

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN75705 Getting Started with EZ-USB FX3.pdf

		
				 AN75705
Getting Started with EZ-USB® FX3™
Associated Project: No
Associated Part Family: EZ-USB ® FX3™
Software Version: SDK 1.3.3
Related Application Notes: AN70707
For a complete list of FX3 design resources, click here
To get the latest version of this application note, or the associated project file, please
visit http://www.cypress.com/go/AN75705.
AN75705 gets you started with the Cypress EZ-USB FX3 USB 3.0 device controller. This note highlights key FX3
features and applications while providing signposts along the way to various design resources to help with FX3
development. It also walks you through the steps to get started with FX3 firmware development using free Cypress tools
featuring the Eclipse integrated development environment (IDE). Finally, it provides an overview of FX3 software and
hardware development kits.
Contents
1
2
3
4
5
6
7
Introduction ...2
What is FX3? ..2
FX3 Features ..3
3.1
USB Interface ..3
3.2
GPIF II ...3
3.3
CPU ...3
3.4
JTAG Interface...4
3.5
UART Interface ..4
3.6
I2C Interface ...4
3.7
I2S Interface ...4
3.8
SPI Interface ..4
3.9
Boot Options ..4
3.10
Clocking ...4
3.11
Voltage Domains ...4
Application Development with FX34
4.1
FPGA/ASIC Interfaced to FX34
4.2
Configuring an FPGA via FX35
4.3
Image Sensor Interfaced to FX35
4.4
Designing FX3 Hardware6
4.5
Upgrading an FX2LP Design to FX36
Design Resources ..6
FX3 Terminology ..7
My First USB 3.0 Transfer Using FX3 13
www.cypress.com
8
Development Tools .. 22
8.1
Introduction to SuperSpeed Explorer Kit........ 22
8.2
Introduction to FX3 SDK 23
8.3
FX3 Firmware Examples 25
8.4
FX3 Firmware Development Tools 26
8.5
Windows Software Overview 26
8.6
Application Interface 27
8.7
Windows Software Examples 28
8.8
Streamer Example ... 28
8.9
FX3 SDK and Software for Linux 29
8.10
Useful Debug Tools 30
9
Appendix A ... 31
9.1
USB 3.0 Overview ... 31
9.2
Electrical Interface ... 31
9.3
Cables and Connectors 32
9.4
USB 3.0 versus 2.0 .. 33
10 Appendix B ... 35
10.1
FX3 DVK Driver Installation on Windows 35
11 Appendix C ... 37
11.1
Obtaining an EZ-USB FX3 DVK 37
11.2
Introduction to FX3 DVK 38
11.3
JTAG Debuggers for FX3 DVK 40
Document History.. 41
Worldwide Sales and Design Support 42
Document No. 001-75705 Rev. *F
1
Getting Started with EZ-USB® FX3™
1
Introduction
Cypress’s EZ-USB FX3 (hereafter abbreviated to FX3) is a powerful USB 3.0 peripheral controller, providing
integrated and flexible features. FX3 enables developers to add USB 3.0 functionality to their systems.
AN75705 helps you get started with FX3. It highlights the key uses, applications, and features of FX3. A
comprehensive list of design resources available from Cypress is also provided. This application note walks you
through the steps to get started with USB transfers using the SuperSpeed Explorer Kit (CYUSB3KIT-003) or FX3
Development Kit (CYUSB3KIT-001).
Appendix A provides an overview of USB 3.0. Appendix B explains how to install the FX3 Windows driver if not
already installed.
2
What is FX3?
FX3 is a USB 3.0 peripheral controller with an integrated ARM9 processor. Parallel and serial interfaces provide highspeed connectivity with other devices in the user system.
The main function of the FX3 device in a system is to transfer high-bandwidth data between a USB host and a
peripheral device, such as a camera or scanner. The presence of a powerful ARM9 processor on-chip also allows
FX3 to access the data stream and efficiently process data. In systems where FX3 is not required to perform data
processing, the ARM9 firmware only initializes and manages data transfers between two interfaces—USB and a data
consuming/providing device. .
FX3 has a highly flexible, programmable interface known as the General Programmable Interface Generation 2 (GPIF
II) in addition to I2C, SPI, UART, and I2S serial interfaces. GPIF II programmability allows FX3 to be connected to
various types of devices including FPGAs, image sensors, ADCs, and application processors. This makes FX3 a
good controller choice in a wide range of high-performance USB 3.0 applications.
TCK
TDO
TRST#
TDI
TMS
Figure 1. FX3 Block Diagram
FSLC[0]
FSLC[1]
FSLC[2]
JTAG
CLKIN
CLKIN_32
XTALIN
XTALOUT
SRAM
(512kB/256kB)
ARM9
HS/FS/LS
OTGHost
DQ[31:0]/[15:0]
DMA
Interconnect
CTL[15:0]
PMODE[2:0]
SS
Peripheral
32
EPs
GPIF™ II
INT#
RESET#
D+
D-
Charger
Detect
I2S
I2S_WS
I2S_MCLK
SPI
SSN
SCLK
MISO
MOSI
I2S_CLK
I2S_SD
UART
TX
RX
CTS
RTS
I2C_SCL
I2C_SDA
I2C
www.cypress.com
USB
HS/FS
Peripheral
OTG_ID
SSRX +
SSRX SSTX +
SSTX -
Document No. 001-75705 Rev. *F
2
Getting Started with EZ-USB® FX3™
3
FX3 Features
This section briefly describes the key features of FX3.
3.1
USB Interface
FX3’s USB interface supports the following features:
3.2

USB SuperSpeed and Hi-Speed peripheral functionality compliant with the USB 3.0 Specification, Revision 1.0.
Devices designed to this specification, such as FX3, are backward compatible with the USB 2.0 Specification.

Compliant with the OTG Supplement, Revision 2.0. FX3 supports Hi-Speed, Full-Speed, and Low-Speed OTG
dual-role device capability. As a peripheral, FX3 is capable of super-speed, high-speed, and full-speed
functionality. As a host, it is capable of high-speed, full-speed, and low-speed functionality.

Carkit Pass-through UART functionality on USB D+/D– lines based on the CEA-936A Specification.
Up to 16 IN and 16 OUT endpoints.
GPIF II
The high-performance GPIF II (a part of the processor interface block (PIB)) enables functionality similar to, but more
advanced than, FX2LP's GPIF and Slave FIFO interfaces. GPIF II is a programmable state machine that enables a
flexible interface running on its own high-speed clock, autonomous to the ARM9. GPIF II may either function as a
master or slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces may be implemented
with GPIF II.
The key features of GPIF II are:

Functions as master or slave.

Supports 16 control I/O pins when a 16/8 data bus is used. Control pins can be input, output, or bi-directional.
Provides 256 programmable states.
Supports 8-bit, 16-bit, 24-bit, and 32-bit parallel data bus.
Supports interface frequencies up to 100 MHz.
Supports 14 configurable I/O pins (to function as control signals) when a 32- bit data bus is used. Control pins
can be input, output, or bidirectional.
Cypress’s GPIF II Designer Tool enables fast development of GPIF II state machines and includes examples for
common interfaces. The GPIF II Designer Tool is available with the EZ-USB FX3 SDK installation.
A popular implementation of GPIF II is a synchronous Slave FIFO interface, used in many FPGA interfaces. For
details on the synchronous Slave FIFO interface, refer to AN65974 - Designing with the EZ-USB FX3 Slave FIFO
Interface.
3.3
CPU
FX3 has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU. The core has direct access to 16 KB of instruction
tightly coupled memory (TCM) and 8 KB of data TCM. The ARM926EJ-S core provides a JTAG interface for firmware
debugging.
FX3 integrates 512 KB or 256 KB of embedded SRAM (depending on the part number selected) and supports four
methods for booting the code—USB, GPIF II, I2C, or SPI.
FX3 enables efficient and flexible DMA connectivity between its various peripherals (such as, USB, GPIF II, I2S, SPI,
and UART). After the FX3 firmware configures data accesses between peripherals, the DMA fabric manages
transfers without involving the ARM9 core. The example FX3 firmware is available with the EZ-USB FX3 SDK
installation.
www.cypress.com
Document No. 001-75705 Rev. *F
3
Getting Started with EZ-USB® FX3™
3.4
JTAG Interface
FX3’s JTAG interface has a standard five-pin interface to connect to a JTAG debugger to debug firmware through the
CPU-core's on-chip-debug circuitry. Industry-standard debugging tools for the ARM926EJ-S core can be used for the
FX3 application development.
3.5
UART Interface
FX3’s UART interface supports full-duplex communication and consists of the TX, RX, CTS, and RTS signals. The
UART is capable of generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the FX3 firmware.
3.6
I2C Interface
FX3’s I2C interface operates as an I2C master enabling communication with I2C slave devices. For example, FX3
may boot from an EEPROM connected to the I2C interface. FX3’s I2C master controller supports multi-master
functionality and allows for I2C clock stretch. The I2C controller supports bus frequencies of 100 kHz, 400 kHz, and 1
MHz.
3.7
I2S Interface
FX3 has an I2S transmitter to support external audio codecs and other I2S receivers. The sampling frequencies
supported by the I2S interface are 32 kHz, 44.1 kHz, and 48 kHz.
3.8
SPI Interface
FX3 supports an SPI master interface at a maximum operation frequency of 33 MHz. The SPI controller supports four
modes of SPI communication with transaction sizes ranging from 4 bits to 32 bits.
3.9
Boot Options
FX3 can load boot images from the following sources:
USB, I2C, SPI, GPIF II (over the synchronous ADMux, asynchronous ADMux, or asynchronous SRAM interface
supported by the bootloader).
AN76405 - EZ-USB FX3 Boot Options contains details for deciding on the appropriate boot method for your design.
3.10
Clocking
FX3 allows either a crystal or an external clock to be connected. The crystal frequency supported is 19.2 MHz, while
the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.
Clock inputs to FX3 must meet the phase noise and jitter requirements specified in the EZ-USB FX3 Datasheet.
3.11
Voltage Domains
FX3 has independent voltage supply domains for each of the functional blocks (GPIF II, UART/SPI/I2S, I2C, JTAG,
USB, Clock, and Core).
Voltage inputs to FX3 must meet the requirements specified in the EZ-USB FX3 Datasheet.
Refer to AN70707 - EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist when designing the
FX3 hardware.
4
Application Development with FX3
This section highlights some typical applications of FX3 in a system.
A complete FX3 design involves software, firmware, and hardware development. Cypress provides design resources
for each of these aspects. FX3 design resources are listed in Table 1.
4.1
FPGA/ASIC Interfaced to FX3
Several applications connect an FPGA or ASIC to FX3 over a high-speed parallel GPIF II interface. Another device,
which is the source or sink of data, is connected to the FPGA or ASIC. Examples of such applications are data
acquisition devices, printers, scanners, and imaging devices.
www.cypress.com
Document No. 001-75705 Rev. *F
4
Getting Started with EZ-USB® FX3™
In such applications, FX3 serves as a fast data pipe to and from a USB host. For these applications, the FX3-toFPGA/ASIC interface is typically the synchronous Slave FIFO interface (Figure 2).
Figure 2. FPGA/ASIC Interfaced to FX3
High Bandwidth USB Peripheral such as Camera, Scanner, Printer
SLCS#
PKTEND#
FLAGB
FLAGA
Rest of the
system
(Data Source/
Sink)
A[1:0]
External FPGA/
ASIC
D[15:0]/ D[31:0]
SLWR#
Sync
Slave
FIFO
I/F
EZ-USB
FX3
USB Host
USB
(Typically a PC with
a USB3.0 Port)
SLRD#
SLOE#
PCLK
For a detailed description of the Slave FIFO interface and an example of a complete design in which an FPGA
connects to FX3, refer to AN65974 - Designing with the EZ-USB FX3 Slave FIFO Interface.
Another popular interface that the GPIF II can implement is the Synchronous Address Data Multiplexed interface.
4.2
Configuring an FPGA via FX3
In applications where FX3 connects to an FPGA, it may be preferred to load the FPGA bit file through FX3. In this
case, the FPGA configuration file can be transferred from a USB host through FX3 to the FPGA. This saves the cost
of an FPGA boot memory and enables FPGA reconfiguration (including updates) from the PC. For an example
implementation, refer to AN84868 - Configuring an FPGA over USB Using Cypress EZ-USB FX3.
Figure 3. Configuring an FPGA via FX3
FPGA
FX3
PC
FPGA
FX3
PC
Bitstream
Bitstream
(a) FPGA boots from
external memory.
(b) FPGA boots from PC. No
external memory required.
Boot
Memory
4.3
Image Sensor Interfaced to FX3
In imaging applications, an image sensor is connected directly to FX3 over a parallel GPIF II interface and video is
streamed from the sensor to a USB host through FX3.
The system can be made compatible with the USB Video Class by programming the FX3 with the appropriate
firmware. For an example of such an application, refer to AN75779 - How to Implement an Image Sensor Interface
with EZ-USB FX3 in a USB Video Class (UVC) Framework.
www.cypress.com
Document No. 001-75705 Rev. *F
5
Getting Started with EZ-USB® FX3™
Figure 4. Image Sensor Interfaced to FX3
Camera
USB Host
PCLK
Frame Valid
Line Valid
GPIF II
DQ[15:0]/DQ[7:0]
USB
EZ-USB FX3
Image Sensor
Reset#
I2C control
4.4
USB
Host
Controller
UVC
Driver
Video
Capture
Application
GPIO
I2C
Master
Designing FX3 Hardware
Because of the speed and power of USB 3.0, pay careful attention to PC design and layout. Refer to AN70707 - EZUSB FX3/FX3S Hardware Design Guidelines and Schematic Checklist when designing the FX3 hardware. For an
example schematic design, you may also refer to the FX3 DVK Schematic.
4.5
Upgrading an FX2LP Design to FX3
If you are upgrading an existing FX2LP design to use FX3, refer to AN76348 - Differences in Implementation of EZUSB FX2LP and EZ-USB FX3 Applications.
5
Design Resources
Table 1 lists the various resources available from Cypress to help with development using FX3. For the complete list
of USB SuperSpeed Code Examples, click here.
Table 1. FX3 Design Resources
Design
Resources
Where to Find Resources
FX3
SuperSpeed USB Controller
SuperSpeed USB Controller Datasheet
FX3 Firmware
Eclipse IDE installation with GCC compiler
Included with EZ-USB FX3 SDK installation
APIs for performing various functions
Firmware examples
Host Software
Documentation on using the SDK
FX3 Programmer’s Manual
Documentation on all APIs provided in the SDK
FX3 SDK API Guide
Sync Slave FIFO firmware example in a complete
design with FPGA
AN65974 - Designing with the EZ-USB FX3 Slave
FIFO Interface
UVC compatible firmware example
AN75779 - How to Implement an Image Sensor
Interface with EZ-USB FX3 in a USB Video Class
(UVC) Framework
USB 3.0 driver – cyusb3.sys
Available with EZ-USB FX3 SDK installation
Host application examples - Control Center and
Streamer applications
Cypress USBSuite Application Development - Quick
Start Guide
www.cypress.com
Cypress USBSuite Application Development - Quick
Start Guide
Document No. 001-75705 Rev. *F
6
Getting Started with EZ-USB® FX3™
Design
GPIF II
Interface
Design
Hardware
Design
Resources
Where to Find Resources
Using the GPIF II Designer Tool, you can design a
custom GPIF II interface using state machine entry.
The tool then generates the necessary code to be
integrated into your FX3 firmware.
Included with EZ-USB FX3 SDK installation
Examples of popular GPIF II implementations
including Slave FIFO, SRAM slave, and ADMux slave
GPIF II Designer Tool - included with EZ-USB FX3
SDK installation
GPIF II documentation, including instructions for
using the tool
GPIF II Design Guide - available with GPIF II
Designer Tool (EZ-USB FX3 SDK installation)
Development board – Schematic, board files, and
documentation
SuperSpeed Explorer Kit (CYUSB3KIT-003) User
Guide and Design Files (Schematics, CAD, Gerber
files)
FX3 DVK (CYUSB3KIT-001) User Guide and Design
Files (Schematics, CAD, Gerber files)
Firmware
Debug
Hardware design guidelines including
recommendations for crystals, power supply
decoupling capacitors, and PCB layout
AN70707 - EZ-USB FX3/FX3S Hardware Design
Guidelines and Schematic Checklist
IBIS model
FX3 IBIS Model
Setting up and using the JTAG debugger
Chapter 12 of FX3 Programmer’s Manual
Other Collateral
6
Application Notes
EZ-USB FX3 Application Notes
Training Videos
EZ-USB FX3 Architecture Overview (available on the same web page as this
application note)
Knowledge Base Articles
EZ-USB FX3 Knowledge Base Articles
FX3 Terminology
To understand the data transfer in and out of FX3, it is important to know the following terms:

Socket
DMA Descriptor
DMA buffer
GPIF thread
A socket is a point of connection between a peripheral hardware block and the FX3 RAM. Each peripheral hardware
block on FX3, such as USB, GPIF, UART, and SPI, has a fixed number of sockets associated with it. The number of
independent data flows through a peripheral is equal to the number of its sockets. The socket implementation
includes a set of registers that point to the active DMA descriptor and enable or flag interrupts associated with the
socket.
A DMA Descriptor is a set of registers allocated in the FX3 RAM. It holds information about the address and size of
a DMA buffer as well as pointers to the next DMA Descriptor. These pointers create DMA Descriptor chains.
A DMA buffer is a section of RAM used for intermediate storage of data transferred through the FX3 device. DMA
buffers are allocated from the RAM by the FX3 firmware, and their addresses are stored as part of DMA Descriptors.
A GPIF thread is a dedicated data path in the GPIF II block that connects the external data pins to a socket.
www.cypress.com
Document No. 001-75705 Rev. *F
7
Getting Started with EZ-USB® FX3™
Sockets can directly signal each other through events or they can signal the FX3 CPU via interrupts. The firmware
configures this signaling. Take, for example, a data stream from the GPIF II block to the USB block. The GPIF socket
can tell the USB socket that it has filled data in a DMA buffer, and the USB socket can tell the GPIF socket that a
DMA buffer is empty. This implementation is called an automatic DMA channel. The automatic DMA channel
implementation is typically used when the FX3 CPU does not have to modify any data in a data stream.
Alternatively, the GPIF socket can send an interrupt to the FX3 CPU to notify it that the GPIF socket filled a DMA
buffer. The FX3 CPU can relay this information to the USB socket. The USB socket can send an interrupt to the FX3
CPU to notify it that the USB socket emptied a DMA buffer. Then, the FX3 CPU can relay this information back to the
GPIF socket. This is called the manual DMA channel implementation. This implementation is typically used when the
FX3 CPU has to add, remove, or modify data in a data stream. The firmware example of the UVC application note
(AN75779) uses the manual DMA channel implementation because the firmware needs to add the UVC video data
header.
A socket that writes data to a DMA buffer is called a producer socket. A socket that reads data from a DMA buffer is
called a consumer socket. A socket uses the values of the DMA buffer address, DMA buffer size, and DMA
Descriptor chain stored in a DMA Descriptor for data management. A socket takes a finite amount of time (up to a few
microseconds) to switch from one DMA Descriptor to another after it fills or empties a DMA buffer. The socket cannot
transfer any data while this switch is in progress. This latency can be a problem for interfaces that have no flow
control. One such example is an image sensor interface.
This issue is addressed in the GPIF II block using multiple GPIF threads. The GPIF II block implements four GPIF
threads. Only one GPIF thread can transfer data at a time. The GPIF II state machine must select an active GPIF
thread to transfer data.
The GPIF thread selection mechanism is like a mux. The GPIF II state machine uses internal control signals or
external inputs (address lines A1, A0 in case of Slave FIFO 2-bit application note) to select the active GPIF thread.
Switching the active GPIF thread switches the active socket for the data transfer, thereby changing the DMA buffer
used for data transfers. The GPIF thread switch has no latency.
The default mapping of the sockets and GPIF threads is shown in Figure 5 — Socket 0 to GPIF thread 0, Socket 1 to
GPIF thread 1, Socket 2 to GPIF thread 2, and Socket 3 to GPIF thread 3.
Figure 5. Default GPIF II Socket/Thread Mapping
Processor Interface Block
(PIB)
Thread 0
Socket 1
Thread 1
Socket 2
Thread 2
Socket 3
Thread 3
Switching
GPIF II
Socket 0
External
Data Bus
To understand DMA transfers, the concept of a socket is illustrated in the following four figures.
www.cypress.com
Document No. 001-75705 Rev. *F
8
Getting Started with EZ-USB® FX3™
Figure 6. Socket Routes Data According to a List of DMA Descriptors
Socket Linked List
Socket
FX3 RAM
DMA Descriptor 1
Address A1, Length L,
Next Descriptor 2
DMA Buffer 1
DMA Descriptor 2
Address A2,Length L,
Next Descriptor 3
DMA Buffer 2
DMA Buffer 3
Data
DMA Descriptor 3
Address A3, Length L,
Next Descriptor 1
The socket linked list is a set of data structures in the main memory called DMA descriptors. Each descriptor
specifies a DMA buffer address and length as well as a pointer to the next DMA descriptor. As the socket operates, it
retrieves the DMA descriptors individually, routing the data to the DMA buffer specified by the descriptor address and
length. When L bytes are transferred, the socket retrieves the next descriptor and continues transferring bytes to a
different DMA buffer.
This structure makes a socket versatile because any number of DMA buffers can be created anywhere in memory
and can be automatically chained together. For example, the socket in Figure 6 retrieves DMA descriptors in a
repeating loop.
Figure 7. Socket Operating with DMA Descriptor 1
Socket Linked List
FX3 RAM
A1
L
Socket
DMA Descriptor 1
Address A1, Length L,
Next Descriptor 2
DMA Buffer 1
DMA Descriptor 2
Address A2 Length L,
Next Descriptor 3
DMA Buffer 2
DMA Buffer 3
Data
DMA Descriptor 3
Address A3, Length L,
Next Descriptor 1
In Figure 7, the socket has loaded DMA Descriptor 1, which tells it to transfer bytes starting at A1 until it has
transferred L bytes, at which time it retrieves DMA Descriptor 2. Then, it continues with its address and length
settings A2 and L (see Figure 8).
www.cypress.com
Document No. 001-75705 Rev. *F
9
Getting Started with EZ-USB® FX3™
Figure 8. Socket Operating with DMA Descriptor 2
Socket Linked List
FX3 RAM
Socket
DMA Descriptor 1
Address A1, Length L,
Next Descriptor 2
DMA Buffer 1
A2
L
DMA Descriptor 2
Address A2 Length L,
Next Descriptor 3
DMA Buffer 2
DMA Buffer 3
Data
DMA Descriptor 3
Address A3, Length L,
Next Descriptor 1
In Figure 9 the socket retrieves the third DMA descriptor and transfers data, starting at A3. When it has transferred L
bytes, the sequence repeats with DMA Descriptor 1.
Figure 9. Socket Operating with DMA Descriptor 3
Socket Linked List
FX3 RAM
Socket
DMA Descriptor 1
Address A1, Length L,
Next Descriptor 2
DMA Buffer 1
DMA Descriptor 2
Address A2 Length L,
Next Descriptor 3
DMA Buffer 2
DMA Buffer 3
A3
Data
DMA Descriptor 3
Address A3, Length L,
Next Descriptor 1
Figure 10 shows a DMA data transfer in detail. Take, for example, an application using three DMA buffers of length L
chained in a circular loop. The FX3 memory addresses are on the left. The blue arrows show the socket loading the
socket linked list descriptors from the memory. The red arrows show the resulting data paths. The following steps
show the socket sequence as the data is moved to the internal DMA buffers.
Step 1: Load DMA Descriptor 1 from the memory into the socket. Get the DMA buffer location (A1), DMA buffer size
(L), and the next descriptor (DMA Descriptor 2) information. Go to step 2.
Step 2: Transfer data to the DMA buffer location starting at A1. After transferring DMA buffer size L amount of data,
go to step 3.
www.cypress.com
Document No. 001-75705 Rev. *F
10
Getting Started with EZ-USB® FX3™
Figure 10. DMA Transfer Example
0
DMA Descriptor 3
Buffer Address: A3 – Size L
Next DMA Descriptor: 1
Ste
p
1
DMA Descriptor 2
Buffer Address: A2 – Size L
Next DMA Descriptor: 3
ep
St
DMA Descriptor 1
Buffer Address: A1 – Size L
Next DMA Descriptor: 2
3
Step
5
Socket
A1
p2
S te
St
ep
4
DMA Buffer 1
A1+L
St
ep
DMA Buffer 2
6
A2
A2+L
A3
DMA Buffer 3
A3+L
Step 3: Load DMA Descriptor 2 as pointed to by the current DMA Descriptor 1. Get the DMA buffer location (A2),
DMA buffer size (L), and the next descriptor (DMA Descriptor 3) information.
Step 4: Transfer data to the DMA buffer location starting at A2. After transferring DMA buffer size L amount of data,
go to step 5.
Step 5: Load DMA Descriptor 3 as pointed to by the current DMA Descriptor 2. Get the DMA buffer location (A3),
DMA buffer size (L), and next Descriptor (DMA Descriptor 1) information.
Step 6: Transfer data to the DMA buffer location starting at A3. After transferring DMA buffer size L amount of data,
go to step 1.
This simple scheme causes data loss if the external peripheral sends data when the socket retrieves the next DMA
descriptor from the memory, typically 1 microsecond. A better solution is to take advantage of the fact that the
sockets can be switched without latency—in one clock cycle. Therefore, it makes sense to use two sockets if the
external peripheral does not have any flow control mechanism. Data transfer using dual sockets is described in
Figure 11, with numbered execution steps. The access of Socket0 and Socket1 to the DMA buffers is differentiated
by red and green arrows (data paths for individual sockets), respectively. The ‘a’ and ‘b’ parts of each step occur
simultaneously. This parallel operation of the hardware eliminates DMA descriptor retrieval dead time and allows the
GPIF II to stream data continuously into internal memory.
www.cypress.com
Document No. 001-75705 Rev. *F
11
Getting Started with EZ-USB® FX3™
Figure 11. Dual Sockets Yield Seamless Transfers
0
ep
St
1a
DMA Descriptor 1
Buffer Address: A1 – Size L
Next DMA Descriptor: 3
DMA Descriptor 2
Buffer Address: A2 – Size L
Next DMA Descriptor: 4
3a
1b
ep
St
Step 4a
6a
a
DMA Descriptor 4
Buffer Address: A4 – Size L
Next DMA Descriptor: 2
Ste
p
5
Step
DMA Descriptor 3
Buffer Address: A3 – Size L
Next DMA Descriptor: 1
St
ep
Socket 0
Socket 1
A1
DMA Buffer 1
e
St
p2
ep
St
6b
ep
St
A1+L
A2
3b
DMA Buffer 3
St
ep
St
ep
A2+L
A3
5b
4b
DMA Buffer 2
A3+L
A4
DMA Buffer 4
A4+L
Step 1: At initialization of the sockets, Socket 0 and Socket 1, load the DMA Descriptor 1 and DMA Descriptor 2,
respectively.
Step 2: As soon as the data is available, Socket 0 transfers the data to DMA Buffer 1. The transfer length is L. At the
end of this transfer, go to step 3.
Step 3: GPIF II switches the GPIF thread and, therefore, the socket for data transfer. Socket 1 starts to transfer data
to DMA Buffer 2, and, at the same time, Socket 0 loads the DMA Descriptor 3. By the time Socket 1 finishes
transferring L amount of data, Socket 0 is ready to transfer data to DMA Buffer 3.
Step 4: GPIF II now switches back to the original GPIF thread. Socket 0 now transfers the data of length L into DMA
Buffer 3. At the same time, Socket 1 loads the DMA Descriptor 4, making it ready to transfer data to DMA Buffer 4.
After Socket 0 finishes transferring the data of length L, go to step 5.
Step 5: GPIF II routes the Socket 1 data into DMA Buffer 4. At the same time, Socket 0 loads DMA Descriptor 1 to
prepare to transfer data into DMA Buffer 1. Note that Step 5a is the same as Step 1a except that Socket 1 is not
initializing but, rather, transferring data simultaneously.
Step 6: GPIF II switches sockets again and Socket 0 starts to transfer data of length L into DMA Buffer 1. It is
assumed that by now, the DMA buffer is empty, having been depleted by the UIB consumer socket. At the same time,
Socket 1 loads DMA Descriptor 2 and is ready to transfer data into DMA Buffer 2. The cycle now goes to Step 3 in
the execution path.
GPIF II sockets can transfer data only if the consuming side (USB) empties and releases the DMA buffers in time to
receive the next chunk of data from GPIF II. If the consumer is not fast enough, the sockets drop data because their
DMA buffer writes are ignored.
www.cypress.com
Document No. 001-75705 Rev. *F
12
Getting Started with EZ-USB® FX3™
7
My First USB 3.0 Transfer Using FX3
This section walks you through building and running a simple firmware example, which enables you to perform BULK
OUT and BULK IN transfers from a USB host to the FX3 device.
Before starting this exercise, do the following:
1.
Obtain an EZ-USB® FX3™ SuperSpeed Explorer Kit (CYUSB3KIT-003). In this exercise, the FX3 firmware is
downloaded from the USB host, so the SuperSpeed Explorer Kit board must be configured for USB boot. To
select USB boot, keep all the jumpers CLOSED as shown in Figure 12. These jumper settings are highlighted
with a red box or circle. For details on the Kit board, refer to the Kit User Guide. The SuperSpeed Explorer kit
board can only be powered from the USB cable (bus-powered). If you are looking for FX3 DVK (CYUSB3KIT001) refer to Obtaining an EZ-USB FX3 DVK for information on obtaining the kit and the jumper settings.
Figure 12. SuperSpeed Explorer Kit Board Setting for USB Boot
2.
Install the EZ-USB FX3 SDK. When asked to choose the Installation Type, select the default Typical setting.
After installing the FX3 SDK, import the firmware examples into the Eclipse IDE workspace (an Eclipse IDE
installation is provided as part of the SDK). To import all of the firmware examples into the IDE, follow these
steps:
a.
Open the Eclipse IDE by going to your Start menu. Select All Programs > Cypress > Eclipse > EZ USB
Suite. Accept the default workspace folder; however, you can define your own location later.
www.cypress.com
Document No. 001-75705 Rev. *F
13
Getting Started with EZ-USB® FX3™
Figure 13. Open Eclipse IDE from Start Menu
b.
This starts an empty Eclipse IDE with no projects in the Project Explorer tab. The next step is to import
the Cypress example projects into the Project Explorer.
Figure 14. Eclipse IDE Before Importing Projects
c.
d.
Select File > Import.
Select General > Existing Projects into Workspace and click Next.
www.cypress.com
Document No. 001-75705 Rev. *F
14
Getting Started with EZ-USB® FX3™
Figure 15. Select Existing Projects into Workspace
e.
Browse to the firmware directory in your SDK installation. Click the Browse… button and navigate to the
Cypress SDK firmware folder. For a typical Windows installation, this folder is located at C:\Program Files
(Program Files (x86 on 64-bit machines)\Cypress\EZ-USB FX3 SDK\firmware.
Figure 16. Select Root Directory
www.cypress.com
Document No. 001-75705 Rev. *F
15
Getting Started with EZ-USB® FX3™
Figure 17. Browse to “firmware” Directory in SDK Installation
f.
All the Cypress example projects should be selected with check marks. Otherwise, press the Select All button.
Also, check Copy projects into workspace, then click Finish.
www.cypress.com
Document No. 001-75705 Rev. *F
16
Getting Started with EZ-USB® FX3™
Figure 18. Select All Projects in Firmware Directory
g.
All the firmware examples are imported into the workspace and become visible in the Eclipse Project Explorer.
Because the projects are built automatically on importing, it may take several minutes for the import operation to
load and build them all. When loaded, you can run them as they are or modify and rebuild them.
www.cypress.com
Document No. 001-75705 Rev. *F
17
Getting Started with EZ-USB® FX3™
Figure 19. All Projects Imported into Workspace
7.1.1
Building and Running the USBBulkLoopAuto Firmware
The next part of the exercise is to build and run a basic firmware example.
The USBBulkLoopAuto firmware example provided in the FX3 SDK configures BULK endpoint 1 IN and BULK
endpoint 1 OUT by default. The data sent by the USB host to the OUT endpoint is looped back to the IN endpoint by
the FX3 firmware. The same data can be received back by the USB host from the IN endpoint.
1.
Open the USBBulkLoopAuto firmware in the Eclipse IDE by double-clicking its name or clicking on the little
expansion arrow to the left of its name. You can build this firmware with its default settings or modify it by
changing the endpoint numbers as explained in the following steps. To run this firmware without making any
changes, jump to step 5. To make a minor modification and then run, continue on to step 2. The modification
steps are recommended to give a more detailed look at the Eclipse tool chain.
2.
In the list of files, double-click cyfxbulkloopauto.h to bring it up in the editor window. The endpoint numbers and
their associated sockets are defined in cyfxbulkloopauto.h, using identifiers CY_FX_EP_PRODUCER,
CY_FX_EP_CONSUMER, CY_FX_EP_PRODUCER_SOCKET, and CY_FX_EP_CONSUMER_SOCKET near
the end of the .h file.
www.cypress.com
Document No. 001-75705 Rev. *F
18
Getting Started with EZ-USB® FX3™
Figure 20. Endpoint and Socket Definitions in cyfxbulklpauto.h
3.
Using the identifiers highlighted above, the endpoint numbers and associated sockets are changed from EP1 to
EP2, as shown in Figure 21. Now EP2 IN is the BULK IN and EP2 OUT is BULK OUT in the modified firmware.
Note: In USB, an endpoint is identified by a byte comprising bit 7 as the direction (1=in, 0=out) and a 7-bit
address in bits 6:0. An FX3 “socket” is equivalent to an endpoint in the context of USB transfers. The socket in
the USB domain interfaces with a socket in another peripheral domain (for example, the GPIF II or even the
CPU) for data transfers.
Figure 21. Endpoint Number and Associated Socket Modified from EP1 to EP2
4.
Make sure you save the edited cyfxbulklpauto.h file (File > Save). The Eclipse build process does not
automatically save freshly edited files. Build the project by ensuring that the USBBulkLoopAuto project is
expanded in the Project Explorer pane, and then selecting Project > Build Project.
You can also select Build Configurations before building the project. Right-click on the project name in the
Project Explorer pane; then, select Build Configurations > Set Active > Debug/Release (see Figure 22).
www.cypress.com
Document No. 001-75705 Rev. *F
19
Getting Started with EZ-USB® FX3™
Figure 22. Selecting Build Configuration in Eclipse IDE
Note: The firmware image size in Release mode is smaller compared to the Debug mode image. The Debug mode
image contains additional debug symbols to allow the user to debug using JTAG.
7.1.2
L o a d i n g U S B B u l k L o o p A u t o F i r m w a r e i n t o F X 3 R AM
An application called the Cypress Control Center loads the code into the FX3. The Control Center application installs
as part of the FX3 SDK.
1.
Open the Cypress Control Center application by going to your Start menu. Select Start > All Programs >
Cypress > Cypress USBSuite > Control Center.
2.
Using the USB 3.0 cable provided along with the Kit, connect the Kit board to your development PC using either
a SuperSpeed or Hi-Speed USB port. If you previously installed the Kit setup and driver software, the USB
Control Center should show the “Cypress USB Bootloader” as a connected device. However, if you get a “no
drive found” message, refer to Appendix B to install the Windows driver.
3.
To load the firmware in the FX3 RAM, select Program > FX3 > RAM.
www.cypress.com
Document No. 001-75705 Rev. *F
20
Getting Started with EZ-USB® FX3™
4.
Navigate to the firmware image file to load into FX3. This file is the USBBulkLoopAuto.img file that Eclipse
generated as the last step of its build process. For the default workspace, this file is located at
C:\Users\antioch\Work\USBBulkLoopAuto\Debug. Click Open after selecting the file or double-click the
file name.
After the USB Control Center downloads the new FX3 code, Windows discovers a new USB device called
Cypress USB BulkLoopExample. This is FX3 re-enumeration. FX3 initially appears to Windows as a bootloader,
but when it loads the new code, it electrically disconnects from the USB and then reconnects as a new device
defined by the downloaded code—the BULK looper. Note that the FX3 ‘Cypress USB Bootloader’ disappears
and a new USB peripheral appears in the Control Center menu as ‘Cypress USB BulkloopExample’. FX3 has reenumerated with the new Vendor ID/Product ID combination of 0x04B4 and 0x00F0.
Note: When you are ready to load a new project, reset FX3 using the RESET Switch, to jump back to the
bootloader mode.
7.1.3
Performing BULK Transfers
1. Expand all the sub-fields under the ‘Cypress USB Bulkloop Example’ entry. If you modified and built the firmware
as explained in steps 1 to 6, then you will see BULK EP2 OUT and BULK EP 2 IN appear inside Interface 0,
Alternate Setting 0 (Figure 23).
Note: If you did not modify the firmware, you will see the default ‘BULK out endpoint (0x01)’ and ‘BULK in
endpoint (0x81)’ in the Control Center.
2.
To perform a BULK OUT transfer, click the Data Transfers tab, then select the BULK out endpoint (0x02) in
the left pane. Enter the number of bytes to transfer in the Bytes to Transfer field and the data to be transferred
in the Data to send (Hex) field. The Control Center automatically inserts spaces between pairs of hex digits.
Click on Transfer Data-OUT. Figure 23 shows the transfer of 5 bytes to the BULK OUT endpoint (0x02).
Figure 23. BULK OUT Transfer
3.
The BULK Loop program sends back any data it receives over the OUT endpoint using the correspondinglynumbered IN endpoint. To perform the BULK IN transfer, select the BULK in endpoint (0x82) in the left pane. Enter
www.cypress.com
Document No. 001-75705 Rev. *F
21
Getting Started with EZ-USB® FX3™
the number of bytes to transfer in the Bytes to Transfer field. Click on Transfer Data-IN. Figure 24 shows the same
5 bytes being received back on IN endpoint (0x82).
Figure 24. BULK IN Transfer
8
Development Tools
Now that you have performed basic operations with the FX3 device, this section gives a brief introduction to
SuperSpeed Explorer Kit (CYUSB3KIT-003) and FX3 SDK. If you are looking for introduction to FX3 DVK
(CYSUB3KIT-001), refer to JTAG Debuggers for FX3 DVK.
8.1
Introduction to SuperSpeed Explorer Kit
Cypress’s SuperSpeed Explorer Kit provides the hardware that you need to get started. The PCB provides the
necessary clocks and voltages for the FX3 as well as configurable I/O voltages. The Kit board has high-speed
connectors for interfacing with external devices. The SuperSpeed Explorer Kit supports USB boot and I 2C boot
options. An 8-Mbit I2C EEPROM is provided on the Kit board to store firmware and test booting from I2C EEPROM.
Cypress example projects supplied with the SDK contain firmware to program these devices using the DVK board. If
you do not already have a SuperSpeed Explorer Kit, you can find one here.
Two important pieces of hardware, external to the FX3 DVK board, are the USB 3.0 host (typically the PC) and the
external device connected to the GPIF II interface (such as an image sensor or FPGA). For details on using the
SuperSpeed Explorer Kit, refer to the Kit User Guide. Figure 25 shows a picture of the SuperSpeed Explorer Kit
board with the key areas called out.
www.cypress.com
Document No. 001-75705 Rev. *F
22
Getting Started with EZ-USB® FX3™
Figure 25. FX3 DVK Board
Table 2 shows the key jumpers and their default settings on the DVK board.
Table 2. SuperSpeed Explorer Kit Board Jumpers
Jumper
Jumper State
Function
J2
Short
Power domain VIO1, VIO2, and VOI3 voltages set to 3.3 V to support external 3.3-V interfaces and
the onboard SRAM.
J3
Short
Development board is powered from USB 3.0 VBUS. This jumper must be in place for normal
operation.
J4
Open
Boot from I2C EEPROM on the development board, if a valid firmware image is present in
EEPROM; otherwise, fall back to USB boot.
Note By default, USBBulkSourceSink with LED Blink firmware is stored by EEPROM.
J5
8.2
Open
Deselect external SRAM.
Introduction to FX3 SDK
Cypress provides a complete software and firmware stack for FX3 to integrate USB applications in the embedded
system environment. The software development kit (SDK) comes with application examples that accelerate
application development. The SDK is available for download from the Cypress website. Figure 26 shows the directory
structure created when the SDK is installed.
www.cypress.com
Document No. 001-75705 Rev. *F
23
Getting Started with EZ-USB® FX3™
Figure 26. Directory Structure
8.2.1
Firmware Stack and APIs
Cypress provides a powerful API library to make developing firmware easier even for complex designs. Here are
some of the advantages of the FX3 SDK:

RTOS
The included ThreadX Real Time OS (RTOS) simplifies the firmware development process. With the RTOS,
multiple threads can easily be created to simplify the firmware flow.

Modular approach
An API-based approach means that the developer does not require knowledge of FX3’s registers and bits, but
can focus on the firmware logic and flow. This approach is easy to use, debug, modify, and support.
Figure 27. Structure of Firmware SDK
FX3 Firmware Stack
FX3
FX3Firmware
Firmware
Examples
Examples
Customer
Firmware
FX3 Firmware Framework
FX3 API Library
RTOS
Customer software
Cypress provided software
Third-party software
The APIs enable:

Programming each individual block of the FX3 device, the GPIF II, USB, and serial interfaces
Programming the DMA engine and setting up of data flow between these blocks
ThreadX OS calls as required by the application
www.cypress.com
Document No. 001-75705 Rev. *F
24
Getting Started with EZ-USB® FX3™

8.2.2
USB host mode of operation
Power management features
F r a m e w o r k AP I
The firmware (or application) framework contains startup and initialization codes. Also included are the individual
drivers for the USB, GPIF II, and serial interface blocks. The framework performs the following functions:

8.3
Debug capability
Defines the program entry point
Performs the stack setup
Performs kernel initialization
Provides placeholders for application thread startup code
FX3 Firmware Examples
The SDK includes many firmware examples as seen in the Eclipse Installation above. This section details several of
the more common example firmware projects. A complete list of currently available firmware examples is in the SDK
release notes. The examples work at both USB 2.0 and USB 3.0 speeds.
Note Example firmware is provided in the form of individual Eclipse projects. This allows your complete example
firmware inventory to be seen at a glance in the Eclipse Project Explorer.
8.3.1
USB BULK Data Loopback Examples
These illustrate a simple loopback mechanism between USB BULK endpoints. All standard setup requests from the
USB host PC are handled by the FX3 application example. The examples implement the loop back using DMA AUTO
or MANUAL channels.
The DMA multichannel examples use three endpoints for the loopback.
8.3.2
USB ISOCHRONOUS Data Loopback Examples
These examples illustrate a loopback mechanism between USB ISOCHRONOUS endpoints. This is similar to the
BULK loopback examples, except that the endpoints used here are isochronous instead of BULK.
8.3.3
S l a ve F I F O A p p l i c a t i o n E x a m p l e s
The Slave FIFO application example demonstrates data transfer between the USB host and an external FIFO
controller. The example consists of two unidirectional data pipes between the USB host and the external master. The
GPIF II interface can be configured for either synchronous or asynchronous Slave FIFO transfers, using a 16-bit or
32-bit bus.
8.3.4
Serial Interface Examples
These examples demonstrate data accesses to the GPIOs, I2C, SPI, and UART.
8.3.5
USB BULK/ISOCHRONOUS Data Source Sink Examples
These examples illustrate data source and data sink mechanism with two USB BULK/ISOCHRONOUS endpoints.
8.3.6
Flash Programmer Example
This example illustrates the programming of I 2C EEPROMS and SPI flash devices from USB. The read or write
operations are done using pre-defined vendor commands. The utility can be used to flash the boot images to these
devices.
8.3.7
Mass Storage Class Example
This example illustrates the implementation of a USB mass storage class (BULK Only Transport) device using a
small section of the FX3 device RAM as the storage device. The example shows how mass storage commands can
be parsed and handled in the FX3 firmware.
8.3.8
U S B Au d i o C l a s s E x a m p l e
This example creates a USB Audio Class compliant microphone device, which streams PCM audio data stored on
the SPI flash memory to the USB host. This example works only at USB 2.0 speeds.
www.cypress.com
Document No. 001-75705 Rev. *F
25
Getting Started with EZ-USB® FX3™
8.3.9
Two Stage Booter Example
A simple set of APIs have been provided as a separate library to implement two-stage booting. This example
demonstrates the use of these APIs. Configuration files that can also be used for Real View Tool chain are provided.
8.3.10 USB Host and OTG Examples
These examples demonstrate the host mode and OTG mode operation of the FX3 USB port.
8.4
FX3 Firmware Development Tools
8.4.1
Eclipse IDE
The Eclipse IDE for C/C++ Developer is provided as part of the FX3 SDK. This IDE comprises the base Eclipse
platform and the CPP feature. The IDE includes plug-ins required for development.

GNU ARM C/C++ Development support
Zylin Embedded CDT
This is a generic plug-in for the Eclipse IDE, which enables debugging of the FX3 firmware using the GNU
debugger

8.4.2
Java(TM) Platform, Standard Edition Runtime Environment Version 7 (JRE)
GNU Tool Chain
The GNU tool chain provided as part of the FX3 SDK comprises the following:

GCC compiler (gcc)
GNU Linker (ld)
GNU Assembler (as)
GNU Debugger (gdb)
The Eclipse IDE invokes these executables.
8.4.3
GPIF II Designer
The GPIF II Interface Design Tool is a Windows application that FX3 customers receive as part of the FX3 SDK. The
tool provides a graphical user interface to specify the necessary interface for the target device. The user designs an
interface using state machine entry, and the tool translates this into a C header file to be included in the Eclipse
project.
8.4.4
Integrated Debugger
The SuperSpeed Explorer Kit uses CY7C65215 USB-Serial IC as an integrated Debugger. CY7C65215 is a fullspeed USB-Serial bridge controller that offers two configurable serial communications blocks (SCBs). The
SuperSpeed Explorer Kit uses the first serial channel of the CY7C65215 as a UART and the second serial channel as
a JTAG interface.
The SuperSpeed Explorer Kit supports only the JTAG interface provided by the integrated debugger. The integrated
debugger works on the OpenJTAG protocol and uses the OpenOCD daemon tool on the host to conduct a debugging
session.
For more details on the Integrated Debugger, see the SuperSpeed Explorer Kit User Guide.
For information on JTAG debuggers that can be used with FX3 DVK (CYUSB3KIT-001), see Appendix JTAG
Debuggers for FX3 DVK.
8.5
Windows Software Overview
Cypress delivers device driver and interface APIs with libraries to develop FX3 USB applications in Windows.
www.cypress.com
Document No. 001-75705 Rev. *F
26
Getting Started with EZ-USB® FX3™
8.5.1
W i n d o w s U S B D e vi c e D r i ve r
cyusb3.sys is a USB device driver for 32-bit Windows XP, 32/64-bit Windows Vista, 32/64-bit Windows 7, and 32/64bit Windows 8. The driver is capable of communicating with any device that complies with the USB 2.0 and USB 3.0
specifications. The driver is general-purpose and understands primitive USB commands. However, it does not
implement USB device-class protocols. For example, the driver does not directly interface a USB mass storage
device to the Windows file system. The application firmware must implement this logic.
The generic Cypress driver is signed for a VID of 0x04B4 and PIDS of 0x00F0, 0x00F1, and 0x00F3. If you want to
use your own VID/PID pair, you must get the driver signed by Microsoft WHQL. During the development phase, you
can use an unsigned driver by disabling driver signature enforcement on your computer. The driver is ideal for
communicating with a vendor-specific device from a custom USB application. Alternatively, the driver might be used
to send low-level USB requests to any USB device for experimental or diagnostic applications. To use the driver to
communicate with a device, Windows must match the device to the driver. The class library (CyAPI.lib and Cyusb.dll)
provides a high-level programming interface to the driver.
8.5.2
Features

Windows Driver Foundation (WDF)-compliant
Compatible with any USB 2.0-compliant device
Compatible with Cypress USB 3.0-compliant device
Supports basic USB 3.0 features
Supports Windows plug-and-play and power management
Supports USB remote wake-up
Supports CONTROL, BULK, INTERRUPT, and ISOCHRONOUS endpoints
Supports multiple USB devices connected simultaneously
Supports customizable driver GUID without rebuilding the driver
Supports high-bandwidth data transfers passing multiple packets per frame
You are not required to use the Cypress-supplied driver. FX3 can be programmed to implement standard USB class
devices. When implementing such a device, the USB class driver should be used instead. For example, if an FX3 is
implementing the USB Video Class (UVC) it does not need the Cypress generic driver and instead uses the OSprovided UVC driver. This makes Windows, Linux, and Mac support simple because certain standard drivers are
already provided by the OS.
8.6
Application Interface
8.6.1
C yA P I . l i b
CyAPI.lib provides a simple and powerful C++ programming interface to the USB devices. A C++ class library
provides a high-level programming interface to the cyusb3.sys device driver. The library can communicate only with
USB devices served by this driver.
For further details on CyAPI.lib, refer to the Programmer’s Reference C++ Library. This is available in the USB Suite
Help documentation as part of the SDK.
8.6.2
C yU S B . d l l
CyUSB.dll is a managed Microsoft .NET class library that provides a high-level programming interface to the USB
devices. Rather than communicate with the USB device drivers directly via low-level Win32 API calls, applications
can access USB devices through library methods and properties. Because CyUSB.dll is a managed .NET library, its
classes and methods can be accessed from any of the Microsoft Visual Stuido.NET managed languages, such as
Visual Basic.NET, C#, Visual J#, and managed C++. To use the library, add a reference to CyUSB.dll to your
project's References folder. Then, any source file that accesses the CyUSB namespace must include a line to add
the namespace in the appropriate syntax.
For further details on CyUSB.dll, refer to the Programmer’s Reference C# Library. This is distributed in the USB Suite
Help documentation as part of the SDK.
Refer to the Cypress USBSuite Application Development - Quick Start Guide for details on using CyAPI.lib and
CyUSB.dll.
www.cypress.com
Document No. 001-75705 Rev. *F
27
Getting Started with EZ-USB® FX3™
8.7
Windows Software Examples
8.7.1
BULKLoop example
The application BULKLoop is used to test the loopback of data transfer through BULK endpoints.
Figure 28. Cypress C++ BULKLoop Application
8.8
Streamer Example
The application streamer is used to test the data transfer on the BULK/ISOCHRONOUS endpoints.
Figure 29. Cypress C++ Streamer Application
www.cypress.com
Document No. 001-75705 Rev. *F
28
Getting Started with EZ-USB® FX3™
Figure 30. Cypress C# Streamer Application (Running Traffic in a Slave FIFO Application)
On installing the FX3 SDK, both C++ and C# implementations of the BULKLoop and Streamer applications are
available in the ‘applications’ directory.
8.9
FX3 SDK and Software for Linux
8.9.1
EZ-USB FX3 SDK for Linux
The FX3 SDK supports firmware development with Eclipse IDE and debug using the J-Link JTAG debugger probe on
a Linux platform.
The EZ-USB FX3 SDK for Linux contains the following:

The FX3 firmware library and examples
Sourcery ARM GNU toolchain
Eclipse IDE for 32-bit Linux OS installations
Eclipse IDE for 64-bit Linux OS installations
The CyUSB Suite for Linux software
The installation procedure extracts these archives and set environment variables. See FX3_SDK_Linux_Support.pdf
available in the FX3 SDK for Linux for detailed installation steps.
8.9.2
C yU S B S u i t e f o r L i n u x
The CyUSB Suite for Linux software enables you to download firmware images to FX3 devices and test the various
interfaces on the device. See cyusb_linux_user_guide.pdf available in the FX3 SDK for Linux installation folder:
fx3_sdk_<version>_linux\cyusb_linux_1.0.4\docs. This document describes how to install the software,
download firmware to FX3, test Vendor Extensions, BULK OUT/IN transfers, and ISOCHRONOUS OUT/IN transfers.
The CyUSB Suite for Linux - Programmers Reference Manual (cyusb_linux_programmers_guide.pdf available in the
same folder), describes the cyusb library for Linux and how to build and integrate user-written applications with the
library. With this software, you can:

View the device, configuration, interface, alternate-interface, and endpoint descriptors of attached devices.

Test your own commands (Vendor Extensions) after downloading specific firmware that implements your
commands.

Test the BULK OUT endpoints by sending either constant or random or incrementing data patterns and also
testing the BULK IN endpoints by looping back data after sending the OUT data.
Select a specific interface and alternative interface for communication.
Program the device (download firmware) to the FX3 device, downloading into RAM, I2C-based EEPROM, or SPIbased flash.
www.cypress.com
Document No. 001-75705 Rev. *F
29
Getting Started with EZ-USB® FX3™

Test the ISOCHRONOUS OUT and IN endpoints and measure the data transfer rates.
Figure 31. CyUSB Suite for Linux
Device selection area: Click on a device to select it
Detailed
Information
Summary
Information
8.10
Useful Debug Tools
8 . 1 0 . 1 U S B 3 . 0 P r o t o c o l A n a l yz e r
A USB 3.0 protocol analyzer is a useful debugging tool. It analyzes the traffic on the USB between FX3 and the host.
Software tools included with each analyzer then decode the data into USB transfer packets. By analyzing this data,
issues can be easily identified, and performance can be maximized. Several USB 3.0 analyzers are available in the
market today. Cypress does not recommend any specific analyzer but here are some options:

Standalone USB 3.0 Protocol Analyzer

Ellisys USB Explorer 280
LeCory USB Voyager M3i
Beagle USB 5000 SuperSpeed Protocol Analyzer
PC Software USB 3.0 Protocol Analyzer

SourceQuest SourceUSB
SysNucleus USBTrace
8 . 1 0 . 2 L o g i c An a l yz e r
Logic analyzers allow simple analysis of digital signals. They can be used to look at various signals between FX3 and
other peripherals. There are two types of logic analyzers in the market:

Standalone Type Logic Analyzer

Agilent 16800 Series Portable Logic Analyzer
PC-Based Type Logic Analyzer

USBee Logic Analyzer
ZeroPlus Logic Analyzer
An important factor to consider is that the signal frequency range of the analyzer should be higher than the
signals to be analyzed.
www.cypress.com
Document No. 001-75705 Rev. *F
30
Getting Started with EZ-USB® FX3™
9
Appendix A
9.1
USB 3.0 Overview
USB 3.0 enables an increased data rate of 5 Gbps, reduces power consumption, and is backward-compatible with
USB 2.0. The USB Specification, published by USB-IF, can be found here. Figure 32 shows the USB 3.0 architecture.
Figure 32. USB 3.0 Dual Bus Architecture
Courtesy: http://usb.org
The physical interface of USB 3.0 consists of two differential pairs and a ground for SuperSpeed transfers in addition
to the USB 2.0 connections. This allows USB 3.0 to ensure backward compatibility with USB 2.0.
9.2
Electrical Interface
The USB 3.0 pinout is different from that of USB 2.0. In addition to the VBUS, D–, D+, and GND pins required for
USB 2.0, USB 3.0 has five additional pins – two differential pairs and one ground (GND_DRAIN). The two differential
pairs are for SuperSpeed data transfer, supporting dual simplex SuperSpeed signaling. The GND_DRAIN pin is for
drain wire termination, management of signal integrity, and EMI performance. Table 3 shows a description of the nine
pins.
Table 3. USB 3.0 Pin Description
Pins Name
Description
VBUS
Power
D-
USB 2.0 differential pair
D+
GND
Ground for power return
SSRX-
SuperSpeed receiver differential pair
SSRX+
SSTX-
SuperSpeed transmit differential pair
SSTX+
GND_DRAIN
www.cypress.com
Ground for signal return
Document No. 001-75705 Rev. *F
31
Getting Started with EZ-USB® FX3™
9.3
Cables and Connectors
USB 3.0 has four additional data lines (SSRX+, SSRX-, SSTX+, SSTX-) for data transfer and one additional ground
line for drain wire termination, signal integrity management, and EMI performance. Figure 33 shows the architecture
of a USB 3.0 cable. Table 4 shows the description of these lines.
Figure 33. USB 3.0 Cable Architecture
Courtesy: http://usb.org
Table 4. USB 3.0 Cable Description
Name
Description
Color
PWR
VBUS
Red
UTP_D-
USB 2.0 D-
White
UTP_D+
USB 2.0 D+
Green
Ground
Ground for power drain
Black
SDP1-
Shielded differential pair 1
Blue
SDP1+
Yellow
SDP1_Drain
Drain line for SDP1
SDP2-
Shielded differential pair 2
SDP2+
SDP2_Drain
Purple
Orange
Drain line for SDP2
The USB 3.0 Specification also defines the following connectors:

USB 3.0 Standard-A Plug and Receptacle
The USB 3.0 Standard-A connector is defined in the SuperSpeed standard as the host connector. It is based on
the design of the USB 2.0 Standard-A connector but has the additional SuperSpeed signals. A USB 3.0
Standard-A receptacle accepts either a USB 3.0 Standard-A plug or a USB 2.0 Standard-A plug. USB 3.0
capable Standard-A connectors use a unique color for easy identification. Figure 33 shows the color coding
recommendation.

USB 3.0 Standard-B Plug and Receptacle
The USB 3.0 Standard-B connector is defined for large, stationary peripherals, such as external hard drives and
printers. The USB 3.0 Standard-B receptacle accepts either a USB 3.0 Standard-B plug or a USB 2.0 Standard-B
plug. You cannot insert a USB 3.0 Standard-B plug into a USB 2.0 Standard-B receptacle.
www.cypress.com
Document No. 001-75705 Rev. *F
32
Getting Started with EZ-USB® FX3™

USB 3.0 Powered-B Plug and Receptacle
The USB 3.0 Powered-B connector enables a USB 3.0 device to provide power to a USB adapter without an
external power supply. It is identical to the USB 3.0 Standard-B connector in form factor but has two more pins:
one for power (DPWR) and one for ground (DGND).

USB 3.0 Micro-B Plug and Receptacle
The USB 3.0 Micro-B connector is defined for small handheld devices.

USB 3.0 Micro-AB and USB 3.0 Micro-A Connectors
The USB 3.0 Micro-AB receptacle is similar to the USB 3.0 Micro-B receptacle, except keying is different. It
accepts a USB 3.0 Micro-A plug, a USB 3.0 Micro-B plug, a USB 2.0 Micro-A plug, or a USB 2.0 Micro-B plug.
The USB 3.0 Micro-AB receptacle is allowed only on OTG products, which may function as either a host or a
device. All other uses of the USB 3.0 Micro-AB receptacle are prohibited.
The USB 3.0 Micro-A plug is similar to the USB 3.0 Micro-B plug, except for different keying and ID pin
connections. The USB 3.0 Micro-A plug, the USB 3.0 Micro-AB receptacle, and the USB 3.0 Micro-B receptacle
and plug, belong to the USB 3.0 Micro connector family. Their interfaces differ only in keying. Similar to the USB
2.0 Micro-A plug, the USB 3.0 Micro-A plug is defined only for OTG applications.
9.4
USB 3.0 versus 2.0
USB 3.0 has a dual-bus architecture that supports USB 2.0 and 3.0. The following table shows the main differences
between USB 3.0 and USB 2.0.
Table 5. Differences Between USB 3.0 and USB 2.0
Feature
USB 2.0
USB 3.0
Data rate
480 Mbits/s (High Speed)
12 Mbits/s (Full Speed)
1.5 Mbits/s (Low Speed)
5.0 Gbits/s (SuperSpeed)
480 Mbits/s (High Speed)
12 Mbits/s (Full Speed)
1.5 Mbits/s (Low Speed)
Data interface
Half-duplex
Two-wire differential signaling
Dual-simplex
Four-wire differential signaling
Cable signal count
Four signals:
- Two for USB 2.0 data (D, D–)
- Two for VBUS and GND
Nine signals:
- Four for SuperSpeed data
- Two for USB 2.0 data (D, D–)
- Three for VBUS and GND
Bus transaction
protocol
Host directed
Polled traffic flow
Packets broadcast to all downstream
devices
No multiplexing of data streams
Host directed
Asynchronous notifications
Packets routed only to target device
Multiple data streams possible for BULK transfers
Power management
Two modes
- Active
- Suspend
Four modes
- Active (U0)
- Idle, Fast (U1)
- Idle, Slow (U2)
- Suspend, Slow (U3)
Bus power
Low-power device : 100 mA
High-power device : 500 mA
Low-power device : 150 mA
High-power device : 900 mA
www.cypress.com
Document No. 001-75705 Rev. *F
33
Getting Started with EZ-USB® FX3™
Feature
USB 2.0
USB 3.0
Port state
Port hardware detects connect events.
System software uses port commands to
transition the port into an enabled state.
Port hardware detects connect events and brings the
port into operational state ready for SuperSpeed data
communication
Maximum cable
length
5 meters
Based on electrical specification.
In practice 3 meters for 26 AWG copper
Data transfer types
Four data transfer types: CONTROL,
BULK, INTERRUPT, and
ISOCHRONOUS.
USB 2.0 types with SuperSpeed capabilities.
BULK has streams capability.
www.cypress.com
Document No. 001-75705 Rev. *F
34
Getting Started with EZ-USB® FX3™
10
Appendix B
10.1
FX3 DVK Driver Installation on Windows
If you have not already installed the FX3 DVK kit on a Windows computer, the first time you connect the DVK to the
computer you will see the following message.
Figure 34. Windows Message if Driver is Not Installed
Close the message box and navigate to Windows Device Manager. To do this, click the Windows Start button, rightclick on Computer in the right-hand column, and select Properties to bring up System Information. Then, click
Device Manager at the top of the left column.
Figure 35. Windows Device Manager
Right-click on WestBridge and select Browse my computer for driver software. On a 64-bit Windows 7 machine,
the driver is located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.2\driver\win7\x64. Your
SDK version number may be higher than 1.2.
The Device Manager window should remove the WestBridge entry and identify the SDK board as the Cypress USB
Bootloader (top entry).
www.cypress.com
Document No. 001-75705 Rev. *F
35
Getting Started with EZ-USB® FX3™
Figure 36. Cypress USB BootLoader in Device Manager After Driver Installation
www.cypress.com
Document No. 001-75705 Rev. *F
36
Getting Started with EZ-USB® FX3™
11
Appendix C
11.1
Obtaining an EZ-USB FX3 DVK
Go to the EZ-USB FX3 Development Kit home page to obtain the development kit. In the exercise explained in this
application note, the FX3 firmware is downloaded from the USB host, so the FX3 DVK board must be configured for
USB boot.
To select USB boot, make sure the three jumpers and four switches are set according to Figure 37. These jumper
settings are highlighted with a red box or circle. For details on all the other DVK jumper settings, refer to the DVK
User Guide.
The FX3 DVK board can be powered from an external power supply (self-powered) or from the USB cable (buspowered). For convenience, this example is bus-powered, requiring only the USB cable to be connected to a USB
host. The lower right jumper, shown in Figure 37, selects this mode. The other jumpers and switches configure the
board for FX3 code download over USB.
The power switch (lower left) is a convenient way to disconnect and reconnect the DVK board quickly from the host
PC.
www.cypress.com
Document No. 001-75705 Rev. *F
37
Getting Started with EZ-USB® FX3™
Figure 37. USB FX3 DVK Board Settings for USB Boot
11.2
Introduction to FX3 DVK
Cypress’s FX3 DVK provides the hardware that you need to get started. The PCB provides the necessary clocks and
voltages for the FX3 as well as configurable I/O voltages. The DVK has high-speed connectors for interfacing with
external devices. The DVK also implements various boot modes. An I 2C EEPROM socket can be used to program
and test booting from an I2C EEPROM. An on-board SPI flash chip allows programming and booting over the SPI
bus. Cypress example projects supplied with the SDK contain firmware to program these devices using the DVK
board. If you do not already have a DVK, you can find one here.
Two important pieces of hardware, external to the FX3 DVK board, are the USB 3.0 host (typically the PC) and the
external device connected to the GPIF II interface (such as an image sensor or FPGA). For details on using the FX3
DVK, refer to the DVK User Guide. Figure 38 shows a picture of the FX3 DVK board with the key areas called out.
www.cypress.com
Document No. 001-75705 Rev. *F
38
Getting Started with EZ-USB® FX3™
Figure 38. FX3 DVK Board
Boot Mode
Switch
Reset
Button
EEPROM
Socket
SPI Header
I2S Header
Reset Signal
Jumper
I2C EEPROM
Address Selection
Switch
CTRL-4
Signal Jumper
RS-232
Connector
Crystal Voltage
Selection
Boot Mode Jumpers
UART/SPI
Selection Jumper
GPIF II Connector
USB Receptacle
FX3 Device
Debug Mictors
I2C Connection
Jumpers
OTG Host Mode
Selection Jumper
Bus/Self-Powered Mode
Selection Jumper
5-V Power Jack
JTAG Header
Voltage Selection
Jumpers
On/Off Toggle
Switch
Table 6 shows the key jumpers and their default settings on the DVK board.
Table 6. FX3 DVK Board Jumpers
Jumper/Switch
Pins Shorted using Jumpers
(Default Setting)
Function (Default Setting)
J101
1 and 2
GPIO_46=UART_RTS
J102
1 and 2
GPIO_47=UART_CTS
J103
1 and 2
GPIO_48=UART_TX
J104
1 and 2
GPIO_49=UART_RX
J136
3 and 4
VIO1(3.3 V)
J144
3 and 4
VIO2(3.3 V)
J145
3 and 4
VIO3(3.3 V)
J146
3 and 4
VIO4(3.3 V)
J134
4 and 5
VIO5(3.3 V)
J135
2 and 3
CVDDQ(3.3 V)
www.cypress.com
Document No. 001-75705 Rev. *F
39
Getting Started with EZ-USB® FX3™
Jumper/Switch
11.3
Pins Shorted using Jumpers
(Default Setting)
Function (Default Setting)
J143
1 and 6
VBATT(2.5 V)
J96 & SW25
2 and 3
J97 & SW25
2 and 3
J98
1 and 2
PMODE2 Pin Floating
J72
1 and 2
RESET
J42
Not Installed
GPIO_58=I2C_SCL
J45
Not Installed
GPIO_59=I2C_SDA
J100
1 and 2
GPIO_21=CTL4

PMODE0 Pin state (ON/OFF) selection using SW25.

SW25.1=OFF

PMODE0 Pin state (ON/OFF) selection using SW25.

SW25.2=OFF
JTAG Debuggers for FX3 DVK
The Segger J-Link probe is the preferred JTAG probe for the FX3 SDK. This probe, along with the Segger J-Link
ARM GDB Server, is used for debug. The Eclipse IDE connects to the J-link GDB server to debug your firmware. To
get Eclipse working with the GDB server, you need to create a debug configuration for the J-link. Details are in
Chapter 12 of the FX3 Programmer’s Manual.
To debug, you may also use other JTAG probes such as the Olimex ARM-USB-OCD probe. In this case, the
OpenOCD tools can be used for the GDB connection. Details on how to do this are in Chapter 12 of the FX3
Programmer’s Manual.
www.cypress.com
Document No. 001-75705 Rev. *F
40
Getting Started with EZ-USB® FX3™
Document History
Document Title: AN75705 - Getting Started with EZ-USB® FX3™
Document Number: 001-75705
Revision
ECN
Orig. of
Change
Submission
Date
**
3427934
ATAM
02/23/2012
*A
3715875
ATAM/OSG
08/17/2012
Description of Change
New application note.
Merged with AN75432 USB 3.0 EZ-USB® FX3™ Orientation.
Updated application note for FX3 SDK 1.2.
Restructured application note.
*B
3981810
OSG
04/25/2013
Added sections: What is FX3, Application Development with FX3, Design
Resources.
Added FX3 Block Diagram.
Aligned with SDK 1.2.3.
Added FX3 Terminology section.
*C
4183163
RSKV
11/05/2013
*D
4562855
NIKL
11/28/2014
*E
4632935
NIKL
01/28/2015
*F
4827630
NIKL
07/28/2015
Added the location of the FX3 SDK Linux support document and CyUSB Suite for
the Linux user guide.
Added references to SuperSpeed Explorer Kit (CYUSB3KIT-003).
Moved references to FX3 DVK (CYUSB3KIT-001) to Appendix C.
Formatted the document as per new template.
www.cypress.com
Added a hyperlink to reference the list of USB SuperSpeed Code Examples in
Design Resources.
Updated template.
Updated Table 1.
Document No. 001-75705 Rev. *F
41
Getting Started with EZ-USB® FX3™
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Cypress Developer Community
Lighting & Power Control
cypress.com/go/powerpsoc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2012-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-75705 Rev. *F
42

				

 Open as PDF

 	Similar pages
	

										AN75705 Getting Started with EZ-USB FX3 (Chinese).pdf

	

										Quick Start Guide.pdf

	

										Download AN15484 - USB Flash Drive Controller Using SPI (EZ-Host USB Host).pdf

	

										CY7C65215 USB-Serial Dual Channel (UART/I2C/SPI) Bridge with CapSense and BCD Datasheet (Chinese).pdf

	

										CY3660 - Kit User Guide.pdf

	

										Download using_hpi_in_coprocessor_mode_with_otg_host___an6010_12[1]1.pdf

	

										SuperSpeed Explorer Kit Quick Start Guide

	

										CYUSB3ACC-003 Quick Start Guide.pdf

	

										CYUSB3ACC-002 Quick Start Guide.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

