COMPONENTS | MODULES | CORES 2011 SUMIDA Components & Modules GmbH Dr. Hans-Vogt-Platz 1 | D-94130 Obernzell Phone: ++49/85 91/937-100 Fax: ++49/85 91/937-103 E-Mail: [email protected] Internet: www.sumida-eu.com COMPONENTS | MODULES | CORES -2- INTRODUCTION A INDUCTIVE COMPONENTS A1 A2 A3 A4 A5 A6 005 - 104 EMC POWER LINE EMC DATA LINE POWER FACTOR CORRECTION ENERGY TRANSFER SIGNAL TRANSMISSION CHECKLISTS 005-030 031-050 051-064 065-082 083-100 101-104 B MAGNETIC MATERIAL + CORES 105 - 212 B1 MAGNETIC MATERIAL B2 CORES 105-198 199-212 C MODULES & APPLICATIONS 213-222 C1 LF-ANTENNAS C2 HIGH VOLTAGE IGNITERS C3 FUNCTIONAL MODULES C4 SENSOR TECHNOLOGY C5 HIGH POWER COMPONENTS C6 APPLICATIONS 214-215 216 217-218 219 220 221-222 -3- -4- A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.1 COMMON MODE CHOKES WITH BYPASS 006 - 009 A1.2 COMMON MODE CHOKES 010 – 025 A1.3 COMMON MODE CHOKES AMORPH 026 - 030 -5- A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.1 COMMON MODE CHOKES WITH BYPASS Common mode and differential inductance in one component Current as a function of inductance and component size 1,0 0,8 RK 17 0,6 RK 23 Irms [A] 0,4 0,2 0,0 0 5 10 15 20 25 L [mH] -6- 30 35 40 45 50 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.1 COMMON MODE CHOKES WITH BYPASS Application In devices with a protective conductor terminal, such as electronic ballasts, washing machines or electrical tools, symmetrical interference often occurs in addition to asymmetrical interference. As a rule, this requires the use of a further component for inline inductance. Structure • Closed cores made of high permeability VOGT ferrites Fi340 and Fi360 • Coil-former with four chambers Technical data • Suitable for use in equipment to EN 50176, EN 61347, EN 61800, EN 60335, EN 60065, • Climate category 40/125/56 in accordance with IEC 68-1 • Nominal inductance at 10 kHz, 25°C • Testing voltage (winding – winding) 1500 V, 50 Hz, 2 sec. • Max. permissible temperature of windings 115° C • Inductance loss (with current compensated circuit) ≤ 15% DC preload with Isat and ambient temperature TU = 80°C Advantages • Very flat (e.g. for use in electronic ballasts) • Full utilisation of material permeability due to closed core • Low capacity winding design with four chambers • Environmentally friendly since no adhesives or resins are used • Low-Cos due to automated mass production Function description Due to their special magnetic design, the new VOGT combined noise suppression chokes enable the suppression of both the asymmetrical and symmetrical interference component in a single unit. Combining the characteristics of two separate components in one unit lowers costs considerably, as well as reduces the space requirement within the device. EMV-measurement with and without bypass: - RK choke without bypass - RK choke with bypass (measured at electronic ballast, in a typical RFI suppression circuit in accordance with EN55015) -7- A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.1 COMMON MODE CHOKES WITH BYPASS | RK 17 LN1) (mH) 3.3 6.8 10 15 27 39 47 1) per winding, Rcu1) (Ω) 0.18 0.27 0.50 0.65 1.30 2.25 2.50 2) max. value IRMS (A) Isat2) (A) LLeakage (µH) Part number 0.70 0.50 0.46 0.43 0.40 0.30 0.28 1.00 0.70 0.65 0.64 0.55 0.42 0.40 120 220 330 500 900 1250 1500 570 16 033 1H 570 16 068 1H 570 16 100 1H 570 16 150 20 570 16 270 1H 570 16 390 20 570 16 470 10 Impedance curves -8- A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.1 COMMON MODE CHOKES WITH BYPASS | RK 23 LN1) (mH) 3.3 6.8 10 15 27 39 47 1) per winding, Rcu1) (Ω) IRMS (A) 0.08 0.14 0.19 0.30 0.45 0.61 0.75 2) typical value 0.92 0.78 0.53 0.45 0.35 0.32 0.30 Isat2) (A) LLeakage (µH) Part number 1.30 1.10 0.75 0.65 0.50 0.45 0.42 120 220 330 500 900 1250 1500 570 18 033 1H 570 18 068 10 570 18 100 10 570 18 150 1H 570 18 270 1H 570 18 390 10 570 18 470 1S Impedance curves -9- A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES Application These chokes are preferably used in equipment that is fitted with switched mode power supplies. Together with suitable capacitors, these chokes form filters in the power supply line, which reduce the level of the noise that occurs inside the device, as well as the penetration of line noise. Construction • High permeability cores from the VOGT Fi360 electronic ferrites • Plastic cap with standard pinning (vertical and horizontal) Technical specifications • • • • • • • • Climate category 40/125/56 in accordance with IEC 68-1 Nominal inductance at 10 kHz, 25°C Inductance tolerance +50%/-30% Inductance loss (with common mode configuration) < 10% for DC initial load with IN Test voltage (winding-winding) 1500 V, 50 Hz, 2 sec. Ambient temperature 60°C Temperature increase of windings < 55°C Max. permissible temperature of windings 115°C - 10 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | DP-F14 Current as a function of inductance and size Standards | EN 60938-2 - 11 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | DP-F14 DP-F 14 SMD THD LN1) Irms Isat RCu LS Part number (mH) (A) (A)2) (mΩ) (µH) SMD 3.3 1.3 2.26 110 32 503 03 600 03 6.8 1.15 1.62 210 70 503 03 600 06 10 0.95 1.34 350 110 503 03 600 10 15 0.75 1.06 490 170 503 03 600 15 27 0.57 0.80 810 300 503 03 600 27 39 0.45 0.63 1300 400 503 03 600 39 47 0.35 0.5 1730 510 503 03 600 47 68 0.28 0.4 2700 805 100 0.25 0.35 3700 1100 1) per winding 2) = L-inductance; loss < 15% (with common mode configuration) Standard components, other values available on request Impedance curves - 12 - Part number THD 573 03 500 03 573 03 500 06 573 03 500 10 573 03 500 15 573 03 500 27 573 03 500 39 573 03 500 47 573 03 500 68 573 03 501 00 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | RK Current as a function of inductance and component size - 13 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | RK 17 vertical LN1) (mH) +50% - 30% horizontal RK 17 vertical (Rth2) = 70 K/W) IN1) (A) 3.3 1.50 6.8 1.20 10 0.90 15 0.80 27 0.50 39 0.45 47 0.40 1) per winding, R Cu 1), 2) LLeakage2) (µH) (Ω) 0.19 25 0.29 50 0.51 75 0.65 110 1.30 200 2.40 300 2.70 350 2) max. value Part number 570 17 001 00 570 17 002 00 570 17 003 00 570 17 004 00 570 17 005 00 570 17 006 00 570 17 007 00 RK 17 horizontal (Rth2) = 50 K/W) IN1) (A) 1.50 1.20 0.90 0.80 0.50 0.45 0.40 R Cu 1), 2) (Ω) 0.20 0.30 0.55 0.70 1.45 2.55 2.90 LLeakage2) (µH) Part number 65 125 190 285 510 740 880 570 16 033 0H 570 16 068 0H 570 16 100 30 570 16 150 0H 570 16 270 0H 570 16 390 0S 570 16 470 0H Impedance curves vertical horizontal - 14 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | RK 19 + RK 23 RK 19 vertical LN1) (mH) +50% - 30% RK 23 horizontal RK 19 vertical (Rth2) = 52 K/W) R Cu 1), 2) IN1) (A) 3.3 2.1 6.8 1.6 10 1.4 15 1.1 27 0.8 39 0.7 47 0.6 1) per winding, LLeakage2) (µH) (Ω) 0.12 25 0.20 50 0.27 70 0.45 110 0.75 180 1.10 280 1.20 330 2) typical value Part number 570 570 570 570 570 570 570 19 001 00 19 002 00 19 003 00 19 004 00 19 005 00 19 006 00 19 007 00 RK 23 horizontal (Rth2) = 33 K/W) IN1) (A) 2.25 1.75 1.55 1.25 1.10 1.00 0.90 R Cu 1), 2) (Ω) 0.09 0.16 0.22 0.33 0.53 0.70 0.87 LLeakage2) (µH) Part number 65 140 210 330 590 810 1000 570 18 033 00 570 18 068 00 570 18 100 0H 570 18 150 00 570 18 270 0H 570 18 390 00 570 18 470 0S Impedance curves RK 19 vertical RK 23 horizontal - 15 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | RK 26 RK 26 vertical (Rth2) = 35 K/W) LN1) (mH) +50%/-30% 3.3 6.8 10 15 27 39 47 1) per winding, IN1) (A) RCu1), 2) (Ω) LLeakage2) (µH) 3.9 2.4 2.2 1.7 1.4 1.1 1.0 2) typical value 0.054 0.14 0.17 0.29 0.45 0.75 0.82 25 50 70 100 180 280 330 Impedance curves - 16 - Part number 570 570 570 570 570 570 570 26 26 26 26 26 26 26 001 002 003 004 005 006 007 00 00 00 00 00 00 00 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | RK 28 RK 28 vertical (Rth2) = 30 K/W) LN1) (mH) +50%/-30% 3.3 6.8 10 15 27 39 47 1) per winding, IN1) (A) 4.6 3.2 2.6 2.4 1.8 1.5 1.4 2) typical value RCu1), 2) (Ω) LLeakage2) (µH) 0.048 0.095 0.15 0.18 0.31 0.48 0.52 25 45 70 100 180 250 310 Impedance curves - 17 - Part number 570 570 570 570 570 570 570 28 28 28 28 28 28 28 001 002 003 004 005 006 007 00 00 00 00 00 00 00 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | DK Current as a function of inductance and size Standards EN 60938-2 UL 1283-FOKY2.E151145 UL 1446 Class B-OBJY2.E143220 - 18 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | DK 30 + DK 31 DK 30 LN1) IN1) (mH) (A) +50% -30% 3.3 1.5 6.8 1.2 10 0.7 27 0.4 39 0.4 47 0.3 1) per winding, R Cu 1), 2) (Ω) LLeakage2) (µH) 0.17 35 0.28 75 0.55 105 1.7 300 2 450 2.5 540 2) typical value DK 31 DK 30 (Rth2) = 65 K/W) Type K30 K30 K30 K30 K30 K30 Part number 573 573 573 573 573 573 Impedance curves - 19 - 30 30 30 30 30 30 030 060 100 270 390 470 00 00 00 00 00 00 DK 31 (Rth2) = 58 K/W) Type K31 K31 K31 K31 K31 K31 Part number 573 573 573 573 573 573 31 31 31 31 31 31 030 060 100 270 390 470 00 00 00 00 00 00 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | DK 40 + DK 41 DK 40 LN1) IN1) (mH) (A) +50% -30% 3.3 2.5 6.8 1.5 10 1.2 27 0.8 1) per winding, R Cu 1), 2) (Ω) LLeakage2) (µH) 0.07 0 0.20 60 0.29 90 0.60 240 2) typical value DK 41 DK 40 (Rth2) = 50 K/W) Type K40 K40 K40 K40 Part number 573 573 573 573 40 40 40 40 Other types on request! Impedance curves - 20 - 030 060 100 270 00 00 00 00 DK 41 (Rth2) = 45 K/W) Type K41 K41 K41 K41 Part number 573 573 573 573 41 41 41 41 030 060 100 270 00 00 00 00 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | DK 50 + DK 51 DK 50 LN1) RCu IN1) LLeakage2) (mH) 1), 2) (A) (µH) +50% (Ω) -30% 3.3 2.8 0.06 40 6.8 2.0 0.15 80 10 1.6 0.21 120 27 1.0 0.64 330 47 0.6 1.10 600 1) per winding, 2) typical value Other types on request! DK 51 DK 50 (Rth2) = 37 K/W) Type K50 K50 K50 K50 K50 Part number 573 573 573 573 573 Impedance curves - 21 - 50 50 50 50 50 030 060 100 270 470 00 00 00 00 00 DK 51 (Rth2) = 34 K/W) Type K51 K51 K51 K51 K51 Part number 573 573 573 573 573 51 51 51 51 51 030 060 100 270 470 00 00 00 00 00 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | DK 60 + DK 61 DK 60 LN1) IN1) (mH) (A) +50% - 30% 3.3 4.0 6.8 2.2 10 1.8 1) per winding, R Cu 1), 2) (Ω) DK 61 LLeakage2) (µH) 0.06 35 0.18 85 0.22 130 2) typical value DK 60 (Rth2) = 30 K/W) DK 61 (Rth2) = 24 K/W) Type Part number Type Part number K60 K60 K60 573 60 030 00 573 60 060 00 573 60 100 00 K61 K61 K61 573 61 030 00 573 61 060 00 573 61 100 00 Other types on request! Impedance curves - 22 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | E-CORE Current as a function of inductance and component size - 23 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | E 16/4.7 EXAMPLES: E 16/4.7 (Rth2) = 76 K/W) LN1) (mH) +50%/-30% 14 20 60 1) per winding, IN1) (mA) 320 300 200 2) typical value RCu1) (Ω) LLeakage2) (µH) Part number ≤ 1.8 ≤ 1.8 ≤ 4.1 270 400 1220 575 09 XXX 00 575 09 XXX 00 575 09 XXX 00 Other types on request! Impedance curves - 24 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.2 COMMON MODE CHOKES | E 20/5.9 Typ B Typ A E 20/5.9 (Rth2)Type: A/B/C = 57/56/55 K/W) LN1) (mH) +50%/-30% IN1) (mA) RCu1) (Ω) LLeakage2) (mH) 21 550 ≤ 0.78 0.35 27 450 ≤ 1.1 0.45 ≤ 1.9 ≤ 5.2 0.8 1.8 47 112 1) per winding, 350 200 2) typical value Impedance curves - 25 - Type B B B C A Part number 575 575 575 575 575 04 04 04 04 04 158 00 156 00 152 00 162 00 128 00 A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.3 COMMON MODE CHOKES AMORPH Application These chokes are mostly used in power electronics devices. In conjunction with suitable capacitors, these chokes, form filters which reduce the effects of line interference as well as propagation of interference caused by the device. The filters are one-phase or threephase. Construction The series DP-A and DK-A chokes feature amorphous toroidal cores. This results in the following advantages, compared with chokes with ferrite cores: Considerably greater impedance values for the same component size, or much smaller component size for the same electrical values. Technical specifications • • • • • • • • Comply with the requirements of EN 60950, EN 60065, 60335, 61800 or EN 50178 Climate category 40/125/56 in accordance with IEC 68-1 Nominal inductance at 10 kHz, 25°C Inductance reduction (in common mode circuit) < 10% assuming DC bias with IN and ambient temperature TU = 25°C Test voltage (winding – winding) 1500 V, 50 Hz, 2 sec. Ambient temperature 60°C Temperature rise of windings < 55°C Maximum permissible temperature of windings 115° C - 26 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.3 COMMON MODE CHOKES AMORPH Inductance as a function of current and component size Common mode 2-phase choke Common mode 3-phase choke - 27 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.3 COMMON MODE CHOKES AMORPH | DP-A16 DP-A16 (Rth2) = 63 K/W) LN1) (mH) +50%/-30% IN1) (A) RCu1) (mΩ) LLeakage2) (µH) Part number 3.9 10 1) per winding, 4 2 2) typical value ≤ 40 ≤ 71 2.3 8.2 573 03 502 00 573 03 503 00 Other types on request! Impedance curves - 28 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.3 COMMON MODE CHOKES AMORPH | DP-A25 vertical LN1) (mH) +50%/-30% 6.8 12 18 1) per winding, IN1) (A) RCu1) (mΩ) horizontal LLeakage2) (µH) DP-A25/1 (2) 3) Rth2) = 22 K/W Part number 573 05 513 003) 573 05 514 003) 16 ≤ 10.5 4.7 10 ≤ 27 10 8 ≤ 32 14 2) typical value, 3) winding with 2 wires DP-A25/L1 (2) 3) Rth2) = 21 K/W Part number 573 05 554 003) 573 05 555 003) Other types on request! Impedance curves vertical horizontal - 29 - A A1 INDUCTIVE COMPONENTS EMC POWER LINE A1.3 COMMON MODE CHOKES AMORPH | DP-A25 LN1) (mH) +50%/-30% 1) 5.00 per winding, 2) IN1) (A) RCu1) (mΩ) LLeakage2) (µH) Part number 10 typical value ≤ 7.2 4.4 573 05 604 00 Other types on request! Impedance curves - 30 - A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.1 CAN-BUS (TOROIDAL CORE) 032 - 034 A2.2 TOROIDAL CORE 035 - 049 - 31 - A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.1 CAN-BUS (TOROIDAL CORE) Our common mode chokes and common mode RFI suppression chokes are designed specifically for suppressing broadband interference in digital telecommunication systems. We offer a wide range of multiple chokes and choke modules in various shapes and sizes for use in signal and data lines. Most of these are built on the basis of ferrite toroidal cores and feature exceptional electrical properties. • Inductance values up to 68 mH • Usable for frequencies up to 500 MHz (CAN bus chokes) • High insertion loss - 32 - A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.1 CAN-BUS (TOROIDAL CORE)| MINIATURE TYPE K2 SMD Frequency range 1 MHz - 500 MHz Application e.g. as CAN bus choke Nominal current: per winding Nominal voltage: 80 V -/42 V ~ Inductance tolerance: +50%/-30% DC resistance: per winding (approximate value) Test voltage: 500 V, 50 Hz Thermal properties: heating measurement according to VDE 0565-2 Climate category: according to IEC 68-1 25/85/56 Part number 503 02 022 00 503 02 050 00 LN (µH) 2x22 2x50 IN (mA) 100 100 RCu (mΩ) 195 390 Mechanical dimensions and circuit diagram Impedance curves 10.000 1.000 Z ( Ohm ) 100 2 x 11 µH 2 x 22 µH 2 x 50 µH 10 1 0 10 100 1.000 10.000 f ( KHz ) - 33 - 100.000 1.000.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.1 CAN-BUS (TOROIDAL CORE)| MINIATURE TYPE K5 SMD Frequency range 1 MHz - 500 MHz Application e.g. as CAN bus chokes Nominal current: per winding Nominal voltage: 80 V -/42 V ~ Inductance tolerance: +50%/-30% DC resistance: per winding (nominal winding) Testing voltage: 500 V, 50 Hz Thermal characteristics: heating measurement according to VDE 0565-2 Climate category: according to IEC 68-1 25/85/56 Part number 503 05 501 20 LN (µH) 2x50 IN (mA) 500 RCu (mΩ) 250 Mechanical dimensions and circuit diagram Impedance curves 10.000 1.000 Z ( Ohm ) 100 2 x 50 µH 10 1 0 10 100 1.000 10.000 f ( KHz ) - 34 - 100.000 1.000.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | MINIATURE TYPE K2 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 02 140 00 503 02 910 00 503 02 922 00 503 02 947 00 LN (mH) 2x0.14 2x1.0 2x2.2 2x4.7 IN (mA) 100 100 100 100 RCu (mΩ) 215 660 840 1800 Mechanical dimensions and circuit diagram Impedance curves 10.000 Z ( Ohm ) 1.000 100 2 x 0.14 mH 2 x 0,47 mH 2 x 2.2 mH 10 1 10 100 1.000 f ( KHz ) - 35 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | MINIATURE TYPE K5 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 05 505 20 503 05 510 20 503 05 522 20 503 05 547 20 503 05 647 20 LN (mH) 2x0.47 2x1.0 2x2.2 2x4.7 2x47 IN (mA) 250 150 150 150 100 RCu (mΩ) 200 340 620 900 3850 Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 2 x 0.47 mH 2 x 1.0 mH 2 x 4.7 mH 100 10 1 10 100 1.000 f ( KHz ) - 36 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K9 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 09 150 20 LN (mH) 2x15 IN (mA) 200 RCu (mΩ) 1500 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 2 x 4.7 mH 2 x 15 mH 100 10 1 10 100 1.000 f ( KHz ) - 37 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K10 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 10 033 20 503 10 047 20 503 10 068 20 LN (mH) 2x3.3 2x4.7 2x6.8 IN (mA) 200 200 200 RCu (mΩ) 1200 1400 1700 Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 2 x 1.0 mH 2 x 4.7 mH 100 10 1 10 100 1.000 f (KHz) - 38 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K10 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 EXAMPLES: Part number 573 10 XXX 20 573 10 XXX 20 LN (mH) 2x1.0 2x4.7 IN (mA) 200 200 RCu (mΩ) 340 1400 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 2 x 1.0 mH 2 x 4.7 mH 100 10 1 10 100 1.000 f (KHz) - 39 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K20 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 20 011 20 503 20 330 20 LN (mH) 2x1.0 2x33 IN (mA) 300 300 RCu (mΩ) 180 3600 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 1.000.000 100.000 Z ( Ohm ) 10.000 1.000 2 x 1,0 mH 2 x 4.7 mH 2 x 15 mH 2 x 33 mH 2 x 68 mH 100 10 1 10 100 1.000 f ( KHz ) - 40 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K20 THD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 573 20 022 20 573 20 100 20 573 20 470 20 573 20 680 20 LN (mH) 2x2.2 2x10 2x47 2x68 IN (mA) 300 300 300 300 RCu (mΩ) 500 1500 4000 3600 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 1.000.000 100.000 Z ( Ohm ) 10.000 1.000 2 x 1,0 mH 2 x 4.7 mH 2 x 15 mH 2 x 33 mH 2 x 68 mH 100 10 1 10 100 1.000 f ( KHz ) - 41 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K48 THD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 573 03 095 00 LN (mH) 2x4.7 IN (mA) 100 RCu (mΩ) 1000 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 1000000 100000 Z ( Ohm ) 10000 1000 2 x 4.7 mH 2 x 10 mH 100 10 1 10 100 1000 f ( KHz ) - 42 - 10000 100000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | MINIATURE TYPE K3 SMD Frequency range 1 MHz - 500 MHz Application e.g. as CAN bus chokes Nominal current: per winding Nominal voltage: 80 V -/42 V ~ Inductance tolerance: +50%/-30% DC resistance: per winding (nominal winding) Testing voltage: 500 V, 50 Hz Thermal characteristics: heating measurement according to VDE 0565-2 Climate category: according to IEC 68-1 25/85/56 Part number 503 03 022 40 LN (µH) 4x22 IN (mA) 100 RCu (mΩ) 125 Mechanical dimensions and circuit diagram Impedance curve 100.000 10.000 Z ( Ohm) 1.000 100 4 x 22 µH 10 1 10 100 1.000 10.000 f ( KHz ) - 43 - 100.000 1.000.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | MINIATURE TYPE K5 SMD Frequency range 1 MHz - 500 MHz Application e.g. as CAN bus chokes Nominal current: per winding Nominal voltage: 80 V -/42 V ~ Inductance tolerance: +50%/-30% DC resistance: per winding (nominal winding) Testing voltage: 500 V, 50 Hz Thermal characteristics: heating measurement according to VDE 0565-2 Climate category: according to IEC 68-1 25/85/56 Part number 503 05 902 40 LN (µH) 4x22 IN (mA) 100 RCu (mΩ) 125 Mechanical dimensions and circuit diagram Impedance curve 100.000 10.000 Z ( Ohm) 1.000 100 4 x 22 µH 10 1 10 100 1.000 10.000 f ( KHz ) - 44 - 100.000 1.000.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | MINIATURE TYPE K5 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 05 904 40 503 05 947 40 LN (mH) 4x0.47 4x4.7 IN (mA) 150 150 RCu (mΩ) 420 1200 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 4x0,47 mH 4x1,0 mH 4x2,2 mH 100 10 1 10 100 1.000 f ( KHz ) - 45 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K10 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 10 015 40 503 10 047 40 LN (mH) 4x1.5 4x4.7 IN (mA) 200 200 RCu (mΩ) 820 1200 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 4 x 0.47 mH 4 x 1.5 mH 4 x 4.7 mH 100 10 1 10 100 1.000 f ( KHz ) - 46 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE K20 SMD Frequency range 10 kHz Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: - 30 MHz per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 503 20 011 40 LN (mH) 4x1.0 IN (mA) 300 RCu (mΩ) 340 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 4 x 2,2 mH 4 x 3.3 mH 4 x 4.7 mH 4 x 6.8 mH 100 10 1 10 100 1.000 f ( KHz ) - 47 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE S0 32 SMD Choke module Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 513 32 047 10 LN (mH) 8x2x4.7 IN (mA) 150 RCu (mΩ) 1700 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 100 8 x 2 x 0.01 mH 8 x 2 x 4.7 mH 10 1 10 100 1.000 f ( KHz ) - 48 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE A2.2 TOROIDAL CORE | TYPE S0 41 SMD Choke module Nominal current: Nominal voltage: Inductance tolerance: DC resistance: Testing voltage: Thermal characteristics: Climate category: per winding 80 V -/42 V ~ +50%/-30% per winding (nominal winding) 500 V, 50 Hz heating measurement according to VDE 0565-2 according to IEC 68-1 25/85/56 Part number 513 41 047 00 LN (mH) 8x2x4.7 IN (mA) 200 RCu (mΩ) 800 Other types on request! Mechanical dimensions and circuit diagram Impedance curves 100.000 10.000 Z ( Ohm ) 1.000 4 x 0.47 mH 4 x 1.5 mH 4 x 4.7 mH 100 10 1 10 100 1.000 f ( KHz ) - 49 - 10.000 100.000 A A2 INDUCTIVE COMPONENTS EMC DATA LINE - 50 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.1 CONTINUOUS MODE 052 - 055 A3.2 DISCONTINUOUS MODE 056 - 058 A3.3 PASSIVE SOLUTIONS 059 - 064 - 51 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION There are various types of circuits that involve controlling not only the output voltage but also the input current. Circuit diagram Continuous mode Suitable for high power Discontinuous mode Suitable for low power - 52 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.1 CONTINUOUS MODE Continuous mode boost choke Input voltage: 90-265 VAC; output voltage: 400 VDC Switching frequency 100 kHz; ripple of the choke current = 20% - 53 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.1 CONTINUOUS MODE Application PFC chokes for continuous mode. With this application, the existing switched mode power supply has to be signed for PFC. Design DK 63 • Core: R 27 – high flux • Case: DK 63 • Primary coil and secondary coil for IC voltage supply Design E 36/11 • Core: E 36/11 • Coil former: E 36/11 vertical Technical data • • • • • • • • Climate category 40/125/56 according to IEC 68-1 Nominal inductance at 10 kHz, 25°C DC resistance per winding (reference values measured according to VDE 0565-2) Ambient temperature: 60°C Temperature rise of windings < 55°C Max. permissible temperature of windings 115°C Input voltage 90 – 265 V Typical switching frequency 100 kHz - 54 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.1 CONTINUOUS MODE | DK 63 + E 36/11 E 36/11 Output power (W) 1) 150 Reference value Ipeak (A) 3 E 36/11 vertical (Rth1) = 23 K/W) L (mH) ± 10% 1.5 RCu 1) (Ω) ≤ 0.42 Saturation curve - 55 - Part number 575 10 013 00 A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.2 DISCONTINUOUS MODE Discontinuous mode boost choke Input voltage: 90-265 VAC; output voltage: 410 VDC Switching frequency 40 kHz - 56 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.2 DISCONTINUOUS MODE Application PFC choke for discontinuous mode. With this application, the existing switched mode power supply has to be designed for PFC. Construction • Core: EF 25/11 • Coilformer: EF 25/11 vertical Technical data • • • • • • • • • Climate category 40/125/56 according to IEC 68-1 Nominal inductance at 10 kHz, 25°C Inductance tolerance ± 10% DC resistance per winding (reference values measured according to VDE 0565-2) Ambient temperature 60°C Temperature rise of windings < 55°C Max. permissible temperature of windings 115°C Input voltage 90 – 265 V Typical switching frequency 40 kHz - 57 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.2 DISCONTINUOUS MODE |EF 25/11 EF 25/11 vertical (Rth1) = 32 K/W) Output power (W) 75 1) Reference value Ipeak (A) 2.8 L (μH) ± 15% 800 Saturation curve - 58 - RCu 1) (Ω) ≤ 0.56 Part number 575 06 045 00 A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.3 PASSIVE SOLUTIONS Harmonics for Class D devices (at approx. 75 W) - 59 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.3 PASSIVE SOLUTIONS To A 3.3 Harmonics chokes For existing power supplies, harmonic chokes, can be switched in front of the switched mode power supply. The X-capacitor has to be switched between the voltage supply and CM choke, otherwise resonance fluctuations can occur between the PF choke and X-capacitor. To A 3.3 Sinusoidal chokes for pump circuit In this example with a standard switched mode power supply, a pump circuit is integrated instead of the cut-off circuit. With the standard cut-off circuit: Circuit diagram of the new pump circuit: - 60 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.3 PASSIVE SOLUTIONS | HARMONICS CHOKES The use of a harmonics choke is the simplest and cheapest solution for maintaining standard EN 61000-3-2 requirements for harmonics since it is not necessary to redesign an existing power supply. Harmonic chokes are most frequently designed with ferrous powder cores or with laminated cores. Advantages • • • • Cheapest possibility for maintaining harmonics limits No redesign of existing power supplies Reduction of the reactive power component Increase in power factor Customer-specific types available on request. - 61 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.3 PASSIVE SOLUTIONS | SINUSOIDAL CHOKE Ipeak as a function of inductance - 62 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.3 PASSIVE SOLUTIONS | SINUSOIDAL CHOKE Application These chokes are used in switched mode power supplies, typically for PCs, monitors for PCs, televisions, etc. Together with the so-called pump circuit, switched mode power supplies can now be modified so that they observe the permitted limit values for class-D equipment. Structure • E 20/11 k vertical design • Installation height = 21 mm Technical data • • • • • • • Climate category 40/125/56 according to IEC 68-1 Nominal inductance at 10 kHz, 25°C Inductance tolerance ± 10% DC resistance per winding (reference values measured according to VDE 0565-2) Ambient temperature 60°C Temperature rise of windings < 55°C Max. permissible temperature of windings 115°C - 63 - A A3 INDUCTIVE COMPONENTS POWER FACTOR CORRECTION A3.3 PASSIVE SOLUTIONS | SINUSOIDAL CHOKE| EF 20/11 K EF 20/11 k for pump circuit 1) Ipeak (A) ≤ 2.0 ≤ 1.7 1) Reference value 1) RCu 1) (mΩ) ≤ 480 ≤ 690 LN (mH) ± 10% 1.00 1.50 Saturation curves - 64 - Part number 575 25 040 00 575 25 044 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.1 FLYBACK/FORWARD CONVERTER E-CORE 066 - 067 A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT 068 - 075 A4.3 FLYBACK/FORWARD CONVERTER 30- > 100 WATT 076 - 080 A4.4 RESONANT CONVERTER (U-CORE) - 65 - 081 - 082 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.1 FLYBACK/FORWARD CONVERTER E-CORE Power comparison of various E kits Flyback converter mode at 100 kHz Secondary power P - 66 - A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.1 FLYBACK/FORWARD CONVERTER E-CORE Application • • • • • Standby transformers Video recorders SAT systems TV sets Low-cost applications, etc. Construction • • • • E 12,6 – E 55 kits Upright and flat versions Open or molded structures E 16/4,7 kit with open structure Technical data • Climate category 40/125/56 in accordance with IEC 68-1 • Maximum permissible temperature of windings 115°C • Additional technical data and standards: see the following data sheets - 67 - A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 12.6/3.7 Secondary 1) Standard Structure UP1) Prim. -Sec. (kV) EN 61558 molded 4.0 U1 (Imax) U2 (Imax) 5V (40mA) Test voltage UP (f = 50 Hz; t = 1 sec) Other types on request! - 68 - U3 (Ima) U4 (Imax) U5 (Imax) Part no. 545 19 XXX XX A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 16/4.7 Open E core structures Working frequency (kHz) Primary UB (VDC) U1 (V) U2 (V) UP1) Prim. -Sec. (kV) min max 60…100…130 130 375 115…140 120 400 124…140 240 375 4.2 60…100…130 130 375 4.2 4.2 15 4.2 1) Test voltage UP (f = 50 Hz; t = 1 sec) 2) Group Approval EN 60065/EN 60950/EN 61558-2-17 Other types on request! - 69 - Secondary U1 (Imax) U2 (Imax) 12V (0.4A) 24V (0.25A) 28V (0.28A) 12V (0.4A) 5V (1.0A) U3 (Imax) Part no. 2) 545 23 315 00 545 23 211 00 545 23 224 00 12V (0.4A) 545 23 314 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 20/5.9 S UP1) Secondary Stand- Prim.U1 U2 U2 U3 U4 U5 ard Sec. (Imax) (Imax) (Imax) (Imax) (Imax) (V) (kV) VDE 12V 130 120 375 3.0 0860 (0.42A) VDE 5V 60 125 374 13 4.2 0860 (0.4A) Test voltage UP (f = 50 Hz; t = 1 sec) Primary Working UB (VDC) frequency U1 (kHz) min max (V) 1) Other types on request! - 70 - Part no. 545 09 010 00 545 09 012 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 20/5.9 Open E-core structures Working frequency (kHz) Primary UB (VDC) U1 (V) U2 (V) UP1) Prim.Sec. (kV) min max 60…100…130 130 375 4.5 60…100…130 130 375 4.5 1) 2) Test voltage Up (f = 50 Hz; t = 1 sec) Group Approval EN 60065/EN 60950/EN 61558-2-17 Other types on request! - 71 - Secondary U1 (Imax) U2 (Imax) 12V (0.65A) 12V (0.65A) 5V (1.5A) 12V (0.65A) U3 (Imax) Part number2) 545 01 273 00 545 01 274 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 20/5.9 Molded E core structures Working Frequency 1) UP1) Primary UB (VDC) U1 U2 (V) (kHz) min max (V) 100 255 358 24 Stand- Struc- Prim. ard ture -Sec. VDE 0805 molded EN 60950 Secondary U1 (kV) (Imax) 3.0 24V (0.8A) Test voltage UP (f = 50 Hz; t= 1 sec) Other types on request! - 72 - U2 U3 U4 U5 Part number (Imax) (Imax) (Imax) (Imax) 545 01 151 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 25/7.5 Working frequency (kHz) 132 1) UP1) Primary Stand- Struc- Prim.UB (VDC) U1 U2 ard ture Sec. min max (V) (V) (kV) 80 375 12 Type B 3.0 Test voltage UP (f = 50 Hz; t= 1 sec) Other types on request! - 73 - Secondary U1 (Imax) 24V (1.25A) U2 (Imax) U3 U4 U5 (Imax) (Imax) (Imax) Part no. 545 02 150 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 25/11 Primary UP1) Stand- Struc- Prim.UB (VDC) U1 U2 U1 ard ture Sec. (Imax) min max (V) (V) (kV) VDE 18V 100 270 360 12 molded 3.5 0805 (1.3A) VDE 5V 100 290 360 12 molded 3.5 0805 (2.3A) Test voltage UP (f = 50 Hz; t= 1 sec) Working frequency (kHz) 1) Other types on request! - 74 - Secondary U2 (Imax) U3 U4 U5 (Imax) (Imax) (Imax) Part no. 545 27 XXX 00 545 27 XXX 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.2 FLYBACK/FORWARD CONVERTER 1-30 WATT | E 30/7.3 Working frequency (kHz) 100 1) Primary UB (VDC) U1 U2 min max (V) (V) 120 380 12 Standard UP1) Prim.Sec. (kV) VDE 712 (Part 24 A1) EN 60928 4.0 Test voltage UP (f = 50 Hz; t= 1 sec) Other types on request! - 75 - Secondary U1 (Imax) 24V (1A) U2 U3 U4 U5 (Imax) (Imax) (Imax) (Imax) Part no. 545 03 XXX 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 30/12 Primary UB (VDC) U1 U2 min max (V) (V) Standard UP1) Prim.Sec. (kV) 130 180 270 12 VDE 0860 EN 60065 3.0 130 275 360 12 VDE 0860 3.0 Working frequency (kHz) 1) Test voltage UP (f = 50 Hz; t= 1 sec) Other types on request! - 76 - Secondary U1 (Imax) U2 (Imax) U3 U4 U5 (Imax) (Imax) (Imax) 5V 3.3V 25V (0.3A) (1.5A) (3A) 5V 12V (1.4A) (2.75A) Part no. 545 08 XXX 00 545 08 XXX 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 36/11 Working frequency (kHz) 1) Primary UB (V) U1 min max (V) UP1) Prim.U2 Standard Sec. (V) (kV) 100 250 370 15 EN 60950 3.0 60 100 375 15 EN 60950 UL 60950 3.0 Secondary U1 (Imax) 14.5V (6A) 19V (50mA) Test voltage UP (f = 50 Hz; t= 1 sec) Other types on request! - 77 - U2 (Imax) U3 (Imax) 12V 5V (2.9A) (2.25A) U4 U5 (Imax) (Imax) Part no. 545 11 093 00 545 11 100 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 42/15 Primary UB (VDC) U1 Working frequency (kHz) min max U2 (V) (V) 40 180 270 12 1) Standard VDE 0860 EN 60065 IEC 60065 UP1) Prim.U1 Sec. (Imax) (kV) 3.0 Test voltage UP (f = 50 Hz; t= 1 sec) Other types on request! - 78 - 5V (7A) Secondary U2 (Imax) U3 (Imax) U4 (Imax) 12V (1.6A) 25V (1.3A) 40V (50mA) U5 (Imax) Part no. 545 13 XXX 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 42/20 Primary Working UB (V) frequency U1 (kHz) min max (V) 15V VDE 1A 805 Test voltage UP (f = 50 Hz; t = 1 sec) 50 1) U2 (V) Standard 220 420 12 UP1) Secondary Prim.U1 U2 U3 U4 U5 Sec. (Imax) (Imax) (Imax) (Imax) (Imax) (kV) 31V 15V molded 3.75 (6A) (1A) Structure Other types on request! - 79 - Part no. 545 17 104 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.3 FLYBACK/FORWARD CONVERTER 30->100 WATT | E 55 UP1) Stand- Prim. ard -Sec. (kV) VDE 100 238 370 15 3.0 0805 VDE 40 260 420 12 3.75 0551 Test voltage UP (f = 50 Hz; t = 1 sec) Working frequency (kHz) 1) Primary UB (V) U1 min max (V) U2 (V) Secondary U1 (Imax) U2 (Imax) 100V (4A) 5V (0.6A) 15V 15V (0.2A) (0.2A) Other types on request! - 80 - U3 (Imax) U4 U5 (Imax) (Imax) Part number 545 16 056 00 545 16 057 00 A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.4 RESONANT CONVERTER (U-CORE) Application • Half bridge resonant mode converter • Flat switch mode power supplies Construction • U core • 2,3 or 4 chambers possible • defined high leakage inductance Technical data • • • • • Group approval EN 60065/EN 60950/EN 61558-2-17 Creepage and clearance distance 8 mm Climate category 40/125/56 in accordance with IEC 68-1 Insulation class B according to IEC 60085 UL 94 V-0 Advantages • Non-potted – environmentally friendly since no adhesives or resins are used • Compact size, total height ≤ 20 mm • High efficiency - 81 - A A4 INDUCTIVE COMPONENTS ENERGY TRANSFER A4.4 RESONANT CONVERTER (U-CORE)| U 43 Working frequency (kHz) 100 - 400 1) Primary UB (VDC) min max 380 410 Standard UP1) Prim. Sec. (kV) EN 60065 EN 60950 4.5 Secondary U1 (Imax) U2 (Imax) U3 (Imax) U4 (Imax) 24 V 24 V 24 V 24 V (2.6 A) (2.6 A) (2.6 A) (2.6 A) Test voltage UP (f = 50 Hz; t = 2 sec) Customer-specific types on request - 82 - Part number 546 13 002 00 A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER 084 - 091 A5.2 INTERFACE TRANSFORMER 092 - 100 - 83 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER Individual design We manufacture many customer-specific radiofrequency transformers, and therefore request that you send us your requirements. The following base plates are available along with complete RF-transformers. The shape and dimensions of the double-aperture cores are described in chapter “B CORES AND KITS”. - 84 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER Example for test circuit for directional couplers Circuit / measurement arrangement E-A Insertion attenuation S 21 E-AB Coupling attenuation S 21 A-AB Isolation S 21 The function of directional couplers is to decouple a portion of the RF energy at defined levels (see table) at the branch. A linear characteristic curve at the nominal coupling value, a high degree of directionality and low transmission attenuation allow use of directional couplers in many communications applications The directional couplers must allow bi-directional transmissions (e.g. interactive and multimedia applications), in order to handle future requirements. 7 dB Broadband cable frequencies (4-862 MHz) Satellite frequencies (47-2500 MHz) Expanded frequencies (4-2500 MHz) 10 dB 13 dB 15 dB 17 dB 503 00 012 00 503 00 013 00 503 00 014 00 503 00 015 00 503 00 016 00 - 85 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER New standard Component and tape dimensions as well as layout recommendation Technical specifications • • • • • Compact shape Requires little space Bonded with reflow soldering Automatic insertion possible Blister pack - 86 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER New standard 7 dB Directional coupler Part number: 503 00 012 00 Ratio: 2 : 4 : 4 : 2 Typical values Frequency [MHz] 0 100 200 300 400 500 600 700 800 900 1000 [dB] 0,00 Transmission attenuation -5,00 Branching attenuation -10,00 -15,00 -20,00 Frequency [MHz] 5.00 47.00 606.00 862.00 Transmission attenuation [dB] -2.84 -2.16 -2.22 -2.27 Measured with Vogt test adapter - 87 - Branching attenuation [dB] -8.84 -7.63 -7.33 -7.07 A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER New standard 10 dB Directional coupler Part number: 503 00 013 00 Ratio: 2 : 6 : 7 : 2 Typical values Frequency [MHz] 0 100 200 300 400 500 600 700 800 900 1000 [dB] Frequency [MHz] Transmission attenuation 0,00 5.00 47.00 606.00 862.00 -5,00 Branching attenuation -10,00 Transmission Branching attenuation attenuation [dB] [dB] -0.94 -11.03 -0.75 -10.73 -0.89 -10.20 -1.05 -9.49 -15,00 -20,00 Measured with Vogt test adapter 13 dB Directional coupler Part number: 503 00 014 00 Ratio: 1 : 4 : 8 : 2 Typical values Frequency [MHZ] 0 100 200 300 400 500 600 700 800 900 1000 [dB] 0,00 Frequency [MHz] Transmission attenuation 5.00 47.00 606.00 862.00 -5,00 -10,00 Branching attenuation -15,00 -20,00 Measured with Vogt test adapter - 88 - Transmission attenuation [dB] -0.59 -0.50 -0.68 -0.96 Branching attenuation [dB] -13.65 -13.00 -12.71 -11.60 A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER New standard 15 dB Directional coupler Part number: 503 00 015 00 Ratio: 1 : 5 : 6 : 1 Typical values Frequency [MHz] 0 100 200 300 400 500 600 700 800 900 1000 Frequency [MHz] [dB] Transmission attenuation 0,00 5.00 47.00 606.00 862.00 -5,00 -10,00 Transmission attenuation [dB] -0.80 -0.58 -0.73 -0.96 Branching attenuation [dB] -18.59 -15.40 -15.35 -15.32 Transmission attenuation [dB] -0.54 -0.38 -0.50 -0.65 Branching attenuation [dB] -17.23 -17.14 -17.83 -17.51 Branching attenuation -15,00 -20,00 Measured with Vogt test adapter 17 dB Directional coupler Part number: 503 00 016 00 Ratio: 1 : 7 : 7 : 1 Typical values Frequency [MHz] 0 100 200 300 400 500 600 700 800 900 1000 [dB] 0,00 Transmission attenuation Frequency [MHz] -5,00 5.00 47.00 606.00 862.00 -10,00 -15,00 Branching attenuation -20,00 Measured with Vogt test adapter - 89 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER Test circuit for power splitting with impedance matching Test circuit Impedance matching splitter E-A1 Insertion attenuation S 21 E-A2 Insertion attenuation S 21 A1-A2 Isolation S 21 A circuit variation combining an impedance transformer with splitter is a standard circuit in communication technology for splitting radio-frequency energy. Splitting the power at the splitter input causes a mismatch. A corresponding impedance transformer must be placed before the splitter. The goal is a linearized attenuation curve and good decoupling of the outputs. New products are in design. Customer-specific types on request - 90 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.1 RF-TRANSFORMER Test arrangement for baluns Test circuit Baluns convert an ungrounded symmetrical signal (RF twin lead) to a ground-referenced unsymmetrical signal (coax cable). New products are in design. Customer-specific types on request - 91 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 SIGNAL TRANSMISSION - APPLICATIONS For terminals (Telephones, fax machines, PC cards, PCMCIA cards, video telephones) • • • • • • • S0 interface transformers S0 interface modules UP0 interface transformers UPN interface transformers Interface transformers in general DSL transformers LAN components / 10, 100, 1.000 Base T transformers and modules For public branch exchanges • • • • Interface transformers in general S2M interface transformers UK0 interface modules DSL transformers For the NTBA (Network Termination Basic Access) • • • • S0 interface transformers S0 interface modules UK0 interface modules Transformers for DC/DC converters For private branch exchanges (PABX) • • • • • • • • • S0 interface transformers S0 interface modules UP0 interface transformers UPN interface transformers UK0 interface transformers Interface transformers in general Transformers for DC/DC converters LAN components / 10, 100, 1.000 Base T transformers and modules - 92 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Type K2 503 02 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-I.430 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Type K5 503 05 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-I.430 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Applications • Data – and signal line chokes - 93 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Type K10 503 10 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-I.430 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Type K20 503 20 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-I.430 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Applications • • • Data – and signal line chokes So – interface transformers Line – transformers - 94 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Type K21 543 21 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-T G.703 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Type K74 503 74 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-I.430 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Applications • • • Data – and signal line chokes So – interface transformers Line - transformers - 95 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Type S016 (RM 1.27 mm) 503 16 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-T G.703 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Type S016 (RM 2.54 mm) 503 16 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-I.430 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Applications • • • 10, 100, 1.000 Base T modules Data – and signal line modules So – interface modules - 96 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Type S020 503 20 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-I.430 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions - 97 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Type S032 503 32 XXX XX • Design: • Climate category: • Dielectric strength: • Mechanical dimensions according to ITU-T G.703 according to IEC 68-1 25/85/56 according to EN-60950 Type S040 513 40 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-T G.703 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Applications • • • 10, 100, 1.000 Base T modules Data – and signal line modules So – interface modules - 98 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Type EP13 SMD 504 13 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-T G.691 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Type EP13 THD 540 13 XXX XX • • • Design: Climate category: Dielectric strength: according to ITU-T G.691 according to IEC 68-1 25/85/56 according to EN-60950 Mechanical dimensions Applications • • • • DSL Transformers DSL Filter Coils Transformers for DC/DC Converters Interface Transformers - 99 - A A5 INDUCTIVE COMPONENTS SIGNAL TRANSMISSION A5.2 INTERFACE TRANSFORMER Design EF12/6 505 03 XXX XX • • Climate category: Dielectric strength: in accordance with IEC 68-1 25/85/56 in accordance with EN-60950 Mechanical dimensions Applications • • • • Line Transformers Interface Transformers Upn Transformers Transformers for DC/DC Converters - 100 - A A6 INDUCTIVE COMPONENTS CHECKLISTS A6.1 TRANSFORMERS Name Department Company Street Zip/City/Country Phone Fax E-Mail Series start Quantity per year Target price Deadline for samples Application Technical Data: Mode: Flyback converter Push-pull converter Forward converter Half-bridge converter Others Test voltage/nec. Standards Standards to be applied (e. g. VDE0805, EN60950) Type of isolation (e. g. functional, basic, reinforced isolation) Rated voltage of the supply circuit Veff Working or rated isolation voltage primary to secondary Veff Input power max. VA Rated switching frequency max. kHz Peak voltage (with overshoots) max. VS - 101 - A A6 INDUCTIVE COMPONENTS CHECKLISTS Pollution degrees in the instrument = no contact = middle = heavy pollution Overvoltage category I Flammability class from used materials according to UL 94 System of insulating materials UL 1446 (specify temperature class) II V0 III V1 V2 HB no Driver Frequency Fixed/min. max. kHz Duty cycle min. max. % Input voltage min. max. V Ambient temperature on the transformer Maximal dimensions °C l x w x h mm Prefered Kit Circuit diagram Primary: Secondary: W1: U: I: W1: U: I: W2: U: I: W2: U: I: W3: U: I: W3: U: I: W4: U: I: W4: U: I: W5: U: I: W5: U: I: W6: U: I: W6: U: I: W7: U: I: W7: U: I: W8: U: I: W8: U: I: W9: U: I: W9: U: I: Comment: On request, the checklist is also available as pdf-file or on our homepage: www.sumida-eu.com - 102 - A A6 INDUCTIVE COMPONENTS CHECKLISTS A6.2 CHOKES Name Department Company Street Zip/City/Country Phone Fax E-Mail Series start Quantity per year Target price Deadline for samples Application Technical Data: Output choke Noise suppression choke PFC-choke: Input voltage in V: min. /max. Common mode choke , Output DC power in VA: Inductance (no-load/load) µH, Switching frequency mH, H kHz Peak current A Effective current A Current ripple % DC resistance Ohm Ambient temperature oh the choke max. Maximal dimensions l - 103 - °C x w x h mm A A6 INDUCTIVE COMPONENTS CHECKLISTS Circuit diagram Primary: W1: U: Secondary I: W1: U: I: W2: U: I: W2: U: I: W3: U: I: W3: U: I: W4: U: I: W4: U: I: W5: U: I: W5: U: I: W6: U: I: W6: U: I: W7: U: I: W7: U: I: W8: U: I: W8: U: I: W9: U: I: W9: U: I: W10 U: I: W10 U: I: W11 U: I: W11 U: I: W12 U: I: W12 U: I: Comment: On request, the checklist is also available as pdf-file or on our homepage: www.sumida-eu.com - 104 - B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL OVERVIEW 106 B1.1 FERROCARIT 107 – 172 B1.2 PLASTOFERRITE 173 - 176 B1.3 FERROCART 177 - 198 - 105 - B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL OVERVIEW • • • • • MnZn ferrite NiZn ferrite Plastoferrite Injection molding ferrite Metal powder cores ADVANTAGES • • • • • • • • • • Many different material grades and core-shapes are available Flexibility due to small volume production and own R&D department Fast supply of samples Individual solutions (special core shapes, ferrite applications) Own development and research in the field of magnetic materials Small quantities are available due to flexible powder production Direct sale of cores Large cores Secure supply chain in the case of a shortfall of magnetic cores on the market R&D-package of inductive components and material - 106 - B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | OVERVIEW List of used Symbols, designations and units: Symbol Designation Unit A Cross-sectional area of magnetic path in general mm2 Ae Effective cross-sectional area mm2 AL Inductance factor Aw Cross-sectional area of winding space aF Relative temperature factor of permeability B Magnetic induction, flux density T B̂ Peak value of induction T DF Relative disaccomodation factor ηB Hysteresis material constant f Frequency in general Hz fin Input frequency Hz nH mm2 10-6 ⋅ K-1 10-6 10-6 ⋅ mT-1 H Magnetic field strength A/m Ĥ Peak value of magnetic field strength A/m Hc Coercivity A/m He Effective magnetic field strength in the core A/m I Current intensity A K Coupling factor 1 L Inductance in general H L0 Inductance of a coil without core H Lk Inductance of a coil with core H l Magnetic path length mm le Effective magnetic path length mm lw Mean winding length mm l ∑ = C1 A Magnetic core constant mm-1 Λo = c Permeance factor µ nH Permeability in general 1 107 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Symbol Designation Unit µa Amplitude permeability 1 µw = µapp Apparent permeability 1 µe Effective permeability 1 µi Initial permeability µo Absolute permeability of vacuum = 4⋅π⋅10-7 1 μ Complex permeability 1 µΔ Incremental permeability 1 n Number of winding turns 1 Pv Relative core dissipation power Q Coil quality factor 1 Qo Zero-load quality factor 1 Ω T ⋅ m/A mW/cm3 Rv Loss resistance R= DC-resistance Ω ρ DC-resistivity Ω⋅m s air gap t mm time s tanδ loss factor in general 1 tanδh Hysteresis loss factor 1 tanδl Coil loss factor 1 tanδn Loss factor due to residual losses 1 tanδw Loss factor due to eddy current 1 tanδwi Loss factor due to winding loss tanδ / µi ϑ/T 1 Relative loss factor 10-6 Temperature in general °C ϑc Curie temperature Ve Effective magnetic volume z& Specific impedance °C mm3 Ω/cm 108 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Terms and Definitions A list of the symbols and units used in this catalogue is given above. Most of the equations used in the following passages are equations of quantities. Where other kinds of equations are given please use the units listed next to them. 1 Permeability 1.1 Magnetic field constant µO µO = 1,257 · 10-6 T · m · A-1 The quantity µO is also called the Absolute permeability of vacuum. In contrast to µO the permeabilities defined below are relative quantities. They are related to µO and represent plain numerical values without dimensional units. 1.2 Initial permeability µi µi is the permeability of a magnetic material at an infinitely small amplitude of the magnetizing field, measured without pre magnetization and without exterior shearing influence: μ i = 1 μO ⋅ ΔB ΔH ( H = O; ΔH → O ) In practice µi is derived from the inductance of a toroidal core coil: L in µH 1 L l μi = ⋅ 2 ⋅ μO n A l in mm A in mm2 With cores of closed magnetic circuit having changing cross-sectional areas along the magnetic path length, the expression l/A has to be replaced by Σ l/A (core constant C1). μi= 1 ⋅ L μO n2 ⋅ ∑ l A This equation is valid only for cores without any magnetic shearing. It should be recognized, however, that composite cores (e.g. pot or E-cores) must be considered as slightly sheared, even if they are declared as non-gapped. 109 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL The initial permeability is also called toroidal or material permeability. Over a wide range µi is independent on frequency. On our material data tables f0,8 marks that frequency at which µi decreases to 80% of the tabulated value. 1.3 Effective permeability µe If in a closed magnetic circuit an air gap exists (shearing) the initial permeability is reduced to a smaller value called effective permeability µe. The effective permeability µe equals the initial permeability µi of a core material which unsheared with the same shape of core, the same course of magnetic flux, and under equal measuring conditions would give the same electrical performance. Because of the presupposition of the same course of the magnetic flux µe is applicable only to cores with relatively high permeability, which are but slightly sheared so that the magnetic stray field remains negligible. This presupposition is fulfilled e.g. with pot or E-cores having customary air gap. The quotient µe/µi is called the shearing ratio. With the aid of µe and of the material characteristics shown on the material data tables all important properties of a coil (e.g. losses, thermal performance, temporal instability - see sections 4, 6, and 7) are easily calculable. If the effective permeability µe of a core is unknown, it can be found out by an inductance measurement and by making use of the reduced magnetic conductivity Λ o , also called permeance factor c (see section 3). μe= 10 6 ⋅ L L Λ n2 ⋅Λ0 O in mH in nH The numerical values of c are contained in the data sheets of the appropriate core types. A merely mathematical way of ascertaining µe may be used, if the initial permeability µi of the core material, the core constant C1 = Σ l/A, the air gap length s, and the magnetic crosssectional area As in the gap are known: μi μe = s 1+ As Σ l A = ( μ i − 1) μi s⋅ΛO 1+ ( μ i − 1) As ⋅μO s As Σ l A in mm in mm² in mm-1 1.4 Apparent permeability µapp The ratio of the inductance Lk of a cored coil and the inductance LO of the same coil without core is called apparent permeability µapp. 110 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL μ app = μ w = Lk LO µapp is used with coils having magnetically open cores (strong shearing) with large stray fields, as e.g. rod, tube, or screw cores. The numerical values of µapp depend not only on core material and core shape, but also on the kind of winding and its position relatively to the core. µapp-values are comparable only if evaluated under equal measuring conditions. 1.5 Amplitude permeability µa The amplitude permeability is defined by the equation 1 μa = μ O ⋅ B$ H$ where sinusoidal induction being assumed. The numerical values of µa as well the measuring conditions under which they were evaluated are contained in the respective data sheets of the appropriate cores, as e.g. E- or U-cores. 1.6 Incremental permeability µΔ It corresponds to the amplitude permeability µa with pre-magnetization and is defined by the equation B μ Δ = μ1 ⋅ ΔΔH O The incremental permeability is usually understood to be a function of a DC. pre-magnetization by a fieldstrengh H_. In order to evaluate µΔ the alternating field ΔH is rated in such a way that the alternating induction ΔB for any value of the pre-magnetizing field H_ remains constant, e.g. 10 mT. 1.7 Complex permeability μ In alternating-current engineering complex values are used for describing the phase position. A perfectly lossless coil with a core of permeability µ causes a phase shift of 90° between voltage U and current I. In complex writing this is described as follows (concerning the introduction of ΛO for describing the core geometry of any core shape see paragraph 3.2): 111 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL U = Z = jω L = jω Λ O n 2 μ I If in the core material losses are occurring, an active resistance R is added to the reactance jωL, which causes a diminution of the phase angle 90° by the angle δ, usually described by: tanδ = R ωL . In this case the complex writing is as follows: U I = Z = R + jωL = jωL (1 − j tanδ ) = j ωΛ O n 2 μ with (2) μ =μ (1 − j tanδ ) = μ ' s − jμ "s The phase shift is described by a complex permeability. Its real and imaginary parts are usually described by µ’s and µ“s (the index s shall indicate that active resistance and reactance are connected in series). Hence follows: μ' s = L (3) ΛO n2 μ"s = μ' s tan δ = R ωΛ O n 2 For toroids is valid: L = n2Λ Oμi Hence follows: μ`s = μi and μ" s = R ⋅ μ i = tanδ ⋅ μ i ωL 112 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL The diagrams for FERROCARIT-materials in this catalogue are presenting the complex permeability in series connection, measured on toroids. The real component µ’s of those diagrams corresponds to the initial permeability µi of the material. The dependence of the initial permeability from the frequency is directly obvious. It has to be noted that from a certain frequency the initial permeability gradually decreases. µ“s is particularly of interest for wide-band applications (transformers, attenuation chokes): at each frequency you can read from the relation µ“s / µ’s the share of the losses and of the pure inductance in relation to the total impedance or attenuation. At that frequency, where the curves µ’s and µ“s are intersecting, both contributions are equal. In the frequency range below, the inductance contribution is determining. Above, the inductive effect is decreasing and the attenuating effect is increasing by energy absorption. As by decreasing µ’s the magnetization processes are disappearing, the losses caused by that are also disappearing. For the circuit design it is often useful to consider the admittance instead of the impedance and to describe it as parallel connection of a resistance Rp and an inductance Lp. From (2) follows: Y = or 1 Z 1 μ = = 1 Rp n2ΛO Lp 1 + jωLp +j = ωn 2 Λ O Rp 1 (4) jωΛ O n 2 μ = 1 μ 'p +j 1 μ "p From this results analogues to (3) simple relations for the values µ’p and µ“p follow: μ' p = μ" p = Lp (5) 2 n ΛO Rp ωn 2 Λ O 113 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL From (3) and (5) follows: μ ' p = μ ' s (1 + tan 2 δ ) μ"p = μ"s (1 + 1 tan 2 δ ) In the diagrams for FERROCARIT-materials in this catalogue curves of the complex permeability for parallel connection are shown, sometimes they are described as products ωµ’p and ωµ“p , for easier calculating transformers. Also in this case the influence of the inductance is equal to the influence of the losses by the intersection of both curves for the admittance value of the transformer. 1.8 Specific impedance z& The suppression quality of a component is essentially specified by its impedance: Z = jω L + R The amount of impedance includes a material specific component Z = Ae ⋅ N 2 ⋅ z& le This material specific impedance can be formulated as follows: z& = μ 0ω μ ' 2 + μ ' '2 114 z& : B B1 2. MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Effective magnetic parameters They are applicable only to cores of a closed magnetic circuit (e.g. pot, E-, and U-cores), having changing cross-sectional areas along the magnetic path length. They are also applicable to sheared cores having negligible magnetic stray fields. The effective parameters permit a simple way of calculating the magnetic properties of closed cores of arbitrary geometry. For this method of calculation, the core is substituted by an ideal toroid giving the same magnetic performance as the original core. (IEC publication 205) 2.1 Core constant C1 C1 results from the summation of the quotients of the partial magnetic path lengths l and the corresponding cross-sectional areas A of a core of closed magnetic circuit subdivided into uniform sections: C1 = Σ l A 2.2 Effective magnetic path length le le is defined by the equation: (Σ le = Σ l ) A l 2 A2 2.3 Effective cross-sectional area Ae Ae is defined by the equation: Σ Ae = Σ l A l A2 115 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 2.4 Effective magnetic volume Ve From le ⋅ Ae results: l (Σ ) 3 Ve = A l 2 (Σ ) A2 The numerical values of the effective parameters are given on the data sheets of cores of closed magnetic circuit. 3. Inductance factor and Permeance factor 3.1. Inductance factor AL AL is used to calculate the number of winding turns of a coil in order to achieve a given inductance L with cores of closed magnetic circuit with cores of closed magnetic circuit with or without air gap. AL = L n2 = μe μO l Σ A Thus AL is the inductance L related to one winding turn (w=1). It is usually given in nH. To strongly sheared core shapes AL is only applicable, if the kind of winding and the position of the winding relatively to the core are exactly defined. As this holds true for our coil kits, ALvalues are given on the appropriate data sheets. They are approximate values supposing the coil formers to be nearly fully wound. The inductance factor AL is not applicable to magnetic circuits with large stray fields, e.g. rod or screw cored coils. 3.2 Permeance factor c If the expression A L = μe μO l Σ A is reduced to µe = 1, the portion conditioned by the core material is eliminated. The rest conditioned only by the core configuration represents the Permeance factor c which may be derived also from the magnetic field constant and the core constant C1. 116 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL c = ΛO = From AL = L n 2 L AL μe AL and c = = n 2 = ⋅ μe μ e μO l Σ A results: ⋅ c Thus the inductance L of a closed magnetic circuit depends on three factors, one being conditioned by the winding (n2), another one by the core material (µe, which takes into account an eventual air gap), and a third one by the core configuration ΛO. This fundamental relation holds true for any calculation concerning the selection of core shape, core material, and winding of magnetic circuits. 4. Loss at small magnetizing force 4.1 Loss angle tanδL and Quality factor Q: When small magnetizing forces predominate in electronics (small signal applications), the total loss of a coil can be expressed by the loss angle tanδ L = RV 2π ⋅ f ⋅ L The loss resistance RV is supposed to be in series to the no-loss inductance L. From RV and the effective coil current I the dissipation power RV⋅I2 may be easily calculated. The reciprocal value of the loss angle is called Quality factor Q: Q = 2π ⋅ f ⋅ L 1 = tanδ L RV 117 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL The total loss angle of a coil is composed of different loss portions originating from the core, the winding, and possibly from a screening: tanδL = tanδh + tanδw + tanδn + tanδwi Hysteresis loss . . . . . Eddy current loss . . . . . 4.2 tanδh tanδw Residual loss . . . . . . . Winding loss . . . . . . . . tanδn tanδwi Hysteresis loss 4.2.1 Hysteresis coefficient At small magnetizing forces, where the Rayleigh relations are valid, there is a practically linear increase of hysteresis loss as a function of field strength or flux density respectively. $ · µi tanδ h = ηB · B According to the IEC publication 401 the linearity constant ηB is called hysterersis material constant. 4.2.2 Hysteresis material constant For determining the hysteresis material constant two measurement points at low induction B$ 1 and B̂ 2 are relevant $ 1) ; tanδ ( B B$ 1 = 1,5 mT $ $ 2 = 3,0 mT tanδ ( B 2) ; B The measurement of the loss angle tanδ is performed at a frequency f=10 kHz for µi≤ 500 and f=100 kHz for µi>500. ηB now can be calculated by ηB = tan δ ( Bˆ 2 ) − tan δ ( Bˆ1 ) μ ⋅ ( Bˆ − Bˆ ) 2 i 1 The equation given above holds for homogeneous toroids. When sheared cores with negligible stray field are used, µi is to be replaced by µe. 118 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 4.3. Eddy current, Residual loss and Relative loss factor tanδ/µi The loss factor related to µi = 1 is ascertained by loss angle measurements at two magnetizing forces and by extrapolation to H = 0. Magnetizing forces for the tabulated values of our material data sheets are 0,1 and 0,5 Am-1. By extrapolation of the magnetizing force to zero, loss caused by this force (hysteresis) becomes zero too. Thus the relative loss factor tanδ/µi is a characteristic for the remaining eddy current and residual losses. If gapped cores with negligible stray field are used, the loss factor becomes effective with the shearing ratio µe/µi. Therefore the tabulated tanδ/µi values are to be multplied with µe. 4.4 Winding loss tanδwi Winding loss is composed of copper loss, eddy current loss in the conductor material, and dielectric loss due to the intrinsic capacity of the winding. Copper loss results from the ohmic resistance of the conductor material and the resistance increase due to skin effect. The ohmic resistance can be deduced from the nominal conductor diameter D, the mean length of winding turn lw, the number of turns n, and the resistivity of the conductor material. The increase of resistance due for skin effect is involved by the dimensionless value ß which is the relation of the effective cross section caused by skin effect to the physical one of the wire. For low frequency ß is equal to 1. The total copper loss can be calculated by the aid of the following equation: tanδ wi = 3,5 ⋅ 10 −6 lw ⋅ n ⋅ ß D2 ⋅ f ⋅ L lw D f L in mm in mm in Hz in H This formula may be used, if dielectric loss is negligibly small. This is true of cores of closed magnetic circuit like pot or E-cores, made out of high-permeability materials and used at frequencies up to 100 kHz. There exists no practicable formula for calculating dielectric loss conditioned by the intrinsic capacity of the winding at higher frequencies. 119 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 4.5 Screening loss If coils are screened, eddy current loss within the screening material must not be neglected. It depends on the extent of the stray field, the distance between coil and screening can, the screening material and the operating frequency. As there exists no practicable formula for calculation of screening loss, empirical ascertainment or advanced computer simulation such as FEM is recommended. If high permeability cores of closed magnetic circuit are used screening may often be dispensed with. 5 Power loss at high magnetizing force Inductors and transformers for power application use to take strong current loads. Magnetizing force and flux density then are beyond the Rayleigh range with its simple linear relations between these two quantities. 5.1 Bipolar losses at high magnetizing force In our data sheets of cores designed for power application the total power loss in W as well as the specific power loss in mW ⋅ cm−3 is given for defined values of frequency, flux density, and temperature. The dependence of power loss on frequency f and peak flux density within the ranges of frequency and current used in electronic power applications, is expressed by an empirical formula (Steinmetz relation). PV being the specific power loss, i.e. the power loss related to the unit of volume, this formula reads: PV = K ⋅ f a ⋅ Bb K = const a ≈ 1…2 b ≈ 2…3 PV is given in mW ⋅ cm−3. K is a constant, a and b are constant powers to f and B. The quantities K, a and b ascertained by loss measurements at different frequencies and flux densities. Where in our core data sheets the dependence of loss on frequency and flux density is specified, the graphs are in accordance with the formula given above. 120 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 5.2 Unipolar losses at high magnetizing force If an inductive component is forced by a DC - magnetization with an additional AC - component so called unipolar losses are induced in the core material. These losses depend on the amplitude of DC - magnetization, which defines the working point on the magnetization curve of the core material, and the frequency and amplitude of the alternating field component. This application is typical for output chokes. Therefore in our data sheets for the preferred FERROCART materials for output chokes unipolar power loss values are given for different frequencies and ripple percentages. Ripple is defined as ratio of peak-to-peak value of the ACto amplitude of the DC - component. 6. Temperature-dependence of Inductance, Temperature Factor of Permeability αF The temperature-dependent alternations of initial permeability are described by the relative temperature factor, i.e. the alternation per Kelvin. In accordance with IEC-publication 401 for this quantity the symbol αF is used, the signification of which is identical with the former expression αµ/µi αF is ascertained from measurements of the initial permeabilities µi1 and µi2 at the temperatures ϑ1 and ϑ2 The values indicated in our material table were achieved by measurements at 20°C and 70°C αF = μi 2 μi ⋅ μi 2 1 − μi (ϑ 1 2 − ϑ1 ) If coils with gapped cores and negligible stray field are used, the tabulated αF -values must be multiplied by µe. The alteration of inductance of such a coil caused by changes of temperature may be calculated by aid of the formula: ΔL L = α F ⋅ μ e ⋅ Δϑ This equation is not applicable to coils with large stray fields as e.g. rod or screw cored coils. The temperature performance of such a coil depends not only on the temperature factor of the core but also, in a proportion not be neglected, on the temperature performance of the winding and of the whole assembly. In cases of this kind αF cannot be more than an aid to comparison of different core materials. 121 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 7. Temporal Alternation of Inductance, Disaccommodation Factor DF A change of the magnetic state of a core by magnetic or thermic demagnetization causing a sudden increase of permeability, is followed even under constant environmental conditions by a limited permeability decrease taking a logarithmic course. This temporal instability is called disaccommodation. It is described by the disaccommodation factor DF relating to an initial permeability µi = 1. According to an IEC recommendation DF replaces the physically identical expression d/µi. DF is ascertained by measuring the initial permeabilities μ i 1 and μ i 2 at the timings t1 and t2 after demagnetization. The tabulated DFvalues of our materials were calculated from measurements at the timings 5 and 30 minutes. DF = 1 μ −μ ⋅ μ μ ⋅ lg t t i1 i i2 2 i1 1 If coils with gapped cores and a negligible stray field are used, the tabulated values must be multiplied with µe. The alternation of inductance of such a coil between the timings t1 and t2 after demagnetization may be calculated by the aid of the formula: t ΔL = − DF ⋅ μ e ⋅ lg 2 t1 L Changes of the magnetic state by DC pre-magnetization will as a rule cause smaller alterations of inductance than a calculation by the aid of the disaccommodation factor DF will show. 8. Curie point We define Curie point as that temperature, at which the initial permeability has decreased to 10% of the tabulated value. 122 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY Ferrite materials f - MHz µi (25°C) Tc DC-resist. Ωm Fi 415 Highest permeability MnZn ferrite ≤ 0,2 15000 130 ≥ 0,05 Fi 412 High permeability MnZn ferrite ≤ 0,2 12000 125 ≥ 0,05 Fi 410 High permeability MnZn ferrite ≤ 0,2 10000 135 ≥ 0,05 Fi 360 High permeability MnZn ferrite ≤ 0,4 6000 150 ≥ 0,05 Fi 340 Medium permeability MnZn ferrite ≤ 0,4 4300 130 ≥ 0,5 Fi 395 Power MnZn ferrite with const. low losses up to 120°C. ≤ 0,4 2700 220 Fi 335 Power MnZn ferrite with low losses and high saturation flux density ≤1 2000 230 Fi 329 Power MnZn ferrite with highest saturation flux density ≤ 0,5 1500 275 ≥ 1,5 Fi 328 Power MnZn ferrite with high saturation flux density ≤ 0,5 1800 260 ≥2 Fi 327 High frequency power MnZn ferrite ≤3 1200 240 ≥ 30 Fi 326 Power MnZn ferrite with lowest power losses around 140°C. ≤ 0,4 1500 250 Fi 325 Medium frequency power MnZn ferrite ≤1 1800 230 ≥6 Standard power MnZn ferrite ≤ 0,3 2300 230 ≥3 Fi 324 Fi 301 High permeability ferrite broad frequency range with ≤ 100 3000 140 900 140 ≥ 10 Fi 262 Medium permeability MnZn ferrite ≤5 650 290 ≥1 Fi 242 Low power loss NiZn ferrite with high specific resistance ≤ 400 400 230 ≥ 10 Fi 248 Medium permeability NMnZn ferrite for noise suppression applications ≤ 400 440 240 ≥ 100 ≤ 400 250 330 ≥ 10 4 ≤ 400 150 385 ≥ 10 7 Fi 215 for 7 Fi 212 Low permeability NiZn ferrite ≤ 400 100 420 ≥ 10 4 Fi 150 Low permeability NiZn ferrite ≤400 50 430 ≥ 10 3 Fi 130 Low permeability NiZn ferrite ≤ 500 30 500 ≥ 10 3 Fi 110 Low permeability NiZn ferrite ≤ 1000 12 580 ≥ 10 4 123 450 100kHz/200mT/100°C > 350 140 310 250A/m/100°C 200kHz/100mT/100°C 100kHz/200mT/100°C > 400 1000 500 250A/m/100°C 100kHz/200mT/25°C 100kHz/200mT/100°C > 370 670 450 250A/m/100°C 100kHz/200mT/25°C 100kHz/200mT/100°C > 300 560 540 250A/m/100°C 1000kHz/50mT/25°C 1000kHz/50mT/100°C > 310 900 400 250A/m/140°C 100kHz/200mT/25°C 100kHz/200mT/140°C > 340 320 170 250A/m/100°C 200kHz/100mT/25°C 200kHz/100mT/100°C > 340 685 560 250A/m/100°C 100kHz/200mT/25°C 100kHz/200mT/100°C 3000A/m/25°C ≤ 100 Medium permeability NiZn ferrite 520 100kHz/200mT/25°C 7 High permeability NiZn ferrite Low permeability NiZn ferrite high ignition applications > 330 250A/m/100°C > 380 Fi 292 Fi 221 Pv - mW /cm³ Bmax - mT > 300 700 550 3000A/m/100°C 100kHz/100mT/25°C 100kHz/100mT/100°C > 370 3000A/m/25°C > 310 1800 1500 3000A/m/170°C 100kHz/100mT/25°C 100kHz/100mT/100°C 300 580 770 3000A/m/100°C 100kHz/50mT/25°C 100kHz/50mT/100°C B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY Plasto ferrite materials Fi 520 ≤ 400 Fi 522 Wide band material with high temperatureconsistency of permeability up to 200°C. ≤ 400 Ferrocart materials Fe 897 Tc DC-resist. Ωm 20 150 > 3,0 19 200 > 1,0 f - MHz µi (25°C) Wide band material with high temperatureconsistency of permeability f - MHz µi (25°C) ≤ 0,2 High amplitude permeability material ≤ 0,2 Fe 896 High permeability material Fe 893 High permeability material for high premagnetization ≤ 0,2 ≤ 0,2 125 140 110 Fe 876 ≤ 0,2 75 180 Fe 850 Wide band material for high premagnetization with low losses ≤ 0,3 55 180 Fe 835 Wide band material ≤ 0,5 35 150 ≤ 10 Wide band material Fe 810 ≤ 100 Wide band material 18 10 1000 0,16 MHz 200 190 1400 0,01 MHz 0,16 MHz 120 1600 0,01 MHz 0,16 MHz 100 0,16 MHz 140 800 0,02 MHz 0,3 MHz 100 180 0,5 MHz 0,05 MHz 110 150 120 200 Pv-mW/cm³ 100kHz/40mT 37 1200 200 Noise suppression material Fe 818 1600 0,16 MHz 200 Wide band material for high premagnetization with low losses 100 tanδ/µi * 10 200 Fe 892 µΔ @ 5000 A/m -6 Tmax 45 570 50 650 36 650 46 310 43 440 33 390 0,5 0,05 MHz MHz 500 2000 12 MHz 100 MHz 10-2Ohm*m Metal powder specific resistance Induction of application/mT Fe 896 Fe 710 Fe 893 Fe 876 100 MnZn ferrite Fe 818 107Ohm*m Fi 329 1800mT Fi 328 Fi 335 Fi 327 NiZn ferrite Fi 292 Fi 242 10 Bmax Fi 215 Fi 212 Fi 110 200mT 1 1 10 100 1000 10000 Range of frequency/kHz 124 100000 1000000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT Production and composition of ferrites Ferrites are compounds of the iron oxide Fe2O3 and one or more oxides of bivalent metal. The most frequently used oxides are those of nickel, manganese, magnesium and zinc. The oxide powder is prepared in various processing steps before being pressed to a core of the desired shape. After that the core is sintered at temperatures between 1150 and 1400°C depending on the type of ferrite. The resulting material is hard and brittle like porcelain ("black ceramics") and can only be machined by grinding. The shrinkage of the cores during the sintering process results in tolerances of the non-machined dimensions similar to those of other ceramics (± 2 to ± 3%). An important characteristic of FERROCARIT materials is their high electric resistivity, covering according to grade a range from 1 up to 107 Ωm, as opposed to approx. 10-5 Ωm with metals. Consequently eddy current loss is relatively low and may be neglected over a wide frequency range. General technical characteristics Density ≈ 4,5 . . . 5,1 g·cm-3 Tensile strength ≈ 20 . . . 60 N·mm-2 Compressive strength ≈ 100 . . . 800 N·mm-2 Modulus of elasticity Thermal conductivity Specific heat Coefficient of linear expansion Vickers hardness ≈ ≈ ≈ ≈ ≈ 150 5 · 10-3 1000 7 · 10-6 . . . 12 · 10-6 500 kN·mm-2 J·mm-1·s-1·K-1 J·kg-1·K-1 K-1 N·mm-2 PSPICE –parameters for FERROCARIT materials are available on your inquiry. 125 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 126 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY Application Frequency range magnetic load Ferrite materials low ≤ 1,6 0,2 ... 5 X Fi 262 High Q circuits X Fi 221 (Input and oscillator coils, 0,5 … 10 X Fi215 Rod, tube, variometers, IF-transformers 1 ... 12 X Fi 212 screw, nipple, LF-coils, MW and LW 5 ... 40 X Fi 150 saddle and cup cores antennas etc.) 10 ... 60 X Fi 130 50 ... 150 X Fi 110 ≤ 0,5 Anti-interference and damping coils ≤1 high Core shape MHz FERROCARIT X Fi 415 X Fi 412 X Fi 410 X Fi 360 Rod, tube, drum X Fi 350 and multi-aperture cores toroids, screening beads X Fi 340 ≤6 X Fi 262 ≤ 400 X Fi 248 X Fi 292 2 ... 1000 X Fi 221 X Fi 150 X Fi 415 X Fi 412 Pot and E-cores, toroids, X Fi 410 two- and multi-aperture Wide-band transformers X Fi 360 cores (Antenna-transformers for X Fi 340 X Fi 292 ≤2 TV and radio, pulse transformers, etc.) ≤ 10 ≤ 100 ≤ 250 ≤ 400 X Fi 262 X Fi 221 Rod, tube, X Fi215 two- and multi-aperture X Fi 212 cores X Fi 242 X Fi 150 X Fi 130 X Fi 110 X Power applications ≤ 0,3 (Fly-back transformers, DC converters, audio frequency chokes, ≤1 Fi 395 X Fi328 X Fi326 X Fi 324 E-, U-, E+I-, screw, X Fi335 rod, tube, nipple X Fi325 and drum cores TV correcting coils, ≤3 X Fi 327 audio frequency filters) ≤ 0,5 X Fi 329 127 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY FERROCARIT Initial permeability Relative loss factor frequency µi tanδ µi f ηB 1 -6 10 Fi 415 Fi 412 Fi 410 Fi 360 Fi 340 15000 12000 10000 6000 4300 ± 30% ± 30% ± 30% ± 30% ± 20% < 6 < 70 < 6 < 50 < 6 < 70 < 4 < 20 < 4 < 20 MHz 0,01 0,1 0,01 0,1 0,01 0,1 0,01 0,1 0,01 0,1 -6 10 mT < 0,6 < 1,2 < 0,6 < 0,8 < 0,6 B mT 430 430 420 440 390 Coercivity HC A/m 9 8 8 9 10 Curie temperature TC °C 130 125 135 150 130 Rel. temperature factor αF 10 K ≤ 1,5 ≤ 1,5 ≤ 1,5 ≤ 1,5 ≤ 1,5 DF 10 <3 <3 <3 <3 <6 ρ Ωm ≥ 0,05 ≥ 0,05 ≥ 0,05 ≥ 0,05 > 0,5 Hysteresis material constant Induction H = 1200 A/m -6 +23...+70°C Rel. disaccommodation factor -6 T = 40°C DC - Resistivity 128 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY FERROCARIT Initial permeability Relative loss factor frequency Hysteresis material constant µi 1 Fi 395 Fi 335 Fi 329 Fi 328 Fi 327 2700 2000 1500 1800 1200 ± 25% ± 25% ± 25% ± 25% ± 25% tanδ µi 10 < 3,5 2,6 <8 < 3,5 < 2,5 f MHz 0,1 0,1 0,1 0,1 0,1 ηB -6 -6 10 mT <1 < 0,9 B mT 460 500 525 480 430 Coercivity HC A/m 12 15 12 15 50 Curie temperature TC °C 250 230 275 260 240 Rel. temperature factor αF 10 K DF 10 ρ Ωm > 1,5 >2 > 30 Induction H = 1200 A/m -6 +23...+70°C Rel. disaccommodation factor -6 T = 40°C DC - Resistivity 129 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY FERROCARIT Initial permeability Relative loss factor frequency Hysteresis material constant µi 1 Fi 326 Fi 325 Fi 324 1500 1800 2300 ± 25% ± 25% ± 25% tanδ µi 10 -6 <5 < 3,5 < 4,5 f MHz 0,1 0,1 0,1 ηB -6 10 mT < 0,42 ≤1 B mT 500 500 490 Coercivity HC A/m 15 16 15 Curie temperature TC °C 250 230 230 Rel. temperature factor αF 10 K DF 10 ρ Ωm ≥6 ≥3 Induction H = 1200 A/m -6 +23...+70°C Rel. disaccommodation factor -6 T = 40°C DC - Resistivity 130 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 415 A highest permeability material optimized for broadband transmission and miniature inductors with high inductance values SYMBOL VALUE UNIT µi 15000 ± 30% 1 tan δ / µ i < 70 10 < 0,6 -6 CONDITIONS Complex permeability 100000 25°C ; <= 10 kHz <= 0,25 mT 10 <= 0,25 mT / mT <=1,5mT to 3mT 25°C ; 16 kHz 415 B 25 °C 70 °C 10000 25°C ; 10 kHz µ`µ`` ηB 25°C ; 0,1 MHz -6 250 A/m mT 70 °C 1000 100°C ; 16 kHz 235 25°C 250 A/m 100 Pv µ` µ`` 10 130 Tc 1 °C Initial permeability µi as a function of temperature T 10 100 f / kHz 1000 10000 Relative loss factor as a function of frequency f 100 30000 25000 tanδ/µ /10-6 µi 20000 15000 10 10000 5000 0 1 -40 -20 0 20 40 60 T / °C 80 100 120 140 10 100 f / kHz Magnetization curves Incremental permeability 500 100000 400 µΔ B / mT 10000 300 200 1000 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 100 -50 0 50 100 H / A/m 150 200 250 0,1 1 10 H_ / A/m 131 100 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 412 A high permeability material optimized for broadband transmission, common mode chokes as well as suppression filters SYM BOL VALUE U N IT µi 12000 ± 30% 1 ta n δ / µ i < 50 10 < 1 ,2 -6 10 Complex permeability 100000 ≤ 0 ,2 5 m T 2 5 °C ; 0 ,1 M H z 70 °C ≤ 0 ,2 5 m T / mT 10000 ≤ 1 ,5 m T to 3 m T 2 5 °C ; 1 6 k H z 425 B 2 5 0 A /m mT 1000 70 °C 1 0 0 °C ; 1 6 kH z 235 2 5 0 A /m 25 °C 100 2 5 °C ; ..... kH z m W / cm ³ Pv .......... m T µ` µ`` 1 0 0 °C ; ..... k H z .......... m T 125 Tc 25 °C 2 5 °C ; 1 0 k H z µ`µ`` ηB -6 C O N D IT IO N S 2 5 °C ; ≤ 1 0 k H z 10 1 0 kH z °C 1 10 100 f / kHz ≤ 0 ,2 5 m T Initial permeability µi as a function of temperature T 1000 10000 Relative loss factor as a function of frequency f 100 20000 18000 16000 tanδ/µi / 10-6 14000 µi 12000 10000 8000 10 6000 4000 2000 1 0 0 20 40 60 80 T / °C 100 120 10 140 100 f / kHz Magnetization curves Incremental permeability 500 100000 400 300 µΔ B / mT 10000 1000 200 100 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 H / A/m 150 200 250 1 10 100 H_ / A/m 132 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 410 A high permeability material optimized for broadband transmission, common mode chokes as well as suppression filters SYM BOL VALUE U N IT µi 10000 ± 30% 1 ta n δ / µ i < 70 10 < 0 ,6 -6 10 Complex permeability 100000 ≤ 0 ,2 5 m T 2 5 °C ; 0 ,1 M H z -6 ≤ 0 ,2 5 m T 2 5 °C ; 1 6 k H z 2 5 0 A /m mT 1000 70 °C 1 0 0 °C ; 1 6 kH z 220 2 5 0 A /m .......... m T m W / cm ³ Pv µ` µ`` 1 0 0 °C ; ..... k H z .......... m T 135 25 °C 100 2 5 °C ; ..... kH z Tc 25 °C ≤ 1 ,5 m T to 3 m T 405 B 70 °C 10000 2 5 °C ; 1 0 k H z / mT µ`µ`` ηB C O N D IT IO N S 2 5 °C ; ≤ 1 0 k H z 10 1 0 kH z °C 1 10 100 f / kHz ≤ 0 ,2 5 m T Initial permeability µi as a function of temperature T 1000 10000 Relative loss factor as a function of frequency f 20000 1000 18000 16000 14000 tanδ/µi / 10-6 100 µi 12000 10000 8000 6000 10 4000 2000 1 0 0 20 40 60 80 100 120 10 140 100 f / kHz T / °C Magnetization curves Incremental permeability 500 100000 400 300 µΔ B / mT 10000 1000 200 100 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 H / A/m 150 200 250 1 10 100 H_ / A/m 133 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 360 A medium permeability material with a frequency stability up to 0,2 MHz and a high Tc for broadband transmission, current transformers as well as suppression filters SYM BOL VALUE U N IT µi 6000 ± 20% 1 ta n δ / µ i < 20 ηB < 0 ,8 10 10 -6 C O N D IT IO N S Complex permeability 10000 2 5 °C ; ≤ 1 0 k H z 70°C 25°C 2 5 °C ; 0 ,1 M H z ≤ 0 ,2 5 m T -6 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T / mT 1000 410 2 5 0 A /m mT 100°C µ`µ`` 2 5 °C ; 1 6 k H z B 100°C ≤ 0 ,2 5 m T 70°C 1 0 0 °C ; 1 6 kH z 255 25°C 100 2 5 0 A /m 2 5 °C ; ..... kH z .......... m T m W / cm ³ Pv µ´ µ´´ 1 0 0 °C ; ..... k H z .......... m T 150 Tc 10 1 0 kH z ≤ 0 ,2 5 m T °C 10 100 1000 10000 f / kHz Initial permeability µi as a function of temperature T Relative loss factor as a function of frequency f 12000 1000 10000 tanδ/µi / 10-6 µi 8000 6000 4000 100 10 2000 0 1 0 20 40 60 80 T / °C 100 120 140 160 10 Magnetization curves 100 f / kHz 1000 Incremental permeability 500 10000 400 1000 µΔ B / mT 300 200 100 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 H / A/m 200 250 300 1 10 100 H_ / A/m 134 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 340 A medium permeability material with a low temperature dependence of the initial permeability and a frequency stability up to 0,4 MHz. Optimized for use in broadband transformers with high DC-bias current SYM BOL VALUE U N IT µi 4300 ± 20% 1 ta n δ / µ i < 20 ηB < 0 ,6 -6 10 10 -6 C O N D IT IO N S Complex Permeability 10000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 100°C 2 5 °C ; 0 ,1 M H z ≤ 0 ,2 5 m T 25°C 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T / mT 1000 390 B 2 5 0 A /m mT 70°C µ`µ`` 2 5 °C ; 1 6 k H z 100°C 1 0 0 °C ; 1 6 kH z 235 100 2 5 0 A /m 70°C 2 5 °C ; ..... kH z m W / cm ³ Pv 25°C .......... m T µ` 1 0 0 °C ; ..... k H z µ`` .......... m T 130 Tc 10 1 0 kH z ≤ 0 ,2 5 m T °C 10 100 1000 10000 f / kHz Initial permeability µi as a function of temperature T Relative loss factor as a function of frequency f 10000 1000 9000 8000 7000 tanδ/µi / 10-6 100 µi 6000 5000 4000 10 3000 2000 1000 1 0 0 20 40 60 80 100 120 10 140 100 f / kHz T / °C Magnetization curves 1000 Incremental permeability 10000 400 350 300 1000 µΔ B / mT 250 200 150 100 100 50 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 H / A/m 200 250 300 1 10 100 H_ / A/m 135 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 136 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 395 A low frequency power material with a flat power loss curve from 25°C to 120°C for use in general purpose transformers up to 0,3 MHz. Especially suited for broad temperature range applications SYM BOL VALUE U N IT µi 2700 ± 25% 1 ta n δ / µ i < 3 ,5 10 ηB 10 -6 C O N D IT IO N S Complex permeability 10000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 100 °C 2 5 °C ; 0 ,1 M H z ≤ 0 ,2 5 m T -6 25 °C 1000 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T / mT µ`µ`` 2 5 °C ; 1 6 k H z 460 B 2 5 0 A /m mT 100 100 °C 1 0 0 °C ; 1 6 kH z > 330 2 5 0 A /m 200 m T m W / cm ³ Pv µ` µ`` 1 0 0 °C ; 1 0 0 kH z 450 200 m T 220 Tc 25 °C 10 2 5 °C ; 1 0 0 k H z 520 1 100 1 0 kH z ≤ 0 ,2 5 m T °C 1000 f / kHz Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 7000 5000 6000 4000 200 mT 100 mT 5000 50 mT µa 3000 µi 4000 300 mT 2000 3000 1000 2000 f =16 kHz 1000 0 0 50 100 150 200 20 250 40 60 80 T / °C Magnetization curves 100 T / °C 120 140 160 180 Incremental permeability 10000 500 400 µΔ B / mT 1000 300 200 100 100 25 °C 100°C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 200 H / A/m 250 300 350 400 1 10 100 H_ / A/m 137 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 1000 200 mT 10000 100 mT 1000 50 mT 10 Pv / mW/cm³ Pv / mW/cm³ 200 mT 100 100 mT 100 50 mT 10 25°C 100°C f = 100 kHz 1 1 20 40 60 80 100 T / °C 120 140 160 10 180 Induction Bmax as a function of temperature T at 250 A/m 500 450 400 Bmax / mT 350 300 250 200 150 100 50 f = 16 kHz 0 0 20 40 60 80 100 T / °C 120 140 160 180 200 138 100 f / kHz 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 335 A low to medium frequency power material with low losses and high saturation flux density in a operating frequency range up to 0,4 MHz SYMBOL VALUE UNIT µi 2000 1 tan δ / µ i 2,6 ηB 0,35 10 10 -6 CONDITIONS Complex permeability 10000 25°C ; ≤ 10 kHz ≤ 0,25 mT 100 °C 25°C ; 0,1 MHz ≤ 0,25 mT -6 25 °C 1000 25°C ; 10 kHz ≤ 1,5mT to 3mT / mT µ`µ`` 25°C ; 16 kHz 470 B 250 A/m mT 100 100°C ; 16 kHz > 350 100 °C 250 A/m 10 100°C ; 100 kHz < 450 µ` µ`` 100°C ; 200 kHz < 190 100 mT 230 Tc 25 °C 200 mT mW / cm ³ Pv 1 100 10 kHz ≤ 0,25 mT °C 1000 f / kHz Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 6000 4000 5000 3000 4000 200 mT 300 mT µi µa 5000 2000 3000 1000 2000 100 mT 50 mT f = 16 kHz 0 1000 0 50 100 150 200 250 20 40 60 80 100 120 T / °C T / °C Magnetization curves Incremental permeability 10000 500 400 1000 µΔ B / mT 300 200 100 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 H / A/m 200 250 300 1 10 100 H_ / A/m 139 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Specific power loss Pv as a function of temperature T 1000 10000 Specific power loss Pv as a function of frequency f and induction B 200 mT 100kHz / 200mT 100 mT 200kHz / 100mT 400kHz / 50mT 100 100kHz / 100mT Pv / mW/cm³ Pv / mW/cm³ 1000 50 mT 100 25 mT 10 25 °C 100 °C 10 20 40 60 80 T / °C 100 120 1 100 140 Induction Bmax as a function of temperature T at 250 A/m 500 450 400 Bmax / mT 350 300 250 200 150 100 50 f = 16 kHz 0 0 20 40 60 80 100 T / °C 120 140 160 180 200 140 f / kHz 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 329 A low to medium frequency power material with high saturation flux density for applications up to 0,2 MHz SYM BOL VALUE U N IT µi 1500 ± 25% 1 ta n δ / µ i < 8 10 ηB 10 -6 C O N D IT IO N S ≤ 0 ,2 5 m T -6 100 °C 2 5 °C ; 0 ,1 M H z ≤ 0 ,2 5 m T / mT 2 5 °C ; 1 0 k H z µ`µ`` 2 5 0 A /m mT 25 °C 1000 ≤ 1 ,5 m T to 3 m T 2 5 °C ; 1 6 k H z 475 B 100 °C 1 0 0 °C ; 1 6 kH z > 400 100 2 5 0 A /m 2 5 °C ; 1 0 0 k H z 1000 m W / cm ³ Pv 500 200 m T µ` µ`` 25 °C 1 0 0 °C ; 1 0 0 k H z 200 m T 275 Tc Complex Permeability 10000 2 5 °C ; ≤ 1 0 k H z 10 100 °C 1000 f / kHz Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 13000 10000 9000 11000 8000 7000 9000 200 mT 100 mT µa µi 6000 5000 300 mT 7000 50 mT 4000 5000 3000 2000 3000 1000 f = 16 kHz 0 1000 0 50 100 150 T / °C 200 250 300 20 40 60 80 100 120 T / °C Magnetization curves Incremental permeability 500 10000 400 µΔ B / mT 1000 300 200 100 100 Frequency: 10 kHz Induction: ≤ 0,2 mT 25 °C 100 °C 0 10 -50 0 50 100 150 200 H / A/m 250 300 350 400 1 10 100 H_ / A/m 141 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 10000 10000 200 mT 200 mT 1000 100 mT Pv / mW/cm³ Pv / mW/cm³ 1000 100 50 mT 10 100 mT 50 mT 100 10 25 °C 100 °C f = 100 kHz 1 1 20 40 60 80 T / °C 100 120 10 140 Induction Bmax as a function of temperature T at 250 A/m 500 450 400 Bmax / mT 350 300 250 200 150 100 50 f = 16 kHz 0 0 20 40 60 80 100 T / °C 120 140 160 180 200 142 100 f / kHz 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 328 A low to medium frequency power material with high saturation flux density and low losses for applications up to 0,2 MHz SYM BOL VALUE U N IT µi 1800 ± 25% 1 ta n δ / µ i < 3 ,5 ηB < 1 10 10 -6 -6 C O N D IT IO N S ≤ 0 ,2 5 m T 100 °C 2 5 °C ; 0 ,1 M H z 25 °C ≤ 0 ,2 5 m T / mT 2 5 °C ; 1 0 k H z 1000 ≤ 1 ,5 m T to 3 m T B µ`µ`` 2 5 °C ; 1 6 k H z 450 2 5 0 A /m mT 1 0 0 °C ; 1 6 kH z > 370 100 °C 100 2 5 0 A /m 2 5 °C ; 1 0 0 k H z 670 m W / cm ³ Pv 450 200 m T 1 0 0 °C ; 1 0 0 k H z 10 100 1 0 kH z °C µ` µ`` 25 °C 200 m T 260 Tc Complex Permeability 10000 2 5 °C ; ≤ 1 0 k H z 1000 f / kHz ≤ 0 ,2 5 m T Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 7000 5000 6000 4000 200 mT 100 mT 5000 50 mT µi µa 3000 300 mT 4000 2000 3000 1000 2000 f = 16 kHz 0 1000 0 50 100 150 T / °C 200 250 300 20 40 60 80 100 120 T / °C Magnetization curves Incremental permeability 10000 500 400 1000 µΔ B / mT 300 200 100 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 200 H / A/m 250 300 350 400 1 10 100 H_ / A/m 143 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 10000 10000 200 mT 200 mT 1000 Pv / mW/cm³ Pv / mW/cm³ 1000 100 mT 100 100 mT 50 mT 100 50 mT 10 10 25 °C 100 °C f = 100 kHz 1 1 20 40 60 80 T / °C 100 120 140 10 100 f / kHz Induction Bmax as a function of temperature T at 250 A/m 1000 Amplitude permeability µa 500 7000 450 6000 400 5000 300 4000 250 µa Bmax / mT 350 3000 200 150 2000 100 1000 50 25°C 100°C f = 16 kHz 0 0 0 20 40 60 80 100 T / °C 120 140 160 180 0 200 144 100 200 B / mT 300 400 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 327 A high frequency power material suitable for power and standard transformers in a frequency range of 0,5 to 2 MHz SYMBOL VALUE UNIT µi 1200 ± 25% 1 tan δ / µ i < 2,5 10 < 0,9 -6 10 Complex permeability 10000 ≤ 0,25 mT 25°C ; 0,1 MHz ≤ 0,25 mT -6 100°C 1000 / mT 25°C ; 16 kHz 380 B 25°C 25°C ; 10 kHz ≤ 1,5mT to 3mT µ`µ`` ηB CONDITIONS 25°C ; ≤ 10 kHz 250 A/m mT 100 100°C ; 16 kHz >300 250 A/m 50 mT mW / cm ³ Pv 50 mT 240 µ'' 1 100 10 kHz ≤ 0,25 mT °C µ' 25°C 100°C ; 1000 kHz 540 Tc 100°C 10 25°C ; 1000 kHz 560 1000 f / kHz Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 2000 2000 200 mT 1800 1600 100 mT 1800 1400 50 mT 1600 1000 µa µi 1200 800 1400 300 mT 600 400 1200 200 f = 16 kHz 1000 0 0 50 100 150 200 20 250 40 60 80 100 120 T / °C T / °C Magnetization curves Incremental permeability 500 10000 400 1000 µΔ B / mT 300 200 100 100 Frequency: 10 kHz Induction: ≤ 0,2 mT 25 °C 100 °C 0 -100 10 0 100 200 H / A/m 300 400 500 10 145 100 H / A/m 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 1000 10000 200mT 100mT 1MHz / 50mT 50mT 200kHz / 100mT Pv / mW/cm³ Pv / mW/cm³ 1000 25mT 100 10 500kHz / 50mT 25 °C 100 °C 100 20 40 60 80 T / °C 100 120 1 100 140 Induction Bmax as a function of temperature T at 250 A/m 500 450 400 Bmax / mT 350 300 250 200 150 100 50 f = 16 kHz 0 0 20 40 60 80 100 T / °C 120 140 160 180 200 146 1000 f / kHz 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 326 A low to medium frequency power material with lowest power losses around 140°C Suitable for power transformers in a frequency range up to 0,3 MHz SYM BOL VALUE U N IT µi 1500 ± 25% 1 ta n δ / µ i < 5 10 ηB 10 -6 -6 / mT C O N D IT IO N S Complex permeability 10000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 100 °C 2 5 °C ; 0 ,1 M H z ≤ 0 ,2 5 m T 25 °C 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T 1000 µ`µ`` 2 5 °C ; 1 6 k H z 440 B 2 5 0 A /m mT 1 4 0 °C ; 1 6 kH z > 310 100 2 5 0 A /m 100 °C 2 5 °C ; 1 0 0 k H z 900 m W / cm ³ Pv 400 200 m T 1 4 0 °C ; 1 0 0 kH z 200 m T 250 Tc 10 100 1 0 kH z ≤ 0 ,2 5 m T °C µ` µ`` 25 °C 1000 f / kHz Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 7000 5000 6000 4000 200 mT 5000 100 mT µa 3000 50 mT µi 4000 300 mT 2000 3000 1000 2000 f =16 kHz 1000 0 0 50 100 150 T / °C 200 250 20 300 Magnetization curves 40 60 80 100 T / °C 120 140 160 180 Incremental permeability 10000 500 400 1000 µΔ B / mT 300 200 100 100 25 °C 140°C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 200 H / A/m 250 300 350 400 1 10 100 H_ / A/m 147 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 1000 10000 200 mT 200 mT 1000 100 100 mT 10 Pv / mW/cm³ Pv / mW/cm³ 100 mT 50 mT 50 mT 100 10 25°C 140°C f = 100 kHz 1 1 20 40 60 80 100 T / °C 120 140 160 10 180 Induction Bmax as a function of temperature T at 250 A/m 500 450 400 Bmax / mT 350 300 250 200 150 100 50 f = 16 kHz 0 0 20 40 60 80 100 T / °C 120 140 160 180 200 148 100 f / kHz 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 325 A low to medium frequency power material suitable for power and standard transformers in a frequency range up to 0,4 MHz SYMBOL VALUE UNIT µi 1800 ± 25% 1 tan δ / µ i < 3,5 ηB < 0,42 10 10 -6 CONDITIONS Complex permeability 10000 25°C ; ≤ 10 kHz ≤ 0,25 mT 100 °C 25°C ; 0,1 MHz ≤ 0,25 mT -6 µ`µ`` 25°C ; 16 kHz 470 B 25 °C 1000 25°C ; 10 kHz ≤ 1,5mT to 3mT / mT 250 A/m mT 100 100 °C 100°C ; 16 kHz ≥ 340 250 A/m 10 25°C ; 200 kHz 320 µ` µ`` 100°C ; 200 kHz 170 100 mT 230 Tc 25 °C 100 mT mW / cm ³ Pv 1 100 10 kHz ≤ 0,25 mT °C 1000 f / kHz Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 6000 4000 5000 3000 4000 200 mT 300 mT 100 mT 50 mT µi µa 5000 2000 3000 1000 2000 0 1000 f = 16 kHz 0 50 100 150 200 20 250 40 60 80 100 120 T / °C T / °C Magnetization curves Incremental permeability 10000 500 400 µΔ B / mT 1000 300 200 100 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 H / A/m 200 250 300 1 10 100 H_ / A/m 149 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 1000 10000 200 mT 100kHz/200mT 100 mT 200kHz/100mT 400kHz/50mT 100 100kHz/100mT Pv / mW/cm³ Pv / mW/cm³ 1000 50 mT 100 25 mT 10 25 °C 100 °C 10 20 40 60 80 T / °C 100 120 1 100 140 1000 f / kHz Induction Bmax as a function of temperature T at 250 A/m Amplitude permeability µa 500 5000 25°C 100°C 450 400 4000 300 3000 µa Bmax / mT 350 250 200 2000 150 100 1000 50 f = 16 kHz 0 0 0 20 40 60 80 100 T / °C 120 140 160 180 200 0 150 100 200 B / mT 300 400 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 324 A low frequency power material for standard transformers at frequencies up to 0,2 MHz SYM BOL VALUE U N IT µi 2300 ± 25% 1 ta n δ / µ i < 4 ,5 ηB ≤ 1 10 10 -6 C O N D IT IO N S Complex permeability 10000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 100 °C 2 5 °C ; 0 ,1 M H z ≤ 0 ,2 5 m T -6 25 °C 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T / mT 1000 420 B µ`µ`` 2 5 °C ; 1 6 k H z 2 5 0 A /m mT 1 0 0 °C ; 1 6 kH z > 340 100 2 5 0 A /m 100 °C 2 5 °C ; 1 0 0 k H z 685 200 m T m W / cm ³ Pv 1 0 0 °C ; 1 0 0 kH z 560 200 m T 230 Tc 10 100 1 0 kH z ≤ 0 ,2 5 m T °C µ` µ`` 25 °C 1000 f / kHz Initial permeability µi as a function of temperature T 10000 Amplitude permeability µa 6000 6000 5000 5000 4000 200 mT 4000 100 mT µi µa 3000 50 mT 3000 300 mT 2000 2000 1000 f =16 kHz 0 1000 0 50 100 150 200 250 20 40 60 80 100 120 T / °C T / °C Magnetization curves Incremental permeability 500 10000 400 1000 µΔ B / mT 300 200 100 100 25 °C 100 °C Frequency: 10 kHz Induction: ≤ 0,2 mT 0 10 -50 0 50 100 150 200 H / A/m 250 300 350 400 1 10 100 H_ / A/m 151 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 1000 200 mT 10000 100 mT 1000 Pv / mW/cm³ 100 Pv / mW/cm³ 200 mT 50 mT 10 100 mT 50 mT 100 10 25°C 100°C f = 100 kHz 1 1 20 40 60 80 T / °C 100 120 10 140 100 f / kHz Induction Bmax as a function of temperature T at 250 A/m 1000 Amplitude permeability µa 5000 500 25°C 100°C 450 4000 400 300 3000 µa Bmax / mT 350 250 200 2000 150 100 1000 50 f = 16 kHz 0 0 0 20 40 60 80 100 T / °C 120 140 160 180 200 0 152 100 200 B / mT 300 400 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY FERROCARIT Initial permeability Relative loss factor frequency Hysteresis material constant µi 1 1) Fi 292 Fi 262 Fi 248 Fi 242 Fi 221 900 650 440 400 250 ± 20% ± 20% ± 20% ± 20% ± 20% tanδ µi 10 -6 < 12 < 30 < 10 < 50 < 300 < 1300 < 25 < 100 < 40 < 200 f MHz 0,01 0,2 0,05 1,6 ηB 0,2 2 -6 10 mT 0,2 2 0,2 5 < 11 < 10 B mT 330 480 370 400 330 Coercivity HC A/m 20 40 120 45 120 Curie temperature TC °C 140 290 240 230 330 Rel. temperature factor αF 10 K < 2,5 < 20 < 20 <5 DF 10 ρ Ωm Induction H = 3000 A/m -6 +23...+70°C Rel. disaccommodation factor -6 <6 T = 40°C DC - Resistivity 1) > 10 7 >1 new material 153 > 100 > 10 7 > 10 4 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | SUMMARY FERROCARIT Initial permeability Relative loss factor frequency Hysteresis material constant µi Fi 212 Fi 150 Fi 130 Fi 110 150 100 50 30 12 ± 20% ± 20% ± 20% ± 20% ± 20% 1 tanδ µi 10 f MHz ηB Fi 215 -6 < 80 < 140 < 50 < 150 < 100 < 700 < 80 < 500 < 150 < 400 1 5 2 10 10 50 10 50 10 100 -6 10 mT B mT 430 310 300 270 240 Coercivity HC A/m 100 600 200 700 1800 Curie temperature TC °C 385 420 430 500 580 Rel. temperature factor αF 10 K <7 < 20 < 25 < 80 DF 10 ρ Ωm Induction H = 3000 A/m -6 +23...+70°C Rel. disaccommodation factor -6 T = 40°C DC - Resistivity > 10 7 > 10 154 4 > 10 3 > 10 3 > 10 4 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 292 A high permeability NiZn ferrite for use in broadband EMI-suppression in a frequency range of 30 - 1000 MHz, as well as RF broadband transformers SYM BOL VALUE U N IT µi 900 ± 20% 1 ta n δ / µ i < 30 10 C O N D IT IO N S Complex permeability 1000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 2 5 °C ; 0 ,2 M H z ≤ 0 ,2 5 m T -6 ηB µ`µ`` 2 5 °C ; 1 6 k H z 340 B 3 0 0 0 A /m mT 100 Pv µ` µ`` 10 140 Tc 1 0 kH z ≤ 0 ,2 5 m T °C 0,1 1 10 100 f / MHz Initial permeability µi as a function of temperature T Relative loss factor as a function of frequency f 1000 1200 1000 tanδ/µi / 10-6 µi 800 600 100 400 200 0 10 -50 0 50 T / °C 100 0,1 150 1 f / MHz Magnetization curves 10 specific impedance 350 1000 300 100 |z| / Ω/cm B / mT 250 200 . 150 100 10 1 50 0 -50 0 50 100 150 200 250 H / A/m 300 350 400 450 0,1 0,01 500 155 0,1 1 f / MHz 10 100 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Induction Bmax as a function of temperature T at 3000 A/m 400 350 100 mT 300 Bmax / mT Pv / mW/cm3 100 50 mT 250 200 150 100 1 20 40 60 80 T / °C 100 120 20 140 Spezific power loss Pv as a function of frequency f and induction B 10000 200 mT Pv / mW/cm3 100 mT 1000 50 mT 100 25 °C 100 °C 10 10 100 f / kHz 1000 156 40 60 80 T / °C 100 120 140 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 262 A medium permeability MnZn ferrite for broadband filters and tuning material for frequencies up to 2 MHz SYM BOL VALUE U N IT µi 650 ± 20% 1 ta n δ / µ i < 50 10 C O N D IT IO N S Complex permeability 10000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 2 5 °C ; 1 ,6 M H z ≤ 0 ,2 5 m T -6 1000 ηB mT Pv m W / cm ³ µ`µ`` 2 5 °C ; 1 6 k H z 480 B 3 0 0 0 A /m 100 10 µ` µ`` 1 290 Tc 0,1 °C Initial permeability µi as a function of temperature T 1 f / MHz 10 Relative loss factor as a function of frequency f 1000 1200 1000 tanδ/µi / 10-6 µi 800 600 100 400 200 0 10 -50 0 50 100 150 200 250 0,1 300 T / °C Magnetization curves 1 f / MHz 10 specific impedance 1000 500 400 |z| / Ω/cm B / mT 100 300 . 200 10 100 0 -100 1 0 100 200 300 400 500 H / A/m 600 700 800 0,1 900 1000 157 1 f / MHz 10 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 158 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 248 A low permeability material with a broad frequency range for noise suppression applications SYM BOL VALUE U N IT µi 440 1 ta n δ / µ i 1400 10 10 -6 10 Complex permeability 1000 ≤ 0 ,2 5 m T 2 5 °C ; 5 M H z ≤ 0 ,2 5 m T -6 / mT 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T 100 2 5 °C ; 1 6 k H z 370 B µ`µ`` ηB C O N D IT IO N S 2 5 °C ; ≤ 1 0 k H z 3 0 0 0 A /m mT 2 5 °C ; 1 6 k H z 10 3 0 0 0 A /m 2 5 °C ; 1 0 0 k H z m W / cm ³ Pv 200 m T µ` µ`` 1 0 0 °C ; 1 0 0 kH z 200 m T 240 Tc 1 1 0 kH z ≤ 0 ,2 5 m T °C 0,1 Initial permeability µi as a function of temperature T 1 10 f / MHz 100 1000 Relative loss factor as a function of frequency f 10000 3000 2500 1000 tanδ/µi / 10-6 µi 2000 1500 100 1000 500 10 0 0 50 100 150 T / °C 200 250 0,1 300 Magnetization curves 1 f / MHz 10 Incremental permeability 400 1000 µΔ B / mT 300 200 100 100 Frequency: 10 kHz Induction: ≤ 0,2 mT 0 -500 10 0 500 1000 1500 H / A/m 2000 2500 3000 1 10 100 H / A/m 159 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL specific impedance Amount of complex permeability 10000 100 1000 |µ| |z| / Ω/cm 1000 . 10 100 1 10 0,1 1 10 f / MHz 100 1000 0,1 1 10 f / MHz 160 100 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 242 A medium permeability NiZn ferrite for applications requiring a high specific resistance by relatively low power losses SYM BOL VALU E U N IT µi 400 ± 20% 1 ta n δ / µ i < 100 10 < 11 -6 10 Complex permeability 1000 ≤ 0 ,2 5 m T 2 5 °C ; 2 M H z ≤ 0 ,2 5 m T -6 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T / mT 100 2 5 °C ; 1 6 k H z 420 B µ`µ`` ηB C O N D IT IO N S 2 5 °C ; ≤ 1 0 k H z 3 0 0 0 A /m mT 1 0 0 °C ; 1 6 k H z >300 10 3 0 0 0 A /m 2 5 °C ; 1 0 0 k H z 700 100 m T m W / cm ³ Pv µ` µ`` 1 0 0 °C ; 1 0 0 k H z 550 100 m T 230 Tc 1 1 °C 10 100 1000 f / MHz Initial permeability µi as a function of temperature T Relative loss factor as a function of frequency f 1200 1000 1000 tanδ/µi / 10-6 µi 800 600 400 100 200 0 10 -50 0 50 100 150 200 250 300 10 1 T / °C f / MHz Magnetization curves Incremental permeability 1000 500 300 µΔ B / mT 400 100 200 100 Frequency: 10 kHz Induction: ≤ 0,2 mT 0 -100 10 0 100 200 300 400 500 H / A/m 600 700 800 10 900 1000 161 100 H / A/m 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of temperature T Spezific power loss Pv as a function of frequency f and induction B 1000 10000 200 mT 100 mT Pv / mW/cm3 Pv / mW/cm3 200 mT 100 mT 1000 50 mT 100 50 mT 25 °C 100 °C f = 25 kHz 10 10 20 40 60 80 T / °C 100 120 10 140 Amplitude permeability µa 100 f / kHz 1000 Induction Bmax as a function of temperature T at 3000 A/m 4000 500 3500 100 mT 450 200 mT 400 3000 2500 Bmax / mT µa 50 mT 2000 1500 350 300 250 1000 300 mT 500 200 f = 25 kHz 0 150 20 40 60 80 T / °C 100 120 140 -50 specific impedance |z| / Ω/cm 100 . 10 1 10 50 100 T / °C 1000 1 0 100 1000 f / MHz 162 150 200 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 221 A medium permeability NiZn ferrite for use in broadband EMI-suppression in a frequency range of 30 - 1000 MHz, as well as RF broadband transformers SYM BOL VALUE U N IT µi 250 ± 20% 1 ta n δ / µ i < 200 10 < 10 -6 10 Complex permeability 1000 ≤ 0 ,25 m T 2 5°C ; 5 M H z ≤ 0 ,25 m T -6 2 5 °C ; 1 0 k H z ≤ 1 ,5 m T to 3 m T / mT 100 2 5 °C ; 1 6 k H z 330 B µ`µ`` ηB C O N D IT IO N S 2 5 °C ; ≤ 1 0 k H z 3 0 0 0 A /m mT 10 Pv µ` µ`` 1 330 Tc 1 °C 10 100 1000 f / MHz Initial permeability µi as a function of temperature T Relative loss factor as a function of frequency f 1000 600 500 tanδ/µi / 10-6 µi 400 300 100 200 100 10 0 -50 0 50 100 150 T / °C 200 250 300 10 1 350 f / MHz Magnetization curves specific impedance 400 1000 300 |z| / Ω/cm B / mT 100 200 . 10 100 0 -1000 1 0 1000 2000 3000 4000 1 H / A/m 10 100 f / MHz 163 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 164 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 215 A high ohmic NiZn ferrite with optimized saturation induction at high ambient temperatures, e.g. for HID - Xenon ignition modules SYM BOL VALU E U N IT µi 150 ± 20% 1 ta n δ / µ i < 140 10 C O N D IT IO N S Complex permeability 1000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 2 5 °C ; 5 M H z ≤ 0 ,2 5 m T -6 ηB 100 430 B µ`µ`` 2 5 °C ; 1 2 k H z 3 0 0 0 A /m mT 1 7 0 °C ; 1 2 k H z 325 10 3 0 0 0 A /m 2 5 °C ; 1 0 0 k H z 1800 m W / cm ³ Pv 1500 100 m T µ` µ´´ 1 0 0 °C ; 1 0 0 k H z 100 m T 390 Tc 1 1 10 kHz ≤ 0 ,2 5 m T °C 10 100 1000 f / MHz Initial permeability µi as a function of temperature T Relative loss factor as a function of frequency f 1000 10000 900 800 700 tanδ/µi / 10-6 1000 µi 600 500 400 100 300 200 100 0 -100 10 0 100 200 T / °C 300 400 500 1 Magnetization curves 10 f / MHz 100 Induction Bmax as a function of temperature at 3000 A/m 500 500 450 400 Bmax / mT B / mT 400 300 200 350 300 250 100 200 0 -1000 150 0 1000 H / A/m 2000 3000 -50 0 50 100 T / °C 165 150 200 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Specific power loss Pv as a function of frequency f and induction B specific impedance 1000 10000 100 20 mT |z| / Ω/cm Pvbez. / mW/cm³ 50 mT 1000 . 10 100 25°C 100°C 1 10 100 1 1000 f / kHz 10 100 f / MHz 166 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 212 A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance transformers (baluns) SYM BOL VALU E U N IT µi 100 ± 20% 1 ta n δ / µ i < 150 10 -6 C O N D IT IO N S Complex permeability 1000 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 2 5 °C ; 1 0 M H z ≤ 0 ,2 5 m T ηB 100 330 B µ`µ`` 2 5 °C ; 1 6 k H z 3 0 0 0 A /m mT 1 0 0 °C ; 1 6 k H z 300 10 3 0 0 0 A /m 2 5 °C ; 1 0 0 k H z 580 m W / cm ³ Pv 770 50 m T µ` µ`` 1 0 0 °C ; 1 0 0 k H z 50 m T 420 Tc 1 1 °C 10 100 1000 f / MHz Initial permeability µi as a function of temperature T Relative loss factor as a function of frequency f 120 1000 100 tanδ/µi / 10-6 µi 80 60 100 40 20 0 -100 10 0 100 200 T / °C 300 400 500 1 10 f / MHz 100 Induction Bmax as a function of temperature at 3000 A/m Magnetization curves 500 400 450 400 Bmax / mT B / mT 300 200 350 300 250 100 200 0 -1000 150 0 1000 2000 H / A/m 3000 4000 5000 -50 0 50 100 T / °C 167 150 200 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Specific power loss Pv as a function of frequency f and induction B specific impedance 1000 50 mT 100 1000 20 mT |z| / ?/cm Pvbez. / mW/cm³ 10000 . 10 100 25°C 100°C 1 10 100 1 1000 f / kHz 10 100 f / MHz 168 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 150 A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance transformers (baluns) SYM BOL VALU E U N IT µi 50 ± 20% 1 ta n δ / µ i < 700 10 C O N D IT IO N S Complex permeability 100 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 2 5 °C ; 5 0 M H z ≤ 0 ,2 5 m T -6 ηB µ`µ`` 2 5 °C ; 1 6 k H z 300 B 3 0 0 0 A /m mT 10 Pv µ` µ`` 1 430 Tc 10 °C Initial permeability µi as a function of temperature T 100 f / MHz 1000 Relative loss factor as a function of frequency f 140 1000 120 tanδ/µi / 10-6 100 µi 80 60 100 40 20 0 -100 10 0 100 200 T / °C 300 400 500 1 Magnetization curves 10 f / MHz 100 specific impedance 1000 400 300 B / mT |z| / Ω/cm 100 200 . 10 100 0 -2000 1 0 2000 4000 H / A/m 6000 8000 10 10000 169 100 f / MHz 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 130 A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance transformers (baluns) SYM BOL VALU E U N IT µi 30 ± 20% 1 ta n δ / µ i < 500 10 C O N D IT IO N S Complex permeability 100 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 2 5 °C ; 5 0 M H z ≤ 0 ,2 5 m T -6 µ`µ`` ηB 2 5 °C ; 1 6 k H z 270 B 3 0 0 0 A /m mT 10 Pv µ` µ`` 1 500 Tc 10 °C Initial permeability µi as a function of temperature T 100 f / MHz 1000 Relative loss factor as a function of frequency f 1000 120 100 tanδ/µi / 10-6 µi 80 60 100 40 20 0 -100 10 0 100 200 300 400 500 10 600 T / °C Magnetization curves 100 f / MHz 1000 specific impedance 1000 400 300 |z| / Ω/cm B / mT 100 200 . 10 100 0 -2000 1 0 2000 4000 H / A/m 6000 8000 10 10000 170 100 f / MHz 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCARIT | FI 110 A low permeability NiZn ferrite for use in RF tuning, broadband and balance-to-unbalance transformers (baluns) SYM BOL VALU E U N IT µi 12 ± 20% 1 ta n δ / µ i < 400 10 C O N D IT IO N S Complex permeability 100 2 5 °C ; ≤ 1 0 k H z ≤ 0 ,2 5 m T 2 5 °C ; 1 0 0 M H z ≤ 0 ,2 5 m T -6 ηB 10 240 B µ´µ´´ 2 5 °C ; 1 6 k H z 3 0 0 0 A /m mT 1 Pv µ` µ`` 0,1 580 Tc 10 °C Initial permeability µi as a function of temperature T 100 f / MHz 1000 Relative loss factor as a function of frequency f 1000 50 tanδ/µi / 10-6 40 µi 30 20 100 10 0 -100 10 0 100 200 300 T / °C 400 500 10 600 Magnetization curves 100 f / MHz 1000 specific impedance 400 1000 300 |z| / Ω/cm B / mT 100 200 . 10 100 0 -5000 1 0 5000 10000 15000 20000 10 H / A/m 171 100 f / MHz 1000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL 172 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.2 PLASTOFERRITE | GENERAL DESCRIPTION Magnetically Soft Plastoferrite Fi520 - Fi522 Plastoferrite Fi520 - Fi522 represent a special development in our range of soft magnetic ferrite materials. The basis of this materials is a homogenization process which allows production of an injectable plastic compound with a high proportion of loading material from soft ferrite powder, spread evenly throughout the plastic matrix. The result is a soft magnetic material particularly suited for small signal applications but providing all the advantages of the free shaping of injection moulding, thus permitting economical production of complex core geometries with high dimensional accuracy. Another advantage of cores made from Plastoferrite is the low brittleness of the material and consequently its insensitiveness especially to mechanical load. The general technical data of the magnetically soft Plastoferrite is specified in the following charts. The filling ratio of this plastic compound is very high, which is indicated by the relatively high admissible magnetic load - according to the magnetization curve - and the fact that, for magnetically thinned materials meaning distributed air gaps, initial permeability is high, reaching a value of µi = 20. If requested, lower values of initial permeability can be individually set up by modification of the mixing ratio ferrite powder/plastic. The particular electrical advantages are the considerable wide-band property of the material up to MHz-range and the high temperature-consistency of permeability up to values in direct vicinity of the Curie temperature for Fi520 and up to 200°C for Fi522. Thus Plastoferrite Fi520 and Fi522 are interesting materials for various applications, for example in sensors or for the production of magnetically active coil formers, which demand a combination of soft magnetic qualities along with the possibilities of free shaping 173 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.2 PLASTOFERRITE | SUMMARY Plastoferrite Initial permeability µi Fi 520 Fi 522 20 19 ± 10% ± 10% 1 f = 10 kHz tanδ µi 10-6 < 3500 < 5000 f MHz 10 10 ηB 10-6 mT < 700 < 300 B mT 280 350 Coercivity HC A/m 400 400 Curie temperature TC °C 150 > 200 DC - Resistivity ρ Ωm > 3,0 > 1,0 αF 10-6 K < 30 < 50 Relative loss factor frequency Hysteresis material constant f = 20 kHz Induction H = 30000 A/m Rel. temperature factor 25°C - 70°C 174 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.2 PLASTOFERRITE | FI 522 A material with a considerable wide-band property up to MHz-range and high temperature-consistency of permeability up to 200°C. For use in sensores or magnetically active coil formers with the possibility of free shaping Symbol Value Unit µi 19 ± 10% 1 tan δ / µi < 5000 ηB < 300 10 -6 Complex permeability 100 <= 0,25 mT 25°C ; 10 MHz -6 <= 0,25 mT / mT 25°C ; 20 kHz <=1,5mT to 3mT µ`µ`` 10 Conditions 25°C ; <= 10 kHz 25°C ; 16 kHz 350 B mT Rspez. > 1,0 Ωm aF < 50 -6 Tc > 200 10 10 30000 A/m µ´ µ´´ -25° - 70°C /k 1 10 °C 100 f / MHz Initial permeability µi as a function of temperature T 1000 Magnetization curves 400 30 300 µi B / mT 20 200 10 100 0 -50 0 50 100 T / °C 150 200 0 -5000 250 175 0 5000 10000 15000 H / A/m 20000 25000 30000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.2 PLASTOFERRITE | FI 520 A material with a considerable wide-band property up to MHz-range and high temperature-consistency of permeability nearly up to Curie-temperature. For use in sensors or magnetically active coil formers with the possibility of free shaping Symbol Value Unit µi 20 ± 10% 1 tan δ / µi < 3500 10 ηB < 700 -6 Conditions Complex permeability 100 25°C ; <= 10 kHz <= 0,25 mT <= 0,25 mT / mT mT Rspez. > 3,0 aF < 30 Tc 150 25°C ; 20 kHz <=1,5mT to 3mT 25°C ; 16 kHz 280 B 25°C ; 10 MHz µ`µ`` 10 -6 10 30000 A/m µ` µ`` Ωm 10 -6 /k -25° - 70°C 1 10 °C 100 f / MHz Initial permeability µi as a function of temperature T 1000 Magnetization curves 300 20 200 µi B / mT 30 100 10 0 -5000 0 -50 0 50 T / °C 100 150 176 0 5000 10000 15000 H / A/m 20000 25000 30000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCART | OVERVIEW FERROCART (IRON POWDER) Our FERROCART material grades are manufactured by pressing; they consist of a blend of magnetically soft metal powder and isolating binder. Through fine grain dispersion, eddy currents are largely suppressed. Different FERROCART types, which are suitable for application at low frequency ranges, up to approximately 100 MHz, can be manufactured by mixture of metal powder types and isolation portions. We can fully take advantage of the metallic Magnetika, which is the high magnetization, with this material, for instance in component parts used for power electronics. Furthermore fine grain dispersion implicates internal demagnetization with the result of an extremely good stabilization. Air gaps, which have to be mostly used in strip band cores or laminated steel cores, are no more necessary. By using FERROCART material grades, it ensues in many cases, like loading coil - and noise suppression choke applications, very cheap inductive component parts. Remark The data of our different material grades as shown on the following tables, were measured on toroidal test cores. As is well known there is no direct relation between material characteristics as measured on test pieces and the corresponding parameters of other cores, made of the same material, but different in shape and size, especially if cores are applied outside those ranges (e.g. of frequency, induction, or temperature), within which the catalogue material properties have been ascertained. No guarantee can be given that specifications as laid down in this catalogue may not be changed before the next edition is given to press. Obligatory assurances of properties require separate agreements in writing in order to become efficacious. For these reasons, if new components are to be designed, we ask our customers for due contact in order to agree on suitable specifications. This can be done either by fixing measuring conditions and quantities or by exchanging standard cores or components. General technical characteristics Density ≈ 5 . . . 7,4 g·cm-3 DC Resistivity ≈ 5 Ω·m E-Modul ≈ 30 . . . 70 kN·mm-3 Expansion Coefficient ≈ 10 . . . 25 10-6·K-1 ≈ 10 W·m-1·K-1 Thermal Conductivity 177 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCART NEW MATERIAL Fe 897: Iron powder with high amplitude permeability 500 Fe 897 Fe 893 450 400 350 300 µa 250 200 150 100 50 f = 1 kHz 0 100 1000 Hs / A/m TASK: Development of a µa optimized iron powder material for AC applications Result: Fe897 with a amplidude permability of 420 with low power losses 178 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCART | SUMMARY Application Frequency range Magnetic load Powder materials MHz FERROCART High Q circuits ≤ 10 Fe 818 (Coils with high thermal and ≤ 100 Fe 810 temporal stability insensible of Core shape Rod, tube, screw, nipple and cup cores external magnetic fields) All powder materials have a high Anti-interference and ≤ 10 damping coils saturation Fe 876 magnetization Fe 850 multi-aperture, E-, and are there- Fe 818 and pot cores, toroids fore usable Fe 810 Power applications at extremely Fe 897 (Inductors and transformers high magnetic Fe 896 with high thermal and temporal load. Fe 893 stability, for high AC amplitudes or high premagnetization, e.g. Rod, tube, Fe 892 Fe 876 ≤ 0,2 loading coils, noise Fe 875 suppression coils) Fe 850 Toroids Fe 835 Fe 818 Toroids for thyristor noise Fe 896 suppression chokes for Fe 892 dimmers. 179 Toroids B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCART | SUMMARY FERROCART Initial permeability Relative loss factor frequency Rel. temperature factor 25°C - 70°C Fe 897 µi Rel. temperature factor 140 110 100 75 ± 15% ± 15% ± 15% ± 15% 1600 120 1600 0,16 0,01 0,16 0,01 0,16 100 < 18 < 18 <5 °C 200 200 200 200 180 Toroids Toroids Toroids Toroids Toroids Fe 875 Fe 850 Fe 835 Fe 818 f 1) 75 55 35 ± 15% ± 15% ± 15% 1 MHz αF 0,01 1400 < 10 tanδ -6 µi 10 0,16 190 < 18 µi 0,01 1200 10-6 K Maximum operating temperature 1) 125 αF 25°C - 70°C preferred shapes Fe 876 MHz FERROCART frequency Fe 892 f preferred shapes Relative loss factor Fe 893 ± 15% 1 tanδ -6 µi 10 Maximum operating temperature ¹ Initial permeability Fe 896 0,01 0,16 Fe 810 18 10 ± 10% ± 10% 120 1300 140 800 100 180 110 200 500 2000 0,01 0,16 0,02 0,3 0,05 0,5 0,05 0,5 12 100 -6 10 K < 18 < 15 < 12 < 12 <2 °C 180 180 150 150 120 Toroids Toroids Toroids the maximum operating temperature of coated cores depends on the temperature behaviour of the coating material. 180 Toroid, rod, tube, screw cores B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 897 A material with high thermal and temporal stability , for high AC amplitudes or high premagnetization. For use in power applications SYMBOL VALUE UNIT µi 125 ± 15% 1 tanδ / µ i 1600 10 µa 420 1 CONDITIONS Initial permeability µi as a function of frequency f 160 25°C ; ≤ 10 kHz ≤ 0,25 mT -6 140 25°C ; 0,16 MHz ≤ 0,25 mT 120 25°C ; 1 kHz 100 µi 500 mT 25°C ; 10 kHz 73 2000 A/m 1 µΔ 60 25°C ; 10 kHz 37 40 5000 A/m aF ≤ 18 Tmax 200 10 -6 /K 80 20 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 0 10 °C Incremental permeability µΔ as a function of premagnetization H 100 f / kHz 1000 Amplitude permeability µa as a function of induction Bs 450 140 400 350 100 300 80 250 µΔ µa 120 200 60 150 40 100 20 50 f = 1 kHz ΔB = 2 mT 0 0 100 1000 H_ / A/m 10 10000 Magnetization curves 500 2000 450 1800 1600 400 1400 350 1200 300 1000 250 µa B / mT 1000 Amplitude permeability µa as a function of magnetic field strength Hs 2200 800 200 600 150 400 100 200 50 0 -5000 100 Bs / mT 0 5000 10000 15000 H / A/m 20000 25000 0 100 30000 181 f = 1 kHz 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of frequency f and induction Bs 10000 10 0 z kH kH z kH z 40 10 kH z 100 1 Pv / mW/cm³ 1000 10 10 100 Bs / mT 1000 182 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.1 FERROCART | FE 896 A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization. For use in power applications (e.g. loading coils, noise suppression) SYMBOL VALUE UNIT µi 140 ± 15% 1 tanδ / µi 1200 10 µa 270 1 CONDITIONS Initial permeability µi as a function of frequency f 160 25°C ; ≤ 10 kHz ≤ 0,25 mT -6 140 25°C ; 0,16 MHz ≤ 0,25 mT 120 1 kHz 100 500 mT 2000 A/m 1 µΔ 80 µi 25°C ; 10 kHz 90 60 25°C ; 10 kHz 45 40 5000 A/m aF < 10 Tmax 200 -6 10 /K 20 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 0 10 °C Incremental permeability µΔ as a function of premagnetization H 100 f / kHz 1000 Amplitude permeability µa as a function of induction Bs 300 160 250 140 120 200 150 80 µa µΔ 100 60 100 40 50 20 f = 1 kHz ΔB = 2 mT 0 0 100 1000 H_ / A/m 10 10000 Magnetization curves 100 Bs / mT 1000 Amplitude permeability µa as a function of magnetic field strength Hs 2000 300 1800 1600 250 1400 200 B / mT 1200 1000 µa 150 800 100 600 400 50 200 0 -5000 f = 1 kHz 0 5000 10000 15000 H / A/m 20000 25000 0 100 30000 183 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Unipolar losses (20% ripple) Unipolar losses (30% ripple) 1000 1000 100 kHz 75 kHz 50 kHz 75 kHz Pv / mW/cm³ Pv / mW/cm³ 100 kHz 50 kHz 100 25 kHz 10 1000 2000 3000 H_ / A/m 4000 10 1000 5000 Spezific power loss Pv as a function of frequency f and induction Bs kH z 10 0 kH z 1000 kH z 40 10 Pv / mW/cm³ 10000 100 10 10 100 Bs / mT 25 kHz 100 1000 184 2000 3000 H_ / A/m 4000 5000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 893 A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization. For use in power applications (e.g. loading coils, noise suppression coils) SYMBOL VALUE UNIT µi 110 ± 15% 1 tanδ / µ i 1400 10 µa 210 1 CONDITIONS Initial permeability µi as a function of frequency f 120 25°C ; ≤ 10 kHz ≤ 0,25 mT -6 ≤ 0,25 mT 80 1 kHz µi 500 mT 25°C ; 10 kHz 88 2000 A/m 1 µΔ 100 25°C ; 0,16 MHz 40 25°C ; 10 kHz 50 5000 A/m aF ≤ 18 Tmax 200 10 -6 /K 60 20 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 0 10 °C Incremental permeability µΔ as a function of premagnetization H 100 f / kHz 1000 Amplitude permeability µa as a function of induction Bs 250 120 200 100 150 µa µΔ 80 60 100 40 50 20 ΔB = 2 mT 0 100 f = 1 kHz 0 1000 H_ / A/m 10000 10 Magnetization curves 1000 Amplitude permeabilität µa as a function of magnetic field strength Hs 2000 250 1800 1600 200 1400 1200 150 1000 µa B / mT 100 Bs / mT 800 100 600 400 50 200 0 -5000 f = 1 kHz 0 5000 10000 15000 H / A/m 20000 25000 0 100 30000 185 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Unipolar losses (20% ripple) Unipolar losses (30% ripple) 10000 10000 100 kHz Pv / mW/cm³ 100 kHz 75 kHz 50 kHz 100 1000 Pv / mW/cm³ 1000 25 kHz 10 1000 2000 3000 H_ / A/m 4000 Specific power loss Pv as a function of frequency f and induction Bs kH kH z 10 0 10 kH z 40 Pv / mW/cm³ z 10000 1000 100 10 10 100 Bs / mT 50 kHz 25 kHz 100 10 1000 5000 1000 186 75 kHz 2000 3000 H_ / A/m 4000 5000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 892 A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization. For use in noise suppression chokes for dimmers SYMBOL VALUE UNIT µi 100 ± 15% 1 tanδ / µ i 1600 10 µa 310 1 CONDITIONS Initial permeability µi as a function of frequency f 120 25°C ; ≤ 10 kHz ≤ 0,25 mT -6 ≤ 0,25 mT 80 25°C ; 1 kHz 500 mT 60 µi 25°C ; 10 kHz 70 2000 A/m 1 µΔ 100 25°C ; 0,16 MHz 40 25°C ; 10 kHz 36 5000 A/m aF ≤ 18 Tmax 200 10 -6 /K 20 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 0 10 °C Incremental permeability µΔ as a function of premagnetization H 100 f / kHz 1000 Amplitude permeability µa as a function of induction Bs 350 120 300 100 250 200 µa µΔ 80 60 150 40 100 20 50 ΔB = 2 mT f = 1 kHz 0 0 100 1000 H_ / A/m 10 10000 Magnetization curves 100 Bs / mT 1000 Amplitude permeability µa as a function of magnetic field strength Hs 2000 350 1800 300 1600 1400 250 200 1000 µa B / mT 1200 150 800 600 100 400 50 200 0 -5000 f = 1 kHz 0 5000 10000 15000 H / A/m 20000 25000 0 100 30000 187 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Spezific power loss Pv as a function of frequency f and induction Bs 10 0 kH z 1000 10 kH z 40 Pv / mW/cm³ kH z 10000 100 10 10 100 Bs / mT 1000 188 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 876 A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization. For use in anti-interference and damping coils SYMBOL VALUE UNIT µi 75 ± 15% 1 tanδ / µ i 100 10 µa 120 1 -6 CONDITIONS Initial permeability µi as a function of frequency f 25°C ; ≤ 10 kHz 100 ≤ 0,25 mT 90 25°C ; 0,16 MHz ≤ 0,25 mT 80 70 1 kHz 60 25°C ; 10 kHz 66 46 <5 Tmax 180 10 -6 /K 50 40 2000 A/m 1 µΔ αF µi 500 mT 25°C ; 10 kHz 30 5000 A/m 20 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 10 0 10 °C Incremental permeability µΔ as a function of premagnetization H_ 100 f / kHz 1000 Amplitude permeability µa as a function of Bs 140 100 120 90 80 100 70 80 µa µΔ 60 50 60 40 40 30 20 20 10 f = 1 kHz ΔB = 2 mT 0 0 100 1000 H_ / A/m 10 10000 Magnetization curves 1000 Amplitude permeability µa as a function of Hs 140 2000 1800 120 1600 1400 100 1200 80 1000 µa B / mT 100 Bs / mT 800 60 600 40 400 200 0 -1000 0 20 f = 1 kHz 0 0 100 10000 20000 30000 40000 50000 60000 70000 80000 H / A/m 189 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Unipolar losses (20% ripple) Unipolar losses (30% ripple) 1000 1000 100 kHz 75 kHz 50 kHz 75 kHz 50 kHz 100 25 kHz 10 2000 3000 4000 H_ / A/m 5000 Pv / mW/cm³ Pv / mw/cm³ 100 kHz 10 2000 6000 Spezific power loss Pv as a function of frequency f and induction Bs 10 kH z 10 0 kH z kH z 1000 40 Pv / mW/cm³ 10000 100 10 10 100 Bs / mT 25 kHz 100 1000 190 3000 4000 H_ / A/m 5000 6000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 875 A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization. For use in power applications (e.g. loading coils, noise suppression coils) SYMBOL VALUE UNIT µi 75 ± 15% 1 tanδ / µi 1300 10 µa 240 1 -6 CONDITIONS Initial permeability µi as a function of frequency f 25°C ; ≤ 10 kHz 100 ≤ 0,25 mT 90 25°C ; 0,16 MHz ≤ 0,25 mT 80 70 1 kHz 60 µi 500 mT 25°C ; 10 kHz 61 1 µΔ 38 aF ≤ 18 Tmax 180 -6 10 /K 50 40 2000 A/m 25°C ; 10 kHz 30 5000 A/m 20 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 10 0 10 °C Incremental permeability µΔ as a function of premagnetization H 100 f / kHz 1000 Amplitude permeability µa as a function of induction Bs 300 100 90 250 80 200 70 µa µΔ 60 50 40 150 100 30 20 50 10 f = 1 kHz ΔB = 2 mT 0 0 100 1000 H_ / A/m 10 10000 Magnetization curves 100 Bs / mT 1000 Amplitude permeability µa as a function of magnetic field strength Hs 2000 300 1800 1600 250 1400 200 1000 µa B / mT 1200 150 800 100 600 400 50 200 0 -5000 f = 1 kHz 0 5000 10000 15000 H / A/m 20000 25000 0 100 30000 191 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Unipolar losses (20% ripple) Unipolar losses (30% ripple) 1000 1000 100 kHz 75 kHz 50 kHz 100 kHz Pv / mW/cm³ Pv / mW/cm³ 75 kHz 50 kHz 100 25 kHz 10 1000 2000 3000 H_ / A/m 4000 10 1000 5000 Spezific power loss Pv as a function of frequency f and induction Bs kH z 10 0 kH z 10 kH z 40 Pv / mW/cm³ 10000 1000 100 10 10 100 Bs / mT 25 kHz 100 1000 192 2000 3000 H_ / A/m 4000 5000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 850 A material with high thermal and temporal stability, for high AC amplitudes or high premagnetization. For use in anti-interference and damping coils SYMBOL VALUE UNIT µi 55 ± 15% 1 tanδ / µ i 800 10 µa 93 1 -6 CONDITIONS Initial permeability µi as a function of frequency f 25°C ; ≤ 10 kHz 100 ≤ 0,25 mT 90 25°C ; 0,3 MHz ≤ 0,25 mT 80 70 1 kHz 60 25°C ; 10 kHz 52 43 ≤ 15 Tmax 180 10 -6 /K 25°C ; 10 kHz 30 5000 A/m 20 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 10 0 10 °C Incremental permeability µΔ as a function of premagnetization H_ 1000 Amplitude permeability µa as a function of Bs 90 90 80 80 70 70 60 µa 60 50 50 40 40 30 30 20 20 10 10 ΔB = 2 mT f = 1 kHz 0 0 100 1000 H_ / A/m 10 10000 Magnetization curves 100 1800 90 1600 80 1400 70 1200 1000 60 1000 800 50 40 600 30 400 20 200 0 -1000 0 100 Bs / mT Amplitude permeability µa as a function of Hs 2000 µa B / mT 100 f / kHz 100 100 µΔ 50 40 2000 A/m 1 µΔ αF µi 500 mT 10 0 0 100 10000 20000 30000 40000 50000 60000 70000 80000 H / A/m 193 f = 1 kHz 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Unipolar losses (20% ripple) Unipolar losses (30% ripple) 1000 1000 100 kHz 75 kHz 50 kHz 75 kHz 100 50 kHz Pv / mW/cm³ Pv / mW/cm³ 100 kHz 25 kHz 100 25 kHz 10 2000 2500 3000 3500 4000 4500 H_ / A/m 5000 5500 10 2000 6000 Spezific power loss Pv as a function of frequency f and induction Bs z kH 10 0 kH z 1000 10 kH z 40 Pv / mW/cm³ 10000 100 10 10 100 Bs / mT 1000 194 2500 3000 3500 4000 H_ / A/m 4500 5000 5500 6000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 835 A material with high thermal and temporal stability , for high AC amplitudes or high premagnetization. For use in power applications (e.g. loading coils, noise suppression coils) SYMBOL VALUE UNIT µi 35 ± 15% 1 tanδ / µi 180 10 µa 44 1 CONDITIONS Initial permeability µi as a function of frequency f 50 25°C ; ≤ 10 kHz ≤ 0,25 mT -6 25°C ; 0,5 MHz ≤ 0,25 mT 40 1 kHz 30 µi 500 mT 25°C ; 10 kHz 35 20 2000 A/m 1 µΔ 25°C ; 10 kHz 33 5000 A/m aF ≤ 12 Tmax 150 -6 10 /K 10 25°C - 70°C ≤ 10 kHz; ≤ 0,25 mT 0 10 °C Incremental permeability µΔ as a function of premagnetization H 100 f / kHz 1000 Amplitude permeability µa as a function of induction Bs 50 50 40 40 30 µΔ µa 30 20 20 10 10 ΔB = 2 mT 0 100 f = 1 kHz 0 1000 H_ / A/m 10000 1 10 100 1000 Bs / mT Magnetization curves Amplitude permeability µa as a function of magnetic field strength Hs 2000 50 1800 1600 40 1400 B / mT 1200 30 µa 1000 800 20 600 400 10 200 0 -1000 0 f = 1 kHz 0 0 100 10000 20000 30000 40000 50000 60000 70000 80000 H / A/m 195 1000 Hs / A/m 10000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL Unipolar losses (20% ripple) Unipolar losses (30% ripple) 100 1000 25 k kHz 100 z 75 kH z 50 k H 100 Hz Pv / mW/cm³ Pv / mW/cm³ kHz 100 z H 75 k Hz 50 k 10 z 25 kH 10 1 1000 2000 3000 4000 H_ / A/m 5000 1 1000 6000 Spezific power loss Pv as a function of frequency f and induction Bs 10000 Pv / mW/cm³ 1000 10 0 kH 40 100 z z kH 10 kH z 10 1 10 100 Bs / mT 1000 196 2000 3000 4000 H_ / A/m 5000 6000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 818 A material with high thermal and temporal stability, insensible of external magnetic fields SYMBOL VALUE UNIT µi 18 ± 10% 1 tan δ / µi 200 21 µa -6 14 12 25°C ; 10 kHz 11 150 16 500 mT 1 T max 18 1 kHz 1 µΔ < 12 ≤ 0,25 mT 25°C ; 0,16 MHz ≤ 0,25 mT 16 aF Initial permeability µi as a function of frequency f 20 µi 10 CONDITIONS 25°C ; ≤ 10 kHz 10 -6 8 25°C ; 10 kHz 6 30000 A/m 4 25°C - 70°C /K 10 10000 A/m 2 ≤ 10 kHz; ≤ 0,25 mT 0 10 °C Magnetization curves 100 f / kHz 1000 Incremental permeability µΔ as a function of premagnetization H 1000 20 18 800 16 14 12 µΔ B / mT 600 10 400 8 6 200 4 0 -1000 0 2 0 0 100 10000 20000 30000 40000 50000 60000 70000 80000 H / A/m Spezific power loss Pv as a function of frequency f and induction Bs kH z 10 0 kH z kH z 10 Pv / mW/cm³ 40 100 10 10 100 Bs / mT 10000 H_ / A/m 10000 1000 1000 1000 197 100000 B B1 MAGNETIC MATERIAL + CORES MAGNETIC MATERIAL B1.3 FERROCARIT | FE 810 A material with high thermal and temporal stability , insensible of external magnetic fields SYMBOL VALUE UNIT µi 10 ± 10% 1 tanδ / µ i 500 ≤ 0,25 mT ≤ 0,25 mT 500 mT 25°C ; 10 kHz 10000 A/m 1 µΔ Tmax 120 600 400 25°C ; 10 kHz 8 ≤ 2 800 25°C; 1 kHz 10 aF 1000 25°C ; 12 MHz -6 1 µa Magnetization curve 1200 B / mT 10 CONDITIONS 25°C ; ≤ 10 kHz 200 50000 A/m 10 -6 /K 25°C - 70°C 0 -1000 0 ≤ 10 kHz; ≤ 0,25 mT °C Incremental permeability µΔ as a function of premagnetization H µΔ 15 10 5 ΔB = 2 mT 1000 10000 20000 30000 40000 50000 60000 70000 80000 H / A/m 20 0 100 0 10000 100000 H_ / A/m - 198 - B B2 MAGNETIC MATERIAL + CORES CORES OVERVIEW 200 B2.1 EVD-CORES 201 B2.2 E-CORES 202-204 B2.3 U-CORES 205 B2.4 TOROIDAL CORES 206-210 B2.5 DOUBLE APERTURE CORES - 199 - 211 B B2 MAGNETIC MATERIAL + CORES CORES Standard AL-values for E and U cores Core materials For high-switching frequencies to 300 kHz, we recommend our Ferrite Fi 325 or Fi 328. This way, core losses can be minimized even at high frequencies. Core air gaps Please refer to the below table for the standard AL values for E cores with an air gap. Standard AL-values nH 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 Final numbers of the part number … .. … 70 … .. … 71 … .. … 72 … .. … 73 … .. … 74 … .. … 75 … .. … 76 … .. … 77 … .. … 78 … .. … 79 … .. … 81 … .. … 82 … .. … 83 … .. … 84 … .. … 85 … .. … 86 … .. … 87 … .. … 88 … .. … 89 … .. … 90 … .. … 91 … .. … 92 … .. … 93 … .. … 94 … .. … 95 … .. … 96 … .. … 97 … .. … 98 AL-values apply to a core pair. The order number is for a single core. Sample order: for an E core EVD 25/12.8/12.7 material Fi 328, AL = 100 nH Part number: 255 13 328 78 - 200 - B B2 MAGNETIC MATERIAL + CORES CORES B2.1 EVD CORES Core shape Effective Effective Core Effective area of magnetic constant magnetic magnetic path volume path length ∑ l/A Ve Ae le (mm2) (mm) (mm-1) (mm3) EVD 10/5/6 11.7 25.4 2.18 270 EVD 15/9/7 26.1 37.9 1.45 990 EVD 20/10/8.5 40.1 46.6 1.17 1870 EVD 23/12/11 63.9 55.1 0.865 3500 73.1 58.9 0.807 4300 96.6 72.6 0.755 7000 EVD 36/19/16 150 87.4 0.582 13100 EVD 42/21/20 196 97.6 0.499 19100 EVD 25/12.8/ 12.7 EVD 30/16/ 12.5 Core shape Material Losses (W) (≤) Fi 328 f = 100 kHz / Bs = 200 mT 25°C Fi 325 ≤ 0.131) Fi 328 ≤ 0.26 EVD 15/9/7 Fi 325 ≤ 0.421) Fi 328 ≤ 0.89 EVD 20/10/8.5 Fi 325 ≤ 0.791) Fi 328 ≤ 1.68 EVD 23/12/11 Fi 325 ≤ 1.501) Fi 328 ≤ 3.17 EVD 25/12.8/12.7 Fi 325 ≤1.831) Fi 328 ≤ 3.87 EVD 30/16/12.5 Fi 325 ≤ 2.981) Fi 328 ≤ 6.31 EVD 36/19/16 Fi 325 ≤ 5.581) Fi 328 ≤ 11.8 EVD 42/21/20 Fi 325 ≤ 8.111) Fi 328 ≤ 17.2 1) at Fi 325 f = 200 kHz/Bs = 100 mT EVD 10/5/6 a b d1 d2 h1 h2 e (mm) 10.7 ±0.4 14.8 +0.7/-0.5 20.3 ±0.7 22.7 ±0.7 25.0 +0.8/-0.7 29.7 ±0.8 36.3 ±0.7 41.5 ±0.8 (mm) 5.8 -0.4 7.0 -0.4 8.6 ±0.25 11.2 ±0.3 12.7 -0.5 12.5 ±0.4 16.2 ±0.4 20.1 ±0.5 (mm) 8.4 +0.5 10.8 +0.6 15.7 ±0.4 17.1 ±0.4 18.8 +0.8 22.1 ±0.5 27.1 ±0.55 31.5 ±0.6 (mm) 3.6 -0.3 5.8 -0.4 8.0 ±0.3 8.1 ±0.3 8.8 ±0.25 11.6 ±0.3 14.5 ±0.35 15.7 ±0.4 (mm) 5.4 -0.2 9.0 -0.3 10.4 ±0.25 12.3 ±0.3 12.8 -0.4 16.4 ±0.3 19.5 ±0.2 21.0 ±0.2 (mm) 3.9 +0.3 6.0 +0.4 7.4 ±0.25 8.9 ±0.3 9.3 +0.5 11.9 ±0.3 14.4 ±0.3 16.0 ±0.3 (mm) 3.6 -0.3 4.8 -0.4 4.9 ±0.2 7.7 ±0.25 8.3 ±0.3 8.2 ±0.3 10.5 ±0.3 12.7 ±0.35 AL value (nH) 100°C ≤ 0.071) ≤ 0.18 ≤ 0.241) ≤ 0.59 ≤ 0.451) ≤ 1.12 ≤ 0.841) ≤ 2.11 ≤ 1.021) ≤ 2.58 ≤ 1.671) ≤ 4.20 ≤ 3.131) ≤ 7.88 ≤ 4.541) ≤ 11.4 μe 10 kHz 50 mV Tol. = ± 25% 680 1180 680 1180 1170 1350 1170 1350 1510 1400 1510 1400 2110 1450 2110 1450 2300 1480 2300 1480 2540 1520 2540 1520 3380 1560 3380 1560 4010 1590 4010 1590 - 201 - Bmax (mT) f = 25 kHz Hs = 250 A/m 100°C Part number ≥ 290 ≥ 350 ≥ 315 ≥ 350 ≥ 330 ≥ 350 ≥ 330 ≥ 350 ≥ 330 ≥ 350 ≥ 330 ≥ 350 ≥ 330 ≥ 350 ≥ 330 ≥ 350 252 05 325 10 252 05 328 10 254 13 325 10 254 13 328 10 254 20 325 10 254 20 328 10 255 15 325 10 255 15 328 10 255 13 325 10 255 13 328 10 256 14 325 10 256 14 328 10 258 07 325 10 258 07 328 10 259 37 325 10 259 37 328 10 B B2 MAGNETIC MATERIAL + CORES CORES B2.2 E CORES | CORES E10 – E19 Core shape E 10/3 E 12.6/3.7 E 16/4.7k E 16/4.7 E 16/7.4 E 16/8.4 E 19/5 Core shape Magnetically Magnetically Form Magnetically effective effective effective factor path crossa b c d volume length section l Ve Σ /A le Ae (mm2) (mm) (mm-1) (mm3) (mm) (mm) (mm) (mm) 3.0 5.1 3.0 3.5 7.96 23.2 2.92 185 -0.2 -0.3 +0.25 -0.25 6.5 3.7 4.5 3.7 12.4 29.7 2.4 370 -0.2 -0.3 +0.3 -0.3 5.95 4.7 3.45 4.7 20 28.5 1.43 570 -0.3 -0.4 +0.4 -0.3 8.2 4.7 5.7 4.7 20.1 37.5 1.88 750 -0.3 -0.4 +0.4 -0.3 5.95 7.4 2.05 4.7 31.2 28.8 0.928 900 -0.3 -0.5 ±0.15 -0.3 8.2 8.4 5.7 4.7 36.3 37.6 1.03 1365 -0.3 -0.5 +0.4 -0.3 5.7 4.8 8.0 4.8 22.6 39.6 1.76 896 ±0.2 ±0.2 ±0.2 ±0.2 Material Losses ( W ) ( ≤ ) Fi 328 f = 100 kHz/ Bs = 200 mT 25°C E 10/3 Fi 325 0.08 1) E 10/3 Fi 328 0.17 E 12.6/3.7 Fi 325 0.16 1) E 12.6/3.7 Fi 328 0.33 E 16/4.7 Fi 325 0.32 1) E 16/4.7 Fi 328 0.68 E 16/4.7K Fi 325 0.24 1) E 16/4.7K Fi 328 0.51 E 16/7.4 Fi 325 0.38 1) E 16/7.4 Fi 328 0.81 E 16/8.4 Fi 325 0.58 1) E 16/8.4 Fi 328 1.23 E 19/5 Fi 325 0.38 1) E 19/5 Fi 328 0.80 1) at Fi 325 f = 200kHz/Bs = 100mT 100°C 0.04 1) 0.11 0.09 1) 0.22 0.18 1) 0.45 0.14 1) 0.34 0.21 1) 0.54 0.32 1) 0.82 0.21 1) 0.53 AL value (nH) µ0 10 kHz/50 mV Tol. = ± 25 % 500 1150 500 1150 660 1260 660 1260 900 1340 900 1340 1090 1240 1090 1240 1700 1250 1700 1250 1630 1340 1630 1340 970 1360 970 1360 - 202 - e f (mm) 7.0 +0.5 8.9 +0.6 11.3 +0.6 11.3 +0.6 11.3 +0.6 11.3 +0.6 14.3 ±0.3 (mm) 10.0 ±0.3 12.6 +0.5/-0.4 16.0 +0.7/-0.5 16.0 +0.7/-0.5 16.0 +0.7/-0.5 16.0 +0.7/-0.5 19.0 ±0.4 Bmax (mT) f = 25 kHz/Hs = 250 A/m 100°C ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 Part number 252 04 325 10 252 04 328 10 254 03 325 10 254 03 328 10 254 05 325 10 254 05 328 10 254 12 325 10 254 12 328 10 254 14 325 10 254 14 328 10 254 15 325 10 254 15 328 10 254 19 325 10 254 19 328 10 B B2 MAGNETIC MATERIAL + CORES CORES B2.2 E CORES | CORES E20 – E30 Core shape Magnetically Magnetically Effective cross- effective path section Ae length le (mm2) (mm) E 20/5.3 30.8 43.2 Form factor Σ l /A (mm-1) 1.41 E 20/5 22.5 42.6 1.9 E 20/5.9K 32 42.7 1.34 E 20/5.9 32.1 46.4 1.45 E 20/11K 60.9 42.8 0.703 E 20/11 61 46.4 0.762 E 25/7.5 51.9 57.7 1.12 E 25/11 77.4 57.7 0.747 E 25/13 91.8 57.8 0.629 E 30/7.3 60.1 65.3 1.09 E 30/12 105 65.3 0.624 Core shape E 20/5.3 E 20/5 E 20/5.9 E 20/5.9K E 20/11K E 20/11 E 25/7.5 E 25/11 E 25/13 E 30/7.3 E 30/12 1) at Fi 325 f Material Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 = 200 kHz/Bs Magnetically effective a b c d volume Ve (mm3) (mm) (mm) (mm) (mm) 10.2 5.3 6.3 5.2 1330 -0.4 -0.4 +0.4 -0.4 8.65 5.0 5.95 5.0 960 -0.4 -0.4 +0.4 -0.4 9.3 5.9 6.1 5.9 1370 -0.4 -0.5 +0.4 -0.4 10.2 5.9 7.0 5.9 1490 -0.4 -0.5 +0.4 -0.4 9.3 11.0 6.1 5.9 2610 -0.4 -0.5 +0.4 -0.4 10.2 11.0 7.0 5.9 2830 -0.4 -0.5 +0.4 -0.4 12.8 7.5 8.7 7.5 3000 -0.5 -0.6 +0.5 -0.5 12.8 11.0 8.7 7.5 4480 -0.5 -0.5 +0.5 -0.5 12.8 13.0 8.7 7.5 5302 -0.5 -0.5 +0.5 -0.5 15.2 7.3 9.7 7.2 3930 -0.4 -0.5 +0.6 -0.5 15.2 12.6 9.7 7.2 6860 -0.4 -0.6 +0.6 -0.5 µ0 Losses ( W ) ( ≤ ) Fi 328 AL -value (nH) f = 100 kHz/Bs = 200 mT 10 kHz / 50 mV 25°C 0.45 0.95 0.41 0.86 0.63 1.34 0.47 1.23 1.11 2.35 1.20 2.55 1.27 2.69 1.90 4.03 2.26 4.78 1.33 2.83 2.33 4.93 = 100 mT 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 100°C 0.24 0.60 0.23 0.58 0.35 0.89 0.25 0.82 0.62 1.56 0.67 1.70 0.71 1.80 1.06 2.68 1.26 3.18 0.71 1.77 1.23 3.08 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) Tol. = ± 25% 1230 1380 1230 1380 920 1390 920 1390 1230 1420 1230 1420 1310 1390 1310 1390 2470 1380 2470 1380 2330 1410 2330 1410 1660 1470 1660 1470 2470 1470 2470 1470 2930 1470 2930 1470 1730 1500 1730 1500 3010 1490 3010 1490 - 203 - e f (mm) 12.8 +0.6 15.2 +0.6 14.1 +0.6 14.1 +0.6 14.1 +0.6 14.1 +0.6 17.5 +0.8 17.5 +0.8 17.5 +0.8 19.5 +0.8 19.5 +0.8 (mm) 20.0 +0.7/-0.4 20.0 +0.7/-0.4 20.0 +0.8/-0.6 20.0 + 0.8/-0.6 20.0 +0.8/-0.6 20.0 +0.8/-0.6 25.0 +0.8/-0.7 25.0 +0.8/-0.7 25.0 +0.8/-0.7 30.0 +0.8/-0.6 30.0 +0.8/-0.6 Bmax (mT) f = 25 kHz, Hs = 250 A/m 100°C ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 330 ≥ 360 ≥ 330 ≥ 360 Part number 254 254 254 254 254 254 254 254 254 254 254 254 255 255 255 255 255 255 256 256 256 256 01 01 02 02 06 06 10 10 16 16 11 11 07 07 09 09 16 16 01 01 05 05 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 B B2 MAGNETIC MATERIAL + CORES CORES B2.2 E CORES | CORES E32 – E65 Core shape Magnetically Magnetically Effective cross- effective path length le section Ae (mm2) (mm) Form factor Σ l/A (mm-1) E 32/9.5 83.2 74.3 0.895 E 32/11 96.9 70.7 0.731 E 36/11 119 81 0.68 E 36/15 157 81 0.515 Magnetically effective a b c d volume Ve 3 (mm ) (mm) (mm) (mm) (mm) 16.4 9.5 11.2 9.5 6190 -0.6 -0.7 +0.6 -0.6 15.5 11.0 10.3 9.5 6860 -0.6 -0.7 +0.6 -0.6 18.0 11.5 12.0 10.2 9670 -0.4 -0.5 +0.6 -0.5 18.0 15.2 12.0 10.2 12800 -0.4 -0.7 +0.6 -0.5 21.2 15.2 14.8 12.2 17400 -0.4 -0.5 +0.7 -0.5 21.2 15.2 14.8 12.2 17607 -0.4 -0.5 +0.6 -0.5 21.2 20.0 14.8 12.2 22900 -0.4 -0.8 +0.7 -0.5 E 42/15 178 97.2 0.545 E 42/15A 178.5 98.6 0.553 E 42/20 235 97.2 0.413 E 42/20A 235 98.6 0.419 23200 E 55/21 354 123 0.348 43700 E 55/25 421 123 0.293 51900 E 65/27.4 533 147 0.276 78300 Core shape E 30/7.3 E 30/12 E 32/9.5 E 32/11 E 36/11 E 36/15 E 42/15 E 42/15A E 42/20 E 42/20A E 55/21 1) at Fi 325 f Material Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 = 200kHz/Bs = 100mT 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 100°C 0.71 1.77 1.23 3.08 1.47 3.71 1.63 4.11 2.30 5.80 3.04 7.66 4.13 10.41 4.19 10.56 5.44 13.72 5.52 13.91 10.40 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) (mm) 22.7 +1.0 22.7 +1.0 24.5 +1.2 24.5 +1.2 29.5 +1.2 31.0 +1.2/-0.2 29.5 +1.2 (mm) 32.0 +0.9/-0.7 32.0 +0.9/-0.7 36.0 +1.0/-0.7 36.0 +1.0/-0.7 42.0 +1.0/-0.7 43.5 +1.0/-0.9 42.0 +1.0/-0.7 20.0 -0.6 14.8 +0.6 12.2 -0.5 31.0 +1.2/-0.2 43.5 +1.0/-0.9 27.8 -0.6 27.8 -0.6 32.8 -0.6 21.0 -0.6 25.0 -0.8 27.4 -1.2 18.5 +0.6 18.5 +0.6 22.2 +0.8 17.2 -0.5 17.2 -0.5 20.0 -0.7 37.5 +1.2 37.5 +1.2 44.2 +1.5 55.0 +1.2/-0.9 55.0 +1.2/-0.9 65.0 +1.5/-1.2 Tol. = ± 25% 1730 1500 1730 1500 3010 1490 3010 1490 2160 1530 2160 1530 2620 1520 2620 1520 2860 1550 2860 1550 3770 1550 3770 1550 3660 1590 3660 1590 3610 1590 3610 1590 4820 1580 4820 1580 4750 1580 4750 1580 5870 1630 5870 1630 - 204 - f 21.2 -0.4 µ0 Losses ( W ) ( ≤ ) Fi 328 AL -value (nH) f = 100 kHz/Bs = 200 mT 10 kHz / 50 mV 25°C 1.33 2.83 2.33 4.93 2.63 5.56 2.91 6.16 4.11 8.71 5.43 11.49 7.37 15.62 7.48 15.84 9.72 20.58 9.86 20.87 18.58 e Bmax (mT) f = 25 kHz, Hs = 250 A/m 100°C ≥ 330 ≥ 360 ≥ 330 ≥ 360 ≥ 330 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 330 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 Part number 256 256 256 256 257 257 257 257 257 257 257 257 259 259 259 259 259 259 259 259 259 259 01 01 05 05 01 01 08 08 05 05 07 07 06 06 35 35 04 04 20 20 01 01 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 325 10 328 10 B B2 MAGNETIC MATERIAL + CORES CORES B2.3 U CORES Magnetically Magnetically effective effective Core shape crosssection path length Ae le (mm) (mm2) Form factor ∑ l/A (mm-1) Magnetically effective volume Ve (mm3) U 13.5/5 16 49.2 3.01 800 U 15/6.7 34.2 52.3 1.53 1790 U 20/7.7 53.8 68.7 1.28 3700 U 21/12 66.5 81.2 1.22 5390 U 25/7 53.2 87 1.64 4600 U 25/13 105 88.2 0.84 9300 U 26/16 151 84.2 0.56 12700 U 30/26 266 118 0.43 31400 Core shape U 13.5/5 U 13.5/5 U 15/6.7 U 15/6.7 U 20/7.7 U 20/7.7 U 21/12 U 21/12 U 25/7 U 25/7 U 25/13 U 25/13 U 26/16 U 26/16 U 30/26 U 30/26 Material Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Fi 325 Fi 328 Losses (W) ( ≤ ) f = 200 kHz/ Bs = 100 mT 25°C 100°C 0.34 0.19 0.72 0.48 0.76 0.42 1.61 1.07 1.57 0.88 3.32 2.22 2.30 1.29 4.86 3.24 1.96 1.10 4.16 2.77 3.95 2.21 8.37 5.58 5.40 3.02 11.44 7.63 a d h1 h2 mm) (mm) mm) mm) (mm) 13.5 5 6.5 9.9 6.2 ±0.5 -0.4 +0.5 -0.4 +0.2 6.2 15.4 6.7 5 12 ±0.6 -0.5 +0.6 ±0.15 ±0.15 19.8 7.7 5.6 16 8.9 ±0.6 -0.5 +0.6 -0.6 +0.3 21 12 9 17 11 ±0.6 -0.7 +0.7 -0.6 +0.4 7.3 10.2 18.2 10.8 24.8 +0.3 +0.3/-0.4 ±0.2 +0.3/-0.4 ±0.3 24.8 13 8 20.2 11 ±0.7 -0.7 +0.7 -0.7 +0.6 25.8 16 9 22.2 13 ±0.7 -0.6 +0.7 -0.7 +0.4 30.8 26.5 10.4 26.4 16 ±1.2 -0.8 ±0.4 ±0.6 +0.5 AL -value (nH) µ0 10 kHz/50 mV Tol. = ± 25% 5995 1430 5995 1430 1180 1440 1180 1440 1490 1510 1490 1510 1600 1560 1600 1560 1200 1560 1200 1560 2350 1560 2350 1560 2670 1190 2670 1190 4600 1620 4600 1620 - 205 - b Bmax (mT) f = 25 kHz Hs = 250 A/m 100°C ≥ 290 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 ≥ 315 ≥ 360 Part number 261 21 325 10 261 21 328 10 261 12 325 10 261 12 328 10 261 14 325 00 261 14 328 00 261 31 325 00 261 31 328 00 261 09 325 00 261 09 328 00 261 17 325 00 261 17 328 00 261 28 325 00 261 28 328 00 261 20 325 00 261 20 328 00 B B2 MAGNETIC MATERIAL + CORES CORES B2.4 TOROIDAL CORES | MADE OF FERROCART POWDERS (IRON POWDERS) Designation R 12.5 x 8 x 7 R 14.3 x 7.2 x 9.5 R 17 x 9 x 9 R 19 x 10 x 6 R 19 x 10 x 9 R 21.5 x 12 x 6 R 23 x 14.5 x 11 R 25 x 15 x 12.5 R 30.5 x 14.5 x 15 R 33 x R 33 x R 33 x R 33 x R 33 x 19 x 19 x 19 x 20 x 20 x 79.6 79.6 79.6 81.5 81.5 34.5 57.7 105.8 32.5 47.7 R 36 x 19 x 14 R 36 x 19 x 16 83.8 83.8 R 36 x 22 x 6.7 h (mm) 7 +0.3 9.5 ±0.2 9 ±0.2 6 ±0.25 9 ±0.25 6 ±0.15 11 -0.4 12 ±0.3 15 ±0.3 Part number 1) 233 28 XXX 10 233 18 XXX 10 234 39 XXX 10 234 16 XXX 10 234 24 XXX 10 235 28 XXX 10 235 22 XXX 10 235 13 XXX 10 237 30 XXX 10 5.6 ±0.15 9 ±0.25 16 ±0.3 5.6 ±0.15 8 ±0.15 237 10 XXX 10 237 01 XXX 10 237 33 XXX 10 237 25 XXX 10 237 24 XXX 10 120.4 10090 1.8 137.5 11530 2.06 36.2 ±0.2 36.2 ±0.2 19 ±0.1 19 ±0.1 14 ±0.3 16 ±0.3 238 46 XXX 10 238 45 XXX 10 89.3 46.7 4169 0.66 36.3 -0.3 21.8 +0.2 6.7 -0.3 238 34 XXX 10 4.4 6 8 18.5 91.3 91.3 91.3 91.3 37 51 67.2 160.4 3382 0.51 4661 0.7 6140 0.92 14653 2.2 38.85 -0.3 38.85 -0.3 38.85 -0.3 38.85 -0.3 21.1 +0.2 21.1 +0.2 21.1 +0.2 21.1 +0.2 4.4 ±0.1 6 ±0.15 8 -0.3 18.5 ±0.3 238 25 XXX 10 238 30 XXX 10 238 32 XXX 10 238 35 XXX 10 R 41.5 x 21.2 x 13.5 R 41.5 x 21.2 x 27 94.8 94.8 129.8 12300 1.72 265.8 25200 3.52 41.5 -0.3 41.5 -0.3 21.1 +0.2 21.1 +0.2 13.6 -0.6 26.8 ±0.6 239 48 XXX 10 239 49 XXX 10 R 50 x R 50 x R 50 x R 50 x 126.7 126.7 126.7 126.7 111.6 152 214 258 50 -0.3 50 -0.3 50 -0.3 50 -0.3 32 +0.2 32 +0.2 32 +0.2 32 +0.2 13.5 ±0.3 18 ± 0.3 25 ±0.3 30 ±0.5 239 46 XXX 10 239 27 XXX 10 239 47 XXX 10 239 31 XXX 10 28 ±0.6 239 52 XXX 10 32 x 32 x 32 x 32 x 13.5 18 25 30 0.54 0.91 1.67 0.5 0.73 Dimensions 2) d2 (mm) 8+ 0.2 7.2 +0.2 9 ±0.1 10 ±0.1 10 ±0.1 12 +0.2 14.5 +0.4 15 +0.2 14.5 +0.2 19 +0.2 19 +0.2 19 +0.2 20 +0.2 20 +0.2 21.2 x 21.2 x 21.2 x 21.2 x 2747 4596 8429 2654 3888 d1 (mm) 12.5 ±0.2 14.3 -0.3 17 -0.2 19 -0.3 19 -0.3 21.5 -0.3 23 -0.7 25 -0.3 30.5 -0.3 33 -0.3 33 -0.3 33 -0.3 33 -0.3 33 -0.3 R 38.6 x R 38.6 x R 38.6 x R 38.6 x 5.6 9 16 5.6 8 Magnetic shape parameters le Ae Ve Λ 0 = c (mm (mm²) (mm³) (nH) 31.9 14.8 471 0.58 32.5 30.9 1006 1.2 39.4 35.6 1400 1.13 43.9 25.1 1099 0.72 43.9 38.3 1681 1.1 51.2 27.8 1420 0.68 57.8 41.9 2418 0.91 61.5 58.9 3623 1.2 67.6 111.7 7556 2.08 14135 1.11 19190 1.5 27100 2.12 32690 2.56 R 66 x 39 x 28 161.3 346 55801 2.7 66 -0.5 39 +0.4 Please insert material number, 2) Dimensions without plastic coating 1) The AL values for each version and each selected material can be easily calculated with the equation: AL = μi * Λ0 (nH) (Initial permeability (μi ) of the selected material: see chapter D1.1) The cores are shipped with chamfered edges and with plastic coating. The coating is 0.2 - 0.4 mm thick. - 206 - B B2 MAGNETIC MATERIAL + CORES CORES B2.4 TOROIDAL CORES | MADE OF FERROCARIT MATERIAL Designation R 5.2 x 2.6 x 2 Magnetic shape parameters le Ae Ve Λ0 = c (mm) (mm²) (mm³) (nH) 12 2.5 30 0.26 d1 (mm) 5.2 ±0.2 Dimensions d2 (mm) 2.6 +0.2 h (mm) 2 ±0.2 Weight Part number 1) (g) 0.13 232 17 XXX 00 R 5.5 x 2.5 x 1.5 12 2.5 30 0.25 5.5 +0.2 2.5 +0.2 1.5 +0.3 0.12 232 12 XXX 00 R6x R6x R6x R6x 2 2 3 5.4 11 14 14 14 3.8 3 4.6 8.5 43 41 64 120 0.43 0.28 0.41 0.76 5.8 ±0.2 6 ±0.25 6 +0.3 6 +0.5 2 ±0.2 3 ±0.15 3 +0.2 3 +0.2 2±0.3 2 ±0.3 3 ±0.3 5.4 ±0.3 0.20 0.18 30.00 0.50 232 20 XXX 00 232 27 XXX 00 232 14 XXX 00 232 23 XXX 00 R 8 x 3.5 x 4 17 9 150 0.66 8 ±0.2 3.5 ±0.2 4 ±0.4 0.70 232 05 XXX 00 R 9.4 x 4.6 x 1.5 R 9.4 x 4.6 x 3.5 R 9.4 x 4.6 x 4.5 20 20 20 3.9 8.5 11 79 170 230 0.24 0.53 0.70 9.4 ±0.2 9.4 ±0.2 9.4 ±0.2 4.6 ±0.1 4.6 ±0.1 4.6 ±0.1 1.5 ±0.15 3.5 ±0.2 4.6 ±0.3 0.40 0.94 1.20 232 56 XXX 00 232 57 XXX 00 232 54 XXX 00 R 10 x 6 x 3 R 10 x 6 x 4 R 10 x 6 x 8 25 24 24 5.4 7.1 15 130 170 360 0.27 0.36 0.76 10 ±0.3 10 ±0.2 9.8 ±0.3 6 ±0.2 6 ±0.15 6 ±0.2 3 ± 0.3 4 ±0.15 8 ±0.3 0.63 0.87 1.81 232 32 XXX 00 232 31 XXX 00 232 29 XXX 00 R 13 x R 13 x R 13 x R 13 x R 13 x R 13 x 29 30 30 30 30 30 14 7.6 11 12 14 35 410 230 320 370 410 1050 0.60 0.31 0.44 0.50 0.56 1.43 13 +0.6 13 ±0.35 13 ±0.35 13 ±0.35 13 ±0.35 13 ±0.35 6.1 +0.3 7 ±0.2 7 ±0.2 7 ±0.2 7 ±0.2 7 ±0.2 4.5 ±0.3 3 ±0.2 4 ±0.3 4.5 ±0.3 5 ±0.3 12 ±0.4 2.00 1.20 1.50 1.80 2.00 4.80 233 06 XXX 00 233 11 XXX 00 233 31 XXX 00 233 24 XXX 00 233 20 XXX 00 233 09 XXX 00 R 13.3 x 8.3 x 5 R 13.3 x 8.3 x 5.7 33 33 12 13 410 440 0.47 0.50 13.3 ±0.3 13.3 ±0.3 8.3 ±0.3 8.3 ±0.3 5.15 -0.4 5.7 ±0.3 1.80 2.10 233 16 XXX 00 233 33 XXX 00 R 13.6 x 7.3 x 6 R 14 x 9 x 5 R 14 x 9 x 6 R 14 x 9 x 9 32 36 36 36 17 12 14 22 550 410 500 770 0.68 0.41 0.50 0.76 13.6 ± 0.3 14 ±0.4 14 ±0.4 14 ±0.4 7.3 ±0.2 9 ±0.4 9 ±0.3 9 ±0.4 6 ±0.4 5 ±0.3 6 ±0.3 9 ±0.4 2.60 2.00 2.40 3.50 233 17 XXX 00 233 14 XXX 00 233 08 XXX 00 233 07 XXX 00 2x 3x 3x 3x 6.1 x 4.5 7x3 7x4 7 x 4.5 7x5 7 x 12 R 15 x 10 x 5 39 12 460 0.39 15 ±0.5 10 ±0.5 5 ±0.3 2.20 233 05 XXX 00 R 15 x 10 x 5.7 40 12 470 0.37 15 ±0.5 10.6 ±0.4 5.7 -0.4 2.20 233 23 XXX 00 1) Please insert material number The AL values for each version and each selected material can be easily calculated with the equation: AL = μi* Λ0’ (nH) (Initial permeability (μi ) of the selected material: see chapter D 1) Calculated AL values should be considered to be approximate values. The tolerance is ±25%. If you need toroidal cores with other dimensions, please send us your request. - 207 - B B2 MAGNETIC MATERIAL + CORES CORES B2.4 TOROIDAL CORES | MADE OF FERROCARIT MATERIAL Magnetic shape parameters Dimensions le Ae Ve Λ0 = c d1 d2 h (mm) (mm²) (mm³) (nH) (mm) (mm) (mm) R 16.4 x 9.3 x 6.5 39 19 750 0.61 16.4 -0.8 9.3 +0.6 6.5 -0.4 Designation 1) 4.00 234 06 XXX 00 7 -0.4 4.60 234 22 XXX 00 8 ±0.5 10 ±0.5 15 ±0.5 6.50 8.10 12.2 234 08 XXX 00 234 09 XXX 00 234 15 XXX 00 6.7 ±0.4 8 ±0.4 6.80 8.10 234 32 XXX 00 234 19 XXX 00 R 17.4 x 10.4 x 7 43 20 860 0.59 17.4 -0.8 R 19 x 11 x 8 R 19 x 11 x 10 R 19 x 11 x 15 47 47 47 30 38 58 1390 1760 2690 0.80 1.02 1.56 11.2 ±0.5 11.2 ±0.25 19.2 ±0.5 11.2 ±0.25 19.2 ±0.5 11.2 ±0.25 R 20 x 10 x 6.7 R 20 x 10 x 8 45 45 31 38 1420 1710 0.87 1.05 R 20 x 11 x 11 R 20 x 11 x 5 47 49 43 19 2000 920 1.15 0.48 19.2 ±0.5 11.2 ±0.25 20.3 ±0.6 11.7 ±0.4 11 +0.5 5 ±0.4 10.00 4.10 234 01 XXX 00 234 05 XXX 00 R 23 x 14.8 x 7 58 26 1520 0.56 22.8 ±0.4 14.8 ±0.3 7 ±0.25 7.30 235 21 XXX 00 R 25 x 15 x 10 62 46 2870 0.93 25 ±0.5 10 ±0.5 14.00 235 06 XXX 00 R 26 x R 26 x R 26 x R 26 x R 26 x 62 62 62 62 62 39 49 55 84 112 2410 3030 3390 5170 6950 0.79 1.00 1.11 1.70 2.28 26 ±0.55 26 ±0.55 26 ±0.55 26 ±0.55 26 ±0.55 14.5 ±0.35 7.5 -0.5 14.5 ±0.35 9 ±0.3 14.5 ±0.35 10 ±0.3 14.5 ±0.35 15 ±0.4 14.5 ±0.35 20 ±0.45 11.60 14.60 15.80 23.70 31.60 236 19 XXX 00 236 18 XXX 00 236 05 XXX 00 236 09 XXX 00 236 08 XXX 00 R 27 x 14 x 9 R 27 x 14 x 30 R 27 x 14 x 40 62 62 62 52 190 255 3230 11800 15860 1.05 3.84 5.15 27 ±0.7 27 ±0.7 27 ±0.7 14 ±0.4 14 ±0.4 14 ±0.4 9 -0.5 30 ±0.9 40 ±1.2 16.20 54.00 72.00 236 12 XXX 00 236 04 XXX 00 229 39 XXX 00 R 29.5 x 19 x 9 R 29.5 x 19 x 15 75 75 45 77 3390 5750 0.76 1.29 29.5 ±0.7 29.5 ±0.7 19 ±0.5 19 ±0.5 9 ±0.3 15 ±0.3 16.30 27.60 236 21 XXX 00 237 27 XXX 00 R 36 x 23 x 15 91 94 8520 1.29 36 ±0.9 23 ±0.7 15 ±0.4 39.00 238 09 XXX 00 R 45 x 23 x 17.5 103 193 19800 2.35 45 ±1.1 23 ±0.6 17.5 ±0.5 98.00 239 60 XXX 00 R 61 x 38 x 18 153 191 29100 1.57 61 ±1.5 38 ±1.2 18 ±0.8 157.00 239 51 XXX 00 14.5 x 14.5 x 14.5 x 14.5 x 14.5 x 7.5 9 10 15 20 20 ±0.5 20 ±0.5 10.4 +0.6 Weight Part number (g) 10 ±0.35 10 ±0.35 15 +1 R 80 x 40 x 15 181 300 54400 2.08 80 ±2.5 40 ±1.2 15 ±0.5 261.00 239 40 XXX 00 1) Please insert material number The AL values for each version and each selected material can be easily calculated with the equation: AL = μi * Λ0 (nH) (Initial permeability (μi ) of the selected material: see chapter B 1) Calculated AL values should be considered to be approximate values. The tolerance is ±25%. If you need toroidal cores with other dimensions, please send us your request. - 208 - B B2 MAGNETIC MATERIAL + CORES CORES B2.4 TOROIDAL CORES | WITH PLASTIC COAT AL (nH) for material Designation Dimensions Part number 2) d1 (mm) d2 (mm) h (mm) 2200 1) 4570 Fi 410 (+30%) (-40%) 4090 7640 10.90 10.90 5.00 5.00 5.10 9.10 232 31 XXX 10 232 29 XXX 10 6170 1) 1870 2010 8600 2600 2800 1) 14400 4400 4700 14.15 14.40 14.40 6.00 7.20 7.20 13.20 6.05 5.95 233 09 XXX 10 233 21 XXX 10 233 16 XXX 10 R 14 x 9 x 5 R 14 x 9 x 6 R 14 x 9 x 9 1760 2160 3270 2450 3000 4570 4100 5100 7600 15.30 15.30 15.30 7.90 7.90 7.90 6.10 7.20 10.20 233 14 XXX 10 233 08 XXX 10 233 07 XXX 10 R 15 x 10 x 5 R 15 x 10 x 5.7 1670 1600 2330 2230 3900 3700 16.30 16.30 8.70 9.40 6.10 6.50 233 05 XXX 10 233 23 XXX 10 R 16.4 x 9.3 x 6.5 2640 3680 6150 17.20 8.50 7.30 234 06 XXX 10 R 17.4 x 10.4 x 7 2540 3600 5900 18.20 9.60 7.80 234 22 XXX 10 4900 6200 8440 8800 9500 8200 10350 14100 14700 15900 20.50 20.50 20.50 20.50 20.50 10.15 10.15 10.15 10.15 10.15 9.30 11.30 14.80 15.30 16.30 234 08 XXX 10 234 09 XXX 10 234 31 XXX 10 234 10 XXX 10 234 15 XXX 10 Fi 340 (±25%) Fi 360 (± 25%) R 10 x 6 x 4 R 10 x 6 x 8 1590 1) 3380 R 13 x 7 x 12 R 13.3 x 8.3 x 5 R 13.3 x 8.3 x 5 1) R 19 x 11 x 8 3500 R 19 x 11 x 10 4430 1) R 19 x 11 x 13.5 6050 R 19 x 11 x 14 6310 R 19 x 11 x 15 6750 1) ± 30% 2) Please insert material number Plastic coating The coating is 0.2 -0.4 mm thick. The breakdown (puncture) voltage for coated cores is > 1.5 kV, 50 Hz. If you need plastic-coated toroidal cores with other dimensions, please send us your request. - 209 - B B2 MAGNETIC MATERIAL + CORES CORES B2.4 TOROIDAL CORES | WITH PLASTIC COAT AL (nH) for material Designation Dimensions Part number 2) d1 (mm) d2 (mm) h (mm) 5250 1) 5500 6300 Fi 410 (+30%) (-40%) 8800 9200 10600 21.30 21.30 21.30 8.85 8.85 8.85 7.90 8.20 9.20 234 32 XXX 10 234 20 XXX 10 234 19 XXX 10 4990 7270 6950 10100 11600 17000 20.80 20.80 10.35 10.35 12.30 17.30 234 01 XXX 10 234 18 XXX 10 R 23 x 14.8 x 7 2440 3400 5700 24.00 13.70 8.05 235 21 XXX 10 R 25 x 15 x 10 4000 5580 9300 26.30 14.20 11.30 235 06 XXX 10 R 26 x R 26 x R 26 x R 26 x R 26 x 3420 4300 4810 7320 9840 4770 6000 6700 10200 13730 8000 10000 11200 27.35 27.35 27.35 27.35 27.35 13.35 13.35 13.35 13.35 13.35 8.30 10.10 11.10 16.20 21.25 236 19 XXX 10 236 18 XXX 10 236 05 XXX 10 236 09 XXX 10 236 08 XXX 10 28.50 28.50 12.80 12.80 31.70 42.00 236 04 XXX 10 229 39 XXX 10 Fi 340 (±25%) Fi 360 (± 25%) R 20 x 10 x 6.7 R 20 x 10 x 7 R 20 x 10 x 8 3770 3950 4540 R 20 x 11 x 11 R 20 x 11 x 16 14.5 x 14.5 x 14.5 x 14.5 x 14.5 x 7.5 9 10 15 20 R 27 x 14 x 30 R 27 x 14 x 40 16600 22280 1) 1) R 29.5 x 19 x 9 R 29.5 x 19 x 15 3270 5540 4570 7700 31.00 31.00 17.70 17.70 10.10 16.60 236 21 XXX 10 237 27 XXX 10 R 30 x 19 x 10 3650 5100 31.00 17.70 11.10 236 15 XXX 10 R 36 x 23 x 15 5560 1) ± 30% 2) Please insert material number 7750 37.70 21.50 16.20 238 09 XXX 10 Plastic coating The coating is 0.2 -0.4 mm thick. The breakdown (puncture) voltage for coated cores is > 1.5 kV, 50 Hz. If you need plastic-coated toroidal cores with other dimensions, please send us your request. - 210 - B B2 MAGNETIC MATERIAL + CORES CORES B2.5 DOUBLE APERTURE CORES Designation: Twin-hole core ZB 3.4 x 1.95 x 1.8 ZB 3.5 x 2.4 ZB 3.6 x 2 A (mm) 3.4 ±0.2 3.45 3.6 -0.3 Dimensions B (mm) D (mm) E (mm) 1.95 ±0.2 0.9 ±0.1 1.45 ±0.15 92.01 0.86 1.45 2.1 -0.3 0.8 +0.15 1.45 ±0.1 H (mm) 1.8 ±0.2 2.36 2.0 -0.3 ZC 3.6 x 2.5 ZC 5 x 2.5 ZC 7 x 2.5 ZC 7 x 6 3.6 ±0.2 5.0 ±0.3 6.6 ±0.3 6.9 ±0.3 2.1 ±0.2 0.8 ±0.15 1.45 ±0.15 2.5 ±0.2 1.5 ±0.1 2.5 ±0.2 4.1 ±0.2 2.1 ±0.1 3.3 ±0.2 4.3 ±0.2 2.0 ±0.3 3.0 ±0.2 2.5 -0.3 2.5 -0.2 2.5 ±0.3 6.0 ±0.3 ZF 7 x 4 6.95 ±0.3 3.85 ±0.2 1.2 ±0.1 4.0 ±0.3 4) 230 04 XXX XX 2.5 ±0.2 3) 4) 230 85 XXX XX ZH 5 x 2.5 5.3 ±0.3 1) Please insert material number 2) 3) Fi 221 Fi 242 6) 12-315-g (Fa. Ferronics) 3.45 ±0.2 3.1 ±0.25 1.4 ±0.1 4) 7) 2.5 ±0.2 Fi 292 M13 (Fa. EPCOS) 5) Material Part number 4) 6) 7) 3) 4) 5) 2) 3) 4) 5) 2) 4) 2) 230 88 XXX XX 230 00 001 00 230 00 002 00 230 81 XXX XX 230 60 XXX XX 230 05 XXX XX 230 06 XXX XX Fi 340 Core no. description XXX XX XXX XX AL - Code Competent shape/size Core material Further, the RM, ERF, ETD, EFD and EP series cores and kits are also offered. If you require kits which are not listed here, after the profitability is reviewed, we will be happy to add any other kit to our product line. For large quantities, special tooling can be manufactured for your customer-specific applications, with separate tools and molds. Please send us your inquiry - 211 - 1) B B2 MAGNETIC MATERIAL + CORES CORES - 212 - C MODULES C1 LF-ANTENNAS 214-215 C2 HIGH VOLTAGE IGNITER 216 C3 FUNCTIONAL MODULES 217-218 C4 SENSORS 219 C5 HIGH POWER COMPONENTS 220 C6 APPLICATIONS 221-222 - 213 - C C1 MODULES LF-ANTENNAS IMMOBILIZER ANTENNAS Immobilizers are the standard system to prevent car-theft. Ring type antennas are used to establish a short range communication with the transponder chip inside the ignition key. Features • • • • Customised antenna modules for mounting onto keylock-housings Various configurations with moulded housing, connector or cable-harness Optional integration of RF-antenna leads and illumination plastics High quality visible surface according to customer specification Technology • Complex shapes can be realized • Overmoulding of the antenna winding and moulding of housing and connector in one shot • Pressfit pin interface for solderless assembly of the transceiver electronics - 214 - C C1 MODULES LF-ANTENNAS PASSIVE-ENTRY ANTENNAS Automotive passive entry and start systems require multiple antennas to clearly locate the electronic key. Low frequency technology (125kHz) allows precise control of the detection range. Features • • • • • Doorhandle Modules, optionally with integrated electronics and switches Interior Antennas, e.g. trunk mounted Exterior Antennas, e.g. bumper mounted Various configurations with cable-harness or connectors Optionally with integrated capacitor and resistor Technology • Standardized, robust design concept • Waterproof design as an option • Extremely low electrical tolerances and temperature co-efficient • Highly automated mass production - 215 - C C2 MODULES HIGH VOLTAGE IGNITER XENON-IGNITER Designed for automotive applications, Xenon Igniter Modules from SUMIDA meet the most stringent technical and quality requirements demanded by vehicle lighting systems today. Highlights • D1/D3 igniter modules • D2/D4 click on igniter modules • D2/D4 lamp socket Patented SUMIDA HID Igniter technology • Moulding of highly reinforced PPS plastics • High temperature electronics, using leadframe and laser welding • Special high-voltage transformer • Vacuum potting - 216 - C C3 MODULES FUNCTIONAL MODULES FUNCTIONAL INTEGRATED MODULES The combination of mechanics and electronics allows the integration of several functions into one module. Such Functional Integrated Modules lead to reduced efforts for assembly and logistics at the customer. Integrated Functions • Carrier for power inductors and capacitors • Interconnection between large components • EMI-Filter • Sensor • Connectors • Housing Technology • Plastic injection moulding • Overmoulding of leadframe • Various soldering and welding techniques for electrical interconnection • Pressfit pin interface for solderless assembly - 217 - C C3 MODULES FUNCTIONAL MODULES LF INITIATOR FOR TIRE PRESSURE MONITORING SYSTEMS (TPMS) The continuous monitoring of the pressure in all tires together with the indication of the current pressure in the corresponding tire requires a reliable and exact measurement technology. Highlights • LFIs are utilized to initiate the communication of the sensors installed in each wheel • For premium TPMS, LFIs in each wheelhouse provide unambiguous localisation of the sensor’s signals • Durable, cost-effective modules using proven 125 kHz technology Technology • Complete manufacturing solution • PCB assembly (SMT/THT) & test • Housing with integrated ferrite rod antenna • Pressfit pin interface for solderless assembly of the electronics • Plastic laser welding • Leakage test of each unit - 218 - C C4 MODULES SENSORS INDUCTIVE SENSORS SUMIDA’s inductive sensor technology is based on the functional principle of “eddy current” losses. The distinctive feature is high immunity to magnetic interference fields, thus making them suitable for harsh environments inside electric motors and generators. Rotor Position Sensors • Detection of rotor position in electric motors, e.g. in hybrid electric vehicles • Replacement of resolvers Speed Sensors • Detection of speed and sense of rotation, e.g. bearing sensor • Passive wheelspeed sensors for commercial vehicles Patented eddy current sensor technology • High immunity to magnetic interference fields • Scanning of electrically conductive target material • Automotive grade ASICs available • No permanent magnet required • High speed operation - 219 - C C5 MODULES HIGH POWER COMPONENTS HIGH POWER COMPONENTS Energy Transfer Nowadays transformers are used in almost every clocked switching power supply. In the majority of applications, the switching frequency is between 10 kHz and 500 kHz. In an output range stretching from several hundred watts up to several kWs, optimized power transformers are applied. SUMIDA AG develops these transformers to match customer specifications taking the latest VDE and UL standards into consideration and based on winding forms with integrated creepage and clearance distances, bobbins with special wire or layer construction in open and potted versions Energy Storage Storage chokes are located in switching power supplies and converter systems for energy storage. When used these chokes have effective current with a frequency-specific peak current applied to them. The choice of core material depends to a major extent on the combined current shape. SUMIDA AG uses here the most varied of core materials such as iron powder, metal alloys and ferrite. The selection of conductor material also plays a major role – depending on the application involved, flat wire, solid wire or litz-wire come into operation. Network interference suppression The proven asymmetrical interference suppression components from SUMIDA AG are mainly used in the interference suppression of switch mode power supplies. For damping common mode interference, so-called “current compensating chokes” (common mode) are required. These inductivities are primarily based on high permeable cores with two identical windings. SUMIDA AG ensures that for relatively small sizes in customer-specific designs, windings with a smaller self-capacitance are used, which results in higher resonance frequencies. Power Factor Correction When limiting harmonic oscillation of the network on switch mode power supplies and frequency converters, developers tend to use so-called PFC controllers in order to ensure that the sinusoidal system voltage remains distortion free during any current drain. To enable the controller to rectify current shape and compensate for harmonic waves, optimized control chokes are required. SUMIDA AG provides both chokes with special core material as well as coils with ferrite cores and low-loss windings. - 220 - C C6 MODULES APPLICATIONS AUTOMOTIVE As a reliable partner to the supplier industry for the development and delivery of inductive components and modules, SUMIDA has a vital role in automotive electronics. Its long-standing cooperation with important suppliers to the automotive industry enables SUMIDA to provide comprehensive know-how for tailor-made solutions for automotive electronics and mechatronics. The base for our sustained product quality is the processes certified in accordance with ISO/TS 16949, which are constantly evolving as part of our quality management process. INDUSTRIAL SUMIDA specializes in inductive components and modules for customer-specific requirements. Creativity and know-how enable us to develop, in close cooperation with our customers, individual and market-leading solutions. Our customers benefit from the many advantages: • Competence, from development to production or from ferrite to the inductive component • Design-in of switching power transmitters and storage chokes for the most varied of applications, circuit topologies and power ranges • Design-in of signal and actuation transmitters and interference-suppression choke • Standard-compatible design (VDE, UL, CSA), some VDE kit-family releases (e.g. EF16 TEX-E, EF20 TEX-E) • Consideration of mechanical requirements (dimension, fastening, …) • Optimization of power losses and thermal resistances • Module solutions based on inductive technology, e.g. for noncontact energy and signal transfer GREEN ENERGY The mission of SUMIDA is to fulfill its customers’ special requirements by providing marketleading inductive components; components, which in terms of technology and efficiency really set the standards. They demonstrate quite clearly our outstanding material proficiency and state-of-the-art production technology. Our customers also benefit from our long-standing experience in design. We provide tailor-made solutions for the following sectors: • POWER quality (EMC, PFC) • POWER transfer (SMPS) • POWER storage (storage chokes, sinus chokes) - 221 - C C6 MODULES APPLICATIONS CONSUMER ELECTRONICS: LIGHTING SUMIDA provides a wide range of components for ballast units and lighting control systems in consumer, industry and automotive applications. Thanks to its long-standing technical experience and global development and production activities, SUMIDA meets customer requirements at the best and offers ideal and cost-effective solutions at all times. COMMUNICATION SUMIDA supports the telecommunication infrastructure providers with a wide range of signal transmitters, modules and interference suppression components for applications in the latest IDSN, DSL and LAN systems. The product range also includes complete DSL splitters and splitter modules CO and CPE. The customers benefit from the broad range of innovative products and extensive technical competence. HOUSEHOLD/TV The goal of consumer electronics is to provide equipment with higher energy efficiency coupled with an increase in functionality. SUMIDA is working on continuous innovations – not only in terms of standard products, but also for components that are manufactured to meet customer requirements. These can be used, e.g. in energy-saving and cost-efficient power supplies or for signal processing (data exchange, control engineering, sensor technology). - 222 - - 223 - - 224 - This handbook presents a brief summary of our production and delivery, giving technical information to design and production engineers as well as buyers. In this sense the data specified in this catalogue exclusively serve to describe the properties of our products. They must not be understood as guarantee-values in a juridical sense. Eventual indemnity claims against us – no matter for what legal reasons – are excluded except in cases of gross negligence or intent. Please note that – for reasons of the given space – the whole range of available components and their variants could not be included into this catalogue. If you cannot find the component you are looking for or if you need more detailed information please send us your inquiry. Components no longer included in this handbook are generally deliverable as long as the appropriate tools are usable. Such items, however, are no longer recommended for use in new equipment designs. You certainly will understand that we cannot guarantee that the components, applications and procedures shown and described in this handbook are always free of the rights of third parties. Reproduction – even in the form of extracts – is not permitted without our explicit consent. We reserve the right to perform corrections and engineering changes. Copyright by SUMIDA Components & Modules GmbH Printed in Germany - 225 - COMPONENTS | MODULES | CORES 2011 SUMIDA Components & Modules GmbH Dr. Hans-Vogt-Platz 1 | D-94130 Obernzell Phone: ++49/85 91/937-100 Fax: ++49/85 91/937-103 E-Mail: [email protected] Internet: www.sumida-eu.com COMPONENTS | MODULES | CORES