En

COMPONENTS | MODULES | CORES 2011
SUMIDA Components & Modules GmbH
Dr. Hans-Vogt-Platz 1 | D-94130 Obernzell
Phone:
++49/85 91/937-100
Fax:
++49/85 91/937-103
E-Mail:
[email protected]
Internet: www.sumida-eu.com
COMPONENTS | MODULES | CORES
-2-
INTRODUCTION
A INDUCTIVE COMPONENTS
A1
A2
A3
A4
A5
A6
005 - 104
EMC POWER LINE
EMC DATA LINE
POWER FACTOR CORRECTION
ENERGY TRANSFER
SIGNAL TRANSMISSION
CHECKLISTS
005-030
031-050
051-064
065-082
083-100
101-104
B MAGNETIC MATERIAL + CORES
105 - 212
B1 MAGNETIC MATERIAL
B2 CORES
105-198
199-212
C MODULES & APPLICATIONS
213-222
C1 LF-ANTENNAS
C2 HIGH VOLTAGE IGNITERS
C3 FUNCTIONAL MODULES
C4 SENSOR TECHNOLOGY
C5 HIGH POWER COMPONENTS
C6 APPLICATIONS
214-215
216
217-218
219
220
221-222
-3-
-4-
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.1
COMMON MODE CHOKES WITH BYPASS
006 - 009
A1.2
COMMON MODE CHOKES
010 – 025
A1.3
COMMON MODE CHOKES AMORPH
026 - 030
-5-
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.1 COMMON MODE CHOKES WITH BYPASS
Common mode and differential inductance in one component
Current as a function of inductance and component size
1,0
0,8
RK 17
0,6
RK 23
Irms [A]
0,4
0,2
0,0
0
5
10
15
20
25
L [mH]
-6-
30
35
40
45
50
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.1 COMMON MODE CHOKES WITH BYPASS
Application
In devices with a protective conductor terminal, such as electronic ballasts, washing
machines or electrical tools, symmetrical interference often occurs in addition to
asymmetrical interference. As a rule, this requires the use of a further component for inline inductance.
Structure
• Closed cores made of high permeability VOGT ferrites Fi340 and Fi360
• Coil-former with four chambers
Technical data
• Suitable for use in equipment to EN 50176, EN 61347, EN 61800,
EN 60335, EN 60065,
• Climate category 40/125/56 in accordance with IEC 68-1
• Nominal inductance at 10 kHz, 25°C
• Testing voltage (winding – winding) 1500 V, 50 Hz, 2 sec.
• Max. permissible temperature of windings 115° C
• Inductance loss (with current compensated circuit) ≤ 15% DC preload with Isat and
ambient temperature TU = 80°C
Advantages
• Very flat (e.g. for use in electronic ballasts)
• Full utilisation of material permeability due to closed core
• Low capacity winding design with four chambers
• Environmentally friendly since no adhesives or resins are used
• Low-Cos due to automated mass production
Function description
Due to their special magnetic design, the new VOGT combined noise suppression chokes
enable the suppression of both the asymmetrical and symmetrical interference component
in a single unit. Combining the characteristics of two separate components in one unit
lowers costs considerably, as well as reduces the space requirement within the device.
EMV-measurement with and without bypass:
- RK choke without bypass
- RK choke with bypass
(measured at electronic ballast, in a typical RFI
suppression circuit in accordance with EN55015)
-7-
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.1 COMMON MODE CHOKES WITH BYPASS | RK 17
LN1) (mH)
3.3
6.8
10
15
27
39
47
1)
per winding,
Rcu1) (Ω)
0.18
0.27
0.50
0.65
1.30
2.25
2.50
2)
max. value
IRMS (A)
Isat2) (A)
LLeakage (µH)
Part number
0.70
0.50
0.46
0.43
0.40
0.30
0.28
1.00
0.70
0.65
0.64
0.55
0.42
0.40
120
220
330
500
900
1250
1500
570 16 033 1H
570 16 068 1H
570 16 100 1H
570 16 150 20
570 16 270 1H
570 16 390 20
570 16 470 10
Impedance curves
-8-
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.1 COMMON MODE CHOKES WITH BYPASS | RK 23
LN1) (mH)
3.3
6.8
10
15
27
39
47
1)
per winding,
Rcu1) (Ω)
IRMS (A)
0.08
0.14
0.19
0.30
0.45
0.61
0.75
2)
typical value
0.92
0.78
0.53
0.45
0.35
0.32
0.30
Isat2) (A)
LLeakage (µH)
Part number
1.30
1.10
0.75
0.65
0.50
0.45
0.42
120
220
330
500
900
1250
1500
570 18 033 1H
570 18 068 10
570 18 100 10
570 18 150 1H
570 18 270 1H
570 18 390 10
570 18 470 1S
Impedance curves
-9-
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES
Application
These chokes are preferably used in equipment that is fitted with switched mode power
supplies. Together with suitable capacitors, these chokes form filters in the power supply
line, which reduce the level of the noise that occurs inside the device, as well as the
penetration of line noise.
Construction
• High permeability cores from the VOGT Fi360 electronic ferrites
• Plastic cap with standard pinning (vertical and horizontal)
Technical specifications
•
•
•
•
•
•
•
•
Climate category 40/125/56 in accordance with IEC 68-1
Nominal inductance at 10 kHz, 25°C
Inductance tolerance +50%/-30%
Inductance loss (with common mode configuration) < 10%
for DC initial load with IN
Test voltage (winding-winding) 1500 V, 50 Hz, 2 sec.
Ambient temperature 60°C
Temperature increase of windings < 55°C
Max. permissible temperature of windings 115°C
- 10 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | DP-F14
Current as a function of inductance and size
Standards
| EN 60938-2
- 11 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | DP-F14
DP-F 14
SMD
THD
LN1)
Irms
Isat
RCu
LS
Part number
(mH)
(A)
(A)2)
(mΩ)
(µH)
SMD
3.3
1.3
2.26
110
32
503 03 600 03
6.8
1.15
1.62
210
70
503 03 600 06
10
0.95
1.34
350
110
503 03 600 10
15
0.75
1.06
490
170
503 03 600 15
27
0.57
0.80
810
300
503 03 600 27
39
0.45
0.63
1300
400
503 03 600 39
47
0.35
0.5
1730
510
503 03 600 47
68
0.28
0.4
2700
805
100
0.25
0.35
3700
1100
1)
per winding
2)
= L-inductance; loss < 15% (with common mode configuration)
Standard components, other values available on request
Impedance curves
- 12 -
Part number
THD
573 03 500 03
573 03 500 06
573 03 500 10
573 03 500 15
573 03 500 27
573 03 500 39
573 03 500 47
573 03 500 68
573 03 501 00
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | RK
Current as a function of inductance and component size
- 13 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | RK 17
vertical
LN1)
(mH)
+50%
- 30%
horizontal
RK 17 vertical (Rth2) = 70 K/W)
IN1)
(A)
3.3
1.50
6.8
1.20
10
0.90
15
0.80
27
0.50
39
0.45
47
0.40
1)
per winding,
R
Cu
1), 2)
LLeakage2)
(µH)
(Ω)
0.19
25
0.29
50
0.51
75
0.65
110
1.30
200
2.40
300
2.70
350
2)
max. value
Part number
570 17 001 00
570 17 002 00
570 17 003 00
570 17 004 00
570 17 005 00
570 17 006 00
570 17 007 00
RK 17 horizontal (Rth2) = 50 K/W)
IN1)
(A)
1.50
1.20
0.90
0.80
0.50
0.45
0.40
R
Cu
1), 2)
(Ω)
0.20
0.30
0.55
0.70
1.45
2.55
2.90
LLeakage2)
(µH)
Part number
65
125
190
285
510
740
880
570 16 033 0H
570 16 068 0H
570 16 100 30
570 16 150 0H
570 16 270 0H
570 16 390 0S
570 16 470 0H
Impedance curves
vertical
horizontal
- 14 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | RK 19 + RK 23
RK 19 vertical
LN1)
(mH)
+50%
- 30%
RK 23 horizontal
RK 19 vertical (Rth2) = 52 K/W)
R
Cu
1), 2)
IN1)
(A)
3.3
2.1
6.8
1.6
10
1.4
15
1.1
27
0.8
39
0.7
47
0.6
1)
per winding,
LLeakage2)
(µH)
(Ω)
0.12
25
0.20
50
0.27
70
0.45
110
0.75
180
1.10
280
1.20
330
2)
typical value
Part number
570
570
570
570
570
570
570
19 001 00
19 002 00
19 003 00
19 004 00
19 005 00
19 006 00
19 007 00
RK 23 horizontal (Rth2) = 33 K/W)
IN1)
(A)
2.25
1.75
1.55
1.25
1.10
1.00
0.90
R
Cu
1), 2)
(Ω)
0.09
0.16
0.22
0.33
0.53
0.70
0.87
LLeakage2)
(µH)
Part number
65
140
210
330
590
810
1000
570 18 033 00
570 18 068 00
570 18 100 0H
570 18 150 00
570 18 270 0H
570 18 390 00
570 18 470 0S
Impedance curves
RK 19 vertical
RK 23 horizontal
- 15 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | RK 26
RK 26 vertical (Rth2) = 35 K/W)
LN1) (mH)
+50%/-30%
3.3
6.8
10
15
27
39
47
1)
per winding,
IN1)
(A)
RCu1), 2)
(Ω)
LLeakage2)
(µH)
3.9
2.4
2.2
1.7
1.4
1.1
1.0
2)
typical value
0.054
0.14
0.17
0.29
0.45
0.75
0.82
25
50
70
100
180
280
330
Impedance curves
- 16 -
Part number
570
570
570
570
570
570
570
26
26
26
26
26
26
26
001
002
003
004
005
006
007
00
00
00
00
00
00
00
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | RK 28
RK 28 vertical (Rth2) = 30 K/W)
LN1) (mH)
+50%/-30%
3.3
6.8
10
15
27
39
47
1)
per winding,
IN1)
(A)
4.6
3.2
2.6
2.4
1.8
1.5
1.4
2)
typical value
RCu1), 2)
(Ω)
LLeakage2)
(µH)
0.048
0.095
0.15
0.18
0.31
0.48
0.52
25
45
70
100
180
250
310
Impedance curves
- 17 -
Part number
570
570
570
570
570
570
570
28
28
28
28
28
28
28
001
002
003
004
005
006
007
00
00
00
00
00
00
00
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | DK
Current as a function of inductance and size
Standards
EN 60938-2
UL 1283-FOKY2.E151145
UL 1446 Class B-OBJY2.E143220
- 18 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | DK 30 + DK 31
DK 30
LN1)
IN1)
(mH)
(A)
+50%
-30%
3.3
1.5
6.8
1.2
10
0.7
27
0.4
39
0.4
47
0.3
1)
per winding,
R
Cu
1), 2)
(Ω)
LLeakage2)
(µH)
0.17
35
0.28
75
0.55
105
1.7
300
2
450
2.5
540
2)
typical value
DK 31
DK 30 (Rth2) = 65 K/W)
Type
K30
K30
K30
K30
K30
K30
Part number
573
573
573
573
573
573
Impedance curves
- 19 -
30
30
30
30
30
30
030
060
100
270
390
470
00
00
00
00
00
00
DK 31 (Rth2) = 58 K/W)
Type
K31
K31
K31
K31
K31
K31
Part number
573
573
573
573
573
573
31
31
31
31
31
31
030
060
100
270
390
470
00
00
00
00
00
00
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | DK 40 + DK 41
DK 40
LN1)
IN1)
(mH)
(A)
+50%
-30%
3.3
2.5
6.8
1.5
10
1.2
27
0.8
1)
per winding,
R
Cu
1), 2)
(Ω)
LLeakage2)
(µH)
0.07
0
0.20
60
0.29
90
0.60
240
2)
typical value
DK 41
DK 40 (Rth2) = 50 K/W)
Type
K40
K40
K40
K40
Part number
573
573
573
573
40
40
40
40
Other types on request!
Impedance curves
- 20 -
030
060
100
270
00
00
00
00
DK 41 (Rth2) = 45 K/W)
Type
K41
K41
K41
K41
Part number
573
573
573
573
41
41
41
41
030
060
100
270
00
00
00
00
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | DK 50 + DK 51
DK 50
LN1)
RCu
IN1)
LLeakage2)
(mH)
1), 2)
(A)
(µH)
+50%
(Ω)
-30%
3.3
2.8
0.06
40
6.8
2.0
0.15
80
10
1.6
0.21
120
27
1.0
0.64
330
47
0.6
1.10
600
1)
per winding, 2) typical value
Other types on request!
DK 51
DK 50 (Rth2) = 37 K/W)
Type
K50
K50
K50
K50
K50
Part number
573
573
573
573
573
Impedance curves
- 21 -
50
50
50
50
50
030
060
100
270
470
00
00
00
00
00
DK 51 (Rth2) = 34 K/W)
Type
K51
K51
K51
K51
K51
Part number
573
573
573
573
573
51
51
51
51
51
030
060
100
270
470
00
00
00
00
00
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | DK 60 + DK 61
DK 60
LN1)
IN1)
(mH)
(A)
+50%
- 30%
3.3
4.0
6.8
2.2
10
1.8
1)
per winding,
R
Cu
1), 2)
(Ω)
DK 61
LLeakage2)
(µH)
0.06
35
0.18
85
0.22
130
2)
typical value
DK 60 (Rth2) = 30 K/W)
DK 61 (Rth2) = 24 K/W)
Type
Part number
Type
Part number
K60
K60
K60
573 60 030 00
573 60 060 00
573 60 100 00
K61
K61
K61
573 61 030 00
573 61 060 00
573 61 100 00
Other types on request!
Impedance curves
- 22 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | E-CORE
Current as a function of inductance and component size
- 23 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | E 16/4.7
EXAMPLES:
E 16/4.7 (Rth2) = 76 K/W)
LN1) (mH)
+50%/-30%
14
20
60
1)
per winding,
IN1)
(mA)
320
300
200
2)
typical value
RCu1)
(Ω)
LLeakage2)
(µH)
Part number
≤ 1.8
≤ 1.8
≤ 4.1
270
400
1220
575 09 XXX 00
575 09 XXX 00
575 09 XXX 00
Other types on request!
Impedance curves
- 24 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.2 COMMON MODE CHOKES | E 20/5.9
Typ B
Typ A
E 20/5.9 (Rth2)Type: A/B/C = 57/56/55 K/W)
LN1) (mH)
+50%/-30%
IN1)
(mA)
RCu1)
(Ω)
LLeakage2)
(mH)
21
550
≤ 0.78
0.35
27
450
≤ 1.1
0.45
≤ 1.9
≤ 5.2
0.8
1.8
47
112
1)
per winding,
350
200
2)
typical value
Impedance curves
- 25 -
Type
B
B
B
C
A
Part number
575
575
575
575
575
04
04
04
04
04
158 00
156 00
152 00
162 00
128 00
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.3 COMMON MODE CHOKES AMORPH
Application
These chokes are mostly used in power electronics devices. In conjunction with suitable
capacitors, these chokes, form filters which reduce the effects of line interference as well
as propagation of interference caused by the device. The filters are one-phase or threephase.
Construction
The series DP-A and DK-A chokes feature amorphous toroidal cores. This results in the
following advantages, compared with chokes with ferrite cores:
Considerably greater impedance values for the same component size, or much smaller
component size for the same electrical values.
Technical specifications
•
•
•
•
•
•
•
•
Comply with the requirements of EN 60950, EN 60065, 60335, 61800 or EN 50178
Climate category 40/125/56 in accordance with IEC 68-1
Nominal inductance at 10 kHz, 25°C
Inductance reduction (in common mode circuit) < 10% assuming
DC bias with IN and ambient temperature TU = 25°C
Test voltage (winding – winding) 1500 V, 50 Hz, 2 sec.
Ambient temperature 60°C
Temperature rise of windings < 55°C
Maximum permissible temperature of windings 115° C
- 26 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.3 COMMON MODE CHOKES AMORPH
Inductance as a function of current and component size
Common mode 2-phase choke
Common mode 3-phase choke
- 27 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.3 COMMON MODE CHOKES AMORPH | DP-A16
DP-A16 (Rth2) = 63 K/W)
LN1) (mH)
+50%/-30%
IN1)
(A)
RCu1)
(mΩ)
LLeakage2)
(µH)
Part number
3.9
10
1)
per winding,
4
2
2)
typical value
≤ 40
≤ 71
2.3
8.2
573 03 502 00
573 03 503 00
Other types on request!
Impedance curves
- 28 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.3 COMMON MODE CHOKES AMORPH | DP-A25
vertical
LN1) (mH)
+50%/-30%
6.8
12
18
1)
per winding,
IN1)
(A)
RCu1)
(mΩ)
horizontal
LLeakage2)
(µH)
DP-A25/1 (2) 3)
Rth2) = 22 K/W
Part number
573 05 513 003)
573 05 514 003)
16
≤ 10.5
4.7
10
≤ 27
10
8
≤ 32
14
2)
typical value, 3) winding with 2 wires
DP-A25/L1 (2) 3)
Rth2) = 21 K/W
Part number
573 05 554 003)
573 05 555 003)
Other types on request!
Impedance curves
vertical
horizontal
- 29 -
A
A1
INDUCTIVE COMPONENTS
EMC POWER LINE
A1.3 COMMON MODE CHOKES AMORPH | DP-A25
LN1) (mH)
+50%/-30%
1)
5.00
per winding,
2)
IN1)
(A)
RCu1)
(mΩ)
LLeakage2)
(µH)
Part number
10
typical value
≤ 7.2
4.4
573 05 604 00
Other types on request!
Impedance curves
- 30 -
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.1
CAN-BUS (TOROIDAL CORE)
032 - 034
A2.2
TOROIDAL CORE
035 - 049
- 31 -
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.1 CAN-BUS (TOROIDAL CORE)
Our common mode chokes and common mode RFI suppression chokes are designed
specifically for suppressing broadband interference in digital telecommunication systems.
We offer a wide range of multiple chokes and choke modules in various shapes and sizes for
use in signal and data lines.
Most of these are built on the basis of ferrite toroidal cores and feature exceptional
electrical properties.
• Inductance values up to 68 mH
• Usable for frequencies up to 500 MHz (CAN bus chokes)
• High insertion loss
- 32 -
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.1 CAN-BUS (TOROIDAL CORE)| MINIATURE TYPE K2 SMD
Frequency range 1 MHz - 500 MHz
Application e.g. as CAN bus choke
Nominal current:
per winding
Nominal voltage:
80 V -/42 V ~
Inductance tolerance: +50%/-30%
DC resistance:
per winding (approximate value)
Test voltage:
500 V, 50 Hz
Thermal properties:
heating measurement according to VDE 0565-2
Climate category:
according to IEC 68-1 25/85/56
Part number
503 02 022 00
503 02 050 00
LN (µH)
2x22
2x50
IN (mA)
100
100
RCu (mΩ)
195
390
Mechanical dimensions and circuit diagram
Impedance curves
10.000
1.000
Z ( Ohm )
100
2 x 11 µH
2 x 22 µH
2 x 50 µH
10
1
0
10
100
1.000
10.000
f ( KHz )
- 33 -
100.000
1.000.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.1 CAN-BUS (TOROIDAL CORE)| MINIATURE TYPE K5 SMD
Frequency range 1 MHz - 500 MHz
Application e.g. as CAN bus chokes
Nominal current:
per winding
Nominal voltage:
80 V -/42 V ~
Inductance tolerance:
+50%/-30%
DC resistance:
per winding (nominal winding)
Testing voltage:
500 V, 50 Hz
Thermal characteristics: heating measurement according to VDE 0565-2
Climate category:
according to IEC 68-1 25/85/56
Part number
503 05 501 20
LN (µH)
2x50
IN (mA)
500
RCu (mΩ)
250
Mechanical dimensions and circuit diagram
Impedance curves
10.000
1.000
Z ( Ohm )
100
2 x 50 µH
10
1
0
10
100
1.000
10.000
f ( KHz )
- 34 -
100.000
1.000.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | MINIATURE TYPE K2 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 02 140 00
503 02 910 00
503 02 922 00
503 02 947 00
LN (mH)
2x0.14
2x1.0
2x2.2
2x4.7
IN (mA)
100
100
100
100
RCu (mΩ)
215
660
840
1800
Mechanical dimensions and circuit diagram
Impedance curves
10.000
Z ( Ohm )
1.000
100
2 x 0.14 mH
2 x 0,47 mH
2 x 2.2 mH
10
1
10
100
1.000
f ( KHz )
- 35 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | MINIATURE TYPE K5 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 05 505 20
503 05 510 20
503 05 522 20
503 05 547 20
503 05 647 20
LN (mH)
2x0.47
2x1.0
2x2.2
2x4.7
2x47
IN (mA)
250
150
150
150
100
RCu (mΩ)
200
340
620
900
3850
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
2 x 0.47 mH
2 x 1.0 mH
2 x 4.7 mH
100
10
1
10
100
1.000
f ( KHz )
- 36 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K9 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 09 150 20
LN (mH)
2x15
IN (mA)
200
RCu (mΩ)
1500
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
2 x 4.7 mH
2 x 15 mH
100
10
1
10
100
1.000
f ( KHz )
- 37 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K10 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 10 033 20
503 10 047 20
503 10 068 20
LN (mH)
2x3.3
2x4.7
2x6.8
IN (mA)
200
200
200
RCu (mΩ)
1200
1400
1700
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
2 x 1.0 mH
2 x 4.7 mH
100
10
1
10
100
1.000
f (KHz)
- 38 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K10 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
EXAMPLES:
Part number
573 10 XXX 20
573 10 XXX 20
LN (mH)
2x1.0
2x4.7
IN (mA)
200
200
RCu (mΩ)
340
1400
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
2 x 1.0 mH
2 x 4.7 mH
100
10
1
10
100
1.000
f (KHz)
- 39 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K20 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 20 011 20
503 20 330 20
LN (mH)
2x1.0
2x33
IN (mA)
300
300
RCu (mΩ)
180
3600
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
1.000.000
100.000
Z ( Ohm )
10.000
1.000
2 x 1,0 mH
2 x 4.7 mH
2 x 15 mH
2 x 33 mH
2 x 68 mH
100
10
1
10
100
1.000
f ( KHz )
- 40 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K20 THD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
573 20 022 20
573 20 100 20
573 20 470 20
573 20 680 20
LN (mH)
2x2.2
2x10
2x47
2x68
IN (mA)
300
300
300
300
RCu (mΩ)
500
1500
4000
3600
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
1.000.000
100.000
Z ( Ohm )
10.000
1.000
2 x 1,0 mH
2 x 4.7 mH
2 x 15 mH
2 x 33 mH
2 x 68 mH
100
10
1
10
100
1.000
f ( KHz )
- 41 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K48 THD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
573 03 095 00
LN (mH)
2x4.7
IN (mA)
100
RCu (mΩ)
1000
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
1000000
100000
Z ( Ohm )
10000
1000
2 x 4.7 mH
2 x 10 mH
100
10
1
10
100
1000
f ( KHz )
- 42 -
10000
100000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | MINIATURE TYPE K3 SMD
Frequency range 1 MHz - 500 MHz
Application e.g. as CAN bus chokes
Nominal current:
per winding
Nominal voltage:
80 V -/42 V ~
Inductance tolerance:
+50%/-30%
DC resistance:
per winding (nominal winding)
Testing voltage:
500 V, 50 Hz
Thermal characteristics: heating measurement according to VDE 0565-2
Climate category:
according to IEC 68-1 25/85/56
Part number
503 03 022 40
LN (µH)
4x22
IN (mA)
100
RCu (mΩ)
125
Mechanical dimensions and circuit diagram
Impedance curve
100.000
10.000
Z ( Ohm)
1.000
100
4 x 22 µH
10
1
10
100
1.000
10.000
f ( KHz )
- 43 -
100.000
1.000.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | MINIATURE TYPE K5 SMD
Frequency range 1 MHz - 500 MHz
Application e.g. as CAN bus chokes
Nominal current:
per winding
Nominal voltage:
80 V -/42 V ~
Inductance tolerance:
+50%/-30%
DC resistance:
per winding (nominal winding)
Testing voltage:
500 V, 50 Hz
Thermal characteristics: heating measurement according to VDE 0565-2
Climate category:
according to IEC 68-1 25/85/56
Part number
503 05 902 40
LN (µH)
4x22
IN (mA)
100
RCu (mΩ)
125
Mechanical dimensions and circuit diagram
Impedance curve
100.000
10.000
Z ( Ohm)
1.000
100
4 x 22 µH
10
1
10
100
1.000
10.000
f ( KHz )
- 44 -
100.000
1.000.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | MINIATURE TYPE K5 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 05 904 40
503 05 947 40
LN (mH)
4x0.47
4x4.7
IN (mA)
150
150
RCu (mΩ)
420
1200
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
4x0,47 mH
4x1,0 mH
4x2,2 mH
100
10
1
10
100
1.000
f ( KHz )
- 45 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K10 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 10 015 40
503 10 047 40
LN (mH)
4x1.5
4x4.7
IN (mA)
200
200
RCu (mΩ)
820
1200
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
4 x 0.47 mH
4 x 1.5 mH
4 x 4.7 mH
100
10
1
10
100
1.000
f ( KHz )
- 46 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE K20 SMD
Frequency range 10 kHz
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
- 30 MHz
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
503 20 011 40
LN (mH)
4x1.0
IN (mA)
300
RCu (mΩ)
340
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
4 x 2,2 mH
4 x 3.3 mH
4 x 4.7 mH
4 x 6.8 mH
100
10
1
10
100
1.000
f ( KHz )
- 47 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE S0 32 SMD
Choke module
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
513 32 047 10
LN (mH)
8x2x4.7
IN (mA)
150
RCu (mΩ)
1700
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
100
8 x 2 x 0.01 mH
8 x 2 x 4.7 mH
10
1
10
100
1.000
f ( KHz )
- 48 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
A2.2 TOROIDAL CORE | TYPE S0 41 SMD
Choke module
Nominal current:
Nominal voltage:
Inductance tolerance:
DC resistance:
Testing voltage:
Thermal characteristics:
Climate category:
per winding
80 V -/42 V ~
+50%/-30%
per winding (nominal winding)
500 V, 50 Hz
heating measurement according to VDE 0565-2
according to IEC 68-1 25/85/56
Part number
513 41 047 00
LN (mH)
8x2x4.7
IN (mA)
200
RCu (mΩ)
800
Other types on request!
Mechanical dimensions and circuit diagram
Impedance curves
100.000
10.000
Z ( Ohm )
1.000
4 x 0.47 mH
4 x 1.5 mH
4 x 4.7 mH
100
10
1
10
100
1.000
f ( KHz )
- 49 -
10.000
100.000
A
A2
INDUCTIVE COMPONENTS
EMC DATA LINE
- 50 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.1
CONTINUOUS MODE
052 - 055
A3.2
DISCONTINUOUS MODE
056 - 058
A3.3
PASSIVE SOLUTIONS
059 - 064
- 51 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
There are various types of circuits that involve controlling not only the output voltage but
also the input current.
Circuit diagram
Continuous mode
Suitable for high power
Discontinuous mode
Suitable for low power
- 52 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.1 CONTINUOUS MODE
Continuous mode boost choke
Input voltage: 90-265 VAC; output voltage: 400 VDC
Switching frequency 100 kHz; ripple of the choke current = 20%
- 53 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.1 CONTINUOUS MODE
Application
PFC chokes for continuous mode.
With this application, the existing switched mode power supply has to be signed for PFC.
Design DK 63
• Core: R 27 – high flux
• Case: DK 63
• Primary coil and secondary coil for IC voltage supply
Design E 36/11
• Core: E 36/11
• Coil former: E 36/11 vertical
Technical data
•
•
•
•
•
•
•
•
Climate category 40/125/56 according to IEC 68-1
Nominal inductance at 10 kHz, 25°C
DC resistance per winding (reference values measured according to VDE 0565-2)
Ambient temperature: 60°C
Temperature rise of windings < 55°C
Max. permissible temperature of windings 115°C
Input voltage 90 – 265 V
Typical switching frequency 100 kHz
- 54 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.1 CONTINUOUS MODE | DK 63 + E 36/11
E 36/11
Output power
(W)
1)
150
Reference value
Ipeak (A)
3
E 36/11 vertical (Rth1) = 23 K/W)
L (mH) ± 10%
1.5
RCu
1)
(Ω)
≤ 0.42
Saturation curve
- 55 -
Part number
575 10 013 00
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.2 DISCONTINUOUS MODE
Discontinuous mode boost choke
Input voltage: 90-265 VAC; output voltage: 410 VDC
Switching frequency 40 kHz
- 56 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.2 DISCONTINUOUS MODE
Application
PFC choke for discontinuous mode.
With this application, the existing switched mode power supply has to be designed for PFC.
Construction
• Core: EF 25/11
• Coilformer: EF 25/11 vertical
Technical data
•
•
•
•
•
•
•
•
•
Climate category 40/125/56 according to IEC 68-1
Nominal inductance at 10 kHz, 25°C
Inductance tolerance ± 10%
DC resistance per winding (reference values measured according to VDE 0565-2)
Ambient temperature 60°C
Temperature rise of windings < 55°C
Max. permissible temperature of windings 115°C
Input voltage 90 – 265 V
Typical switching frequency 40 kHz
- 57 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.2 DISCONTINUOUS MODE |EF 25/11
EF 25/11 vertical (Rth1) = 32 K/W)
Output power
(W)
75
1)
Reference value
Ipeak
(A)
2.8
L (μH)
± 15%
800
Saturation curve
- 58 -
RCu 1)
(Ω)
≤ 0.56
Part number
575 06 045 00
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.3 PASSIVE SOLUTIONS
Harmonics for Class D devices (at approx. 75 W)
- 59 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.3 PASSIVE SOLUTIONS
To A 3.3 Harmonics chokes
For existing power supplies, harmonic chokes, can be switched in front of the switched
mode power supply.
The X-capacitor has to be switched between the voltage supply and CM choke, otherwise
resonance fluctuations can occur between the PF choke and X-capacitor.
To A 3.3 Sinusoidal chokes for pump circuit
In this example with a standard switched mode power supply, a pump circuit is integrated
instead of the cut-off circuit.
With the standard cut-off circuit:
Circuit diagram of the new pump circuit:
- 60 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.3 PASSIVE SOLUTIONS | HARMONICS CHOKES
The use of a harmonics choke is the simplest and cheapest solution for maintaining standard
EN 61000-3-2 requirements for harmonics since it is not necessary to redesign an existing
power supply. Harmonic chokes are most frequently designed with ferrous powder cores or
with laminated cores.
Advantages
•
•
•
•
Cheapest possibility for maintaining harmonics limits
No redesign of existing power supplies
Reduction of the reactive power component
Increase in power factor
Customer-specific types available on request.
- 61 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.3 PASSIVE SOLUTIONS | SINUSOIDAL CHOKE
Ipeak as a function of inductance
- 62 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.3 PASSIVE SOLUTIONS | SINUSOIDAL CHOKE
Application
These chokes are used in switched mode power supplies, typically for PCs, monitors for PCs,
televisions, etc. Together with the so-called pump circuit, switched mode power supplies
can now be modified so that they observe the permitted limit values for class-D equipment.
Structure
• E 20/11 k vertical design
• Installation height = 21 mm
Technical data
•
•
•
•
•
•
•
Climate category 40/125/56 according to IEC 68-1
Nominal inductance at 10 kHz, 25°C
Inductance tolerance ± 10%
DC resistance per winding (reference values measured according to VDE 0565-2)
Ambient temperature 60°C
Temperature rise of windings < 55°C
Max. permissible temperature of windings 115°C
- 63 -
A
A3
INDUCTIVE COMPONENTS
POWER FACTOR CORRECTION
A3.3 PASSIVE SOLUTIONS | SINUSOIDAL CHOKE| EF 20/11 K
EF 20/11 k for pump circuit
1)
Ipeak
(A)
≤ 2.0
≤ 1.7
1)
Reference value
1)
RCu 1)
(mΩ)
≤ 480
≤ 690
LN (mH)
± 10%
1.00
1.50
Saturation curves
- 64 -
Part number
575 25 040 00
575 25 044 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.1 FLYBACK/FORWARD CONVERTER E-CORE
066 - 067
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT
068 - 075
A4.3 FLYBACK/FORWARD CONVERTER 30- > 100 WATT 076 - 080
A4.4 RESONANT CONVERTER (U-CORE)
- 65 -
081 - 082
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.1 FLYBACK/FORWARD CONVERTER E-CORE
Power comparison of various E kits
Flyback converter mode at 100 kHz
Secondary power P
- 66 -
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.1 FLYBACK/FORWARD CONVERTER E-CORE
Application
•
•
•
•
•
Standby transformers
Video recorders
SAT systems
TV sets
Low-cost applications, etc.
Construction
•
•
•
•
E 12,6 – E 55 kits
Upright and flat versions
Open or molded structures
E 16/4,7 kit with open structure
Technical data
• Climate category 40/125/56 in accordance with IEC 68-1
• Maximum permissible temperature of windings 115°C
• Additional technical data and standards: see the following data sheets
- 67 -
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 12.6/3.7
Secondary
1)
Standard
Structure
UP1)
Prim. -Sec.
(kV)
EN 61558
molded
4.0
U1
(Imax)
U2
(Imax)
5V
(40mA)
Test voltage UP (f = 50 Hz; t = 1 sec)
Other types on request!
- 68 -
U3
(Ima)
U4
(Imax)
U5
(Imax)
Part no.
545 19 XXX XX
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 16/4.7
Open E core structures
Working
frequency
(kHz)
Primary
UB (VDC)
U1
(V)
U2
(V)
UP1)
Prim.
-Sec.
(kV)
min
max
60…100…130
130
375
115…140
120
400
124…140
240
375
4.2
60…100…130
130
375
4.2
4.2
15
4.2
1)
Test voltage UP (f = 50 Hz; t = 1 sec)
2)
Group Approval EN 60065/EN 60950/EN 61558-2-17
Other types on request!
- 69 -
Secondary
U1
(Imax)
U2
(Imax)
12V
(0.4A)
24V
(0.25A)
28V
(0.28A)
12V
(0.4A)
5V
(1.0A)
U3
(Imax)
Part no.
2)
545 23 315 00
545 23 211 00
545 23 224 00
12V
(0.4A)
545 23 314 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 20/5.9 S
UP1)
Secondary
Stand- Prim.U1
U2
U2
U3
U4
U5
ard
Sec.
(Imax) (Imax) (Imax) (Imax) (Imax)
(V)
(kV)
VDE
12V
130
120 375
3.0
0860
(0.42A)
VDE
5V
60
125 374 13
4.2
0860
(0.4A)
Test voltage UP (f = 50 Hz; t = 1 sec)
Primary
Working
UB (VDC)
frequency
U1
(kHz)
min max (V)
1)
Other types on request!
- 70 -
Part no.
545 09 010 00
545 09 012 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 20/5.9
Open E-core structures
Working
frequency
(kHz)
Primary
UB (VDC)
U1
(V)
U2
(V)
UP1)
Prim.Sec.
(kV)
min
max
60…100…130
130
375
4.5
60…100…130
130
375
4.5
1)
2)
Test voltage Up (f = 50 Hz; t = 1 sec)
Group Approval EN 60065/EN 60950/EN 61558-2-17
Other types on request!
- 71 -
Secondary
U1
(Imax)
U2
(Imax)
12V
(0.65A)
12V
(0.65A)
5V
(1.5A)
12V
(0.65A)
U3
(Imax)
Part number2)
545 01 273 00
545 01 274 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 20/5.9
Molded E core structures
Working
Frequency
1)
UP1)
Primary
UB (VDC)
U1
U2
(V)
(kHz)
min
max
(V)
100
255
358
24
Stand- Struc- Prim.
ard
ture -Sec.
VDE
0805
molded
EN
60950
Secondary
U1
(kV)
(Imax)
3.0
24V
(0.8A)
Test voltage UP (f = 50 Hz; t= 1 sec)
Other types on request!
- 72 -
U2
U3
U4
U5
Part
number
(Imax) (Imax) (Imax) (Imax)
545 01
151 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 25/7.5
Working
frequency
(kHz)
132
1)
UP1)
Primary
Stand- Struc- Prim.UB (VDC)
U1 U2
ard
ture
Sec.
min max (V) (V)
(kV)
80
375
12
Type B
3.0
Test voltage UP (f = 50 Hz; t= 1 sec)
Other types on request!
- 73 -
Secondary
U1
(Imax)
24V
(1.25A)
U2
(Imax)
U3
U4
U5
(Imax) (Imax) (Imax)
Part
no.
545 02
150 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 25/11
Primary
UP1)
Stand- Struc- Prim.UB (VDC)
U1 U2
U1
ard
ture
Sec.
(Imax)
min max (V) (V)
(kV)
VDE
18V
100
270
360
12
molded 3.5
0805
(1.3A)
VDE
5V
100
290
360
12
molded 3.5
0805
(2.3A)
Test voltage UP (f = 50 Hz; t= 1 sec)
Working
frequency
(kHz)
1)
Other types on request!
- 74 -
Secondary
U2
(Imax)
U3
U4
U5
(Imax) (Imax) (Imax)
Part
no.
545 27
XXX 00
545 27
XXX 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 30/7.3
Working
frequency
(kHz)
100
1)
Primary
UB (VDC)
U1 U2
min max (V) (V)
120
380
12
Standard
UP1)
Prim.Sec.
(kV)
VDE 712
(Part 24 A1)
EN 60928
4.0
Test voltage UP (f = 50 Hz; t= 1 sec)
Other types on request!
- 75 -
Secondary
U1
(Imax)
24V
(1A)
U2
U3
U4
U5
(Imax) (Imax) (Imax) (Imax)
Part no.
545 03 XXX 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 30/12
Primary
UB (VDC)
U1 U2
min max (V) (V)
Standard
UP1)
Prim.Sec.
(kV)
130
180
270
12
VDE 0860
EN 60065
3.0
130
275
360
12
VDE 0860
3.0
Working
frequency
(kHz)
1)
Test voltage UP (f = 50 Hz; t= 1 sec)
Other types on request!
- 76 -
Secondary
U1
(Imax)
U2
(Imax)
U3
U4
U5
(Imax) (Imax) (Imax)
5V
3.3V
25V
(0.3A) (1.5A) (3A)
5V
12V
(1.4A) (2.75A)
Part
no.
545 08 XXX 00
545 08 XXX 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 36/11
Working
frequency
(kHz)
1)
Primary
UB (V)
U1
min max (V)
UP1)
Prim.U2 Standard
Sec.
(V)
(kV)
100
250
370
15
EN 60950
3.0
60
100
375
15
EN 60950
UL 60950
3.0
Secondary
U1
(Imax)
14.5V
(6A)
19V
(50mA)
Test voltage UP (f = 50 Hz; t= 1 sec)
Other types on request!
- 77 -
U2
(Imax)
U3
(Imax)
12V
5V
(2.9A) (2.25A)
U4
U5
(Imax) (Imax)
Part
no.
545 11
093 00
545 11
100 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 42/15
Primary
UB (VDC)
U1
Working
frequency
(kHz)
min
max
U2
(V) (V)
40
180
270
12
1)
Standard
VDE 0860
EN 60065
IEC 60065
UP1)
Prim.U1
Sec.
(Imax)
(kV)
3.0
Test voltage UP (f = 50 Hz; t= 1 sec)
Other types on request!
- 78 -
5V
(7A)
Secondary
U2
(Imax)
U3
(Imax)
U4
(Imax)
12V
(1.6A)
25V
(1.3A)
40V
(50mA)
U5
(Imax)
Part no.
545 13
XXX 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 42/20
Primary
Working
UB (V)
frequency
U1
(kHz)
min max (V)
15V VDE
1A
805
Test voltage UP (f = 50 Hz; t = 1 sec)
50
1)
U2
(V)
Standard
220
420
12
UP1)
Secondary
Prim.U1
U2
U3
U4
U5
Sec.
(Imax) (Imax) (Imax) (Imax) (Imax)
(kV)
31V
15V
molded 3.75
(6A) (1A)
Structure
Other types on request!
- 79 -
Part
no.
545 17
104 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 55
UP1)
Stand- Prim.
ard
-Sec.
(kV)
VDE
100
238 370 15
3.0
0805
VDE
40
260 420 12
3.75
0551
Test voltage UP (f = 50 Hz; t = 1 sec)
Working
frequency
(kHz)
1)
Primary
UB (V)
U1
min max (V)
U2
(V)
Secondary
U1
(Imax)
U2
(Imax)
100V
(4A)
5V
(0.6A)
15V
15V
(0.2A) (0.2A)
Other types on request!
- 80 -
U3
(Imax)
U4
U5
(Imax) (Imax)
Part
number
545 16 056 00
545 16 057 00
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.4 RESONANT CONVERTER (U-CORE)
Application
• Half bridge resonant mode converter
• Flat switch mode power supplies
Construction
• U core
• 2,3 or 4 chambers possible
• defined high leakage inductance
Technical data
•
•
•
•
•
Group approval EN 60065/EN 60950/EN 61558-2-17
Creepage and clearance distance 8 mm
Climate category 40/125/56 in accordance with IEC 68-1
Insulation class B according to IEC 60085
UL 94 V-0
Advantages
• Non-potted – environmentally friendly since no adhesives or resins are used
• Compact size, total height ≤ 20 mm
• High efficiency
- 81 -
A
A4
INDUCTIVE COMPONENTS
ENERGY TRANSFER
A4.4 RESONANT CONVERTER (U-CORE)| U 43
Working
frequency
(kHz)
100 - 400
1)
Primary
UB (VDC)
min
max
380
410
Standard
UP1)
Prim. Sec.
(kV)
EN 60065
EN 60950
4.5
Secondary
U1
(Imax)
U2
(Imax)
U3
(Imax)
U4
(Imax)
24 V
24 V
24 V
24 V
(2.6 A) (2.6 A) (2.6 A) (2.6 A)
Test voltage UP (f = 50 Hz; t = 2 sec)
Customer-specific types on request
- 82 -
Part number
546 13 002 00
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
084 - 091
A5.2 INTERFACE TRANSFORMER
092 - 100
- 83 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
Individual design
We manufacture many customer-specific radiofrequency transformers, and therefore request
that you send us your requirements.
The following base plates are available along with
complete RF-transformers.
The shape and dimensions of the double-aperture
cores are described in chapter “B CORES AND
KITS”.
- 84 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
Example for test circuit for directional couplers
Circuit / measurement arrangement
E-A
Insertion attenuation
S 21
E-AB
Coupling attenuation
S 21
A-AB
Isolation
S 21
The function of directional couplers is to decouple a portion of the RF energy at defined levels
(see table) at the branch.
A linear characteristic curve at the nominal coupling value, a high degree of directionality and
low transmission attenuation allow use of directional couplers in many communications
applications
The directional couplers must allow bi-directional transmissions (e.g. interactive and
multimedia applications), in order to handle future requirements.
7 dB
Broadband cable
frequencies
(4-862 MHz)
Satellite
frequencies
(47-2500 MHz)
Expanded
frequencies
(4-2500 MHz)
10 dB
13 dB
15 dB
17 dB
503 00 012 00 503 00 013 00 503 00 014 00 503 00 015 00 503 00 016 00
- 85 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
New standard
Component and tape dimensions as well as layout recommendation
Technical specifications
•
•
•
•
•
Compact shape
Requires little space
Bonded with reflow soldering
Automatic insertion possible
Blister pack
- 86 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
New standard
7 dB Directional coupler
Part number: 503 00 012 00
Ratio: 2 : 4 : 4 : 2
Typical values
Frequency [MHz]
0
100
200
300
400
500
600
700
800
900
1000
[dB]
0,00
Transmission attenuation
-5,00
Branching attenuation
-10,00
-15,00
-20,00
Frequency
[MHz]
5.00
47.00
606.00
862.00
Transmission attenuation
[dB]
-2.84
-2.16
-2.22
-2.27
Measured with Vogt test adapter
- 87 -
Branching attenuation
[dB]
-8.84
-7.63
-7.33
-7.07
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
New standard
10 dB Directional coupler
Part number: 503 00 013 00
Ratio: 2 : 6 : 7 : 2
Typical values
Frequency [MHz]
0
100
200
300
400
500
600
700
800
900
1000
[dB]
Frequency
[MHz]
Transmission attenuation
0,00
5.00
47.00
606.00
862.00
-5,00
Branching attenuation
-10,00
Transmission Branching
attenuation attenuation
[dB]
[dB]
-0.94
-11.03
-0.75
-10.73
-0.89
-10.20
-1.05
-9.49
-15,00
-20,00
Measured with Vogt test adapter
13 dB Directional coupler
Part number: 503 00 014 00
Ratio: 1 : 4 : 8 : 2
Typical values
Frequency [MHZ]
0
100
200
300
400
500
600
700
800
900
1000
[dB]
0,00
Frequency
[MHz]
Transmission attenuation
5.00
47.00
606.00
862.00
-5,00
-10,00
Branching attenuation
-15,00
-20,00
Measured with Vogt test adapter
- 88 -
Transmission
attenuation
[dB]
-0.59
-0.50
-0.68
-0.96
Branching
attenuation
[dB]
-13.65
-13.00
-12.71
-11.60
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
New standard
15 dB Directional coupler
Part number: 503 00 015 00
Ratio: 1 : 5 : 6 : 1
Typical values
Frequency [MHz]
0
100
200
300
400
500
600
700
800
900
1000
Frequency
[MHz]
[dB]
Transmission attenuation
0,00
5.00
47.00
606.00
862.00
-5,00
-10,00
Transmission
attenuation
[dB]
-0.80
-0.58
-0.73
-0.96
Branching
attenuation
[dB]
-18.59
-15.40
-15.35
-15.32
Transmission
attenuation
[dB]
-0.54
-0.38
-0.50
-0.65
Branching
attenuation
[dB]
-17.23
-17.14
-17.83
-17.51
Branching attenuation
-15,00
-20,00
Measured with Vogt test adapter
17 dB Directional coupler
Part number: 503 00 016 00
Ratio: 1 : 7 : 7 : 1
Typical values
Frequency [MHz]
0
100
200
300
400
500
600
700
800
900
1000
[dB]
0,00
Transmission attenuation
Frequency
[MHz]
-5,00
5.00
47.00
606.00
862.00
-10,00
-15,00
Branching attenuation
-20,00
Measured with Vogt test adapter
- 89 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
Test circuit for power splitting with impedance matching
Test circuit
Impedance matching
splitter
E-A1
Insertion attenuation
S 21
E-A2
Insertion attenuation
S 21
A1-A2
Isolation
S 21
A circuit variation combining an impedance transformer with splitter is a standard circuit in
communication technology for splitting radio-frequency energy.
Splitting the power at the splitter input causes a mismatch. A corresponding impedance
transformer must be placed before the splitter.
The goal is a linearized attenuation curve and good decoupling of the outputs.
New products are in design.
Customer-specific types on request
- 90 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.1 RF-TRANSFORMER
Test arrangement for baluns
Test circuit
Baluns convert an ungrounded symmetrical signal (RF twin lead) to a ground-referenced
unsymmetrical signal (coax cable).
New products are in design.
Customer-specific types on request
- 91 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 SIGNAL TRANSMISSION - APPLICATIONS
For terminals
(Telephones, fax machines, PC cards, PCMCIA cards, video telephones)
•
•
•
•
•
•
•
S0 interface transformers
S0 interface modules
UP0 interface transformers
UPN interface transformers
Interface transformers in general
DSL transformers
LAN components / 10, 100, 1.000 Base T transformers and modules
For public branch exchanges
•
•
•
•
Interface transformers in general
S2M interface transformers
UK0 interface modules
DSL transformers
For the NTBA
(Network Termination Basic Access)
•
•
•
•
S0 interface transformers
S0 interface modules
UK0 interface modules
Transformers for DC/DC converters
For private branch exchanges (PABX)
•
•
•
•
•
•
•
•
•
S0 interface transformers
S0 interface modules
UP0 interface transformers
UPN interface transformers
UK0 interface transformers
Interface transformers in general
Transformers for DC/DC converters
LAN components / 10, 100, 1.000 Base T transformers and modules
- 92 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Type K2 503 02 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-I.430
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Type K5 503 05 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-I.430
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Applications
•
Data – and signal line chokes
- 93 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Type K10 503 10 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-I.430
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Type K20 503 20 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-I.430
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Applications
•
•
•
Data – and signal line chokes
So – interface transformers
Line – transformers
- 94 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Type K21 543 21 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-T G.703
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Type K74 503 74 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-I.430
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Applications
•
•
•
Data – and signal line chokes
So – interface transformers
Line - transformers
- 95 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Type S016 (RM 1.27 mm) 503 16 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-T G.703
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Type S016 (RM 2.54 mm) 503 16 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-I.430
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Applications
•
•
•
10, 100, 1.000 Base T modules
Data – and signal line modules
So – interface modules
- 96 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Type S020 503 20 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-I.430
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
- 97 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Type S032 503 32 XXX XX
•
Design:
•
Climate category:
•
Dielectric strength:
•
Mechanical dimensions
according to ITU-T G.703
according to IEC 68-1 25/85/56
according to EN-60950
Type S040 513 40 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-T G.703
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Applications
•
•
•
10, 100, 1.000 Base T modules
Data – and signal line modules
So – interface modules
- 98 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Type EP13 SMD 504 13 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-T G.691
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Type EP13 THD 540 13 XXX XX
•
•
•
Design:
Climate category:
Dielectric strength:
according to ITU-T G.691
according to IEC 68-1 25/85/56
according to EN-60950
Mechanical dimensions
Applications
•
•
•
•
DSL Transformers
DSL Filter Coils
Transformers for DC/DC Converters
Interface Transformers
- 99 -
A
A5
INDUCTIVE COMPONENTS
SIGNAL TRANSMISSION
A5.2 INTERFACE TRANSFORMER
Design EF12/6 505 03 XXX XX
•
•
Climate category:
Dielectric strength:
in accordance with IEC 68-1 25/85/56
in accordance with EN-60950
Mechanical dimensions
Applications
•
•
•
•
Line Transformers
Interface Transformers
Upn Transformers
Transformers for DC/DC Converters
- 100 -
A
A6
INDUCTIVE COMPONENTS
CHECKLISTS
A6.1 TRANSFORMERS
Name
Department
Company
Street
Zip/City/Country
Phone
Fax
E-Mail
Series start
Quantity per year
Target price
Deadline for samples
Application
Technical Data:
Mode:
Flyback converter
Push-pull converter
Forward converter
Half-bridge converter
Others
Test voltage/nec. Standards
Standards to be applied
(e. g. VDE0805, EN60950)
Type of isolation
(e. g. functional, basic, reinforced isolation)
Rated voltage of the supply circuit
Veff
Working or rated isolation voltage
primary to secondary
Veff
Input power
max.
VA
Rated switching frequency
max.
kHz
Peak voltage (with overshoots)
max.
VS
- 101 -
A
A6
INDUCTIVE COMPONENTS
CHECKLISTS
Pollution degrees in the instrument
= no contact
= middle
= heavy pollution
Overvoltage category
I
Flammability class from used materials
according to UL 94
System of insulating materials UL 1446
(specify temperature class)
II
V0
III
V1
V2
HB
no
Driver
Frequency
Fixed/min.
max.
kHz
Duty cycle
min.
max.
%
Input voltage
min.
max.
V
Ambient temperature on the transformer
Maximal dimensions
°C
l
x w
x h
mm
Prefered Kit
Circuit diagram
Primary:
Secondary:
W1:
U:
I:
W1:
U:
I:
W2:
U:
I:
W2:
U:
I:
W3:
U:
I:
W3:
U:
I:
W4:
U:
I:
W4:
U:
I:
W5:
U:
I:
W5:
U:
I:
W6:
U:
I:
W6:
U:
I:
W7:
U:
I:
W7:
U:
I:
W8:
U:
I:
W8:
U:
I:
W9:
U:
I:
W9:
U:
I:
Comment:
On request, the checklist is also available as pdf-file or on our homepage: www.sumida-eu.com
- 102 -
A
A6
INDUCTIVE COMPONENTS
CHECKLISTS
A6.2 CHOKES
Name
Department
Company
Street
Zip/City/Country
Phone
Fax
E-Mail
Series start
Quantity per year
Target price
Deadline for samples
Application
Technical Data:
Output choke
Noise suppression choke
PFC-choke: Input voltage in V: min.
/max.
Common mode choke
, Output DC power in VA:
Inductance (no-load/load)
µH,
Switching frequency
mH,
H
kHz
Peak current
A
Effective current
A
Current ripple
%
DC resistance
Ohm
Ambient temperature oh the choke
max.
Maximal dimensions
l
- 103 -
°C
x w
x h
mm
A
A6
INDUCTIVE COMPONENTS
CHECKLISTS
Circuit diagram
Primary:
W1:
U:
Secondary
I:
W1:
U:
I:
W2:
U:
I:
W2:
U:
I:
W3:
U:
I:
W3:
U:
I:
W4:
U:
I:
W4:
U:
I:
W5:
U:
I:
W5:
U:
I:
W6:
U:
I:
W6:
U:
I:
W7:
U:
I:
W7:
U:
I:
W8:
U:
I:
W8:
U:
I:
W9:
U:
I:
W9:
U:
I:
W10 U:
I:
W10 U:
I:
W11 U:
I:
W11 U:
I:
W12 U:
I:
W12 U:
I:
Comment:
On request, the checklist is also available as pdf-file or on our homepage: www.sumida-eu.com
- 104 -
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
OVERVIEW
106
B1.1 FERROCARIT
107 – 172
B1.2 PLASTOFERRITE
173 - 176
B1.3 FERROCART
177 - 198
- 105 -
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
OVERVIEW
•
•
•
•
•
MnZn ferrite
NiZn ferrite
Plastoferrite
Injection molding ferrite
Metal powder cores
ADVANTAGES
•
•
•
•
•
•
•
•
•
•
Many different material grades and core-shapes are available
Flexibility due to small volume production and own R&D department
Fast supply of samples
Individual solutions (special core shapes, ferrite applications)
Own development and research in the field of magnetic materials
Small quantities are available due to flexible powder production
Direct sale of cores
Large cores
Secure supply chain in the case of a shortfall of magnetic cores on the market
R&D-package of inductive components and material
- 106 -
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | OVERVIEW
List of used Symbols, designations and units:
Symbol
Designation
Unit
A
Cross-sectional area of magnetic path in general
mm2
Ae
Effective cross-sectional area
mm2
AL
Inductance factor
Aw
Cross-sectional area of winding space
aF
Relative temperature factor of permeability
B
Magnetic induction, flux density
T
B̂
Peak value of induction
T
DF
Relative disaccomodation factor
ηB
Hysteresis material constant
f
Frequency in general
Hz
fin
Input frequency
Hz
nH
mm2
10-6 ⋅ K-1
10-6
10-6 ⋅ mT-1
H
Magnetic field strength
A/m
Ĥ
Peak value of magnetic field strength
A/m
Hc
Coercivity
A/m
He
Effective magnetic field strength in the core
A/m
I
Current intensity
A
K
Coupling factor
1
L
Inductance in general
H
L0
Inductance of a coil without core
H
Lk
Inductance of a coil with core
H
l
Magnetic path length
mm
le
Effective magnetic path length
mm
lw
Mean winding length
mm
l
∑ = C1
A
Magnetic core constant
mm-1
Λo = c
Permeance factor
µ
nH
Permeability in general
1
107
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Symbol
Designation
Unit
µa
Amplitude permeability
1
µw = µapp
Apparent permeability
1
µe
Effective permeability
1
µi
Initial permeability
µo
Absolute permeability of vacuum = 4⋅π⋅10-7
1
μ
Complex permeability
1
µΔ
Incremental permeability
1
n
Number of winding turns
1
Pv
Relative core dissipation power
Q
Coil quality factor
1
Qo
Zero-load quality factor
1
Ω
T ⋅ m/A
mW/cm3
Rv
Loss resistance
R=
DC-resistance
Ω
ρ
DC-resistivity
Ω⋅m
s
air gap
t
mm
time
s
tanδ
loss factor in general
1
tanδh
Hysteresis loss factor
1
tanδl
Coil loss factor
1
tanδn
Loss factor due to residual losses
1
tanδw
Loss factor due to eddy current
1
tanδwi
Loss factor due to winding loss
tanδ / µi
ϑ/T
1
Relative loss factor
10-6
Temperature in general
°C
ϑc
Curie temperature
Ve
Effective magnetic volume
z&
Specific impedance
°C
mm3
Ω/cm
108
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Terms and Definitions
A list of the symbols and units used in this catalogue is given above.
Most of the equations used in the following passages are equations of quantities. Where other
kinds of equations are given please use the units listed next to them.
1
Permeability
1.1 Magnetic field constant µO
µO = 1,257 · 10-6
T · m · A-1
The quantity µO is also called the Absolute permeability of vacuum.
In contrast to µO the permeabilities defined below are relative quantities. They are related to
µO and represent plain numerical values without dimensional units.
1.2 Initial permeability µi
µi is the permeability of a magnetic material at an infinitely small amplitude of the
magnetizing field, measured without pre magnetization and without exterior shearing
influence:
μ
i
=
1
μO
⋅
ΔB
ΔH
( H = O; ΔH → O )
In practice µi is derived from the inductance of a toroidal core coil:
L in µH
1
L l
μi =
⋅ 2 ⋅
μO n
A
l in mm
A in mm2
With cores of closed magnetic circuit having changing cross-sectional areas along the magnetic
path length, the expression l/A has to be replaced by Σ l/A (core constant C1).
μi=
1
⋅
L
μO n2
⋅
∑
l
A
This equation is valid only for cores without any magnetic shearing. It should be recognized,
however, that composite cores (e.g. pot or E-cores) must be considered as slightly sheared,
even if they are declared as non-gapped.
109
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
The initial permeability is also called toroidal or material permeability. Over a wide range µi is
independent on frequency. On our material data tables f0,8 marks that frequency at which µi
decreases to 80% of the tabulated value.
1.3 Effective permeability µe
If in a closed magnetic circuit an air gap exists (shearing) the initial permeability is reduced to
a smaller value called effective permeability µe.
The effective permeability µe equals the initial permeability µi of a core material which
unsheared with the same shape of core, the same course of magnetic flux, and under equal
measuring conditions would give the same electrical performance. Because of the presupposition of the same course of the magnetic flux µe is applicable only to cores with relatively high
permeability, which are but slightly sheared so that the magnetic stray field remains
negligible. This presupposition is fulfilled e.g. with pot or E-cores having customary air gap.
The quotient µe/µi is called the shearing ratio.
With the aid of µe and of the material characteristics shown on the material data tables all
important properties of a coil (e.g. losses, thermal performance, temporal instability - see
sections 4, 6, and 7) are easily calculable.
If the effective permeability µe of a core is unknown, it can be found out by an inductance
measurement and by making use of the reduced magnetic conductivity Λ o , also called
permeance factor c (see section 3).
μe=
10 6 ⋅ L
L
Λ
n2 ⋅Λ0
O
in mH
in nH
The numerical values of c are contained in the data sheets of the appropriate core types.
A merely mathematical way of ascertaining µe may be used, if the initial permeability µi of the
core material, the core constant C1 = Σ l/A, the air gap length s, and the magnetic crosssectional area As in the gap are known:
μi
μe =
s
1+
As
Σ
l
A
=
( μ i − 1)
μi
s⋅ΛO
1+
( μ i − 1)
As ⋅μO
s
As
Σ
l
A
in mm
in mm²
in mm-1
1.4 Apparent permeability µapp
The ratio of the inductance Lk of a cored coil and the inductance LO of the same coil without
core is called apparent permeability µapp.
110
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
μ app = μ w =
Lk
LO
µapp is used with coils having magnetically open cores (strong shearing) with large stray fields,
as e.g. rod, tube, or screw cores. The numerical values of µapp depend not only on core
material and core shape, but also on the kind of winding and its position relatively to the core.
µapp-values are comparable only if evaluated under equal measuring conditions.
1.5 Amplitude permeability µa
The amplitude permeability is defined by the equation
1
μa = μ
O
⋅
B$
H$
where sinusoidal induction being assumed.
The numerical values of µa as well the measuring conditions under which they were evaluated
are contained in the respective data sheets of the appropriate cores, as e.g. E- or U-cores.
1.6 Incremental permeability µΔ
It corresponds to the amplitude permeability µa with pre-magnetization and is defined by the
equation
B
μ Δ = μ1 ⋅ ΔΔH
O
The incremental permeability is usually understood to be a function of a DC. pre-magnetization
by a fieldstrengh H_. In order to evaluate µΔ the alternating field ΔH is rated in such a way that
the alternating induction ΔB for any value of the pre-magnetizing field H_ remains constant,
e.g. 10 mT.
1.7 Complex permeability μ
In alternating-current engineering complex values are used for describing the phase position.
A perfectly lossless coil with a core of permeability µ causes a phase shift of 90° between
voltage U and current I. In complex writing this is described as follows (concerning the
introduction of ΛO for describing the core geometry of any core shape see paragraph 3.2):
111
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
U
= Z = jω L = jω Λ O n 2 μ
I
If in the core material losses are occurring, an active resistance R is added to the reactance
jωL, which causes a diminution of the phase angle 90° by the angle δ, usually described by:
tanδ =
R
ωL
.
In this case the complex writing is as follows:
U
I
= Z = R + jωL = jωL (1 − j tanδ ) = j ωΛ O n 2 μ
with
(2)
μ =μ (1 − j tanδ ) = μ ' s − jμ "s
The phase shift is described by a complex permeability. Its real and imaginary parts are usually
described by µ’s and µ“s (the index s shall indicate that active resistance and reactance are
connected in series).
Hence follows:
μ' s =
L
(3)
ΛO n2
μ"s = μ' s tan δ =
R
ωΛ O n 2
For toroids is valid:
L = n2Λ Oμi
Hence follows:
μ`s = μi
and
μ" s =
R
⋅ μ i = tanδ ⋅ μ i
ωL
112
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
The diagrams for FERROCARIT-materials in this catalogue are presenting the complex
permeability in series connection, measured on toroids.
The real component µ’s of those diagrams corresponds to the initial permeability µi of the
material. The dependence of the initial permeability from the frequency is directly obvious. It
has to be noted that from a certain frequency the initial permeability gradually decreases.
µ“s is particularly of interest for wide-band applications (transformers, attenuation chokes): at
each frequency you can read from the relation µ“s / µ’s the share of the losses and of the pure
inductance in relation to the total impedance or attenuation.
At that frequency, where the curves µ’s and µ“s are intersecting, both contributions are equal.
In the frequency range below, the inductance contribution is determining. Above, the
inductive effect is decreasing and the attenuating effect is increasing by energy absorption. As
by decreasing µ’s the magnetization processes are disappearing, the losses caused by that are
also disappearing.
For the circuit design it is often useful to consider the admittance instead of the impedance
and to describe it as parallel connection of a resistance Rp and an inductance Lp. From (2)
follows:
Y =
or
1
Z
1
μ
=
=
1
Rp
n2ΛO
Lp
1
+
jωLp
+j
=
ωn 2 Λ O
Rp
1
(4)
jωΛ O n 2 μ
=
1
μ 'p
+j
1
μ "p
From this results analogues to (3) simple relations for the values µ’p and µ“p follow:
μ' p =
μ" p =
Lp
(5)
2
n ΛO
Rp
ωn 2 Λ O
113
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
From (3) and (5) follows:
μ ' p = μ ' s (1 + tan 2 δ )
μ"p = μ"s (1 +
1
tan 2 δ
)
In the diagrams for FERROCARIT-materials in this catalogue curves of the complex
permeability for parallel connection are shown, sometimes they are described as products ωµ’p
and ωµ“p , for easier calculating transformers.
Also in this case the influence of the inductance is equal to the influence of the losses by the
intersection of both curves for the admittance value of the transformer.
1.8 Specific impedance
z&
The suppression quality of a component is essentially specified by its impedance:
Z = jω L + R
The amount of impedance includes a material specific component
Z =
Ae
⋅ N 2 ⋅ z&
le
This material specific impedance can be formulated as follows:
z& = μ 0ω μ ' 2 + μ ' '2
114
z&
:
B
B1
2.
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Effective magnetic parameters
They are applicable only to cores of a closed magnetic circuit (e.g. pot, E-, and U-cores),
having changing cross-sectional areas along the magnetic path length. They are also applicable
to sheared cores having negligible magnetic stray fields.
The effective parameters permit a simple way of calculating the magnetic properties of closed
cores of arbitrary geometry. For this method of calculation, the core is substituted by an ideal
toroid giving the same magnetic performance as the original core. (IEC publication 205)
2.1 Core constant C1
C1 results from the summation of the quotients of the partial magnetic path lengths l and the
corresponding cross-sectional areas A of a core of closed magnetic circuit subdivided into
uniform sections:
C1 = Σ
l
A
2.2 Effective magnetic path length le
le is defined by the equation:
(Σ
le =
Σ
l
)
A
l
2
A2
2.3 Effective cross-sectional area Ae
Ae is defined by the equation:
Σ
Ae =
Σ
l
A
l
A2
115
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
2.4 Effective magnetic volume Ve
From le ⋅ Ae results:
l
(Σ ) 3
Ve = A
l 2
(Σ
)
A2
The numerical values of the effective parameters are given on the data sheets of cores of
closed magnetic circuit.
3.
Inductance factor and Permeance factor
3.1. Inductance factor AL
AL is used to calculate the number of winding turns of a coil in order to achieve a given
inductance L with cores of closed magnetic circuit with cores of closed magnetic circuit with
or without air gap.
AL =
L
n2
= μe
μO
l
Σ
A
Thus AL is the inductance L related to one winding turn (w=1). It is usually given in nH. To
strongly sheared core shapes AL is only applicable, if the kind of winding and the position of
the winding relatively to the core are exactly defined. As this holds true for our coil kits, ALvalues are given on the appropriate data sheets. They are approximate values supposing the
coil formers to be nearly fully wound.
The inductance factor AL is not applicable to magnetic circuits with large stray fields, e.g. rod
or screw cored coils.
3.2 Permeance factor c
If the expression
A
L
= μe
μO
l
Σ
A
is reduced to µe = 1, the portion conditioned by the core material is eliminated. The rest
conditioned only by the core configuration represents the Permeance factor c which may be
derived also from the magnetic field constant and the core constant C1.
116
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
c = ΛO =
From AL =
L
n
2
L
AL
μe
AL
and c =
= n
2
=
⋅
μe
μ
e
μO
l
Σ
A
results:
⋅
c
Thus the inductance L of a closed magnetic circuit depends on three factors, one being
conditioned by the winding (n2), another one by the core material (µe, which takes into
account an eventual air gap), and a third one by the core configuration ΛO.
This fundamental relation holds true for any calculation concerning the selection of core
shape, core material, and winding of magnetic circuits.
4.
Loss at small magnetizing force
4.1 Loss angle tanδL and Quality factor Q:
When small magnetizing forces predominate in electronics (small signal applications), the total
loss of a coil can be expressed by the loss angle
tanδ L =
RV
2π ⋅ f ⋅ L
The loss resistance RV is supposed to be in series to the no-loss inductance L. From RV and the
effective coil current I the dissipation power RV⋅I2 may be easily calculated.
The reciprocal value of the loss angle is called Quality factor Q:
Q =
2π ⋅ f ⋅ L
1
=
tanδ L
RV
117
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
The total loss angle of a coil is composed of different loss portions originating from the core,
the winding, and possibly from a screening:
tanδL = tanδh + tanδw + tanδn + tanδwi
Hysteresis loss . . . . .
Eddy current loss . . . . .
4.2
tanδh
tanδw
Residual loss . . . . . . .
Winding loss . . . . . . . .
tanδn
tanδwi
Hysteresis loss
4.2.1 Hysteresis coefficient
At small magnetizing forces, where the Rayleigh relations are valid, there is a practically linear
increase of hysteresis loss as a function of field strength or flux density respectively.
$ · µi
tanδ h = ηB · B
According to the IEC publication 401 the linearity constant ηB is called hysterersis material
constant.
4.2.2 Hysteresis material constant
For determining the hysteresis material constant two measurement points at low induction
B$ 1 and B̂ 2
are relevant
$ 1) ;
tanδ ( B
B$ 1 = 1,5 mT
$
$ 2 = 3,0 mT
tanδ ( B 2) ; B
The measurement of the loss angle tanδ is performed at a frequency f=10 kHz for µi≤ 500 and
f=100 kHz for µi>500.
ηB now can be calculated by
ηB =
tan δ ( Bˆ 2 ) − tan δ ( Bˆ1 )
μ ⋅ ( Bˆ − Bˆ )
2
i
1
The equation given above holds for homogeneous toroids. When sheared cores with negligible
stray field are used, µi is to be replaced by µe.
118
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
4.3. Eddy current, Residual loss and Relative loss factor tanδ/µi
The loss factor related to µi = 1 is ascertained by loss angle measurements at two magnetizing
forces and by extrapolation to H = 0. Magnetizing forces for the tabulated values of our
material data sheets are 0,1 and 0,5 Am-1.
By extrapolation of the magnetizing force to zero, loss caused by this force (hysteresis)
becomes zero too. Thus the relative loss factor tanδ/µi is a characteristic for the remaining
eddy current and residual losses.
If gapped cores with negligible stray field are used, the loss factor becomes effective with the
shearing ratio µe/µi.
Therefore the tabulated tanδ/µi values are to be multplied with µe.
4.4 Winding loss tanδwi
Winding loss is composed of copper loss, eddy current loss in the conductor material, and
dielectric loss due to the intrinsic capacity of the winding.
Copper loss results from the ohmic resistance of the conductor material and the resistance
increase due to skin effect. The ohmic resistance can be deduced from the nominal conductor
diameter D, the mean length of winding turn lw, the number of turns n, and the resistivity of
the conductor material. The increase of resistance due for skin effect is involved by the
dimensionless value ß which is the relation of the effective cross section caused by skin effect
to the physical one of the wire. For low frequency ß is equal to 1. The total copper loss can be
calculated by the aid of the following equation:
tanδ wi = 3,5 ⋅ 10 −6
lw ⋅ n ⋅ ß
D2 ⋅ f ⋅ L
lw
D
f
L
in mm
in mm
in Hz
in H
This formula may be used, if dielectric loss is negligibly small. This is true of cores of closed
magnetic circuit like pot or E-cores, made out of high-permeability materials and used at
frequencies up to 100 kHz.
There exists no practicable formula for calculating dielectric loss conditioned by the intrinsic
capacity of the winding at higher frequencies.
119
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
4.5 Screening loss
If coils are screened, eddy current loss within the screening material must not be neglected. It
depends on the extent of the stray field, the distance between coil and screening can, the
screening material and the operating frequency. As there exists no practicable formula for
calculation of screening loss, empirical ascertainment or advanced computer simulation such
as FEM is recommended.
If high permeability cores of closed magnetic circuit are used screening may often be
dispensed with.
5 Power loss at high magnetizing force
Inductors and transformers for power application use to take strong current loads. Magnetizing
force and flux density then are beyond the Rayleigh range with its simple linear relations
between these two quantities.
5.1 Bipolar losses at high magnetizing force
In our data sheets of cores designed for power application the total power loss in W as well as
the specific power loss in mW ⋅ cm−3 is given for defined values of frequency, flux density,
and temperature.
The dependence of power loss on frequency f and peak flux density within the ranges of
frequency and current used in electronic power applications, is expressed by an empirical
formula (Steinmetz relation). PV being the specific power loss, i.e. the power loss related to
the unit of volume, this formula reads:
PV = K ⋅ f a ⋅
Bb
K = const
a ≈ 1…2
b ≈ 2…3
PV is given in mW ⋅ cm−3. K is a constant, a and b are constant powers to f and B. The quantities
K, a and b ascertained by loss measurements at different frequencies and flux densities. Where
in our core data sheets the dependence of loss on frequency and flux density is specified, the
graphs are in accordance with the formula given above.
120
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
5.2 Unipolar losses at high magnetizing force
If an inductive component is forced by a DC - magnetization with an additional AC - component
so called unipolar losses are induced in the core material. These losses depend on the
amplitude of DC - magnetization, which defines the working point on the magnetization curve
of the core material, and the frequency and amplitude of the alternating field component.
This application is typical for output chokes. Therefore in our data sheets for the preferred
FERROCART materials for output chokes unipolar power loss values are given for different
frequencies and ripple percentages. Ripple is defined as ratio of peak-to-peak value of the ACto amplitude of the DC - component.
6. Temperature-dependence of Inductance, Temperature Factor of Permeability αF
The temperature-dependent alternations of initial permeability are described by the relative
temperature factor, i.e. the alternation per Kelvin. In accordance with IEC-publication 401 for
this quantity the symbol αF is used, the signification of which is identical with the former
expression αµ/µi
αF is ascertained from measurements of the initial permeabilities µi1 and µi2 at the
temperatures ϑ1 and ϑ2
The values indicated in our material table were achieved by measurements at 20°C and 70°C
αF
=
μi
2
μi ⋅ μi
2
1
− μi
(ϑ
1
2
− ϑ1
)
If coils with gapped cores and negligible stray field are used, the tabulated αF -values must be
multiplied by µe. The alteration of inductance of such a coil caused by changes of temperature
may be calculated by aid of the formula:
ΔL
L
= α F ⋅ μ e ⋅ Δϑ
This equation is not applicable to coils with large stray fields as e.g. rod or screw cored coils.
The temperature performance of such a coil depends not only on the temperature factor of the
core but also, in a proportion not be neglected, on the temperature performance of the
winding and of the whole assembly.
In cases of this kind αF cannot be more than an aid to comparison of different core materials.
121
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
7. Temporal Alternation of Inductance, Disaccommodation Factor DF
A change of the magnetic state of a core by magnetic or thermic demagnetization causing a
sudden increase of permeability, is followed even under constant environmental conditions by
a limited permeability decrease taking a logarithmic course.
This temporal instability is called disaccommodation. It is described by the disaccommodation
factor DF relating to an initial permeability µi = 1. According to an IEC recommendation DF
replaces the physically identical expression d/µi. DF is ascertained by measuring the initial
permeabilities μ i 1 and μ i 2 at the timings t1 and t2 after demagnetization. The tabulated DFvalues of our materials were calculated from measurements at the timings 5 and 30 minutes.
DF =
1 μ −μ
⋅
μ μ ⋅ lg t
t
i1
i
i2
2
i1
1
If coils with gapped cores and a negligible stray field are used, the tabulated values must be
multiplied with µe. The alternation of inductance of such a coil between the timings t1 and t2
after demagnetization may be calculated by the aid of the formula:
t
ΔL
= − DF ⋅ μ e ⋅ lg 2
t1
L
Changes of the magnetic state by DC pre-magnetization will as a rule cause smaller alterations
of inductance than a calculation by the aid of the disaccommodation factor DF will show.
8. Curie point
We define Curie point as that temperature, at which the initial permeability has decreased to
10% of the tabulated value.
122
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
Ferrite materials
f - MHz µi (25°C)
Tc
DC-resist.
Ωm
Fi 415
Highest permeability MnZn ferrite
≤ 0,2
15000
130
≥ 0,05
Fi 412
High permeability MnZn ferrite
≤ 0,2
12000
125
≥ 0,05
Fi 410
High permeability MnZn ferrite
≤ 0,2
10000
135
≥ 0,05
Fi 360
High permeability MnZn ferrite
≤ 0,4
6000
150
≥ 0,05
Fi 340
Medium permeability MnZn ferrite
≤ 0,4
4300
130
≥ 0,5
Fi 395
Power MnZn ferrite with const. low losses up
to 120°C.
≤ 0,4
2700
220
Fi 335
Power MnZn ferrite with low losses and high
saturation flux density
≤1
2000
230
Fi 329
Power MnZn ferrite with highest saturation flux
density
≤ 0,5
1500
275
≥ 1,5
Fi 328
Power MnZn ferrite with high saturation flux
density
≤ 0,5
1800
260
≥2
Fi 327
High frequency power MnZn ferrite
≤3
1200
240
≥ 30
Fi 326
Power MnZn ferrite with lowest power losses
around 140°C.
≤ 0,4
1500
250
Fi 325
Medium frequency power MnZn ferrite
≤1
1800
230
≥6
Standard power MnZn ferrite
≤ 0,3
2300
230
≥3
Fi 324
Fi 301
High permeability ferrite
broad frequency range
with
≤ 100
3000
140
900
140
≥ 10
Fi 262
Medium permeability MnZn ferrite
≤5
650
290
≥1
Fi 242
Low power loss NiZn ferrite with high specific
resistance
≤ 400
400
230
≥ 10
Fi 248
Medium permeability NMnZn ferrite
for noise suppression applications
≤ 400
440
240
≥ 100
≤ 400
250
330
≥ 10
4
≤ 400
150
385
≥ 10
7
Fi 215
for
7
Fi 212
Low permeability NiZn ferrite
≤ 400
100
420
≥ 10
4
Fi 150
Low permeability NiZn ferrite
≤400
50
430
≥ 10
3
Fi 130
Low permeability NiZn ferrite
≤ 500
30
500
≥ 10
3
Fi 110
Low permeability NiZn ferrite
≤ 1000
12
580
≥ 10
4
123
450
100kHz/200mT/100°C
> 350
140
310
250A/m/100°C
200kHz/100mT/100°C
100kHz/200mT/100°C
> 400
1000
500
250A/m/100°C
100kHz/200mT/25°C
100kHz/200mT/100°C
> 370
670
450
250A/m/100°C
100kHz/200mT/25°C
100kHz/200mT/100°C
> 300
560
540
250A/m/100°C
1000kHz/50mT/25°C
1000kHz/50mT/100°C
> 310
900
400
250A/m/140°C
100kHz/200mT/25°C
100kHz/200mT/140°C
> 340
320
170
250A/m/100°C
200kHz/100mT/25°C
200kHz/100mT/100°C
> 340
685
560
250A/m/100°C
100kHz/200mT/25°C
100kHz/200mT/100°C
3000A/m/25°C
≤ 100
Medium permeability NiZn ferrite
520
100kHz/200mT/25°C
7
High permeability NiZn ferrite
Low permeability NiZn ferrite
high ignition applications
> 330
250A/m/100°C
> 380
Fi 292
Fi 221
Pv - mW /cm³
Bmax - mT
> 300
700
550
3000A/m/100°C
100kHz/100mT/25°C
100kHz/100mT/100°C
> 370
3000A/m/25°C
> 310
1800
1500
3000A/m/170°C
100kHz/100mT/25°C
100kHz/100mT/100°C
300
580
770
3000A/m/100°C
100kHz/50mT/25°C
100kHz/50mT/100°C
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
Plasto ferrite materials
Fi 520
≤ 400
Fi 522
Wide band material with high temperatureconsistency of permeability up to 200°C.
≤ 400
Ferrocart materials
Fe 897
Tc
DC-resist.
Ωm
20
150
> 3,0
19
200
> 1,0
f - MHz µi (25°C)
Wide band material with high temperatureconsistency of permeability
f - MHz µi (25°C)
≤ 0,2
High amplitude permeability material
≤ 0,2
Fe 896
High permeability material
Fe 893
High permeability material for high
premagnetization
≤ 0,2
≤ 0,2
125
140
110
Fe 876
≤ 0,2
75
180
Fe 850
Wide band material for high premagnetization
with low losses
≤ 0,3
55
180
Fe 835
Wide band material
≤ 0,5
35
150
≤ 10
Wide band material
Fe 810
≤ 100
Wide band material
18
10
1000
0,16 MHz
200
190
1400
0,01 MHz
0,16 MHz
120
1600
0,01 MHz
0,16 MHz
100
0,16 MHz
140
800
0,02 MHz
0,3 MHz
100
180
0,5
MHz
0,05 MHz
110
150
120
200
Pv-mW/cm³
100kHz/40mT
37
1200
200
Noise suppression material
Fe 818
1600
0,16 MHz
200
Wide band material for high premagnetization
with low losses
100
tanδ/µi * 10
200
Fe 892
µΔ
@ 5000 A/m
-6
Tmax
45
570
50
650
36
650
46
310
43
440
33
390
0,5
0,05 MHz
MHz
500
2000
12 MHz
100 MHz
10-2Ohm*m
Metal powder
specific
resistance
Induction of application/mT
Fe 896 Fe 710
Fe 893
Fe 876
100
MnZn ferrite
Fe 818
107Ohm*m
Fi 329
1800mT
Fi 328
Fi 335
Fi 327
NiZn ferrite
Fi 292
Fi 242
10
Bmax
Fi 215
Fi 212
Fi 110
200mT
1
1
10
100
1000
10000
Range of frequency/kHz
124
100000
1000000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT
Production and composition of ferrites
Ferrites are compounds of the iron oxide Fe2O3 and one or more oxides of bivalent metal. The
most frequently used oxides are those of nickel, manganese, magnesium and zinc. The oxide
powder is prepared in various processing steps before being pressed to a core of the desired
shape. After that the core is sintered at temperatures between 1150 and 1400°C depending on
the type of ferrite. The resulting material is hard and brittle like porcelain ("black ceramics")
and can only be machined by grinding. The shrinkage of the cores during the sintering process
results in tolerances of the non-machined dimensions similar to those of other ceramics (± 2 to
± 3%).
An important characteristic of FERROCARIT materials is their high electric resistivity, covering
according to grade a range from 1 up to 107 Ωm, as opposed to approx. 10-5 Ωm with metals.
Consequently eddy current loss is relatively low and may be neglected over a wide frequency
range.
General technical characteristics
Density
≈
4,5 . . . 5,1
g·cm-3
Tensile strength
≈
20 . . . 60
N·mm-2
Compressive strength
≈
100 . . . 800
N·mm-2
Modulus of elasticity
Thermal conductivity
Specific heat
Coefficient of linear expansion
Vickers hardness
≈
≈
≈
≈
≈
150
5 · 10-3
1000
7 · 10-6 . . . 12 · 10-6
500
kN·mm-2
J·mm-1·s-1·K-1
J·kg-1·K-1
K-1
N·mm-2
PSPICE –parameters for FERROCARIT materials are available on your inquiry.
125
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
126
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
Application
Frequency range magnetic load Ferrite materials
low
≤ 1,6
0,2 ... 5
X
Fi 262
High Q circuits
X
Fi 221
(Input and oscillator coils,
0,5 … 10
X
Fi215
Rod, tube,
variometers, IF-transformers
1 ... 12
X
Fi 212
screw, nipple,
LF-coils, MW and LW
5 ... 40
X
Fi 150
saddle and cup cores
antennas etc.)
10 ... 60
X
Fi 130
50 ... 150
X
Fi 110
≤ 0,5
Anti-interference
and damping coils
≤1
high
Core shape
MHz
FERROCARIT
X
Fi 415
X
Fi 412
X
Fi 410
X
Fi 360
Rod, tube, drum
X
Fi 350
and multi-aperture cores
toroids, screening beads
X
Fi 340
≤6
X
Fi 262
≤ 400
X
Fi 248
X
Fi 292
2 ... 1000
X
Fi 221
X
Fi 150
X
Fi 415
X
Fi 412
Pot and E-cores, toroids,
X
Fi 410
two- and multi-aperture
Wide-band transformers
X
Fi 360
cores
(Antenna-transformers for
X
Fi 340
X
Fi 292
≤2
TV and radio,
pulse transformers, etc.)
≤ 10
≤ 100
≤ 250
≤ 400
X
Fi 262
X
Fi 221
Rod, tube,
X
Fi215
two- and multi-aperture
X
Fi 212
cores
X
Fi 242
X
Fi 150
X
Fi 130
X
Fi 110
X
Power applications
≤ 0,3
(Fly-back transformers,
DC converters,
audio frequency chokes,
≤1
Fi 395
X
Fi328
X
Fi326
X
Fi 324
E-, U-, E+I-, screw,
X
Fi335
rod, tube, nipple
X
Fi325
and drum cores
TV correcting coils,
≤3
X
Fi 327
audio frequency filters)
≤ 0,5
X
Fi 329
127
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
FERROCARIT
Initial permeability
Relative loss factor
frequency
µi
tanδ
µi
f
ηB
1
-6
10
Fi 415
Fi 412
Fi 410
Fi 360
Fi 340
15000
12000
10000
6000
4300
± 30%
± 30%
± 30%
± 30%
± 20%
< 6 < 70 < 6 < 50 < 6 < 70 < 4 < 20 < 4 < 20
MHz 0,01 0,1 0,01 0,1 0,01 0,1 0,01 0,1 0,01 0,1
-6
10
mT
< 0,6
< 1,2
< 0,6
< 0,8
< 0,6
B
mT
430
430
420
440
390
Coercivity
HC
A/m
9
8
8
9
10
Curie temperature
TC
°C
130
125
135
150
130
Rel. temperature factor
αF
10
K
≤ 1,5
≤ 1,5
≤ 1,5
≤ 1,5
≤ 1,5
DF
10
<3
<3
<3
<3
<6
ρ
Ωm
≥ 0,05
≥ 0,05
≥ 0,05
≥ 0,05
> 0,5
Hysteresis material constant
Induction
H = 1200 A/m
-6
+23...+70°C
Rel. disaccommodation
factor
-6
T = 40°C
DC - Resistivity
128
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
FERROCARIT
Initial permeability
Relative loss factor
frequency
Hysteresis material constant
µi
1
Fi 395
Fi 335
Fi 329
Fi 328
Fi 327
2700
2000
1500
1800
1200
± 25%
± 25%
± 25%
± 25%
± 25%
tanδ
µi
10
< 3,5
2,6
<8
< 3,5
< 2,5
f
MHz
0,1
0,1
0,1
0,1
0,1
ηB
-6
-6
10
mT
<1
< 0,9
B
mT
460
500
525
480
430
Coercivity
HC
A/m
12
15
12
15
50
Curie temperature
TC
°C
250
230
275
260
240
Rel. temperature factor
αF
10
K
DF
10
ρ
Ωm
> 1,5
>2
> 30
Induction
H = 1200 A/m
-6
+23...+70°C
Rel. disaccommodation
factor
-6
T = 40°C
DC - Resistivity
129
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
FERROCARIT
Initial permeability
Relative loss factor
frequency
Hysteresis material constant
µi
1
Fi 326
Fi 325
Fi 324
1500
1800
2300
± 25%
± 25%
± 25%
tanδ
µi
10
-6
<5
< 3,5
< 4,5
f
MHz
0,1
0,1
0,1
ηB
-6
10
mT
< 0,42
≤1
B
mT
500
500
490
Coercivity
HC
A/m
15
16
15
Curie temperature
TC
°C
250
230
230
Rel. temperature factor
αF
10
K
DF
10
ρ
Ωm
≥6
≥3
Induction
H = 1200 A/m
-6
+23...+70°C
Rel. disaccommodation
factor
-6
T = 40°C
DC - Resistivity
130
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 415
A highest permeability material optimized for broadband transmission and miniature inductors with high
inductance values
SYMBOL
VALUE
UNIT
µi
15000 ± 30%
1
tan δ / µ i
< 70
10
< 0,6
-6
CONDITIONS
Complex permeability
100000
25°C ; <= 10 kHz
<= 0,25 mT
10
<= 0,25 mT
/ mT
<=1,5mT to 3mT
25°C ; 16 kHz
415
B
25 °C
70 °C
10000
25°C ; 10 kHz
µ`µ``
ηB
25°C ; 0,1 MHz
-6
250 A/m
mT
70 °C
1000
100°C ; 16 kHz
235
25°C
250 A/m
100
Pv
µ`
µ``
10
130
Tc
1
°C
Initial permeability µi as a function of temperature T
10
100
f / kHz
1000
10000
Relative loss factor as a function of frequency f
100
30000
25000
tanδ/µ /10-6
µi
20000
15000
10
10000
5000
0
1
-40
-20
0
20
40
60
T / °C
80
100
120
140
10
100
f / kHz
Magnetization curves
Incremental permeability
500
100000
400
µΔ
B / mT
10000
300
200
1000
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
100
-50
0
50
100
H / A/m
150
200
250
0,1
1
10
H_ / A/m
131
100
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 412
A high permeability material optimized for broadband transmission, common mode chokes
as well as suppression filters
SYM BOL
VALUE
U N IT
µi
12000 ± 30%
1
ta n δ / µ i
< 50
10
< 1 ,2
-6
10
Complex permeability
100000
≤ 0 ,2 5 m T
2 5 °C ; 0 ,1 M H z
70 °C
≤ 0 ,2 5 m T
/ mT
10000
≤ 1 ,5 m T to 3 m T
2 5 °C ; 1 6 k H z
425
B
2 5 0 A /m
mT
1000
70 °C
1 0 0 °C ; 1 6 kH z
235
2 5 0 A /m
25 °C
100
2 5 °C ; ..... kH z
m W / cm ³
Pv
.......... m T
µ`
µ``
1 0 0 °C ; ..... k H z
.......... m T
125
Tc
25 °C
2 5 °C ; 1 0 k H z
µ`µ``
ηB
-6
C O N D IT IO N S
2 5 °C ; ≤ 1 0 k H z
10
1 0 kH z
°C
1
10
100
f / kHz
≤ 0 ,2 5 m T
Initial permeability µi as a function of temperature T
1000
10000
Relative loss factor as a function of frequency f
100
20000
18000
16000
tanδ/µi / 10-6
14000
µi
12000
10000
8000
10
6000
4000
2000
1
0
0
20
40
60
80
T / °C
100
120
10
140
100
f / kHz
Magnetization curves
Incremental permeability
500
100000
400
300
µΔ
B / mT
10000
1000
200
100
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
H / A/m
150
200
250
1
10
100
H_ / A/m
132
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 410
A high permeability material optimized for broadband transmission, common mode chokes
as well as suppression filters
SYM BOL
VALUE
U N IT
µi
10000 ± 30%
1
ta n δ / µ i
< 70
10
< 0 ,6
-6
10
Complex permeability
100000
≤ 0 ,2 5 m T
2 5 °C ; 0 ,1 M H z
-6
≤ 0 ,2 5 m T
2 5 °C ; 1 6 k H z
2 5 0 A /m
mT
1000
70 °C
1 0 0 °C ; 1 6 kH z
220
2 5 0 A /m
.......... m T
m W / cm ³
Pv
µ`
µ``
1 0 0 °C ; ..... k H z
.......... m T
135
25 °C
100
2 5 °C ; ..... kH z
Tc
25 °C
≤ 1 ,5 m T to 3 m T
405
B
70 °C
10000
2 5 °C ; 1 0 k H z
/ mT
µ`µ``
ηB
C O N D IT IO N S
2 5 °C ; ≤ 1 0 k H z
10
1 0 kH z
°C
1
10
100
f / kHz
≤ 0 ,2 5 m T
Initial permeability µi as a function of temperature T
1000
10000
Relative loss factor as a function of frequency f
20000
1000
18000
16000
14000
tanδ/µi / 10-6
100
µi
12000
10000
8000
6000
10
4000
2000
1
0
0
20
40
60
80
100
120
10
140
100
f / kHz
T / °C
Magnetization curves
Incremental permeability
500
100000
400
300
µΔ
B / mT
10000
1000
200
100
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
H / A/m
150
200
250
1
10
100
H_ / A/m
133
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 360
A medium permeability material with a frequency stability up to 0,2 MHz and a high Tc for broadband
transmission, current transformers as well as suppression filters
SYM BOL
VALUE
U N IT
µi
6000 ± 20%
1
ta n δ / µ i
< 20
ηB
< 0 ,8
10
10
-6
C O N D IT IO N S
Complex permeability
10000
2 5 °C ; ≤ 1 0 k H z
70°C
25°C
2 5 °C ; 0 ,1 M H z
≤ 0 ,2 5 m T
-6
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
/ mT
1000
410
2 5 0 A /m
mT
100°C
µ`µ``
2 5 °C ; 1 6 k H z
B
100°C
≤ 0 ,2 5 m T
70°C
1 0 0 °C ; 1 6 kH z
255
25°C
100
2 5 0 A /m
2 5 °C ; ..... kH z
.......... m T
m W / cm ³
Pv
µ´
µ´´
1 0 0 °C ; ..... k H z
.......... m T
150
Tc
10
1 0 kH z
≤ 0 ,2 5 m T
°C
10
100
1000
10000
f / kHz
Initial permeability µi as a function of temperature T
Relative loss factor as a function of frequency f
12000
1000
10000
tanδ/µi / 10-6
µi
8000
6000
4000
100
10
2000
0
1
0
20
40
60
80
T / °C
100
120
140
160
10
Magnetization curves
100
f / kHz
1000
Incremental permeability
500
10000
400
1000
µΔ
B / mT
300
200
100
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
H / A/m
200
250
300
1
10
100
H_ / A/m
134
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 340
A medium permeability material with a low temperature dependence of the initial permeability and a
frequency stability up to 0,4 MHz. Optimized for use in broadband transformers with high DC-bias current
SYM BOL
VALUE
U N IT
µi
4300 ± 20%
1
ta n δ / µ i
< 20
ηB
< 0 ,6
-6
10
10
-6
C O N D IT IO N S
Complex Permeability
10000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
100°C
2 5 °C ; 0 ,1 M H z
≤ 0 ,2 5 m T
25°C
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
/ mT
1000
390
B
2 5 0 A /m
mT
70°C
µ`µ``
2 5 °C ; 1 6 k H z
100°C
1 0 0 °C ; 1 6 kH z
235
100
2 5 0 A /m
70°C
2 5 °C ; ..... kH z
m W / cm ³
Pv
25°C
.......... m T
µ`
1 0 0 °C ; ..... k H z
µ``
.......... m T
130
Tc
10
1 0 kH z
≤ 0 ,2 5 m T
°C
10
100
1000
10000
f / kHz
Initial permeability µi as a function of temperature T
Relative loss factor as a function of frequency f
10000
1000
9000
8000
7000
tanδ/µi / 10-6
100
µi
6000
5000
4000
10
3000
2000
1000
1
0
0
20
40
60
80
100
120
10
140
100
f / kHz
T / °C
Magnetization curves
1000
Incremental permeability
10000
400
350
300
1000
µΔ
B / mT
250
200
150
100
100
50
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
H / A/m
200
250
300
1
10
100
H_ / A/m
135
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
136
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 395
A low frequency power material with a flat power loss curve from 25°C to 120°C for use in general purpose
transformers up to 0,3 MHz. Especially suited for broad temperature range applications
SYM BOL
VALUE
U N IT
µi
2700 ± 25%
1
ta n δ / µ i
< 3 ,5
10
ηB
10
-6
C O N D IT IO N S
Complex permeability
10000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
100 °C
2 5 °C ; 0 ,1 M H z
≤ 0 ,2 5 m T
-6
25 °C
1000
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
/ mT
µ`µ``
2 5 °C ; 1 6 k H z
460
B
2 5 0 A /m
mT
100
100 °C
1 0 0 °C ; 1 6 kH z
> 330
2 5 0 A /m
200 m T
m W / cm ³
Pv
µ`
µ``
1 0 0 °C ; 1 0 0 kH z
450
200 m T
220
Tc
25 °C
10
2 5 °C ; 1 0 0 k H z
520
1
100
1 0 kH z
≤ 0 ,2 5 m T
°C
1000
f / kHz
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
7000
5000
6000
4000
200 mT
100 mT
5000
50 mT
µa
3000
µi
4000
300 mT
2000
3000
1000
2000
f =16 kHz
1000
0
0
50
100
150
200
20
250
40
60
80
T / °C
Magnetization curves
100
T / °C
120
140
160
180
Incremental permeability
10000
500
400
µΔ
B / mT
1000
300
200
100
100
25 °C
100°C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
200
H / A/m
250
300
350
400
1
10
100
H_ / A/m
137
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
1000
200 mT
10000
100 mT
1000
50 mT
10
Pv / mW/cm³
Pv / mW/cm³
200 mT
100
100 mT
100
50 mT
10
25°C
100°C
f = 100 kHz
1
1
20
40
60
80
100
T / °C
120
140
160
10
180
Induction Bmax as a function of temperature T at 250 A/m
500
450
400
Bmax / mT
350
300
250
200
150
100
50
f = 16 kHz
0
0
20
40
60
80
100
T / °C
120
140
160
180
200
138
100
f / kHz
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 335
A low to medium frequency power material with low losses and high saturation flux density in a operating
frequency range up to 0,4 MHz
SYMBOL
VALUE
UNIT
µi
2000
1
tan δ / µ i
2,6
ηB
0,35
10
10
-6
CONDITIONS
Complex permeability
10000
25°C ; ≤ 10 kHz
≤ 0,25 mT
100 °C
25°C ; 0,1 MHz
≤ 0,25 mT
-6
25 °C
1000
25°C ; 10 kHz
≤ 1,5mT to 3mT
/ mT
µ`µ``
25°C ; 16 kHz
470
B
250 A/m
mT
100
100°C ; 16 kHz
> 350
100 °C
250 A/m
10
100°C ; 100 kHz
< 450
µ`
µ``
100°C ; 200 kHz
< 190
100 mT
230
Tc
25 °C
200 mT
mW / cm ³
Pv
1
100
10 kHz
≤ 0,25 mT
°C
1000
f / kHz
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
6000
4000
5000
3000
4000
200 mT
300 mT
µi
µa
5000
2000
3000
1000
2000
100 mT
50 mT
f = 16 kHz
0
1000
0
50
100
150
200
250
20
40
60
80
100
120
T / °C
T / °C
Magnetization curves
Incremental permeability
10000
500
400
1000
µΔ
B / mT
300
200
100
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
H / A/m
200
250
300
1
10
100
H_ / A/m
139
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Specific power loss Pv as a function of temperature T
1000
10000
Specific power loss Pv as a function of frequency f
and induction B
200 mT
100kHz / 200mT
100 mT
200kHz / 100mT
400kHz / 50mT
100
100kHz / 100mT
Pv / mW/cm³
Pv / mW/cm³
1000
50 mT
100
25 mT
10
25 °C
100 °C
10
20
40
60
80
T / °C
100
120
1
100
140
Induction Bmax as a function of temperature T at 250 A/m
500
450
400
Bmax / mT
350
300
250
200
150
100
50
f = 16 kHz
0
0
20
40
60
80
100
T / °C
120
140
160
180
200
140
f / kHz
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 329
A low to medium frequency power material with high saturation flux density
for applications up to 0,2 MHz
SYM BOL
VALUE
U N IT
µi
1500 ± 25%
1
ta n δ / µ i
< 8
10
ηB
10
-6
C O N D IT IO N S
≤ 0 ,2 5 m T
-6
100 °C
2 5 °C ; 0 ,1 M H z
≤ 0 ,2 5 m T
/ mT
2 5 °C ; 1 0 k H z
µ`µ``
2 5 0 A /m
mT
25 °C
1000
≤ 1 ,5 m T to 3 m T
2 5 °C ; 1 6 k H z
475
B
100 °C
1 0 0 °C ; 1 6 kH z
> 400
100
2 5 0 A /m
2 5 °C ; 1 0 0 k H z
1000
m W / cm ³
Pv
500
200 m T
µ`
µ``
25 °C
1 0 0 °C ; 1 0 0 k H z
200 m T
275
Tc
Complex Permeability
10000
2 5 °C ; ≤ 1 0 k H z
10
100
°C
1000
f / kHz
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
13000
10000
9000
11000
8000
7000
9000
200 mT
100 mT
µa
µi
6000
5000
300 mT
7000
50 mT
4000
5000
3000
2000
3000
1000
f = 16 kHz
0
1000
0
50
100
150
T / °C
200
250
300
20
40
60
80
100
120
T / °C
Magnetization curves
Incremental permeability
500
10000
400
µΔ
B / mT
1000
300
200
100
100
Frequency: 10 kHz
Induction: ≤ 0,2 mT
25 °C
100 °C
0
10
-50
0
50
100
150
200
H / A/m
250
300
350
400
1
10
100
H_ / A/m
141
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
10000
10000
200 mT
200 mT
1000
100 mT
Pv / mW/cm³
Pv / mW/cm³
1000
100
50 mT
10
100 mT
50 mT
100
10
25 °C
100 °C
f = 100 kHz
1
1
20
40
60
80
T / °C
100
120
10
140
Induction Bmax as a function of temperature T at 250 A/m
500
450
400
Bmax / mT
350
300
250
200
150
100
50
f = 16 kHz
0
0
20
40
60
80
100
T / °C
120
140
160
180
200
142
100
f / kHz
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 328
A low to medium frequency power material with high saturation flux density and low losses
for applications up to 0,2 MHz
SYM BOL
VALUE
U N IT
µi
1800 ± 25%
1
ta n δ / µ i
< 3 ,5
ηB
< 1
10
10
-6
-6
C O N D IT IO N S
≤ 0 ,2 5 m T
100 °C
2 5 °C ; 0 ,1 M H z
25 °C
≤ 0 ,2 5 m T
/ mT
2 5 °C ; 1 0 k H z
1000
≤ 1 ,5 m T to 3 m T
B
µ`µ``
2 5 °C ; 1 6 k H z
450
2 5 0 A /m
mT
1 0 0 °C ; 1 6 kH z
> 370
100 °C
100
2 5 0 A /m
2 5 °C ; 1 0 0 k H z
670
m W / cm ³
Pv
450
200 m T
1 0 0 °C ; 1 0 0 k H z
10
100
1 0 kH z
°C
µ`
µ``
25 °C
200 m T
260
Tc
Complex Permeability
10000
2 5 °C ; ≤ 1 0 k H z
1000
f / kHz
≤ 0 ,2 5 m T
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
7000
5000
6000
4000
200 mT
100 mT
5000
50 mT
µi
µa
3000
300 mT
4000
2000
3000
1000
2000
f = 16 kHz
0
1000
0
50
100
150
T / °C
200
250
300
20
40
60
80
100
120
T / °C
Magnetization curves
Incremental permeability
10000
500
400
1000
µΔ
B / mT
300
200
100
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
200
H / A/m
250
300
350
400
1
10
100
H_ / A/m
143
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
10000
10000
200 mT
200 mT
1000
Pv / mW/cm³
Pv / mW/cm³
1000
100 mT
100
100 mT
50 mT
100
50 mT
10
10
25 °C
100 °C
f = 100 kHz
1
1
20
40
60
80
T / °C
100
120
140
10
100
f / kHz
Induction Bmax as a function of temperature T at 250 A/m
1000
Amplitude permeability µa
500
7000
450
6000
400
5000
300
4000
250
µa
Bmax / mT
350
3000
200
150
2000
100
1000
50
25°C
100°C
f = 16 kHz
0
0
0
20
40
60
80
100
T / °C
120
140
160
180
0
200
144
100
200
B / mT
300
400
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 327
A high frequency power material suitable for power and standard transformers in a
frequency range of 0,5 to 2 MHz
SYMBOL
VALUE
UNIT
µi
1200 ± 25%
1
tan δ / µ i
< 2,5
10
< 0,9
-6
10
Complex permeability
10000
≤ 0,25 mT
25°C ; 0,1 MHz
≤ 0,25 mT
-6
100°C
1000
/ mT
25°C ; 16 kHz
380
B
25°C
25°C ; 10 kHz
≤ 1,5mT to 3mT
µ`µ``
ηB
CONDITIONS
25°C ; ≤ 10 kHz
250 A/m
mT
100
100°C ; 16 kHz
>300
250 A/m
50 mT
mW / cm ³
Pv
50 mT
240
µ''
1
100
10 kHz
≤ 0,25 mT
°C
µ'
25°C
100°C ; 1000 kHz
540
Tc
100°C
10
25°C ; 1000 kHz
560
1000
f / kHz
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
2000
2000
200 mT
1800
1600
100 mT
1800
1400
50 mT
1600
1000
µa
µi
1200
800
1400
300 mT
600
400
1200
200
f = 16 kHz
1000
0
0
50
100
150
200
20
250
40
60
80
100
120
T / °C
T / °C
Magnetization curves
Incremental permeability
500
10000
400
1000
µΔ
B / mT
300
200
100
100
Frequency: 10 kHz
Induction: ≤ 0,2 mT
25 °C
100 °C
0
-100
10
0
100
200
H / A/m
300
400
500
10
145
100
H / A/m
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
1000
10000
200mT
100mT
1MHz / 50mT
50mT
200kHz / 100mT
Pv / mW/cm³
Pv / mW/cm³
1000
25mT
100
10
500kHz / 50mT
25 °C
100 °C
100
20
40
60
80
T / °C
100
120
1
100
140
Induction Bmax as a function of temperature T at 250 A/m
500
450
400
Bmax / mT
350
300
250
200
150
100
50
f = 16 kHz
0
0
20
40
60
80
100
T / °C
120
140
160
180
200
146
1000
f / kHz
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 326
A low to medium frequency power material with lowest power losses around 140°C
Suitable for power transformers in a frequency range up to 0,3 MHz
SYM BOL
VALUE
U N IT
µi
1500 ± 25%
1
ta n δ / µ i
< 5
10
ηB
10
-6
-6
/ mT
C O N D IT IO N S
Complex permeability
10000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
100 °C
2 5 °C ; 0 ,1 M H z
≤ 0 ,2 5 m T
25 °C
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
1000
µ`µ``
2 5 °C ; 1 6 k H z
440
B
2 5 0 A /m
mT
1 4 0 °C ; 1 6 kH z
> 310
100
2 5 0 A /m
100 °C
2 5 °C ; 1 0 0 k H z
900
m W / cm ³
Pv
400
200 m T
1 4 0 °C ; 1 0 0 kH z
200 m T
250
Tc
10
100
1 0 kH z
≤ 0 ,2 5 m T
°C
µ`
µ``
25 °C
1000
f / kHz
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
7000
5000
6000
4000
200 mT
5000
100 mT
µa
3000
50 mT
µi
4000
300 mT
2000
3000
1000
2000
f =16 kHz
1000
0
0
50
100
150
T / °C
200
250
20
300
Magnetization curves
40
60
80
100
T / °C
120
140
160
180
Incremental permeability
10000
500
400
1000
µΔ
B / mT
300
200
100
100
25 °C
140°C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
200
H / A/m
250
300
350
400
1
10
100
H_ / A/m
147
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
1000
10000
200 mT
200 mT
1000
100
100 mT
10
Pv / mW/cm³
Pv / mW/cm³
100 mT
50 mT
50 mT
100
10
25°C
140°C
f = 100 kHz
1
1
20
40
60
80
100
T / °C
120
140
160
10
180
Induction Bmax as a function of temperature T at 250 A/m
500
450
400
Bmax / mT
350
300
250
200
150
100
50
f = 16 kHz
0
0
20
40
60
80
100
T / °C
120
140
160
180
200
148
100
f / kHz
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 325
A low to medium frequency power material suitable for power and standard transformers in a
frequency range up to 0,4 MHz
SYMBOL
VALUE
UNIT
µi
1800 ± 25%
1
tan δ / µ i
< 3,5
ηB
< 0,42
10
10
-6
CONDITIONS
Complex permeability
10000
25°C ; ≤ 10 kHz
≤ 0,25 mT
100 °C
25°C ; 0,1 MHz
≤ 0,25 mT
-6
µ`µ``
25°C ; 16 kHz
470
B
25 °C
1000
25°C ; 10 kHz
≤ 1,5mT to 3mT
/ mT
250 A/m
mT
100
100 °C
100°C ; 16 kHz
≥ 340
250 A/m
10
25°C ; 200 kHz
320
µ`
µ``
100°C ; 200 kHz
170
100 mT
230
Tc
25 °C
100 mT
mW / cm ³
Pv
1
100
10 kHz
≤ 0,25 mT
°C
1000
f / kHz
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
6000
4000
5000
3000
4000
200 mT
300 mT
100 mT
50 mT
µi
µa
5000
2000
3000
1000
2000
0
1000
f = 16 kHz
0
50
100
150
200
20
250
40
60
80
100
120
T / °C
T / °C
Magnetization curves
Incremental permeability
10000
500
400
µΔ
B / mT
1000
300
200
100
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
H / A/m
200
250
300
1
10
100
H_ / A/m
149
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
1000
10000
200 mT
100kHz/200mT
100 mT
200kHz/100mT
400kHz/50mT
100
100kHz/100mT
Pv / mW/cm³
Pv / mW/cm³
1000
50 mT
100
25 mT
10
25 °C
100 °C
10
20
40
60
80
T / °C
100
120
1
100
140
1000
f / kHz
Induction Bmax as a function of temperature T at 250 A/m
Amplitude permeability µa
500
5000
25°C
100°C
450
400
4000
300
3000
µa
Bmax / mT
350
250
200
2000
150
100
1000
50
f = 16 kHz
0
0
0
20
40
60
80
100
T / °C
120
140
160
180
200
0
150
100
200
B / mT
300
400
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 324
A low frequency power material for standard transformers at frequencies up to 0,2 MHz
SYM BOL
VALUE
U N IT
µi
2300 ± 25%
1
ta n δ / µ i
< 4 ,5
ηB
≤ 1
10
10
-6
C O N D IT IO N S
Complex permeability
10000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
100 °C
2 5 °C ; 0 ,1 M H z
≤ 0 ,2 5 m T
-6
25 °C
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
/ mT
1000
420
B
µ`µ``
2 5 °C ; 1 6 k H z
2 5 0 A /m
mT
1 0 0 °C ; 1 6 kH z
> 340
100
2 5 0 A /m
100 °C
2 5 °C ; 1 0 0 k H z
685
200 m T
m W / cm ³
Pv
1 0 0 °C ; 1 0 0 kH z
560
200 m T
230
Tc
10
100
1 0 kH z
≤ 0 ,2 5 m T
°C
µ`
µ``
25 °C
1000
f / kHz
Initial permeability µi as a function of temperature T
10000
Amplitude permeability µa
6000
6000
5000
5000
4000
200 mT
4000
100 mT
µi
µa
3000
50 mT
3000
300 mT
2000
2000
1000
f =16 kHz
0
1000
0
50
100
150
200
250
20
40
60
80
100
120
T / °C
T / °C
Magnetization curves
Incremental permeability
500
10000
400
1000
µΔ
B / mT
300
200
100
100
25 °C
100 °C
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
10
-50
0
50
100
150
200
H / A/m
250
300
350
400
1
10
100
H_ / A/m
151
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
1000
200 mT
10000
100 mT
1000
Pv / mW/cm³
100
Pv / mW/cm³
200 mT
50 mT
10
100 mT
50 mT
100
10
25°C
100°C
f = 100 kHz
1
1
20
40
60
80
T / °C
100
120
10
140
100
f / kHz
Induction Bmax as a function of temperature T at 250 A/m
1000
Amplitude permeability µa
5000
500
25°C
100°C
450
4000
400
300
3000
µa
Bmax / mT
350
250
200
2000
150
100
1000
50
f = 16 kHz
0
0
0
20
40
60
80
100
T / °C
120
140
160
180
200
0
152
100
200
B / mT
300
400
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
FERROCARIT
Initial permeability
Relative loss factor
frequency
Hysteresis material constant
µi
1
1)
Fi 292
Fi 262
Fi 248
Fi 242
Fi 221
900
650
440
400
250
± 20%
± 20%
± 20%
± 20%
± 20%
tanδ
µi
10
-6
< 12
< 30
< 10
< 50 < 300 < 1300 < 25 < 100 < 40 < 200
f
MHz
0,01
0,2
0,05
1,6
ηB
0,2
2
-6
10
mT
0,2
2
0,2
5
< 11
< 10
B
mT
330
480
370
400
330
Coercivity
HC
A/m
20
40
120
45
120
Curie temperature
TC
°C
140
290
240
230
330
Rel. temperature factor
αF
10
K
< 2,5
< 20
< 20
<5
DF
10
ρ
Ωm
Induction
H = 3000 A/m
-6
+23...+70°C
Rel. disaccommodation
factor
-6
<6
T = 40°C
DC - Resistivity
1)
> 10
7
>1
new material
153
> 100
> 10
7
> 10
4
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | SUMMARY
FERROCARIT
Initial permeability
Relative loss factor
frequency
Hysteresis material constant
µi
Fi 212
Fi 150
Fi 130
Fi 110
150
100
50
30
12
± 20%
± 20%
± 20%
± 20%
± 20%
1
tanδ
µi
10
f
MHz
ηB
Fi 215
-6
< 80 < 140 < 50 < 150 < 100 < 700 < 80 < 500 < 150 < 400
1
5
2
10
10
50
10
50
10
100
-6
10
mT
B
mT
430
310
300
270
240
Coercivity
HC
A/m
100
600
200
700
1800
Curie temperature
TC
°C
385
420
430
500
580
Rel. temperature factor
αF
10
K
<7
< 20
< 25
< 80
DF
10
ρ
Ωm
Induction
H = 3000 A/m
-6
+23...+70°C
Rel. disaccommodation
factor
-6
T = 40°C
DC - Resistivity
> 10
7
> 10
154
4
> 10
3
> 10
3
> 10
4
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 292
A high permeability NiZn ferrite for use in broadband EMI-suppression in a frequency range
of 30 - 1000 MHz, as well as RF broadband transformers
SYM BOL
VALUE
U N IT
µi
900 ± 20%
1
ta n δ / µ i
< 30
10
C O N D IT IO N S
Complex permeability
1000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
2 5 °C ; 0 ,2 M H z
≤ 0 ,2 5 m T
-6
ηB
µ`µ``
2 5 °C ; 1 6 k H z
340
B
3 0 0 0 A /m
mT
100
Pv
µ`
µ``
10
140
Tc
1 0 kH z
≤ 0 ,2 5 m T
°C
0,1
1
10
100
f / MHz
Initial permeability µi as a function of temperature T
Relative loss factor as a function of frequency f
1000
1200
1000
tanδ/µi / 10-6
µi
800
600
100
400
200
0
10
-50
0
50
T / °C
100
0,1
150
1
f / MHz
Magnetization curves
10
specific impedance
350
1000
300
100
|z| / Ω/cm
B / mT
250
200
.
150
100
10
1
50
0
-50
0
50
100
150
200 250
H / A/m
300
350
400
450
0,1
0,01
500
155
0,1
1
f / MHz
10
100
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Induction Bmax as a function of temperature T at 3000 A/m
400
350
100 mT
300
Bmax / mT
Pv / mW/cm3
100
50 mT
250
200
150
100
1
20
40
60
80
T / °C
100
120
20
140
Spezific power loss Pv as a function of frequency f
and induction B
10000
200 mT
Pv / mW/cm3
100 mT
1000
50 mT
100
25 °C
100 °C
10
10
100
f / kHz
1000
156
40
60
80
T / °C
100
120
140
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 262
A medium permeability MnZn ferrite for broadband filters and tuning material for frequencies
up to 2 MHz
SYM BOL
VALUE
U N IT
µi
650 ± 20%
1
ta n δ / µ i
< 50
10
C O N D IT IO N S
Complex permeability
10000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
2 5 °C ; 1 ,6 M H z
≤ 0 ,2 5 m T
-6
1000
ηB
mT
Pv
m W / cm ³
µ`µ``
2 5 °C ; 1 6 k H z
480
B
3 0 0 0 A /m
100
10
µ`
µ``
1
290
Tc
0,1
°C
Initial permeability µi as a function of temperature T
1
f / MHz
10
Relative loss factor as a function of frequency f
1000
1200
1000
tanδ/µi / 10-6
µi
800
600
100
400
200
0
10
-50
0
50
100
150
200
250
0,1
300
T / °C
Magnetization curves
1
f / MHz
10
specific impedance
1000
500
400
|z| / Ω/cm
B / mT
100
300
.
200
10
100
0
-100
1
0
100
200
300
400 500
H / A/m
600
700
800
0,1
900 1000
157
1
f / MHz
10
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
158
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 248
A low permeability material with a broad frequency range for noise suppression applications
SYM BOL
VALUE
U N IT
µi
440
1
ta n δ / µ i
1400
10
10
-6
10
Complex permeability
1000
≤ 0 ,2 5 m T
2 5 °C ; 5 M H z
≤ 0 ,2 5 m T
-6
/ mT
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
100
2 5 °C ; 1 6 k H z
370
B
µ`µ``
ηB
C O N D IT IO N S
2 5 °C ; ≤ 1 0 k H z
3 0 0 0 A /m
mT
2 5 °C ; 1 6 k H z
10
3 0 0 0 A /m
2 5 °C ; 1 0 0 k H z
m W / cm ³
Pv
200 m T
µ`
µ``
1 0 0 °C ; 1 0 0 kH z
200 m T
240
Tc
1
1 0 kH z
≤ 0 ,2 5 m T
°C
0,1
Initial permeability µi as a function of temperature T
1
10
f / MHz
100
1000
Relative loss factor as a function of frequency f
10000
3000
2500
1000
tanδ/µi / 10-6
µi
2000
1500
100
1000
500
10
0
0
50
100
150
T / °C
200
250
0,1
300
Magnetization curves
1
f / MHz
10
Incremental permeability
400
1000
µΔ
B / mT
300
200
100
100
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
-500
10
0
500
1000
1500
H / A/m
2000
2500
3000
1
10
100
H / A/m
159
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
specific impedance
Amount of complex permeability
10000
100
1000
|µ|
|z| / Ω/cm
1000
.
10
100
1
10
0,1
1
10
f / MHz
100
1000
0,1
1
10
f / MHz
160
100
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 242
A medium permeability NiZn ferrite for applications requiring a high specific resistance
by relatively low power losses
SYM BOL
VALU E
U N IT
µi
400 ± 20%
1
ta n δ / µ i
< 100
10
< 11
-6
10
Complex permeability
1000
≤ 0 ,2 5 m T
2 5 °C ; 2 M H z
≤ 0 ,2 5 m T
-6
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
/ mT
100
2 5 °C ; 1 6 k H z
420
B
µ`µ``
ηB
C O N D IT IO N S
2 5 °C ; ≤ 1 0 k H z
3 0 0 0 A /m
mT
1 0 0 °C ; 1 6 k H z
>300
10
3 0 0 0 A /m
2 5 °C ; 1 0 0 k H z
700
100 m T
m W / cm ³
Pv
µ`
µ``
1 0 0 °C ; 1 0 0 k H z
550
100 m T
230
Tc
1
1
°C
10
100
1000
f / MHz
Initial permeability µi as a function of temperature T
Relative loss factor as a function of frequency f
1200
1000
1000
tanδ/µi / 10-6
µi
800
600
400
100
200
0
10
-50
0
50
100
150
200
250
300
10
1
T / °C
f / MHz
Magnetization curves
Incremental permeability
1000
500
300
µΔ
B / mT
400
100
200
100
Frequency: 10 kHz
Induction: ≤ 0,2 mT
0
-100
10
0
100
200
300
400 500
H / A/m
600
700
800
10
900 1000
161
100
H / A/m
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of temperature T
Spezific power loss Pv as a function of frequency f
and induction B
1000
10000
200 mT
100 mT
Pv / mW/cm3
Pv / mW/cm3
200 mT
100 mT
1000
50 mT
100
50 mT
25 °C
100 °C
f = 25 kHz
10
10
20
40
60
80
T / °C
100
120
10
140
Amplitude permeability µa
100
f / kHz
1000
Induction Bmax as a function of temperature T
at 3000 A/m
4000
500
3500
100 mT
450
200 mT
400
3000
2500
Bmax / mT
µa
50 mT
2000
1500
350
300
250
1000
300 mT
500
200
f = 25 kHz
0
150
20
40
60
80
T / °C
100
120
140
-50
specific impedance
|z| / Ω/cm
100
.
10
1
10
50
100
T / °C
1000
1
0
100
1000
f / MHz
162
150
200
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 221
A medium permeability NiZn ferrite for use in broadband EMI-suppression in a frequency range of
30 - 1000 MHz, as well as RF broadband transformers
SYM BOL
VALUE
U N IT
µi
250 ± 20%
1
ta n δ / µ i
< 200
10
< 10
-6
10
Complex permeability
1000
≤ 0 ,25 m T
2 5°C ; 5 M H z
≤ 0 ,25 m T
-6
2 5 °C ; 1 0 k H z
≤ 1 ,5 m T to 3 m T
/ mT
100
2 5 °C ; 1 6 k H z
330
B
µ`µ``
ηB
C O N D IT IO N S
2 5 °C ; ≤ 1 0 k H z
3 0 0 0 A /m
mT
10
Pv
µ`
µ``
1
330
Tc
1
°C
10
100
1000
f / MHz
Initial permeability µi as a function of temperature T
Relative loss factor as a function of frequency f
1000
600
500
tanδ/µi / 10-6
µi
400
300
100
200
100
10
0
-50
0
50
100
150
T / °C
200
250
300
10
1
350
f / MHz
Magnetization curves
specific impedance
400
1000
300
|z| / Ω/cm
B / mT
100
200
.
10
100
0
-1000
1
0
1000
2000
3000
4000
1
H / A/m
10
100
f / MHz
163
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
164
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 215
A high ohmic NiZn ferrite with optimized saturation induction at high ambient temperatures,
e.g. for HID - Xenon ignition modules
SYM BOL
VALU E
U N IT
µi
150 ± 20%
1
ta n δ / µ i
< 140
10
C O N D IT IO N S
Complex permeability
1000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
2 5 °C ; 5 M H z
≤ 0 ,2 5 m T
-6
ηB
100
430
B
µ`µ``
2 5 °C ; 1 2 k H z
3 0 0 0 A /m
mT
1 7 0 °C ; 1 2 k H z
325
10
3 0 0 0 A /m
2 5 °C ; 1 0 0 k H z
1800
m W / cm ³
Pv
1500
100 m T
µ`
µ´´
1 0 0 °C ; 1 0 0 k H z
100 m T
390
Tc
1
1
10 kHz
≤ 0 ,2 5 m T
°C
10
100
1000
f / MHz
Initial permeability µi as a function of temperature T
Relative loss factor as a function of frequency f
1000
10000
900
800
700
tanδ/µi / 10-6
1000
µi
600
500
400
100
300
200
100
0
-100
10
0
100
200
T / °C
300
400
500
1
Magnetization curves
10
f / MHz
100
Induction Bmax as a function of temperature at 3000 A/m
500
500
450
400
Bmax / mT
B / mT
400
300
200
350
300
250
100
200
0
-1000
150
0
1000
H / A/m
2000
3000
-50
0
50
100
T / °C
165
150
200
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Specific power loss Pv as a function of frequency f
and induction B
specific impedance
1000
10000
100
20 mT
|z| / Ω/cm
Pvbez. / mW/cm³
50 mT
1000
.
10
100
25°C
100°C
1
10
100
1
1000
f / kHz
10
100
f / MHz
166
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 212
A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance
transformers (baluns)
SYM BOL
VALU E
U N IT
µi
100 ± 20%
1
ta n δ / µ i
< 150
10
-6
C O N D IT IO N S
Complex permeability
1000
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
2 5 °C ; 1 0 M H z
≤ 0 ,2 5 m T
ηB
100
330
B
µ`µ``
2 5 °C ; 1 6 k H z
3 0 0 0 A /m
mT
1 0 0 °C ; 1 6 k H z
300
10
3 0 0 0 A /m
2 5 °C ; 1 0 0 k H z
580
m W / cm ³
Pv
770
50 m T
µ`
µ``
1 0 0 °C ; 1 0 0 k H z
50 m T
420
Tc
1
1
°C
10
100
1000
f / MHz
Initial permeability µi as a function of temperature T
Relative loss factor as a function of frequency f
120
1000
100
tanδ/µi / 10-6
µi
80
60
100
40
20
0
-100
10
0
100
200
T / °C
300
400
500
1
10
f / MHz
100
Induction Bmax as a function of temperature at 3000 A/m
Magnetization curves
500
400
450
400
Bmax / mT
B / mT
300
200
350
300
250
100
200
0
-1000
150
0
1000
2000
H / A/m
3000
4000
5000
-50
0
50
100
T / °C
167
150
200
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Specific power loss Pv as a function of frequency f
and induction B
specific impedance
1000
50 mT
100
1000
20 mT
|z| / ?/cm
Pvbez. / mW/cm³
10000
.
10
100
25°C
100°C
1
10
100
1
1000
f / kHz
10
100
f / MHz
168
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 150
A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance
transformers (baluns)
SYM BOL
VALU E
U N IT
µi
50 ± 20%
1
ta n δ / µ i
< 700
10
C O N D IT IO N S
Complex permeability
100
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
2 5 °C ; 5 0 M H z
≤ 0 ,2 5 m T
-6
ηB
µ`µ``
2 5 °C ; 1 6 k H z
300
B
3 0 0 0 A /m
mT
10
Pv
µ`
µ``
1
430
Tc
10
°C
Initial permeability µi as a function of temperature T
100
f / MHz
1000
Relative loss factor as a function of frequency f
140
1000
120
tanδ/µi / 10-6
100
µi
80
60
100
40
20
0
-100
10
0
100
200
T / °C
300
400
500
1
Magnetization curves
10
f / MHz
100
specific impedance
1000
400
300
B / mT
|z| / Ω/cm
100
200
.
10
100
0
-2000
1
0
2000
4000
H / A/m
6000
8000
10
10000
169
100
f / MHz
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 130
A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance
transformers (baluns)
SYM BOL
VALU E
U N IT
µi
30 ± 20%
1
ta n δ / µ i
< 500
10
C O N D IT IO N S
Complex permeability
100
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
2 5 °C ; 5 0 M H z
≤ 0 ,2 5 m T
-6
µ`µ``
ηB
2 5 °C ; 1 6 k H z
270
B
3 0 0 0 A /m
mT
10
Pv
µ`
µ``
1
500
Tc
10
°C
Initial permeability µi as a function of temperature T
100
f / MHz
1000
Relative loss factor as a function of frequency f
1000
120
100
tanδ/µi / 10-6
µi
80
60
100
40
20
0
-100
10
0
100
200
300
400
500
10
600
T / °C
Magnetization curves
100
f / MHz
1000
specific impedance
1000
400
300
|z| / Ω/cm
B / mT
100
200
.
10
100
0
-2000
1
0
2000
4000
H / A/m
6000
8000
10
10000
170
100
f / MHz
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCARIT | FI 110
A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance
transformers (baluns)
SYM BOL
VALU E
U N IT
µi
12 ± 20%
1
ta n δ / µ i
< 400
10
C O N D IT IO N S
Complex permeability
100
2 5 °C ; ≤ 1 0 k H z
≤ 0 ,2 5 m T
2 5 °C ; 1 0 0 M H z
≤ 0 ,2 5 m T
-6
ηB
10
240
B
µ´µ´´
2 5 °C ; 1 6 k H z
3 0 0 0 A /m
mT
1
Pv
µ`
µ``
0,1
580
Tc
10
°C
Initial permeability µi as a function of temperature T
100
f / MHz
1000
Relative loss factor as a function of frequency f
1000
50
tanδ/µi / 10-6
40
µi
30
20
100
10
0
-100
10
0
100
200
300
T / °C
400
500
10
600
Magnetization curves
100
f / MHz
1000
specific impedance
400
1000
300
|z| / Ω/cm
B / mT
100
200
.
10
100
0
-5000
1
0
5000
10000
15000
20000
10
H / A/m
171
100
f / MHz
1000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
172
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.2 PLASTOFERRITE | GENERAL DESCRIPTION
Magnetically Soft Plastoferrite Fi520 - Fi522
Plastoferrite Fi520 - Fi522 represent a special development in our range of soft magnetic
ferrite materials.
The basis of this materials is a homogenization process which allows production of an
injectable plastic compound with a high proportion of loading material from soft ferrite
powder, spread evenly throughout the plastic matrix. The result is a soft magnetic material
particularly suited for small signal applications but providing all the advantages of the free
shaping of injection moulding, thus permitting economical production of complex core
geometries with high dimensional accuracy.
Another advantage of cores made from Plastoferrite is the low brittleness of the material and
consequently its insensitiveness especially to mechanical load.
The general technical data of the magnetically soft Plastoferrite is specified in the following
charts. The filling ratio of this plastic compound is very high, which is indicated by the
relatively high admissible magnetic load - according to the magnetization curve - and the fact
that, for magnetically thinned materials meaning distributed air gaps, initial permeability is
high, reaching a value of µi = 20.
If requested, lower values of initial permeability can be individually set up by modification of
the mixing ratio ferrite powder/plastic.
The particular electrical advantages are the considerable wide-band property of the material
up to MHz-range and the high temperature-consistency of permeability up to values in direct
vicinity of the Curie temperature for Fi520 and up to 200°C for Fi522.
Thus Plastoferrite Fi520 and Fi522 are interesting materials for various applications, for
example in sensors or for the production of magnetically active coil formers, which demand a
combination of soft magnetic qualities along with the possibilities of free shaping
173
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.2 PLASTOFERRITE | SUMMARY
Plastoferrite
Initial permeability
µi
Fi 520
Fi 522
20
19
± 10%
± 10%
1
f = 10 kHz
tanδ
µi
10-6
< 3500
< 5000
f
MHz
10
10
ηB
10-6
mT
< 700
< 300
B
mT
280
350
Coercivity
HC
A/m
400
400
Curie temperature
TC
°C
150
> 200
DC - Resistivity
ρ
Ωm
> 3,0
> 1,0
αF
10-6
K
< 30
< 50
Relative loss factor
frequency
Hysteresis material constant
f = 20 kHz
Induction
H = 30000 A/m
Rel. temperature factor
25°C - 70°C
174
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.2 PLASTOFERRITE | FI 522
A material with a considerable wide-band property up to MHz-range and high temperature-consistency of
permeability up to 200°C. For use in sensores or magnetically active coil formers with the possibility of
free
shaping
Symbol
Value
Unit
µi
19 ± 10%
1
tan δ / µi
< 5000
ηB
< 300
10
-6
Complex permeability
100
<= 0,25 mT
25°C ; 10 MHz
-6
<= 0,25 mT
/ mT
25°C ; 20 kHz
<=1,5mT to 3mT
µ`µ``
10
Conditions
25°C ; <= 10 kHz
25°C ; 16 kHz
350
B
mT
Rspez.
> 1,0
Ωm
aF
< 50
-6
Tc
> 200
10
10
30000 A/m
µ´
µ´´
-25° - 70°C
/k
1
10
°C
100
f / MHz
Initial permeability µi as a function of temperature T
1000
Magnetization curves
400
30
300
µi
B / mT
20
200
10
100
0
-50
0
50
100
T / °C
150
200
0
-5000
250
175
0
5000
10000
15000
H / A/m
20000
25000
30000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.2 PLASTOFERRITE | FI 520
A material with a considerable wide-band property up to MHz-range and high temperature-consistency of
permeability nearly up to Curie-temperature. For use in sensors or magnetically active coil formers with
the possibility of free shaping
Symbol
Value
Unit
µi
20 ± 10%
1
tan δ / µi
< 3500
10
ηB
< 700
-6
Conditions
Complex permeability
100
25°C ; <= 10 kHz
<= 0,25 mT
<= 0,25 mT
/ mT
mT
Rspez.
> 3,0
aF
< 30
Tc
150
25°C ; 20 kHz
<=1,5mT to 3mT
25°C ; 16 kHz
280
B
25°C ; 10 MHz
µ`µ``
10
-6
10
30000 A/m
µ`
µ``
Ωm
10
-6
/k
-25° - 70°C
1
10
°C
100
f / MHz
Initial permeability µi as a function of temperature T
1000
Magnetization curves
300
20
200
µi
B / mT
30
100
10
0
-5000
0
-50
0
50
T / °C
100
150
176
0
5000
10000
15000
H / A/m
20000
25000
30000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCART | OVERVIEW
FERROCART (IRON POWDER)
Our FERROCART material grades are manufactured by pressing; they consist of a blend of
magnetically soft metal powder and isolating binder. Through fine grain dispersion, eddy
currents are largely suppressed. Different FERROCART types, which are suitable for application
at low frequency ranges, up to approximately 100 MHz, can be manufactured by mixture of
metal powder types and isolation portions. We can fully take advantage of the metallic
Magnetika, which is the high magnetization, with this material, for instance in component
parts used for power electronics. Furthermore fine grain dispersion implicates internal
demagnetization with the result of an extremely good stabilization. Air gaps, which have to be
mostly used in strip band cores or laminated steel cores, are no more necessary. By using
FERROCART material grades, it ensues in many cases, like loading coil - and noise suppression
choke applications, very cheap inductive component parts.
Remark
The data of our different material grades as shown on the following tables, were measured on
toroidal test cores. As is well known there is no direct relation between material
characteristics as measured on test pieces and the corresponding parameters of other cores,
made of the same material, but different in shape and size, especially if cores are applied
outside those ranges (e.g. of frequency, induction, or temperature), within which the
catalogue material properties have been ascertained.
No guarantee can be given that specifications as laid down in this catalogue may not be
changed before the next edition is given to press. Obligatory assurances of properties require
separate agreements in writing in order to become efficacious.
For these reasons, if new components are to be designed, we ask our customers for due
contact in order to agree on suitable specifications. This can be done either by fixing
measuring conditions and quantities or by exchanging standard cores or components.
General technical characteristics
Density
≈
5 . . . 7,4
g·cm-3
DC Resistivity
≈
5
Ω·m
E-Modul
≈
30 . . . 70
kN·mm-3
Expansion Coefficient
≈
10 . . . 25
10-6·K-1
≈
10
W·m-1·K-1
Thermal Conductivity
177
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCART
NEW MATERIAL
Fe 897: Iron powder with high amplitude permeability
500
Fe 897
Fe 893
450
400
350
300
µa
250
200
150
100
50
f = 1 kHz
0
100
1000
Hs / A/m
TASK:
Development of a µa optimized iron powder material for AC applications
Result:
Fe897 with a amplidude permability of 420 with low power losses
178
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCART | SUMMARY
Application
Frequency range
Magnetic load
Powder materials
MHz
FERROCART
High Q circuits
≤ 10
Fe 818
(Coils with high thermal and
≤ 100
Fe 810
temporal stability insensible of
Core shape
Rod, tube,
screw, nipple
and cup cores
external magnetic fields)
All powder
materials have
a high
Anti-interference and
≤ 10
damping coils
saturation
Fe 876
magnetization
Fe 850
multi-aperture, E-,
and are there-
Fe 818
and pot cores, toroids
fore usable
Fe 810
Power applications
at extremely
Fe 897
(Inductors and transformers
high magnetic
Fe 896
with high thermal and temporal
load.
Fe 893
stability, for high AC amplitudes
or high premagnetization, e.g.
Rod, tube,
Fe 892
Fe 876
≤ 0,2
loading coils, noise
Fe 875
suppression coils)
Fe 850
Toroids
Fe 835
Fe 818
Toroids for thyristor noise
Fe 896
suppression chokes for
Fe 892
dimmers.
179
Toroids
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCART | SUMMARY
FERROCART
Initial permeability
Relative loss factor
frequency
Rel. temperature factor
25°C - 70°C
Fe 897
µi
Rel. temperature factor
140
110
100
75
± 15%
± 15%
± 15%
± 15%
1600
120
1600
0,16
0,01
0,16
0,01
0,16
100
< 18
< 18
<5
°C
200
200
200
200
180
Toroids
Toroids
Toroids
Toroids
Toroids
Fe 875
Fe 850
Fe 835
Fe 818
f
1)
75
55
35
± 15%
± 15%
± 15%
1
MHz
αF
0,01
1400
< 10
tanδ
-6
µi 10
0,16
190
< 18
µi
0,01
1200
10-6
K
Maximum operating temperature
1)
125
αF
25°C - 70°C
preferred shapes
Fe 876
MHz
FERROCART
frequency
Fe 892
f
preferred shapes
Relative loss factor
Fe 893
± 15%
1
tanδ
-6
µi 10
Maximum operating temperature ¹
Initial permeability
Fe 896
0,01
0,16
Fe 810
18
10
± 10%
± 10%
120
1300
140
800
100
180
110
200
500
2000
0,01
0,16
0,02
0,3
0,05
0,5
0,05
0,5
12
100
-6
10
K
< 18
< 15
< 12
< 12
<2
°C
180
180
150
150
120
Toroids
Toroids
Toroids
the maximum operating temperature of coated
cores depends on the temperature behaviour of
the coating material.
180
Toroid, rod, tube, screw cores
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 897
A material with high thermal and temporal stability , for high AC amplitudes or high premagnetization.
For use in power applications
SYMBOL
VALUE
UNIT
µi
125 ± 15%
1
tanδ / µ i
1600
10
µa
420
1
CONDITIONS
Initial permeability µi as a function of frequency f
160
25°C ; ≤ 10 kHz
≤ 0,25 mT
-6
140
25°C ; 0,16 MHz
≤ 0,25 mT
120
25°C ; 1 kHz
100
µi
500 mT
25°C ; 10 kHz
73
2000 A/m
1
µΔ
60
25°C ; 10 kHz
37
40
5000 A/m
aF
≤ 18
Tmax
200
10
-6
/K
80
20
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H
100
f / kHz
1000
Amplitude permeability µa as a function of induction Bs
450
140
400
350
100
300
80
250
µΔ
µa
120
200
60
150
40
100
20
50
f = 1 kHz
ΔB = 2 mT
0
0
100
1000
H_ / A/m
10
10000
Magnetization curves
500
2000
450
1800
1600
400
1400
350
1200
300
1000
250
µa
B / mT
1000
Amplitude permeability µa as a function of
magnetic field strength Hs
2200
800
200
600
150
400
100
200
50
0
-5000
100
Bs / mT
0
5000
10000 15000
H / A/m
20000
25000
0
100
30000
181
f = 1 kHz
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of frequency f
and induction Bs
10000
10
0
z
kH
kH
z
kH
z
40
10
kH
z
100
1
Pv / mW/cm³
1000
10
10
100
Bs / mT
1000
182
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.1 FERROCART | FE 896
A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization.
For use in power applications (e.g. loading coils, noise suppression)
SYMBOL
VALUE
UNIT
µi
140 ± 15%
1
tanδ / µi
1200
10
µa
270
1
CONDITIONS
Initial permeability µi as a function of frequency f
160
25°C ; ≤ 10 kHz
≤ 0,25 mT
-6
140
25°C ; 0,16 MHz
≤ 0,25 mT
120
1 kHz
100
500 mT
2000 A/m
1
µΔ
80
µi
25°C ; 10 kHz
90
60
25°C ; 10 kHz
45
40
5000 A/m
aF
< 10
Tmax
200
-6
10
/K
20
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H
100
f / kHz
1000
Amplitude permeability µa as a function of induction Bs
300
160
250
140
120
200
150
80
µa
µΔ
100
60
100
40
50
20
f = 1 kHz
ΔB = 2 mT
0
0
100
1000
H_ / A/m
10
10000
Magnetization curves
100
Bs / mT
1000
Amplitude permeability µa as a function of
magnetic field strength Hs
2000
300
1800
1600
250
1400
200
B / mT
1200
1000
µa
150
800
100
600
400
50
200
0
-5000
f = 1 kHz
0
5000
10000 15000
H / A/m
20000
25000
0
100
30000
183
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Unipolar losses (20% ripple)
Unipolar losses (30% ripple)
1000
1000
100 kHz
75 kHz
50 kHz
75 kHz
Pv / mW/cm³
Pv / mW/cm³
100 kHz
50 kHz
100
25 kHz
10
1000
2000
3000
H_ / A/m
4000
10
1000
5000
Spezific power loss Pv as a function of frequency f
and induction Bs
kH
z
10
0
kH
z
1000
kH
z
40
10
Pv / mW/cm³
10000
100
10
10
100
Bs / mT
25 kHz
100
1000
184
2000
3000
H_ / A/m
4000
5000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 893
A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization.
For use in power applications (e.g. loading coils, noise suppression coils)
SYMBOL
VALUE
UNIT
µi
110 ± 15%
1
tanδ / µ i
1400
10
µa
210
1
CONDITIONS
Initial permeability µi as a function of frequency f
120
25°C ; ≤ 10 kHz
≤ 0,25 mT
-6
≤ 0,25 mT
80
1 kHz
µi
500 mT
25°C ; 10 kHz
88
2000 A/m
1
µΔ
100
25°C ; 0,16 MHz
40
25°C ; 10 kHz
50
5000 A/m
aF
≤ 18
Tmax
200
10
-6
/K
60
20
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H
100
f / kHz
1000
Amplitude permeability µa as a function of induction Bs
250
120
200
100
150
µa
µΔ
80
60
100
40
50
20
ΔB = 2 mT
0
100
f = 1 kHz
0
1000
H_ / A/m
10000
10
Magnetization curves
1000
Amplitude permeabilität µa as a function of
magnetic field strength Hs
2000
250
1800
1600
200
1400
1200
150
1000
µa
B / mT
100
Bs / mT
800
100
600
400
50
200
0
-5000
f = 1 kHz
0
5000
10000 15000
H / A/m
20000
25000
0
100
30000
185
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Unipolar losses (20% ripple)
Unipolar losses (30% ripple)
10000
10000
100 kHz
Pv / mW/cm³
100 kHz
75 kHz
50 kHz
100
1000
Pv / mW/cm³
1000
25 kHz
10
1000
2000
3000
H_ / A/m
4000
Specific power loss Pv as a function of frequency f
and induction Bs
kH
kH
z
10
0
10
kH
z
40
Pv / mW/cm³
z
10000
1000
100
10
10
100
Bs / mT
50 kHz
25 kHz
100
10
1000
5000
1000
186
75 kHz
2000
3000
H_ / A/m
4000
5000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 892
A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization.
For use in noise suppression chokes for dimmers
SYMBOL
VALUE
UNIT
µi
100 ± 15%
1
tanδ / µ i
1600
10
µa
310
1
CONDITIONS
Initial permeability µi as a function of frequency f
120
25°C ; ≤ 10 kHz
≤ 0,25 mT
-6
≤ 0,25 mT
80
25°C ; 1 kHz
500 mT
60
µi
25°C ; 10 kHz
70
2000 A/m
1
µΔ
100
25°C ; 0,16 MHz
40
25°C ; 10 kHz
36
5000 A/m
aF
≤ 18
Tmax
200
10
-6
/K
20
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H
100
f / kHz
1000
Amplitude permeability µa as a function of induction Bs
350
120
300
100
250
200
µa
µΔ
80
60
150
40
100
20
50
ΔB = 2 mT
f = 1 kHz
0
0
100
1000
H_ / A/m
10
10000
Magnetization curves
100
Bs / mT
1000
Amplitude permeability µa as a function of
magnetic field strength Hs
2000
350
1800
300
1600
1400
250
200
1000
µa
B / mT
1200
150
800
600
100
400
50
200
0
-5000
f = 1 kHz
0
5000
10000 15000
H / A/m
20000
25000
0
100
30000
187
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Spezific power loss Pv as a function of frequency f
and induction Bs
10
0
kH
z
1000
10
kH
z
40
Pv / mW/cm³
kH
z
10000
100
10
10
100
Bs / mT
1000
188
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 876
A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization.
For use in anti-interference and damping coils
SYMBOL
VALUE
UNIT
µi
75 ± 15%
1
tanδ / µ i
100
10
µa
120
1
-6
CONDITIONS
Initial permeability µi as a function of frequency f
25°C ; ≤ 10 kHz
100
≤ 0,25 mT
90
25°C ; 0,16 MHz
≤ 0,25 mT
80
70
1 kHz
60
25°C ; 10 kHz
66
46
<5
Tmax
180
10
-6
/K
50
40
2000 A/m
1
µΔ
αF
µi
500 mT
25°C ; 10 kHz
30
5000 A/m
20
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
10
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H_
100
f / kHz
1000
Amplitude permeability µa as a function of Bs
140
100
120
90
80
100
70
80
µa
µΔ
60
50
60
40
40
30
20
20
10
f = 1 kHz
ΔB = 2 mT
0
0
100
1000
H_ / A/m
10
10000
Magnetization curves
1000
Amplitude permeability µa as a function of Hs
140
2000
1800
120
1600
1400
100
1200
80
1000
µa
B / mT
100
Bs / mT
800
60
600
40
400
200
0
-1000
0
20
f = 1 kHz
0
0
100
10000 20000 30000 40000 50000 60000 70000 80000
H / A/m
189
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Unipolar losses (20% ripple)
Unipolar losses (30% ripple)
1000
1000
100 kHz
75 kHz
50 kHz
75 kHz
50 kHz
100
25 kHz
10
2000
3000
4000
H_ / A/m
5000
Pv / mW/cm³
Pv / mw/cm³
100 kHz
10
2000
6000
Spezific power loss Pv as a function of frequency f
and induction Bs
10
kH
z
10
0
kH
z
kH
z
1000
40
Pv / mW/cm³
10000
100
10
10
100
Bs / mT
25 kHz
100
1000
190
3000
4000
H_ / A/m
5000
6000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 875
A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization.
For use in power applications (e.g. loading coils, noise suppression coils)
SYMBOL
VALUE
UNIT
µi
75 ± 15%
1
tanδ / µi
1300
10
µa
240
1
-6
CONDITIONS
Initial permeability µi as a function of frequency f
25°C ; ≤ 10 kHz
100
≤ 0,25 mT
90
25°C ; 0,16 MHz
≤ 0,25 mT
80
70
1 kHz
60
µi
500 mT
25°C ; 10 kHz
61
1
µΔ
38
aF
≤ 18
Tmax
180
-6
10
/K
50
40
2000 A/m
25°C ; 10 kHz
30
5000 A/m
20
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
10
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H
100
f / kHz
1000
Amplitude permeability µa as a function of induction Bs
300
100
90
250
80
200
70
µa
µΔ
60
50
40
150
100
30
20
50
10
f = 1 kHz
ΔB = 2 mT
0
0
100
1000
H_ / A/m
10
10000
Magnetization curves
100
Bs / mT
1000
Amplitude permeability µa as a function of
magnetic field strength Hs
2000
300
1800
1600
250
1400
200
1000
µa
B / mT
1200
150
800
100
600
400
50
200
0
-5000
f = 1 kHz
0
5000
10000 15000
H / A/m
20000
25000
0
100
30000
191
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Unipolar losses (20% ripple)
Unipolar losses (30% ripple)
1000
1000
100 kHz
75 kHz
50 kHz
100 kHz
Pv / mW/cm³
Pv / mW/cm³
75 kHz
50 kHz
100
25 kHz
10
1000
2000
3000
H_ / A/m
4000
10
1000
5000
Spezific power loss Pv as a function of frequency f
and induction Bs
kH
z
10
0
kH
z
10
kH
z
40
Pv / mW/cm³
10000
1000
100
10
10
100
Bs / mT
25 kHz
100
1000
192
2000
3000
H_ / A/m
4000
5000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 850
A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization.
For use in anti-interference and damping coils
SYMBOL
VALUE
UNIT
µi
55 ± 15%
1
tanδ / µ i
800
10
µa
93
1
-6
CONDITIONS
Initial permeability µi as a function of frequency f
25°C ; ≤ 10 kHz
100
≤ 0,25 mT
90
25°C ; 0,3 MHz
≤ 0,25 mT
80
70
1 kHz
60
25°C ; 10 kHz
52
43
≤ 15
Tmax
180
10
-6
/K
25°C ; 10 kHz
30
5000 A/m
20
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
10
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H_
1000
Amplitude permeability µa as a function of Bs
90
90
80
80
70
70
60
µa
60
50
50
40
40
30
30
20
20
10
10
ΔB = 2 mT
f = 1 kHz
0
0
100
1000
H_ / A/m
10
10000
Magnetization curves
100
1800
90
1600
80
1400
70
1200
1000
60
1000
800
50
40
600
30
400
20
200
0
-1000
0
100
Bs / mT
Amplitude permeability µa as a function of Hs
2000
µa
B / mT
100
f / kHz
100
100
µΔ
50
40
2000 A/m
1
µΔ
αF
µi
500 mT
10
0
0
100
10000 20000 30000 40000 50000 60000 70000 80000
H / A/m
193
f = 1 kHz
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Unipolar losses (20% ripple)
Unipolar losses (30% ripple)
1000
1000
100 kHz
75 kHz
50 kHz
75 kHz
100
50 kHz
Pv / mW/cm³
Pv / mW/cm³
100 kHz
25 kHz
100
25 kHz
10
2000
2500
3000
3500
4000
4500
H_ / A/m
5000
5500
10
2000
6000
Spezific power loss Pv as a function of frequency f
and induction Bs
z
kH
10
0
kH
z
1000
10
kH
z
40
Pv / mW/cm³
10000
100
10
10
100
Bs / mT
1000
194
2500
3000
3500
4000
H_ / A/m
4500
5000
5500
6000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 835
A material with high thermal and temporal stability , for high AC amplitudes or high premagnetization.
For use in power applications (e.g. loading coils, noise suppression coils)
SYMBOL
VALUE
UNIT
µi
35 ± 15%
1
tanδ / µi
180
10
µa
44
1
CONDITIONS
Initial permeability µi as a function of frequency f
50
25°C ; ≤ 10 kHz
≤ 0,25 mT
-6
25°C ; 0,5 MHz
≤ 0,25 mT
40
1 kHz
30
µi
500 mT
25°C ; 10 kHz
35
20
2000 A/m
1
µΔ
25°C ; 10 kHz
33
5000 A/m
aF
≤ 12
Tmax
150
-6
10
/K
10
25°C - 70°C
≤ 10 kHz; ≤ 0,25 mT
0
10
°C
Incremental permeability µΔ as a function of
premagnetization H
100
f / kHz
1000
Amplitude permeability µa as a function of induction Bs
50
50
40
40
30
µΔ
µa
30
20
20
10
10
ΔB = 2 mT
0
100
f = 1 kHz
0
1000
H_ / A/m
10000
1
10
100
1000
Bs / mT
Magnetization curves
Amplitude permeability µa as a function of
magnetic field strength Hs
2000
50
1800
1600
40
1400
B / mT
1200
30
µa
1000
800
20
600
400
10
200
0
-1000
0
f = 1 kHz
0
0
100
10000 20000 30000 40000 50000 60000 70000 80000
H / A/m
195
1000
Hs / A/m
10000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
Unipolar losses (20% ripple)
Unipolar losses (30% ripple)
100
1000
25 k
kHz
100
z
75 kH z
50 k H
100
Hz
Pv / mW/cm³
Pv / mW/cm³
kHz
100 z
H
75 k
Hz
50 k
10
z
25 kH
10
1
1000
2000
3000
4000
H_ / A/m
5000
1
1000
6000
Spezific power loss Pv as a function of frequency f
and induction Bs
10000
Pv / mW/cm³
1000
10
0
kH
40
100
z
z
kH
10
kH
z
10
1
10
100
Bs / mT
1000
196
2000
3000
4000
H_ / A/m
5000
6000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 818
A material with high thermal and temporal stability, insensible of external magnetic fields
SYMBOL
VALUE
UNIT
µi
18 ± 10%
1
tan δ / µi
200
21
µa
-6
14
12
25°C ; 10 kHz
11
150
16
500 mT
1
T max
18
1 kHz
1
µΔ
< 12
≤ 0,25 mT
25°C ; 0,16 MHz
≤ 0,25 mT
16
aF
Initial permeability µi as a function of frequency f
20
µi
10
CONDITIONS
25°C ; ≤ 10 kHz
10
-6
8
25°C ; 10 kHz
6
30000 A/m
4
25°C - 70°C
/K
10
10000 A/m
2
≤ 10 kHz; ≤ 0,25 mT
0
10
°C
Magnetization curves
100
f / kHz
1000
Incremental permeability µΔ as a function of
premagnetization H
1000
20
18
800
16
14
12
µΔ
B / mT
600
10
400
8
6
200
4
0
-1000
0
2
0
0
100
10000 20000 30000 40000 50000 60000 70000 80000
H / A/m
Spezific power loss Pv as a function of frequency f
and induction Bs
kH
z
10
0
kH
z
kH
z
10
Pv / mW/cm³
40
100
10
10
100
Bs / mT
10000
H_ / A/m
10000
1000
1000
1000
197
100000
B
B1
MAGNETIC MATERIAL + CORES
MAGNETIC MATERIAL
B1.3 FERROCARIT | FE 810
A material with high thermal and temporal stability , insensible of external magnetic fields
SYMBOL
VALUE
UNIT
µi
10 ± 10%
1
tanδ / µ i
500
≤ 0,25 mT
≤ 0,25 mT
500 mT
25°C ; 10 kHz
10000 A/m
1
µΔ
Tmax
120
600
400
25°C ; 10 kHz
8
≤ 2
800
25°C; 1 kHz
10
aF
1000
25°C ; 12 MHz
-6
1
µa
Magnetization curve
1200
B / mT
10
CONDITIONS
25°C ; ≤ 10 kHz
200
50000 A/m
10
-6
/K
25°C - 70°C
0
-1000
0
≤ 10 kHz; ≤ 0,25 mT
°C
Incremental permeability µΔ as a function of
premagnetization H
µΔ
15
10
5
ΔB = 2 mT
1000
10000 20000 30000 40000 50000 60000 70000 80000
H / A/m
20
0
100
0
10000
100000
H_ / A/m
- 198 -
B
B2
MAGNETIC MATERIAL + CORES
CORES
OVERVIEW
200
B2.1 EVD-CORES
201
B2.2 E-CORES
202-204
B2.3 U-CORES
205
B2.4 TOROIDAL CORES
206-210
B2.5 DOUBLE APERTURE CORES
- 199 -
211
B
B2
MAGNETIC MATERIAL + CORES
CORES
Standard AL-values for E and U cores
Core materials
For high-switching frequencies to 300 kHz, we recommend our Ferrite Fi 325 or Fi 328. This
way, core losses can be minimized even at high frequencies.
Core air gaps
Please refer to the below table for the standard AL values for E cores with an air gap.
Standard AL-values nH
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
Final numbers of the part number
… .. … 70
… .. … 71
… .. … 72
… .. … 73
… .. … 74
… .. … 75
… .. … 76
… .. … 77
… .. … 78
… .. … 79
… .. … 81
… .. … 82
… .. … 83
… .. … 84
… .. … 85
… .. … 86
… .. … 87
… .. … 88
… .. … 89
… .. … 90
… .. … 91
… .. … 92
… .. … 93
… .. … 94
… .. … 95
… .. … 96
… .. … 97
… .. … 98
AL-values apply to a core pair. The order number is for a single core.
Sample order:
for an E core EVD 25/12.8/12.7 material Fi 328,
AL = 100 nH
Part number: 255 13 328 78
- 200 -
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.1 EVD CORES
Core
shape
Effective Effective
Core Effective
area of magnetic
constant magnetic
magnetic
path
volume
path
length
∑ l/A
Ve
Ae
le
(mm2)
(mm)
(mm-1)
(mm3)
EVD 10/5/6
11.7
25.4
2.18
270
EVD 15/9/7
26.1
37.9
1.45
990
EVD 20/10/8.5
40.1
46.6
1.17
1870
EVD 23/12/11
63.9
55.1
0.865
3500
73.1
58.9
0.807
4300
96.6
72.6
0.755
7000
EVD 36/19/16
150
87.4
0.582
13100
EVD 42/21/20
196
97.6
0.499
19100
EVD 25/12.8/
12.7
EVD 30/16/
12.5
Core
shape
Material
Losses (W)
(≤) Fi 328
f = 100 kHz /
Bs = 200 mT
25°C
Fi 325
≤ 0.131)
Fi 328
≤ 0.26
EVD 15/9/7
Fi 325
≤ 0.421)
Fi 328
≤ 0.89
EVD 20/10/8.5
Fi 325
≤ 0.791)
Fi 328
≤ 1.68
EVD 23/12/11
Fi 325
≤ 1.501)
Fi 328
≤ 3.17
EVD 25/12.8/12.7
Fi 325
≤1.831)
Fi 328
≤ 3.87
EVD 30/16/12.5
Fi 325
≤ 2.981)
Fi 328
≤ 6.31
EVD 36/19/16
Fi 325
≤ 5.581)
Fi 328
≤ 11.8
EVD 42/21/20
Fi 325
≤ 8.111)
Fi 328
≤ 17.2
1)
at Fi 325 f = 200 kHz/Bs = 100 mT
EVD 10/5/6
a
b
d1
d2
h1
h2
e
(mm)
10.7
±0.4
14.8
+0.7/-0.5
20.3
±0.7
22.7
±0.7
25.0
+0.8/-0.7
29.7
±0.8
36.3
±0.7
41.5
±0.8
(mm)
5.8
-0.4
7.0
-0.4
8.6
±0.25
11.2
±0.3
12.7
-0.5
12.5
±0.4
16.2
±0.4
20.1
±0.5
(mm)
8.4
+0.5
10.8
+0.6
15.7
±0.4
17.1
±0.4
18.8
+0.8
22.1
±0.5
27.1
±0.55
31.5
±0.6
(mm)
3.6
-0.3
5.8
-0.4
8.0
±0.3
8.1
±0.3
8.8
±0.25
11.6
±0.3
14.5
±0.35
15.7
±0.4
(mm)
5.4
-0.2
9.0
-0.3
10.4
±0.25
12.3
±0.3
12.8
-0.4
16.4
±0.3
19.5
±0.2
21.0
±0.2
(mm)
3.9
+0.3
6.0
+0.4
7.4
±0.25
8.9
±0.3
9.3
+0.5
11.9
±0.3
14.4
±0.3
16.0
±0.3
(mm)
3.6
-0.3
4.8
-0.4
4.9
±0.2
7.7
±0.25
8.3
±0.3
8.2
±0.3
10.5
±0.3
12.7
±0.35
AL value
(nH)
100°C
≤ 0.071)
≤ 0.18
≤ 0.241)
≤ 0.59
≤ 0.451)
≤ 1.12
≤ 0.841)
≤ 2.11
≤ 1.021)
≤ 2.58
≤ 1.671)
≤ 4.20
≤ 3.131)
≤ 7.88
≤ 4.541)
≤ 11.4
μe
10 kHz
50 mV
Tol. = ± 25%
680
1180
680
1180
1170
1350
1170
1350
1510
1400
1510
1400
2110
1450
2110
1450
2300
1480
2300
1480
2540
1520
2540
1520
3380
1560
3380
1560
4010
1590
4010
1590
- 201 -
Bmax (mT)
f = 25 kHz
Hs = 250 A/m
100°C
Part
number
≥ 290
≥ 350
≥ 315
≥ 350
≥ 330
≥ 350
≥ 330
≥ 350
≥ 330
≥ 350
≥ 330
≥ 350
≥ 330
≥ 350
≥ 330
≥ 350
252 05 325 10
252 05 328 10
254 13 325 10
254 13 328 10
254 20 325 10
254 20 328 10
255 15 325 10
255 15 328 10
255 13 325 10
255 13 328 10
256 14 325 10
256 14 328 10
258 07 325 10
258 07 328 10
259 37 325 10
259 37 328 10
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.2 E CORES | CORES E10 – E19
Core
shape
E 10/3
E 12.6/3.7
E 16/4.7k
E 16/4.7
E 16/7.4
E 16/8.4
E 19/5
Core shape
Magnetically Magnetically
Form Magnetically
effective
effective
effective
factor
path
crossa
b
c
d
volume
length
section
l
Ve
Σ /A
le
Ae
(mm2)
(mm)
(mm-1)
(mm3)
(mm) (mm) (mm) (mm)
3.0
5.1
3.0
3.5
7.96
23.2
2.92
185
-0.2 -0.3 +0.25 -0.25
6.5
3.7
4.5
3.7
12.4
29.7
2.4
370
-0.2 -0.3 +0.3 -0.3
5.95 4.7 3.45 4.7
20
28.5
1.43
570
-0.3 -0.4 +0.4 -0.3
8.2
4.7
5.7
4.7
20.1
37.5
1.88
750
-0.3 -0.4 +0.4 -0.3
5.95 7.4 2.05 4.7
31.2
28.8
0.928
900
-0.3 -0.5 ±0.15 -0.3
8.2
8.4
5.7
4.7
36.3
37.6
1.03
1365
-0.3 -0.5 +0.4 -0.3
5.7
4.8
8.0
4.8
22.6
39.6
1.76
896
±0.2 ±0.2 ±0.2 ±0.2
Material
Losses ( W ) ( ≤ )
Fi 328
f = 100 kHz/
Bs = 200 mT
25°C
E 10/3
Fi 325
0.08 1)
E 10/3
Fi 328
0.17
E 12.6/3.7
Fi 325
0.16 1)
E 12.6/3.7
Fi 328
0.33
E 16/4.7
Fi 325
0.32 1)
E 16/4.7
Fi 328
0.68
E 16/4.7K
Fi 325
0.24 1)
E 16/4.7K
Fi 328
0.51
E 16/7.4
Fi 325
0.38 1)
E 16/7.4
Fi 328
0.81
E 16/8.4
Fi 325
0.58 1)
E 16/8.4
Fi 328
1.23
E 19/5
Fi 325
0.38 1)
E 19/5
Fi 328
0.80
1) at Fi 325 f = 200kHz/Bs = 100mT
100°C
0.04 1)
0.11
0.09 1)
0.22
0.18 1)
0.45
0.14 1)
0.34
0.21 1)
0.54
0.32 1)
0.82
0.21 1)
0.53
AL value
(nH)
µ0
10 kHz/50 mV
Tol. = ± 25 %
500
1150
500
1150
660
1260
660
1260
900
1340
900
1340
1090
1240
1090
1240
1700
1250
1700
1250
1630
1340
1630
1340
970
1360
970
1360
- 202 -
e
f
(mm)
7.0
+0.5
8.9
+0.6
11.3
+0.6
11.3
+0.6
11.3
+0.6
11.3
+0.6
14.3
±0.3
(mm)
10.0
±0.3
12.6
+0.5/-0.4
16.0
+0.7/-0.5
16.0
+0.7/-0.5
16.0
+0.7/-0.5
16.0
+0.7/-0.5
19.0
±0.4
Bmax
(mT)
f = 25 kHz/Hs =
250 A/m
100°C
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
Part number
252 04 325 10
252 04 328 10
254 03 325 10
254 03 328 10
254 05 325 10
254 05 328 10
254 12 325 10
254 12 328 10
254 14 325 10
254 14 328 10
254 15 325 10
254 15 328 10
254 19 325 10
254 19 328 10
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.2 E CORES | CORES E20 – E30
Core
shape
Magnetically
Magnetically
Effective cross- effective path
section Ae
length le
(mm2)
(mm)
E 20/5.3
30.8
43.2
Form
factor
Σ l /A
(mm-1)
1.41
E 20/5
22.5
42.6
1.9
E 20/5.9K
32
42.7
1.34
E 20/5.9
32.1
46.4
1.45
E 20/11K
60.9
42.8
0.703
E 20/11
61
46.4
0.762
E 25/7.5
51.9
57.7
1.12
E 25/11
77.4
57.7
0.747
E 25/13
91.8
57.8
0.629
E 30/7.3
60.1
65.3
1.09
E 30/12
105
65.3
0.624
Core
shape
E 20/5.3
E 20/5
E 20/5.9
E 20/5.9K
E 20/11K
E 20/11
E 25/7.5
E 25/11
E 25/13
E 30/7.3
E 30/12
1) at Fi 325 f
Material
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
= 200 kHz/Bs
Magnetically
effective
a
b
c
d
volume Ve
(mm3)
(mm) (mm) (mm) (mm)
10.2
5.3
6.3
5.2
1330
-0.4
-0.4 +0.4 -0.4
8.65
5.0
5.95
5.0
960
-0.4
-0.4 +0.4 -0.4
9.3
5.9
6.1
5.9
1370
-0.4
-0.5 +0.4 -0.4
10.2
5.9
7.0
5.9
1490
-0.4
-0.5 +0.4 -0.4
9.3
11.0
6.1
5.9
2610
-0.4
-0.5 +0.4 -0.4
10.2 11.0
7.0
5.9
2830
-0.4
-0.5 +0.4 -0.4
12.8
7.5
8.7
7.5
3000
-0.5
-0.6 +0.5 -0.5
12.8 11.0
8.7
7.5
4480
-0.5
-0.5 +0.5 -0.5
12.8 13.0
8.7
7.5
5302
-0.5
-0.5 +0.5 -0.5
15.2
7.3
9.7
7.2
3930
-0.4
-0.5 +0.6 -0.5
15.2 12.6
9.7
7.2
6860
-0.4
-0.6 +0.6 -0.5
µ0
Losses ( W ) ( ≤ ) Fi 328 AL -value (nH)
f = 100 kHz/Bs = 200 mT
10 kHz / 50 mV
25°C
0.45
0.95
0.41
0.86
0.63
1.34
0.47
1.23
1.11
2.35
1.20
2.55
1.27
2.69
1.90
4.03
2.26
4.78
1.33
2.83
2.33
4.93
= 100 mT
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
100°C
0.24
0.60
0.23
0.58
0.35
0.89
0.25
0.82
0.62
1.56
0.67
1.70
0.71
1.80
1.06
2.68
1.26
3.18
0.71
1.77
1.23
3.08
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
Tol. = ± 25%
1230
1380
1230
1380
920
1390
920
1390
1230
1420
1230
1420
1310
1390
1310
1390
2470
1380
2470
1380
2330
1410
2330
1410
1660
1470
1660
1470
2470
1470
2470
1470
2930
1470
2930
1470
1730
1500
1730
1500
3010
1490
3010
1490
- 203 -
e
f
(mm)
12.8
+0.6
15.2
+0.6
14.1
+0.6
14.1
+0.6
14.1
+0.6
14.1
+0.6
17.5
+0.8
17.5
+0.8
17.5
+0.8
19.5
+0.8
19.5
+0.8
(mm)
20.0
+0.7/-0.4
20.0
+0.7/-0.4
20.0
+0.8/-0.6
20.0 +
0.8/-0.6
20.0
+0.8/-0.6
20.0
+0.8/-0.6
25.0
+0.8/-0.7
25.0
+0.8/-0.7
25.0
+0.8/-0.7
30.0
+0.8/-0.6
30.0
+0.8/-0.6
Bmax (mT)
f = 25 kHz, Hs = 250 A/m
100°C
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 330
≥ 360
≥ 330
≥ 360
Part number
254
254
254
254
254
254
254
254
254
254
254
254
255
255
255
255
255
255
256
256
256
256
01
01
02
02
06
06
10
10
16
16
11
11
07
07
09
09
16
16
01
01
05
05
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.2 E CORES | CORES E32 – E65
Core
shape
Magnetically
Magnetically
Effective cross- effective path
length le
section Ae
(mm2)
(mm)
Form
factor
Σ l/A
(mm-1)
E 32/9.5
83.2
74.3
0.895
E 32/11
96.9
70.7
0.731
E 36/11
119
81
0.68
E 36/15
157
81
0.515
Magnetically
effective
a
b
c
d
volume Ve
3
(mm )
(mm) (mm) (mm) (mm)
16.4
9.5
11.2
9.5
6190
-0.6
-0.7 +0.6 -0.6
15.5 11.0 10.3
9.5
6860
-0.6
-0.7 +0.6 -0.6
18.0 11.5 12.0 10.2
9670
-0.4
-0.5 +0.6 -0.5
18.0 15.2 12.0 10.2
12800
-0.4
-0.7 +0.6 -0.5
21.2 15.2 14.8 12.2
17400
-0.4
-0.5 +0.7 -0.5
21.2 15.2 14.8 12.2
17607
-0.4
-0.5 +0.6 -0.5
21.2 20.0 14.8 12.2
22900
-0.4
-0.8 +0.7 -0.5
E 42/15
178
97.2
0.545
E 42/15A
178.5
98.6
0.553
E 42/20
235
97.2
0.413
E 42/20A
235
98.6
0.419
23200
E 55/21
354
123
0.348
43700
E 55/25
421
123
0.293
51900
E 65/27.4
533
147
0.276
78300
Core
shape
E 30/7.3
E 30/12
E 32/9.5
E 32/11
E 36/11
E 36/15
E 42/15
E 42/15A
E 42/20
E 42/20A
E 55/21
1) at Fi 325 f
Material
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
= 200kHz/Bs = 100mT
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
100°C
0.71
1.77
1.23
3.08
1.47
3.71
1.63
4.11
2.30
5.80
3.04
7.66
4.13
10.41
4.19
10.56
5.44
13.72
5.52
13.91
10.40
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
(mm)
22.7
+1.0
22.7
+1.0
24.5
+1.2
24.5
+1.2
29.5
+1.2
31.0
+1.2/-0.2
29.5
+1.2
(mm)
32.0
+0.9/-0.7
32.0
+0.9/-0.7
36.0
+1.0/-0.7
36.0
+1.0/-0.7
42.0
+1.0/-0.7
43.5
+1.0/-0.9
42.0
+1.0/-0.7
20.0
-0.6
14.8
+0.6
12.2
-0.5
31.0
+1.2/-0.2
43.5
+1.0/-0.9
27.8
-0.6
27.8
-0.6
32.8
-0.6
21.0
-0.6
25.0
-0.8
27.4
-1.2
18.5
+0.6
18.5
+0.6
22.2
+0.8
17.2
-0.5
17.2
-0.5
20.0
-0.7
37.5
+1.2
37.5
+1.2
44.2
+1.5
55.0
+1.2/-0.9
55.0
+1.2/-0.9
65.0
+1.5/-1.2
Tol. = ± 25%
1730
1500
1730
1500
3010
1490
3010
1490
2160
1530
2160
1530
2620
1520
2620
1520
2860
1550
2860
1550
3770
1550
3770
1550
3660
1590
3660
1590
3610
1590
3610
1590
4820
1580
4820
1580
4750
1580
4750
1580
5870
1630
5870
1630
- 204 -
f
21.2
-0.4
µ0
Losses ( W ) ( ≤ ) Fi 328 AL -value (nH)
f = 100 kHz/Bs = 200 mT
10 kHz / 50 mV
25°C
1.33
2.83
2.33
4.93
2.63
5.56
2.91
6.16
4.11
8.71
5.43
11.49
7.37
15.62
7.48
15.84
9.72
20.58
9.86
20.87
18.58
e
Bmax (mT)
f = 25 kHz, Hs = 250 A/m
100°C
≥ 330
≥ 360
≥ 330
≥ 360
≥ 330
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 330
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
Part number
256
256
256
256
257
257
257
257
257
257
257
257
259
259
259
259
259
259
259
259
259
259
01
01
05
05
01
01
08
08
05
05
07
07
06
06
35
35
04
04
20
20
01
01
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
325 10
328 10
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.3 U CORES
Magnetically Magnetically
effective
effective
Core shape crosssection path length
Ae
le
(mm)
(mm2)
Form
factor
∑ l/A
(mm-1)
Magnetically
effective
volume
Ve
(mm3)
U 13.5/5
16
49.2
3.01
800
U 15/6.7
34.2
52.3
1.53
1790
U 20/7.7
53.8
68.7
1.28
3700
U 21/12
66.5
81.2
1.22
5390
U 25/7
53.2
87
1.64
4600
U 25/13
105
88.2
0.84
9300
U 26/16
151
84.2
0.56
12700
U 30/26
266
118
0.43
31400
Core shape
U 13.5/5
U 13.5/5
U 15/6.7
U 15/6.7
U 20/7.7
U 20/7.7
U 21/12
U 21/12
U 25/7
U 25/7
U 25/13
U 25/13
U 26/16
U 26/16
U 30/26
U 30/26
Material
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Fi 325
Fi 328
Losses (W) ( ≤ )
f = 200 kHz/
Bs = 100 mT
25°C
100°C
0.34
0.19
0.72
0.48
0.76
0.42
1.61
1.07
1.57
0.88
3.32
2.22
2.30
1.29
4.86
3.24
1.96
1.10
4.16
2.77
3.95
2.21
8.37
5.58
5.40
3.02
11.44
7.63
a
d
h1
h2
mm)
(mm)
mm)
mm) (mm)
13.5
5
6.5
9.9
6.2
±0.5
-0.4
+0.5
-0.4
+0.2
6.2
15.4
6.7
5
12
±0.6
-0.5
+0.6
±0.15 ±0.15
19.8
7.7
5.6
16
8.9
±0.6
-0.5
+0.6
-0.6
+0.3
21
12
9
17
11
±0.6
-0.7
+0.7
-0.6
+0.4
7.3
10.2
18.2
10.8
24.8
+0.3
+0.3/-0.4 ±0.2 +0.3/-0.4 ±0.3
24.8
13
8
20.2
11
±0.7
-0.7
+0.7
-0.7
+0.6
25.8
16
9
22.2
13
±0.7
-0.6
+0.7
-0.7
+0.4
30.8
26.5
10.4
26.4
16
±1.2
-0.8
±0.4
±0.6
+0.5
AL -value (nH)
µ0
10 kHz/50 mV
Tol. = ± 25%
5995
1430
5995
1430
1180
1440
1180
1440
1490
1510
1490
1510
1600
1560
1600
1560
1200
1560
1200
1560
2350
1560
2350
1560
2670
1190
2670
1190
4600
1620
4600
1620
- 205 -
b
Bmax (mT)
f = 25 kHz Hs
= 250 A/m
100°C
≥ 290
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
≥ 315
≥ 360
Part number
261 21 325 10
261 21 328 10
261 12 325 10
261 12 328 10
261 14 325 00
261 14 328 00
261 31 325 00
261 31 328 00
261 09 325 00
261 09 328 00
261 17 325 00
261 17 328 00
261 28 325 00
261 28 328 00
261 20 325 00
261 20 328 00
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.4 TOROIDAL CORES | MADE OF FERROCART POWDERS
(IRON POWDERS)
Designation
R 12.5 x 8 x 7
R 14.3 x 7.2 x 9.5
R 17 x 9 x 9
R 19 x 10 x 6
R 19 x 10 x 9
R 21.5 x 12 x 6
R 23 x 14.5 x 11
R 25 x 15 x 12.5
R 30.5 x 14.5 x 15
R 33 x
R 33 x
R 33 x
R 33 x
R 33 x
19 x
19 x
19 x
20 x
20 x
79.6
79.6
79.6
81.5
81.5
34.5
57.7
105.8
32.5
47.7
R 36 x 19 x 14
R 36 x 19 x 16
83.8
83.8
R 36 x 22 x 6.7
h
(mm)
7 +0.3
9.5 ±0.2
9 ±0.2
6 ±0.25
9 ±0.25
6 ±0.15
11 -0.4
12 ±0.3
15 ±0.3
Part number 1)
233 28 XXX 10
233 18 XXX 10
234 39 XXX 10
234 16 XXX 10
234 24 XXX 10
235 28 XXX 10
235 22 XXX 10
235 13 XXX 10
237 30 XXX 10
5.6 ±0.15
9 ±0.25
16 ±0.3
5.6 ±0.15
8 ±0.15
237 10 XXX 10
237 01 XXX 10
237 33 XXX 10
237 25 XXX 10
237 24 XXX 10
120.4 10090 1.8
137.5 11530 2.06
36.2 ±0.2
36.2 ±0.2
19 ±0.1
19 ±0.1
14 ±0.3
16 ±0.3
238 46 XXX 10
238 45 XXX 10
89.3
46.7
4169
0.66
36.3 -0.3
21.8 +0.2
6.7 -0.3
238 34 XXX 10
4.4
6
8
18.5
91.3
91.3
91.3
91.3
37
51
67.2
160.4
3382 0.51
4661 0.7
6140 0.92
14653 2.2
38.85 -0.3
38.85 -0.3
38.85 -0.3
38.85 -0.3
21.1 +0.2
21.1 +0.2
21.1 +0.2
21.1 +0.2
4.4 ±0.1
6 ±0.15
8 -0.3
18.5 ±0.3
238 25 XXX 10
238 30 XXX 10
238 32 XXX 10
238 35 XXX 10
R 41.5 x 21.2 x 13.5
R 41.5 x 21.2 x 27
94.8
94.8
129.8 12300 1.72
265.8 25200 3.52
41.5 -0.3
41.5 -0.3
21.1 +0.2
21.1 +0.2
13.6 -0.6
26.8 ±0.6
239 48 XXX 10
239 49 XXX 10
R 50 x
R 50 x
R 50 x
R 50 x
126.7
126.7
126.7
126.7
111.6
152
214
258
50 -0.3
50 -0.3
50 -0.3
50 -0.3
32 +0.2
32 +0.2
32 +0.2
32 +0.2
13.5 ±0.3
18 ± 0.3
25 ±0.3
30 ±0.5
239 46 XXX 10
239 27 XXX 10
239 47 XXX 10
239 31 XXX 10
28 ±0.6
239 52 XXX 10
32 x
32 x
32 x
32 x
13.5
18
25
30
0.54
0.91
1.67
0.5
0.73
Dimensions 2)
d2
(mm)
8+ 0.2
7.2 +0.2
9 ±0.1
10 ±0.1
10 ±0.1
12 +0.2
14.5 +0.4
15 +0.2
14.5 +0.2
19 +0.2
19 +0.2
19 +0.2
20 +0.2
20 +0.2
21.2 x
21.2 x
21.2 x
21.2 x
2747
4596
8429
2654
3888
d1
(mm)
12.5 ±0.2
14.3 -0.3
17 -0.2
19 -0.3
19 -0.3
21.5 -0.3
23 -0.7
25 -0.3
30.5 -0.3
33 -0.3
33 -0.3
33 -0.3
33 -0.3
33 -0.3
R 38.6 x
R 38.6 x
R 38.6 x
R 38.6 x
5.6
9
16
5.6
8
Magnetic shape parameters
le
Ae
Ve Λ 0 = c
(mm (mm²) (mm³) (nH)
31.9
14.8 471 0.58
32.5
30.9 1006 1.2
39.4
35.6 1400 1.13
43.9
25.1 1099 0.72
43.9
38.3 1681 1.1
51.2
27.8 1420 0.68
57.8
41.9 2418 0.91
61.5
58.9 3623 1.2
67.6
111.7 7556 2.08
14135 1.11
19190 1.5
27100 2.12
32690 2.56
R 66 x 39 x 28
161.3
346 55801 2.7
66 -0.5
39 +0.4
Please insert material number, 2) Dimensions without plastic coating
1)
The AL values for each version and each selected material can be easily calculated with the equation:
AL = μi * Λ0 (nH) (Initial permeability (μi ) of the selected material: see chapter D1.1)
The cores are shipped with chamfered edges and with plastic coating. The coating is 0.2 - 0.4 mm thick.
- 206 -
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.4 TOROIDAL CORES | MADE OF FERROCARIT MATERIAL
Designation
R 5.2 x 2.6 x 2
Magnetic shape parameters
le
Ae
Ve
Λ0 = c
(mm) (mm²) (mm³) (nH)
12
2.5
30
0.26
d1
(mm)
5.2 ±0.2
Dimensions
d2
(mm)
2.6 +0.2
h
(mm)
2 ±0.2
Weight
Part number 1)
(g)
0.13
232 17 XXX 00
R 5.5 x 2.5 x 1.5
12
2.5
30
0.25
5.5 +0.2
2.5 +0.2
1.5 +0.3
0.12
232 12 XXX 00
R6x
R6x
R6x
R6x
2
2
3
5.4
11
14
14
14
3.8
3
4.6
8.5
43
41
64
120
0.43
0.28
0.41
0.76
5.8 ±0.2
6 ±0.25
6 +0.3
6 +0.5
2 ±0.2
3 ±0.15
3 +0.2
3 +0.2
2±0.3
2 ±0.3
3 ±0.3
5.4 ±0.3
0.20
0.18
30.00
0.50
232 20 XXX 00
232 27 XXX 00
232 14 XXX 00
232 23 XXX 00
R 8 x 3.5 x 4
17
9
150
0.66
8 ±0.2
3.5 ±0.2
4 ±0.4
0.70
232 05 XXX 00
R 9.4 x 4.6 x 1.5
R 9.4 x 4.6 x 3.5
R 9.4 x 4.6 x 4.5
20
20
20
3.9
8.5
11
79
170
230
0.24
0.53
0.70
9.4 ±0.2
9.4 ±0.2
9.4 ±0.2
4.6 ±0.1
4.6 ±0.1
4.6 ±0.1
1.5 ±0.15
3.5 ±0.2
4.6 ±0.3
0.40
0.94
1.20
232 56 XXX 00
232 57 XXX 00
232 54 XXX 00
R 10 x 6 x 3
R 10 x 6 x 4
R 10 x 6 x 8
25
24
24
5.4
7.1
15
130
170
360
0.27
0.36
0.76
10 ±0.3
10 ±0.2
9.8 ±0.3
6 ±0.2
6 ±0.15
6 ±0.2
3 ± 0.3
4 ±0.15
8 ±0.3
0.63
0.87
1.81
232 32 XXX 00
232 31 XXX 00
232 29 XXX 00
R 13 x
R 13 x
R 13 x
R 13 x
R 13 x
R 13 x
29
30
30
30
30
30
14
7.6
11
12
14
35
410
230
320
370
410
1050
0.60
0.31
0.44
0.50
0.56
1.43
13 +0.6
13 ±0.35
13 ±0.35
13 ±0.35
13 ±0.35
13 ±0.35
6.1 +0.3
7 ±0.2
7 ±0.2
7 ±0.2
7 ±0.2
7 ±0.2
4.5 ±0.3
3 ±0.2
4 ±0.3
4.5 ±0.3
5 ±0.3
12 ±0.4
2.00
1.20
1.50
1.80
2.00
4.80
233 06 XXX 00
233 11 XXX 00
233 31 XXX 00
233 24 XXX 00
233 20 XXX 00
233 09 XXX 00
R 13.3 x 8.3 x 5
R 13.3 x 8.3 x 5.7
33
33
12
13
410
440
0.47
0.50
13.3 ±0.3
13.3 ±0.3
8.3 ±0.3
8.3 ±0.3
5.15 -0.4
5.7 ±0.3
1.80
2.10
233 16 XXX 00
233 33 XXX 00
R 13.6 x 7.3 x 6
R 14 x 9 x 5
R 14 x 9 x 6
R 14 x 9 x 9
32
36
36
36
17
12
14
22
550
410
500
770
0.68
0.41
0.50
0.76
13.6 ± 0.3
14 ±0.4
14 ±0.4
14 ±0.4
7.3 ±0.2
9 ±0.4
9 ±0.3
9 ±0.4
6 ±0.4
5 ±0.3
6 ±0.3
9 ±0.4
2.60
2.00
2.40
3.50
233 17 XXX 00
233 14 XXX 00
233 08 XXX 00
233 07 XXX 00
2x
3x
3x
3x
6.1 x 4.5
7x3
7x4
7 x 4.5
7x5
7 x 12
R 15 x 10 x 5
39
12
460
0.39
15 ±0.5
10 ±0.5
5 ±0.3
2.20
233 05 XXX 00
R 15 x 10 x 5.7
40
12
470
0.37
15 ±0.5
10.6 ±0.4 5.7 -0.4
2.20
233 23 XXX 00
1)
Please insert material number
The AL values for each version and each selected material can be easily calculated with the equation:
AL = μi* Λ0’ (nH)
(Initial permeability (μi ) of the selected material: see chapter D 1)
Calculated AL values should be considered to be approximate values. The tolerance is ±25%.
If you need toroidal cores with other dimensions, please send us your request.
- 207 -
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.4 TOROIDAL CORES | MADE OF FERROCARIT MATERIAL
Magnetic shape parameters
Dimensions
le
Ae
Ve
Λ0 = c
d1
d2
h
(mm) (mm²) (mm³) (nH)
(mm)
(mm)
(mm)
R 16.4 x 9.3 x 6.5
39
19
750
0.61 16.4 -0.8 9.3 +0.6
6.5 -0.4
Designation
1)
4.00
234 06 XXX 00
7 -0.4
4.60
234 22 XXX 00
8 ±0.5
10 ±0.5
15 ±0.5
6.50
8.10
12.2
234 08 XXX 00
234 09 XXX 00
234 15 XXX 00
6.7 ±0.4
8 ±0.4
6.80
8.10
234 32 XXX 00
234 19 XXX 00
R 17.4 x 10.4 x 7
43
20
860
0.59
17.4 -0.8
R 19 x 11 x 8
R 19 x 11 x 10
R 19 x 11 x 15
47
47
47
30
38
58
1390
1760
2690
0.80
1.02
1.56
11.2 ±0.5 11.2 ±0.25
19.2 ±0.5 11.2 ±0.25
19.2 ±0.5 11.2 ±0.25
R 20 x 10 x 6.7
R 20 x 10 x 8
45
45
31
38
1420
1710
0.87
1.05
R 20 x 11 x 11
R 20 x 11 x 5
47
49
43
19
2000
920
1.15
0.48
19.2 ±0.5 11.2 ±0.25
20.3 ±0.6 11.7 ±0.4
11 +0.5
5 ±0.4
10.00
4.10
234 01 XXX 00
234 05 XXX 00
R 23 x 14.8 x 7
58
26
1520
0.56
22.8 ±0.4 14.8 ±0.3
7 ±0.25
7.30
235 21 XXX 00
R 25 x 15 x 10
62
46
2870
0.93
25 ±0.5
10 ±0.5
14.00
235 06 XXX 00
R 26 x
R 26 x
R 26 x
R 26 x
R 26 x
62
62
62
62
62
39
49
55
84
112
2410
3030
3390
5170
6950
0.79
1.00
1.11
1.70
2.28
26 ±0.55
26 ±0.55
26 ±0.55
26 ±0.55
26 ±0.55
14.5 ±0.35 7.5 -0.5
14.5 ±0.35 9 ±0.3
14.5 ±0.35 10 ±0.3
14.5 ±0.35 15 ±0.4
14.5 ±0.35 20 ±0.45
11.60
14.60
15.80
23.70
31.60
236 19 XXX 00
236 18 XXX 00
236 05 XXX 00
236 09 XXX 00
236 08 XXX 00
R 27 x 14 x 9
R 27 x 14 x 30
R 27 x 14 x 40
62
62
62
52
190
255
3230
11800
15860
1.05
3.84
5.15
27 ±0.7
27 ±0.7
27 ±0.7
14 ±0.4
14 ±0.4
14 ±0.4
9 -0.5
30 ±0.9
40 ±1.2
16.20
54.00
72.00
236 12 XXX 00
236 04 XXX 00
229 39 XXX 00
R 29.5 x 19 x 9
R 29.5 x 19 x 15
75
75
45
77
3390
5750
0.76
1.29
29.5 ±0.7
29.5 ±0.7
19 ±0.5
19 ±0.5
9 ±0.3
15 ±0.3
16.30
27.60
236 21 XXX 00
237 27 XXX 00
R 36 x 23 x 15
91
94
8520
1.29
36 ±0.9
23 ±0.7
15 ±0.4
39.00
238 09 XXX 00
R 45 x 23 x 17.5
103
193
19800
2.35
45 ±1.1
23 ±0.6
17.5 ±0.5
98.00
239 60 XXX 00
R 61 x 38 x 18
153
191
29100
1.57
61 ±1.5
38 ±1.2
18 ±0.8
157.00
239 51 XXX 00
14.5 x
14.5 x
14.5 x
14.5 x
14.5 x
7.5
9
10
15
20
20 ±0.5
20 ±0.5
10.4 +0.6
Weight
Part number
(g)
10 ±0.35
10 ±0.35
15 +1
R 80 x 40 x 15
181
300 54400 2.08
80 ±2.5
40 ±1.2
15 ±0.5 261.00 239 40 XXX 00
1)
Please insert material number
The AL values for each version and each selected material can be easily calculated with the equation:
AL = μi * Λ0 (nH) (Initial permeability (μi ) of the selected material: see chapter B 1)
Calculated AL values should be considered to be approximate values. The tolerance is ±25%.
If you need toroidal cores with other dimensions, please send us your request.
- 208 -
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.4 TOROIDAL CORES | WITH PLASTIC COAT
AL (nH) for material
Designation
Dimensions
Part number 2)
d1
(mm)
d2
(mm)
h
(mm)
2200 1)
4570
Fi 410
(+30%)
(-40%)
4090
7640
10.90
10.90
5.00
5.00
5.10
9.10
232 31 XXX 10
232 29 XXX 10
6170 1)
1870
2010
8600
2600
2800 1)
14400
4400
4700
14.15
14.40
14.40
6.00
7.20
7.20
13.20
6.05
5.95
233 09 XXX 10
233 21 XXX 10
233 16 XXX 10
R 14 x 9 x 5
R 14 x 9 x 6
R 14 x 9 x 9
1760
2160
3270
2450
3000
4570
4100
5100
7600
15.30
15.30
15.30
7.90
7.90
7.90
6.10
7.20
10.20
233 14 XXX 10
233 08 XXX 10
233 07 XXX 10
R 15 x 10 x 5
R 15 x 10 x 5.7
1670
1600
2330
2230
3900
3700
16.30
16.30
8.70
9.40
6.10
6.50
233 05 XXX 10
233 23 XXX 10
R 16.4 x 9.3 x 6.5
2640
3680
6150
17.20
8.50
7.30
234 06 XXX 10
R 17.4 x 10.4 x 7
2540
3600
5900
18.20
9.60
7.80
234 22 XXX 10
4900
6200
8440
8800
9500
8200
10350
14100
14700
15900
20.50
20.50
20.50
20.50
20.50
10.15
10.15
10.15
10.15
10.15
9.30
11.30
14.80
15.30
16.30
234 08 XXX 10
234 09 XXX 10
234 31 XXX 10
234 10 XXX 10
234 15 XXX 10
Fi 340
(±25%)
Fi 360
(± 25%)
R 10 x 6 x 4
R 10 x 6 x 8
1590 1)
3380
R 13 x 7 x 12
R 13.3 x 8.3 x 5
R 13.3 x 8.3 x 5
1)
R 19 x 11 x 8
3500
R 19 x 11 x 10
4430 1)
R 19 x 11 x 13.5
6050
R 19 x 11 x 14
6310
R 19 x 11 x 15
6750
1)
± 30%
2)
Please insert material number
Plastic coating
The coating is 0.2 -0.4 mm thick.
The breakdown (puncture) voltage for coated cores is > 1.5 kV, 50 Hz.
If you need plastic-coated toroidal cores with other dimensions, please send us your request.
- 209 -
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.4 TOROIDAL CORES | WITH PLASTIC COAT
AL (nH) for material
Designation
Dimensions
Part number 2)
d1
(mm)
d2
(mm)
h
(mm)
5250 1)
5500
6300
Fi 410
(+30%)
(-40%)
8800
9200
10600
21.30
21.30
21.30
8.85
8.85
8.85
7.90
8.20
9.20
234 32 XXX 10
234 20 XXX 10
234 19 XXX 10
4990
7270
6950
10100
11600
17000
20.80
20.80
10.35
10.35
12.30
17.30
234 01 XXX 10
234 18 XXX 10
R 23 x 14.8 x 7
2440
3400
5700
24.00
13.70
8.05
235 21 XXX 10
R 25 x 15 x 10
4000
5580
9300
26.30
14.20
11.30
235 06 XXX 10
R 26 x
R 26 x
R 26 x
R 26 x
R 26 x
3420
4300
4810
7320
9840
4770
6000
6700
10200
13730
8000
10000
11200
27.35
27.35
27.35
27.35
27.35
13.35
13.35
13.35
13.35
13.35
8.30
10.10
11.10
16.20
21.25
236 19 XXX 10
236 18 XXX 10
236 05 XXX 10
236 09 XXX 10
236 08 XXX 10
28.50
28.50
12.80
12.80
31.70
42.00
236 04 XXX 10
229 39 XXX 10
Fi 340
(±25%)
Fi 360
(± 25%)
R 20 x 10 x 6.7
R 20 x 10 x 7
R 20 x 10 x 8
3770
3950
4540
R 20 x 11 x 11
R 20 x 11 x 16
14.5 x
14.5 x
14.5 x
14.5 x
14.5 x
7.5
9
10
15
20
R 27 x 14 x 30
R 27 x 14 x 40
16600
22280
1)
1)
R 29.5 x 19 x 9
R 29.5 x 19 x 15
3270
5540
4570
7700
31.00
31.00
17.70
17.70
10.10
16.60
236 21 XXX 10
237 27 XXX 10
R 30 x 19 x 10
3650
5100
31.00
17.70
11.10
236 15 XXX 10
R 36 x 23 x 15
5560
1)
± 30%
2)
Please insert material number
7750
37.70
21.50
16.20
238 09 XXX 10
Plastic coating
The coating is 0.2 -0.4 mm thick.
The breakdown (puncture) voltage for coated cores is > 1.5 kV, 50 Hz.
If you need plastic-coated toroidal cores with other dimensions, please send us your request.
- 210 -
B
B2
MAGNETIC MATERIAL + CORES
CORES
B2.5 DOUBLE APERTURE CORES
Designation:
Twin-hole core
ZB 3.4 x 1.95 x 1.8
ZB 3.5 x 2.4
ZB 3.6 x 2
A (mm)
3.4 ±0.2
3.45
3.6 -0.3
Dimensions
B (mm)
D (mm)
E (mm)
1.95 ±0.2 0.9 ±0.1 1.45 ±0.15
92.01
0.86
1.45
2.1 -0.3 0.8 +0.15 1.45 ±0.1
H (mm)
1.8 ±0.2
2.36
2.0 -0.3
ZC 3.6 x 2.5
ZC 5 x 2.5
ZC 7 x 2.5
ZC 7 x 6
3.6 ±0.2
5.0 ±0.3
6.6 ±0.3
6.9 ±0.3
2.1 ±0.2 0.8 ±0.15 1.45 ±0.15
2.5 ±0.2 1.5 ±0.1
2.5 ±0.2
4.1 ±0.2 2.1 ±0.1
3.3 ±0.2
4.3 ±0.2 2.0 ±0.3
3.0 ±0.2
2.5 -0.3
2.5 -0.2
2.5 ±0.3
6.0 ±0.3
ZF 7 x 4
6.95 ±0.3
3.85 ±0.2 1.2 ±0.1
4.0 ±0.3
4)
230 04 XXX XX
2.5 ±0.2
3) 4)
230 85 XXX XX
ZH 5 x 2.5
5.3 ±0.3
1)
Please insert material number
2)
3)
Fi 221
Fi 242
6)
12-315-g (Fa. Ferronics)
3.45 ±0.2
3.1 ±0.25 1.4 ±0.1
4)
7)
2.5 ±0.2
Fi 292
M13 (Fa. EPCOS)
5)
Material Part number
4)
6)
7)
3) 4) 5)
2) 3) 4) 5)
2) 4)
2)
230 88 XXX XX
230 00 001 00
230 00 002 00
230 81 XXX XX
230 60 XXX XX
230 05 XXX XX
230 06 XXX XX
Fi 340
Core no. description
XXX XX
XXX
XX
AL - Code
Competent
shape/size
Core material
Further, the RM, ERF, ETD, EFD and EP series cores and kits are also offered.
If you require kits which are not listed here, after the profitability is reviewed, we will be
happy to add any other kit to our product line.
For large quantities, special tooling can be manufactured for your customer-specific
applications, with separate tools and molds.
Please send us your inquiry
- 211 -
1)
B
B2
MAGNETIC MATERIAL + CORES
CORES
- 212 -
C
MODULES
C1 LF-ANTENNAS
214-215
C2 HIGH VOLTAGE IGNITER
216
C3 FUNCTIONAL MODULES
217-218
C4 SENSORS
219
C5 HIGH POWER COMPONENTS
220
C6 APPLICATIONS
221-222
- 213 -
C
C1
MODULES
LF-ANTENNAS
IMMOBILIZER ANTENNAS
Immobilizers are the standard system to prevent car-theft. Ring type antennas are used to
establish a short range communication with the transponder chip inside the ignition key.
Features
•
•
•
•
Customised antenna modules for mounting onto keylock-housings
Various configurations with moulded housing, connector or cable-harness
Optional integration of RF-antenna leads and illumination plastics
High quality visible surface according to customer specification
Technology
•
Complex shapes can be realized
•
Overmoulding of the antenna winding and moulding of
housing and connector in one shot
•
Pressfit pin interface for solderless assembly of the transceiver electronics
- 214 -
C
C1
MODULES
LF-ANTENNAS
PASSIVE-ENTRY ANTENNAS
Automotive passive entry and start systems require multiple antennas to clearly locate the
electronic key. Low frequency technology (125kHz) allows precise control of the detection
range.
Features
•
•
•
•
•
Doorhandle Modules, optionally with integrated electronics and switches
Interior Antennas, e.g. trunk mounted
Exterior Antennas, e.g. bumper mounted
Various configurations with cable-harness or connectors
Optionally with integrated capacitor and resistor
Technology
•
Standardized, robust design concept
•
Waterproof design as an option
•
Extremely low electrical tolerances and temperature co-efficient
•
Highly automated mass production
- 215 -
C
C2
MODULES
HIGH VOLTAGE IGNITER
XENON-IGNITER
Designed for automotive applications, Xenon Igniter Modules from SUMIDA meet the most
stringent technical and quality requirements demanded by vehicle lighting systems today.
Highlights
•
D1/D3 igniter modules
•
D2/D4 click on igniter modules
•
D2/D4 lamp socket
Patented SUMIDA HID Igniter technology
•
Moulding of highly reinforced PPS plastics
•
High temperature electronics, using leadframe and laser welding
•
Special high-voltage transformer
•
Vacuum potting
- 216 -
C
C3
MODULES
FUNCTIONAL MODULES
FUNCTIONAL INTEGRATED MODULES
The combination of mechanics and electronics allows the integration of several functions
into one module. Such Functional Integrated Modules lead to reduced efforts for assembly
and logistics at the customer.
Integrated Functions
•
Carrier for power inductors and capacitors
•
Interconnection between large components
•
EMI-Filter
•
Sensor
•
Connectors
•
Housing
Technology
•
Plastic injection moulding
•
Overmoulding of leadframe
•
Various soldering and welding techniques for electrical interconnection
•
Pressfit pin interface for solderless assembly
- 217 -
C
C3
MODULES
FUNCTIONAL MODULES
LF INITIATOR FOR TIRE PRESSURE MONITORING SYSTEMS (TPMS)
The continuous monitoring of the pressure in all tires together with the indication of the
current pressure in the corresponding tire requires a reliable and exact measurement
technology.
Highlights
•
LFIs are utilized to initiate the communication of the sensors installed in each wheel
•
For premium TPMS, LFIs in each wheelhouse provide unambiguous localisation of the
sensor’s signals
•
Durable, cost-effective modules using proven 125 kHz technology
Technology
•
Complete manufacturing solution
•
PCB assembly (SMT/THT) & test
•
Housing with integrated ferrite rod antenna
•
Pressfit pin interface for solderless assembly of the electronics
•
Plastic laser welding
•
Leakage test of each unit
- 218 -
C
C4
MODULES
SENSORS
INDUCTIVE SENSORS
SUMIDA’s inductive sensor technology is based on the functional principle of “eddy
current” losses. The distinctive feature is high immunity to magnetic interference fields,
thus making them suitable for harsh environments inside electric motors and generators.
Rotor Position Sensors
•
Detection of rotor position in electric motors, e.g. in hybrid electric vehicles
•
Replacement of resolvers
Speed Sensors
•
Detection of speed and sense of rotation, e.g. bearing sensor
•
Passive wheelspeed sensors for commercial vehicles
Patented eddy current sensor technology
•
High immunity to magnetic interference fields
•
Scanning of electrically conductive target material
•
Automotive grade ASICs available
•
No permanent magnet required
•
High speed operation
- 219 -
C
C5
MODULES
HIGH POWER COMPONENTS
HIGH POWER COMPONENTS
Energy Transfer
Nowadays transformers are used in almost every clocked switching power supply. In the
majority of applications, the switching frequency is between 10 kHz and 500 kHz. In an output
range stretching from several hundred watts up to several kWs, optimized power transformers
are applied. SUMIDA AG develops these transformers to match customer specifications taking
the latest VDE and UL standards into consideration and based on winding forms with integrated
creepage and clearance distances, bobbins with special wire or layer construction in open and
potted versions
Energy Storage
Storage chokes are located in switching power supplies and converter systems for energy
storage. When used these chokes have effective current with a frequency-specific peak current
applied to them. The choice of core material depends to a major extent on the combined
current shape. SUMIDA AG uses here the most varied of core materials such as iron powder,
metal alloys and ferrite. The selection of conductor material also plays a major role –
depending on the application involved, flat wire, solid wire or litz-wire come into operation.
Network interference suppression
The proven asymmetrical interference suppression components from SUMIDA AG are mainly
used in the interference suppression of switch mode power supplies. For damping common
mode interference, so-called “current compensating chokes” (common mode) are required.
These inductivities are primarily based on high permeable cores with two identical windings.
SUMIDA AG ensures that for relatively small sizes in customer-specific designs, windings with a
smaller self-capacitance are used, which results in higher resonance frequencies.
Power Factor Correction
When limiting harmonic oscillation of the network on switch mode power supplies and
frequency converters, developers tend to use so-called PFC controllers in order to ensure that
the sinusoidal system voltage remains distortion free during any current drain. To enable the
controller to rectify current shape and compensate for harmonic waves, optimized control
chokes are required. SUMIDA AG provides both chokes with special core material as well as
coils with ferrite cores and low-loss windings.
- 220 -
C
C6
MODULES
APPLICATIONS
AUTOMOTIVE
As a reliable partner to the supplier industry for the development and delivery of inductive
components and modules, SUMIDA has a vital role in automotive electronics. Its long-standing
cooperation with important suppliers to the automotive industry enables SUMIDA to provide
comprehensive know-how for tailor-made solutions for automotive electronics and
mechatronics. The base for our sustained product quality is the processes certified in
accordance with ISO/TS 16949, which are constantly evolving as part of our quality
management process.
INDUSTRIAL
SUMIDA specializes in inductive components and modules for customer-specific requirements.
Creativity and know-how enable us to develop, in close cooperation with our customers,
individual and market-leading solutions. Our customers benefit from the many advantages:
• Competence, from development to production or from ferrite to the inductive component
• Design-in of switching power transmitters and storage chokes for the most varied of
applications, circuit topologies and power ranges
• Design-in of signal and actuation transmitters and interference-suppression choke
• Standard-compatible design (VDE, UL, CSA), some VDE kit-family releases (e.g. EF16 TEX-E,
EF20 TEX-E)
• Consideration of mechanical requirements (dimension, fastening, …)
• Optimization of power losses and thermal resistances
• Module solutions based on inductive technology, e.g. for noncontact energy and signal
transfer
GREEN ENERGY
The mission of SUMIDA is to fulfill its customers’ special requirements by providing marketleading inductive components; components, which in terms of technology and efficiency really
set the standards. They demonstrate quite clearly our outstanding material proficiency and
state-of-the-art production technology. Our customers also benefit from our long-standing
experience in design. We provide tailor-made solutions for the following sectors:
• POWER quality (EMC, PFC)
• POWER transfer (SMPS)
• POWER storage (storage chokes, sinus chokes)
- 221 -
C
C6
MODULES
APPLICATIONS
CONSUMER ELECTRONICS:
LIGHTING
SUMIDA provides a wide range of components for ballast units and lighting control systems in
consumer, industry and automotive applications. Thanks to its long-standing technical
experience and global development and production activities, SUMIDA meets customer
requirements at the best and offers ideal and cost-effective solutions at all times.
COMMUNICATION
SUMIDA supports the telecommunication infrastructure providers with a wide range of signal
transmitters, modules and interference suppression components for applications in the latest
IDSN, DSL and LAN systems. The product range also includes complete DSL splitters and splitter
modules CO and CPE. The customers benefit from the broad range of innovative products and
extensive technical competence.
HOUSEHOLD/TV
The goal of consumer electronics is to provide equipment with higher energy efficiency
coupled with an increase in functionality. SUMIDA is working on continuous innovations – not
only in terms of standard products, but also for components that are manufactured to meet
customer requirements. These can be used, e.g. in energy-saving and cost-efficient power
supplies or for signal processing (data exchange, control engineering, sensor technology).
- 222 -
- 223 -
- 224 -
This handbook presents a brief summary of our production and delivery, giving technical
information to design and production engineers as well as buyers.
In this sense the data specified in this catalogue exclusively serve to describe the properties of
our products. They must not be understood as guarantee-values in a juridical sense. Eventual
indemnity claims against us – no matter for what legal reasons – are excluded except in cases
of gross negligence or intent.
Please note that – for reasons of the given space – the whole range of available components
and their variants could not be included into this catalogue. If you cannot find the component
you are looking for or if you need more detailed information please send us your inquiry.
Components no longer included in this handbook are generally deliverable as long as the
appropriate tools are usable. Such items, however, are no longer recommended for use in new
equipment designs.
You certainly will understand that we cannot guarantee that the components, applications and
procedures shown and described in this handbook are always free of the rights of third parties.
Reproduction – even in the form of extracts – is not permitted without our explicit consent.
We reserve the right to perform corrections and engineering changes.
Copyright by SUMIDA Components & Modules GmbH
Printed in Germany
- 225 -
COMPONENTS | MODULES | CORES 2011
SUMIDA Components & Modules GmbH
Dr. Hans-Vogt-Platz 1 | D-94130 Obernzell
Phone:
++49/85 91/937-100
Fax:
++49/85 91/937-103
E-Mail:
[email protected]
Internet: www.sumida-eu.com
COMPONENTS | MODULES | CORES