dm00035391

AN3959
Application note
2.0-channel demonstration board
based on the STA381BW and STA381BWS
Introduction
The purpose of this application note is to describe:
■
how to connect the STA381BW/STA381BWS 2.0-channel demonstration board
■
how to evaluate the performance of the demonstration board with significant electrical
curves
■
how to avoid critical issues in the PCB schematic and layout of the
STA381BW/STA381BWS
The STA381BW/STA381BWS demonstration board is configured for 2.0 BTL channels,
releasing up to 2 x 20 W into 8 ohm of power output at 18 V of supply voltage in the VQFN48
package. It represents a total solution for the digital audio power amplifier.
Figure 1.
STA381BW/STA381BWS 2.0-channel demonstration board
December 2011
Doc ID 022081 Rev 3
1/65
www.st.com
Contents
AN3959
Contents
1
Functional description of the demonstration board . . . . . . . . . . . . . . . 6
1.1
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3
Schematic and block diagrams, bill of material, PCB layout . . . . . . . . . . . . 7
2
STA381BWS power section test results . . . . . . . . . . . . . . . . . . . . . . . . 16
3
STA381BW power section test results . . . . . . . . . . . . . . . . . . . . . . . . . 20
4
Analog section test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5
Thermal performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6
5.1
Thermal results - test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2
Thermal results - test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Design guidelines for schematic and PCB layout . . . . . . . . . . . . . . . . 28
6.1
6.2
7
2/65
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.1
Criteria for selection of components . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.2
Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.3
Output filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.4
Snubber filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.5
Main filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.6
Dumping network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.7
Recommended power-up and power-down sequence . . . . . . . . . . . . . 31
Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Software setup to use the STA381BW/STA381BWS devices (ST Map)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1
Processing configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2
STCompressorTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2.1
STCompressor settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.2
Configuring and enabling the STCompressor . . . . . . . . . . . . . . . . . . . . 41
7.2.3
Example settings of the STCompressor . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.4
Test results with APWorkbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Doc ID 022081 Rev 3
AN3959
Contents
7.3
8
CRC computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.1
Biquad CRC computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.2
Crossover CRC computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.3
STCompressorTM CRC computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5
Short-circuit protection for the STA381BW/STA381BWS . . . . . . . . . . . . . 49
7.6
Settings for bridge power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Examples of code (TV SoC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.1
FFX381X_Sample.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2
FFX381X_Sample.C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Appendix A Mono BTL schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Doc ID 022081 Rev 3
3/65
List of figures
AN3959
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
4/65
STA381BW/STA381BWS 2.0-channel demonstration board . . . . . . . . . . . . . . . . . . . . . . . . 1
Schematic-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Schematic-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Top view of PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Inner layer2 view of PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Inner layer3 view of PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bottom view of PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Block diagram of test connections with equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Frequency response, VCC = 18 V, RL = 8 ohm, 0 dB (Pout = 1 W) . . . . . . . . . . . . . . . . . . 16
Crosstalk, VCC = 18 V, RL = 8 ohm, 0 dB (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
SNR, VCC = 18 V, RL = 8 ohm, 0 dB (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
THD vs. frequency, VCC = 18 V, RL = 8 ohm, Pout = 1 W . . . . . . . . . . . . . . . . . . . . . . . . . 17
FFT (0 dBFS), VCC = 18 V, RL = 8 ohm, 0 dBFS (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . . 18
FFT (-60 dBFS), VCC = 18 V, RL = 8 ohm, 0 dBFS (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . 18
THD vs. output power, VCC = 18 V, RL = 8 ohm, f = 1 kHz . . . . . . . . . . . . . . . . . . . . . . . . 19
THD vs. output power at different power supplies, RL = 8 ohm, f = 1 kHz . . . . . . . . . . . . . 19
Frequency response, VCC = 24 V, RL = 8 ohm, 0 dB (Pout = 1 W) . . . . . . . . . . . . . . . . . . 20
Crosstalk, VCC = 24 V, RL = 8 ohm, 0 dB (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SNR, VCC = 24 V, RL = 8 ohm, 0 dB (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
THD vs. frequency, VCC = 24 V, RL = 8 ohm, Pout = 1 W . . . . . . . . . . . . . . . . . . . . . . . . . 21
FFT (0 dBFS), VCC = 24 V, RL = 8 ohm, 0 dBFS (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . . 22
FFT (-60 dBFS), VCC = 24 V, RL = 8 ohm, 0 dBFS (Pout = 1 W) . . . . . . . . . . . . . . . . . . . . 22
THD vs. output power, VCC = 24 V, RL = 8 ohm, f = 1 kHz . . . . . . . . . . . . . . . . . . . . . . . . 23
THD vs. output power at different power supplies, RL = 8 ohm, f = 1 kHz . . . . . . . . . . . . . 23
Temperature test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Temperature test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Output filter (BTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Differential-mode snubber circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Common-mode snubber circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Main filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Dumping network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Recommended power-up and power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Snubber network soldered as close as possible to the respective IC pin . . . . . . . . . . . . . . 31
Electrolytic capacitor used first to separate the VCC branches . . . . . . . . . . . . . . . . . . . . . . 32
Path between VCC and ground pin minimized in order to avoid inductive paths . . . . . . . . 32
Large ground plane on the top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Large ground plane on inner layer2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Large ground plane on inner layer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Large ground plane on bottom side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Symmetrical paths created for output stage, for differential applications . . . . . . . . . . . . . . 35
Coils separated in order to avoid crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
VCC filter for high frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Thermal layout with large ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Processing path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1-channel with STCompressorTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STCompressor - overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STCompressor - mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STCompressor - compression ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Doc ID 022081 Rev 3
AN3959
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
List of figures
STCompressor - limiter threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
STCompressor - offset control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
APWorkbench results for STC example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
F3X output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
F3X for HPout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Mono BTL schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Doc ID 022081 Rev 3
5/65
Functional description of the demonstration board
1
AN3959
Functional description of the demonstration board
The following terms used in this application note are defined as follows:
●
THD+N vs. Freq: Total harmonic distortion (THD) plus noise versus frequency curve
●
THD+N vs. Pout: Total harmonic distortion (THD) plus noise versus output power
●
S/N ratio: Signal-to-noise ratio
●
FFT: Fast Fourier Transform algorithm (method)
●
CT: Channel separation L to R, or R to L channel crosstalk
The equipment used includes the following:
●
Audio Precision (System 2700) by AP Co., USA
●
DC power supply (4.5 V to 25.5 V operating range)
●
Digital oscilloscope (TDS3034B by Tektronix)
●
MS Windows-based PC with APWorkbench GUI control software installed. For the
APWorkbench software setup, please refer to the APW UserManualR1.0.pdf
Reference documents include:
1.1
●
STA381BW and STA381BWS datasheets
●
Demonstration board schematic, PCB layout and test curves
Connections
Power supply and interface connection
1.2
1.
Connect the positive voltage of the 18 V DC power supply to the +VS pin and negative
to GND (note that the operating voltage range of the DC power supply is from 4.5 V to
25.5 V).
2.
Connect the APWLink board to the J1 connector of the STA380BWS demonstration
board.
3.
Connect the S/PDIF signal cable to the RCA jack on the APWLink board, the other side
connects to the signal source such as Audio Precision or a DVD player.
Output configuration
The STA381BW/STA381BWS demonstration board is specifically configured in 2 BTL
channels.
6/65
Doc ID 022081 Rev 3
Figure 2.
Schematic-1
L3
SWPA6045S220MT
10K
R5
+3V3
Schematic and block diagrams, bill of material, PCB layout
AN3959
1.3
OUT1A
OUT1B
220nF
NS
C36
C38
C47
1N(S)
C46
220nF
1N(S)
330P(S)
SDI1
SDA
INT_LINE
0R
R11
L1
SWPA6045S220MT
4
C50
R42
20(S)
NS
R10
C44
NS
C37
220nF
0R
PWRDN
0 ohm
C32
C4
1nF
SCL
0 ohm
R1
NS
100nF
C2
R3
R4
RESET
R2
+3V3
C11
100nF
2
49
5
8
6 OUT2A
9
7
OUT1B
10
8
VCC1
11
9
12
10
13
11
14
12
2
VDDDIG1
GND1
VDD3V3CHP
43
FFX4B
32
42
FFX4A
31
41
FFX3B
30
40
29
39
28
38
27
37
26
36
25
35
24
C8
1uF/10V
C9 1uF/10V
R36
0ohm
1
11K
R7
11K
J2
J14
1
R35
1K
47K
470R
SW2
C51 10uF/10V
47R
1
1K
R44
2
C55
3
R45
100nF
R39
47K
R40
3.3nF/10V
C6
R9
27K
2
J18
C7
3
1
3
R37
3.3nF/10V
4
Line out
R8
27K
2
J7
HEADER2X2
1
47R
R46
3
C54
100nF
2
2
220nF
C45
R43
C39
SPEAKJACK2X2
J9
OUTPUT FILTER
+3V3
Note 1:
The output filter for the line/HP output
path is optional (not required for the STA381BW/S).
If the 2x 47 ohm resistors (R35 and R44) are
bypassed through J14 and J18, the 2x 100 nF
capacitors (C54 and C55) must also be removed.
R6
C31
1uF/10V
2
1uF/10V
3
1
C30
2
HPJCKX3.5-06
C10
1uF/10V
2
1
J16
1
Line in
C40
100nF
C29
100nF
J19
HPJCKX3.5-06
R30
NS
C42
L4
SWPA6045S220MT
C5
32
23
30
FFX3A
220nF
1
33
31
22
28
SOFTMUTE 29
OUT2B
C48
33
MCLK
C3 2u2/10V
C49
44
0R
1N(S)
45
34
CPM
21
27
CPVSS
20
26
VDD3V3
19
25
SOFTMUTE
18
24
GNDA
HPIN_R
HPIN_L
F3XR
1uF/10V
23
14
20
46
35
34
NS
C56
CPP
GNDPSUB
17
13
19
F3XL
GND_REG
LINEHPOUT_R
LINEHPOUT_L
VDD_REG
BICKI
36
C41
0R
R41
20(S)
37
39
38
BICKI
40
SDI
RESET
LRCKI
41
PWDN
42
43
SDA
INTLINE
44
GNDDIG1
100nF
1
45
FFX3B
FFX3A
OUT1A
*
F3XL
FFX4A
IC3
STA381BWS_NEW
C1
F3XR
J15
SCL
VCC2
18
2.0CH & 2.1CH
MONO BTL
46
330P(S)
7
17
CONFIGURATION
NS
100nF
FFX4B
IC1
STA381BWS
16
C56
47
GND2
15
OUT1A
NOTE:
SA
VREGFILT
16
4
MCLK
AGNDPLL
OUT2B
C43
220nF
LRCKI
47
VSS_REG
15
6
VCC_REG
22
3
21
2
5
C53
100nF
100nF
C426B
C427B
OUT1B
1
4
HALFVDD
OUT2A
1uF/50V
1uF/50V
C427A
C426A
NS
100nF
C429
NS
C14
NS
+
NS
C33
C34
C35
C428
470U/35V
3
48
R38
470R
C52 10uF/10V
SW3
STA381BWS
Note 2:
C56 is not soldered when the STA381BW/S
is configured in 2.0 or 2.1 channels; C56 is 100 nF
when the STA381BW/S is configured in mono BTL.
Refer to the schematic in Appendix A on page 63
for an example of a mono BTL application.
7/65
Functional description of the demonstration board
Doc ID 022081 Rev 3
+VS
GNDDIG2
2
TESTMODE
48
VDDDIG2
1
OUT2B
NS
L2
SWPA6045S220MT
1N(S)
50
53
51
52
54
55
58
56
59
57
60
63
62
61
64
3
OUT2A
Schematic-2
AN3959
Figure 3.
220PF
R29 10K
C22
R12
4K7
R31 10K
C15
100uF
35V
R18
4K7
R14
4K7
+VS
FFX3B
1
2
BD3
BEAD or 33R
+VS
1
VDD
8
INA1
OUTB
7
INA2
INB1
VSS
INB2
3
C27
100nF
C26
100PF
C24
100PF
J13
HEADPHONE O/P
C25
100uF
BD4
BEAD or 33R
10K
10K
R34
R28
5
6
35V
10K
R17
C18
220PF
FFX3A
OUTA
2
R19
4K7
R15
4K7
3
10K
R16
R13
4K7
C28
47uF
50V
IC2
LM833
C17
150PF
4
C16
470PF
R22
4K7
R24
Doc ID 022081 Rev 3
R20
4K7
R26
4K7
10K
+VS
R21
4K7
R32 10K
R33 10K
10K
C23
220PF
C20
150PF
R27
4K7
R23
4K7
FFX4A
STEREO HEADPHONE DRIVER
+3V3
J1
HEADER8X2
SDI1
BICKI
MCLK
1
J17
+3V3
2
SCL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
TO AP INTERFACE
+VS
LRCKI
SDA
CN1
CN2
CN-5-02P
1
1
2
2
+
C12
10uF/10V
RESET
C13
100nF
J3-1
MCLK
J8-1
FFX3A
J4-1
LRCKI
J8-2
FFX3B
J3-2
BICKI
J10-1
FFX4A
J4-2
SDI1
J10-2
FFX4B
J6-1
INT_LINE
J11-1
F3XL
J11-2
F3XR
SDA
J12-1
SOFTMUTE
SCL
J12-2
J6-2
PWRDN
SDA
J5-1
The range of +Vs is from +5V to +24V
J5-2
AP INTERFACE CONNECTOR
POWER SUPPLY INPUT
SCL
TEST PINS
8/65
Functional description of the demonstration board
220PF
C21
C19
470PF
R25
FFX4B
AN3959
Table 1.
Functional description of the demonstration board
Bill of material
No.
Type
Footprint
1
Jack
2
Headphone
jack
Phone jack
3
Switch
Deviator
switch
4
Terminal
Through-hole
5
Header
6
Description
Qty
Speaker jack MP4-16
Reference
Manufacturer
1
J9
Songchen
SONGCHEN CKX-3.5-06
3-pin
3
J2, J13, J19
Songchen
Deviator switch
2
SW2, SW3
Any source
2P pitch: 5mm connector
terminal
1
CN2
Through-hole 4P (2x2 row) 2.54 mm header
1
J7
Header
Through-hole 2P (2x1 row) 2.54 mm header
J3, J4, J5, J6, J8, J10,
14 J11, J12, J14, J15, J16,
J17, CN1, J18
Any source
7
Header
Through-hole 16P (8x2 row) 2.54 mm header
1
J1
Any source
8
CCAP
CAP0603
50 Volt NPO 100 pF +/-10%
2
C24, C26
Murata
9
CCAP
CAP0603
50 Volt NPO 150 pF +/-10%
2
C17, C20
Murata
10
CCAP
CAP0603
50 Volt NPO 220 pF +/-10%
4
C18, C21, C22, C23
Murata
11
CCAP
CAP0603
50 Volt NPO 330 pF +/-10%
2
C44, C45
Murata
12
CCAP
CAP0603
50 Volt NPO 470 pF +/-10%
2
C16, C19
Murata
13
CCAP
CAP0603
50 Volt 1 nF +/-10%
5
C4, C47, C48, C49, C50
Murata
14
CCAP
CAP0603
50 Volt 3.3 nF +/-10%
2
C6, C7
Murata
15
CCAP
CAP0603
50 Volt 100 nF +/-10%
C1, C2, C5, C11, C13,
12 C27, C29, C54, C55,
C429, C427A, C427B
Murata
16
CCAP
CAP0603
50 Volt 220 nF +/-10%
4
C32, C36, C42, C43
Murata
17
CCAP
CAP0603
NS
5
C37, C38, C40, C41, C56
Murata
18
CCAP
CAP0805
10 Volt 1 µF +/-10%
5
C8, C9, C10, C30,
C31, C53
Murata
19
CCAP
CAP0805
10 Volt 2.2U +/-10%
1
C3
Murata
20
CCAP
CAP1206
50 Volt 220 nF +/-10%
2
C39, C46
Murata
21
CCAP
CAP1206
50 Volt 1U +/-10%
2
C426A, C426B
Murata
22
CCAP
CAP1206
10 Volt 10 µF +/-10%
2
C51, C52
Murata
23
CCAP
CAP1206
NS
4
C14, C33, C34, C35
Murata
24
ECAP
CAP1206
10µF/10V
1
C12
Samsung
25
ECAP
Through-hole 47µF/35V 105 Centigrade
1
C28
Rubycon/
Panasonic
26
ECAP
Through-hole 100µF/35V 105 Centigrade
2
C15, C25
Rubycon/
Panasonic
27
ECAP
Through-hole
1
C428
Rubycon/
Panasonic
470µF/25V, pitch = 5 mm,
φ 10 mm
Doc ID 022081 Rev 3
Phoenix
Contact
Any source
9/65
Functional description of the demonstration board
Table 1.
AN3959
Bill of material (continued)
No.
Type
Footprint
28
RES
R1206
0R
4
R10, R11, R30, R41
Murata
29
RES
R1206
20 +/-5% 1/8W
2
R42, R43
Murata
30
RES
R0603
0 ohm 1/16W
R1, R3, R36
Murata
31
RES
R0603
47R +/-5% 1/16W
2
R35, R44
Murata
32
RES
R0603
470R +/-5% 1/16W
2
R37, R38
Murata
33
RES
R0603
1K +/-5% 1/16W
2
R45, R46
Murata
34
RES
R0603
10K +/-5% 1/16W
R5, R16, R17, R24, R25,
11 R28, R29, R31, R32,
R33, R34
Murata
35
RES
R0603
11K +/-5% 1/16W
2
Murata
36
RES
R0603
4.7K +/-5% 1/16W
R12, R13, R14, R15,
12 R18, R19, R20, R21,
R22, R23, R26, R27
Murata
37
RES
R0603
47K +/-5% 1/16W
2
R39, R40
Murata
38
RES
R0603
NS
R2, R4
Murata
39
RES
R0805
27K +/-5% 1/16W
2
R8, R9
Murata
40
Bead
L0805
Bead 600 ohm at 100 MHz or
33R
2
BD3, BD4
Murata
41
Plastic rod
Hexagonal rod 15 mm length,
male type
4
Four corners
Any source
42
Plastic rod
Hexagonal rod 8 mm length,
female type
4
Four corners
Any source
43
IC
QFN48 or
QFP64
STA381BWS (QFN48 or
QFP64)
1
IC1 or IC3
ST
44
IC
SOP8
LM833D (SOP8)
1
IC2
ST
45
Coil
SMD
SWPA6045S220MT, 22 µH
4
L1, L2, L3, L4
46
PCB
STA381BWS 2.0CH REV2.2
1
10/65
Description
Qty
Doc ID 022081 Rev 3
Reference
R6, R7
Manufacturer
Sunlord
Fastprint
AN3959
Figure 4.
Functional description of the demonstration board
Top view of PCB layout
Doc ID 022081 Rev 3
11/65
Functional description of the demonstration board
Figure 5.
12/65
Inner layer2 view of PCB layout
Doc ID 022081 Rev 3
AN3959
AN3959
Figure 6.
Functional description of the demonstration board
Inner layer3 view of PCB layout
Doc ID 022081 Rev 3
13/65
Functional description of the demonstration board
Figure 7.
14/65
Bottom view of PCB layout
Doc ID 022081 Rev 3
AN3959
AN3959
Figure 8.
Functional description of the demonstration board
Block diagram of test connections with equipment
Audio Precision Equipment
Monitor
Output
to AP
STA380BWS
2.0CH Demo
S/PDIF
Signal
Digital Oscilloscope
TDS3034B Tektronix
APWLink Board
I2S Input
(DC3V3)
Board
(DC7V)
DC Power Supply
PC with GUI to control the
chipset
From 4.5V to24V
Doc ID 022081 Rev 3
15/65
STA381BWS power section test results
2
AN3959
STA381BWS power section test results
Figure 9.
Frequency response, VCC = 18 V, RL = 8 ohm, 0 dB (Pout = 1 W)
+3
+2.5
+2
+1.5
+1
d
B
r
+0.5
A
-0.5
+0
-1
-1.5
-2
-2.5
-3
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Test Conditions : VCC=18V, Rl=8ohm, Dual BTL, Input Signal=-14dBFS, Pout=1W, Volume: +3dB
Figure 10. Crosstalk, VCC = 18 V, RL = 8 ohm, 0 dB (Pout = 1 W)
+0
-10
-20
-30
d
B
r
-40
-50
A
-60
-70
-80
-90
-100
20
50
100
200
500
1k
2k
Hz
Test Conditions : VCC=18V, Rl=8ohm, Dual BTL, Pout=1W, Volume: +3dB
16/65
Doc ID 022081 Rev 3
5k
10k
20k
AN3959
STA381BWS power section test results
Figure 11. SNR, VCC = 18 V, RL = 8 ohm, 0 dB (Pout = 1 W)
+0
-10
-20
-30
d
B
r
-40
-50
A
-60
-70
-80
-90
-100
20
50
100
200
500
1k
2k
5k
10k
20k
5k
10k
20k
Hz
Test Conditions : VCC=18V, Rl=8ohm, Dual BTL, Pout=1W, Volume: +3dB
Figure 12. THD vs. frequency, VCC = 18 V, RL = 8 ohm, Pout = 1 W
5
2
1
0.5
%
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
2k
Hz
Test Conditions : VCC=18V, Rl=8ohm, Dual BTL, Pout=1W, Volume: +3dB
Doc ID 022081 Rev 3
17/65
STA381BWS power section test results
AN3959
Figure 13. FFT (0 dBFS), VCC = 18 V, RL = 8 ohm, 0 dBFS (Pout = 1 W)
+10
+0
-10
-20
-30
-40
d
B
r
-50
-60
-70
A
-80
-90
-100
-110
-120
-130
-140
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Test Conditions : VCC=18V, Rl=8ohm, f=1KHz, Dual BTL, Input Signal=0dBFS, Pout=1W, Volume: -11.5dB
Figure 14. FFT (-60 dBFS), VCC = 18 V, RL = 8 ohm, 0 dBFS (Pout = 1 W)
+10
+0
-10
-20
-30
-40
d
B
r
-50
-60
-70
A
-80
-90
-100
-110
-120
-130
-140
20
50
100
200
500
1k
2k
5k
10k
Hz
Test Conditions : VCC=18V, Rl=8ohm, f=1KHz, Dual BTL, Input Signal=-60dBFS, Volume: -11.5dB
18/65
Doc ID 022081 Rev 3
20k
AN3959
STA381BWS power section test results
Figure 15. THD vs. output power, VCC = 18 V, RL = 8 ohm, f = 1 kHz
10
5
2
1
0.5
%
0.2
0.1
0.05
0.02
0.01
10m
20m
50m
100m
200m
500m
1
2
5
10
20
W
Test Conditions : VCC=18V, Rl=8ohm, Dual BTL, Volume: +3dB
Figure 16. THD vs. output power at different power supplies, RL = 8 ohm, f = 1 kHz
10
5
VCC=6V
VCC=24V
VCC=9V
2
VCC=21V
VCC=12V
1
VCC=18V
VCC=15V
0.5
%
0.2
0.1
0.05
0.02
0.01
10m
20m
50m
100m
200m
500m
1
2
5
10
20
40
W
Test Conditions : Rl=8ohm, Dual BTL, Volume: +3dB
Doc ID 022081 Rev 3
19/65
STA381BW power section test results
3
AN3959
STA381BW power section test results
Figure 17. Frequency response, VCC = 24 V, RL = 8 ohm, 0 dB (Pout = 1 W)
+3
+2.5
+2
+1.5
+1
d
B
r
+0.5
A
-0.5
+0
-1
-1.5
-2
-2.5
-3
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Test Conditions : VCC=24V, Rl=8ohm, Dual BTL, Input Signal=-17dBFS, Pout=1W, Volume: +3dB
Figure 18. Crosstalk, VCC = 24 V, RL = 8 ohm, 0 dB (Pout = 1 W)
+0
-10
-20
-30
d
B
r
-40
-50
A
-60
-70
-80
-90
-100
20
50
100
200
500
1k
2k
Hz
Test Conditions : VCC=24V, Rl=8ohm, Dual BTL, Pout=1W, Volume: +3dB
20/65
Doc ID 022081 Rev 3
5k
10k
20k
AN3959
STA381BW power section test results
Figure 19. SNR, VCC = 24 V, RL = 8 ohm, 0 dB (Pout = 1 W)
+0
-10
-20
-30
d
B
r
-40
-50
A
-60
-70
-80
-90
-100
20
50
100
200
500
1k
2k
5k
10k
20k
10k
20k
Hz
Test Conditions : VCC=24V, Rl=8ohm, Dual BTL, Pout=1W, Volume: +3dB
Figure 20. THD vs. frequency, VCC = 24 V, RL = 8 ohm, Pout = 1 W
5
2
1
0.5
%
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
2k
5k
Hz
Test Conditions : VCC=24V, Rl=8ohm, Dual BTL, Pout=1W, Volume: +3dB
Doc ID 022081 Rev 3
21/65
STA381BW power section test results
AN3959
Figure 21. FFT (0 dBFS), VCC = 24 V, RL = 8 ohm, 0 dBFS (Pout = 1 W)
+10
+0
-10
-20
-30
-40
-50
d
B
r
-60
-70
A
-80
-90
-100
-110
-120
-130
-140
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Test Conditions : VCC=24V, Rl=8ohm, f=1KHz, Dual BTL, Input Signal=0dBFS, Pout=1W, Volume: -13.5dB
Figure 22. FFT (-60 dBFS), VCC = 24 V, RL = 8 ohm, 0 dBFS (Pout = 1 W)
+10
+0
-10
-20
-30
-40
d
B
r
-50
-60
-70
A
-80
-90
-100
-110
-120
-130
-140
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Test Conditions : VCC=24V, Rl=8ohm, f=1KHz, Dual BTL, Input Signal=0dBFS, Pout=1W, Volume: -13.5dB
22/65
Doc ID 022081 Rev 3
AN3959
STA381BW power section test results
Figure 23. THD vs. output power, VCC = 24 V, RL = 8 ohm, f = 1 kHz
10
5
2
1
0.5
%
0.2
0.1
0.05
0.02
0.01
10m
20m
50m
100m
200m
500m
1
2
5
10
20
40
W
Test Conditions : VCC=24V, Rl=8ohm, Dual BTL, Volume: +3dB
Figure 24. THD vs. output power at different power supplies, RL = 8 ohm, f = 1 kHz
10
VCC=6V
5
VCC=27V
VCC=9V
2
VCC=24V
VCC=12V
1
VCC=21V
VCC=15V
0.5
VCC=18V
%
0.2
0.1
0.05
0.02
0.01
60m
100m
200m
500m
1
2
5
10
20
50
W
Test Conditions : Rl=8ohm, Dual BTL, Volume: +3dB
Doc ID 022081 Rev 3
23/65
Analog section test results
4
AN3959
Analog section test results
The line/headphone out can be fed either with an external analog source, or with the F3X
output, allowing the audio content to come from the digital interface on both the power
output and on the line/headphone out.
Table 2.
Test conditions
Conditions
Input
Output
J15, J16 short-circuit & SW2, SW3 switch to HPOUT
STA381BWS F3X
F3X HP OUT
J15, J16 short-circuit & SW2, SW3 switch to LINEOUT
STA381BWS F3X
LINE OUT
J15, J16 open circuit & SW2, SW3 switch to HPOUT
LINE IN
F3X HP OUT
J15, J16 open circuit & SW2, SW3 switch to LINEOUT
LINE IN
LINE OUT
Table 3.
Headphone section test results
Filter: 22K LPF
Ext. Res: 18K + 43K
Test results
Headphone
Unit
Spec.
Reference
mVrms
75 mVrms reference
mVrms
540 mVrms(10 mW)
Maximum output level
Left
Right
542 mV
548 mV
H/P frequency response
-3 dB↑, +0.5 dB 30 Hz
~20 kHz
Left
-0.4 ~ -0.28
Right
H/P THD+N vs. frequency
Left
dBr
-57
77
77
dBr
-57
77
77
dBr
-60
Right
H/P THD+N vs. level
Left
Right
H/P signal-to-noise (20-bit)
Left
Right
24/65
Doc ID 022081 Rev 3
78
78
AN3959
Analog section test results
Table 4.
Line out section test results
Line out
Filter: 22K LPF
Ext Res: 18K + 43K
Spec.
Test results
Unit
Reference
200 mV +/-20%
Maximum output level
Left
mVrms
2.0 V↓
Right
1.86
1.87
Frequency response
-1 dB↑,+0.5dB↓ 20Hz
~20 kHz
Left
Right
-0.87 dB at 20 Hz
-0.83 dB at 20 Hz
THD+N vs. frequency
Left
dBr
-60
dBr
-60
-78 dB at 200 mV
-78 dB at 200 mV
dBr
-70
79
79
dBr
-70
99
80
deg
5↓
0.02
dBr
-85
100
100
mV
7↓
0.021 mV
Right
-71 dB at 20 Hz
-71 dB at 20 Hz
TH+N vs. level
Left
Right
Signal-to-noise (20-bit)
Left
Right
Channel separation
Left
Right
L/R CH phase difference
Dynamic range (20-bit)
Left
Right
Residual noise
Doc ID 022081 Rev 3
25/65
Thermal performance
AN3959
5
Thermal performance
5.1
Thermal results - test 1
Figure 25. Temperature test 1
Testing conditions:
●
VCC = 12 V
●
1 kHz sine wave
●
8 ohm
Output power: 2 x 7 W
Table 5.
26/65
Thermal results - test 1
Result
Tamb = 25 °C
Tamb = 40°C
IC temp
39.2 °C
54.2 °C
Doc ID 022081 Rev 3
AN3959
5.2
Thermal performance
Thermal results - test 2
Figure 26. Temperature test 2
Testing conditions:
●
VCC = 24 V
●
1 kHz sine wave
●
8 ohm
Output power: 2 x 15 W
Table 6.
Thermal results - test 2
Result
Tamb = 25 °C
Tamb = 40°C
IC temp
74.5 °C
89.5 °C
Doc ID 022081 Rev 3
27/65
Design guidelines for schematic and PCB layout
AN3959
6
Design guidelines for schematic and PCB layout
6.1
Schematic
6.1.1
Criteria for selection of components
6.1.2
●
Absolute maximum rating: STA381BWS VCC = 27 V
●
Bypass capacitor 100 nF in parallel to 1 µF for each power VCC branch. Preferable
dielectric is X7R.
●
Coil saturation current compatible with the peak current of application
Decoupling capacitors
For the decoupling capacitor(s), one decoupling system can be used with 2 capacitors per
channel. The decoupling capacitors must be as close as possible to the IC pins, in order to
avoid parasitic inductance with the copper wire on the PC board.
6.1.3
Output filter
Figure 27. Output filter (BTL)
L11
22u
IN x A
C 89
100n
C 90
330p
C 91
1000p
R 34
C 95
100n
6.2
C 98
J7
R 37
R 36
20
C 99
1000p
470n
C 101
100n
1
2
C ON 2
6.2
C 105
100n
C 103
1000p
IN x B
L13
SNUBBER
28/65
22u
Main Filter
Dumping Network
1.
The key function of a snubber network is to absorb energy from the reactance in the
power circuit. The purpose of the snubber RC network is to avoid unnecessary high
pulse energy such as a spike in the power circuit which is dangerous to the system.
The snubber network allows the energy (big spike) to be transferred to and from the
snubber network in order for the system to work safely.
2.
The purpose of the main filter is to cut off the frequency above the audible range of
20 kHz, which is mandatory in order to have a clean amplifer response. The main filter
is designed using the Butterworth formula to define the cutoff frequency.
3.
The purpose of the damping network is to avoid the high-frequency oscillation issue on
the output circuit. The damping network allows the THD to be improved and also allows
avoiding the inductive copper on the PCB route when the system is working at high
frequency with PWM or PCM.
Doc ID 022081 Rev 3
AN3959
6.1.4
Design guidelines for schematic and PCB layout
Snubber filter
The snubber circuit must be optimized for the specific application. Starting values are
330 pF in series to 22 ohm. The power on this network is dependent on the power supply,
frequency and capacitor value according to the following formula:
P=C*f*(2*V)2
This power is dissipated on the series resistance.
Figure 28. Differential-mode snubber circuit
INxA
C126
330p
R44
22
INxB
For the common-mode snubber the formula to evaluate power is:
P=C*f*2*(V2)
This power is dissipated on the series resistance.
Figure 29. Common-mode snubber circuit
INxA
C127
330p
R45
22
R46
22
INxB
C130
330p
Doc ID 022081 Rev 3
29/65
Design guidelines for schematic and PCB layout
6.1.5
AN3959
Main filter
The main filter is an L and C based Butterworth filter. The cutoff frequency must be chosen
between the upper limit of the audio band (≈20 kHz) and the carrier frequency (384 kHz).
Figure 30. Main filter
6.1.6
Dumping network
The C-R-C is a dumping network. It is mainly intended for high inductive loads such as
disconnecting the speaker load.
Figure 31. Dumping network
C dump-S
C dump-P
R dump
Rdump
C dump-P
C dump-S
Table 7.
Recommended values
Rload
16 ohm
12 ohm
8 ohm
6 ohm
4 ohm
Lload
47 µH
33 µH
22 µH
15 µH
10 µH
Cload
220 nF
330 nF
470 nF
680 nF
1 µF
C dump-S
100 nF
100 nF
100 nF
100 nF
220 nF
C dump-P
100 nF
100 nF
100 nF
100 nF
220 nF
10
8.2
6.2
4.7
2.7
R dump
30/65
Doc ID 022081 Rev 3
AN3959
6.1.7
Design guidelines for schematic and PCB layout
Recommended power-up and power-down sequence
There is no constraint regarding power supply voltages while it is required to release the
reset line (RST) only after the master clock (MCLK) is stable, after the power-down (PWDN)
is already set high and before any I2C commands.
Figure 32. Recommended power-up and power-down sequence
6.2
Layout
The following figures illustrate layout recommendations.
Figure 33. Snubber network soldered as close as possible to the respective IC pin
Doc ID 022081 Rev 3
31/65
Design guidelines for schematic and PCB layout
AN3959
Figure 34. Electrolytic capacitor used first to separate the VCC branches
Figure 35. Path between VCC and ground pin minimized in order to avoid inductive paths
32/65
Doc ID 022081 Rev 3
AN3959
Design guidelines for schematic and PCB layout
Thermal dissipation
It is mandatory to have a large ground plane on the top layer, inner layer2, inner layer3, and
bottom layer and solder the slug on the PCB.
Figure 36. Large ground plane on the top side
Figure 37. Large ground plane on inner layer2
Doc ID 022081 Rev 3
33/65
Design guidelines for schematic and PCB layout
Figure 38. Large ground plane on inner layer3
34/65
Doc ID 022081 Rev 3
AN3959
AN3959
Design guidelines for schematic and PCB layout
Figure 39. Large ground plane on bottom side
Figure 40. Symmetrical paths created for output stage, for differential applications
Doc ID 022081 Rev 3
35/65
Design guidelines for schematic and PCB layout
AN3959
Figure 41. Coils separated in order to avoid crosstalk
Figure 42. VCC filter for high frequency
Placing the VCC filter capacitors close to the pins avoids an inductive coil generated by the
copper wire, because the system is working in PWM with fast switching (the frequency is
384 kHz with fs = 48 kHz) so the longer copper wire easily becomes an inductor. To improve
this we suggest using the ceramic capacitor to balance the reactance. It's mandatory to put
the ceramic capacitor as close as possible to the related pins. The distance between the
capacitor to the related pins is recommended to be within 5 mm.
36/65
Doc ID 022081 Rev 3
AN3959
Design guidelines for schematic and PCB layout
Figure 43. Thermal layout with large ground
The thermal resistance junction in the bottom of the STA381BWS to ambient, obtainable
with a ground copper area of 5.6 x 5.6 mm and with 16 via holes is shown in Figure 43 as an
example.
Doc ID 022081 Rev 3
37/65
Software setup to use the STA381BW/STA381BWS devices (ST Map)
AN3959
7
Software setup to use the STA381BW/STA381BWS
devices (ST Map)
7.1
Processing configuration
Figure 44. Processing path
Pro c es s ing F requency = 2x F s
X2O v er-sampling
F IR
Pre-scale
H i-Pas s
Filter
Biq uad
#1
Biq uad
#2
Biq uad
#3
Biq uad
#4
Biq uad #5
Or
D e-em p h
Biq uad #6
Or
Bas s
U s er D efined F ilters
I2S In p ut
Interface
Pre-scale
H i-Pas s
Filter
Biq uad
#1
Pro c es s ing F requency = 2x F s
●
●
Biq uad
#2
L
T o n e C o ntrol
By d efault tw o c h an nels
are lin k ed
X2O v er-sampling
F IR
Biq uad #7
or
T reble
By d efault tw o c h an nels
are lin k ed
Biq uad
#3
Biq uad
#4
Biq uad #5
Or
D e-em p h
Biq uad #6
Or
Bas s
U s er D efined F ilters
Biq uad #7
or
T reble
R
T o n e C o ntrol
By default, the post-scale is linked (all channels use the channel-1 coefficient value)
– To use different coefficients, bit D3 register 0x03 must be set to 0
By default, all 8 biquads are enabled
●
By default, all biquads are linked (all channels use the channel-1 coefficient values)
– To use different coefficients, bit D4 register 0x03 must be set to 0
●
By default, bass and treble are bypassed
– To use bass, bit D1 register 0x36 must be set to 0
– To use treble, bit D0 register 0x36 must be set to 0
Figure 45. 2.1-channel with STCompressorTM
By d efault th e c h an nels
are lin k ed
L
C 1M x 1
+
R
C 1M x 2
C 2M x 1
+
C 2M x 2
C 3M x 1
+
C 3M x 2
U s er-D ef ined
M ix C oef f ic ient s
C h an n el ½
Biq uad #8
-------------H i-p as s XO
F ilter
S TC om pres s or
Vo lum e
And
Lim iter
D C C ut
Filter
Po s t Sc ale
C h an n el ½
Biq uad #8
-------------H i-p as s XO
F ilter
S TC om pres s or
Vo lum e
And
Lim iter
D C C ut
Filter
Po s t Sc ale
Vo lum e
And
Lim iter
D C C ut
Filter
Po s t Sc ale
C h an n el 3
Biq uad #8
-------------Lo w -p ass XO
filter
C ros s ov er F requenc y
D et erm ined by X O S et t ing
(U s er D efin ed If
XO =0000)
38/65
Doc ID 022081 Rev 3
AN3959
7.2
Software setup to use the STA381BW/STA381BWS devices (ST Map)
STCompressorTM
Figure 46. STCompressor - overview
DRC0
Offset
BQ0
Input
Ch0
BQ0
BQ1
BQ1
Level
Meter
Mapper
Level
Meter
Mapper
Attenuator
X
+
Attenuator
Output
Ch0
X
Offset
Band Splitter
DRC1
DRC2
BQ2
Input
Ch1
BQ2
Offset
BQ3
Level
Meter
Mapper
Level
Meter
Mapper
Attenuator
X
+
BQ3
Band Splitter
Attenuator
Output
Ch1
X
Offset
DRC3
Figure 47. STCompressor - mapper
●
Linear zone
–
●
–
●
The signal is compressed with a programmable ratio
Compression ratio
–
●
Standard operation, input and output are linked to volume
Compression zone
The ratio changes the compression slope
Limiting zone
–
The signal is limited to avoid unpredictable effects or damages
Doc ID 022081 Rev 3
39/65
Software setup to use the STA381BW/STA381BWS devices (ST Map)
AN3959
Figure 48. STCompressor - compression ratio
●
The compression ratio is user-programmable
●
By default the rate is 1:1 (no variable ratio)
●
There are 16 different settings (from 0 to 15) and the ratio varies from 1:1 to 1:16
Figure 49. STCompressor - limiter threshold
40/65
●
The limiter threshold is user-programmable
●
By default the threshold is set to 0 dB
●
There are 144 different settings (from -24 to +12 dB) with 0.25 dB/step
Doc ID 022081 Rev 3
AN3959
Software setup to use the STA381BW/STA381BWS devices (ST Map)
Figure 50. STCompressor - offset control
●
The offset is a user-programmable gain or volume control
●
When the STC is used, it is better to use offset instead of volume for location in the
processing path
There are 192 different settings (from 0 to +48) with 0.25 dB/step
7.2.1
STCompressor settings
●
●
By default the STCompressor is enabled and in pass-through
–
Bit D4 of register 0x5A (STC_EN) is set to 1. This means STC is enabled
–
Bit D5 of register 0x5A (STC_BYP) is set to 1. This means STC is in pass-through
By default the STC band recombination is disabled
–
7.2.2
Bit D0 register 0x5B (BRC_EN) is set to 0
Configuring and enabling the STCompressor
●
Write the STC configuration
–
●
Define the band splitter filtering
–
Define the limiter threshold [-24, +12] dB with 0.25 dB/step
–
Define the max. linear zone (compression threshold) [-48, 0] dB with 0.25 dB/step
–
Define the compression ratio [1:1, 1:16]
–
Define the attack rate [0, +16] dB/msec with 0.25 dB/ms step
–
Define the release rate [0.0078, 1) dB/msec with 0.0039dB/msec step
–
Define the dynamic attack
–
Define the offset
Enable the STC
–
Set the STC_BYP bit (register 0x5A bit D1) to 0
Doc ID 022081 Rev 3
41/65
Software setup to use the STA381BW/STA381BWS devices (ST Map)
7.2.3
Example settings of the STCompressor
Band splitter:
●
Biquad 0, biquad 1 of band 0: low-pass filter with Fc = 200 Hz
Write in RAM the following values.
BQ0 band 0:
0x40→0x000059
0x41→0x000059
0x42→0x1FB47A
0x43→0xE095A7
0x44→0x000002
BQ1 band0
0x45→0x000059
0x46→0x000059
0x47→0x1FB47A
0x48→0xE095A7
0x49→0x000002
●
Biquad 0, biquad 1 of band 1: high pass filter with Fc = 200 Hz
Write in RAM the following values.
BQ0 band 1:
0x4A→0xE04B2D
0x4B→0x1FB4D3
0x4C→0x1FB47A
0x4D→0xE095A7
0x4E→0x0FDA69
BQ1 band 1:
0x4F→0xE04B2D
0x50→0x1FB4D3
0x51→0x1FB47A
0x52→0xE095A7
0x53→0x0FDA69
Limiter threshold = +2 dB
●
Coefficient value = HEX (+2/26*)223 = 0x040000
●
Write in RAM:
0x56→0x040000
0x60→0x040000
Compression threshold= -2 dB
42/65
●
Coefficient value = HEX [224 - (2/26) * 223] = HEX (16515072) = 0xFC0000
●
Write in RAM:
0x58→0xFC0000
0x62→0xFC0000
Doc ID 022081 Rev 3
AN3959
AN3959
Software setup to use the STA381BW/STA381BWS devices (ST Map)
Compression ratio - 1:2 = 4
●
Coefficient value = HEX [(4/26) * 223] = HEX (524288) = 0x080000
●
Write in RAM:
–
0x57→0x080000
–
0x61→0x080000
Attack rate: +4 dB/msec
●
Coefficient value = HEX [(4/26) * 223] = HEX (524288) = 0x080000
●
Write in RAM:
0x55→0x080000
0x5F→0x080000
Release rate: 0.01953 dB/msec
●
Coefficient value = HEX (Value * 223) = HEX (0.01953*223) = 0x027EF9
●
Write in RAM:
0x54→0x027EF9
0x5E→0x027EF9
Dynamic attack rate: 0.039 dB/msec
●
Coefficient value = HEX (Value * 223) = HEX (0.039*223) = 0x04FDF3
●
Write in RAM:
0x71→0x04FDF3
Offset: 0.5 dB for all DRC
●
Coefficient value = HEX [(0.5/26) * 223] = 0x010000
●
Write in RAM:
0x68→0x010000
0x69→0x010000
0x6A→0x010000
0x6B→0x010000
Doc ID 022081 Rev 3
43/65
Software setup to use the STA381BW/STA381BWS devices (ST Map)
7.2.4
AN3959
Test results with APWorkbench
The following figure shows the APWorkbench results for the example settings given in
Section 7.2.3.
Figure 51. APWorkbench results for STC example
44/65
Doc ID 022081 Rev 3
AN3959
7.3
Software setup to use the STA381BW/STA381BWS devices (ST Map)
CRC computation
In the STA381BW/STA381BWS there are three different CRCs:
7.3.1
●
Biquad
●
Crossover
●
STCompressor
Biquad CRC computation
●
Download into RAM the biquad filter coefficients (address 0x00-0x27)
●
The XOR function calculates bit-to-bit the downloaded coefficients
●
Write the calculated coefficients in register BQCHKR (0x66-0x67-0x68)
●
Enable the BCGO bit (bit D0 register 0x6C). The checksum XOR of the biquad filter will
be exposed on the BQCHECKE registers (0x60-0x61-0x62)
●
Enable the CRC comparison, setting the BCCMP bit (bit D1 register 0x6C). The
comparison will be done on each audio frame and the result is written in BCCRES (bit
D2 register 0x6C)
●
7.3.2
–
BC_RES = 0 means that the checksum is OK, no errors
–
BC_RES = 1 means that checksum errors are detected
It is possible to reset the device if BC_RES = 1, enabling bit D3 of register 0x6C
(BCAUTO). By default, this function is disabled (BCAUTO=0)
Crossover CRC computation
●
Download into RAM the Xover filter coefficients (address 0x28-0x31)
●
The XOR function calculates bit-to-bit the downloaded coefficients
●
Write the calculated coefficients in register XCCKR (0x69-0x6A-0x6B)
●
Enable the XCGO bit (bit D4 register 0x6C). The checksum XOR of the Xover filter will
be exposed on the XCCKE registers (0x63-0x64-0x65)
●
Enable the CRC comparison, setting the XCCMP bit (bit D5 register 0x6C). The
comparison will be done on each audio frame and the result is written in XCRES (bit D6
register 0x6C).
●
–
XCRES=0 means that the checksum is OK, no errors
–
XCRES=1 means that checksum errors are detected
It is possible to reset the device if XCRES = 1, enabling bit D7 of register 0x6C
(XCAUTO). By default, this function is disabled (XCAUTO=0)
Doc ID 022081 Rev 3
45/65
Software setup to use the STA381BW/STA381BWS devices (ST Map)
7.3.3
46/65
AN3959
STCompressorTM CRC computation
●
Download into RAM the STC band splitter filter coefficients into the RAM (address
0x40-0x53)
●
The XOR function calculates bit-to-bit the downloaded coefficients
●
Write into RAM the expected value (address 0x72 – CRC expected)
●
Enable the NP_CRC_GO bit (bit D0 register 0x5A). The checksum XOR of the band
splitter filter coefficients will be exposed in RAM on the computed CRC (address 0x73)
●
It is possible to see the CRC result in register 0x5A bit D2 (NP_CRCRES)
–
NP_CRCRES = 0, CRC STCompressor OK
–
NP_CRCRES = 1, CRC STCompressor with error
Doc ID 022081 Rev 3
AN3959
7.4
Software setup to use the STA381BW/STA381BWS devices (ST Map)
Startup
ST map selection
●
Select register map (ST Map)
–
0x7E (MISC4) bit D7 (SMAP) set to 0 (default is 1)
Clock and SAI configuration
●
●
Set clock selection (register 0x00)
–
For each Fs, if BICKI=32*Fs or 64*Fs, MCLK is ignored and the oversampling
clock is BICKI
–
If the multiplier is different from 32 or 64, MCLK is mandatory and the
configuration must be written in register 0x00
Set SAI interface
–
Select right digital interface (the default setting is I2S 24-bit), writing the register
0x01
Output configuration
●
Select configuration
–
2.0-channel is the default configuration
–
2.1-channel configuration (2 single-ended + 1 BTL)
Register 0x05 (CONFF) bit D1 and D0 (OCFG) must be set to 01
–
2.1-channel configuration with external PWM and controls on auxiliary PWM (2
BTL + external PWM)
Register 0x05 (CONFF) bit D1 and D0 (OCFG) must be set to 10
–
1-channel configuration (for subwoofer application)
Register 0x05 (CONFF) bit D1 and D0 (OCFG) must be set to 11
Settings for class-AB
●
●
Select output configuration
–
Lineout: default setting (0) bit D7 (HPLN) register 0x55 (HPCFG)
–
Headphone: set bit D7 (HPLN) register 0x55 to 1 (HPCFG)
Enable class-AB
–
●
Set to 0 (default is 1) bit D5 (MUTE) of register 0x55 (HPCFG)
To verify that the device works properly read register 0x55
–
Bit D0 must be 1 (charge pump OK)
–
Bit D1 must be 0 (class-AB not in FAULT)
–
Bit D2 must be 1 (1.8 V core power supply OK)
Settings for enable F3X
●
Set register 0x59 (F3XCFG2) to 0x6D
The default value is 0x6E. This means bit D0 must be set to 1and bit D0 to 0.
–
After setting these bits, in F3XL there is analog output of channel 1 and in F3XR
there is analog output of ch 2. The volume control is bypassed.
–
To also control the volume it is mandatory to change the LOC1 and LOC0 bits (bit
D6 and D7 reg. 0x06)
Doc ID 022081 Rev 3
47/65
Software setup to use the STA381BW/STA381BWS devices (ST Map)
AN3959
Figure 52. F3X output
Note:
If the digital input is 0 dBFs, the F3X output is 1.8 Vpp (that means 0.64 Vrms).
F3X for HPout
●
Write in register 0x58 (F3XCFG1) the value 0x80 (default value 0x00) which enables
the F3XLNK function.
–
Setting this bit, the ON/OFF of F3X is due to the power on/off of class-AB
–
Setting F3XLNK, bit D1 of register 0x59 (F3X_MUTE) is ignored
●
The power on/off is dependent on bit D5 of register 0x55 (MUTE)
●
Unset bit D0 of register 0x59 (F3X_ENA)
Figure 53. F3X for HPout
48/65
Doc ID 022081 Rev 3
AN3959
7.5
Software setup to use the STA381BW/STA381BWS devices (ST Map)
Short-circuit protection for the STA381BW/STA381BWS
The device is protected to short circuit at power-on:
7.6
●
Enable the short-circuit check enable bit (SHEN, bit D0 register 0x4C)
●
When the device switches from EAPD = 0 to EAPD = 1 (bit D7 register 0x05), the
protection checks the short-circuit
●
It is possible to verify the short, reading register 0x47
–
Bit D0 = 0 (OUTSH) means that OUT1B is shorted to OUT2A
–
Bit D1 = 0 (VCCSH) means that one output pin is shorted with Vcc
–
Bit D2 = 0 (GNDSH) means that one output pin is shorted with GND
●
This function is verified ONLY when EAPD toggles from 0 to 1
●
The feature is enabled in BTL mode. It is not effective in single-ended mode
Settings for bridge power-up
●
Switch on the bridge
–
●
–
●
Register 0x05 bit D7 set to 1 (default is 0)
Change master volume to desired value (e.g. 0 dB)
Register 0x07 from 0xFF (mute) to 0x00 (0 dB)
Change channel volume to desired value (e.g. +3 dB)
–
Register 0x08 (Ch1 vol) from 0x60 (0dB) to 0x5A (+3 dB)
–
Register 0x09 (Ch2 vol) from 0x60 (0dB) to 0x5A (+3dB)
●
By default, the timing between the bridge power-on in seconds and the real bridge on is
1 sec
●
To modify this timing it is mandatory to change the value in register 0x2B and 0x2C
●
–
The default value is 0x300C (= 12300)
–
The timing is 12300 * 0.083 * 10-3 = 1.0209 sec
For example, to have 100 msec for power-on, the number that must be witten in register
is 1205 (dec) = 0x04B5
–
Write in register 0x2B the value 0x04
–
Write in register 0x2C the value 0xB5
Doc ID 022081 Rev 3
49/65
Examples of code (TV SoC)
AN3959
8
Examples of code (TV SoC)
8.1
FFX381X_Sample.h
#ifndef FFX_38X_H
#define FFX_38X_H
//#define FFX_I2C_ADDR
0x34
#define FFX_I2C_ADDR
0x38
#define FFX_CONFIGURE_A
0x00
#define FFX_CONFIGURE_B
0x01
#define FFX_CONFIGURE_C
0x02
#define FFX_CONFIGURE_D
0x03
#define FFX_CONFIGURE_E
0x04
#define FFX_CONFIGURE_F
0x05
#define FFX_MUTE
0x06
#define FFX_MAIN_VOLUME
0x07
#define FFX_CHANNEL1_VOL
0x08
#define FFX_CHANNEL2_VOL
0x09
#define FFX_CHANNEL3_VOL
0x0a
#define FFX_AUTO1
0x0b
#define FFX_AUTO2
0x0c
//#define FFX_AUTO3
0x0d
#define FFX_CHANNEL1_CFG
0x0e
#define FFX_CHANNEL2_CFG
0x0f
#define FFX_CHANNEL3_CFG
0x10
#define FFX_TONEBASS
50/65
0x11
#define FFX_L1AR_RATE
0x12
#define FFX_L1AR_THRESHOLD
0x13
Doc ID 022081 Rev 3
AN3959
Examples of code (TV SoC)
#define FFX_L2AR_RATE
0x14
#define FFX_L2AR_THRESHOLD
0x15
#define STA381BWX_NEWMAP
0x80
#define STA381BWX_STMAP
0x00
#define STA381BWX_MAPSEL
0x7E
#define STA381BWX_Cross_userdefine 0x00
#define STA381BWX_Cross_80Hz
0x01
#define STA381BWX_Cross_100Hz
0x02
#define STA381BWX_Cross_120Hz
0x03
#define STA381BWX_Cross_140Hz
0x04
#define STA381BWX_Cross_160Hz
0x05
#define STA381BWX_Cross_180Hz
0x06
#define STA381BWX_Cross_200Hz
0x07
#define STA381BWX_Cross_220Hz
0x08
#define STA381BWX_Cross_240Hz
0x09
#define STA381BWX_Cross_260Hz
0x0A
#define STA381BWX_Cross_280Hz
0x0B
#define STA381BWX_Cross_300Hz
0x0C
#define STA381BWX_Cross_320Hz
0x0D
#define STA381BWX_Cross_340Hz
0x0E
#define STA381BWX_Cross_360Hz
0x0F
#define STA381BWX_2_0_HP_Config
0x00
#define STA381BWX_2_1_SE_Config
0x01
#define STA381BWX_0_1_Mono_Config
0x03
void STA381BWX_init(void);
void STA381BWX_OutputConfiguration(unsigned char
FFX_Configuration);
void STA381BWX_SetMasterVolume(unsigned char MasterVolume);
void STA381BWX_SetMasterMute(unsigned char Mute);
void STA381BWX_SetLeftVolume(unsigned char LeftVolume);
Doc ID 022081 Rev 3
51/65
Examples of code (TV SoC)
AN3959
void STA381BWX_SetRightVolume(unsigned char RightVolume);
void STA381BWX_SetSubWooferVolume(unsigned char SubWooferVolume);
void STA381BWX_CrossOver(unsigned char FFX_CrossOverValue);
void STA381BWX_Poweronoff(unsigned char FFX_Powerflag);
void STA381BWX_Powerdownonoff(unsigned char FFX_Powerflag);
void STA381BWX_DSPBypass(unsigned char DSPBypassFlag);
void STA381BWX_DeEmphasis(unsigned char DeEmphasisFlag);
void STA381BWX_FilterLink(unsigned char FilterlinkFlag);
void STA381BWX_PostscaleLink(unsigned char PostscalelinkFlag);
void STA381BWX_Bass(unsigned char basssetting);
void STA381BWX_Treble(unsigned char treblesetting);
void STA381BWX_CoefficientWrite(unsigned char FilterIndex);
void STA381BWX_CoefficientRead(unsigned char FilterIndex);
#endif
52/65
Doc ID 022081 Rev 3
AN3959
8.2
Examples of code (TV SoC)
FFX381X_Sample.C
#include "FFX38X_Sample.h"
/* This is the reference source code of STA381BWX series FFX
amplifier
function reference:
I2Cm_Tx(&valueReg,RegAddress,1,DeviceAddress);//write the data to
I2C register,DeviceAddress=FFX_I2C_ADDR
I2Cm_Rx(&valueReg,RegAddress,1,DeviceAddress);//Read the data
from I2C register,DeviceAddress=FFX_I2C_ADDR
*/
unsigned char
oldMasterVolume;
unsigned char
oldLeftVolume;
unsigned char
oldRightVolume;
unsigned char
oldSubWooferVolume;
unsigned char
oldMute;
unsigned char MUTEVolSave;
unsigned char I2C_buf1;
/******************************************************************
Global Function Declarations.
*******************************************************************
/
unsigned char
STA381BWX_EQ[]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0
x00,0x00,0x40,0x00,0x00};
/*
Intial the EQ curve for coefficient data Write
Read Filter data to STA381_EQ[],Filter address FilterIndex=0~4
*/
void STA381BWX_CoefficientRead(unsigned char FilterIndex){
unsigned char STA381BWX_tempj;
//clear 0x17~0x25 IIC register
for(STA381BWX_tempj=0;STA381BWX_tempj<15;STA381BWX_tempj++){
I2C_buf1=0x00;
I2Cm_Tx(&I2C_buf1,(0x17+STA381BWX_tempj),1,FFX_I2C_ADDR);
}
//Set coefficient data address
Doc ID 022081 Rev 3
53/65
Examples of code (TV SoC)
AN3959
I2C_buf1=FilterIndex*5;
I2Cm_Tx(&I2C_buf1,0x16,1,FFX_I2C_ADDR);
//Write the command to 0x26(3 times)
I2C_buf1=0x08;
I2Cm_Tx(&I2C_buf1,0x26,1,FFX_I2C_ADDR);
I2Cm_Tx(&I2C_buf1,0x26,1,FFX_I2C_ADDR);
I2Cm_Tx(&I2C_buf1,0x26,1,FFX_I2C_ADDR);
Wait(10);//10-20ms delay
//read bank data from 0x17~0x25
for(STA381BWX_tempj=0;STA381BWX_tempj<15;STA381BWX_tempj++){
I2Cm_Rx(&I2C_buf1,(0x17+STA381BWX_tempj),1,FFX_I2C_ADDR);
STA381BWX_EQ[STA381BWX_tempj]=I2C_buf1;
}
}
/*
Intial the EQ curve for coefficient data Write
write Filter data from STA381_EQ[],Filter address FilterIndex=0~4
*/
void STA381BWX_CoefficientWrite(unsigned char FilterIndex)
{
unsigned char STA381BWX_tempj;
//clear 0x17~0x25 IIC register
for(STA381BWX_tempj=0;STA381BWX_tempj<15;STA381BWX_tempj++){
I2C_buf1=0x00;
I2Cm_Tx(&I2C_buf1,(0x17+STA381BWX_tempj),1,FFX_I2C_ADDR);
}
//Set coefficient data address
I2C_buf1=FilterIndex*5;
I2Cm_Tx(&I2C_buf1,0x16,1,FFX_I2C_ADDR);
//write bank data to 0x17~0x25
for(STA381BWX_tempj=0;STA381BWX_tempj<15;STA381BWX_tempj++){
I2C_buf1=STA381BWX_EQ[STA381BWX_tempj];
I2Cm_Tx(&I2C_buf1,(0x17+STA381BWX_tempj),1,FFX_I2C_ADDR);
}
54/65
Doc ID 022081 Rev 3
AN3959
Examples of code (TV SoC)
//Write the command to 0x26(3 times)
I2C_buf1=0x02;
I2Cm_Tx(&I2C_buf1,0x26,1,FFX_I2C_ADDR);
}
/*
initial the system output configuration as below
FFX_Configuration=0; 2.0 2*BTL setting with HP
FFX_Configuration=1; 2.1 2*SE+1*BTL setting
FFX_Configuration=2; 2.1 2*BTL+1*PWMoutput(driver Power stage)
setting
FFX_Configuration=3; .1 mono BTL setting
*/
void STA381BWX_OutputConfiguration(unsigned char
FFX_Configuration){
I2Cm_Rx(&I2C_buf1,FFX_CONFIGURE_F,1,FFX_I2C_ADDR);
I2C_buf1&=0xFC;
I2C_buf1+=FFX_Configuration;
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_F,1,FFX_I2C_ADDR);
}
/*
Set the FFX power stage open or close as below
FFX_Powerflag=0;close output power
FFX_Powerflag=1;open output power
*/
void STA381BWX_Poweronoff(unsigned char FFX_Powerflag){
I2Cm_Rx(&I2C_buf1,FFX_CONFIGURE_F,1,FFX_I2C_ADDR);
I2C_buf1&=0x7F;
I2C_buf1+=((FFX_Powerflag)<<7);
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_F,1,FFX_I2C_ADDR);
}
/*
Set the FFX power down or not
FFX_Powerflag=0;system standby
FFX_Powerflag=1;system running
Doc ID 022081 Rev 3
55/65
Examples of code (TV SoC)
AN3959
*/
void STA381BWX_Powerdownonoff(unsigned char FFX_Powerflag){
I2Cm_Rx(&I2C_buf1,FFX_CONFIGURE_F,1,FFX_I2C_ADDR);
I2C_buf1&=0xBF;
I2C_buf1+=((FFX_Powerflag)<<6);
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_F,1,FFX_I2C_ADDR);
}
/*
Set Crossover
FFX_CrossOver value have define as constant value
*/
void STA381BWX_CrossOver(unsigned char FFX_CrossOverValue){
I2Cm_Rx(&I2C_buf1,FFX_AUTO2,1,FFX_I2C_ADDR);
I2C_buf1&=0x0F;
I2C_buf1+=(FFX_CrossOverValue<<4);
I2Cm_Tx(&I2C_buf1,FFX_AUTO2,1,FFX_I2C_ADDR);
}
/* the volume system consist of main volume and channel volume, the
main volume is responsible for the overall system control, it's
range from -127.5dB to 0dB, every step as 0.5dB,
Mastervolume=|dbrequest*2|;
0=0dB
0*2
255=-127.5dB
127.5*2
*/
void STA381BWX_SetMasterVolume(unsigned char MasterVolume)
{
I2C_buf1=MasterVolume;
I2Cm_Tx(&I2C_buf1,FFX_MAIN_VOLUME,1,FFX_I2C_ADDR);
return;
}
void STA381BWX_SetMasterMute(unsigned char Mute)
{
unsigned char Tempdata1,Tempdata2,Tempdata3,Tempdata;
if(Mute==0)
{
56/65
Doc ID 022081 Rev 3
AN3959
Examples of code (TV SoC)
I2Cm_Rx(&I2C_buf1,FFX_MAIN_VOLUME,1,FFX_I2C_ADDR);
MUTEVolSave = I2C_buf1; // Save the current Gain
I2C_buf1=0xFE;
I2Cm_Tx(&I2C_buf1,FFX_MAIN_VOLUME,1,FFX_I2C_ADDR);
Wait(10);//10-20ms delay
}
else
{
I2Cm_Tx(&MUTEVolSave,FFX_MAIN_VOLUME,1,FFX_I2C_ADDR);
Wait(10);//10-20ms delay
}
return;
}
/*the channel volume is responsible for the each channel volume
control, it's range from -79.5dB to 48dB, every step as 0.5dB,
channelvolume=255-((dbrequest+79.5)*2);
0=48dB
(255-(48+79.5)*2)
255=-79.5dB
(255-(-79.5+79.5)*2)
0x60=0dB
(255-(0+79.5)*2)
*/
void STA381BWX_SetLeftVolume(unsigned char LeftVolume)
{
I2C_buf1 =LeftVolume;
I2Cm_Tx(&I2C_buf1,FFX_CHANNEL1_VOL,1,FFX_I2C_ADDR);
return;
}
void STA381BWX_SetRightVolume(unsigned char RightVolume)
{
I2C_buf1 =RightVolume;
I2Cm_Tx(&I2C_buf1,FFX_CHANNEL2_VOL,1,FFX_I2C_ADDR);
return;
}
void STA381BWX_SetSubWooferVolume(unsigned char SubWooferVolume)
{
I2C_buf1 =SubWooferVolume;
I2Cm_Tx(&I2C_buf1,FFX_CHANNEL3_VOL,1,FFX_I2C_ADDR);
Doc ID 022081 Rev 3
57/65
Examples of code (TV SoC)
AN3959
return;
}
/*
Set the FFX DSP bypass or not
DSPBypassFlag=0;DSP not bypass
DSPBypassFlag=1;DSP bypass
*/
void STA381BWX_DSPBypass(unsigned char DSPBypassFlag)
{
I2Cm_Rx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
I2C_buf1&=0xFB;
I2C_buf1+=(DSPBypassFlag<<2);
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
}
/*
Set the FFX DeEmphasis or not
DeEmphasisFlag=0;
DeEmphasis disable
DeEmphasisFlag=1;
DeEmphasis enable
*/
void STA381BWX_DeEmphasis(unsigned char DeEmphasisFlag)
{
I2Cm_Rx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
I2C_buf1&=0xFD;
I2C_buf1+=(DeEmphasisFlag<<1);
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
}
/*
Set the FFX Filter Linker or not
FilterlinkFlag=0;each channel use the own filter
FilterlinkFlag=1;each channel's filter setting same as channel1's
*/
void STA381BWX_FilterLink(unsigned char FilterlinkFlag)
{
I2Cm_Rx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
I2C_buf1&=0xEF;
58/65
Doc ID 022081 Rev 3
AN3959
Examples of code (TV SoC)
I2C_buf1+=(FilterlinkFlag<<4);
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
}
/*
Set the FFX PostScale Link or not
PostscalelinkFlag=0;each channel use the own filter
PostscalelinkFlag=1;each channel's filter setting same as
channel1's
*/
void STA381BWX_PostscaleLink(unsigned char PostscalelinkFlag)
{
I2Cm_Rx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
I2C_buf1&=0xF7;
I2C_buf1+=(PostscalelinkFlag<<3);
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_D,1,FFX_I2C_ADDR);
}
void STA381BWX_Bass(unsigned char basssetting)
{
basssetting=basssetting+1;
I2Cm_Rx(&I2C_buf1,FFX_TONEBASS,1,FFX_I2C_ADDR);
I2C_buf1&=0xF0;
I2C_buf1+=basssetting;
I2Cm_Tx(&I2C_buf1,FFX_TONEBASS,1,FFX_I2C_ADDR);
}
/*
Set the FFX Treble value, 2dB every step
treblesetting=0=-12dV
treblesetting=12=+12dB
*/
void STA381BWX_Treble(unsigned char treblesetting)
{
treblesetting=treblesetting+1;
I2Cm_Rx(&I2C_buf1,FFX_TONEBASS,1,FFX_I2C_ADDR);
I2C_buf1&=0x0F;
Doc ID 022081 Rev 3
59/65
Examples of code (TV SoC)
AN3959
I2C_buf1+=(treblesetting<<4);
I2Cm_Tx(&I2C_buf1,FFX_TONEBASS,1,FFX_I2C_ADDR);
}
/* Write coefficient into the FFX controller using the IIC driver */
void STA381BWX_init(void)
{
unsigned char I2C_buf1;
I2C_buf1=STA381BWX_STMAP;
I2Cm_Tx(&I2C_buf1,STA381BWX_MAPSEL,1,FFX_I2C_ADDR);
/* the master clock select, 256fs, fault detect enable */
I2C_buf1=0x63;
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_A,1,FFX_I2C_ADDR);
/* the serial input format select, I2s format, MSB first*/
I2C_buf1=0x80;
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_B,1,FFX_I2C_ADDR);
/* Use default output mode*/
I2C_buf1=0x9F;//=0x97; When STA381BWS application
I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_C,1,FFX_I2C_ADDR);
/* High pass enbale, No De-emphasis, No DSP by pass, Anti-Clipping
Mode,coefficient Link,PostScale link*/
// STA381BWX_DSPBypass(0);
// STA381BWX_DeEmphasis(0);
// STA381BWX_FilterLink(1);
// STA381BWX_PostscaleLink(1);
/* Use standard MPC, AM mode disable, normal output speed*/
// I2C_buf1=0xc2;
// I2Cm_Tx(&I2C_buf1,FFX_CONFIGURE_E,1,FFX_I2C_ADDR);
60/65
Doc ID 022081 Rev 3
AN3959
Examples of code (TV SoC)
/* Switching frequency determined by AMAM setting and set the
crossover as 260Hz*/
// STA381BWX_CrossOver(STA381BWX_Cross_260Hz);
/* flat mode EQ*/
// I2C_buf1=0x00;
// I2C_sendbuf(1,&I2C_buf1,FFX_I2C_WRITE_ADD,FFX_AUTO3);
/* channel1 no limit, tone and treble control enable*/
// I2C_buf1=0x00;
// I2Cm_Tx(&I2C_buf1,FFX_CHANNEL1_CFG,1,FFX_I2C_ADDR);
/* channel2 no limit, tone and treble control enable*/
// I2C_buf1=0x40;
// I2Cm_Tx(&I2C_buf1,FFX_CHANNEL2_CFG,1,FFX_I2C_ADDR);
/* channel3 no limit, tone and treble control enable*/
// I2C_buf1=0x80;
// I2Cm_Tx(&I2C_buf1,FFX_CHANNEL3_CFG,1,FFX_I2C_ADDR);
/* tone and treble are 0 dB*/
// STA381BWX_Treble(6);
// STA381BWX_Bass(6);
/* Limiter1 attack and rease rate*/
// I2C_buf1=0x6a;
// I2Cm_Tx(&I2C_buf1,FFX_L1AR_RATE,1,FFX_I2C_ADDR);
/* Limiter1 attack=+3dB and rease threshold=-3dB*/
// I2C_buf1=0x8c;
// I2Cm_Tx(&I2C_buf1,FFX_L1AR_THRESHOLD,1,FFX_I2C_ADDR);
/* Limiter2 attack and rease rate*/
// I2C_buf1=0x6a;
// I2Cm_Tx(&I2C_buf1,FFX_L2AR_RATE,1,FFX_I2C_ADDR);
Doc ID 022081 Rev 3
61/65
Examples of code (TV SoC)
AN3959
/* Limiter2 attack=+4dB and rease threshold=-2dB*/
// I2C_buf1=0x9d;
// I2Cm_Tx(&I2C_buf1,FFX_L2AR_THRESHOLD,1,FFX_I2C_ADDR);
STA381BWX_OutputConfiguration(STA381BWX_2_0_HP_Config);
STA381BWX_Poweronoff(1);
STA381BWX_SetMasterVolume(0);
STA381BWX_SetLeftVolume(0x60);
STA381BWX_SetRightVolume(0x60);
// STA381BWX_SetSubWooferVolume(0x60);
return;
}
62/65
Doc ID 022081 Rev 3
Mono BTL schematic
AN3959
Appendix A
R5
L3
SWPA6045S220MT
RESET
3
6
4
10
8
VCC1
GNDDIG1
11
9
GND1
VDDDIG1
12
10
13
11
14
12
IC3
STA381BWS_NEW
FFX3A
VDD3V3CHP
C56
46
35
45
34
44
33
43
FFX4B
32
42
FFX4A
31
41
FFX3B
30
40
29
39
28
38
27
37
26
36
25
35
32
30
31
23
24
28
SOFTMUTE 29
100nF
11K
R7
11K
1uF/10V
R35
1K
3
470R
47K
SW2
C51 10uF/10V
47R
1
1K
R44
C55
2
3
R45
100nF
R39
47K
R40
3.3nF/10V
J18
C6
Line out
R9
27K
2
R37
C7
3
3.3nF/10V
1
4
R8
27K
1
2
J7
HEADER2X2
2
47R
R46
3
C54
100nF
2
R38
470R
C52 10uF/10V
SW3
C47
1N(S)
470nF
C46
C50
R42
Note 2:
C56 is not soldered when the STA381BW/S
is configured in 2.0 or 2.1 channels; C56 is 100 nF
when the STA381BW/S is configured in mono BTL.
C10
1uF/10V
1
J14
1
+3V3
Note 1:
The output filter for the line/HP output
path is optional (not required for the STA381BW/S).
If the 2x 47 ohm resistors (R35 and R44) are
bypassed through J14 and J18, the 2x 100 nF
capacitors (C54 and C55) must also be removed.
STA381BWS
63/65
Mono BTL schematic
J2
HPJCKX3.5-06
OUTPUT FILTER
0ohm
R6
C31
1uF/10V
J9
C9 1uF/10V
R36
2
1uF/10V
3
1
C30
2
C38
FFX3A
C5
1
1
Line in
100nF
C36
C3 2u2/10V
33
C8
100nF
2
MCLK
34
CPM
22
27
CPVSS
21
26
VDD3V3
20
25
F3XR
SOFTMUTE
18
19
24
17
HPIN_L
16
23
15
22
21
14
20
1uF/10V
GNDPSUB
100nF
*
C53
13
18
C1
HPIN_R
GND_REG
CPP
GNDA
LINEHPOUT_L
VDD_REG
LINEHPOUT_R
OUT1A
2
J19
HPJCKX3.5-06
R11
1
BICKI
36
C29
100nF
J16
6R2
C44
330P(S)
49
50
37
53
51
52
38
39
40
SDI
BICKI
RESET
LRCKI
54
55
41
42
PWDN
58
56
57
43
SDA
60
59
OUT1B
F3XL
2
46
7
FFX4A
FFX3B
100nF
1
44
9
F3XR
J15
45
6 OUT2A
19
2.0CH & 2.1CH
MONO BTL
SA
8
VCC2
17
CONFIGURATION
NS
100nF
SCL
63
62
61
5
16
C56
FFX4B
7
F3XL
NOTE:
47
AGNDPLL
VREGFILT
IC1
STA381BWS
LRCKI
47
OUT2B
GND2
OUT-
48
MCLK
VSS_REG
15
OUT+
INTLINE
2
5
TESTMODE
4
VCC_REG
HALFVDD
100nF
C426B
C427B
100nF
1uF/50V
1uF/50V
C427A
C426A
NS
100nF
C429
NS
C14
NS
NS
C33
C34
+
C428
470U/35V
C35
Doc ID 022081 Rev 3
+VS
1
GNDDIG2
48
64
VDDDIG2
2
3
R10
L1
SWPA6045S220MT
1
C37
100nF
6R2
C11
100nF
OUT-
C32
100nF
1N(S)
NS
NS
R4
20(S)
SDI1
SDA
0 ohm
INT_LINE
R1
C4
1nF
PWRDN
0 ohm
SCL
R3
OUT+
R2
C2
100nF
+3V3
10K
+3V3
Figure 54. Mono BTL schematic
Revision history
AN3959
9
Revision history
Table 8.
Document revision history
Date
Revision
02-Sep-2011
1
Initial release.
11-Nov-2011
2
Updated Figure 2: Schematic-1 on page 7
Added Appendix A: Mono BTL schematic on page 63
05-Dec-2011
3
Updated Section 8.1: FFX381X_Sample.h and Section 8.2: FFX381X_Sample.C
64/65
Changes
Doc ID 022081 Rev 3
AN3959
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 022081 Rev 3
65/65