PeterBruce AlmadenInstitute2009

Nanostructured Electrodes and the
Lithium-Air Battery
Peter G. Bruce
St Andrews Centre for Advanced Materials
EaStChem, University of St. Andrews
Scotland
Science in the
20th century
Science in the
21th century
Nature of matter: atom  sub-atomic
Origin of the Universe: Big Bang
Molecular Biology: genetics
Societal Challenges
Food
Water
Global Warming / Energy
Climate change – a challenge for SCIENCE and technology.
New science, new ideas, new approaches, new materials.
Nanostructured Electrodes
Power Density
Li-ion  relatively low power device (compared with Pb-acid)
Li+
LiCoO2
carbon
e-
Intrinsic limits to Li+ and e- mobility
e-
BUT
LiCoO2
LiCoO2
2
l

2D
LiCoO2
LiCoO2
LiCoO2
Li+
diffusion distance
time for intercalation
Reduce
l
Li diffusion coefficient
micron  nano
NANOPARTICULATE ELECTRODES
Advantages
• High surface area in contact with electrolyte
•
•
•
•
•
•
•
•
•
Short diffusion distances for Li+ and e- ( t= l2/2D)
Change in chemical potential  voltage
Better accommodation of strain accompanying insertion.
Solid state reactions can occur that are impossible in bulk
Disadvantages
May be more difficult/expensive to synthesize
More difficult to fabricate composite electrode
Lower volumetric energy density of electrode
Surface reactivity
Cycling stability
TiO2-(B) nanotubes / wires
NaOH + TiO2(anatase) + H2O
TiO2-(B) nanowires
G. Armstrong, A. R. Armstrong, J. Canales
and P. G. Bruce Angew. Chem., 43, 2004, 2286
hydrothermal
synthesis
TiO2-(B) nanotubes / wires
TiO2-(B) nanotubes
G. Armstrong, A. R. Armstrong, J. Canales
and P. G. Bruce Chem. Commun., 2005, 2454
TiO2-(B) Electrode Performance
0.4
0.6
0.8
1.0
Discharge capacity / mAhg
+
Voltage/ V vs Li /Li
3.0
0.2
Nanowires
Nanotubes
2.5
-1
Amount of Li inserted
0.0
2.0
charge
1.5
discharge
1.0
350
C/4, 0.1 mA cm
-2
300
250
200
150
nanowires
nanotubes
100
50
0
0
50
100
150
200
250
300
350
0
-1
Discharge Capacity / mAhg
• 1.6 V vs Li+/ Li - anode
• Intercalate Li up to Li0.98TiO2-(B)
(330mAhg-1)
• Twice that of anatase, Li4Ti5O12
and bulk TiO2-B
• >99.9% reversibility
A. R. Armstrong, G. Armstrong, J. Canales,
R. Garcia and P. G. Bruce Adv. Mater., 17, 862 (2005)
20
40
60
Cycle Number
80
100
350
superior
capacity
-1
50 mAg (~ C/4)
300
superior capacity retention
250
150
TiO2-B nanoparticles
100
Cathode
200
Electrolyte
TiO2-B nanowires
Anode
Discharge capacity / mAhg
-1
Advantage of 1D nanomorphology
50
nanoparticle size same as diameter of nanowires
0
0
20
40
60
80
100
Cycle Number
• Micron long wires ensures electron exchange between wires
• Nanometre diameter ensures fast Li+ intercalation
Mesoporous LiMn2O4 spinel
Combining μm and nm dimensions
Mn2O4
framework
Mn2O4 (MnO2)  LiMn2O4 : intercalation
Mn2O3
3D Porous
Silica
e.g. KIT-6
Mn3O4
600oC 5h
Dissolve silica template
Avoids reaction
with template
TEM images
Mn2O3
Mn3O4
H2/Ar
280oC
1h
LiOH
350oC
1h
LiMn2O4
Mesostructure preserved throughout !
LiMn2O4
Capacity retention (%)
6
3
Jiao, Bao, Hill, Bruce Angew. Chem.
Int. Ed., 47, 9711 (2008)
2
100
100
90
90
Mes
o Li
Bu
lk
1.12 Mn
Li
1.88 O
1.1
4
M
2
n
1.8
8O
80
70
60
80
70
Bulk Li1.12Mn1.88O4
Bulk Li1.05Mn1.95O4
60
4
50
Meso Li1.12Mn1.88O4
% Li
Discharge Time (min)
Cathode
Anode
~1μm sized particles
BET : 90m2g-1
Electrolyte
Li1.12Mn1.88O4 spinel (composition of current interest)
50
Nano Li1.12Mn1.88O4
Increasing Rate
40
0
500
40
1000 1500 2000 2500 3000 3500
Current Density(mA/g)
Rate capability
Stability at 50 oC and 10 mAhg-1
At high rate, 30C, gravimetric capacity 50% and volumetric 10%
higher than bulk.
m particles + nm thin walls + 3D network of identical mesoporous
channels for electrolyte + crystal structure
Lithium-ion Nanobattery
TiO2(B)-nanowires
LiNi0.5Mn1.5O4
Gel electrolyte
Armstrong, Armstrong,
Bruce, Reale, Scrosati
Adv. Mater., 18, 2597
(2006)
4.7 V
4.00
3.75
3.50
3.25
3.00
2.75
2.50
2.25
2.00
1.75
Discharge Time / mins
360 60 30 20
% of maximum capacity
Voltage / V
1.5 V
Charge
Discharge
0
50
100 150 200 250 300
-1
Specific capacity / mA h g
12
8
100
80
60
40
20
0
0
1
2
3
4
5
Current / C units
6
7
Li-air cell
Progress in Rechargeable Lithium Batteries
Sony
Sony
1991
2000
2005
Future
“Beyond Li-ion”
Engineering
Best Insertion
Cathode Possible
Energy storage
New
materials
Beyond
the Horizon…
Cathode major limiting factor
LixCoO2 : 140mAhg-1
0.5<x<1 ~ ½Li/Co
Graphite LixC6 : 370mAhg-1 0<x<1 ~ 1Li/6C
Best intercalation cathode → double capacity to 300mAhg-1!
Lithium / Oxygen Battery Schematic
Dispense with intercalation cathode use O2 from air!
Li2O2
Discharge
O2
Li+
Li anode Electrolyte Composite porous cathode
Lithium / Oxygen Battery Schematic
Dispense with intercalation cathode use O2 from air!
Li2O2
Charge
O2
Li+
Li anode Electrolyte Composite porous cathode
Capacity of Lithium-air
Li/LiPF6 in propylene carbonate/porous carbon-MnO2-binder
Discharge Capacity / mAh/g
1200
1100 mAhg-1 (carbon+catalyst
+binder+O2)
1000
800
600
400
LiCoO2
200
130 mAhg-1 (total mass)
0
1
2
3
4
5
Cycle Number
T. Ogasawara, A. Débart, M. Holzapfel, P. Novak & P. G. Bruce, J. Am. Chem. Soc 128(4), 1390 (2006)
A. Debart, A. J. Paterson, J. Bao and P. G. Bruce, Angew.Chem.Int. Ed. 47, 4521 (2008).
Swagelok Li / O2 Cells
O2 filled tube
+
University of St Andrews
Aluminium grid
Composite Electrode:
Porous Carbon-MnO2
Electrolyte: PC-LiPF6
Lithium
Li
Li-O2 Cell
Porous (super P:EMD:binder) cathode
Capacity of Super P / mAhg
-1
4.5
Voltage
4.0
3.5
3.0
2.5
2 - 4.1 V
70 mA/g
2000
1500
1000
discharge
charge
500
0
0
5
10
15
Cycle number
2.0
0
250
500
750
1000
-1
Overall Cell Capacity / mAh g
2Li+ + 2e- + O2  Li2O2
20
Differential Electrochemical Mass Spectrometry
Direct gas exchange between
electrolyte and gas phase
Li2O2 decomposition on charge
In situ DEMS
(Differential Electrochemical
Mass Spectrometry)
Charge of Li2O2 electrode
500
400
300
200
Oxygen evolution
(m/z = 32)
100
0
0
250
500
750
1000
1250
Time [min]
Oxygen evolution during the
decomposition of Li2O2 on charge
PTFE
Intensity / arbitrary units
-11
Ion current [10 A]
600
5.0
4.8
4.6
4.4
4.2
4.0
3.8
3.6
3.4
3.2
3.0
Cell voltage [V]
700
Powder X-ray Diffraction
EMD
After charging
(100%)
EMD
EMD
Li2O2
Li2O2
Li2O2
EMD Li2O2
EMD PTFE
30
40
50
Li2O2
EMD
Before charging
60
2 (FeK1) / degree
70
Charge passed corresponding to
Li2O2 decomposition
Cell reaction : 2Li + O2 ↔ Li2O2
80
Role of Catalyst
Differential Electrochemical Mass Spec – On Charging
m/z
Relative amounts of gas evolved for
Li2O2
Li2O2 / MnO2
-
0.6
16 (from O2, CO & CO2)
0.3
7
28 (CO)
1.6
12
32 (O2)
1.1
100
44 (CO2)
0.6
13
12 (from CO & CO2)
• Most abundant process
•
with MnO2 catalyst is
O2 formation (m/z = 32)
MnO2 catalyses Li2O2 decomposition
Effect of Catalyst Type on Potential
5.0
Fe3O4
CuO
NiO
-MnO22
Potential / V
4.5
4.0
3.5
3.0
2.5
2.0
0
1000
2000
-1
Capacity / mAhg
3000
Catalyst type influences performance :
- overall capacity
- charge potential
-1
Discharge Capacity / mAhg (carbon)
Effect of MnO2 catalyst type
-MnO2 Nanowires
-MnO2 Nanowires
-MnO2
-MnO2
-MnO2 Bulk
-MnO2 Bulk
3000
2500
2000
1500
1000
500
0
0
2
4
6
Cycle Number
8
10
Nanowire
catalyst
• Surface area and crystal structure important for performance
• Nanowire α-MnO2 gives highest capacity so far, 3000mAhg-1
A. Débart, A.J. Paterson, J. Bao and P.G. Bruce, Angewandte Chemie, 120, 4597 (2008)
α-MnO2 Catalyst
2500
Discharge Capacity / mAhg
-1
4.25
Potential / Volts
4.00
3.75
3.50
3.25
3.00
2.75
2.50
Cycle 2
Cycle 3
Cycle 5
2.25
2.00
Limited : 2400mAhg-1
2250
2000
-1
1980mAhg
1750
1500
-1
1430mAhg
1250
1000
-1
1000mAhg
750
500
LiCoO2
250
0
0
500
1000
1500
2000
2500
3000
-1
Capacity / mAhg
α-MnO2 catalyst
 Lower charge potential
0
1
2
3
4
5
6
7
8
9
10
Cycle Number
Limit window for cycling 
avoid deep discharge
 Negligible capacity fade
on cycling, ~2000mAhg-1
(10+ cycles)
O2 reduction on glassy carbon electrode
in 0.1 M TBAPF6-PC
10
10
0
I / A
I / A
0
-10
-20
O2 + e- = O2-
-30
1.5
-10
1 V/s
2.0
2.5
3.0
+
E / V (vs Li /Li)
E0 = 2.32 V
k0 = 0.9x10-3 cm/s
[O2] = 1.45 mM
DO2 = 5.7x10-5 cm2/s
3.5
0.5 V/s
-20
0.5
1.0
1.5 2.0 2.5
+
E / V (vs Li /Li)
3.0
3.5
• Air cathode: gain in gravimetric > volumetric energy.
• Must couple with high capacity anode to realize benefits in a cell.
• Li2O2 to Li2O >> capacity.
• Better understanding needed for more accurate predictions.
Conclusions Li-air
Opportunity
• High capacity
• Low cost
Challenges
• Charge potential
greater than discharge
• Cycle life
• Electrolyte
• O2 selective membrane
Acknowledgments
•
•
•
•
•
•
•
•
•
A. Debart
A.J. Paterson
J.L. Bao
T. Ogasawara
Z. Peng
F. Jiao
M.K. Shaju
A.R. Armstrong
G. Armstrong
•
•
•
•
•
M. Holzapfel
P. Novak
B. Scrosati
L. Hardwick
S. Freunberger
EPSRC