Application Note, V1.0, January 2011 EVALPFC-300W-ICE3PCS02/03G 300W PFC Evaluation Board with CCM PFC controller ICE3PCS02/03G Power Management & Supply N e v e r s t o p t h i n k i n g . Edition 2010-12-31 Published by Infineon Technologies Asia Pacific, 168 Kallang Way, 349253 Singapore, Singapore © Infineon Technologies AP 2010. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. EVALPFC-300W-ICE3PCS02/03G Revision History: Previous Version: NA V1.0 300W PFC Evaluation Board with CCM PFC controller ICE3PCS02/03G License to Infineon Technologies Asia Pacific Pte Ltd AN-PS0054 Lim Teik Eng Liu Jianwei Li Dong 3 Table of Content 1 Content .............................................................................................................................5 2 Evaluation Board.............................................................................................................5 3 Technical Specifications..................................................................................................6 4 Circuit Description..........................................................................................................6 Line Input .......................................................................................................................................................... 6 Power Stage − Boost Type PFC Converter ....................................................................................................... 6 PWM Control of Boost Converter ..................................................................................................................... 6 5 Circuit Operation ............................................................................................................7 5.1 Soft Startup.............................................................................................................................................. 7 5.2 Gate Switching Frequency ...................................................................................................................... 7 5.3 Protection Features................................................................................................................................. 8 5.3.1 Input brown-out protection (BOP)................................................................................................ 8 5.3.2 Open loop protection (OLP) ......................................................................................................... 8 5.3.3 First over-voltage protection (OVP1) ........................................................................................... 8 5.3.4 Second over-voltage protection (OVP2)....................................................................................... 8 5.3.5 Peak current limit.......................................................................................................................... 8 5.3.6 IC supply under voltage lockout ................................................................................................... 8 6 Circuit Diagram...............................................................................................................9 7 PCB Layout....................................................................................................................10 7.1 Top overlay view ................................................................................................................................... 10 7.2 Bottom layer view.................................................................................................................................. 10 8 Component List .............................................................................................................11 9 Boost Choke Layout ......................................................................................................12 10 Test report......................................................................................................................13 10.1 Load and Line Test........................................................................................................................... 13 10.2 Load and Line Test without NTC(5Ω).............................................................................................. 15 PFC stage efficiency Harmonic test according to EN61000-3-2 Class D requirement .................................. 16 Harmonic test according to EN61000-3-2 Class D requirement .................................................................... 17 11 Test Waveforms.............................................................................................................18 12 References:.....................................................................................................................19 4 1 Content The evaluation board presented here is a 300W power factor correction (PFC) circuit with 85~265VAC universal input and output of 400VDC rated voltage. The continuous conduction mode (CCM) PFC controller either ICE3PCS02G or ICE3PCS03G can be employed in this board to achieve the unity power factor. This ICE3PCS02G and ICE3PCS03G are specially designed for applications of power supplies used in PC, server, LCD/PDP TV and Telecom, requesting high efficiency and power factor. The voltage loop compensation is integrated digitally for better dynamic response and less design effort. Appreciated for its high integrated design, ICE3PCS02G and ICE3PCS03G can achieve full requirements of the PFC application implemented in the 8-pin in DSO8 package. At the same time the number of peripheral components is minimized. The gate switching frequency is adjustable from 21kHz to 250kHz and able to synchronize with external switching frequency from 50kHz to 150kHz. In order to improve the power conversion efficiency further, the CoolMOSTM CP series and high voltage silicon carbide (SiC) schottky diode thinQ!TM are used into this boost type PFC circuit. 2 Evaluation Board ICE3PCS01G Demoboard 5 3 Technical Specifications Input voltage 85VAC~265VAC Input frequency 47~63Hz Output voltage and current 400VDC, 0.75A Output power ~ 300W Average efficiency >95% at 115VAC Switching Frequency 21kHz~250kHz 4 Circuit Description Line Input The AC line input side comprises the input fuse F1 as over-current protection. The choke L1, X2capacitors CX1/CX2 and Y1-capacitor CY1/CY2 are used to suppress common mode noise as well as differential mode noise. RT1 is placed in series to limit inrush current during each power on. Power Stage − Boost Type PFC Converter After the bridge rectifier BR1, there is a boost type PFC converter consisting of L3, Q1, D1 and C2. The third generation CoolMOS™ IPP60R199P is used as the power switch Q1. BR1, Q1 and SiC Diode D1 share the same heat sink so that the system heat can be equably spread. Output capacitor C2 provides energy buffering to reduce the output voltage ripple (100Hz) to the acceptable level and meet the holdup time requirement. PWM Control of Boost Converter The ICE3PCS02G and ICE3PCS03G are 8-pins control IC for power factor correction converters. It is suitable for wide range line input applications from 85 to 265 VAC with overall efficiency above 93.5%. The IC supports converters in boost topology and it operates in continuous conduction mode (CCM) with average current control. The IC operates with a cascaded control; the inner current loop and the outer voltage loop. The inner current loop of the IC controls the sinusoidal profile for the average input current. It uses the dependency of the PWM duty cycle on the line input voltage to determine the corresponding input current. This means the average input current follows the input voltage as long as the device operates in CCM. Under light load condition, depending on the choke inductance, the system may enter into discontinuous conduction mode (DCM) resulting in a higher harmonics but still meeting the Class D requirement of IEC 1000-3-2. The outer voltage loop controls the output bulk voltage, integrated digitally within the IC. Depending on the load condition, internal PI compensation output is converted to an appropriate DC voltage which controls the amplitude of the average input current. The IC is equipped with various protection features to ensure safe operating condition for both the system and device. 6 5 Circuit Operation 5.1 Soft Startup During power up when the VOUT is less than 95% of the rated level, internal voltage loop output increases from initial voltage under the soft-start control. This results in a controlled linear increase of the input current from 0A thus reducing the current stress in the power components. Once VOUT has reached 95% of the rated level, the soft-start control is released to achieve good regulation and dynamic response. 5.2 Gate Switching Frequency The switching frequency of the PFC converter can be set with an external resistor RFREQ at pin FREQ with reference to pin SGND. The voltage at pin FREQ is typical 1V. The corresponding capacitor for the oscillator is integrated in the device and the RFREQ/frequency is given in Figure 2. The recommended operating frequency range is from 21 kHz to 250 kHz. As an example, a RFREQ of 68kΩ at pin FREQ will set a switching frequency fSW of 65 kHz typically. Frequency vs Resistance 260 240 Resistance /kohm Frequency /kHz Resistance /kohm Frequency /kHz 220 15 278 110 40 17 249 120 36 20 211 130 34 30 141 140 31.5 160 40 106 150 29.5 140 50 86 169 26.2 120 60 74 191 25 70 62 200 23 80 55 210 21.2 80 90 49 221 20.2 60 100 43 232 19.2 200 Frequency/kHz 180 100 40 20 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 Resistance/kohm Frequency setting The switching frequency can be synchronized to the external pulse signal after 6 external pulses delay once the voltage at the FREQ pin is higher than 2.5V. The synchronization means two points. Firstly, the PFC switching frequency is tracking the external pulse signal frequency. Secondly, the falling edge of the PFC signal is triggered by the rising edge of the external pulse signal. The external R8 combined with R9 and the external diode, D6 can ensure FREQ pin voltage to be kept between 1.0V (clamped internally) and 5V (maximum pin voltage). If the external pulse signal has disappeared longer than 108us (typical) the switching frequency will be synchronized to internal clock set by the external resistor R8. 7 5.3 Protection Features 5.3.1 Input brown-out protection (BOP) ICE3PCS03G provides a new BOP feature whereby it senses directly the input voltage for InputBrown-Out condition via an external resistor/capacitor/diode network. This network provides a filtered value of VIN which turns the IC on when the voltage at pin 5 (BOP) is more than 1.25V. The IC enters into the fault mode when BOP goes below 1.0V. The hysteresis prevents the system to oscillate between normal and fault mode. Note also that the peak of VIN needs to be at least 20% of the rated VOUT in order to overcome open loop protection and power up system. 5.3.2 Open loop protection (OLP) The open loop protection is available for this IC to safe-guard the output. Whenever voltage at pin VSENSE falls below 0.5V, or equivalently VOUT falls below 20% of its rated value, it indicates an open loop condition (i.e. VSENSE pin not connected). In this case, most of the blocks within the IC will be shutdown. It is implemented using a comparator with a threshold of 0.5V. 5.3.3 First over-voltage protection (OVP1) Whenever VOUT exceeds the rated value by 8%, the first over-voltage protection OVP1 is active. This is implemented by sensing the voltage at pin VSENSE with respect to a reference voltage of 2.7V. A VSENSE voltage higher than 2.7V will immediately block the gate signal. After bulk voltage falls below the rated value, gate drive resumes switching again. 5.3.4 Second over-voltage protection (OVP2) The second OVP (OVP2) is provided in case that the first one fails due to the aging or incorrect resistors connected to the VSENSE pin. This is implemented by sensing the voltage at pin OVP with respect to a reference voltage of 2.5V. When voltage at OVP pin is higher than 2.5V, the IC will immediately turn off the gate, thereby preventing damage to bus capacitor. When the bulk voltage drops out of the hysteresis, which is below 2.3V the IC begin auto soft-start. In normal operation the trigger level of OVP2 should be designed higher than OVP1. However in the condition of mains transient overshoot the bulk voltage may be pulled up to the peak value of mains that is higher than the threshold of OVP1 and OVP2. In this case the OVP1 and OVP2 are triggered in the same time the IC will shut down the gate drive until bulk voltage falls out of the two protection hysteresis, then resume the gate drive again. This function is available in ICE3PCS02G. 5.3.5 Peak current limit The IC provides a cycle by cycle peak current limitation (PCL). It is active when the voltage at pin ISENSE reaches -0.4V. This voltage is amplified by a factor of -2.5 and connected to comparator with a reference voltage of 1.0V. A deglitcher with 200ns after the comparator improves noise immunity to the activation of this protection. In other words, the current sense resistor should be designed lower than -0.4V PCL for normal operation. 5.3.6 IC supply under voltage lockout When VCC voltage is below the under voltage lockout threshold VCCUVLO, typical 11V, IC is off and the gate drive is internally pull low to maintain the off state. The current consumption is down to 1.4mA only. 8 6 Circuit Diagram Schematic of 300W PFC demo board 9 7 PCB Layout 7.1 Top overlay view 7.2 Bottom layer view 10 8 Component List Designator BR1 C1 C2 C4 C4A C5 C7 C8 C9 C10 C11 CX1 CX2 CY1 CY2 (Connecter) SYNC Part Type 8A, 400V 0.1uF/630V 220uF/450V 1.5 uF/50V 1.5 uF/50V 4.7nF/50V 6.8nF/50V 0.1uF/50V 47uF/25V 10nF/50V 10pF/50V 0.47uF, X1, 275V 0.47uF, X1, 275V 2.2nF, Y2, 250V 2.2nF, Y2, 250V SIP3-MOLEX 2-way PCB (Connecter) VCC connecter 2-way PCB (Connecter) L N connecter 2-way PCB (Connecter) VOUT connecter D1 IDH04S60C D2 1N5408 D4 1N4007 D5 1N4007 D6 1N4148 F1 5A HEATSINK_KM100 Heatsink ICE3PCS02G/ IC1 ICE3PCS02G J1 jumper wire J2 jumper wire L1 2*3.9mH L3 750uH Q1 IPP60R199CP R1 68/0.25W, 1% R2 0.05/3W, 1% R3 10k/0.25W, 1% R4 3.3/0.25W, 1% R5 1.5M/0.25W, 1% R5A 1.5M/0.25W, 1% R6 27k/0.25W, 1% R6A 62k/0.25W, 1% R8 68k/0.25W, 1% R9 130k/0.25W, 1% R10 3.9M/0.25W, 5% R10A 3.9M/0.25W, 5% Description Bridge Rectifier Ceramic Cap Electrolytic Cap Ceramic Cap Ceramic Cap Ceramic Cap Ceramic Cap Ceramic Cap Electrolytic Cap Ceramic Cap Ceramic Cap Ceramic Cap Ceramic Cap Ceramic Cap Ceramic Cap Connector (SYNC) Manufacturer/ Part No. Vishay / KBU8G Epcos / B32652A6104J Epcos / B32922C3474M Epcos / B32922C3474M Epcos / B81123C1222M000 Epcos / B81123C1222M000 Connector (VCC) Connector (VIN) Connector (VOUT) Diode Diode Diode Diode Diode Fuse Infineon Technologies Vishay / 1N5408 Vishay / 1N4007 Vishay /1N4007 DSO-8 Infineon Technologies GATE signal CM Choke PFC Choke Power MOSFET Carbon Film Resistor Metal Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor 11 Epcos / B82725J2602N20 Infineon Technologies Vishay / LVR03R0500FE70 R11 R12 R12A R13 R13A RT1 SCREW1 SCREW2 SCREW3 SCREW4 SCREW5 SCREW6 SW1 VAR1 9 130k/0.25W, 1% 2M/0.25W, 1% 2M/0.25W, 1% 24k/0.25W, 1% 560k/0.25W, 1% S237/5 Diameter:2mm Diameter:2mm Diameter:2mm Diameter:2mm Diameter:2mm Diameter:2mm 3 pin PCB header S10K275 Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor Carbon Film Resistor NTC Thermistor PCB stand PCB stand PCB stand PCB stand Heatsink Heatsink Varistor Boost Choke Layout Core: PQ-core PQ3535 (TDK) Material: PC95 Inductance: L=750uH 12 Epcos / B57237S509M Epcos / B72210S271K101 10 Test report 10.1 Load and Line Test Input 85V 115V 230V 265V Vin(V) Iin(I) Vout(V) Iout(I) 84.79 0.49 399.90 0.10 38.99 93.72 1.00 84.67 0.74 399.90 0.15 58.71 93.72 1.00 84.56 0.98 399.80 0.20 78.02 93.97 1.00 84.44 1.25 399.80 0.25 99.46 94.35 1.00 84.15 1.88 399.80 0.37 149.04 94.39 1.00 83.86 2.52 399.70 0.50 198.72 94.18 1.00 83.56 3.17 399.70 0.62 248.49 93.87 1.00 83.28 3.81 399.70 0.74 296.18 93.41 1.00 114.77 0.37 399.90 0.10 39.19 94.65 0.98 114.69 0.54 399.90 0.15 58.63 95.14 0.99 114.61 0.72 399.80 0.20 78.04 95.34 1.00 114.52 0.91 399.80 0.25 99.49 95.51 1.00 114.31 1.36 399.80 0.37 149.05 95.79 1.00 114.10 1.82 399.70 0.50 198.73 95.83 1.00 113.90 2.28 399.70 0.62 248.49 95.71 1.00 113.70 2.73 399.70 0.74 296.28 95.66 1.00 229.81 0.21 399.90 0.10 39.20 95.44 0.87 229.77 0.29 399.90 0.15 58.64 96.14 0.93 229.73 0.37 399.80 0.20 78.12 96.60 0.95 229.68 0.46 399.80 0.25 99.53 96.58 0.97 229.59 0.68 399.80 0.37 149.08 97.21 0.98 229.48 0.90 399.70 0.50 198.74 97.73 0.99 229.38 1.11 399.70 0.62 248.49 97.81 0.99 229.29 1.33 399.70 0.74 296.30 97.86 1.00 264.84 0.20 399.90 0.10 39.21 95.85 0.79 264.81 0.26 399.90 0.15 58.65 96.32 0.88 264.77 0.33 399.80 0.20 78.07 96.57 0.92 264.73 0.41 399.80 0.25 99.55 96.84 0.95 264.65 0.60 399.80 0.37 149.10 97.25 0.97 264.56 0.79 399.70 0.50 198.80 97.50 0.98 264.47 0.97 399.70 0.62 248.49 97.84 0.99 264.39 1.15 399.70 0.74 296.26 98.01 0.99 13 Pout(W) Efficiency PF ICE3PCS02/03G Efficiency 100.00 99.00 85V 115V 230V 265V Efficiency(%) 98.00 97.00 96.00 95.00 94.00 93.00 92.00 0.00 50.00 100.00 150.00 200.00 250.00 300.00 Output Power (W) PFC stage efficiency ICE3PCS02/03G PF 1.00 0.95 PF 0.90 0.85 85V 0.80 115V 230V 265V 0.75 0.00 50.00 100.00 150.00 Output Power (W) Power factor 14 200.00 250.00 300.00 10.2 Load and Line Test without NTC(5Ω) Input 85V 115V 230V 265V Vin(V) Iin(I) Vout(V) Iout(I) Pout(W) Eff. PF 84.78 0.48 399.90 0.10 38.79 95.44 1.00 84.67 0.73 399.90 0.15 58.59 95.49 1.00 84.53 1.02 399.90 0.21 82.26 95.76 1.00 84.43 1.23 399.90 0.25 99.40 95.84 1.00 84.14 1.85 399.90 0.37 148.97 95.77 1.00 83.84 2.48 399.90 0.50 198.55 95.51 1.00 83.51 3.16 399.90 0.63 250.37 95.10 1.00 83.22 3.79 399.90 0.75 298.09 94.65 1.00 114.77 0.36 399.90 0.10 39.20 96.14 0.98 114.68 0.53 399.90 0.15 58.61 96.56 0.99 114.58 0.74 399.90 0.21 82.28 96.69 1.00 114.51 0.90 399.90 0.25 99.43 96.67 1.00 114.30 1.35 399.90 0.37 149.03 96.77 1.00 114.09 1.80 399.90 0.50 198.58 96.73 1.00 113.85 2.28 399.90 0.63 250.41 96.60 1.00 113.64 2.72 399.90 0.75 298.07 96.43 1.00 229.81 0.21 399.90 0.10 39.20 96.28 0.86 229.76 0.28 399.90 0.15 58.62 96.92 0.92 229.72 0.39 399.90 0.21 82.31 97.28 0.95 229.68 0.46 399.90 0.25 99.57 97.37 0.97 229.58 0.68 399.90 0.37 149.08 97.68 0.98 229.48 0.89 399.90 0.50 198.35 98.10 0.99 229.36 1.12 399.90 0.63 250.37 98.24 0.99 229.24 1.33 399.90 0.75 298.09 98.24 1.00 264.84 0.20 399.90 0.10 39.20 96.64 0.78 264.80 0.26 399.90 0.15 58.61 97.02 0.88 264.76 0.34 399.90 0.21 82.31 97.31 0.93 264.73 0.41 399.90 0.25 99.58 97.54 0.95 264.64 0.59 399.90 0.37 149.11 97.80 0.97 264.55 0.78 399.90 0.50 198.73 98.11 0.98 264.45 0.98 399.90 0.63 250.45 98.35 0.99 264.35 1.15 399.90 0.75 298.05 98.47 0.99 15 ICE3PCS02/03G Efficiency - No NTC 100.00 99.00 Efficiency(%) 98.00 97.00 96.00 95.00 94.00 93.00 85V No NTC 92.00 0.00 50.00 115V No NTC 100.00 150.00 Output Power (W) PFC stage efficiency without NTC (5Ω) 16 230V No NTC 200.00 265V No NTC 250.00 300.00 Harmonic test according to EN61000-3-2 Class D requirement Test condition I: 85VAC input measurement class D measurement class D 0.25 1.2 1 0.2 0.8 current (A) current (A) 0.15 0.6 0.1 0.4 0.05 0.2 0 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 3 5 7 9 11 harmonics (Vac=85V Po=300W Kp=1) 13 15 17 19 21 23 25 27 29 31 33 35 37 39 33 35 37 39 harmonics (Vac=85V Po=60W Kp=1) Harmonics at 300W output Harmonics at 60W output Test condition II: 265VAC input measurement class D measurement 1.2 class D 0.25 1 0.2 0.8 current (A) current (A) 0.15 0.6 0.1 0.4 0.05 0.2 0 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 3 harmonics (Vac=265V Po=300W Kp=1, Boost Follower) 5 7 9 11 13 15 17 19 21 23 25 27 29 31 harmonics (Vac=265V Po=60W Kp=1, Boost Follower) Harmonics at 300W output Harmonics at 60W output 17 11 Test Waveforms BOP triggered startup VCC triggered startup Startup test at 85VAC, 300W During startup the average current of PFC choke increases from zero to maximum limited by PCL and PFC output voltage rises gradually with very slight overshoot. Pout from 0W to 300W Pout from 300W to 0W Load jump test at 85VAC The under shoot of output voltage is only 63V when load jump from no load to full load at 85Vac while the overshoot is within 33V vice versa. The choke current shows no distortion during load dynamic change. Enter brown-out and leave brown-out , Pout: 300W Open Loop protection at 85V, Pout: 150W Brownout and OLP test 18 The gate drive is latched off once BOP pin voltage is lower than 1V and initiates another soft-startup once BOP voltage is higher than 1.25V as shown in the left picture. The gate drive can also be latched off once Vsense pin voltage is below 0.5V indicating an inadequate output voltage and initiates another soft-startup once Vsense voltage is higher than 0.5V as shown in the right picture. Auto Restart Mode OVP2 test When OVP2 happens the gate drive the will shut down and enter auto startup when the voltage at OVP pin drop below 2.3V. 12 References: [1] ICE3PCS02G and ICE3PCS03G datasheet, Infineon Technologies AG, 2010. [2] Luo Junyang, Liu Jianwei and Jeoh Meng Kiat, “Design tips for CCM PFC controller ICE2PCSxx”, Application note, Infineon Technologies, 2008. [3] Lim Teik Eng, Li Dong and Liu Jian Wei, “300W PFC evaluation board with CCM PFC controller ICE3PCS01G”, Application note, Infineon Technologies, 2010. [4] Luo Junyang, Liu Jianwei and Jeoh Meng Kiat, “ICE1PCS01 based boost type CCM PFC design guide – control loop modeling”, Application note, Infineon Technologies, 2007. 19