load Instruction
LDO
Low DropOut voltage regulator
LIN
Local Interconnect Network
LSB
Least Significant Bit
LTI
Lead Tip Inspection
MCU
Micro Controller Unit
MF
Measurement Functions
MSB
Most Significant Bit
MPU
Memory Protection Unit
MRST
Master Receive Slave Transmit
MTSR
Master Transmit Slave Receive
MU
Measurement Unit
NMI
Non Maskable Interrupt
NVIC
Nested Vector Interrupt Controller
NVM
Non-Volatile Memory
OTP
One Time Programmable
OSC
Oscillator
PBA
Peripheral Bridge
Data Sheet
8
Rev. 1.0, 2015-04-30
TLE9867QXA20
Overview
Table 1
Acronyms
Acronyms
Name
PCU
Power Control Unit
PD
Pull Down
PGU
Power supply Generation Unit
PLL
Phase Locked Loop
PPB
Private Peripheral Bus
PU
Pull Up
PWM
Pulse Width Modulation
RAM
Random Access Memory
RCU
Reset Control Unit
RMU
Reset Management Unit
ROM
Read Only Memory
SCU-DM
System Control Unit - Digital Modules
SCU-PM
System Control Unit - Power Modules
SFR
Special Function Register
SOW
Short Open Window (for WDT)
SPI
Serial Peripheral Interface
SSC
Synchronous Serial Channel
STM
Store Instruction
SWD
ARM Serial Wire Debug
TCCR
Temperature Compensation Control Register
TMS
Test Mode Select
TSD
Thermal Shut Down
UART
Universal Asynchronous Receiver Transmitter
VBG
Voltage reference Band Gap
VCO
Voltage Controlled Oscillator
VPRE
Pre Regulator
WDT
Watchdog Timer in SCU-DM
WDT1
Watchdog Timer in SCU-PM
WMU
Wake-up Management Unit
100TP
100 Time Programmable
Data Sheet
9
Rev. 1.0, 2015-04-30
TLE9867QXA20
Block Diagram
2
Block Diagram
TMS
P0.0
TEST / DEBUG
INTERFACE
ARM
CORTEX-M3
MICRO DMA
CONTROLLER
systembus
FLASH
slave
SRAM
slave
ROM
slave
slave
Multilayer AHB Matrix
slave
slave
PBA0
PBA1
VAREF
GND_REF
P2.0, P2.2, P2.3, P2.4, P2.5
(AN0, AN2, AN3, AN4, AN5)
ADC 1
DPP1
GPT12
VDH
GH2
SH2
GL2
GH1
SH1
GL1
SL
MOSFET
Driver
VCP
VSD
CP2H
CP2L
CP1H
CP1L
CP
UART2
SSC1
SSC2
T2
CCU6
T21
SCU_DM
WDT
SCU_PM
WDT1/
CLKWDT
uDMA
Controller
T3
PLL
XTAL1
XTAL2
GPIO
P0.1 – P0.4
P1.0 – P1.4
LIN
GND_LIN
LIN
OP AMP
Data Sheet
UART1
MU-VAREF
OP AMP
Figure 1
SCU_DM
MU
MF / ADC2
DPP2
VBAT_SENSE
OP AMP
OP1
OP2
PMU –
Power
Control
System
Functions
VS
RESET
VDDEXT
VDDP
VDDC
MON
MON
Block Diagram
10
Rev. 1.0, 2015-04-30
TLE9867QXA20
25 P0.2
27 P1.4
28 GND
29 P2.0/XTAL1
30 P2.2/XTAL2
31 P2.5
35 P2.3
32 P2.4
Device Pinout
33 GND_REF
3.1
34 VAREF
Device Pinout and Pin Configuration
36 OP2
3
26 P1.3
Device Pinout and Pin Configuration
OP1 37
24 P0.3
EP
VDDC 38
23 P0.1
EP
GND 39
22 RESET
VDDP 40
21 P0.0
VDDEXT 41
20 TMS
GND_LIN 42
19 GND
TLE 9867
LIN 43
18 P0.4
VDH 44
17 P1.2
VS 45
16 P1.1
VBAT _SENSE 46
15 P1.0
VSD 47
14 MON
CP1H 48
Figure 2
Data Sheet
GL2 12
nu 11
SL 10
GH1 9
SH1 8
GH2 7
SH2 6
nu 5
CP2L 4
CP2H 3
VCP 2
= Low voltage pins
CP1L 1
Note:
13 GL1
Device Pinout
11
Rev. 1.0, 2015-04-30
TLE9867QXA20
Device Pinout and Pin Configuration
3.2
Pin Configuration
After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:
•
•
•
•
Pull-up device enabled only (PU)
Pull-down device enabled only (PD)
Input with both pull-up and pull-down devices disabled (I)
Output with output stage deactivated = high impedance state (Hi-Z)
The functions and default states of the TLE9867QXA20 external pins are provided in the following table.
Type: indicates the pin type.
•
•
•
•
I/O: Input or output
I: Input only
O: Output only
P: Power supply
Not all alternate functions listed.
Table 2
Symbol
Pin Definitions and Functions
Pin Number Type
Reset
State1)
P0
Function
Port 0
Port 0 is a 5-bit bidirectional general purpose I/O port. Alternate
functions can be assigned and are listed in the port description.
Main function is listed below.
P0.0
21
I/O
I/PU
SWD
Serial Wire Debug Clock
P0.1
23
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.2
25
I/O
I/PD
GPIO
General Purpose IO
Alternate function mapping see Table 8
Note: For a functional SWD connection this
GPIO must be tied to zero!
P0.3
24
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.4
18
I/O
I/PD
GPIO
General Purpose IO
Alternate function mapping see Table 8
P1
Port 1
Port 1 is a 5-bit bidirectional general purpose I/O port. Alternate
functions can be assigned and are listed in the Port description.
The principal functions are listed below.
P1.0
15
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.1
16
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.2
17
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.3
26
I/O
I
GPIO
General Purpose IO, used for Inrush Transistor
Alternate function mapping see Table 9
P1.4
27
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
Data Sheet
12
Rev. 1.0, 2015-04-30
TLE9867QXA20
Device Pinout and Pin Configuration
Table 2
Pin Definitions and Functions (cont’d)
Symbol
Pin Number Type
Reset
State1)
P2
Function
Port 2
Port 2 is a 5-bit general purpose input-only port.
Alternate functions can be assigned and are listed in the Port
description. Main function is listed below.
P2.0/XTAL1
29
I/I
I
AN0
ADC analog input 0
Alternate function mapping see Table 10
P2.2/XTAL2
30
I/O
I
AN2
ADC analog input 2
Alternate function mapping see Table 10
P2.3
35
I
I
AN3
ADC analog input 3
Alternate function mapping see Table 10
P2.4
32
I
I
AN4
ADC analog input 4
Alternate function mapping see Table 10
P2.5
31
I
I
AN5
ADC analog input 5
Alternate function mapping see Table 10
VS
45
P
–
Battery supply input
VDDP
40
P
–
2)
Power Supply
I/O port supply (5.0 V). Connect external buffer capacitor.
VDDC
38
P
–
3)
VDDEXT
41
P
–
External voltage supply output (5.0 V, 20 mA)
GND
19
P
–
GND digital
GND
28
P
–
GND digital
GND
39
P
–
GND analog
14
I
–
High Voltage Monitor Input
LIN
43
I/O
–
LIN bus interface input/output
GND_LIN
42
P
–
LIN ground
CP1H
48
P
–
Charge Pump Capacity 1 High, connect external C
CP1L
1
P
–
Charge Pump Capacity 1 Low, connect external C
CP2H
3
P
–
Charge Pump Capacity 2 High, connect external C
CP2L
4
P
–
Charge Pump Capacity 2 Low, connect external C
VCP
2
P
–
Charge Pump Capacity
VSD
47
P
–
Battery supply input for Charge Pump
VDH
44
P
–
Voltage Drain High Side MOSFET Driver
SH2
6
P
–
Source High Side FET 2
GH2
7
P
–
Gate High Side FET 2
Core supply (1.5 V during Active Mode).
Do not connect external loads, connect external buffer
capacitor.
Monitor Input
MON
LIN Interface
Charge Pump
MOSFET Driver
Data Sheet
13
Rev. 1.0, 2015-04-30
TLE9867QXA20
Device Pinout and Pin Configuration
Table 2
Pin Definitions and Functions (cont’d)
Symbol
Pin Number Type
Reset
State1)
Function
SH1
8
P
–
Source High Side FET 1
GH1
9
P
–
Gate High Side FET 1
SL
10
P
–
Source Low Side FET
GL2
12
P
–
Gate Low Side FET 2
GL1
13
P
–
Gate Low Side FET 1
GND_REF
33
P
–
GND for VAREF
VAREF
34
I/O
–
5V ADC1 reference voltage, optional buffer or input
OP1
37
I
–
Negative operational amplifier input
OP2
36
I
–
Positive operational amplifier input
TMS
20
I
I/O
I/PD
TMS
SWD
RESET
22
I/O
–
Reset input, not available during Sleep Mode
VBAT_SENSE 46
I
–
Battery supply voltage sense input
EP
–
–
Exposed Pad, connect to GND
Others
–
Test Mode Select input
Serial Wire Debug input/output
1) Only valid for digital IOs
2) Also named VDD5V.
3) Also named VDD1V5.
Data Sheet
14
Rev. 1.0, 2015-04-30
TLE9867QXA20
Modes of Operation
4
Modes of Operation
This highly integrated circuit contains analog and digital functional blocks. An embedded 32-bit microcontroller is
available for system and interface control. On-chip, low-dropout regulators are provided for internal and external
power supply. An internal oscillator provides a cost effective clock that is particularly well suited for LIN
communications. A LIN transceiver is available as a communication interface. Driver stages for an H-Bridge with
external MOSFET are integrated, featuring PWM capability, protection features and a charge pump for operation
at low supply voltage. A 10-bit SAR ADC is implemented for high precision sensor measurement. An 8-bit ADC is
used for diagnostic measurements.
The Micro Controller Unit (MCU) supervision and system protection (including a reset feature) is complemented
by a programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated
temperature sensors are available on-chip.
All relevant modules offer power saving modes in order to support automotive applications connected to terminal
30. A wake-up from power-save mode is possible via a LIN bus message, via the monitoring input or using a
programmable time period (cyclic wake-up).
Featuring LTI, the integrated circuit is available in a VQFN-48-31 package with 0.5 mm pitch, and is designed to
withstand the severe conditions of automotive applications.
The TLE9867QXA20 has several operation modes mainly to support low power consumption requirements.
Reset Mode
The Reset Mode is a transition mode used e.g. during power-up of the device after a power-on reset, or after wakeup from Sleep Mode. In this mode, the on-chip power supplies are enabled and all other modules are initialized.
Once the core supply VDDC is stable, the device enters Active Mode. If the watchdog timer WDT1 fails more than
four times, the device performs a fail-safe transition to Sleep Mode.
Active Mode
In Active Mode, all modules are activated and the TLE9867QXA20 is fully operational.
Stop Mode
Stop Mode is one of two major low power modes. The transition to the low power modes is performed by setting
the corresponding bits in the mode control register. In Stop Mode the embedded microcontroller is still powered,
allowing faster wake-up response times. Wake-up from this mode is possible through LIN bus activity, by using
the high-voltage monitoring pin or the corresponding 5V GPIOs.
Stop Mode with Cyclic Wake-Up
The Cyclic Wake-Up Mode is a special operating mode of the Stop Mode. The transition to the Cyclic Wake-Up
Mode is done by first setting the corresponding bits in the mode control register followed by the Stop Mode
command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period), asynchronous
wake events via the activated sources (LIN and/or MON) are available, as in normal Stop Mode.
Sleep Mode
The Sleep Mode is a low-power mode. The transition to the low-power mode is done by setting the corresponding
bits in the MCU mode control register or in case of failure, see below. In Sleep Mode the embedded microcontroller
power supply is deactivated allowing the lowest system power consumption. A wake-up from this mode is possible
by LIN bus activity, the High Voltage Monitor Input pin or Cyclic Wake-up.
Sleep Mode in Case of Failure
Data Sheet
15
Rev. 1.0, 2015-04-30
TLE9867QXA20
Modes of Operation
Sleep Mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case,
MON is enabled as the wake source and Cyclic Wake-Up is activated with 1s of wake time.
Sleep Mode with Cyclic Wake-Up
The Cyclic Wake-Up Mode is a special operating mode of the Sleep Mode. The transition to Cyclic Wake-Up Mode
is performed by first setting the corresponding bits in the mode control register followed by the Sleep and Stop
Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period),
asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Sleep Mode.
When using Sleep Mode with cyclic wake-up the voltage regulator is switched off and started again with the wake.
A limited number of registers is buffered during sleep, and can be used by SW e.g. for counting sleep/wake cycles.
MCU Slow Down Mode
In MCU Slow Down Mode the MCU frequency is reduced for saving power during operation. LIN communication
is still possible. LS MOSFET can be activated.
Wake-Up Source Prioritization
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up sources,
the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are latched in order
to provide all wake-up events to the application software. The software can clear the wake-up source flags. This
is to ensure that no wake-up event is lost.
As default wake-up source, the MON input is activated after power-on reset only. Additionally, the device is in
Cyclic Wake-Up Mode with the max. configurable dead time setting.
The following table shows the possible power mode configurations including the Stop Mode.
Table 3
Power Mode Configurations
Module/Function
Active Mode Stop Mode
Sleep Mode
Comment
VDDEXT
ON/OFF
ON (no dynamic
load)/OFF
OFF
–
Bridge Driver
ON/OFF
OFF
OFF
LIN TRx
ON/OFF
wake-up only/
OFF
wake-up only/
OFF
–
VS sense
ON/OFF
brownout
detection
brownout detection
POR on VS
brownout det. done in
PCU
VBAT_SENSE
ON/OFF
OFF
OFF
–
GPIO 5V (wake-up)
n.a.
disabled/static
OFF
–
GPIO 5V (active)
ON
ON
OFF
–
WDT1
ON
OFF
OFF
–
CYCLIC WAKE
n.a.
cyclic wake-up/
cyclic sense/OFF
cyclic wake-up/
OFF
–
Measurement
ON1)
OFF
OFF
–
2)
MCU
ON/slowdown/STOP
STOP
OFF
–
CLOCK GEN (MC)
ON
OFF
OFF
–
Data Sheet
16
Rev. 1.0, 2015-04-30
TLE9867QXA20
Modes of Operation
Table 3
Power Mode Configurations (cont’d)
Module/Function
Active Mode Stop Mode
Sleep Mode
Comment
LP_CLK (18 MHz)
ON
OFF
OFF
WDT1
LP_CLK2 (100 kHz)
ON/OFF
ON/OFF
ON/OFF
for cyclic wake-up
1) May not be switched off due to safety reasons
2) MC PLL clock disabled, MC supply reduced to 0.9 V
Wake-Up Levels and Transitions
The wake-up can be triggered by rising, falling or both signal edges for the monitor input, by LIN or by cyclic wakeup.
Data Sheet
17
Rev. 1.0, 2015-04-30
TLE9867QXA20
Power Management Unit (PMU)
5
Power Management Unit (PMU)
5.1
Features
•
•
•
•
•
•
System modes control (startup, sleep, stop and active)
Power management (cyclic wake-up)
Control of system voltage regulators with diagnosis (overload, short, over-voltage)
Fail safe mode detection and operation in case of system errors (watchdog fail)
Wake-up sources configuration and management (LIN, MON, GPIOs)
System error logging
5.2
Introduction
The power management unit is responsible for generating all required voltage supplies for the embedded MCU
(VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure fail-safe
behavior of the system IC by controlling all system modes including the corresponding transitions. Additionally, the
PMU provides well defined sequences for the system mode transitions and generates hierarchical reset priorities.
The reset priorities control the reset behavior of all system functionalities especially the reset behavior of the
embedded MCU. All these functions are controlled by a state machine. The system master functionality of the
PMU make use of an independent logic supply and system clock. For this reason, the PMU has an "Internal logic
supply and system clock" module which works independently of the MCU clock.
Data Sheet
18
Rev. 1.0, 2015-04-30
TLE9867QXA20
Power Management Unit (PMU)
5.2.1
Block Diagram
The following figure shows the structure of the Power Management Unit. Table 4 describes the submodules in
more detail.
VS
Power Down Supply
e.g. for WDT 1
e.g. for cyclic
wake and sense
I
N
T
E
R
N
A
L
LP_CLK
Peripherals
LP_CLK2
B
U
S
PMU-PCU
MON
LIN
P0.0...P0.4
P1.0...P1.4
VDDP
Power Supply Generation Unit
(PGU)
VDDC
LDO for External Supply
VDDEXT
VDDEXT
PMU-SFR
PMU-CMU
PMU-WMU
PMU-RMU
PMU-Control
Power Management Unit
Power_Management_ 7x.vsd
Figure 3
Power Management Unit Block Diagram
Table 4
Description of PMU Submodules
Mod.
Name
Modules
Functions
Power Down
Supply
Independent supply voltage
generation for PMU
This supply is dedicated to the PMU to ensure an
independent operation from generated power supplies
(VDDP, VDDC).
LP_CLK
(= 18 MHz)
- Clock source for all PMU
submodules
- Backup clock source for System
- Clock source for WDT1
This ultra low power oscillator generates the clock for the
PMU.
This clock is also used as backup clock for the system in
case of PLL Clock failure and as an independent clock
source for WDT1.
LP_CLK2
(= 100 kHz)
Clock source for PMU
This ultra low power oscillator generates the clock for the
PMU in Stop Mode and in the cyclic modes.
Peripherals
Peripheral blocks of PMU
These blocks include the analog peripherals to ensure a
stable and fail-safe PMU startup and operation (bandgap,
bias).
Data Sheet
19
Rev. 1.0, 2015-04-30
TLE9867QXA20
Power Management Unit (PMU)
Table 4
Description of PMU Submodules (cont’d)
Mod.
Name
Modules
Functions
Power Supply
Generation
Unit (PGU)
Voltage regulators for VDDP and
VDDC
This block includes the voltage regulators for the pad
supply (VDDP) and the core supply (VDDC).
VDDEXT
Voltage regulator for VDDEXT to
supply external modules (e.g.
Sensors)
This voltage regulator is a dedicated supply for external
modules and can also be used for cyclic sense operations
(e.g. with hall sensor).
PMU-SFR
All Extended Special Function
registers that are relevant to the
PMU.
This module contains all registers needed to control and
monitor the PMU.
PMU-PCU
Power Control Unit of the PMU
This block is responsible for controlling all power related
actions within the PGU Module. It also contains all
regulator related diagnostics such as undervoltage and
overvoltage detection as well as overcurrent and short
circuit diagnostics.
PMU-WMU
Wake-Up Management Unit of the
PMU
This block is responsible for controlling all wake-up related
actions within the PMU Module.
PMU-CMU
Cyclic Management Unit of the PMU This block is responsible for controlling all actions in cyclic
mode.
PMU-RMU
Reset Management Unit of the PMU This block generates resets triggered by the PMU such as
undervoltage or short circuit reset, and passes all resets to
the relevant modules and their register.
Data Sheet
20
Rev. 1.0, 2015-04-30
TLE9867QXA20
Power Management Unit (PMU)
5.2.2
PMU Modes Overview
The following state diagram shows the available modes of the device.
VS > 4V and VS ramp up
or
VS < 3V and VS ramp down
LIN-wake or
MON-wake
or
cyclic -wake
start-up
VDDC =stable and
error_supp<5
VDDC / VDDP =
fail (short circuit)
Æ error_supp ++
error_sup=5
sleep
Sleep command (from MCU) or
WDT1_SEQ_FAIL = 1 (Æ error_wdt = 5)
or
VDDC / VDDP = overload
active
LIN-wake or
MON-wake or
GPIO-wake or
cyclic _wake or
PMU_PIN = 1 or
SUP_TMOUT = 1
PMU_PIN = 1 or
PMU_SOFT = 1 or
(PMU_Ext_WDT = 1 and
WDT1_SEQ_FAIL = 0
Æ error_wdt ++)
Stop
command
(from MCU)
stop
cyclic -sense
PMU_System_Modes _Cus _withStopp .vsd
Figure 4
Data Sheet
Power Management Unit System Modes
21
Rev. 1.0, 2015-04-30
TLE9867QXA20
Power Management Unit (PMU)
5.3
Power Supply Generation Unit (PGU)
5.3.1
Voltage Regulator 5.0V (VDDP)
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and other
5 V analog functions (e.g. LIN Transceiver).
Features
•
•
•
•
•
•
•
•
5 V low-drop voltage regulator
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
Overvoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with reset (Undervoltage Reset, VDDPUV)
Pre-Regulator for VDDC Regulator
GPIO Supply
Pull Down Current Source at the output for Sleep Mode only (typ. 5 mA)
The output capacitor CVDDP is mandatory to ensure proper regulator functionality.
VDDP Regulator
VS
VPRE
VDDP
A
CVDDP
V
GND (Pin 39)
I
5V LDO
PMU_5V_OVERLOAD
PMU_5V_OVERVOLT
LDO Supervision
LDO_block_external .vsd
Figure 5
Data Sheet
Module Block Diagram of VDDP Voltage Regulator
22
Rev. 1.0, 2015-04-30
TLE9867QXA20
Power Management Unit (PMU)
5.3.2
Voltage Regulator 1.5V (VDDC)
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core, the
digital peripherals and other internal analog 1.5 V functions (e.g. ADC2) of the chip. To further reduce the current
consumption of the MCU during Stop Mode the output voltage can be lowered to 0.9 V.
Features
•
•
•
•
•
•
1.5 V low-drop voltage regulator
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
Overvoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with reset
Pull Down Current Source at the output for Sleep Mode only (typ. 100 μA)
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.
VDDC Regulator
VDDP (5V)
VDDC (1.5V)
A
V
CVDDP
CVDDC
I
1.5V LDO
PMU_1V5_OVERVOLT
PMU_1V5_OVERLOAD
LDO Supervision
1.5V_LDO_block_external.vsd
Figure 6
Data Sheet
Module Block Diagram of VDDC Voltage Regulator
23
Rev. 1.0, 2015-04-30
TLE9867QXA20
Power Management Unit (PMU)
5.3.3
External Voltage Regulator 5.0V (VDDEXT)
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used
e.g. to supply an external sensor, LEDs or potentiometers.
Features
•
•
•
•
•
•
•
Switchable +5 V, low-drop voltage regulator
Switch-on overcurrent blanking time in order to drive small capacitive loads
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
Overvoltage monitoring with MCU signaling (interrupt)
Undervoltage monitoring with MCU signaling (interrupt)
Pull Down current source at the output for Sleep Mode only (typ. 100 μA)
Cyclic sense option together with GPIOs
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.
VDDEXT Regulator
VS
VPRE
A
VDDEXT
C VDDEXT
V
GND (Pin 39)
I
5V LDO
VDDEXT_OVERLOAD
VDDEXT_OVERVOLT
LDO Supervision
HALL_LDO_block_external .vsd
Figure 7
Data Sheet
Module Block Diagram of External Voltage Regulator
24
Rev. 1.0, 2015-04-30
TLE9867QXA20
System Control Unit - Digital Modules (SCU-DM)
6
System Control Unit - Digital Modules (SCU-DM)
6.1
Features
•
•
•
•
•
•
Flexible clock configuration features
Reset management of all system resets
System modes control for all power modes (active, power down, sleep)
Interrupt enabling for many system peripherals
General purpose input output control
Debug mode control of system peripherals
6.2
Introduction
The System Control Unit (SCU) supports all central control tasks in the TLE9867QXA20. The SCU is made up of
the following sub-modules:
•
•
•
•
•
•
•
•
•
•
Clock System and Control
Reset Control
Power Management
Interrupt Management
General Port Control
Flexible Peripheral Management
Module Suspend Control
Watchdog Timer
Error Detection and Correction in Data Memory
Miscellaneous Control
Data Sheet
25
Rev. 1.0, 2015-04-30
TLE9867QXA20
System Control Unit - Digital Modules (SCU-DM)
6.2.1
Block Diagram
On signals to digital
peripherals;
status signals from
digital peripherals
AHB
PMCU
WDT
CGU
XTAL1
XTAL2
LP_CLK
fSYS
f PCLK
fMI_CLK
fTFILT _CLK
PMU_1V5DidPOR
PMU_PIN
PMU_ExtWDT
PMU_IntWDT
PMU_SOFT
PMU_Wake
RESET_TYPE_3
RESET_TYPE_4
I
N
T
E
R
N
A
L
OSC_HP
fOSC
PLL
fPLL
CG
P0_POCONy.PDMx
P1_POCONy.PDMx
fSYS
NMI
ICU
INTISR <9:0>
B
U
S
RCU
MISC Control
MODPISELx
Port Control
System Control Unit -Digital Modules
SCU_DM_Block_Diagram_Cust.vsd
Figure 8
System Control Unit - Digital Modules Block Diagram
AMBA AHB (Advanced High-Performance Bus)
PMCU (Power Module Control Unit)
WDT (Watchdog Timer in SCU-DM)
•
fSYS; System clock
CGU (Clock Generation Unit)
•
•
fSYS; System clock
fPCLK; Peripheral clock
Data Sheet
26
Rev. 1.0, 2015-04-30
TLE9867QXA20
System Control Unit - Digital Modules (SCU-DM)
•
•
•
fMI_CLK; Measurement interface clock
fTFILT_CLK; Analog module filter clock
LP_CLK; Clock source for all PMU submodules and WDT1
ICU (Interrupt Control Unit)
•
•
NMI (Non-Maskable Interrupt)
INTISR<15:0>; External interrupt signals
RCU (Reset Control Unit)
•
•
•
•
•
•
•
•
PMU_1V5DidPOR; Undervoltage reset of power down supply
PMU_PIN; Reset generated by reset pin
PMU_ExtWDT; WDT1 reset
PMU_IntWDT; WDT (SCU) reset
PMU_SOFT; Software reset
PMU_Wake; Sleep Mode/Stop Mode exit with reset
RESET_TYPE_3; Peripheral reset (contains all resets)
RESET_TYPE_4; Peripheral reset (without SOFT and WDT reset)
Port Control
•
•
P0_POCONy.PDMx; driver strength control
P1_POCONy.PDMx; driver strength control
MISC Control
•
MODPISELx; Mode selection registers for UART (source section) and Timer (trigger or count selection)
6.3
Clock Generation Unit
The Clock Generation Unit (CGU) enables a flexible clock generation for TLE9867QXA20. During user program
execution, the frequency can be modified to optimize the performance/power consumption ratio, allowing power
consumption to be adapted to the actual application state.
The CGU in the TLE9867QXA20 consists of one oscillator circuit (OSC_HP), a Phase-Locked Loop (PLL) module
with an internal oscillator (OSC_PLL), and a Clock Control Unit (CCU). The CGU can convert a low-frequency
input/external clock signal to a high-frequency internal clock.
The system clock fSYS is generated from of the following selectable clocks:
•
•
•
PLL clock output fPLL
Direct clock from oscillator OSC_HP fOSC
Low precision clock fLP_CLK (HW-enabled for startup after reset and during power-down wake-up sequence)
Data Sheet
27
Rev. 1.0, 2015-04-30
TLE9867QXA20
System Control Unit - Digital Modules (SCU-DM)
CGU
PLLCON
OSC_CON
HPOSCCON
PLL
OSC_HP
f
XTAL1
SYSCON0
PLL
CMCON
XTAL2
f OSC
CCU
fSYS
f LP_CLK
LP_CLK
LP_CLK
PMU
CGU_block
Figure 9
Clock Generation Unit Block Diagram
The following sections describe the different parts of the CGU.
6.3.1
Low Precision Clock
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC) with a nominal frequency of 18 MHz that is
enabled by hardware as an independent clock source for the TLE9867QXA20 startup after reset and during the
power-down wake-up sequence. fLP_CLK is not user configurable.
6.3.2
High Precision Oscillator Circuit (OSC_HP)
The high precision oscillator circuit, designed to work with both an external crystal oscillator or an external stable
clock source, consists of an inverting amplifier with XTAL1 as the input, and XTAL2 as the output.
Figure 10 shows the recommended external circuitry for both operating modes, External Crystal Mode and
External Input Clock Mode.
6.3.2.1
External Input Clock Mode
When supplying the clock signal directly, not using an external crystal and bypassing the oscillator, the input
frequency needs to be equal to or greater than 4 MHz if the PLL VCO part is used.
When using an external clock signal, it must be connected to XTAL1. XTAL2 is left open (unconnected).
6.3.2.2
External Crystal Mode
When using an external crystal, its frequency can be within the range of 4 MHz to 25 MHz. An external oscillator
load circuitry must be used, connected to both pins, XTAL1 and XTAL2. It normally consists of the two load
capacitances C1 and C2. A series damping resistor could be required for some crystals. The exact values and the
corresponding operating ranges depend on the crystal and have to be determined and optimized in cooperation
with the crystal vendor using the negative resistance method. The following load cap values can be used as
starting point for the evaluation:
Data Sheet
28
Rev. 1.0, 2015-04-30
TLE9867QXA20
System Control Unit - Digital Modules (SCU-DM)
Table 5
External CAP Capacitors
Fundamental Mode Crystal Frequency (approx., MHz) Load Caps C1, C2 (pF)
4
33
8
18
12
12
16
10
20
10
25
8
External Crystal Mode
External Input Clock Mode
VDDP
VDDP
Fundamental Mode Crystal
External
Clock
Signal
XTAL1
4 - 25 MHz
OSC_HP
fOSC
XTAL2
C1
f OSC
C2
VSS
Data Sheet
OSC_HP
XTAL2
VSS
VSS = GND = PIN 39
Figure 10
XTAL1
ext_Osc.vsd
TLE9867QXA20 External Circuitry for the OSC_HP
29
Rev. 1.0, 2015-04-30
TLE9867QXA20
System Control Unit - Power Modules (SCU-PM)
7
System Control Unit - Power Modules (SCU-PM)
7.1
Features
•
•
•
•
Clock Watchdog Unit (CWU): supervision of all clocks with NMI signaling relevant to power modules
Interrupt Control Unit (ICU): all interrupt flags and status flags with system relevance
Power Control Unit (PCU): takes over control when device enters and exits Sleepand Stop Mode
External Watchdog (WDT1): independent system watchdog for monitoring system activity
7.2
Introduction
7.2.1
Block Diagram
The System Control Unit of the power modules consists of the sub-modules in the figure shown below:
On signals to analog
peripherals;
status signals from
analog peripherals
AMBA AHB
I
N
T
E
R
N
A
L
PCU
WDT1
LP_CLK
fsys
MI_CLK
PREWARN_SUP_NMI
B
U
S
CWU
TFILT_CLK
ICU
PREWARN_SUP_INT
INT<n:0>
System Control Unit -Power Modules
SCU_PM_Block_Diagram_Cust.vsd
Figure 11
Block diagram of System Control Unit - Power Modules
AMBA AHB (Advanced High-Performance Bus)
CWU (Clock Watchdog Unit)
•
•
•
fsys; system frequency: PLL output
MI_CLK; measurement interface clock (analog clock): derived from fsys using division factors 1/2/3/4
TFILT_CLK; clock used for digital filters: derived from fsys using configurable division factors
Data Sheet
30
Rev. 1.0, 2015-04-30
TLE9867QXA20
System Control Unit - Power Modules (SCU-PM)
WDT1 (System Watchdog)
•
LP_CLK; clock source for all PMU submodules and WDT1
ICU (Interrupt Control Unit)
•
•
•
PREWARN_SUP_NMI; supply prewarning NMI request
PREWARN_SUP_INT; supply prewarning interrupt
grouping of peripheral interrupts for external interupt nodes:
– grouping single peripheral interrupts for interrupt node INT<2> (Measurement Unit (MU))
– grouping single peripheral interrupts for interrupt node INT<3> (ADC1-VAREF)
– grouping single peripheral interrupts for interrupt node INT<10> (UART1-LIN Transceiver)
– grouping single peripheral interrupts for interrupt node INT<14> (Bridge Driver)
Data Sheet
31
Rev. 1.0, 2015-04-30
TLE9867QXA20
ARM Cortex M3 Core
8
ARM Cortex M3 Core
8.1
Features
The key features of the Cortex M3 implemented are listed below.
Processor Core. A low gate count core, with low latency interrupt processing:
•
•
•
•
•
•
•
•
•
A subset of the Thumb®-2 Instruction Set
Banked stack pointer (SP) only
32-bit hardware divide instructions, SDIV and UDIV (Thumb-2 instructions)
Handler and Thread Modes
Thumb and debug states
Interruptible-continued instructions LDM/STM, Push/Pop for low interrupt latency
Automatic processor state saving and restoration for low latency Interrupt Service Routine (ISR) entry and exit
ARM architecture v7-M Style BE8/LE support
ARMv6 unaligned accesses
Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low
latency interrupt processing:
•
•
•
•
•
•
Interrupts, configurable from 1 to 16
Bits of priority (4)
Dynamic reprioritization of interrupts
Priority grouping. This enables selection of preemptive interrupt levels and non-preemptive interrupt levels
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing without
the overhead of state saving and restoration between interrupts.
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction
overhead
Bus interfaces
•
•
•
Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode, DCode, and System bus interface
Memory access alignment
Write buffer for buffering of write data
8.2
Introduction
The ARM Cortex-M3 processor is a leading 32-bit processor and provides a high-performance and cost-optimized
platform for a broad range of applications including microcontrollers, automotive body systems and industrial
control systems. Like the other Cortex family processors, the Cortex-M3 processor implements the Thumb®-2
instruction set architecture. With the optimized feature set the Cortex-M3 delivers 32-bit performance in an
application space that is usually associated with 8- and 16-bit microcontrollers.
Data Sheet
32
Rev. 1.0, 2015-04-30
TLE9867QXA20
ARM Cortex M3 Core
8.2.1
Block Diagram
Figure 12 shows the functional blocks of the Cortex M3.
Cortex-M3 Processor
Interrupt and
Power Control
Nested Vectored
Interrupt
Controller
(NVIC)
Cortex-M3
Processor
Core
Serial-Wire
(SW-DP)
AHB
Access Port
(AHB-AP)
Serial-Wire Debug
Interface
ICode
AHB-Lite
Instruction
Interface
Bus Matrix
DCode
AHB-Lite
Data
Interface
System Bus
ICode
PBA0
PBA1
Cortex_ M3 _Block_diagram .vsd
Figure 12
Data Sheet
Cortex M3 Block Diagram
33
Rev. 1.0, 2015-04-30
TLE9867QXA20
DMA Controller
9
DMA Controller
Figure 13 shows the Top Level Block Diagram of the TLE9867QXA20.
The bus matrix allows the uDMA to access the PBA0, PBA1 and RAM.
9.1
Features
The principal features of the DMA Controller are that:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
it is compatible with AHB-Lite for the DMA transfers
it is compatible with APB for programming the registers
it has a single AHB-Lite master for transferring data using a 32-bit address bus and 32-bit data bus
it supports 13 DMA channels
each DMA channel has dedicated handshake signals
each DMA channel has a programmable priority level
each priority level arbitrates using a fixed priority that is determined by the DMA channel number. The DMA
also supports multiple transfer types:
- memory-to-memory
- memory-to-peripheral
- peripheral-to-memory
it supports multiple DMA cycle types
it supports multiple DMA transfer data widths
each DMA channel can access a primary, and alternate, channel control data structure
all the channel control data is stored in system memory (RAM) in little-endian format
it performs all DMA transfers using the SINGLE AHB-Lite burst type. The destination data width is equal to the
source data width.
the number of transfers in a single DMA cycle can be programmed from 1 to 1024
the transfer address increment can be greater than the data width
Data Sheet
34
Rev. 1.0, 2015-04-30
TLE9867QXA20
DMA Controller
9.2
Introduction
Please also refer to Chapter 9.3, Functional Description.
9.2.1
Block Diagram
SSC1
GPT12
DMA requests
ADC1
DMA requests DMA requests
DMA Controller
Bus Matrix
M
AHB lite
S
M
AHB lite
PBA1
S
AHB2APB
APB Interface
interrupts
PBA0
M
AHB lite
M
AHB lite
S
SCU_DM
RAM
S
ARM Core
interrupts
Figure 13
Data Sheet
M
AHB lite
S
M
AHB lite
S
M
AHB lite
S
DMA Controller Top Level Block Diagram
35
Rev. 1.0, 2015-04-30
TLE9867QXA20
DMA Controller
9.3
Functional Description
9.3.1
DMA Mode Overview
The DMA controller implements the following 13 hardware DMA requests:
•
•
•
•
•
•
•
•
•
•
•
•
•
ADC1 complete sequence 1 done: DMA transfer is requested on completion of the ADC1 channel conversion
sequence.
ADC1 exceptional sequence 2 (ESM) done: DMA transfer is requested on completion of the ADC1 conversion
sequence triggered by an exceptional measurement request.
SSC1/2 transmit byte: DMA transfer is requested upon the completion of data transmission via SSC1/2
SSC1/2: receive byte: DMA transfer is requested upon the completion of data reception via SSC1/2.
ADC1 channel 0 conversion done: DMA transfer is requested on completion of the ADC1 channel 0
conversion.
ADC1 channel 1 conversion done: DMA transfer is requested on completion of the ADC1 channel 1
conversion.
ADC1 channel 2 conversion done: DMA transfer is requested on completion of the ADC1 channel 2
conversion.
ADC1 channel 3 conversion done: DMA transfer is requested on completion of the ADC1 channel 3
conversion.
ADC1 channel 4 conversion done: DMA transfer is requested on completion of the ADC1 channel 4
conversion.
ADC1 channel 5 conversion done: DMA transfer is requested on completion of the ADC1 channel 5
conversion.
ADC1 channel 6 conversion done: DMA transfer is requested on completion of the ADC1 channel 6
conversion.
ADC1 channel 7 conversion done: DMA transfer is requested on completion of the ADC1 channel 7
conversion.
Timer3 ccu6_int: DMA transfer is requested following a timer trigger.
Data Sheet
36
Rev. 1.0, 2015-04-30
TLE9867QXA20
Address Space Organization
10
Address Space Organization
The TLE9867QXA20 manipulates operands in the following memory spaces:
•
•
•
•
64 kByte of Flash memory in code space
32 kByte Boot ROM memory in code space (used for boot code and IP storage)
6 kByte RAM memory in code space and data space (RAM can be read/written as program memory or external
data memory)
Special function registers (SFRs) in peripheral space
The figure below shows the detailed address alignment of TLE9867QXA20:
00000000 H
Reserved (BROM)
00008000 H / 10FFFFFFH
Flash, 64K
11000000 H / 1100FFFFH
Reserved
11010000 H / 17FFFFFFH
SRAM, 6K
18000000 H / 180017FFH
Reserved
18001800 H / 3FFFFFFFH
PBA0
40000000 H / 47FFFFFFH
PBA1
48000000 H / 5FFFFFFFH
Reserved
60000000 H / DFFFFFFFH
Private Peripheral Bus
E0000000 H / E00FFFFFH
Reserved
FFFFFFFFH
Figure 14
Data Sheet
TLE9867QXA20 Memory Map
37
Rev. 1.0, 2015-04-30
TLE9867QXA20
Memory Control Unit
11
Memory Control Unit
11.1
Features
•
•
•
•
Handles all system memories and their interaction with the CPU
Memory protection functions for all system memories (D-Flash, P-Flash, RAM)
Address management with access violation detection including reporting
Linear address range for all memories (no paging)
11.2
Introduction
11.2.1
Block Diagram
The Memory Control Unit (MCU) is divided in the following sub-modules:
•
•
•
•
NVM Memory module (embedded Flash Memory)
RAM memory module
BootROM memory module
Memory Protection Unit (MPU) module
NVM
RAM
S0
S1
BROM
PBA0
S2
S3
ROM
Code/ Data
RAM
Code/ Data
N VM
Code/ Data
Memory Protection
Unit
Sx: Bus Slave
Mx: Bus Master
M0
M1
M2
M3
Bus Matrix
MCU_Block_Diagram_overview.vsd
Figure 15
Data Sheet
MCU Block View
38
Rev. 1.0, 2015-04-30
TLE9867QXA20
Memory Control Unit
11.3
NVM Module (Flash Memory)
The Flash Memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable
storage of user code and data.
Features
•
•
•
•
•
•
•
•
•
•
•
In-system programming via LIN (Flash Mode) and SWD
Error Correction Code (ECC) for detection of single-bit and double-bit errors and dynamic correction of single
Bit errors.
Interrupts and signals double-bit error by NMI
Program width of 128 byte (page)
Minimum erase width of 128 bytes (page)
Integrated hardware support for EEPROM emulation
8 byte read access
Physical read access time: 75 ns
Code read access acceleration integrated; read buffer and automatic pre-fetch
Page program time: 3 ms
Page erase (128 bytes) and sector erase (4K bytes) time: 4ms
Note: The user has to ensure that no flash operations which change the content of the flash get interrupted at any
time.
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines are provided to
erase NVM, and other operations including EEPROM emulation are provided as well.
Data Sheet
39
Rev. 1.0, 2015-04-30
TLE9867QXA20
Interrupt System
12
Interrupt System
12.1
Features
•
•
•
Up to 16 interrupt nodes for on-chip peripherals
Up to 8 NMI nodes for critical system events
Maximum flexibility for all 16 interrupt nodes
12.2
Introduction
12.2.1
Overview
The TLE9867QXA20 supports 16 interrupt vectors with 16 priority levels. Fifteen of these interrupt vectors are
assigned to the on-chip peripherals: GPT12, SSC, CCU6, DMA, Bridge Driver and A/D Converter are each
assigned to one dedicated interrupt vector; while UART1 and Timer2 or UART2, External Interrupt 2 and Timer21
share interrupt vectors. Two vectors are dedicated for External Interrupt 0 and 1.
Table 6
Interrupt Vector Table
Service Request
Node ID
Description
GPT12
0/1
GPT interrupt (T2-T6, CAPIN)
MU- ADC8/T3
2
Measurement Unit, VBG, Timer3
ADC1
3
ADC1 interrupt / VREF5V Overload / VREF5V OV/UV, 10-bit ADC
CCU0
4
CCU6 node 0 interrupt
CCU1
5
CCU6 node 1 interrupt
CCU2
6
CCU6 node 2 interrupt
CCU3
7
CCU6 node 3 interrupt
SSC1
8
SSC1 interrupt (receive, transmit, error)
SSC2
9
SSC2 interrupt (receive, transmit, error)
UART1
10
UART1 (ASC-LIN) interrupt (receive, transmit), Timer2, linsync1, LIN
UART2
11
UART2 interrupt (receive, transmit), Timer21, External interrupt
(EINT2)
EXINT0
12
External interrupt (EINT0), MON
EXINT1
13
External interrupt (EINT1)
BDRV/CP
14
Bridge Driver / Charge Pump
DMA
15
DMA Controller
Table 7
NMI Interrupt Table
Service Request
Node
Description
Watchdog Timer NMI
NMI
Watchdog Timer overflow
PLL NMI
NMI
PLL Loss-of-Lock
NVM Operation
Complete NMI
NMI
NVM Operation Complete
Overtemperature NMI
NMI
System Overtemperature
Data Sheet
40
Rev. 1.0, 2015-04-30
TLE9867QXA20
Interrupt System
Table 7
NMI Interrupt Table
Service Request
Node
Description
Oscillator Watchdog
NMI
NMI
Oscillator Watchdog / MI_CLK Watchdog Timer Overflow
NVM Map Error NMI
NMI
NVM Map Error
ECC Error NMI
NMI
RAM / NVM Uncorrectable ECC Error
Supply Prewarning NMI NMI
Data Sheet
Supply Prewarning
41
Rev. 1.0, 2015-04-30
TLE9867QXA20
Watchdog Timer (WDT1)
13
Watchdog Timer (WDT1)
13.1
Features
There are two watchdog timers in the system. The Watchdog Timer (WDT) within the System Control Unit - Digital
Modules (see SCU_DM) and the Watchdog Timer (WDT1) located within the System Control Unit - Power
Modules (see SCU_PM). The Watchdog Timer WDT1 is described in this section.
In Active Mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way to
recover from software or hardware failures.
The WDT1 is always enabled in Active Mode. In Sleep Mode, Low Power Mode and SWD Mode the WDT1 is
automatically disabled.
Functional Features
•
•
•
•
•
Windowed Watchdog Timer with programmable timing in Active Mode
Long open window (typ. 80ms) after power-up, reset, wake-up
Short open window (typ. 30ms) to facilitate Flash programming
Disabled during debugging
Safety shutdown to Sleep Mode after 5 missed WDT1 services
Data Sheet
42
Rev. 1.0, 2015-04-30
TLE9867QXA20
Watchdog Timer (WDT1)
13.2
Introduction
The behavior of the Watchdog Timer in Active Mode is illustrated in Figure 16.
Power-up
Reset
RESET
Timeout always
RESET
RESET
Timeout
or
Trigger in closed window
Timeout
Trigger SOW
Maximum number
of count_SOW
Long
Open Window
Trigger &
count_SOW = 0
Normal
„windowed“
operation
Trigger &
count_SOW = 0
Figure 16
Data Sheet
Trigger SOW &
count_SOW++
Trigger &
count_SOW = 0
Short
open window
& SOW
Trigger SOW &
count_SOW++
Watchdog Timer Behavior
43
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
14
GPIO Ports and Peripheral I/O
The TLE9867QXA20 has 15 port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2 (P2).
Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. P0
and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate
input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be
selected. On Port 2 (P2) analog inputs are shared with general purpose input.
14.1
Features
Bidirectional Port Features (P0, P1)
•
•
•
•
•
•
Configurable pin direction
Configurable pull-up/pull-down devices
Configurable open drain mode
Configurable drive strength
Transfer of data through digital inputs and outputs (general purpose I/O)
Alternate input/output for on-chip peripherals
Analog Port Features (P2)
•
•
•
Configurable pull-up/pull-down devices
Transfer of data through digital inputs
Alternate inputs for on-chip peripherals
14.2
Introduction
14.2.1
Port 0 and Port 1
Figure 17 shows the block diagram of an TLE9867QXA20 bidirectional port pin. Each port pin is equipped with a
number of control and data bits, thus enabling very flexible usage of the pin. By defining the contents of the control
register, each individual pin can be configured as an input or an output. The user can also configure each pin as
an open drain pin with or without internal pull-up/pull-down device.
Each bidirectional port pin can be configured for input or output operation. Switching between input and output
mode is accomplished through the register Px_DIR (x = 0 or 1), which enables or disables the output and input
drivers. A port pin can only be configured as either input or output mode at any one time.
In input mode (default after reset), the output driver is switched off (high-impedance). The actual voltage level
present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via the register
Px_DATA.
In output mode, the output driver is activated and drives the value supplied through the multiplexer to the port pin.
In the output driver, each port line can be switched to open drain mode or normal mode (push-pull mode) via the
register Px_OD.
The output multiplexer in front of the output driver enables the port output function to be used for different
purposes. If the pin is used for general purpose output, the multiplexer is switched by software to the data register
Px_DATA. Software can set or clear the bit in Px_DATA and therefore directly influence the state of the port pin.
If an on-chip peripheral uses the pin for output signals, alternate output lines (AltDataOut) can be switched via the
multiplexer to the output driver circuitry. Selection of the alternate output function is defined in registers
Data Sheet
44
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
Px_ALTSEL0 and Px_ALTSEL1. When a port pin is used as an alternate function, its direction must be set
accordingly in the register Px_DIR.
Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register Px_PUDSEL
selects whether a pull-up or the pull-down device is activated while register Px_PUDEN enables or disables the
pull device.
PUDSEL
Pull-up / Pull-down
Select Register
Pull-up / Pull-down
Control Logic
PUDEN
Pull-up / Pull-down
Enable Register
TCCR
Temperature Compensation
Control Register
I
N
T
E
R
N
A
L
B
U
S
Px_POCONy
Port Output
Driver Control Registers
OD
Open Drain
Control Register
DIR
Direction Register
ALTSEL0
Alternate Select
Register 0
ALTSEL1
Alternate Select
Register 1
Pull Device
AltDataOut 3
11
AltDataOut 2
10
AltDataOut 1
Output
Driver
01
Out
Data
Data Register
In
00
Input
Driver
AltDataIn
Schmitt
Trigger
Pad
Port _Block_ Diagram.vsd
Figure 17
Data Sheet
General Structure of Bidirectional Port (P0, P1)
45
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
14.2.2
Port 2
Figure 18 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage level
present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via register
P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register
P2_PUDSEL selects whether a pull-up or the pull-down device is activated while register P2_PUDEN enables or
disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt trigger device for
direct feed-through to the ADC input channels.
I
N
T
E
R
N
A
L
PUDSEL
Pull-up / Pull-down
Select Register
Pull-up / Pull-down
Control Logic
PUDEN
Pull-up / Pull-down
Enable Register
Pull Device
B
U
S
Data
Data Register
Input
Driver
In
Schmitt
Trigger
Pad
AltDataIn
AnalogIn
Port_Input _Diagram.vsd
Figure 18
Data Sheet
General Structure of Input Port (P2)
46
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
14.3
TLE9867QXA20 Port Module
14.3.1
Port 0
14.3.1.1
Port 0 Functions
Table 8
Port 0 Input/Output Functions
Port Pin
Input/Output
Select
P0.0
Input
GPI
P0_DATA.P0
INP1
SWCLK / TCK_0
SW
INP2
T12HR_0
CCU6
INP3
T4INA
GPT12T4
INP4
T2_0
Timer 2
INP5
–
–
INP6
EXINT2_3
SCU
GPO
P0_DATA.P0
ALT1
T3OUT
GPT12T3
ALT2
EXF21_0
Timer 21
ALT3
RXDO_2
UART2
GPI
P0_DATA.P1
INP2
T13HR_0
CCU6
INP3
TxD1
LIN_TxD
INP4
CAPINA
GPT12CAP
INP5
T21_0
Timer 21
INP6
T4INC
GPT12T4
INP7
MRST_1_2
SSC1
INP8
EXINT0_2
SCU
GPO
P0_DATA.P1
ALT1
TxD1
UART1 / LIN_TxD
ALT2
–
–
ALT3
T6OUT
GPT12T6
Output
P0.1
Input
Output
Data Sheet
Connected Signal(s)
47
From/to Module
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
Table 8
Port 0 Input/Output Functions (cont’d)
Port Pin
Input/Output
Select
Connected Signal(s)
P0.2
Input
GPI
P0_DATA.P2
INP1
CCPOS2_1
CCU6
INP2
T2EUDA
GPT12T2
INP3
MTSR_1
SSC1
INP4
T21EX_0
Timer 21
INP5
T6INA
GPT12T6
GPO
P0_DATA.P2
–
ALT1
COUT60_0
CCU6
ALT2
MTSR_1
SSC1
ALT3
EXF2_0
Timer 2
GPI
P0_DATA.P3
INP1
SCK_1
SSC1
INP2
CAPINB
GPT12
INP3
T5INA
GPT12T5
INP4
T4EUDA
GPT12T4
INP5
CCPOS0_1
CCU6
GPO
P0_DATA.P3
ALT1
SCK_1
SSC1
ALT2
EXF21_2
Timer 21
ALT3
T6OUT
GPT12T6
Output
P0.3
Input
Output
P0.4
Input
Output
Data Sheet
From/to Module
GPI
P0_DATA.P4
INP1
MRST_1_0
SSC1
INP2
CC60_0
CCU6
INP3
T21_2
Timer 21
INP4
EXINT2_2
SCU
INP5
T3EUDA
GPT12T3
INP6
CCPOS1_1
CCU6
GPO
P0_DATA.P4
ALT1
MRST_1_0
SSC1
ALT2
CC60_0
CCU6
ALT3
CLKOUT_0
SCU
48
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
14.3.2
Port 1
14.3.2.1
Port 1 Functions
Table 9
Port 1 Input / Output Functions
Port Pin
Input/Output
Select
Connected Signal(s)
P1.0
Input
GPI
P1_DATA.P0
INP1
T3INC
GPT12T3
INP2
T4EUDB
GPT12T4
INP3
CC61_0
CCU6
INP4
SCK_2
SSC2
INP5
EXINT1_2
SCU
GPO
P1_DATA.P0
ALT1
SCK_2
SSC2
ALT2
CC61_0
CCU6
ALT3
EXF21_3
Timer 21
GPI
P1_DATA.P1
INP1
–
Output
P1.1
Input
Output
P1.2
Input
Output
Data Sheet
From/to Module
–
INP2
T6EUDA
GPT12T6
INP3
–
-
INP4
MTSR_2
SSC2
INP5
T21_1
Timer 21
INP6
EXINT1_0
SCU
GPO
P1_DATA.P1
–
ALT1
MTSR_2
SSC2
ALT2
COUT61_0
CCU6
UART2
ALT3
TXD2_0
GPI
P1_DATA.P2
INP1
T2INA
GPT12T2
INP2
T2EX_1
Timer 2
INP3
T21EX_3
Timer 21
INP4
MRST_2_0
SSC2
INP5
RXD2_0
UART2
INP6
CCPOS2_2
CCU6
INP7
EXINT0_1
SCU
GPO
P1_DATA.P2
ALT1
MRST_2_0
SSC2
ALT2
COUT63_0
CCU6
ALT3
T3OUT
GPT12T3
49
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
Table 9
Port 1 Input / Output Functions (cont’d)
Port Pin
Input/Output
Select
Connected Signal(s)
P1.3
Input
GPI
P1_DATA.P3
INP1
T6INB
INP2
–
INP3
CC62_0
CCU6
INP4
T6EUDB
GPT12T6
INP5
–
INP6
CCPOS0_2
CCU6
INP7
EXINT1_1
SCU
GPO
P1_DATA.P3
ALT1
EXF21_1
Timer 21
ALT2
CC62_0
CCU6
ALT3
TXD2_1
UART2
GPI
P1_DATA.P4
INP1
EXINT2_1
SCU
INP2
T21EX_1
Timer 21
INP3
T5EUDA
GPT12T5
INP4
RxD1
UART1
INP5
T2INB
GPT12T2
INP6
CCPOS1_2
CCU6
INP7
MRST_1_3
SSC1
Output
P1.4
Input
Output
Data Sheet
From/to Module
GPT12T6
GPO
P1_DATA.P4
ALT1
CLKOUT_1
SCU
ALT2
COUT62_0
CCU6
ALT3
RxD1
UART1 / LIN_RxD
50
Rev. 1.0, 2015-04-30
TLE9867QXA20
GPIO Ports and Peripheral I/O
14.3.3
Port 2
14.3.3.1
Port 2 Functions
Table 10
Port 2 Input Functions
Port Pin
Input/Output
Select
Connected Signal(s)
P2.0
Input
GPI
P2_DATA.P0
INP1
CCPOS0_3
CCU6
INP2
-
-
INP3
T12HR_2
CCU6
P2.2
P2.3
P2.4
P2.5
Data Sheet
Input
Input
Input
Input
From/to Module
INP4
EXINT0_0
SCU
INP5
CC61_2
CCU6
ANALOG
AN0
ADC
XTAL (in)
XTAL
GPI
P2_DATA.P2
INP1
CCPOS2_3
CCU6
INP2
T13HR_2
CCU6
INP3
–
INP4
CC62_2
CCU6
ANALOG
AN2
ADC
OUT
XTAL (out)
XTAL
GPI
P2_DATA.P3
INP1
CCPOS1_0
CCU6
INP2
T3IND
GPT12T3
INP3
CTRAP#_1
CCU6
INP4
T21EX_2
Timer 21
INP5
CC60_1
CCU6
INP6
EXINT0_3
SCU
ANALOG
AN3
ADC
GPI
P2_DATA.P4
INP1
CTRAP#_0
CCU6
INP2
T2EUDB
GPT12T2
INP3
MRST_1_1
SSC1
INP4
EXINT1_3
SCU
ADC
ANALOG
AN4
GPI
P2_DATA.P5
INP1
RXD2_1
UART2
INP2
T3EUDB
GPT12T3
INP3
MRST_2_1
SSC2
INP4
T2_1
Timer 2
ANALOG
AN5
ADC
51
Rev. 1.0, 2015-04-30
TLE9867QXA20
General Purpose Timer Units (GPT12)
15
General Purpose Timer Units (GPT12)
15.1
Features
15.1.1
Features Block GPT1
The following list summarizes the supported features:
•
•
•
•
•
•
fGPT/4 maximum resolution
3 independent timers/counters
Timers/counters can be concatenated
4 operating modes:
– Timer Mode
– Gated Timer Mode
– Counter Mode
– Incremental Interface Mode
Reload and Capture functionality
Shared interrupt: Node 0
15.1.2
Features Block GPT2
The following list summarizes the supported features:
•
•
•
•
•
•
fGPT/2 maximum resolution
2 independent timers/counters
Timers/counters can be concatenated
3 operating modes:
– Timer Mode
– Gated Timer Mode
– Counter Mode
Extended capture/reload functions via 16-bit capture/reload register CAPREL
Shared interrupt: Node 1
15.2
Introduction
The General Purpose Timer Unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures which
may be used for timing, event counting, pulse width measurement, pulse generation, frequency multiplication, and
other purposes.
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in each
block may operate independently in a number of different modes such as Gated timer or Counter Mode, or may
be concatenated with another timer of the same block.
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can be
selected from several sources by register PISEL.
The GPT module is clocked with clock fGPT. fGPT is a clock derived from fSYS.
Data Sheet
52
Rev. 1.0, 2015-04-30
TLE9867QXA20
General Purpose Timer Units (GPT12)
15.2.1
Block Diagram GPT1
Block GPT1 contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture
registers for the core timer.
T3CON.BPS1
fGPT
Basic clock
2n : 1
U/D
T2IN
T2EUD
T2
Mode
Control
Interrupt Request
(T2IRQ)
Aux. Timer T2
Capture
Reload
Toggle Latch
T3IN
T3
Mode
Control
U/D
Core Timer T3
T3OUT
T3OTL
T3EUD
Interrupt Request
(T3IRQ)
Capture
Reload
T4IN
T4EUD
T4
Mode
Control
U/D
Interrupt Request
(T4IRQ)
Aux. Timer T4
MC _GPT 0101_bldiax1.vsd
Figure 19
Data Sheet
GPT1 Block Diagram (n = 2 … 5)
53
Rev. 1.0, 2015-04-30
TLE9867QXA20
General Purpose Timer Units (GPT12)
15.2.2
Block Diagram GPT2
Block GPT2 contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum resolution
is fGPT/2. An additional Capture/Reload register (CAPREL) supports capture and reload operation with extended
functionality.
T6CON.BPS2
Basic clock
2n : 1
fGPT
Toggle FF
T5IN
T5
Mode
Control
T5EUD
U/D
Interrupt Request
(T5IR)
GPT2 Timer T5
Clear
Capture
CAPIN
T3IN/
T3EUD
CAPREL
Mode
Control
GPT2 CAPREL
Interrupt Request
(CRIR)
Reload
Interrupt Request
(T6IR)
Clear
T6IN
T6
Mode
Control
GPT2 Timer T6
T6OTL
T6OUT
U/D
T6EUD
T6OUF
MC_GPT0108_bldiax4.vsd
Figure 20
Data Sheet
GPT2 Block Diagram
54
Rev. 1.0, 2015-04-30
TLE9867QXA20
Timer2 and Timer21
16
Timer2 and Timer21
16.1
Features
•
•
16-bit auto-reload mode
– selectable up or down counting
One channel 16-bit capture mode
16.2
Introduction
The timer modules are general-purpose 16-bit timers. Timer 2/21 can function as a timer or counter in each of its
modes. As a timer, it counts with an input clock of fPCLK/12 (if prescaler is disabled). As a counter, Timer 2 counts
1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is fPCLK/24 (if prescaler is
disabled).
16.2.1
Timer2 and Timer21 Modes Overview
Table 11
Timer2 and Timer21 Modes
Mode
Description
Auto-reload
Up/Down Count Disabled
• Count up only
• Start counting from 16-bit reload value, overflow at FFFFH
• Reload event configurable for trigger by overflow condition only, or by
negative/positive edge at input pin T2EX as well
• Programmable reload value in register RC2
• Interrupt is generated with reload events.
Auto-reload
Up/Down Count Enabled
• Count up or down, direction determined by level at input pin T2EX
• No interrupt is generated
• Count up
– Start counting from 16-bit reload value, overflow at FFFFH
– Reload event triggered by overflow condition
– Programmable reload value in register RC2
• Count down
– Start counting from FFFFH, underflow at value defined in register RC2
– Reload event triggered by underflow condition
– Reload value fixed at FFFFH
Channel capture
•
•
•
•
•
•
•
Data Sheet
Count up only
Start counting from 0000H, overflow at FFFFH
Reload event triggered by overflow condition
Reload value fixed at 0000H
Capture event triggered by falling/rising edge at pin T2EX
Captured timer value stored in register RC2
Interrupt is generated by reload or capture events
55
Rev. 1.0, 2015-04-30
TLE9867QXA20
Timer3
17
Timer3
17.1
Features
•
•
•
•
•
•
16-bit incremental timer/counter (counting up)
Counting frequency up to fsys
Selectable clock prescaler
6 modes of operation
Interrupt up on overflow
Interrupt on compare
17.2
Introduction
The possible applications for the timer include measuring the time interval between events, counting events and
generating a signal at regular intervals.
Timer3 can function as timer or counter. When functioning as a timer, Timer3 is incremented in periods based on
the MI_CLK or LP_CLK clock. When functioning as a counter, Timer3 is incremented in response to a 1-to-0
transition (falling edge) at its respective input. Timer3 can be configured in four different operating modes to use
in a variety of applications, see Table 12.
Several operating modes can be used for different tasks such as the following:
•
•
•
simple time measurement between two events
triggering of the measuring unit upon PWM/CCU6 unit
measurement of the 100kHz LP_CLK2
17.3
Functional Description
Six modes of operation are provided to fulfill various tasks using this timer. In every mode the clocking source can
be selected between MI_CLK and LP_CLK. A prescaler provides in addition capability to divide the selected clock
source by 2, 4 or 8. The timer counts upwards, starting with the value in the timer count registers, until the
maximum count value which depends on the selected mode of operation. Timer 3 provides two individual
interrupts upon counter overflow, one for the low-byte and one for the high-byte counter register.
17.3.1
Timer3 Modes Overview
The following table provides an overview of the timer modes together with the reasonable configuration options in
Table 12.
Table 12
Timer3 Modes
Mode
SubMode
Operation
0
No SubMode
13-bit Timer
The timer is essentially an 8-bit counter with a divide-by-32 prescaler.
1
a
16-bit Timer
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter.
1
b
16-bit Timer triggered by an event
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter, which is
triggered by an event to enable a single shot measurement on a preset channel with the
measurement unit.
Data Sheet
56
Rev. 1.0, 2015-04-30
TLE9867QXA20
Timer3
Table 12
Timer3 Modes (cont’d)
Mode
SubMode
Operation
2
No SubMode
8-bit Timer with auto-reload
The timer register TL3 is reloaded with a user-defined 8-bit value in TH3 upon overflow.
3
a
Timer3 operates as two 8-bit timers
The timer registers TL3 and TH3, operate as two separate 8-bit counters.
3
b
Timer3 operates as Two 8-bit timers for clock measurement
The timer registers, TL3 and TH3 operate as two separate 8-bit counters. In this mode the
LP_CLK2 Low Power Clock can be measured. TL3 acts as an edge counter for the clock
edges and TH3 as a counter which counts the time between the edges.
Data Sheet
57
Rev. 1.0, 2015-04-30
TLE9867QXA20
Capture/Compare Unit 6 (CCU6)
18
Capture/Compare Unit 6 (CCU6)
18.1
Feature Set Overview
This section gives an overview over the different building blocks and their main features.
Timer 12 Block Features
•
•
•
•
•
•
•
•
•
•
•
Three capture/compare channels, each channel can be used either as capture or as compare channel
Generation of a three-phase PWM supported (six outputs, individual signals for high-side and low-side
switches)
16-bit resolution, maximum count frequency = peripheral clock
Dead-time control for each channel to avoid short-circuits in the power stage
Concurrent update of T12 registers
Center-aligned and edge-aligned PWM can be generated
Single-shot mode supported
Start can be controlled by external events
Capability of counting external events
Multiple interrupt request sources
Hysteresis-like control mode
Timer 13 Block Features
•
•
•
•
•
•
•
•
One independent compare channel with one output
16-bit resolution, maximum count frequency = peripheral clock
Concurrent update of T13 registers
Can be synchronized to T12
Interrupt generation at period-match and compare-match
Single-shot mode supported
Start can be controlled by external events
Capability of counting external events
Additional Specific Functions
•
•
•
•
•
•
•
•
Block commutation for brushless DC-drives implemented
Position detection via hall-sensor pattern
Noise filter supported for position input signals
Automatic rotational speed measurement and commutation control for block commutation
Integrated error handling
Fast emergency stop without CPU load via external signal (CTRAP)
Control modes for multi-channel AC-drives
Output levels can be selected and adapted to the power stage
18.2
Introduction
The CCU6 unit is made up of a Timer T12 block with three capture/compare channels and a Timer T13 block with
one compare channel. The T12 channels can independently generate PWM signals or accept capture triggers, or
they can jointly generate control signal patterns to drive DC-motors or inverters.
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible generation
of interrupt request signals provide efficient software-control.
Data Sheet
58
Rev. 1.0, 2015-04-30
TLE9867QXA20
Capture/Compare Unit 6 (CCU6)
Note: The capture/compare module itself is referred to as CCU6 (capture/compare unit 6). A capture/compare
channel inside this module is referred to as CC6x.
The timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined
(e.g. a channel works in compare mode, whereas another channel works in capture mode). The timer T13 can
work in compare mode only. The multi-channel control unit generates output patterns which can be modulated by
T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.
18.2.1
Block Diagram
CCU6 Module Kernel
T12SUSP
T13SUSP
T12
1
CC61
1
CC62
1
DeadTime
Control
Multichannel
Control
Trap
Control
SR[3:0]
2
2
Trap Input
Hall Input
Output Select
2
3
1
CTRAP
CCPOS2
CCPOS1
CCPOS0
COUT63
CC62
COUT62
COUT61
CC60
COUT60
T13HR
Input / Output Control
T12HR
Interrupt
Control
3
Compare
Capture
1
Compare
CC63
Compare
T13
CC61
fCC 6
Compare
Clock
Control
Output Select
Start
Debug
Suspend
Compare
CC60
Port Control
P0.x
Figure 21
Data Sheet
P1.x
P2.x
CCU6_MCB05506.vsd
CCU6 Block Diagram
59
Rev. 1.0, 2015-04-30
TLE9867QXA20
UART1/UART2
19
UART1/UART2
19.1
Features
•
•
•
•
•
•
Full-duplex asynchronous modes
– 8-bit or 9-bit data frames, LSB first
– fixed or variable baud rate
Receive buffered
Multiprocessor communication
Interrupt generation on the completion of a data transmission or reception
Baud-rate generator with fractional divider for generating a wide range of baud rates
Hardware logic for break and synch byte detection
19.2
Introduction
The UART provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive
simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously
received byte has been read from the receive register. However, if the first byte still has not been read by the time
reception of the second byte is complete, one of the bytes will be lost. The serial port receive and transmit registers
are both accessed at Special Function Register (SFR) SBUF. Writing to SBUF loads the transmit register, and
reading SBUF accesses a physically separate receive register.
19.2.1
Block Diagram
UART disreq from SCU _DM
SCU_D
M
Interrupt
Control
RI
TXD
TI
RXD
TXD
URIOS
SCU_DM
UART
Module
(Kernel)
fUART2
Clock
Control
P0.x
Baud Rate
Generator
f BR
P1.x
P2.x
RXDO_2
AHB Interface
Data Sheet
RXD_1
Port Control
Address
Decoder
Figure 22
RXD_0
SCU_DM
SSC Module
GPIOs
UART Block Diagram
60
Rev. 1.0, 2015-04-30
TLE9867QXA20
UART1/UART2
19.3
UART Modes
The UART can be used in four different modes. In mode 0, it operates as an 8-bit shift register. In mode 1, it
operates as an 8-bit serial port. In modes 2 and 3, it operates as a 9-bit serial port. The only difference between
mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is
set by the underflow rate on the dedicated baud-rate generator.
The different modes are selected by setting bits SM0 and SM1 to their corresponding values, as shown in
Table 13.
Table 13
SM0
UART Modes
SM1
Operating Mode
Baud Rate
0
0
Mode 0: 8-bit shift register
fPCLK/2
0
1
Mode 1: 8-bit shift UART
Variable
1
0
Mode 2: 9-bit shift UART
fPCLK/64
1
1
Mode 3: 9-bit shift UART
Variable
The UART1 is connected to the integrated LIN transceiver, and to GPIO for test purpose. The UART2 is connected
to GPIO only.
Data Sheet
61
Rev. 1.0, 2015-04-30
TLE9867QXA20
LIN Transceiver
20
LIN Transceiver
20.1
Features
General Functional Features
•
•
Compliant to LIN2.2 standard, backward compatible to LIN1.3, LIN2.0 and LIN 2.1
Compliant to SAE J2602 (slew rate, receiver hysteresis)
Special Features
•
•
•
Measurement of LIN master baudrate via Timer 2
LIN can be used as input/output with SFR bits.
TxD timeout feature (optional, on by default)
Operation Mode Features
•
•
•
•
LIN Sleep Mode (LSLM)
LIN Receive-Only Mode (LROM)
LIN Normal Mode (LNM)
High Voltage Input / Output Mode (LHVIO)
Supported Baud Rates
•
•
•
•
Mode for a transmission up to 10.4 kBaud
Mode for a transmission up to 20 kBaud
Mode for a transmission up to 40 kBaud
Mode for a transmission up to 115.2 kBaud
Slope Mode Features
•
•
•
Normal Slope Mode (20 kbit/s)
Low Slope Mode (10.4 kbit/s)
Flash Mode (115.2 kbit/s)
Wake-Up Features
•
LIN bus wake-up
Data Sheet
62
Rev. 1.0, 2015-04-30
TLE9867QXA20
LIN Transceiver
20.2
Introduction
The LIN Module is a transceiver for the Local Interconnect Network (LIN) compliant to the LIN2.2 standard,
backward compatible to LIN1.3, LIN2.0 and LIN2.1. It operates as a bus driver between the protocol controller and
the physical network. The LIN bus is a single wire, bi-directional bus typically used for in-vehicle networks, using
baud rates between 2.4 kBaud and 20 kBaud. Additionally baud rates up to 115.2 kBaud are implemented.
The LIN Module offers several different operation modes, including a LIN Sleep Mode and the LIN Normal Mode.
The integrated slope control allows to use several data transmission rates with optimized EMC performance. For
data transfer at the end of line, a Flash Mode up to 115.2 kBaud is implemented. This Flash Mode can be used
for data transfer under special conditions for up to 250 kbit/s (in production environment, point-to-point
communication with reduced wire length and limited supply voltage).
20.2.1
Block Diagram
VS
LIN Transceiver
30 k
LIN_CTRL_STS
LIN
CTRL
Driver +
Curr. Limit. +
TSD
TxD_1
from UART
LIN-FSM
STATUS
Transmitter
CTRL
STATUS
GND_LIN
Filter
RxD_1
to UART
Receiver
Filter
LIN_Wake
Sleep Comparator
GND_LIN
Figure 23
Data Sheet
LIN_Block_Diagram_Customer.vsd
LIN Transceiver Block Diagram
63
Rev. 1.0, 2015-04-30
TLE9867QXA20
High-Speed Synchronous Serial Interface (SSC1/SSC2)
21
High-Speed Synchronous Serial Interface (SSC1/SSC2)
21.1
Features
•
•
•
•
•
•
Master and Slave Mode operation
– Full-duplex or half-duplex operation
Transmit and receive buffered
Flexible data format
– Programmable number of data bits: 2 to 16 bits
– Programmable shift direction: Least Significant Bit (LSB) or Most Significant Bit (MSB) shift first
– Programmable clock polarity: idle low or high state for the shift clock
– Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
Variable baud rate
Compatible with Serial Peripheral Interface (SPI)
Interrupt generation
– On a transmitter empty condition
– On a “receiver full” condition
– On an error condition (receive, phase, baud rate, transmission error)
Data Sheet
64
Rev. 1.0, 2015-04-30
TLE9867QXA20
High-Speed Synchronous Serial Interface (SSC1/SSC2)
21.2
Introduction
The High-Speed Synchronous Serial Interface (SSC) supports both full-duplex and half-duplex serial synchronous
communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16bit baud rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock
polarity, and phase are programmable. This allows communication with SPI-compatible devices or devices using
other synchronous serial interfaces.
Data is transmitted or received on TXD and RXD lines, which are normally connected to the MTSR
(MasterTransmit/Slave Receive) and MRST (Master Receive/Slave Transmit) pins. The clock signal is output via
line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are
normally connected to the pin SCLK. Transmission and reception of data are double-buffered.
21.2.1
Block Diagram
Figure 24 shows all functional relevant interfaces associated with the SSC Kernel.
MRSTA
TIR
P0.x
MTSRA
SSC
Module
(Kernel)
Clock
Control
MTSR
RIR
MTSRB
Slave
SCU_DM
Interrupt
Control
MRSTB
Master
EIR
MRST
Port
Control
P1.x
fhw_clk
P2.x
Slave
SCLKA
AHB Interface
SCLKB
SCLK
Master
Address
Decoder
Module
Product Interface
SSC_interface_overview.vsd
Figure 24
Data Sheet
SSC Interface Diagram
65
Rev. 1.0, 2015-04-30
TLE9867QXA20
Measurement Unit
22
Measurement Unit
22.1
Features
•
•
•
•
•
•
1 x 8-bit ADC with 10 Inputs including attenuator allowing measurement of high voltage input signals
Supply Voltage Attenuators with attenuation of VBAT_SENSE, VS, VDDP and VDDC.
VBG monitoring of 8-bit ADC to guarantee functional safety requirements.
Bridge Driver Diagnosis Measurement (VDH, VCP).
Temperature Sensor for monitoring the chip temperature and PMU Regulator temperature.
Supplement Block with Reference Voltage Generation, Bias Current Generation, Voltage Buffer for NVM
Reference Voltage, Voltage Buffer for Analog Module Reference Voltage and Test Interface.
22.2
Introduction
The measurement unit is a functional unit that comprises the following associated sub-modules:
Table 14
Measurement Functions and Associated Modules
Module
Name
Modules
Functions
Central Functions Bandgap reference circuit
Unit
The bandgap-reference sub-module provides two
reference voltages
1. a trimmable reference voltage for the 8-bit ADCs. A
local dedicated bandgap circuit is implemented to avoid
deterioration of the reference voltage arising e.g. from
crosstalk or ground voltage shift.
2. the reference voltage for the NVM module
8-bit ADC (ADC2) 8-bit ADC module with 10
multiplexed inputs, including HV
input attenuator
5 high voltage full supply range capable inputs
(2.5V...30,7V(FS))
2 medium voltage inputs (0..5V/7V FS).
3 low voltage inputs (0..1.2V/1.6V FS)
(allocation see following overview figure)
10-bit ADC
(ADC1)
10-bit ADC module with 8
multiplexed inputs
Five (5V) analog inputs from Port 2.x
VDH Input
Voltage
Attenuator
VDH input voltage attenuator
Scales down V(VDH) to the input voltage range of
ADC1.CH6
Temperature
Sensor
Temperature sensor with two
multiplexed sensing elements:
• PMU located sensor
• Central chip located sensor
Generates output voltage which is a linear function of
the local chip (junction) temperature.
Measurement
Core Module
Digital signal processing and ADC2 1. Generates the control signal for the 8-bit ADC2 and
control unit
the synchronous clock for the switched capacitor
circuits,
2. Performs digital signal processing functions and
provides status outputs for interrupt generation.
Data Sheet
66
Rev. 1.0, 2015-04-30
TLE9867QXA20
Measurement Unit
22.2.1
Block Diagram
VS
VAGND
VAREF
P2.0
CH0
5V
OP1
OP2
GND_SENSE
CH1
OP
CH2
G = 10/20/40/60
VREF
P2.2
CH3
P2.3
CH4
P2.4
CH5
P2.5
CH6
MUX
x 0.226
x 0.166
VDH
rfu
A
D
10
/
Channel sequencer
SFR
ADC 1
CH7
10 Bit ADC + DPP1
Programmable
range setting
x
x
x
x
VBAT_SENSE
0.055
0.039
0.055
0.039
CH0
1.23
V
CH1
VSD
x 0.039
CH2
VCP
x 0.023
CH3
MON
x 0.039
CH4
MUX
VDDP
VAREF
x 0.164
CH5
x 0.219
CH6
CH7
PMU-VBG
VDDC
x 0.75
Temperature
Sensor
A
D
8
/
calibration & filter unit
with
upper / lower
threshold
detection / interrupt
SFR
ADC 2
CH8
CH9
8 Bit ADC + DPP2
Figure 25
Data Sheet
Measurement-Unit
Measurement Unit-Overview (with opamp)
67
Rev. 1.0, 2015-04-30
TLE9867QXA20
Measurement Core Module (incl. ADC2)
23
Measurement Core Module (incl. ADC2)
23.1
Features
•
•
•
•
•
8 individually programmable channels split into two groups of user configurable and non user configurable
Individually programmable channel prioritization scheme for measurement unit
Two independent filter stages with programmable low-pass and time filter characteristics for each channel
Two channel configurations:
– Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis
– Two individually programmable trigger thresholds with limit hysteresis settings
Individually programmable interrupts and statuses for all channel thresholds
23.2
Introduction
The basic function of this block is the digital postprocessing of several analog digitized measurement signals by
means of filtering, level comparison and interrupt generation. The measurement postprocessing block consists of
ten identical channel units attached to the outputs of the 10-channel 8-bit ADC (ADC2). It processes ten channels,
where the channel sequence and prioritization is programmable within a wide range.
23.2.1
Block Diagram
4
/
MUX_SEL<3:0>
Channel Controller
(Sequencer)
SQ0 – SQ9
-
FILT_OUTx.OUT_CHx
+
CNTUP
THy_z_LOWER.
CHx
MMODE
8
/
1
/
CNTLOW
10
/
HYSUP
y= a + (1+b)*x
+
-
HYSLOW
CH8
8
/
THy_z_UPPER.
CHx
FILTENLOW
VDDC
Temperature Sensor
FILTENUP
CH7
D
Calibration Unit:
FILTENLOW
PMU-VBG
EN
CH6
MUX_CTRL
CH5
A
MUX_CTRL
VDDP
VAREF
1st Order IIR
8 VREF
Bit ADC
MUX
EN
CH4
COEFF_IIR
MON
COEFF_B
CH3
MUX_CTRL
CH2
VCP
EN
CH1
VSD
COEFF A
CH0
VS
CTRL_STS
VBAT_SENSE
TSENS_SEL
ADC2 - SFR
+/-
UP_X_STS
+/-
LOW_X_STS
1
/
Digital Signal Processing
CH9
TSENSE
Measurement Core Module
Figure 26
Data Sheet
Module Block Diagram
68
Rev. 1.0, 2015-04-30
TLE9867QXA20
Measurement Core Module (incl. ADC2)
23.2.2
Measurement Core Module Modes Overview
The basic function of this unit, is the digital signal processing of several analog digitized measurement signals by
means of filtering, level comparison and interrupt generation. The Measurement Core module processes ten
channels in a quasi parallel process.
As shown in the figure above, the ADC2 postprocessing unit consists of a channel controller (Sequencer), an 10channel demultiplexer and the signal processing block, which filters and compares the sampled ADC2 values for
each channel individually. The channel control block controls the multiplexer sequencing on the analog side before
the ADC2 and on the digital domain after the ADC2. As described in the following section, the channel sequence
can be controlled in a flexible way, which allows a certain degree of channel prioritization.
This capability can be used e.g. to set a higher priority to supply voltage channels compared to the other channel
measurements. The Measurement Core Module offers additionally two different post-processing measurement
modes for over-/undervoltage detection and for two-level threshold detection.
The channel controller (sequencer) runs in one of the following modes:
“Normal Sequencer Mode” – channels are selected according to the 10 sequence registers which contain
individual enablers for each of the 10 channels.
“Exceptional Interrupt Measurement” – following a hardware event, a high priority channel is inserted into the
current sequence. The current actual measurement is not destroyed.
“Exceptional Sequence Measurement” – following a hardware event, a complete sequence is inserted after the
current measurement is finished. The current sequence is interrupted by the exception sequence.
Data Sheet
69
Rev. 1.0, 2015-04-30
TLE9867QXA20
10-Bit Analog Digital Converter (ADC1)
24
10-Bit Analog Digital Converter (ADC1)
24.1
Features
The principal features of the ADC1 are:
•
•
•
•
•
•
•
•
•
•
Up to 8 analog input channels (channel 7 reserved for future use)
Flexible results handling
- 8-bit and 10-bit resolution
Flexible source selection due to sequencer
- insert one exceptional sequence (ESM)
- insert one interrupt measurement into the current sequence (EIM), single or up to 128 times
- software mode
Conversion sample time (separate for each channel) adjustable to adapt to sensors and reference
Standard external reference (VAREF) to support ratiometric measurements and different signal scales
DMA support, transfer ADC conversion results via DMA into RAM
Support of suspend and power saving modes
Result data protection for slow CPU access (wait-for-read mode)
Programmable clock divider
Integrated sample and hold circuitry
24.2
Introduction
The TLE9867QXA20 includes a high-performance 10-bit Analog-to-Digital Converter (ADC1) with eight
multiplexed analog input channels. The ADC1 uses a successive approximation technique to convert the analog
voltage levels from up to eight different sources. The analog input channels of the ADC1 are available at AN0,
AN2 - AN5.
Data Sheet
70
Rev. 1.0, 2015-04-30
TLE9867QXA20
10-Bit Analog Digital Converter (ADC1)
24.2.1
Block Diagram
3
/
3
/
MUX_SEL <2:0>
EoC - SoC
Channel Controller
(Sequencer)
Settings
Settings
ADC1 - SFR
P2.0
10
CH0
10
CH1
P2.2
P2.3
CH3
10
ADC1
CH2
MUX
A
10
10
/
D
MUX
10
P2.4
CH4
P2.5
CH5
10
VDH
CH6
10
rfu
OP1
OP2
Figure 27
CH7
10
10
/
ADC1_OUT_CH0
/
ADC1_OUT_CH0
ADC1_OUT_CH1
/
ADC1_OUT_CH1
ADC1_OUT_CH2
/
ADC1_OUT_CH2
ADC1_OUT_CH3
/
ADC1_OUT_CH4
ADC1_OUT_CH3
/
ADC1_OUT_CH5
ADC1_OUT_CH4
/
ADC1_OUT_CH6
ADC1_OUT_CH5
/
ADC1_OUT_CH7
ADC1_OUT_CH6
/
ADC1_OUT_CH7
ADC1_RES_OUT_EIM
OPA
ADC1 Top Level Block Diagram
As shown in the figure above, the ADC1 postprocessing consists of a channel controller (Sequencer) and an 8channel demultiplexer. The channel control block controls the multiplexer sequencing on the analog side before
the ADC1 and on the digital domain after the ADC1. As described in the following section, the channel sequence
can be controlled in a flexible way, which allows a certain degree of channel prioritization.
This capability can be used e.g. to give a higher priority to some channels compared to the other channel
measurements.
Data Sheet
71
Rev. 1.0, 2015-04-30
TLE9867QXA20
High-Voltage Monitor Input
25
High-Voltage Monitor Input
25.1
Features
•
•
•
•
High-voltage input with VS/2 threshold voltage
Integrated selectable pull-up and pull-down current sources
Wake capability for power saving modes
Level change sensitivity configurable for transitions from low to high, high to low or both directions
25.2
Introduction
This module is dedicated to monitor external voltage levels above or below a specified threshold or it can be used
to detect a wake-up event at the high-voltage MON pin in low-power mode. The input is sensitive to a input level
monitoring, this is available when the module is switched to active mode with the SFR bit EN.
To use the Wake function during low power mode of the IC, the monitoring pin is switched to Sleep Mode via the
SFR bit EN.
25.2.1
Block Diagram
VS
MON
+
Filter
to internal
circuitry
MON
Logic
SFR
MONx_Input _Circuit_ext .vsd
Figure 28
Data Sheet
Monitoring Input Block Diagram
72
Rev. 1.0, 2015-04-30
TLE9867QXA20
Bridge Driver (incl. Charge Pump)
26
Bridge Driver (incl. Charge Pump)
26.1
Features
The MOSFET Driver is intended to drive external normal level NFET transistors in bridge configuration. The driver
provides many diagnostic possibilities to detect faults.
Functional Features
•
•
•
•
•
•
External Power NFET Transistor Driver Stage with driver capability for max. 100 nC gate charge @ 25 kHz
switching frequency.
Implemented adjustable cross conduction protection.
Supply voltage (VSD) monitoring incl. adjustable over- and undervoltage shutdown with configurable interrupt
signalling.
VSD operating range down to 5.4 V
VDS comparators for short circuit detection in on- and off-state
Open-Load detection in off-state
26.2
Introduction
The MOSFET Driver Stage can be used for controlling external Power NFET Transistors (normal level). The
module output is controlled by SFR or System PWM Machine (CCU6).
Data Sheet
73
Rev. 1.0, 2015-04-30
TLE9867QXA20
Bridge Driver (incl. Charge Pump)
26.2.1
Block Diagram
VDH
VCP
PWM-Unit
CCU6
(not part of the module )
Pre-Driver
+
VDS
-
>1
GHx
VREF
SFR
SHx
>1
+
VDS
GLx
VREF
SL
Block_Diagram_PreDriver_Cus.vsd
Figure 29
Driver Module Block Diagram (incl. system connections)
26.2.2
General
The Driver can be controlled in two different ways:
•
•
In Normal Mode the output stage is fully controllable through the SFR registers CTRLx (x = 1,2,3). Protection
functions such as overcurrent and open-load detection are available.
The PWM Mode can also be enabled by the corresponding bit in CTRL1 and CTRL2. The PWM must be
configured in the System PWM Module (CCU6). All protection functions are available in PWM mode as well.
Protection Functions
•
•
•
Overcurrent detection and shutdown feature for external MOSFET by Drain Source measurement
Programmable minimum cross current protection time
Open-load detection feature in Off-state for external MOSFET.
Data Sheet
74
Rev. 1.0, 2015-04-30
TLE9867QXA20
Current Sense Amplifier
27
Current Sense Amplifier
27.1
Features
Main Features
•
•
•
•
Programmable gain settings: G = 10, 20, 40, 60
Differential input voltage: ± 1.5V / G
Wide common mode input range ± 2 V
Low setting time < 1.4 µs
27.2
Introduction
The current sense amplifier in Figure 30 can be used to measure near ground differential voltages via the 10-bit
ADC. Its gain is digitally programmable through internal control registers.
Linear calibration has to be applied to achieve high gain accuracy, e.g. end-of-line calibration including the shunt
resistor.
Figure 30 shows how the current sense amplifier can be used as a low-side current sense amplifier where the
motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier input is used in
order to eliminate measurement errors due to voltage drop across the stray resistance RStray and differences
between the external and internal ground. If the voltage at one or both inputs is out of the operating range, the
input circuit is overloaded and requires a certain specified recovery time.
In general, the external low pass filter should provide suppression of EMI.
27.2.1
Block Diagram
VBAT
M
VAREF
5V
VZ ERO
Motor
Current
VP
RSH
Amplifier
LP Filter
ROPAFILT
OP2
configurable
Gain: 10, 20, 40, 60
Vzero + (VOP2 -VOP1) * G
COPAFILT
ROPAFILT
10-bit ADC
10
/
ADC1_OUT_CH1
OP1
VN
RStray
CSA_CTRL
Ext. GND
Figure 30
Data Sheet
Current_Sense_Amplifier .vsd
Simplified Application Diagram
75
Rev. 1.0, 2015-04-30
TLE9867QXA20
Application Information
28
Application Information
28.1
H-Bridge Driver
Figure 31 shows the TLE9867QXA20 in an electric drive application setup controlling an H-Bridge motor.
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
S
LPFILT
VBAT
CPFILT 1
G
CPFILT 1
D
Rev . Polarity Protection
CVDD P 2
EMC Filter
CVD DP1
CVDDC 1
DR P
DVS
VS
CVS2
Switch
VDDC
VDDP
CVS 1
RVBAT _SEN SE
CVBAT _SEN SE
VBAT_SENSE
RR P1
CP1H
CP1L
CP2H
CP2L
VCP
RRP 2
CCPS 2
RVSD
VSD
VDH
LIN
CLIN
TRPG
CCPS 1
CVSD
LIN
TRP
CVD DC2
CVC P
RVD H
CVDH
GND_LIN
CVAREF
VAREF
GND_REF
D
RGATE
GH1
RVDDPU
TLE4946 -2K
Hall
CADC
CVDD_EXT 2
CVDD_EXT 1
G
TH1
VDD_EXT
RGS
P0.3
RADC
D
G
TH 2
CGS
RGS
S
SH2
M
CEMC
RMON
MON
CMON
SH1
TLE9867
CEMC
D
RGATE
D
G
GL1
RSWITC H
G
TL1
P2.2
Temp Sensor
CPH2
CGS
S
RGATE
GH2
CPH 1
RGS
RGATE
TL2
CGS
RGS
S
CGS
S
GL2
P1.2
SL
P1.0
ROPAFILT
OP2
RGATE
COPAFILT
OP1
TMS
P0.0
Debug Connector
P0.1
P0.4
P2.5
P1.3
GND
RTMS
H-Bridge System
Figure 31
RShunt
RGATE
ROPAFILT
GND
Simplified Application Diagram Example
Note: This is a very simplified example of an application circuit and bill of materials. The function must be verified
in the actual application.
Data Sheet
76
Rev. 1.0, 2015-04-30
TLE9867QXA20
Application Information
Table 15
External Components (BOM)
Symbol
Function
Component
CVS1
Blocking capacitor at VS pin
≥ 100 nF Ceramic, ESR < 1Ω
CVS2
Blocking capacitor at VS pin
> 2.2 µF Elco1)
CVDDP
Blocking capacitor at VDDP pin
470 nF + 100 nF Ceramic, ESR < 1Ω
CVDD_EXT
Blocking capacitor at VDDEXT pin
100nF, Ceramic ESR < 1Ω
CVDDC
Blocking capacitor at VDDC pin
470 nF + 100 nF Ceramic, ESR < 1Ω
CVAREF
Blocking capacitor at VAREF pin
100 nF, Ceramic ESR < 1Ω
CLIN
Standard C for LIN slave
220 pF
CVSD
Filter C for charge pump end driver
1 µF
CCPS1
Charge pump capacitor
220 nF
CCP2S
Charge pump capacitor
220 nF
CVCP
Charge pump capacitor
470 nF
CMON1
Filter C for ISO pulses
10nF
CVDH
Capacitor
1 nF
CPH1
Capacitor
220 µF
CPH2
Capacitor
220 µF
COPAFILT
Capacitor
100 nF
CEMCP1
Capacitor
1 nF
CEMCP2
Capacitor
1 nF
CPFILT1, CPFILT2
Capacitor
10 µF
CVBAT_SENSE
Capacitor
10 nF
RMON1
Resistor at MON pin
1kΩ
RVSD
Limitation of reverse current due to
transient (-2V, 8ms)
2Ω
RVDH
Resistor
1kΩ
RGATE
Resistor
2Ω
ROPAFILT
Resistor
12Ω
RVBAR_SENSE
Resistor
RSH1
Resistor
optional
RSH2
Resistor
optional
Reverse-polarity protection diode
–
LPFILT
DVS
1) The capacitor must be dimensioned so as to ensure that flash operations modifying the content of the flash are never
interrupted (e.g. in case of power loss).
Data Sheet
77
Rev. 1.0, 2015-04-30
TLE9867QXA20
Application Information
28.2
ESD Immunity According to IEC61000-4-2
Note: Tests for ESD immunity according to IEC61000-4-2 “Gun test” (150pF, 330Ω) has been performed. The
results and test condition will be available in a test report.
Table 16
ESD “Gun Test”
Performed Test
Result
Unit
Remarks
ESD at pin LIN, versus
GND1)
>6
kV
2)
ESD at pin LIN, versus
GND1)
< -6
kV
2)
positive pulse
negative pulse
1) ESD test “ESD GUN” is specified with external components; see application diagram:
CMON = 100nF, RMON = 1kΩ, CLIN = 220pF, CVS = >20µF ELCO + 100nF ESR < 1Ω, CVSD = 1µF, RVSD = 2Ω.
2) ESD susceptibility “ESD GUN” according to LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2). Tested by external
test house (IBEE Zwickau, EMC Test report Nr. 09-07-14)
Data Sheet
78
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29
Electrical Characteristics
This chapter includes all relevant electrical characteristics of the product TLE9867QXA20.
29.1
General Characteristics
29.1.1
Absolute Maximum Ratings
Table 17
Absolute Maximum Ratings1)
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Voltages – Supply Pins
Supply voltage – VS
VS
-0.3
–
40
V
Load dump
P_1.1.1
Supply voltage – VSD
VSD
-0.3
–
48
V
–
P_1.1.2
Supply voltage – VSD
VSD_max_exten -2.8
–
48
V
Series resistor RVSD = P_1.1.32
2.2 Ω, t = 8 ms 2)
Voltage range – VDDP
VDDP
-0.3
–
5.5
V
–
P_1.1.3
Voltage range – VDDP
VDDP_max_ext -0.3
–
7
V
In case of voltage
transients on VS with
dVS/dt ≤ 1V/µs;
duration: t ≤ 150µs;
CVDDP ≤ 570 nF
P_1.1.41
d
end
Voltage range – VDDEXT
VDDEXT
-0.3
–
5.5
V
–
P_1.1.4
Voltage range – VDDEXT
VDDEXT_max_ -0.3
–
7
V
In case of voltage
transients on VS with
dVS/dt ≤ 1V/µs;
duration: t ≤ 150µs;
CVDDEXT ≤ 570 nF
P_1.1.42
extend
VDDC
-0.3
–
1.6
V
–
P_1.1.5
Battery voltage VBAT_SENSE
VBAT_SENSE
-28
–
40
V
3)
P_1.1.6
Input voltage at LIN
VLIN
-28
–
40
V
–
P_1.1.7
V
4)
P_1.1.8
V
5)
P_1.1.38
P_1.1.9
Voltage range – VDDC
Voltages – High Voltage Pins
Input voltage at MON
Input voltage at VDH
VMON_maxrate -28
VVDH_maxrate -2.8
–
–
40
40
Voltage range at GHx
VGH
-6.0
–
48
V
6)
Voltage range at GHx vs. SHx
VGHvsSH
14
16
19
V
–
P_1.1.44
Voltage range at SHx
VSH
-6.0
–
48
V
–
P_1.1.11
Voltage range at GLx
VGL
-6.0
–
48
V
7)
Voltage range at GLx vs. SL
VGLvsSL
14
16
19
V
–
Data Sheet
79
–
P_1.1.13
P_1.1.45
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 17
Absolute Maximum Ratings1) (cont’d)
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Voltage range at charge pump
VCPx
pins CP1H, CP1L, CP2H, CP2L,
VCP
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
-0.3
–
48
V
8)
P_1.1.15
-0.3
–
VDDP
V
VIN < VDDPmax9)
P_1.1.16
Voltages – GPIOs
Voltage on any port pin
Vin
+0.3
Current at VCP Pin
IVCP
-15
–
–
mA
–
P_1.1.35
Injection current on any port pin
IGPIONM
-5
–
5
mA
10)
P_1.1.34
Sum of all injected currents in
Normal Mode
IGPIOAM_sum
-50
–
50
mA
10)
P_1.1.30
-5000 –
50
µA
10)
P_1.1.36
5
mA
10)
P_1.1.37
VDDP
V
–
P_1.1.17
Max. current at VCP pin
Injection Current at GPIOs
IGPIOPD_sum
Sum of all injected currents in
Power Down Mode (Stop Mode)
Sum of all injected currents in
Sleep Mode
IGPIOSleep_su -5
–
m
Other Voltages
Input voltage VAREF
VAREF
-0.3
–
+0.3
VOAI
-7
–
7
V
–
P_1.1.23
Junction temperature
Tj
-40
–
150
°C
–
P_1.1.18
Storage temperature
Tstg
-55
–
150
°C
–
P_1.1.19
ESD susceptibility
all pins
VESD1
-2
–
2
kV
HBM 11)
P_1.1.20
ESD susceptibility
pins MON, VS, VSD,
VBAT_SENSE vs.GND
VESD2
-4
–
4
kV
HBM 12)
P_1.1.21
ESD susceptibility
pins LIN vs. GND_LIN
VESD3
-6
–
6
kV
HBM 11)
P_1.1.22
ESD susceptibility CDM
all pins vs. GND
VESD_CDM1
-500
–
500
V
13)
P_1.1.28
ESD susceptibility CDM
VESD_CDM2
pins 1, 12, 13, 24, 25, 36, 37, 48
(corner pins) vs. GND
-750
–
750
V
13)
P_1.1.43
Input voltage
OP1, OP2
Temperatures
ESD Susceptibility
1) Not subject to production test, specified by design.
2) Conditions and min. value is derived from application condition for reverse polarity event.
Data Sheet
80
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
3)
4)
5)
6)
Min voltage -28V with external 3.9kΩ series resistor only.
Min voltage -28V with external 3.9kΩ series resistor only.
Min voltage -2.8V with external 1kΩ series resistor only.
To achieve max. ratings on this pin, Parameter P_1.1.44 has to be taken into account resulting in the following dependency:
VGH < VSH + VGHvsSH and additionally VSH < VGH + 0.3V.
7) To achieve max. ratings on this pin, Parameter P_1.1.45 has to be taken into account resulting in the following dependency:
VGL < VSL + VGLvsSL and additionally VSL < VGL + 0.3V.
8) These limits can be kept if max current drawn out of pin does not exceed limit of 200 µA.
9) Includes TMS and RESET.
10) Maximum rating for injection current of GPIO with VIN respected.
11) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001 (1.5kΩ, 100pF)
12) MON with external circuitry of a series resistor of 3.9kΩ and 10nF (at connector); VS with an external ceramic capacitor of
100nF; VSD with an external capacitor of 470nF; VDH with external circuitry of a series resistor of 1kΩ and 3.3nF (at pin).
13) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JESD22-C101F
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Data Sheet
81
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.1.2
Functional Range
Table 18
Functional Range
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
P_1.2.1
Supply voltage in Active Mode
VS_AM
5.5
–
28
V
–
Extended supply voltage in Active
Mode
VS_AM_exte 28
–
40
V
1)
Supply voltage in Active Mode for
MOSFET Driver Supply
VSD_AM
5.4
–
28
V
Extended supply voltage in Active
Mode for MOSFET Driver Supply
VSD_AM_ext 28
–
32
V
1)
Specified supply voltage for LIN
Transceiver
VS_AM_LIN
5.5
–
18
V
Parameter
Specification
P_1.2.2
Extended supply voltage for LIN
Transceiver
VS_AM_LIN
4.8
–
28
V
Functional with
parameter
deviation
P_1.2.14
3.0
–
5.5
V
2)
P_1.2.3
3.0
–
28
V
–
P_1.2.4
P_1.2.5
nd
end
Supply voltage in Active Mode with
VS_AMmin
reduced functionality (Microcontroller /
Flash with full operation)
Supply voltage in Sleep Mode
VS_Sleep
Functional with P_1.2.16
parameter
deviation
P_1.2.18
Functional with P_1.2.17
parameter
deviation
Supply voltage transients slew rate
dVS/dt
-1
–
1
V/µs
3)
Output sum current for all GPIO pins
IGPIO,sum
-50
–
50
mA
–
P_1.2.7
P_1.2.15
P_1.2.9
Operating frequency
fsys
5
–
24
MHz
4)
Junction temperature
Tj
-40
–
150
°C
–
1)
2)
3)
4)
This operation voltage range is only allowed for a short duration: tmax ≤ 400 ms, fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA.
Reduced functionality (e.g. cranking pulse) - Parameter deviation possible.
Not subject to production test, specified by design.
Function not specified when limits are exceeded.
Data Sheet
82
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.1.3
Current Consumption
Table 19
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min. Typ.
Max.
–
35
Number
Current Consumption @VS pin
Current consumption in
Active Mode at pin VS
IVs
Current consumption in
Active Mode at pin VSD
IVSD
–
–
40
mA
20 kHz
PWM on Bridge Driver
P_1.3.8
Current consumption in
Slow Down Mode
ISDM
–
–
30
mA
fsys = 5 MHz; LIN communication
P_1.3.6
Current consumption in
Sleep Mode
ISleep
–
30
35
µA
System in Sleep Mode,
P_1.3.3
microcontroller not powered, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 85°C;
VS = 5.5 V to 18V;2)
Current consumption in
Sleep Mode extended
range
ISleep_exten –
90
200
µA
System in Sleep Mode,
P_1.3.15
microcontroller not powered, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 150°C;
VS = 5.5 V to 18V;2)
Current consumption in
Sleep Mode
ISleep
–
33
µA
System in Sleep Mode,
P_1.3.9
microcontroller not powered, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 40°C;
VS = 5.5 V to 18V;2)
Data Sheet
30
mA
fsys = 20 MHz
P_1.3.1
no loads on pins, LIN in recessive
state1)
running; charge pump on (reverse
polarity FET on), external Low
Side FET static on (motor break
mode); VDDEXT on; all other
module set to power down;VS =
13.5V
d
–
83
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 19
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min. Typ.
Max.
Number
Current consumption in
Sleep Mode with cyclic
wake
ICyclic
–
–
110
µA
TJ = -40°C to 85°C;
VS = 5.5 V to 18V;
tCyclic_ON = 4ms;
tCyclic_OFF = 2048 ms;2)
Current consumption in
Stop Mode
IStop
–
100
150
µA
P_1.3.10
System in Stop Mode,
microcontroller not clocked, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND; TJ = 40°C to 85°C;
VS = 5.5V to 18V
P_1.3.4
1) Current on VS, ADC1/2 active, timer running, LIN active (recessive).
2) Incl. leakage currents form VBAT_SENSE, VDH, VSD and MON
Note: Within the functional range, the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
84
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.1.4
Thermal Resistance
Table 20
Thermal Resistance
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Junction to Soldering Point
RthJSP
–
6
–
K/W
1)
measured to
Exposed Pad
P_1.4.1
Junction to Ambient
RthJA
–
33
–
K/W
2)
P_1.4.2
1) Not subject to production test, specified by design.
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm³ with 2 inner
copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and
300mm2 cooling area on the bottom layer (70µm).
29.1.5
Timing Characteristics
The transition times between the system modes are specified here. Generally the timings are defined from the
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.
Table 21
System Timing1)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min. Typ.
Max.
Unit
Note / Test Condition
Number
P_1.5.6
Wake-up over battery
tstart
–
–
3
ms
Battery ramp-up time to code
execution
Wake-up over battery
tstartSW
–
–
1.5
ms
Battery ramp-up time to till
P_1.5.1
MCU reset is released; VS > 3
V and RESET = 1
Sleep-Exit
tsleep - exit –
–
1.5
ms
P_1.5.2
Rising/falling edge of any
wake-up signal (LIN, MON) till
MCU reset is released;
Sleep-Entry
tsleep -
–
330
µs
2)
–
P_1.5.3
entry
1) Not subject to production test, specified by design.
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.
Data Sheet
85
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.2
Power Management Unit (PMU)
This chapter includes all electrical characteristics of the Power Management Unit
29.2.1
PMU I/O Supply (VDDP) Parameters
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the padsupply VDDP and the transition times between the system modes are specified here.
Table 22
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
IVDDP
Specified output current
IVDDP
Specified output current
CVDDP1
Required decoupling
capacitance
Required buffer capacitance for CVDDP2
stability (load jumps)
Values
Min.
Typ.
Max.
0
–
50
0
–
30
Unit
Note / Test Condition
Number
mA
1)
P_2.1.1
mA
1)2)
P_2.1.22
0.47
–
2.2
µF
3)4)
1
–
2.2
µF
3)4)
P_2.1.2
ESR < 1Ω; the
specified capacitor value
is a typical value.
The specified
capacitor value is a
typical value.
Output voltage including line
and load regulation @ Active
Mode
VDDPOUT
4.9
5.0
5.1
V
5)
Output voltage including line
and load regulation @ Active
Mode
VDDPOUT
4.9
5.0
5.1
V
2)5)
Output voltage including line
and load regulation @ Stop
Mode
VDDPOUTS 4.5
Output drop @ Active Mode
VSVDDPout –
P_2.1.20
Iload < 90mA; VS > 5.5V P_2.1.3
Iload < 70mA; VS >
P_2.1.23
5.5V
5.0
5.5
V
5)
Iload is only internal;
VS > 5.5V
P_2.1.21
50
400
mV
IVDDP = 30mA6);
3.5V < VS < 5.0V
P_2.1.4
Load regulation @ Active Mode VVDDPLOR -50
–
50
mV
2 ... 90mA; C = 570nF
P_2.1.5
Line regulation @ Active Mode VVDDPLIR
-50
–
50
mV
VS = 5.5 ... 28V
P_2.1.6
5.14
–
5.4
V
VS > 5.5V; Overvoltage
P_2.1.7
TOP
VDDPOV
Overvoltage detection
leads to SUPPLY_NMI
Overvoltage detection filter time tFILT_VDDP –
735
–
µs
3)7)
P_2.1.24
3
–
V
3)
P_2.1.25
P_2.1.26
OV
VDDPOK
Voltage OK detection
8)
–
Voltage stable detection range
∆VDDPSTB - 220 –
+ 220 mV
3)
Undervoltage reset
VDDPUV
2.5
2.6
2.7
V
–
P_2.1.8
Overcurrent diagnostic
IVDDPOC
91
–
220
mA
–
P_2.1.9
Data Sheet
86
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 22
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Overcurrent diagnostic filter
time
tFILT_VDDP –
Overcurrent diagnostic
shutdown time
tFILT_VDDP –
1)
2)
3)
4)
5)
6)
7)
8)
9)
Unit
Note / Test Condition
Number
Typ.
Max.
27
–
µs
3)7)
P_2.1.27
290
–
µs
3)7)9)
P_2.1.28
OC
OC_SD
Specified output current for port supply and additional other external loads already excluding VDDC current.
This use case applies to cases where output current on VDDEXT is max. 40 mA.
Not subject to production test, specified by design.
Ceramic capacitor.
Load current includes internal supply.
Output drop for IVDDP without internal supply current.
This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
The absolute voltage value is the sum of parameters VDDP + VDDPSTB.
After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode.
Data Sheet
87
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.2.2
PMU Core Supply (VDDC) Parameters
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the coresupply VDDC and the transition times between the system modes are specified here.
Table 23
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Required decoupling capacitance
CVDDC1
0.1
–
1
µF
1)2)
ESR < 1Ω; the
specified capacitor
value is a typical
value.
P_2.2.1
Required buffer capacitance for
stability (load jumps)
CVDDC2
0.33
–
1
µF
2)
the specified
capacitor value is a
typical value.
P_2.2.17
Output voltage including line
regulation @ Active Mode/Stop
Mode
VDDCOUT
1.44
1.5
1.56
V
Iload < 40mA
P_2.2.2
Load Regulation @ Active Mode
VDDCLOR
-50
–
50
mV
2 ... 40mA; C =430nF P_2.2.3
Line regulation @ Active Mode
VDDCLIR
-25
–
25
mV
VDDP = 2.5 ... 5.5V
Overvoltage detection
VDDCOV
1.59
1.62
1.68
V
Overvoltage leads to P_2.2.5
SUPPLY_NMI
Overvoltage detection filter time
tFILT_VDDC –
735
–
µs
1)3)
P_2.2.18
–
+ 280
mV
1)
P_2.2.19
+ 110
mV
1)
P_2.2.20
P_2.2.4
OV
4)
∆VDDCOK
Voltage OK detection range
5)
- 280
Voltage stable detection range
∆VDDCSTB - 110
Undervoltage reset
VDDVUV
1.136 1.20
1.264
V
–
P_2.2.6
Overcurrent diagnostic
IVDDCOC
45
100
mA
–
P_2.2.7
P_2.2.21
P_2.2.22
Overcurrent diagnostic filter time
tFILT_VDDC –
–
–
27
–
µs
1)3)
290
–
µs
1)3)6)
OC
Overcurrent diagnostic shutdown
time
1)
2)
3)
4)
5)
6)
tFILT_VDDC –
OC_SD
Not subject to production test, specified by design.
Ceramic capacitor.
This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
The absolute voltage value is the sum of parameters VDDC + VDDCSTB.
The absolute voltage value is the sum of parameters VDDC + VDDCOK.
After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode.
Data Sheet
88
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.2.3
VDDEXT Voltage Regulator (5.0V) Parameters
Table 24
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ. Max.
Unit
Note /
Test Condition
Number
Specified output current
IVDDEXT
0
–
20
mA
–
P_2.3.1
Specified output current
IVDDEXT
0
–
40
mA
1)
P_2.3.21
3) 2)
Required decoupling capacitance CVDDEXT1
0.1
–
2.2
µF
ESR < 1 Ω; the
specified capacitor
value is a typical
value.
P_2.3.22
Required buffer capacitance for
stability (load jumps)
CVDDEXT2
1
–
2.2
µF
3)2)
the specified
capacitor value is a
typical value.
P_2.3.20
Output voltage including line and
load regulation
VDDEXT
4.9
5.0
5.1
V
3)
P_2.3.3
Output voltage including line and
load regulation
VDDEXT
Output drop @ Active Mode
VS-VDDEXT
50
+300
mV
3)
Iload < 20mA;
3V < VS < 5.0V
P_2.3.4
Output drop @ Active Mode
VS-VDDEXT
–
+400
mV
Iload < 40mA;
3V < VS < 5.0V
P_2.3.14
Load regulation @ Active Mode
VDDEXTLOR
-50
–
50
mV
2 ... 40mA; C =200nF P_2.3.5
Line regulation @ Active Mode
VVDDEXTLIR
-50
–
50
mV
VS = 5.5 ... 28V
3)
Iload<20mA; VS >
5.5V
4.8
5.0
5.2
V
Iload<40mA; VS >
P_2.3.23
5.5V
P_2.3.6
Power supply ripple rejection @
Active Mode
PSSRVDDEXT 50
–
–
dB
VS = 13.5V; f =0 ... P_2.3.7
1KHz; Vr=2Vpp
Overvoltage detection
VVDDEXTOV
–
5.4
V
VS > 5.5V
P_2.3.8
P_2.3.24
Overvoltage detection filter time
5.18
tFILT_VDDEXT –
735
–
µs
3)4)
3
–
V
3)
P_2.3.25
P_2.3.26
OV
VVDDEXTOK
Voltage OK detection range
5)
–
–
+ 220
mV
3)
2.6
2.8
3.0
V
6)
P_2.3.9
50
–
160
mA
–
P_2.3.10
27
–
µs
3)4)
P_2.3.27
µs
3)4)
P_2.3.28
Voltage stable detection range
∆VVDDEXTST - 220
Undervoltage trigger
VVDDEXTUV
Overcurrent diagnostic
IVDDEXTOC
Overcurrent diagnostic filter time
tFILT_VDDCOC –
B
Overcurrent diagnostic shutdown tFILT_VDDCOC –
time
_SD
1)
2)
3)
4)
290
–
This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22.
Ceramic capacitor.
Not subject to production test, specified by design.
This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
Data Sheet
89
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
5) The absolute voltage value is the sum of parameters VDDEXT + VDDEXTSTB.
6) When the condition is met, the Bit VDDEXT_CTRL.bit.SHORT will be set.
Data Sheet
90
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.2.4
VPRE Voltage Regulator (PMU Subblock) Parameters
The PMU VPRE Regulator acts as a supply of VDDP and VDDEXT voltage regulators.
Table 25
Functional Range
Parameter
Symbol
Specified output current
IVPRE
Values
Min.
Typ.
Max.
–
–
110
Unit
Note / Test Condition Number
mA
1)
P_2.4.1
1) Not subject to production test, specified by design.
29.2.4.1
Load Sharing Scenarios of VPRE Regulator
The figure below shows the possible load sharing scenarios of VPRE regulator.
VS
VPRE
max. 110 mA
VDDEXT
VDDEXT - 5V
1: max. 20 mA
2: max. 40 mA
VDDP - 5V
1: max. 90 mA
2: max. 70 mA
VDDP
CVDDEXT
CVDDP
GND (Pin 39)
GND (Pin 39)
VDDC
VDDC - 1.5V
max. 40 mA
CVDDC
GND (Pin 39)
Load Sharing VPRE – Scenarios 1 & 2
Load_Sharing_VPRE.vsd
Figure 32
Load Sharing Scenarios of VPRE Regulator
29.2.5
Power Down Voltage Regulator (PMU Subblock) Parameters
The PMU Power Down voltage regulator consists of two subblocks:
•
•
Power Down Pre regulator: VDD5VPD
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)
Both regulators are used as purely internal supplies. The following table contains all relevant parameters:
Data Sheet
91
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 26
Functional Range
Parameter
Symbol
Values
Min.
Typ.
Max.
–
1.5
Unit
Note / Test Condition Number
V
1)
VDD1V5_PD
Power-On Reset Threshold
VDD1V5_PD_ 1.2
P_2.5.1
RSTTH
1) Not subject to production test, specified by design
Data Sheet
92
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.3
System Clocks
29.3.1
Oscillators and PLL Parameters
Table 27
Electrical Characteristics System Clocks
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
Number
Typ.
Max.
14
18
22
MHz This clock is used at startup P_3.1.1
and can be used in case the
PLL fails
70
100
130
kHz
This clock is used for cyclic P_3.1.2
wake
PMU Oscillators (Power Management Unit)
Frequency of LP_CLK
fLP_CLK
Frequency of LP_CLK2 fLP_CLK2
CGU Oscillator (Clock Generation Unit Microcontroller)
Short term frequency
deviation1)
fTRIMST
-0.4
–
+0.4
%
2)3)
Within any 10 ms, e.g.
after synchronization to a
LIN frame (PLL settings
untouched within 10 ms)
P_3.1.3
Absolute accuracy
fTRIMABSA
-1.5
–
+1.5
%
Including temperature and
lifetime deviation
P_3.1.4
CGU-OSC Start-up
time
tOSC
–
–
10
µs
3)
P_3.1.5
Startup time OSC from
Sleep Mode, power supply
stable
PLL (Clock Generation Unit Microcontroller) 3)
VCO frequency range
Mode 0
fVCO-0
48
–
112
MHz VCOSEL =”0”
P_3.1.6
VCO frequency range
Mode 1
fVCO-1
96
–
160
MHz VCOSEL =”1”
P_3.1.7
Input frequency range
fOSC
4
–
16
MHz –
P_3.1.8
XTAL1 input freq. range fOSC
4
–
16
MHz –
P_3.1.9
0.04687 –
80
MHz –
P_3.1.10
Free-running frequency fVCOfree_0
Mode 0
–
–
38
MHz VCOSEL =”0”
P_3.1.11
Free-running frequency fVCOfree_1
Mode 1
–
–
76
MHz VCOSEL =”1”
P_3.1.12
P_3.1.13
Output freq. range
fPLL
Input clock high/low
time
thigh/low
10
–
–
ns
–
Peak period jitter
tjp
-500
–
500
ps
4)
for K=1
P_3.1.14
Accumulated jitter
jacc
–
–
5
ns
4)
for K=1
P_3.1.15
Lock-in time
tL
–
–
200
µs
–
Data Sheet
93
P_3.1.16
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
1)
2)
3)
4)
The typical oscillator frequency is 5 MHz
VDDC = 1.5 V, Tj = 25°C
Not subject to production test, specified by design.
This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance.
29.4
Flash Memory
This chapter includes the parameters for the 64 kByte embedded flash module.
29.4.1
Flash Parameters
Table 28
Flash Characteristics1)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Programming time per 128 byte page
Symbol
tPR
Values
Unit
Note /
Number
Test Condition
Min.
Typ.
Max.
–
32)
3.5
ms
3V < VS < 28V
P_4.1.1
2)
4.5
ms
3V < VS < 28V
P_4.1.2
Erase time per sector/page
tER
–
4
Data retention time
tRET
20
–
–
years
1,000 erase /
P_4.1.3
program cycles
Data retention time
tRET
50
–
–
years
1,000 erase /
P_4.1.9
program cycles
Tj = 30°C3)
Flash erase endurance for user sectors NER
30
–
–
kcycles Data retention
time 5 years
Flash erase endurance for security
pages
NSEC
10
–
–
cycles
4)
Drain disturb limit
NDD
32
–
–
kcycles
5)
P_4.1.4
Data retention P_4.1.5
time 20 years
P_4.1.6
1) Not subject for production test, specified by design.
2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system
clock cycles. The requirement is only relevant for extremely low system frequencies.
3) Derived by extrapolation of lifetime tests.
4) Temperature: 25 °C
5) This parameter limits the number of subsequent programming operations within a physical sector without a given page in
this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal
sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM emulation firmware
routines handle this limit automatically, for wordline erases in code sectors (without EEPROM emulation) it is
recommended to execute a software based refresh, which may make use of the integrated random number generator
NVMBRNG to statistically start a refresh.
Data Sheet
94
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.5
Parallel Ports (GPIO)
29.5.1
Description of Keep and Force Current
VDDP
keeper
current
PU Device
PUDSEL
P1.x
P0.x
\PUDSEL
keeper
current
PD Device
VSS
Pull- Up- Down.vsd
Figure 33
Pull-Up/Down Device
UGPIO
Logical "1"
7.5 kOhm (equivalent)
(1.5V / 200uA)
VIH - VDDP
Undefined
2.33 kOhm (equivalent)
(3.5V / 1.5mA)
VIL - VDDP
Logical "0"
-I PLF
Figure 34
Data Sheet
I
-IPLK
Current_Diag.vsd
Pull-Up Keep and Forced Current
95
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
UGPIO
Logical "1"
2.33 kOhm (equivalent)
(3.5V / 1.5mA)
VIH
Undefined
7.5 kOhm (equivalent)
(1.5V / 200uA)
VIL
Logical "0"
IPLK
I
I PLF
Current_Diag-Pull _down.vsd
Figure 35
Pull-Down Keep and Force Current
29.5.2
DC Parameters of Port 0, Port 1, TMS and Reset
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the maximum allowed ocurrent
which can be taken out of VDDP.
Table 29
Current Limits for Port Output Drivers1)
Port Output Driver Mode
Maximum Output Current
(IOLmax , - IOHmax)
VDDP ≥ 4.5V
Strong driver2)
Medium driver
Weak driver
3)
3)
Maximum Output Current
(IOLnom , - IOHnom)
Number
2.6V < VDDP < VDDP ≥ 4.5V
4.5V
2.6V < VDDP <
4.5V
5 mA
3 mA
1.6 mA
1.0 mA
P_5.1.15
3 mA
1.8 mA
1.0 mA
0.8 mA
P_5.1.1
0.5 mA
0.3 mA
0.25 mA
0.15 mA
P_5.1.2
1) Not subject to production test, specified by design.
2) Not available for port pins P0.4, P1.0, P1.1 and P1.2
3) All P0.x and P1.x
Table 30
DC Characteristics Port0, Port1
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Input hysteresis
HYSP0_P1 0.11 x VDDP –
–
V
1)
Input hysteresis
HYSP0_P1 –
–
V
1)
_exend
Data Sheet
0.09 x
VDDP
96
Number
P_5.1.5
Series
resistance = 0 Ω;
4.5V ≤ VDDP ≤
5.5V
P_5.1.16
Series
resistance = 0 Ω;
2.6V ≤ VDDP ≤
4.5V
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 30
DC Characteristics Port0, Port1 (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
Input low voltage
VIL
-0.3
–
0.3 x VDDP V
2)
4.5V ≤ VDDP ≤
5.5V
P_5.1.3
Input low voltage
VIL_extend
-0.3
0.42 x
–
V
1)
2.6V ≤ VDDP ≤
4.5V
P_5.1.17
Input high voltage
VIH
0.7 x VDDP
–
VDDP + 0.3 V
2)
4.5V ≤ VDDP ≤
5.5V
P_5.1.4
Input high voltage
VIH_extend –
0.52 x
VDDP + 0.3 V
1)
2.6V ≤ VDDP ≤
4.5V
P_5.1.18
Output low voltage
VOL
–
–
1.0
V
3) 4)
IOL ≤ IOLmax
P_5.1.6
Output low voltage
VOL
–
–
0.4
V
3) 5)
IOL ≤ IOLnom
P_5.1.7
V
3) 4)
IOH ≥ IOHmax
P_5.1.8
V
3) 5)
IOH ≥ IOHnom
P_5.1.9
µA
6)
Output high voltage
Output high voltage
Input leakage current
VOH
VOH
IOZ2
VDDP
VDDP - 1.0
VDDP - 0.4
-5
VDDP
–
–
–
–
–
+5
TJ ≤ 85°C,
0.45 V < VIN
P_5.1.10
< VDDP
Input leakage current
IOZ2
-15
–
+15
µA
TJ ≤ 150°C,
0.45 V < VIN
< VDDP
P_5.1.11
Pull level keep current
IPLK
-200
–
+200
µA
7)
VPIN ≥ VIH (up)
VPIN ≤ VIL (dn)
P_5.1.12
Pull level force current
IPLF
-1.5
–
+1.5
mA
7)
VPIN ≤ VIL (up)
VPIN ≥ VIH (dn)
P_5.1.13
Pin capacitance
CIO
–
–
10
pF
1)
P_5.1.14
Reset Pin Input Filter Time Tfilt_RESET –
5
–
µs
1)
P_5.1.19
Reset Pin Timing
1) Not subject to production test, specified by design.
2) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for pin
groups must be respected.
4) Tested at 4.9V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 4.5V < VDDP < 5.5V.
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOL→GND, VOH→VDDP).
Tested at 4.9V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA.
6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values are
ensured by correlation. For derating, please refer to the following descriptions:
Leakage derating depending on temperature (TJ = junction temperature [°C]):
IOZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 µA.
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):
IOZ = IOZtempmax - (1.6 × DV) [µA]
This voltage derating formula is an approximation which applies for maximum temperature.
Data Sheet
97
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down.
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose
IO pins.
29.5.3
DC Parameters of Port 2
These parameters apply to the IO voltage range, 4.5 V ≤ VDDP ≤ 5.5 V.
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the overload current IOV.
Table 31
DC Characteristics Port 2
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
Input low voltage
VIL
-0.3
–
0.3 x VDDP V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.2.1
Input low voltage
VIL_extend
-0.3
0.42 x
–
V
2)
2.6V ≤ VDDP ≤
4.5V
P_5.2.10
Input high voltage
VIH
0.7 x VDDP
–
VDDP + 0.3 V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.2.2
Input high voltage
VIH_extend –
0.52 x
VDDP + 0.3 V
2)
P_5.2.11
–
V
2)
–
V
2)
VDDP
VDDP
0.11 x VDDP –
Input hysteresis
HYSP2
Input hysteresis
HYSP2_ext –
end
0.09 x
VDDP
2.6V ≤ VDDP ≤
4.5V
Series
P_5.2.3
resistance = 0 Ω;
4.5V ≤ VDDP ≤
5.5V
P_5.2.12
Series
resistance = 0 Ω;
2.6V ≤ VDDP <
4.5V
Input leakage current
IOZ1
-400
–
+400
nA
TJ ≤ 85°C,
0 V < VIN < VDDP
P_5.2.4
Pull level keep current
IPLK
-30
–
+30
µA
3)
VPIN ≥ VIH (up)
VPIN ≤ VIL (dn)
P_5.2.5
Pull level force current
IPLF
-750
–
+750
µA
3)
VPIN ≤ VIL (up)
VPIN ≥ VIH (dn)
P_5.2.6
10
pF
2)
P_5.2.7
Pin capacitance
CIO
–
–
(digital inputs/outputs)
1) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.
2) Not subject to production test, specified by design.
3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down.
Data Sheet
98
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.6
LIN Transceiver
29.6.1
Electrical Characteristics
Table 32
Electrical Characteristics LIN Transceiver
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit Note / Test Condition
Number
Max.
Bus Receiver Interface
Receiver threshold voltage, Vth_dom
recessive to dominant edge
Receiver dominant state
VBUSdom -27
Receiver threshold voltage, Vth_rec
dominant to recessive edge
Receiver recessive state
0.4 ×VS 0.45 ×VS 0.53 x VS V
VBUSrec
0.47 x
VS
SAE J2602
P_6.1.1
0.4 ×VS
V
LIN Spec 2.2 (Par. 17)
P_6.1.2
0.55 ×VS 0.6 ×VS
V
SAE J2602
P_6.1.3
–
0.6 ×VS –
1)
LIN Spec 2.2 (Par. 18) P_6.1.4
0.525
× VS
V
2)
LIN Spec 2.2 (Par. 19) P_6.1.5
Receiver center voltage
VBUS_CN 0.475
× VS
T
Receiver hysteresis
VHYS
0.07 VS 0.12 ×VS 0.175
× VS
V
3)
LIN Spec 2.2 (Par. 20) P_6.1.6
Wake-up threshold voltage
VBUS,wk
0.4 ×VS 0.5 ×VS
0.6 ×VS
V
–
P_6.1.7
3
–
15
µs
P_6.1.8
The overall dominant
time for bus wake-up is
a sum of tWK,bus +
adjustable digital filter
time. The digital filter
time can be adjusted by
PMU.CNF_WAKE_FIL
TER.CNF_LIN_FT;
Dominant time for bus wake- tWK,bus
up (internal analog filter
delay)
0.5 ×VS
1.15 ×VS V
Bus Transmitter Interface
Bus recessive output
voltage
VBUS,ro
0.8 ×VS –
VS
V
VTxD = high Level
P_6.1.9
Bus short circuit current
IBUS,sc
40
100
150
mA
Current Limitation for
driver dominant state
driver on
VBUS = 18 V; LIN Spec
2.2 (Par. 12)
P_6.1.10
Bus short circuit filter time
tBUS,sc
–
1
–
µs
P_6.1.71
The overall bus short
circuit filter time is a sum
of tBUS,sc + digital filter
time. The digital filter
time is 4 µs (typ.)
Data Sheet
99
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 32
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Leakage current (loss of
ground)
IBUS_NO_ -1000
Leakage current
IBUS_NO_ –
Unit Note / Test Condition
Typ.
Max.
-450
1000
µA
P_6.1.11
VS = 12 V; 0 < VBUS <
18 V; LIN Spec 2.2 (Par.
15)
10
20
µA
VS = 0 V; VBUS = 18 V;
GND
Leakage current
IBUS_PAS -1
Leakage current
IBUS_PAS –
–
–
mA
VS = 18 V; VBUS = 0 V;
LIN Spec 2.2 (Par. 13)
P_6.1.13
–
20
µA
VS = 8 V; VBUS = 18 V;
P_6.1.14
_dom
LIN Spec 2.2 (Par. 14)
_rec
RBUS
P_6.1.12
LIN Spec 2.2 (Par. 16)
BAT
Bus pull-up resistance
Number
20
30
47
kΩ
Normal mode LIN Spec P_6.1.15
2.2 (Par. 26)
AC Characteristics - Transceiver Normal Slope Mode
td(L),R
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.16
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.17
µs
tsym,R = td(L),R - td(H),R;
LIN Spec 2.2 (Par. 32)
P_6.1.18
4)
P_6.1.19
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
tsym,R
-2
–
2
Duty cycle D1
Normal Slope Mode
(for worst case at 20 kbit/s)
tduty1
0.396
–
–
duty cycle 1
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS; VS = 5.5 …
18 V;
tbit = 50 µs;
D1 = tbus_rec(min)/2 tbit;
LIN Spec 2.2 (Par. 27)
Duty cycle D2
Normal Slope Mode
(for worst case at 20 kbit/s)
tduty2
–
–
0.581
4)
P_6.1.20
duty cycle 2
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS;
VS = 5.5 … 18 V;
tbit = 50 µs;
D2 = tbus_rec(max)/2 tbit;
LIN Spec 2.2 (Par. 28)
AC Characteristics - Transceiver Low Slope Mode
td(L),R
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.21
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.22
Propagation delay
bus dominant to RxD LOW
Data Sheet
100
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 32
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note / Test Condition
Number
tsym,R = td(L),R - td(H),R;
LIN Spec 2.2 (Par. 32)
P_6.1.23
4)
P_6.1.24
Receiver delay symmetry
tsym,R
-2
–
2
Duty cycle D3
(for worst case at
10,4 kbit/s)
tduty1
0.417
–
–
duty cycle 3
THRec(max) =
0.778 ×VS;
THDom(max) =
0.616 ×VS; VS = 5.5 …
18 V;
tbit = 96 µs;
D3 = tbus_rec(min)/2 tbit;
LIN Spec 2.2 (Par. 29)
Duty cycle D4
(for worst case at
10,4 kbit/s)
tduty2
–
–
0.590
4)
µs
P_6.1.25
duty cycle 4
THRec(min) = 0.389 ×VS;
THDom(min) =
0.251 ×VS;
VS = 5.5 … 18 V;
tbit = 96 µs;
D4 = tbus_rec(max)/2 tbit;
LIN Spec 2.2 (Par. 30)
AC Characteristics - Transceiver Fast Slope Mode
td(L),R
0.1
–
6
µs
–
P_6.1.26
td(H),R
Propagation delay
bus recessive to RxD HIGH
0.1
–
6
µs
–
P_6.1.27
-1.5
–
1.5
µs
tsym,R = td(L),R - td(H),R;
P_6.1.28
td(L),R
0.1
–
6
µs
–
P_6.1.31
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
–
6
µs
–
P_6.1.32
-1.0
–
1.5
µs
tsym,R = td(L),R - td(H),R;
P_6.1.33
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
tsym,R
AC Characteristics - Flash Mode
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
Data Sheet
tsym,R
101
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 32
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ.
Max.
Number
5)
Duty cycle D7 (for worst
case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
tduty1
0.399
–
–
duty cycle D7
P_6.1.34
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS; VS = 13.5 V;
tbit = 8.7 µs;
D7 = tbus_rec(min)/2 tbit;
Duty cycle D8 (for worst
case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
tduty2
–
–
0.578
5)
LIN input capacity
CLIN_IN
–
15
30
pF
6)
P_6.1.69
TxD dominant time out
ttimeout
6
12
20
ms
VTxD = 0 V
P_6.1.36
180
200
°C
6)
P_6.1.65
K
6)
P_6.1.66
duty cycle 8
P_6.1.35
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS;VS = 13.5 V;
tbit = 8.7 µs;
D8 = tbus_rec(max)/2 tbit;
Thermal Shutdown (Junction Temperature)
Thermal shutdown temp.
Thermal shutdown hyst.
1)
2)
3)
4)
TjSD
∆T
160
–
10
–
Maximum limit specified by design.
VBUS_CNT = (Vth_dom +Vth rec)/2
VHYS = VBUSrec - VBUSdom
Bus load concerning LIN Spec 2.2:
Load 1 = 1 nF / 1 kΩ = CBUS / RBUS
Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS
Load 3 = 10 nF / 500 Ω = CBUS / RBUS
5) Bus load
Load 1 = 1 nF / 500 Ω = CBUS / RBUS
6) Not subject to production test, specified by design.
Data Sheet
102
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.7
High-Speed Synchronous Serial Interface
29.7.1
SSC Timing Parameters
The table below provides the SSC timing in the TLE9867QXA20.
Table 33
SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Number
Test Condition
–
2)
VDDP > 2.7 V
P_7.1.1
–
ns
2)
VDDP > 2.7 V
P_7.1.2
ns
2)
VDDP > 2.7 V
P_7.1.3
MRST hold from SCLK
t3
15
–
–
ns
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.
2)
VDDP > 2.7 V
P_7.1.4
1)
t0
SCLK clock period
t1
MTSR delay from SCLK
10
t2
MRST setup to SCLK
2 * TSSC –
–
10
–
–
2) Not subject to production test, specified by design.
t0
SCLK1)
t1
t1
MTSR1)
t2
t3
Data
valid
MRST1)
t1
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
SSC_Tmg1
Figure 36
Data Sheet
SSC Master Mode Timing
103
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.8
Measurement Unit
29.8.1
System Voltage Measurement Parameters
Table 34
Supply Voltage Signal Conditioning
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Measurement output
VA5
voltage range @ VAREF5
Measurement output
voltage range @
VAREF1V2
VA1V2
Values
Unit Note / Test Condition
Number
Min.
Typ.
Max.
0
–
5
V
–
P_8.1.15
0
–
1.23
V
–
P_8.1.16
Battery / Supply Voltage Measurement VBAT_SENSE / VS
Input to output voltage
attenuation:
ATTVS_1
–
0.055
–
SFR setting 1
P_8.1.41
ATTVBAT_SENSE –
0.055
–
SFR setting 1
P_8.1.60
–
22
V
1)
–
220
mV
SFR setting 1, VS = 5.5 V P_8.1.70
to 18V,
Tj = -40..85°C
–
0.039
–
SFR setting 2
P_8.1.42
ATTVBAT_SENSE –
0.039
–
SFR setting 2
P_8.1.61
–
31
VS
Input to output voltage
attenuation:
VBAT_SENSE
Nominal operating input
voltage rangeVBAT_SENSE
and VS
_1
VBAT_SENSE
3
,range1 , VS,range1
Accuracy of VBAT_SENSE/ VS ΔVBAT_SENSE
-220
after calibration
,range1 , VS,range1
Input to output voltage
attenuation:
ATTVS_2
P_8.1.1
SFR setting 1;
Max. value corresponds
to typ. ADC full scale
input; 3V < VBAT_SENSE/ VS
< 28V
VS
Input to output voltage
attenuation:
VBAT_SENSE
Nominal operating input
voltage range VBAT_SENSE
and VS
Data Sheet
_2
VBAT_SENSE
3
,range2 ,VS,range2
104
V
1)
P_8.1.40
SFR setting 2;
Max. value corresponds
to typ. ADC full scale input
3V < VBAT_SENSE/ VS <
28V
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 34
Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Unit Note / Test Condition
Typ.
Max.
Accuracy of VBAT_SENSE /
VS after calibration
ΔVBAT_SENSE
-370
,
V
,range2
S,range2
–
370
mV
Measurement input
leakage current for
Ileak_VBAT_SENSE 0
–
4.0
µA
VBAT_SENSE
Number
SFR setting 2, VS = 5.5V
to 18V,
Tj = -40..85°C
P_8.1.44
PD_N=0 (off-state),
P_8.1.72
VBAT_SENSE = 13.5V
, measure
Driver Supply Voltage Measurement VSD
ATTVSD
–
0.039
–
Nominal operating input
voltage range VSD
VSD,range
2.5
–
31
Accuracy of VSD sense
after calibration
∆VSD
-440
–
440
Input to output voltage
attenuation:
–
P_8.1.21
V
1)
P_8.1.2
mV
VS = 5.5V to 18V,
Tj = -40..85°C
P_8.1.47
–
P_8.1.56
VSD
Charge Pump Voltage Measurement VCP
ATTVCP
–
0.023
–
Nominal operating input
voltage range VCP
VCP,range
2.5
–
52
V
1)
P_8.1.7
Accuracy of VCP sense
after calibration
∆VCP
-747
–
747
mV
VS = 5.5V to 18V,
Tj = -40..85°C
P_8.1.62
–
P_8.1.49
Input to output voltage
attenuation:
VCP
Monitoring Input Voltage Measurement VMON
ATTVMON
–
0.039
–
Nominal operating input
voltage range VMON
VMON,range
2.5
–
31
V
1)
P_8.1.8
Accuracy of VMON sense
after calibration
∆VMON
-440
–
440
mV
VS = 5.5V to 18V,
Tj = -40..85°C
P_8.1.68
ATTVDDP
–
0.164
–
–
P_8.1.33
VDDP,range
0
–
7.50
1)
P_8.1.50
Input to output voltage
attenuation:
VMON
Pad Supply Voltage Measurement VVDDP
Input-to-output voltage
attenuation:
VDDP
Nominal operating input
voltage range VDDP
Data Sheet
105
V
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 34
Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Accuracy of VDDP sense
after calibration
Symbol
∆VDDP_SENSE
Values
Unit Note / Test Condition
Min.
Typ.
Max.
-105
–
105
mV
Number
2)
VS = 5.5 to 18V,
Tj = -40..85°C
P_8.1.5
–
P_8.1.22
10-Bit ADC Reference Voltage Measurement VAREF
ATTVAREF
–
0.219
–
Nominal operating input
voltage range VAREF
VAREF,range
0
–
5.62
V
1)
P_8.1.51
Accuracy of VAREF sense
after calibration
∆VAREF
-79
–
79
mV
VS = 5.5V to 18V,
Tj = -40..85°C
P_8.1.48
–
P_8.1.57
1)
P_8.1.52
–
P_8.1.34
Input to output voltage
attenuation:
VAREF
8-Bit ADC Reference Voltage Measurement VBG
ATTVBG
–
0.75
–
VBG,range
0.8
–
1.64
ATTVDDC
–
0.75
–
Nominal operating input
voltage range VDDC
VDDC,range
0.8
–
1.64
V
1)
P_8.1.53
Accuracy of VDDC sense
after calibration
∆VDDC_SENSE
-22
–
22
mV
VS = 5.5 to 18V,
Tj = -40..85°C
P_8.1.6
Input-to-output voltage
attenuation:
VBG
Nominal operating input
voltage range VBG
V
Core supply Voltage Measurement VDDC
Input-to-output voltage
attenuation:
VDDC
VDH Input Voltage Measurement VVDH10BITADC
VDH Input to output
voltage attenuation:
ATTVDH_1
–
0.1666 –
667
SFR setting 1
P_8.1.64
VDH Input to output
voltage attenuation:
ATTVDH_2
–
0.2260 –
0
SFR setting 2
P_8.1.65
VVDH,range1
Nominal operating input
voltage range VVDH, Range
1
–
–
30
SFR setting 1
P_8.1.66
VVDH,range2
Nominal operating input
voltage range VVDH, Range
2
–
–
20
SFR setting 2
P_8.1.67
VVDH 10-bit ADC, Range 1 ∆VVDHADC10B
-300
–
300
mV
VS= 5.5 to 18V,
Tj = -40..85°C
P_8.1.39
VVDH 10-bit ADC, Range 2 ∆VVDHADC10B
-200
–
200
mV
VS= 5.5V to 18V,
Tj = -40..85°C
P_8.1.71
Data Sheet
106
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 34
Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Number
Min.
Typ.
Max.
200
390
470
kΩ
PD_N=1 (on-state)
P_8.1.3
–
2.0
µA
PD_N=0 (off-state),
VMON = 13.5V
P_8.1.10
10-Bit ADC measurement
input resistance for VDH
Rin_VDH,measure
Measurement input
leakage current for VVDH
Ileak_VDH, measure 0
1) Not subject to production test, specified by design.
2) Accuracy is valid for a calibrated device.
Data Sheet
107
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.8.2
Central Temperature Sensor Parameters
Table 35
Electrical Characteristics Temperature Sensor Module
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Output voltage VTEMP at
T0=273 K (0°C)
a
Temperature sensitivity b
b
Values
Min.
Typ.
Max.
–
0.666
–
Unit
Note / Test Condition
Number
V
1)
P_8.2.2
T0=273 K (0°C)
Accuracy_1
–
Acc_1
Accuracy_2
-10
Acc_2
Accuracy_3
2.31
–
-10
Acc_3
–
10
–
-5
10
–
5
mV/K
1)
°C
2)1)
-40°C < Tj < 85°C
P_8.2.5
°C
2)1)
125°C < Tj < 150°C
P_8.2.6
°C
2)1)
85°C < Tj < 125°C
P_8.2.7
P_8.2.4
1) Not subject to production test, specified by design
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1
29.8.3
ADC2
29.8.3.1
ADC2 Specifications
Table 36
DC Specifications
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Resolution
RES
–
8
–
Bits
Full
P_8.3.18
Guaranteed offset error
–
-2.0
±0.3
2.0
LSB
not calibrated
P_8.3.19
Gain error
–
-2.0
±0.5
2.0
%FSR
not calibrated
P_8.3.20
Differential non-linearity
(DNL)
–
-0.8
±0
0.8
LSB
Full
P_8.3.21
Integral non-linearity (INL) –
-1.2
±0
1.2
LSB
–
P_8.3.22
Input referred noise
–
0.5
1.5
LSBrms
1)
–
@ TJ = 27°C
P_8.3.23
1) Not subject to production test, specified by design.
Data Sheet
108
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.9
ADC1 - VAREF
29.9.1
Electrical Characteristics VAREF
Table 37
Electrical Characteristics VAREF
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Number
Required buffer
capacitance
CVAREF
0.1
–
1
µF
ESR < 1Ω
P_9.1.1
Reference output voltage
VAREF
4.95
5
5.05
V
VS > 5.5V
P_9.1.2
P_9.1.3
DC supply voltage
rejection
DCPSRVAREF 30
–
–
dB
1)
Supply voltage ripple
rejection
ACPSRVAREF 26
–
–
dB
1)
Turn ON time
tso
–
–
200
µs
1)
–
100
–
kΩ
1)
Input resistance at VAREF RIN,VAREF
Pin
–
VS = 13.5V; f = 0 ... 1KHz; P_9.1.4
Vr = 2Vpp
Cext = 100nF
P_9.1.5
PD_N to 99.9% of final value
input impedance in case of P_9.1.20
VAREF is applied from
external
1) Not subject to production test, specified by design.
Data Sheet
109
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.9.2
Electrical Characteristics ADC1 (10-Bit)
These parameters describe the conditions for optimum ADC performance.
Note: Operating Conditions apply.
Table 38
A/D Converter Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Analog reference supply VAREF
Values
Min.
Typ.
Max.
VAGND
–
VDDPA
+ 1.0
Analog reference ground VAGND
VSS
Unit
Note /
Test Condition
Number
V
1)
P_9.2.1
+ 0.05
–
1.5
V
–
P_9.2.2
- 0.05
Analog input voltage
range
VAIN
VAGND
–
VAREF
V
2)
P_9.2.3
Analog clock frequency
fADCI
5
–
24
MHz
3)
P_9.2.4
(13 + STC) (13 + STC (13 + STC –
× tADCI
) × tADCI
) × tADCI
+ 2 x tSYS
+ 2 x tSYS + 2 x tSYS
4)
P_9.2.5
(11 + STC) (11 + STC (11 + STC –
× tADCI
) × tADCI
) × tADCI
+ 2 × tSYS + 2 × tSYS + 2 × tSYS
–
P_9.2.6
tWAF
–
–
4
µs
1)
P_9.2.7
tWAS
Wakeup time from
analog powerdown, slow
mode
–
–
15
µs
5)
P_9.2.8
Total unadjusted error (8 TUE8B
bit)
–
±1
±2
counts
6)7)
Total unadjusted error
(10 bit)
TUE10B
–
±6
±12
counts
7)8)
DNL error
EADNL
–
±0.8
±3
counts –
P_9.2.10
INL error with internal 5V EAINL_int_V –
reference VAREF
AREF
±0.8
±5
counts –
P_9.2.11
EAGAIN_int_ –
±0.4
±10
counts –
P_9.2.12
±0.5
±2
counts –
P_9.2.13
Conversion time for 10bit result
tC10
Conversion time for 8-bit tC8
result
Wakeup time from
analog powerdown, fast
mode
Gain error with internal
5V reference VAREF
VAREF
Offset error
EAOFF
–
VAREF = 5.0 V P_9.2.9
VAREF = 5.0 V P_9.2.22
Total capacitance
of an analog input
CAINT
–
–
10
pF
5)9)
Switched capacitance
of an analog input
CAINS
–
–
4
pF
5)9)
P_9.2.15
Resistance of
the analog input path
RAIN
–
–
2
kΩ
5)9)
P_9.2.16
Data Sheet
110
P_9.2.14
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 38
A/D Converter Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Total capacitance
of the reference input
CAREFT
–
–
15
pF
5)9)
P_9.2.17
Switched capacitance
of the reference input
CAREFS
–
–
7
pF
5)9)
P_9.2.18
Resistance of
the reference input path
RAREF
–
–
2
kΩ
5)9)
P_9.2.19
1) Not subject to production test, specified by design.
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these cases will
be 0000H or 03FFH, respectively.
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.
4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the
digital result and the time to load the result register with the conversion result.
5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate of not more than 500 µs.
6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed
10 mA, and if VAREF and VAGND remain stable during the measurement time.
8) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
9) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply
voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical
values can be used:
CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 kΩ.
29.10
Data Sheet
Reserved
111
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.11
High-Voltage Monitoring Input
29.11.1
Electrical Characteristics
Table 39
Electrical Characteristics Monitoring Input
Tj = -40 °C to +150 °C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
0.4*VS
0.5*VS
0.6*VS
Unit
Note / Test Condition
Number
MON Input Pin characteristics
Wake-up/monitoring
threshold voltage
VMONth
V
Without external serial
resistor Rs (with Rs:DV =
IPD/PU * Rs); VS = 5.5V to
18V;
TJ = -40°C to 85°C
P_11.1.1
Wake-up/monitoring
threshold voltage
extended range
VMONth_ext 0.44*VS 0.53*V 0.64*VS V
P_11.1.11
end
S
Without external serial
resistor Rs (with Rs:DV =
IPD/PU * Rs)
Threshold hysteresis
VMONth,hys 0.015*
VS
VS
0.05*
0.1*VS
V
P_11.1.12
In all modes; without
external serial resistor Rs
(with Rs:dV = IPD/PU * Rs);
VS = 5.5V to 18V;
Threshold hysteresis
VMONth,hys 0.02*VS 0.06*
VS
0.12*VS V
P_11.1.2
In all modes; without
external serial resistor Rs
(with Rs:dV = IPD/PU * Rs);
VS = 18V to 28V;
Pull-up current
IPU, MON
-20
-10
-1
µA
0.6*VS
P_11.1.3
Pull-down current
IPD, MON
3
10
20
µA
0.4*VS
P_11.1.4
P_11.1.5
Input leakage current
ILK,MON
-2.5
–
2.5
µA
1)
tFT,MON
–
500
–
ns
2)
0 V < VMON_IN < 28 V
Timing
Wake-up filter time
(internal analog filter
delay)
The overall filter time for P_11.1.6
MON wake-up is a sum of
tFT,MON + adjustable digital
filter time. The digital filter
time can be adjusted by
PMU.CNF_WAKE_FILTE
R.CNF_MON_FT;
1) Input leakage is valid for disabled state.
2) With pull-up, pull down current disabled.
Data Sheet
112
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.12
MOSFET Driver
29.12.1
Electrical Characteristics
Table 40
Electrical Characteristics MOSFET Driver
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
200
250
Number
MOSFET Driver Output
Source current - Charge
current (low gate voltage)
ISoumax
420
mA
VSD > 8 V, CLoad = 10 nF, P_12.1.44
ISOU = CLoad * slew rate, ( =
(20%-50%) / tSLEW),
ICHARGE = IDISCHG =
31(max)
Sink current - Discharge
current
ISinkmax
200
250
420
mA
VSD > 8 V, CLoad = 10 nF, P_12.1.45
ISOU = CLoad * slew rate, ( =
(50%-20%) / tSLEW),
ICHARGE = IDISCHG =
31(max)
High level output voltage
Gxx vs. Sxx
VGxx1
10
–
14
V
VSD > 8V1), CLoad = 10 nF
High level output voltage
GHx vs. SHx
VGxx2
8
–
–
V
VSD = 6.4 V1)2), CLoad = 10 P_12.1.4
High level output voltage
GHx vs. SHx
VGxx3
High level output voltage
GLx vs. GND
VGxx6
High level output voltage
GLx vs. GND
VGxx7
Rise time
trise3_3nf
P_12.1.3
nF
7
–
–
V
VSD = 5.4 V1), CLoad = 10
P_12.1.5
nF
8
–
–
V
VSD = 6.4 V1)2), CLoad = 10 P_12.1.6
nF
7
–
–
V
VSD = 5.4 V1), CLoad = 10
P_12.1.7
nF
–
200
–
ns
2)
P_12.1.8
CLoad = 3.3 nF,
VSD > 8 V,
25-75%, ICHARGE = IDISCHG
= 31(max)
Fall time
tfall3_3nf
–
200
–
ns
2)
P_12.1.9
CLoad = 3.3 nF,
VSD > 8 V,
75-25%, ICHARGE = IDISCHG
= 31(max)
Rise time
trisemax
100
250
450
ns
P_12.1.57
CLoad = 10 nF,
VSD > 8 V,
25-75%, ICHARGE = IDISCHG
= 31(max)
Data Sheet
113
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 40
Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Fall time
Symbol
tfallmax
Values
Unit Note / Test Condition
Min.
Typ. Max.
100
250
450
ns
Number
P_12.1.58
CLoad = 10 nF,
VSD > 8 V,
75-25%, ICHARGE = IDISCHG
= 31(max)
Rise time
trisemin
1.25
2.5
5
µs
2)
CLoad = 10 nF,
VSD > 8 V,
P_12.1.14
25-75%,
ICHARGE = IDISCHG = 3(min)
Fall time
tfallmin
1.25
2.5
5
µs
2)
CLoad = 10 nF,
VSD > 8 V,
P_12.1.15
75-25%,
ICHARGE = IDISCHG = 3(min)
Absolute rise - fall time
difference for all LSx
tr_f(diff)LSx
–
–
100
ns
P_12.1.35
CLoad = 10 nF,
VSD > 8 V,
25-75%, ICHARGE = IDISCHG
= 31(max)
Absolute rise - fall time
difference for all HSx
tr_f(diff)HSx
–
–
100
ns
P_12.1.36
CLoad = 10 nF,
VSD > 8 V,
25-75%, ICHARGE = IDISCHG
= 31(max)
Resistor between GHx/GLx
and GND
RGGND
30
40
50
kΩ
2)
Resistor between SHx and
GND
RSHGN
30
40
50
kΩ
2)3)
Low RDSON mode
(boosted discharge mode)
RONCCP
–
9
12
Ω
VVSD = 13.5 V,
VVCP = VVSD + 14.0 V;
ICHARGE = IDISCHG =
–
P_12.1.11
P_12.1.10
This resistance is the
resistance between GHx
and GND connected
through a diode to SHx. As
a consequence, the
voltage at SHx can rise up
to 0,6V typ. before it is
discharged through the
resistor.
P_12.1.50
31(max); 50mA forced into
Gx, Sx grounded
Resistance between VDH
and VSD
IBSH
–
4
–
kΩ
2)
P_12.1.24
Input propagation time (LS
on)
tP(ILN)min
–
1.5
3
µs
C = 10 nF, (25%) /
tSLEWon2)4)
P_12.1.37
Data Sheet
114
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 40
Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
Number
Input propagation time (LS
off)
tP(ILF)min
–
1.5
3
µs
C = 10 nF, (75%) /
tSLEWoff2)4)
P_12.1.38
Input propagation time (HS
on)
tP(IHN)min
–
1.5
3
µs
C = 10 nF, (25%) /
tSLEWon2)4)
P_12.1.39
Input propagation time (HS
off)
tP(IHF)min
–
1.5
3
µs
C = 10 nF, (75%) /
tSLEWoff2)4)
P_12.1.40
Input propagation time (LS
on)
tP(ILN)max
–
200
350
ns
C = 10 nF, (25%) /
tSLEWon5)
P_12.1.26
Input propagation time (LS
off)
tP(ILF)max
–
200
300
ns
C = 10 nF, (75%) /
tSLEWoff5)
P_12.1.27
Input propagation time (HS
on)
tP(IHN)max
–
200
350
ns
C = 10 nF, (25%) /
tSLEWon5)
P_12.1.28
Input propagation time (HS
off)
tP(IHF)max
–
200
300
ns
C = 10 nF, (75%) /
tSLEWoff5)
P_12.1.29
Absolute input propagation
tPon(diff)LSx
time difference between
propagation times for all LSx
(LSx on)
–
–
100
ns
C = 10 nF, (25%) /
tSLEWon5)
P_12.1.30
tPoff(diff)LSx
Absolute input propagation
time difference between
propagation times for all LSx
(LSx off)
–
–
100
ns
C = 10 nF, (75%) /
tSLEWoff5)
P_12.1.41
tPon(diff)HSx
Absolute input propagation
time difference between
propagation times for all HSx
(HSx on)
–
–
100
ns
C = 10 nF, (25%) /
tSLEWon5)
P_12.1.42
tPoff(diff)HSx
Absolute input propagation
time difference between
propagation times for all HSx
(HSx off)
–
–
100
ns
C = 10 nF, (75%) /
tSLEWoff5)
P_12.1.43
–
–
–
V
DRV_CTRL3.DSMONVT
H<2:0>
000
001
010
011
100
101
110
111
P_12.1.46
Drain source monitoring
Drain source monitoring
threshold
VDSMONVTH
0.25
0.50
0.75
1.00
1.25
1.5
1.75
2.00
Data Sheet
115
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 40
Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
Number
Open load diagnosis currents
Pull-up diagnosis current
IPUDiag
-220
-370 -520
µA
IDISCHG = 1; VSHx = 5.0 V
P_12.1.47
Pull-down diagnosis current
IPDDiag
650
900
1100
µA
IDISCHG = 1; VSHx = 5.0 V
P_12.1.48
Output voltage
VCP vs. VSD
VCPmin1
8.5
–
–
V
VVSD = 5.4V, ICP=5 mA,
P_12.1.53
Regulated output voltage
VCP vs. VSD
VCP
12
14
16
V
8 V < VVSD < 28,
ICP=10mA, @250kHz fCP
P_12.1.49
Turn ON Time
tON_VCP
80
88
120
us
8 V < VVSD < 28,
(25%)2)6),
CCP1, CCP2 = 220 nF,
fCP = 250kHz
P_12.1.59
trise_VCP
60
Charge pump
Bridge Driver enabled
P_12.1.60
8 V < VVSD < 28,
(25-75%)2)7),
CCP1, CCP2 = 220 nF,
fCP = 250kHz
1) Specification for H-Bridge Drive, 6 MOSFET switching with 25 KHz. Test condition: IGx = - 100 µA, ICHARGE =
Rise time
2)
3)
4)
5)
6)
7)
72
88
us
IDISCHARGE = 31(max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1.
Not subject to production test.
This resistance is connected through a diode between SHx and GHx to ground.
ICHARGE = IDISCHARGE = 3(min).
ICHARGE = IDISCHARGE = 31(max).
This time applies when Bit DRV_CP_CTRL_STS.bit.CP_EN is set
This time applies when Bit DRV_CP_CLK_CTRL.bit.CPCLK_EN is set
Data Sheet
116
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
29.13
Operational Amplifier
29.13.1
Electrical Characteristics
Table 41
Electrical Characteristics Operational Amplifier
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Differential gain
(uncalibrated)
G
Differential input operating
voltage range OP2 - OP1
VIX
Operating. common mode VCM
input voltage range (referred
to GND (OP2 - GND) or
(OP1 - GND)
Max. input voltage range
(referred to GND (OP_2 GND) or (OP1 - GND)
VIX
Single ended output voltage VOUT
range (linear range)
Values
Unit
Min.
Typ.
Max.
9.5
19
38
57
10
20
40
60
10.5
21
42
63
Note / Test Condition
Number
Gain settings GAIN<1:0>: P_13.1.6
00
01
10
11
-1.5 / G –
1.5 / G
V
G is the Gain specified
below
-2.0
–
2.0
V
Input common mode has P_13.1.2
to be checked in
evaluation if it fits the
required range
-7.0
–
7.0
V
Max. rating of operational P_13.1.3
amplifier inputs, where
measurement is not done
VZERO
–
VZERO
V
1)2)
Offset output voltage 2 P_13.1.4
V ± 1.5V
- 1.5
+ 1.5
P_13.1.1
Linearity error
EPWM
-15
–
15
mV
Maximum deviation from P_13.1.5
best fit straight line
divided by max. value of
differential output voltage
range (0.5V - 3.5V); this
parameter is determined
at G = 10.
Linearity error
EPWM_% -1.0
–
1.0
%
Maximum deviation from P_13.1.24
best fit straight line
divided by max. value of
differential output voltage
range (0.5V - 3.5V); this
parameter is determined
at G = 10.
–
1
%
Gain drift after calibration P_13.1.7
at G = 10.
Gain drift
Data Sheet
-1
117
Rev. 1.0, 2015-04-30
TLE9867QXA20
Electrical Characteristics
Table 41
Electrical Characteristics Operational Amplifier (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Number
P_13.1.8
DC input voltage common
mode rejection ratio
DCCMRR
58
80
–
dB
CMRR (in dB)=-20*log
(differential mode gain/
common mode gain)
VCMI= -2V... 2V,
VAIP-VAIN=0V
Settling time to 98%
TSET
–
800
1400
ns
Derived from 80 - 20 %
P_13.1.9
rise fall times for ± 2V
overload condition (3 Tau
value of settling time
constant)2)
Current Sense Amplifier
Rin_OP1_ 1
Input Resistance @ OP1,
OP2
OP2
1) Typical VZERO = 0,4 * VAREF.
1.25
1.5
kΩ
2)
–
P_13.1.25
2) This parameter is not subject to production test.
Data Sheet
118
Rev. 1.0, 2015-04-30
TLE9867QXA20
Package Outlines
Package Outlines
0.9 MAX.
(0.65)
0.
13
±
+0.03
1)
0.4 x 45°
Index Marking
C
0.15 ±0.05
0.1 ±0.05
48
13
(0
(0.2)
0.05 MAX.
2)
37
1
12
1) Vertical burr 0.03 max., all sides
2) These four metal areas have exposed diepad potential
Figure 37
36
25
24
SEATING PLANE
7 ±0.1
6.8
48x
0.08
0.5
0.5 ±0.07
0.1±0.03
B
26
0.
6.8
11 x 0.5 = 5.5
(6)
A
(5.2)
7 ±0.1
0.
05
30
.3
0.23 ±0.05
5)
(5.2)
Index Marking
48x
0.1 M A B C
(6)
PG-VQFN-48-29, -31-PO V05
Package outline VQFN-48-31 (with LTI)
Notes
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/products.
2. Dimensions in mm.
Data Sheet
119
Rev. 1.0, 2015-04-30
TLE9867QXA20
Revision History
31
Revision History
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 1.0, 2015-04-30
all
Data Sheet
Initial Release.
120
Rev. 1.0, 2015-04-30
Edition 2015-04-30
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG
Doc_Number