ELECTRONIC WARFARE Q QUICK REFERENCE GUIDE Frequency (MHz) THE ELECTROMAGNETIC SPECTRUM 20 Wavelength (Meters) RADIO 10 MICROWAVE 3 10 INFRARED -2 VISIBLE -5 ULTRAVIOLET -6 10 10 10 X-RAY -8 30 100 Frequency (GHz) 200 300 1.5 2 500 3 4 5 6 8 10 15 20 30 40 60 80 100 12 18 27 GAMMA RAY -10 10 10 VHFF 7 (HF) 8 (VHF) S L UHF X K*u K K*a C 9 (UHF) W V Millimeter 11(EHF) 10 (SHF) Frequency (Hz) 10 8 10 12 10 15 10 16 18 10 10 B A 20 Band Frequency Designation Range 12 HF VHF UHF L S C X Ku K Ka V W International Standard Bands 250 4 U.S. Industry Standard Bands (IEEE Radar Designation) 110 -12 HF 10 200 300 400 E F G H I D C K J M L Military Standard Bands * “u” stands for unabsorbed or under K; “a” stands for absorption region or above K EIRPradar Target (Target Range - 2HRe)2 = Height 2Re radar } 100 MHz 3.00 m S 3 GHz 0.10m X-band S-band C 6 GHz 0.05m Velocity 300 m/s 300 m/s X 10 GHz 0.03m Wavelength 0.03 m 0.1 m Doppler Shift 20 kHz 6 kHz f(k; n, p)= Pr(X =k) =( n ) pk (1−p)n−k k p(r)= { r σ e 2 − ln L (θ; x1, ..., xn )= Σ ln f (xi| θ) i=1 ˆ ˆ 0.8 4 6 8 10 p(x) = for (r < 0) (x−μ) σ 2π e − 2σ2 = =(θ|x) = (μz=0; σx=1.0) [ ] σ = 1.00 v = 0.0 v = 0.5 v = 1.0 v = 2.0 v = 4.0 0.5 0.4 -∞<x<∞ 1 0.8 -80 0.6 0.4 -90 0.2 Burn- through range for SNR = 13 dB -120 Σ ln f (xi| θ) i=1 -130 ∞ ∫z J -140 S -2 -1 0.1 0 1 68.27% 95.45% 99.73% 1-σ 2 z 3 2-σ e dt 0.8 0.7 0.6 +∞ x(t) = 1 -∞∫ X(ω)e jωt dω 2π → τp Noise Power in Receiver = kTsBNNf kTs : = -174 dBm K: Boltzmann’s constant = 1.38*10-23 J/K Bn: Noise Bandwidth Ts: System Noise Temperature Ts usually set to T0= 290K Nf : Noise figure of receiver 0.4 Fourier Relationships PARSEVAL’S RELATION 0.3 0.2 5 10 15 20 25 30 Jammer to Noise Ratio (dB) 35 Radar Processing SPEED OF LIGHT 40 1 ∫ |X(ω)|2 dω ∫-∞ |x(t)|2 dt = 2π -∞ +∞ Rmax: Max Radar Range J/N: Jammer to Noise Ratio N: Total Noise k: Boltzmann’s constant Ts: Receiver Temperature BN: Receiver Noise Bandwidth SNR: Radar Signal to Noise Ratio Nf : Receiver Noise Figure (>1) +∞ Speed of Light (approx) Units 3x10^8 300 1.62x10^5 1x10^9 1x10^3 m/sec m/usec NM/sec Ft/sec Ft/usec +∞ ~ 2 2 1 ∫ |x(t)| | dt = |a ∑ k To To k=-∞ Radar Processing MAX UNAMBIGUOUS RANGE x(t) +∞ X(ω) =-∞∫ x(t)e -jωt dt ∫ Modulation F s(t) p(t)↔ x(t) 1 [S(ω)P(ω)] 2π Convolution F H(ω)X(ω) h(t)* x(t) ↔ 1 F e -jωto X(ω) x(t-to) ↔ Fourier Relationships FILTERING 1 e |X(ω)| Ideal Lowpass Filter 2 Differentiator y(t) = dx(t) =>H(ω) = jω dt 4 -ωc ωc ω ω Doppler PRF Unambiguous Range Ambiguous Unambiguous 100 kHz 1.5 km Ambiguous 25 kHz 6 km Unambiguous Ambiguous 10 kHz 15 km Low c: Speed of Light PRF: Pulse Repetition Frequency ω w x(t) Radar Processing SIGNAL TO NOISE RATIO a 1 - T1 π/2 F 1 X(ω) + πX(0) δ(ω) ∫-∞ x(τ)dτ↔ jω FaX1(ω)+bX2(ω) ax1(t)+bx2(t)↔ Range High < X(ω) Integration t Linearity μ: Mean σ: Standard Difference A: Distance between the reference point and the center of the bivariate distribution PRF 1 X(ω) |H(ω)| c 2PRF X(ω) 1/a -a Rmax = Medium Ambiguous t π w ω dx(t) F jω dt ↔ sin wt 2πt t 1/a -w Differentiation 2 w π 1/a √2 H(ω) μ: Mean σ: Standard Difference A: Distance between the reference point and the center of the bivariate distribution Radar Processing NOISE POWER 0.5 SNR= t T1 X(ω) π/4 2T1 2 ω −a μ: Mean σ: Standard Difference A: Distance between the reference point and the center of the bivariate distribution I0: Bessel Function of the first kind with order zero τ (time) Fourier Relationships MODULATION PROPERTY F x(t) ↔ X(ω) 3-σ 8 S(t): Complex Baseband Pulse τ: Time Delay f: Doppler Shift Analysis Synthesis z e -t2 d t 0 -2 x(τ, t) =∫−∞∞s(t)s*(t-τ)ei2πft dt Duality Property -t 2 0.5 -4 2 s(): Transmitted Signal Waveform fc: Center Frequency τ: Range Time (fast time) τp: Pulse Length b: Chirp Rate Bp: Pulse Bandwidth γ: Range Frequency 0.9 Fourier Relationships CONTINUOUS-TIME FOURIER TRANSFORMATION 1 0.2 Reduction in Radar Detection Range due to JNR Lrradar: Radar Receiver Losses Ptradar: Radar Transmit Power Gtradar: Radar Transmitter Gain σ: Radar Target Radar Cross Section BWRadar: Radar Transmit Bandwidth BWJam: Jammer Transmit Bandwidth J: Jammer Power Rmaxjammed: Jammed Radar Range (Burn through Range) 4 Jself: Self R Protect Jammer Power Skin Return J/S: Jam to 2Signal Ratio at Radar Receiver Jammer R Received Signal Power S: Radar Ptjam: Jammer Transmit Power Gtjam: Jammer Transmit Gain Rjr: Range between Jammer and Radar R: Range between Radar Target and Radar λ: Jammer Transmit Wavelength Grradar: Radar Receiver Gain 2 τp determines signal energy 1 0.1 0 Rmax Rmax Jammed 103 102 Range (km) 1.5 0.2 -3 Main Beam ≤τ≤ determines Bp resolution Sidelobe Time Shifting 0.1 6 ) τp (frequency) γ Reduction in Normalized Rmax erfc(x) 2 ±1-σ: P (-1 ≤ z ≤ 1) = 0.6827 ±2-σ: P (-2 ≤ z ≤ 2) = 0.9545 ±3-σ: P (-3 ≤ z ≤ 3) = 0.9973 0.4 )( BWradar BWjam ,- Bp = bτ p PtG'tG'r λ2 σ = (4π)3(kTsBNNf +J)*SNR*Lr*Lt -110 n 2 π )( 4πR2 σ 0.3 0.3 4 2 π f(z) 2 0.6 1 n ln L erfc(z)=1−erf(z)= erf(z)= z fz(z)= 1 e - 2 2π ) -70 Detection & Estimation Probability ERROR FUNCTIONS Standard Normal Curve 1 )( Rmaxjammed 4 -100 xi : Observations n: Number of Samples f: Is one, or joint, probability distribution(s) θ: Distribution parameters can be vectors Detection & Estimation Probability NORMAL for (A ≥ 0, r ≥ 0) 1 n 0.4 2 Mainlobe radar 4πR2 σ ) Assume: J >> N BWJam = BWRadar Reduction in Radar Detection Range due to JNR -60 σ = 0.5 σ =1 σ=2 σ =3 σ=4 0.6 Detection & Estimation Probability RICIAN ( Log-Likelihood n Average Log-Likelihood 1 0 EIRPjam J = EIRP S radar -150 101 0.2 μ: Mean σ: Standard Difference 0 A: Distance between the reference point and 0 the center of the bivariate distribution p: Success probability of each trial k: Number of successes n: Number of trials p(r)= σ 0 ] }) -1 1.2 (r < 0) (0≤r≤∞) 2 2 r e − (r +A2 )I0 ( Ar2 ) σ 2σ 2 ∂ ln p(x, θ) ∂θ T Detection & Estimation Probability RAYLEIGH r2 2σ 2 maxjammed 4 If BWjam ≥ BWradar x: Observations p: Probability distribution function (or joint) θ: Distribution parameters can be vectors Detection & Estimation Probability BINOMIAL J/N ~ ( R Rmax s(τ) = e j2π(fcτ+2 → VHF ][ ( σ λ 2 Grradar 4πRjr ) Lr EIRPjam J = EIRP S radar i=1 1 bτ2) ↓ f c: Speed f: Frequency ( {[ CRB = E ∂ ln p(x, θ) ∂θ n L(θ; x1, ..., xn )= f (x1, x2, ..., xn | θ)= Π f (xi| θ) Detection & Estimation Probability CRAMER RAO LOWER BOUND fd = –2vr / λ Wavelength Likelihood Gr λ2 (4π)3 R4 Jself = Ptjam Gtjam( H: Horizon Re: Earth Radius ~ 6,371 km RF Propagation DOPPLER SHIFT Band 2 radar f (x1, x2, ..., xn | θ)= f (x1 | θ) x f (x2 | θ) x ... x f (xn | θ) Normalized Maximum Radar Range H: Horizon Re: Earth Radius ~ 6,371 km λ= c f 0 S= Joint Density Function Gt EIRPjam RF Propagation WAVELENGTH 0.0 Pt ↓ Dh= 2HRe Radar Processing RADAR AMBIGUITY FUNCTION Radar Processing LINEAR FM WAVEFORM Normalized Maximum Radar Range 2 Pr: Received Power Pt: Transmit Power Gt: Transmit Gain Gr: Receive Gain R: Range { Electronic Warfare NOISE JAMMING Detection & Estimation Probability MAX LIKELIHOOD ESTIMATION → RF Propagation TARGET VISIBILITY } λ Pr =Pt Gt Gr 4πR RF Propagation RADAR HORIZON → RF Propagation FRIIS TRANSMISSION EQUATION 3–30 MHz 30–300 MHz 300–1,000 MHz 1–2 GHz 2–4 GHz 4–8 GHz 8–12 GHz 12–18 GHz 18–27 GHz 27–40 GHz 40–75 GHz 75–110 GHz sin ωT1 ω Pr: Received Power Pt: Transmit Power Gt: Transmit Gain Gr: Receive Gain R: Range No: Noise Power L: Losses − π/4 − π/2 π T1 PR PtGtGrσλ2GpL = No (4π)3R4kBTsBnNf t -23 K: Boltzmann’s constant = 1.38*10 J/K Bn: Noise Bandwidth Ts: System Noise Temperature Ts usually set to T0= 290K Nf : Noise figure of receiver Convolution Property Antennas ANTENNA BEAMWIDTH Phased Array, Radians θBW3dB ∼ 0.886 Antennas ANTENNA DIRECTIVITY λ Nd cos θ0 x(t) X(ω) b D ≈ 4π Parabolic, Radians ( 180 π ) 2 θ1d θ2d 40000 Gant = ≈ θ1d θ2d θBWnull ∼ 1.22 λ θBW3dB ∼ 0.88 λ d d θ1d: Half-power beamwidth in one principal plane (degrees) θ2d: Half-power beamwidth in the other principal plane (degrees) λ: Wavelength d: Antenna Diameter RF Propagation Detection & Estimation Probability F H(ω) X(ω) h(t)* x(t) ↔ Antennas ANTENNA GAIN Antennas Electronic Warfare Fourier Relationships 4πAe λ2 Ae: Effective Aperture Area λ: Wavelength Radar Processing h(t) H(ω) h(t)* x(t) H(ω) X(t) e jωοt H(ω) δ(t) 1 e jωοt h(t) H(ω) h(t) H(ω) Pt Pr or S 2 |Es| Reflected Power to Receiver / Solid Angle 2 σ= = lim 4πr 2 Incident Power Density / 4π r ∞ |Ei| σ σ ( H(ωο) H(ω): Frequency Response : Convolution operation Radar Processing TYPICAL VALUES OF RCS Radar Processing RADAR CROSS SECTION ) .0001 .001 .01 0.1 1.0 10 100 1000 -40 -30 -20 -10 0 10 20 30 Insects Birds Human S∝σ, range Radar Cross Section (RCS, σ) Scattering m2 40 dBsm Ships Small Car Fighter Aircraft 10000 Bomber: Transport Aircraft THE ELECTRONIC WARFARE QUICK REFERENCE GUIDE Raytheon is a proud sponsor of the Association of Old Crows. To download a digital copy of this poster, please visit www.raytheon.com/ew