EFM32GG330

...the world's most energy friendly microcontrollers
EFM32GG330 DATASHEET
F1024/F512
• ARM Cortex-M3 CPU platform
• High Performance 32-bit processor @ up to 48 MHz
• Memory Protection Unit
• Flexible Energy Management System
• 20 nA @ 3 V Shutoff Mode
• 0.4 µA @ 3 V Shutoff Mode with RTC
• 0.8 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out
Detector, RAM and CPU retention
• 1.1 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU
retention
• 80 µA/MHz @ 3 V Sleep Mode
• 219 µA/MHz @ 3 V Run Mode, with code executed from flash
• 1024/512 KB Flash
• Read-while-write support
• 128 KB RAM
• 52 General Purpose I/O pins
• Configurable push-pull, open-drain, pull-up/down, input filter, drive
strength
• Configurable peripheral I/O locations
• 16 asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode
• 12 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
• Hardware AES with 128/256-bit keys in 54/75 cycles
• Timers/Counters
• 4× 16-bit Timer/Counter
• 4×3 Compare/Capture/PWM channels
• Dead-Time Insertion on TIMER0
• 16-bit Low Energy Timer
• 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter
• 3× 16/8-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50 nA
• Backup Power Domain
• RTC and retention registers in a separate power domain, available in all energy modes
• Operation from backup battery when main power drains out
• Communication interfaces
• 3× Universal Synchronous/Asynchronous Receiver/Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
• 2× Low Energy UART
• Autonomous operation with DMA in Deep Sleep
Mode
2
• 2× I C Interface with SMBus support
• Address recognition in Stop Mode
• Universal Serial Bus (USB) with Host & OTG support
• Fully USB 2.0 compliant
• On-chip PHY and embedded 5V to 3.3V regulator
• Ultra low power precision analog peripherals
• 12-bit 1 Msamples/s Analog to Digital Converter
• 8 single ended channels/4 differential channels
• On-chip temperature sensor
• 12-bit 500 ksamples/s Digital to Analog Converter
• 2 single ended channels/1 differential channel
• 2× Analog Comparator
• Capacitive sensing with up to 16 inputs
• 3× Operational Amplifier
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain
• Supply Voltage Comparator
• Low Energy Sensor Interface (LESENSE)
• Autonomous sensor monitoring in Deep Sleep Mode
• Wide range of sensors supported, including LC sensors and capacitive buttons
• Ultra efficient Power-on Reset and Brown-Out Detector
• Debug Interface
• 2-pin Serial Wire Debug interface
• 1-pin Serial Wire Viewer
• Embedded Trace Module v3.5 (ETM)
• Pre-Programmed USB/UART Bootloader
• Temperature range -40 to 85 ºC
• Single power supply 1.98 to 3.8 V
• QFN64 package
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:
• Energy, gas, water and smart metering
• Health and fitness applications
• Smart accessories
• Alarm and security systems
• Industrial and home automation
...the world's most energy friendly microcontrollers
1 Ordering Information
Table 1.1 (p. 2) shows the available EFM32GG330 devices.
Table 1.1. Ordering Information
Ordering Code
Flash (kB)
RAM (kB)
Max
Speed
(MHz)
Supply
Voltage
(V)
Temperature
(ºC)
Package
EFM32GG330F512G-E-QFN64
512
128
48
1.98 - 3.8
-40 - 85
QFN64
EFM32GG330F1024G-E-QFN64
1024
128
48
1.98 - 3.8
-40 - 85
QFN64
Adding the suffix 'R' to the part number (e.g. EFM32GG330F512G-E-QFN64R) denotes tape and reel.
Visit www.silabs.com for information on global distributors and representatives.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
2
www.silabs.com
...the world's most energy friendly microcontrollers
2 System Summary
2.1 System Introduction
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy
saving modes, and a wide selection of peripherals, the EFM32GG microcontroller is well suited for
any battery operated application as well as other systems requiring high performance and low-energy
consumption. This section gives a short introduction to each of the modules in general terms and also
shows a summary of the configuration for the EFM32GG330 devices. For a complete feature set and
in-depth information on the modules, the reader is referred to the EFM32GG Reference Manual.
A block diagram of the EFM32GG330 is shown in Figure 2.1 (p. 3) .
Figure 2.1. Block Diagram
GG330F512/ 1024
Core and Mem ory
Clock Managem ent
Mem ory
Protection
Unit
ARM Cortex ™- M3 processor
Flash
Program
Mem ory
RAM
Mem ory
Debug
Interface
w/ ETM
DMA
Controller
Energy Managem ent
High Freq.
Crystal
Oscillator
High Freq
RC
Oscillator
Voltage
Regulator
Voltage
Com parator
Aux High Freq.
RC
Oscillator
Low Freq.
RC
Oscillator
Brown- out
Detector
Power- on
Reset
Low Freq.
Crystal
Oscillator
Ultra Low Freq.
RC
Oscillator
Back- up
Power
Dom ain
32- bit bus
Peripheral Reflex System
Serial Interfaces
I/ O Ports
Tim ers and Triggers
USART
Low
Energy
UART
USB
2
I C
Ex ternal
Interrupts
General
Purpose
I/ O
Pin
Reset
Pin
Wakeup
Tim er/
Counter
LESENSE
Low Energy
Tim er
Real Tim e
Counter
Pulse
Counter
Watchdog
Tim er
Analog Interfaces
ADC
DAC
Back- up
RTC
Security
Hardware
AES
Operational
Am plifier
Analog
Com parator
2.1.1 ARM Cortex-M3 Core
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone
MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well
as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32
implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual.
2.1.2 Debug Interface (DBG)
This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing . In addition there is also a 1-wire Serial Wire
Viewer pin which can be used to output profiling information, data trace and software-generated messages.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
3
www.silabs.com
...the world's most energy friendly microcontrollers
2.1.3 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the EFM32GG microcontroller.
The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is
divided into two blocks; the main block and the information block. Program code is normally written to
the main block. Additionally, the information block is available for special user data and flash lock bits.
There is also a read-only page in the information block containing system and device calibration data.
Read and write operations are supported in the energy modes EM0 and EM1.
2.1.4 Direct Memory Access Controller (DMA)
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables
the system to stay in low energy modes when moving for instance data from the USART to RAM or
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA
controller licensed from ARM.
2.1.5 Reset Management Unit (RMU)
The RMU is responsible for handling the reset functionality of the EFM32GG.
2.1.6 Energy Management Unit (EMU)
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32GG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU
can also be used to turn off the power to unused SRAM blocks.
2.1.7 Clock Management Unit (CMU)
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the
EFM32GG. The CMU provides the capability to turn on and off the clock on an individual basis to all
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree
of flexibility enables software to minimize energy consumption in any specific application by not wasting
power on peripherals and oscillators that are inactive.
2.1.8 Watchdog (WDOG)
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a
software failure.
2.1.9 Peripheral Reflex System (PRS)
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module
communicate directly with each other without involving the CPU. Peripheral modules which send out
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which
apply actions depending on the data received. The format for the Reflex signals is not given, but edge
triggers and other functionality can be applied by the PRS.
2.1.10 Universal Serial Bus Controller (USB)
The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device,
On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both
Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both fullspeed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
4
www.silabs.com
...the world's most energy friendly microcontrollers
Descriptor-Based Scatter/Gather DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in
addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for
supplying 5V to VBUS when operating as host.
2.1.11 Inter-Integrated Circuit Interface (I2C)
2
2
The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.
2
The interface provided to software by the I C module, allows both fine-grained control of the transmission
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all
energy modes.
2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.
2.1.13 Pre-Programmed USB/UART Bootloader
The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The
bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART
without the need for a debugger. The autobaud feature, interface and commands are described further
in the application note.
2.1.14 Low Energy Universal Asynchronous Receiver/Transmitter
(LEUART)
TM
The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/
s. The LEUART includes all necessary hardware support to make asynchronous serial communication
possible with minimum of software intervention and energy consumption.
2.1.15 Timer/Counter (TIMER)
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor
control applications.
2.1.16 Real Time Counter (RTC)
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where
most of the device is powered down.
2.1.17 Backup Real Time Counter (BURTC)
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz
crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy
Modes and it can also run in backup mode, making it operational even if the main power should drain out.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
5
www.silabs.com
...the world's most energy friendly microcontrollers
2.1.18 Low Energy Timer (LETIMER)
TM
The unique LETIMER , the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most
of the device is powered down, allowing simple tasks to be performed while the power consumption of
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be
configured to start counting on compare matches from the RTC.
2.1.19 Pulse Counter (PCNT)
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.
The module may operate in energy mode EM0 - EM3.
2.1.20 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from
external pins. Response time and thereby also the current consumption can be configured by altering
the current supply to the comparator.
2.1.21 Voltage Comparator (VCMP)
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can
be generated when the supply falls below or rises above a programmable threshold. Response time and
thereby also the current consumption can be configured by altering the current supply to the comparator.
2.1.22 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits
at up to one million samples per second. The integrated input mux can select inputs from 8 external
pins and 6 internal signals.
2.1.23 Digital to Analog Converter (DAC)
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC
is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be
combined into one differential output. The DAC may be used for a number of different applications such
as sensor interfaces or sound output.
2.1.24 Operational Amplifier (OPAMP)
The EFM32GG330 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general
purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set
to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable
and the OPAMP has various internal configurations such as unity gain, programmable gain using internal
resistors etc.
2.1.25 Low Energy Sensor Interface (LESENSE)
TM
The Low Energy Sensor Interface (LESENSE ), is a highly configurable sensor interface with support
for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE
is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable
FSM which enables simple processing of measurement results without CPU intervention. LESENSE is
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
6
www.silabs.com
...the world's most energy friendly microcontrollers
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in
applications with a strict energy budget.
2.1.26 Backup Power Domain
The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC,
and a set of retention registers, available in all energy modes. This power domain can be configured to
automatically change power source to a backup battery when the main power drains out. The backup
power domain enables the EFM32GG330 to keep track of time and retain data, even if the main power
source should drain out.
2.1.27 Advanced Encryption Standard Accelerator (AES)
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or
decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK
cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data
and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit
operations are not supported.
2.1.28 General Purpose Input/Output (GPIO)
In the EFM32GG330, there are 52 General Purpose Input/Output (GPIO) pins, which are divided into
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More
advanced configurations like open-drain, filtering and drive strength can also be configured individually
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM
outputs or USART communication, which can be routed to several locations on the device. The GPIO
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other
peripherals.
2.2 Configuration Summary
The features of the EFM32GG330 is a subset of the feature set described in the EFM32GG Reference
Manual. Table 2.1 (p. 7) describes device specific implementation of the features.
Table 2.1. Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO,
DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
USB
Full configuration
USB_VBUS, USB_VBUSEN,
USB_VREGI, USB_VREGO, USB_DM,
USB_DMPU, USB_DP, USB_ID
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
7
www.silabs.com
...the world's most energy friendly microcontrollers
Module
Configuration
Pin Connections
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
I2C1
Full configuration
I2C1_SDA, I2C1_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
USART2
Full configuration with I2S
US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
LEUART1
Full configuration
LEU1_TX, LEU1_RX
TIMER0
Full configuration with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
TIMER2
Full configuration
TIM2_CC[2:0]
TIMER3
Full configuration
TIM3_CC[2:0]
RTC
Full configuration
NA
BURTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
PCNT1
Full configuration, 8-bit count register
PCNT1_S[1:0]
PCNT2
Full configuration, 8-bit count register
PCNT2_S[1:0]
ACMP0
Full configuration
ACMP0_CH[7:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:0]
DAC0
Full configuration
DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUTx,
OPAMP_OUTxALT, Inputs:
OPAMP_Px, OPAMP_Nx
AES
Full configuration
NA
GPIO
52 pins
Available pins are shown in
Table 4.3 (p. 56)
2.3 Memory Map
The EFM32GG330 memory map is shown in Figure 2.2 (p. 9) , with RAM and Flash sizes for the
largest memory configuration.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
8
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 2.2. EFM32GG330 Memory Map with largest RAM and Flash sizes
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
9
www.silabs.com
...the world's most energy friendly microcontrollers
3 Electrical Characteristics
3.1 Test Conditions
3.1.1 Typical Values
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10) , unless
otherwise specified.
3.1.2 Minimum and Maximum Values
The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 10) , unless otherwise specified.
3.2 Absolute Maximum Ratings
The absolute maximum ratings are stress ratings, and functional operation under such conditions are
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.
10) .
Table 3.1. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min
Typ
Max
TSTG
Storage temperature range
TS
Maximum soldering
temperature
VDDMAX
External main supply voltage
0
3.8 V
VIOPIN
Voltage on any I/O
pin
-0.3
VDD+0.3 V
-40
Unit
150 °C
Latest IPC/JEDEC J-STD-020
Standard
260 °C
Current per I/O pin
(sink)
100 mA
Current per I/O pin
(source)
-100 mA
IIOMAX
3.3 General Operating Conditions
3.3.1 General Operating Conditions
Table 3.2. General Operating Conditions
Symbol
Parameter
TAMB
Ambient temperature range
VDDOP
Operating supply voltage
fAPB
Internal APB clock frequency
48 MHz
fAHB
Internal AHB clock frequency
48 MHz
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
Min
Typ
-40
1.98
10
Max
Unit
85 °C
3.8 V
www.silabs.com
...the world's most energy friendly microcontrollers
3.4 Current Consumption
Table 3.3. Current Consumption
Symbol
IEM0
IEM1
IEM2
IEM3
IEM4
Parameter
EM0 current. No
prescaling. Running prime number calculation code
from flash. (Production test condition =
14MHz)
EM1 current (Production test condition = 14MHz)
Condition
Min
Typ
Max
Unit
48 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V
219
240 µA/
MHz
28 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
205
225 µA/
MHz
21 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
206
229 µA/
MHz
14 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
209
232 µA/
MHz
11 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
211
234 µA/
MHz
6.6 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
215
242 µA/
MHz
1.2 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
243
327 µA/
MHz
48 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V
80
90 µA/
MHz
28 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
80
90 µA/
MHz
21 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
81
91 µA/
MHz
14 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
83
99 µA/
MHz
11 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
85
100 µA/
MHz
6.6 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V
90
102 µA/
MHz
1.2 MHz HFRCO. all peripheral
clocks disabled, VDD= 3.0 V
122
152 µA/
MHz
EM2 current with RTC
prescaled to 1 Hz, 32.768
kHz LFRCO, VDD= 3.0 V,
TAMB=25°C
1.1
EM2 current with RTC
prescaled to 1 Hz, 32.768
kHz LFRCO, VDD= 3.0 V,
TAMB=85°C
8.8
VDD= 3.0 V, TAMB=25°C
0.8
VDD= 3.0 V, TAMB=85°C
8.2
VDD= 3.0 V, TAMB=25°C
0.02
0.08 µA
VDD= 3.0 V, TAMB=85°C
0.5
2.5 µA
EM2 current
EM3 current
1
1.9
1
µA
1
21.5
1
µA
1
1.5
1
µA
1
20.3
1
µA
EM4 current
1
Only one RAM block enabled. The RAM block size is 32 kB.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
11
www.silabs.com
...the world's most energy friendly microcontrollers
3.4.1 EM2 Current Consumption
1
Figure 3.1. EM2 current consumption. RTC prescaled to 1 Hz, 32.768 kHz LFRCO.
3.4.2 EM3 Current Consumption
Figure 3.2. EM3 current consumption.
1
Using backup RTC.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
12
www.silabs.com
...the world's most energy friendly microcontrollers
3.4.3 EM4 Current Consumption
Figure 3.3. EM4 current consumption.
3.5 Transition between Energy Modes
The transition times are measured from the trigger to the first clock edge in the CPU.
Table 3.4. Energy Modes Transitions
Symbol
Parameter
Min
Typ
Max
Unit
tEM10
Transition time from EM1 to EM0
0
HFCORECLK
cycles
tEM20
Transition time from EM2 to EM0
2
µs
tEM30
Transition time from EM3 to EM0
2
µs
tEM40
Transition time from EM4 to EM0
163
µs
3.6 Power Management
The EFM32GG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with
optional filter) at the PCB level. For practical schematic recommendations, please see the application
note, "AN0002 EFM32 Hardware Design Considerations".
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
13
www.silabs.com
...the world's most energy friendly microcontrollers
Table 3.5. Power Management
Symbol
Parameter
Condition
Min
Typ
Max
Unit
BOD threshold on
falling external supply voltage
EM0
1.74
1.96 V
VBODextthr-
EM2
1.74
1.98 V
1.57
1.70 V
VBODintthr-
BOD threshold on
falling internally regulated supply voltage
VBODextthr+
BOD threshold on
rising external supply voltage
VPORthr+
Power-on Reset
(POR) threshold on
rising external supply voltage
tRESET
Delay from reset
is released until
program execution
starts
Applies to Power-on Reset,
Brown-out Reset and pin reset.
163
µs
CDECOUPLE
Voltage regulator
decoupling capacitor.
X5R capacitor recommended.
Apply between DECOUPLE pin
and GROUND
1
µF
CUSB_VREGO
USB voltage regulator out decoupling
capacitor.
X5R capacitor recommended.
Apply between USB_VREGO
pin and GROUND
1
µF
CUSB_VREGI
USB voltage regula- X5R capacitor recommended.
tor in decoupling ca- Apply between USB_VREGI
pacitor.
pin and GROUND
4.7
µF
1.85
1.98 V
1.98 V
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
14
www.silabs.com
...the world's most energy friendly microcontrollers
3.7 Flash
Table 3.6. Flash
Symbol
Parameter
ECFLASH
Flash erase cycles
before failure
Condition
Min
TAMB<150°C
RETFLASH
Flash data retention
tW_PROG
Word (32-bit) programming time
tPERASE
Page erase time
tDERASE
IERASE
IWRITE
VFLASH
Typ
Max
Unit
20000
cycles
10000
h
TAMB<85°C
10
years
TAMB<70°C
20
years
20
µs
LPERASE == 0
20
20.4
20.8 ms
LPERASE == 1
40
40.4
40.8 ms
Device erase time
161.6 ms
1
mA
1
mA
1
mA
1
mA
LPERASE == 0
14
LPERASE == 1
7
LPWRITE == 0
14
LPWRITE == 1
7
Erase current
Write current
Supply voltage during flash erase and
write
1.98
3.8 V
1
Measured at 25°C
3.8 General Purpose Input Output
Table 3.7. GPIO
Symbol
Parameter
VIOIL
Input low voltage
VIOIH
Input high voltage
VIOOH
Output high voltage (Production test
condition = 3.0V,
DRIVEMODE =
STANDARD)
Condition
Min
Typ
Max
Unit
0.30VDD V
0.70VDD
V
Sourcing 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.80VDD
V
Sourcing 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.90VDD
V
Sourcing 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.85VDD
V
Sourcing 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.90VDD
V
Sourcing 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.75VDD
V
Sourcing 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.85VDD
V
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
15
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
VIOOL
Parameter
Output low voltage
(Production test
condition = 3.0V,
DRIVEMODE =
STANDARD)
Condition
Min
Typ
Max
Unit
Sourcing 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.60VDD
V
Sourcing 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.80VDD
V
Sinking 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.20VDD
V
Sinking 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.10VDD
V
Sinking 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.10VDD
V
Sinking 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.05VDD
V
Sinking 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.30VDD V
Sinking 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.20VDD V
Sinking 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.35VDD V
Sinking 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.20VDD V
IIOLEAK
Input leakage current
RPU
I/O pin pull-up resistor
40
kOhm
RPD
I/O pin pull-down resistor
40
kOhm
RIOESD
Internal ESD series
resistor
200
Ohm
tIOGLITCH
Pulse width of pulses to be removed
by the glitch suppression filter
tIOOF
VIOHYST
High Impedance IO connected
to GROUND or VDD
±0.1
±40 nA
10
50 ns
GPIO_Px_CTRL DRIVEMODE
= LOWEST and load capacitance CL=12.5-25pF.
20+0.1CL
250 ns
GPIO_Px_CTRL DRIVEMODE
= LOW and load capacitance
CL=350-600pF
20+0.1CL
250 ns
Output fall time
I/O pin hysteresis
(VIOTHR+ - VIOTHR-)
VDD = 1.98 - 3.8 V
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
0.10VDD
16
V
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.4. Typical Low-Level Output Current, 2V Supply Voltage
5
0.20
4
Low- Level Output Current [m A]
Low- Level Output Current [m A]
0.15
0.10
3
2
0.05
1
- 40°C
25°C
85°C
0.00
0.0
0.5
1.5
1.0
Low- Level Output Voltage [V]
- 40°C
25°C
85°C
0
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
Low- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
45
20
40
35
Low- Level Output Current [m A]
Low- Level Output Current [m A]
15
10
30
25
20
15
5
10
5
- 40°C
25°C
85°C
0
0.0
0.5
1.5
1.0
Low- Level Output Voltage [V]
0
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
- 40°C
25°C
85°C
0.5
1.5
1.0
Low- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = HIGH
17
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.5. Typical High-Level Output Current, 2V Supply Voltage
0.00
0.0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–0.5
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.05
–0.10
–1.0
–1.5
–0.15
–2.0
–0.20
0.0
1.5
0.5
1.0
High- Level Output Voltage [V]
–2.5
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
1.5
0.5
1.0
High- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
High- Level Output Current [m A]
–5
–10
–20
–30
–15
–40
–20
0.0
1.5
0.5
1.0
High- Level Output Voltage [V]
–50
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
1.5
0.5
1.0
High- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = HIGH
18
www.silabs.com
...the world's most energy friendly microcontrollers
0.5
10
0.4
8
Low- Level Output Current [m A]
Low- Level Output Current [m A]
Figure 3.6. Typical Low-Level Output Current, 3V Supply Voltage
0.3
0.2
0.1
6
4
2
- 40°C
25°C
85°C
0.0
0.0
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
- 40°C
25°C
85°C
0
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = LOW
40
50
35
40
Low- Level Output Current [m A]
Low- Level Output Current [m A]
30
25
20
15
30
20
10
10
5
0
0.0
- 40°C
25°C
85°C
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
- 40°C
25°C
85°C
0
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = HIGH
19
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.7. Typical High-Level Output Current, 3V Supply Voltage
0.0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–1
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.1
–0.2
–0.3
–2
–3
–4
–0.4
–5
–0.5
0.0
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
–6
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
2.5
3.0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
–10
High- Level Output Current [m A]
1.5
1.0
2.0
High- Level Output Voltage [V]
GPIO_Px_CTRL DRIVEMODE = LOW
0
–20
–30
–40
–50
0.0
0.5
–20
–30
–40
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
–50
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = HIGH
20
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.8. Typical Low-Level Output Current, 3.8V Supply Voltage
0.8
14
0.7
12
Low- Level Output Current [m A]
Low- Level Output Current [m A]
0.6
0.5
0.4
0.3
10
8
6
4
0.2
2
0.1
0.0
0.0
- 40°C
25°C
85°C
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
- 40°C
25°C
85°C
0
0.0
3.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
50
50
40
40
30
20
10
30
20
10
- 40°C
25°C
85°C
0
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOW
Low- Level Output Current [m A]
Low- Level Output Current [m A]
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
- 40°C
25°C
85°C
0
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = HIGH
21
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.9. Typical High-Level Output Current, 3.8V Supply Voltage
0.0
–0.1
0
- 40°C
25°C
85°C
–1
- 40°C
25°C
85°C
–2
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.2
–0.3
–0.4
–0.5
–3
–4
–5
–6
–0.6
–7
–0.7
–0.8
0.0
–8
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
–9
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOWEST
3.0
3.5
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
–10
High- Level Output Current [m A]
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
GPIO_Px_CTRL DRIVEMODE = LOW
0
–20
–30
–40
–50
0.0
0.5
–20
–30
–40
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
–50
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = HIGH
22
www.silabs.com
...the world's most energy friendly microcontrollers
3.9 Oscillators
3.9.1 LFXO
Table 3.8. LFXO
Symbol
Parameter
Condition
Min
Typ
Max
fLFXO
Supported nominal
crystal frequency
ESRLFXO
Supported crystal
equivalent series resistance (ESR)
CLFXOL
Supported crystal
external load range
X
DCLFXO
Duty cycle
48
ILFXO
Current consumption for core and
buffer after startup.
ESR=30 kOhm, CL=10 pF,
LFXOBOOST in CMU_CTRL is
1
190
nA
tLFXO
Start- up time.
ESR=30 kOhm, CL=10 pF,
40% - 60% duty cycle has
been reached, LFXOBOOST in
CMU_CTRL is 1
400
ms
32.768
Unit
kHz
30
120 kOhm
1
25 pF
50
53.5 %
1
See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio
For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help
users configure both load capacitance and software settings for using the LFXO. For details regarding
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design
Consideration".
3.9.2 HFXO
Table 3.9. HFXO
Symbol
Parameter
fHFXO
Supported nominal
crystal Frequency
ESRHFXO
The transconductance of the HFXO
input transistor at
crystal startup
CHFXOL
Supported crystal
external load range
tHFXO
Min
Typ
Current consumption for HFXO after
startup
Startup time
Max
4
Crystal frequency 48 MHz
Supported crystal
equivalent series re- Crystal frequency 32 MHz
sistance (ESR)
Crystal frequency 4 MHz
gmHFXO
IHFXO
Condition
HFXOBOOST in CMU_CTRL
equals 0b11
Unit
48 MHz
50 Ohm
30
60 Ohm
400
1500 Ohm
20
mS
5
25 pF
4 MHz: ESR=400 Ohm,
CL=20 pF, HFXOBOOST in
CMU_CTRL equals 0b11
85
µA
32 MHz: ESR=30 Ohm,
CL=10 pF, HFXOBOOST in
CMU_CTRL equals 0b11
165
µA
32 MHz: ESR=30 Ohm,
CL=10 pF, HFXOBOOST in
CMU_CTRL equals 0b11
400
µs
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
23
www.silabs.com
...the world's most energy friendly microcontrollers
3.9.3 LFRCO
Table 3.10. LFRCO
Symbol
Parameter
fLFRCO
Oscillation frequency , VDD= 3.0 V,
TAMB=25°C
tLFRCO
Startup time not including software
calibration
150
µs
ILFRCO
Current consumption
300
900 nA
TUNESTEPL-
Frequency step
for LSB change in
TUNING value
1.5
FRCO
Condition
Min
Typ
31.29
Max
32.768
Unit
34.28 kHz
%
Figure 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage
42
42
- 40°C
25°C
85°C
40
38
38
Frequency [kHz]
Frequency [kHz]
40
36
34
34
32
32
30
2.0
2.2
2.6
3.0
Vdd [V]
3.4
2.0 V
3V
3.8 V
36
30
–40
3.8
–15
5
25
Tem perature [°C]
45
Typ
Max
65
85
3.9.4 HFRCO
Table 3.11. HFRCO
Symbol
fHFRCO
Parameter
Oscillation frequency, VDD= 3.0 V,
TAMB=25°C
Settling time after
start-up
Condition
Min
Unit
28 MHz frequency band
27.5
28.0
28.5 MHz
21 MHz frequency band
20.6
21.0
21.4 MHz
14 MHz frequency band
13.7
14.0
14.3 MHz
11 MHz frequency band
10.8
11.0
11.2 MHz
1
6.60
2
1.20
7 MHz frequency band
6.48
1 MHz frequency band
1.15
fHFRCO = 14 MHz
1
6.72
1
MHz
2
1.25
2
MHz
0.6
Cycles
25
Cycles
tHFRCO_settling
Settling time after
band switch
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
24
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Current consumption (Production test
condition = 14MHz)
IHFRCO
TUNESTEPHFRCO
Condition
Min
Typ
Max
Unit
fHFRCO = 28 MHz
165
190 µA
fHFRCO = 21 MHz
134
155 µA
fHFRCO = 14 MHz
106
120 µA
fHFRCO = 11 MHz
94
110 µA
fHFRCO = 6.6 MHz
77
90 µA
fHFRCO = 1.2 MHz
25
32 µA
3
Frequency step
for LSB change in
TUNING value
0.3
%
1
For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.
For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.
3
The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.
2
1.45
1.45
1.40
1.40
1.35
1.35
Frequency [MHz]
Frequency [MHz]
Figure 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature
1.30
- 40°C
25°C
85°C
1.25
1.20
1.30
1.25
1.20
1.15
1.15
1.10
1.10
1.05
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
1.05
–40
3.8
2.0 V
3.0 V
3.8 V
–15
5
25
Tem perature [°C]
45
65
85
6.70
6.70
6.65
6.65
6.60
6.60
Frequency [MHz]
Frequency [MHz]
Figure 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature
6.55
6.50
6.45
6.40
6.50
6.45
6.40
- 40°C
25°C
85°C
6.35
6.30
2.0
6.55
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
3.4
3.6
2.0 V
3.0 V
3.8 V
6.35
6.30
–40
3.8
25
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
11.2
11.2
11.1
11.1
11.0
11.0
Frequency [MHz]
Frequency [MHz]
Figure 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature
10.9
10.8
10.8
10.7
10.6
2.0
10.9
10.7
- 40°C
25°C
85°C
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
10.6
–40
3.8
2.0 V
3.0 V
3.8 V
–15
5
25
Tem perature [°C]
45
65
85
14.2
14.2
14.1
14.1
14.0
14.0
Frequency [MHz]
Frequency [MHz]
Figure 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature
13.9
13.8
13.7
13.8
13.7
- 40°C
25°C
85°C
13.6
13.5
2.0
13.9
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
13.6
13.5
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
21.2
21.2
21.1
21.1
21.0
21.0
20.9
20.9
Frequency [MHz]
Frequency [MHz]
Figure 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature
20.8
20.7
20.6
20.7
20.6
20.5
20.5
- 40°C
25°C
85°C
20.4
20.3
2.0
20.8
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
3.4
3.6
2.0 V
3.0 V
3.8 V
20.4
20.3
–40
3.8
26
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature
28.2
28.4
28.2
28.0
28.0
Frequency [MHz]
Frequency [MHz]
27.8
27.6
27.8
27.6
27.4
27.4
27.2
27.0
2.0
- 40°C
25°C
85°C
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
27.2
27.0
–40
3.8
–15
5
25
Tem perature [°C]
45
Typ
Max
65
85
3.9.5 AUXHFRCO
Table 3.12. AUXHFRCO
Symbol
fAUXHFRCO
Parameter
Oscillation frequency, VDD= 3.0 V,
TAMB=25°C
Condition
Min
28 MHz frequency band
27.5
28.0
28.5 MHz
21 MHz frequency band
20.6
21.0
21.4 MHz
14 MHz frequency band
13.7
14.0
14.3 MHz
11 MHz frequency band
10.8
11.0
11.2 MHz
1
6.60
2
1.20
7 MHz frequency band
6.48
1 MHz frequency band
1.15
tAUXHFRCO_settlingSettling time after
start-up
fAUXHFRCO = 14 MHz
DCAUXHFRCO
fAUXHFRCO = 14 MHz
Duty cycle
Unit
TUNESTEPAUX- Frequency step
for LSB change in
HFRCO
TUNING value
1
6.72
2
1.25
0.6
48.5
1
MHz
2
MHz
Cycles
50
51 %
3
%
0.3
1
For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.
For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.
3
The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough
adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and
temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the
TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz
across operating conditions.
2
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
27
www.silabs.com
...the world's most energy friendly microcontrollers
3.9.6 ULFRCO
Table 3.13. ULFRCO
Symbol
Parameter
Condition
Min
Typ
Max
fULFRCO
Oscillation frequency
25°C, 3V
TCULFRCO
Temperature coefficient
0.05
%/°C
VCULFRCO
Supply voltage coefficient
-18.2
%/V
0.70
Unit
1.75 kHz
3.10 Analog Digital Converter (ADC)
Table 3.14. ADC
Symbol
Parameter
VADCIN
Input voltage range
Condition
Min
Single ended
Differential
VADCREFIN
Input range of external reference voltage, single ended
and differential
Typ
Max
Unit
0
VREF V
-VREF/2
VREF/2 V
1.25
VDD V
VADCREFIN_CH7 Input range of external negative reference voltage on
channel 7
See VADCREFIN
0
VDD - 1.1 V
VADCREFIN_CH6 Input range of external positive reference voltage on
channel 6
See VADCREFIN
0.625
VDD V
0
VDD V
VADCCMIN
Common mode input range
IADCIN
Input current
CMRRADC
Analog input common mode rejection
ratio
IADC
IADCREF
Average active current
Current consumption of internal voltage reference
2pF sampling capacitors
<100
nA
65
dB
1 MSamples/s, 12 bit, external
reference
351
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b00
67
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b01
63
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b10
64
µA
Internal voltage reference
65
µA
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
28
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
CADCIN
Input capacitance
RADCIN
Input ON resistance
RADCFILT
Input RC filter resistance
CADCFILT
Input RC filter/decoupling capacitance
fADCCLK
ADC Clock Frequency
tADCCONV
Acquisition time
tADCACQVDD3
Required acquisition time for VDD/3
reference
SNRADC
Min
Typ
Max
2
1
Unit
pF
MOhm
10
250
kOhm
fF
13 MHz
6 bit
7
ADCCLK
Cycles
8 bit
11
ADCCLK
Cycles
12 bit
13
ADCCLK
Cycles
1
256 ADCCLK
Cycles
Conversion time
tADCACQ
tADCSTART
Condition
Programmable
2
µs
Startup time of reference generator
and ADC core in
NORMAL mode
5
µs
Startup time of reference generator
and ADC core in
KEEPADCWARM
mode
1
µs
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
59
dB
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
63
dB
1 MSamples/s, 12 bit, single
ended, VDD reference
65
dB
1 MSamples/s, 12 bit, differential, internal 1.25V reference
60
dB
1 MSamples/s, 12 bit, differential, internal 2.5V reference
65
dB
1 MSamples/s, 12 bit, differential, 5V reference
54
dB
1 MSamples/s, 12 bit, differential, VDD reference
67
dB
1 MSamples/s, 12 bit, differential, 2xVDD reference
69
dB
Signal to Noise Ratio (SNR)
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
29
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
SIgnal-to-Noise
And Distortion-ratio
(SINAD)
Max
Unit
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
62
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
63
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
67
dB
200 kSamples/s, 12 bit, differential, internal 1.25V reference
63
dB
200 kSamples/s, 12 bit, differential, internal 2.5V reference
66
dB
200 kSamples/s, 12 bit, differential, 5V reference
66
dB
66
dB
200 kSamples/s, 12 bit, differential, 2xVDD reference
70
dB
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
58
dB
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
62
dB
1 MSamples/s, 12 bit, single
ended, VDD reference
64
dB
1 MSamples/s, 12 bit, differential, internal 1.25V reference
60
dB
1 MSamples/s, 12 bit, differential, internal 2.5V reference
64
dB
1 MSamples/s, 12 bit, differential, 5V reference
54
dB
1 MSamples/s, 12 bit, differential, VDD reference
66
dB
1 MSamples/s, 12 bit, differential, 2xVDD reference
68
dB
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
61
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
65
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
66
dB
200 kSamples/s, 12 bit, differential, internal 1.25V reference
63
dB
200 kSamples/s, 12 bit, differential, internal 2.5V reference
66
dB
200 kSamples/s, 12 bit, differential, 5V reference
66
dB
65
dB
200 kSamples/s, 12 bit, differential, VDD reference
SINADADC
Typ
200 kSamples/s, 12 bit, differential, VDD reference
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
30
63
62
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
SFDRADC
Parameter
Spurious-Free Dynamic Range (SFDR)
Condition
Min
Unit
69
dB
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
64
dBc
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
76
dBc
1 MSamples/s, 12 bit, single
ended, VDD reference
73
dBc
1 MSamples/s, 12 bit, differential, internal 1.25V reference
66
dBc
1 MSamples/s, 12 bit, differential, internal 2.5V reference
77
dBc
1 MSamples/s, 12 bit, differential, VDD reference
76
dBc
1 MSamples/s, 12 bit, differential, 2xVDD reference
75
dBc
1 MSamples/s, 12 bit, differential, 5V reference
69
dBc
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
75
dBc
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
75
dBc
200 kSamples/s, 12 bit, single
ended, VDD reference
76
dBc
200 kSamples/s, 12 bit, differential, internal 1.25V reference
79
dBc
200 kSamples/s, 12 bit, differential, internal 2.5V reference
79
dBc
200 kSamples/s, 12 bit, differential, 5V reference
78
dBc
79
dBc
200 kSamples/s, 12 bit, differential, 2xVDD reference
79
dBc
After calibration, single ended
0.3
mV
0.3
3 mV
68
Offset voltage
After calibration, differential
TGRADADCTH
Max
200 kSamples/s, 12 bit, differential, 2xVDD reference
200 kSamples/s, 12 bit, differential, VDD reference
VADCOFFSET
Typ
-3
Thermometer output gradient
DNLADC
Differential non-linearity (DNL)
INLADC
Integral non-linearity (INL), End point
method
MCADC
No missing codes
VDD= 3.0 V, external 2.5V reference
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
-1
1
11.999
31
-1.92
mV/°C
-6.3
ADC
Codes/
°C
±0.7
4 LSB
±1.2
±3.0 LSB
12
bits
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
GAINED
OFFSETED
Parameter
Condition
Min
Typ
Max
2
0.033
2
0.03
2
0.7
1.25V reference
0.01
2.5V reference
0.01
1.25V reference
0.2
Gain error drift
Offset error drift
2
2.5V reference
Unit
0.2
3
%/°C
3
%/°C
3
LSB/°C
3
LSB/°C
0.62
1
On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale
input for chips that have the missing code issue.
2
Typical numbers given by abs(Mean) / (85 - 25).
3
Max number given by (abs(Mean) + 3x stddev) / (85 - 25).
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.17 (p.
32) and Figure 3.18 (p. 33) , respectively.
Figure 3.17. Integral Non-Linearity (INL)
Digital ouput code
INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1
4095
4094
4093
4092
Actual ADC
tranfer function
before offset and
gain correction
Actual ADC
tranfer function
after offset and
gain correction
INL Error
(End Point INL)
3
Ideal transfer
curve
2
1
VOFFSET
0
Analog Input
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
32
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.18. Differential Non-Linearity (DNL)
Digital
ouput
code
DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2
Full Scale Range
4095
4094
Example: Adjacent
input value VD+ 1
corrresponds to digital
output code D+ 1
4093
4092
Actual transfer
function with one
m issing code.
Example: Input value
VD corrresponds to
digital output code D
Code width = 2 LSB
DNL= 1 LSB
Ideal transfer
curve
5
0.5
LSB
Ideal spacing
between two
adjacent codes
VLSBIDEAL= 1 LSB
4
3
2
1
Ideal 50%
Transition Point
Ideal Code Center
0
Analog Input
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
33
www.silabs.com
...the world's most energy friendly microcontrollers
3.10.1 Typical performance
Figure 3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
34
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
35
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
36
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.22. ADC Absolute Offset, Common Mode = Vdd /2
5
2.0
Vref= 1V25
Vref= 2V5
Vref= 2XVDDVSS
Vref= 5VDIFF
Vref= VDD
4
1.5
2
Actual Offset [LSB]
Actual Offset [LSB]
3
VRef= 1V25
VRef= 2V5
VRef= 2XVDDVSS
VRef= 5VDIFF
VRef= VDD
1
0
–1
1.0
0.5
0.0
–2
–0.5
–3
–4
2.0
2.2
2.4
2.6
2.8
3.0
Vdd (V)
3.2
3.4
3.6
–1.0
–40
3.8
Offset vs Supply Voltage, Temp = 25°C
–15
5
25
Tem p (C)
45
65
85
Offset vs Temperature, Vdd = 3V
Figure 3.23. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V
79.4
71
2XVDDVSS
70
1V25
79.2
Vdd
69
79.0
67
5VDIFF
2V5
66
SFDR [dB]
SNR [dB]
68
Vdd
2V5
78.8
78.6
2XVDDVSS
78.4
65
78.2
64
63
–40
–15
5
25
Tem perature [°C]
45
65
5VDIFF
1V25
85
78.0
–40
Signal to Noise Ratio (SNR)
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
–15
5
25
Tem perature [°C]
45
65
85
Spurious-Free Dynamic Range (SFDR)
37
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.24. ADC Temperature sensor readout
2600
Vdd= 2.0
Vdd= 3
Vdd= 3.8
Sensor readout
2500
2400
2300
2200
2100
–40
–25 –15
–5
5
15 25 35
Tem perature [°C]
45
55
65
75
85
3.11 Digital Analog Converter (DAC)
Table 3.15. DAC
Symbol
VDACOUT
VDACCM
Parameter
Output voltage
range
Condition
Min
Typ
0
VDD V
VDD voltage reference, differential
-VDD
VDD V
0
VDD V
1
500 kSamples/s, 12 bit
IDAC
400
1
100 kSamples/s, 12 bit
200
1
1 kSamples/s 12 bit NORMAL
SRDAC
Sample rate
fDAC
DAC clock frequency
17
Clock cyckles per
conversion
tDACCONV
Conversion time
tDACSETTLE
Settling time
SNRDAC
Signal to Noise Ratio (SNR)
1
µA
1
µA
1
µA
600
260
25
500 ksamples/s
Continuous Mode
CYCDACCONV
Unit
VDD voltage reference, single
ended
Output common
mode voltage range
Active current including references
for 2 channels
Max
1000 kHz
Sample/Hold Mode
250 kHz
Sample/Off Mode
250 kHz
2
2
µs
5
µs
500 kSamples/s, 12 bit, single ended, internal 1.25V reference
58
dB
500 kSamples/s, 12 bit, single
ended, internal 2.5V reference
59
dB
500 kSamples/s, 12 bit, differential, internal 1.25V reference
58
dB
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
38
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
SNDRDAC
SFDRDAC
VDACOFFSET
Parameter
Signal to Noisepulse Distortion Ratio (SNDR)
Spurious-Free
Dynamic
Range(SFDR)
Condition
Min
Typ
Max
Unit
500 kSamples/s, 12 bit, differential, internal 2.5V reference
58
dB
500 kSamples/s, 12 bit, differential, VDD reference
59
dB
500 kSamples/s, 12 bit, single ended, internal 1.25V reference
57
dB
500 kSamples/s, 12 bit, single
ended, internal 2.5V reference
54
dB
500 kSamples/s, 12 bit, differential, internal 1.25V reference
56
dB
500 kSamples/s, 12 bit, differential, internal 2.5V reference
53
dB
500 kSamples/s, 12 bit, differential, VDD reference
55
dB
500 kSamples/s, 12 bit, single ended, internal 1.25V reference
62
dBc
500 kSamples/s, 12 bit, single
ended, internal 2.5V reference
56
dBc
500 kSamples/s, 12 bit, differential, internal 1.25V reference
61
dBc
500 kSamples/s, 12 bit, differential, internal 2.5V reference
55
dBc
500 kSamples/s, 12 bit, differential, VDD reference
60
dBc
After calibration, single ended
2
12 mV
After calibration, differential
2
mV
Offset voltage
DNLDAC
Differential non-linearity
±1
LSB
INLDAC
Integral non-linearity
±5
LSB
MCDAC
No missing codes
12
bits
1
Measured with a static input code and no loading on the output.
3.12 Operational Amplifier (OPAMP)
The electrical characteristics for the Operational Amplifiers are based on simulations.
Table 3.16. OPAMP
Symbol
IOPAMP
Parameter
Active Current
Condition
Min
Typ
Max
Unit
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0, Unity
Gain
350
405 µA
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1, Unity
Gain
95
115 µA
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
39
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1, Unity
Gain
GOL
GBWOPAMP
PMOPAMP
Open Loop Gain
Gain Bandwidth
Product
Phase Margin
RINPUT
Input Resistance
RLOAD
Load Resistance
ILOAD_DC
DC Load Current
VINPUT
Input Voltage
VOUTPUT
17 µA
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
101
dB
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
98
dB
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
91
dB
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
6.1
MHz
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
1.8
MHz
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
0.25
MHz
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0, CL=75
pF
64
°
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1, CL=75
pF
58
°
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1, CL=75
pF
58
°
100
200
Ohm
OPAxHCMDIS=0
VSS
VDD V
OPAxHCMDIS=1
VSS
VDD-1.2 V
VSS
VDD V
Output Voltage
-13
0
11 mV
1
mV
Input Offset Voltage
VOFFSET_DRIFT Input Offset Voltage
Drift
NOPAMP
Mohm
11 mA
Unity Gain, VSS<Vin<VDD-1.2,
OPAxHCMDIS=1
SROPAMP
Unit
13
Unity Gain, VSS<Vin<VDD,
OPAxHCMDIS=0
VOFFSET
Max
Slew Rate
Voltage Noise
0.02 mV/°C
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
3.2
V/µs
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
0.8
V/µs
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
0.1
V/µs
Vout=1V, RESSEL=0,
0.1 Hz<f<10 kHz, OPAxHCMDIS=0
101
µVRMS
Vout=1V, RESSEL=0,
0.1 Hz<f<10 kHz, OPAxHCMDIS=1
141
µVRMS
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
40
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Vout=1V, RESSEL=0, 0.1
Hz<f<1 MHz, OPAxHCMDIS=0
196
µVRMS
Vout=1V, RESSEL=0, 0.1
Hz<f<1 MHz, OPAxHCMDIS=1
229
µVRMS
RESSEL=7, 0.1 Hz<f<10 kHz,
OPAxHCMDIS=0
1230
µVRMS
RESSEL=7, 0.1 Hz<f<10 kHz,
OPAxHCMDIS=1
2130
µVRMS
RESSEL=7, 0.1 Hz<f<1 MHz,
OPAxHCMDIS=0
1630
µVRMS
RESSEL=7, 0.1 Hz<f<1 MHz,
OPAxHCMDIS=1
2590
µVRMS
Figure 3.25. OPAMP Common Mode Rejection Ratio
Figure 3.26. OPAMP Positive Power Supply Rejection Ratio
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
41
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.27. OPAMP Negative Power Supply Rejection Ratio
Figure 3.28. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V
Figure 3.29. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
42
www.silabs.com
...the world's most energy friendly microcontrollers
3.13 Analog Comparator (ACMP)
Table 3.17. ACMP
Symbol
Parameter
VACMPIN
Input voltage range
0
VDD V
VACMPCM
ACMP Common
Mode voltage range
0
VDD V
IACMP
IACMPREF
Active current
Current consumption of internal voltage reference
Condition
Min
Typ
Max
Unit
BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in
ACMPn_CTRL register
0.1
0.6 µA
BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
2.87
12 µA
BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in
ACMPn_CTRL register
250
520 µA
Internal voltage reference off.
Using external voltage reference
0
µA
Internal voltage reference
5
µA
0
12 mV
VACMPOFFSET
Offset voltage
BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
VACMPHYST
ACMP hysteresis
Programmable
17
mV
CSRESSEL=0b00 in
ACMPn_INPUTSEL
43
kOhm
CSRESSEL=0b01 in
ACMPn_INPUTSEL
78
kOhm
CSRESSEL=0b10 in
ACMPn_INPUTSEL
111
kOhm
CSRESSEL=0b11 in
ACMPn_INPUTSEL
145
kOhm
RCSRES
tACMPSTART
Capacitive Sense
Internal Resistance
Startup time
-12
10 µs
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference
as given in Equation 3.1 (p. 43) . IACMPREF is zero if an external voltage reference is used.
Total ACMP Active Current
IACMPTOTAL = IACMP + IACMPREF
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
43
(3.1)
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.30. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1
4.5
2.5
HYSTSEL= 0.0
HYSTSEL= 2.0
HYSTSEL= 4.0
HYSTSEL= 6.0
4.0
3.5
Response Tim e [us]
Current [uA]
2.0
1.5
1.0
3.0
2.5
2.0
1.5
1.0
0.5
0.5
0.0
4
8
ACMP_CTRL_BIASPROG
0
0.0
12
Current consumption, HYSTSEL = 4
0
2
4
6
8
10
ACMP_CTRL_BIASPROG
12
14
Response time
100
BIASPROG= 0.0
BIASPROG= 4.0
BIASPROG= 8.0
BIASPROG= 12.0
Hysteresis [m V]
80
60
40
20
0
0
1
2
4
3
ACMP_CTRL_HYSTSEL
5
6
7
Hysteresis
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
44
www.silabs.com
...the world's most energy friendly microcontrollers
3.14 Voltage Comparator (VCMP)
Table 3.18. VCMP
Symbol
Parameter
VVCMPIN
Input voltage range
VDD
V
VVCMPCM
VCMP Common
Mode voltage range
VDD
V
IVCMP
Condition
Min
Typ
Max
Unit
BIASPROG=0b0000 and
HALFBIAS=1 in VCMPn_CTRL
register
0.3
0.6 µA
BIASPROG=0b1111 and
HALFBIAS=0 in VCMPn_CTRL
register. LPREF=0.
22
30 µA
NORMAL
10
µs
Active current
tVCMPREF
Startup time reference generator
VVCMPOFFSET
Offset voltage
Single ended
-230
Differential
VVCMPHYST
VCMP hysteresis
tVCMPSTART
Startup time
-40
190 mV
10
mV
40
mV
10 µs
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in
accordance with the following equation:
VCMP Trigger Level as a Function of Level Setting
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL
(3.2)
3.15 I2C
Table 3.19. I2C Standard-mode (Sm)
Symbol
Parameter
Min
Typ
0
Max
Unit
1
fSCL
SCL clock frequency
tLOW
SCL clock low time
4.7
µs
tHIGH
SCL clock high time
4.0
µs
tSU,DAT
SDA set-up time
250
ns
tHD,DAT
SDA hold time
tSU,STA
Repeated START condition set-up time
4.7
µs
tHD,STA
(Repeated) START condition hold time
4.0
µs
tSU,STO
STOP condition set-up time
4.0
µs
tBUF
Bus free time between a STOP and START condition
4.7
µs
8
100
2,3
3450
kHz
ns
1
For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32GG Reference Manual.
The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3
-9
When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 4).
2
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
45
www.silabs.com
...the world's most energy friendly microcontrollers
Table 3.20. I2C Fast-mode (Fm)
Symbol
Parameter
Min
Typ
Max
Unit
fSCL
SCL clock frequency
tLOW
SCL clock low time
1.3
µs
tHIGH
SCL clock high time
0.6
µs
tSU,DAT
SDA set-up time
100
ns
tHD,DAT
SDA hold time
tSU,STA
Repeated START condition set-up time
0.6
µs
tHD,STA
(Repeated) START condition hold time
0.6
µs
tSU,STO
STOP condition set-up time
0.6
µs
tBUF
Bus free time between a STOP and START condition
1.3
µs
1
0
400
2,3
8
900
kHz
ns
1
For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32GG Reference Manual.
The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3
-9
When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 4).
2
Table 3.21. I2C Fast-mode Plus (Fm+)
Symbol
Parameter
Min
Typ
fSCL
SCL clock frequency
tLOW
SCL clock low time
0.5
µs
tHIGH
SCL clock high time
0.26
µs
tSU,DAT
SDA set-up time
50
ns
tHD,DAT
SDA hold time
8
ns
tSU,STA
Repeated START condition set-up time
0.26
µs
tHD,STA
(Repeated) START condition hold time
0.26
µs
tSU,STO
STOP condition set-up time
0.26
µs
tBUF
Bus free time between a STOP and START condition
0.5
µs
0
Max
Unit
1
1000
kHz
1
For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32GG Reference Manual.
3.16 USART SPI
Figure 3.31. SPI Master Timing
CS
t CS_MO
t SCKL_MO
SCLK
CLKPOL = 0
t SCLK
SCLK
CLKPOL = 1
MOSI
t SU_MI
t H_MI
MISO
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
46
www.silabs.com
...the world's most energy friendly microcontrollers
Table 3.22. SPI Master Timing
Symbol
Parameter
tSCLK 1 2
SCLK period
Condition
Min
Typ
Max
Unit
2 * tHFPER-
ns
CLK
tCS_MO 1 2
CS to MOSI
-2.00
1.00 ns
tSCLK_MO 1 2
SCLK to MOSI
-4.00
3.00 ns
IOVDD = 1.98 V
36.00
ns
tSU_MI 1 2
MISO setup time
IOVDD = 3.0 V
29.00
ns
-4.00
ns
tH_MI 1 2
MISO hold time
1
Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
Measurement done at 10% and 90% of VDD (figure shows 50% of VDD)
2
Figure 3.32. SPI Slave Timing
CS
t CS_ACT_MI
t CS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
t SCLK_HI
t SU_MO
t SCLK_LO
t SCLK
t H_MO
MOSI
t SCLK_MI
MISO
Table 3.23. SPI Slave Timing
Symbol
Parameter
tSCLK_sl 1 2
SCKL period
Min
Typ
Max
Unit
2 * tHFPER-
ns
CLK
tSCLK_hi 1 2
SCLK high period
3 * tHFPER-
ns
CLK
tSCLK_lo 1 2
SCLK low period
3 * tHFPER-
ns
CLK
tCS_ACT_MI 1 2
CS active to MISO
4.00
30.00 ns
tCS_DIS_MI 1 2
CS disable to MISO
4.00
30.00 ns
tSU_MO 1 2
MOSI setup time
4.00
ns
tH_MO 1 2
MOSI hold time
2 + 2* tHF-
ns
PERCLK
tSCLK_MI 1 2
SCLK to MISO
9 + tHFPERCLK
36 + 2*tHF- ns
PERCLK
1
Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
Measurement done at 10% and 90% of VDD (figure shows 50% of VDD)
2
3.17 USB
The USB hardware in the EFM32GG330 passes all tests for USB 2.0 Full Speed certification. See the
test-report distributed with application note "AN0046 - USB Hardware Design Guide".
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
47
www.silabs.com
...the world's most energy friendly microcontrollers
3.18 Digital Peripherals
Table 3.24. Digital Peripherals
Symbol
Parameter
Condition
IUSART
USART current
USART idle current, clock enabled
4.9
µA/
MHz
IUART
UART current
UART idle current, clock enabled
3.4
µA/
MHz
ILEUART
LEUART current
LEUART idle current, clock enabled
140
nA
II2C
I2C current
I2C idle current, clock enabled
6.1
µA/
MHz
ITIMER
TIMER current
TIMER_0 idle current, clock
enabled
6.9
µA/
MHz
ILETIMER
LETIMER current
LETIMER idle current, clock
enabled
119
nA
IPCNT
PCNT current
PCNT idle current, clock enabled
54
nA
IRTC
RTC current
RTC idle current, clock enabled
54
nA
IAES
AES current
AES idle current, clock enabled
3.2
µA/
MHz
IGPIO
GPIO current
GPIO idle current, clock enabled
3.7
µA/
MHz
IPRS
PRS current
PRS idle current
3.5
µA/
MHz
IDMA
DMA current
Clock enable
11.0
µA/
MHz
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
Min
48
Typ
Max
Unit
www.silabs.com
...the world's most energy friendly microcontrollers
4 Pinout and Package
Note
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32GG330.
4.1 Pinout
The EFM32GG330 pinout is shown in Figure 4.1 (p. 49) and Table 4.1 (p. 49). Alternate locations
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module
in question.
Figure 4.1. EFM32GG330 Pinout (top view, not to scale)
Table 4.1. Device Pinout
Pin Alternate Functionality / Description
Pin #
QFN64 Pin#
and Name
Pin Name
Analog
Timers
Communication
Other
0
VSS
1
PA0
TIM0_CC0 #0/1/4
I2C0_SDA #0
LEU0_RX #4
PRS_CH0 #0
GPIO_EM4WU0
2
PA1
TIM0_CC1 #0/1
I2C0_SCL #0
CMU_CLK1 #0
PRS_CH1 #0
Ground.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
49
www.silabs.com
...the world's most energy friendly microcontrollers
Pin Alternate Functionality / Description
Pin #
QFN64 Pin#
and Name
Pin Name
Analog
Timers
Communication
Other
3
PA2
TIM0_CC2 #0/1
CMU_CLK0 #0
ETM_TD0 #3
4
PA3
TIM0_CDTI0 #0
LES_ALTEX2 #0
ETM_TD1 #3
5
PA4
TIM0_CDTI1 #0
LES_ALTEX3 #0
ETM_TD2 #3
6
PA5
TIM0_CDTI2 #0
7
PA6
8
IOVDD_0
9
PC0
ACMP0_CH0
DAC0_OUT0ALT #0/
OPAMP_OUT0ALT
10
PC1
11
LEU1_TX #1
LES_ALTEX4 #0
ETM_TD3 #3
LEU1_RX #1
ETM_TCLK #3
GPIO_EM4WU1
TIM0_CC1 #4
PCNT0_S0IN #2
US0_TX #5
US1_TX #0
I2C0_SDA #4
LES_CH0 #0
PRS_CH2 #0
ACMP0_CH1
DAC0_OUT0ALT #1/
OPAMP_OUT0ALT
TIM0_CC2 #4
PCNT0_S1IN #2
US0_RX #5
US1_RX #0
I2C0_SCL #4
LES_CH1 #0
PRS_CH3 #0
PC2
ACMP0_CH2
DAC0_OUT0ALT #2/
OPAMP_OUT0ALT
TIM0_CDTI0 #4
US2_TX #0
LES_CH2 #0
12
PC3
ACMP0_CH3
DAC0_OUT0ALT #3/
OPAMP_OUT0ALT
TIM0_CDTI1 #4
US2_RX #0
LES_CH3 #0
13
PC4
ACMP0_CH4
OPAMP_P0
TIM0_CDTI2 #4
LETIM0_OUT0 #3
PCNT1_S0IN #0
US2_CLK #0
I2C1_SDA #0
LES_CH4 #0
14
PC5
ACMP0_CH5
OPAMP_N0
LETIM0_OUT1 #3
PCNT1_S1IN #0
US2_CS #0
I2C1_SCL #0
LES_CH5 #0
15
PB7
LFXTAL_P
TIM1_CC0 #3
US0_TX #4
US1_CLK #0
16
PB8
LFXTAL_N
TIM1_CC1 #3
US0_RX #4
US1_CS #0
17
PA8
TIM2_CC0 #0
18
PA9
TIM2_CC1 #0
19
PA10
TIM2_CC2 #0
20
RESETn
21
PB11
DAC0_OUT0 /
OPAMP_OUT0
LETIM0_OUT0 #1
TIM1_CC2 #3
I2C1_SDA #1
22
PB12
DAC0_OUT1 /
OPAMP_OUT1
LETIM0_OUT1 #1
I2C1_SCL #1
23
AVDD_1
24
PB13
HFXTAL_P
US0_CLK #4/5
LEU0_TX #1
25
PB14
HFXTAL_N
US0_CS #4/5
LEU0_RX #1
26
IOVDD_3
Digital IO power supply 3.
27
AVDD_0
Analog power supply 0.
28
PD0
Digital IO power supply 0.
Reset input, active low.
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up
ensure that reset is released.
Analog power supply 1.
ADC0_CH0
DAC0_OUT0ALT #4/
OPAMP_OUT0ALT
OPAMP_OUT2 #1
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
PCNT2_S0IN #0
50
US1_TX #1
www.silabs.com
...the world's most energy friendly microcontrollers
Pin Alternate Functionality / Description
Pin #
QFN64 Pin#
and Name
Pin Name
Analog
Timers
Communication
Other
29
PD1
ADC0_CH1
DAC0_OUT1ALT #4/
OPAMP_OUT1ALT
TIM0_CC0 #3
PCNT2_S1IN #0
US1_RX #1
DBG_SWO #2
30
PD2
ADC0_CH2
TIM0_CC1 #3
USB_DMPU #0
US1_CLK #1
DBG_SWO #3
31
PD3
ADC0_CH3
OPAMP_N2
TIM0_CC2 #3
US1_CS #1
ETM_TD1 #0/2
32
PD4
ADC0_CH4
OPAMP_P2
LEU0_TX #0
ETM_TD2 #0/2
33
PD5
ADC0_CH5
OPAMP_OUT2 #0
LEU0_RX #0
ETM_TD3 #0/2
34
PD6
ADC0_CH6
OPAMP_P1
LETIM0_OUT0 #0
TIM1_CC0 #4
PCNT0_S0IN #3
US1_RX #2
I2C0_SDA #1
LES_ALTEX0 #0
ACMP0_O #2
ETM_TD0 #0
35
PD7
ADC0_CH7
OPAMP_N1
LETIM0_OUT1 #0
TIM1_CC1 #4
PCNT0_S1IN #3
US1_TX #2
I2C0_SCL #1
CMU_CLK0 #2
LES_ALTEX1 #0
ACMP1_O #2
ETM_TCLK #0
36
PD8
BU_VIN
37
PC6
ACMP0_CH6
I2C0_SDA #2
LEU1_TX #0
LES_CH6 #0
ETM_TCLK #2
38
PC7
ACMP0_CH7
I2C0_SCL #2
LEU1_RX #0
LES_CH7 #0
ETM_TD0 #2
39
VDD_DREG
Power supply for on-chip voltage regulator.
40
DECOUPLE
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.
41
PC8
ACMP1_CH0
TIM2_CC0 #2
US0_CS #2
LES_CH8 #0
42
PC9
ACMP1_CH1
TIM2_CC1 #2
US0_CLK #2
LES_CH9 #0
GPIO_EM4WU2
43
PC10
ACMP1_CH2
TIM2_CC2 #2
US0_RX #2
LES_CH10 #0
44
PC11
ACMP1_CH3
US0_TX #2
LES_CH11 #0
45
USB_VREGI
46
USB_VREGO
47
PF10
USB_DM
48
PF11
USB_DP
49
PF0
TIM0_CC0 #5
LETIM0_OUT0 #2
US1_CLK #2
I2C0_SDA #5
LEU0_TX #3
DBG_SWCLK #0/1/2/3
50
PF1
TIM0_CC1 #5
LETIM0_OUT1 #2
US1_CS #2
I2C0_SCL #5
LEU0_RX #3
DBG_SWDIO #0/1/2/3
GPIO_EM4WU3
51
PF2
TIM0_CC2 #5
LEU0_TX #4
ACMP1_O #0
DBG_SWO #0
GPIO_EM4WU4
52
USB_VBUS
53
PF12
54
PF5
55
IOVDD_5
56
PE8
PCNT2_S0IN #1
57
PE9
PCNT2_S1IN #1
CMU_CLK1 #1
USB 5.0 V VBUS input.
USB_ID
TIM0_CDTI2 #2/5
USB_VBUSEN #0
PRS_CH2 #1
Digital IO power supply 5.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
51
PRS_CH3 #1
www.silabs.com
...the world's most energy friendly microcontrollers
Pin Alternate Functionality / Description
Pin #
QFN64 Pin#
and Name
Pin Name
Analog
Timers
Communication
Other
58
PE10
TIM1_CC0 #1
US0_TX #0
BOOT_TX
59
PE11
TIM1_CC1 #1
US0_RX #0
LES_ALTEX5 #0
BOOT_RX
60
PE12
TIM1_CC2 #1
US0_RX #3
US0_CLK #0
I2C0_SDA #6
CMU_CLK1 #2
LES_ALTEX6 #0
61
PE13
US0_TX #3
US0_CS #0
I2C0_SCL #6
LES_ALTEX7 #0
ACMP0_O #0
GPIO_EM4WU5
62
PE14
TIM3_CC0 #0
LEU0_TX #2
63
PE15
TIM3_CC1 #0
LEU0_RX #2
64
PA15
TIM3_CC2 #0
4.2 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in
Table 4.2 (p. 52) . The table shows the name of the alternate functionality in the first column, followed
by columns showing the possible LOCATION bitfield settings.
Note
Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.
Table 4.2. Alternate functionality overview
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
ACMP0_CH0
PC0
Analog comparator ACMP0, channel 0.
ACMP0_CH1
PC1
Analog comparator ACMP0, channel 1.
ACMP0_CH2
PC2
Analog comparator ACMP0, channel 2.
ACMP0_CH3
PC3
Analog comparator ACMP0, channel 3.
ACMP0_CH4
PC4
Analog comparator ACMP0, channel 4.
ACMP0_CH5
PC5
Analog comparator ACMP0, channel 5.
ACMP0_CH6
PC6
Analog comparator ACMP0, channel 6.
ACMP0_CH7
PC7
Analog comparator ACMP0, channel 7.
ACMP0_O
PE13
ACMP1_CH0
PC8
Analog comparator ACMP1, channel 0.
ACMP1_CH1
PC9
Analog comparator ACMP1, channel 1.
ACMP1_CH2
PC10
Analog comparator ACMP1, channel 2.
ACMP1_CH3
PC11
Analog comparator ACMP1, channel 3.
ACMP1_O
PF2
ADC0_CH0
PD0
Analog to digital converter ADC0, input channel number 0.
ADC0_CH1
PD1
Analog to digital converter ADC0, input channel number 1.
ADC0_CH2
PD2
Analog to digital converter ADC0, input channel number 2.
PD6
Analog comparator ACMP0, digital output.
PD7
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
Analog comparator ACMP1, digital output.
52
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
ADC0_CH3
PD3
Analog to digital converter ADC0, input channel number 3.
ADC0_CH4
PD4
Analog to digital converter ADC0, input channel number 4.
ADC0_CH5
PD5
Analog to digital converter ADC0, input channel number 5.
ADC0_CH6
PD6
Analog to digital converter ADC0, input channel number 6.
ADC0_CH7
PD7
Analog to digital converter ADC0, input channel number 7.
BOOT_RX
PE11
Bootloader RX.
BOOT_TX
PE10
Bootloader TX.
BU_VIN
PD8
Battery input for Backup Power Domain
CMU_CLK0
PA2
CMU_CLK1
PA1
OPAMP_N0
PC5
Operational Amplifier 0 external negative input.
OPAMP_N1
PD7
Operational Amplifier 1 external negative input.
OPAMP_N2
PD3
Operational Amplifier 2 external negative input.
DAC0_OUT0 /
OPAMP_OUT0
PB11
Digital to Analog Converter DAC0_OUT0 /
OPAMP output channel number 0.
DAC0_OUT0ALT /
PC0
OPAMP_OUT0ALT
DAC0_OUT1 /
OPAMP_OUT1
PD8
PC1
PD7
Clock Management Unit, clock output number 0.
PE12
Clock Management Unit, clock output number 1.
PC2
PC3
Digital to Analog Converter DAC0_OUT0ALT /
OPAMP alternative output for channel 0.
PD0
Digital to Analog Converter DAC0_OUT1 /
OPAMP output channel number 1.
PB12
DAC0_OUT1ALT /
OPAMP_OUT1ALT
Digital to Analog Converter DAC0_OUT1ALT /
OPAMP alternative output for channel 1.
PD1
OPAMP_OUT2
PD5
PD0
Operational Amplifier 2 output.
OPAMP_P0
PC4
Operational Amplifier 0 external positive input.
OPAMP_P1
PD6
Operational Amplifier 1 external positive input.
OPAMP_P2
PD4
Operational Amplifier 2 external positive input.
DBG_SWCLK
PF0
PF0
PF0
PF0
DBG_SWDIO
PF1
PF1
PF1
PF1
DBG_SWO
PF2
PD1
PD2
Note that this function is not enabled after reset, and must
be enabled by software to be used.
ETM_TCLK
PD7
PC6
PA6
Embedded Trace Module ETM clock .
ETM_TD0
PD6
PC7
PA2
Embedded Trace Module ETM data 0.
ETM_TD1
PD3
PD3
PA3
Embedded Trace Module ETM data 1.
ETM_TD2
PD4
PD4
PA4
Embedded Trace Module ETM data 2.
ETM_TD3
PD5
PD5
PA5
Embedded Trace Module ETM data 3.
GPIO_EM4WU0
PA0
Pin can be used to wake the system up from EM4
GPIO_EM4WU1
PA6
Pin can be used to wake the system up from EM4
GPIO_EM4WU2
PC9
Pin can be used to wake the system up from EM4
GPIO_EM4WU3
PF1
Pin can be used to wake the system up from EM4
GPIO_EM4WU4
PF2
Pin can be used to wake the system up from EM4
GPIO_EM4WU5
PE13
Pin can be used to wake the system up from EM4
Debug-interface Serial Wire clock input.
Note that this function is enabled to pin out of reset, and
has a built-in pull down.
Debug-interface Serial Wire data input / output.
Note that this function is enabled to pin out of reset, and
has a built-in pull up.
Debug-interface Serial Wire viewer Output.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
53
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
HFXTAL_N
PB14
High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P
PB13
High Frequency Crystal positive pin.
I2C0_SCL
PA1
PD7
PC7
PC1
PF1
PE13
I2C0 Serial Clock Line input / output.
I2C0_SDA
PA0
PD6
PC6
PC0
PF0
PE12
I2C0 Serial Data input / output.
I2C1_SCL
PC5
PB12
I2C1 Serial Clock Line input / output.
I2C1_SDA
PC4
PB11
I2C1 Serial Data input / output.
LES_ALTEX0
PD6
LESENSE alternate exite output 0.
LES_ALTEX1
PD7
LESENSE alternate exite output 1.
LES_ALTEX2
PA3
LESENSE alternate exite output 2.
LES_ALTEX3
PA4
LESENSE alternate exite output 3.
LES_ALTEX4
PA5
LESENSE alternate exite output 4.
LES_ALTEX5
PE11
LESENSE alternate exite output 5.
LES_ALTEX6
PE12
LESENSE alternate exite output 6.
LES_ALTEX7
PE13
LESENSE alternate exite output 7.
LES_CH0
PC0
LESENSE channel 0.
LES_CH1
PC1
LESENSE channel 1.
LES_CH2
PC2
LESENSE channel 2.
LES_CH3
PC3
LESENSE channel 3.
LES_CH4
PC4
LESENSE channel 4.
LES_CH5
PC5
LESENSE channel 5.
LES_CH6
PC6
LESENSE channel 6.
LES_CH7
PC7
LESENSE channel 7.
LES_CH8
PC8
LESENSE channel 8.
LES_CH9
PC9
LESENSE channel 9.
LES_CH10
PC10
LESENSE channel 10.
LES_CH11
PC11
LESENSE channel 11.
LETIM0_OUT0
PD6
PB11
PF0
PC4
Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1
PD7
PB12
PF1
PC5
Low Energy Timer LETIM0, output channel 1.
LEU0_RX
PD5
PB14
PE15
PF1
PA0
LEUART0 Receive input.
LEU0_TX
PD4
PB13
PE14
PF0
PF2
LEUART0 Transmit output. Also used as receive input in
half duplex communication.
LEU1_RX
PC7
PA6
LEUART1 Receive input.
LEU1_TX
PC6
PA5
LEUART1 Transmit output. Also used as receive input in
half duplex communication.
LFXTAL_N
PB8
Low Frequency Crystal (typically 32.768 kHz) negative
pin. Also used as an optional external clock input pin.
LFXTAL_P
PB7
Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN
PC0
PD6
Pulse Counter PCNT0 input number 0.
PCNT0_S1IN
PC1
PD7
Pulse Counter PCNT0 input number 1.
PCNT1_S0IN
PC4
Pulse Counter PCNT1 input number 0.
PCNT1_S1IN
PC5
Pulse Counter PCNT1 input number 1.
PCNT2_S0IN
PD0
PE8
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
Pulse Counter PCNT2 input number 0.
54
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
PE9
6
Description
PCNT2_S1IN
PD1
Pulse Counter PCNT2 input number 1.
PRS_CH0
PA0
Peripheral Reflex System PRS, channel 0.
PRS_CH1
PA1
Peripheral Reflex System PRS, channel 1.
PRS_CH2
PC0
PF5
Peripheral Reflex System PRS, channel 2.
PRS_CH3
PC1
PE8
Peripheral Reflex System PRS, channel 3.
TIM0_CC0
PA0
PA0
PD1
PA0
PF0
Timer 0 Capture Compare input / output channel 0.
TIM0_CC1
PA1
PA1
PD2
PC0
PF1
Timer 0 Capture Compare input / output channel 1.
TIM0_CC2
PA2
PA2
PD3
PC1
PF2
Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0
PA3
PC2
Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1
PA4
PC3
Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2
PA5
PF5
PC4
PF5
Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0
PE10
PB7
PD6
Timer 1 Capture Compare input / output channel 0.
TIM1_CC1
PE11
PB8
PD7
Timer 1 Capture Compare input / output channel 1.
TIM1_CC2
PE12
PB11
Timer 1 Capture Compare input / output channel 2.
TIM2_CC0
PA8
PC8
Timer 2 Capture Compare input / output channel 0.
TIM2_CC1
PA9
PC9
Timer 2 Capture Compare input / output channel 1.
TIM2_CC2
PA10
PC10
Timer 2 Capture Compare input / output channel 2.
TIM3_CC0
PE14
Timer 3 Capture Compare input / output channel 0.
TIM3_CC1
PE15
Timer 3 Capture Compare input / output channel 1.
TIM3_CC2
PA15
Timer 3 Capture Compare input / output channel 2.
US0_CLK
PE12
PC9
PB13
PB13
USART0 clock input / output.
US0_CS
PE13
PC8
PB14
PB14
USART0 chip select input / output.
US0_RX
PE11
PC10
PB8
PC1
USART0 Asynchronous Receive.
PE12
USART0 Synchronous mode Master Input / Slave Output
(MISO).
USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX
PE10
PC11
PE13
PB7
PC0
USART0 Synchronous mode Master Output / Slave Input
(MOSI).
US1_CLK
PB7
PD2
PF0
USART1 clock input / output.
US1_CS
PB8
PD3
PF1
USART1 chip select input / output.
US1_RX
PC1
PD1
PD6
USART1 Asynchronous Receive.
USART1 Synchronous mode Master Input / Slave Output
(MISO).
USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX
PC0
PD0
PD7
USART1 Synchronous mode Master Output / Slave Input
(MOSI).
US2_CLK
PC4
USART2 clock input / output.
US2_CS
PC5
USART2 chip select input / output.
US2_RX
PC3
US2_TX
PC2
USART2 Asynchronous Receive.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
USART2 Synchronous mode Master Input / Slave Output
(MISO).
USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
55
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
USART2 Synchronous mode Master Output / Slave Input
(MOSI).
USB_DM
PF10
USB D- pin.
USB_DMPU
PD2
USB D- Pullup control.
USB_DP
PF11
USB D+ pin.
USB_ID
PF12
USB ID pin. Used in OTG mode.
USB_VBUS
USB_VBUS
USB 5 V VBUS input.
USB_VBUSEN
PF5
USB 5 V VBUS enable.
USB_VREGI
USB_VREGI
USB Input to internal 3.3 V regulator
USB_VREGO
USB_VREGO
USB Decoupling for internal 3.3 V USB regulator and regulator output
4.3 GPIO Pinout Overview
The specific GPIO pins available in EFM32GG330 is shown in Table 4.3 (p. 56) . Each GPIO port is
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated
by a number from 15 down to 0.
Table 4.3. GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Pin
9
Pin
8
Pin
7
Pin
6
Pin
5
Pin
4
Pin
3
Pin
2
Pin
1
Pin
0
Port A
PA15
-
-
-
-
PA10
PA9
PA8
-
PA6
PA5
PA4
PA3
PA2
PA1
PA0
Port B
-
PB14
PB13
PB12
PB11
-
-
PB8
PB7
-
-
-
-
-
-
-
Port C
-
-
-
-
PC11
PC10
PC9
PC8
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
Port D
-
-
-
-
-
-
-
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Port E
PE15
PE14
PE13
PE12
PE11
PE10
PE9
PE8
-
-
-
-
-
-
-
-
Port F
-
-
-
PF12
PF11
PF10
-
-
-
-
PF5
-
-
PF2
PF1
PF0
4.4 Opamp Pinout Overview
The specific opamp terminals available in EFM32GG330 is shown in Figure 4.2 (p. 57) .
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
56
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 4.2. Opamp Pinout
PC4
PC5
PD4
PD3
PD6
PD7
OUT0ALT
+
OPA0
OUT0
+
OPA2
OUT2
OUT1ALT
+
OPA1
OUT1
-
PB11
PB12
PC0
PC1
PC2
PC3
PC12
PC13
PC14
PC15
PD0
PD1
PD5
4.5 QFN64 Package
Figure 4.3. QFN64
Note:
1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
57
www.silabs.com
...the world's most energy friendly microcontrollers
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from
the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is
acceptable.
4. Coplanarity applies to the exposed heat slug as well as the terminal.
5. Radius on terminal is optional
Table 4.4. QFN64 (Dimensions in mm)
Symbol
A
A1
Min
0.80
0.00
Nom
0.85
-
Max
0.90
0.05
A3
b
D
E
0.20
0.203
0.25
REF
9.00 9.00
BSC BSC
0.30
D2
E2
7.10
7.10
7.20
7.20
7.30
7.30
e
0.50
BSC
L
L1
0.40
0.00
0.45
0.50
aaa
bbb
ccc
ddd
eee
0.10
0.10
0.10
0.05
0.08
0.10
The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).
For additional Quality and Environmental information, please see:
http://www.silabs.com/support/quality/pages/default.aspx
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
58
www.silabs.com
...the world's most energy friendly microcontrollers
5 PCB Layout and Soldering
5.1 Recommended PCB Layout
Figure 5.1. QFN64 PCB Land Pattern
a
p8
b
p7
p1
p6
e
g
p9
c
p2
p5
p3
p4
f
d
Table 5.1. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)
Symbol
Dim. (mm)
Symbol
Pin number
Symbol
Pin number
a
0.85
P1
1
P8
64
b
0.30
P2
16
P9
65
c
0.50
P3
17
-
-
d
8.90
P4
32
-
-
e
8.90
P5
33
-
-
f
7.20
P6
48
-
-
g
7.20
P7
49
-
-
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
59
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 5.2. QFN64 PCB Solder Mask
a
b
g
e
c
f
d
Table 5.2. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)
Symbol
Dim. (mm)
Symbol
Dim. (mm)
a
0.97
e
8.90
b
0.42
f
7.32
c
0.50
g
7.32
d
8.90
-
-
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
60
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 5.3. QFN64 PCB Stencil Design
a
b
x
y
e
z
c
d
Table 5.3. QFN64 PCB Stencil Design Dimensions (Dimensions in mm)
1.
2.
3.
4.
5.
6.
Symbol
Dim. (mm)
Symbol
Dim. (mm)
a
0.75
e
8.90
b
0.22
x
2.70
c
0.50
y
2.70
d
8.90
z
0.80
The drawings are not to scale.
All dimensions are in millimeters.
All drawings are subject to change without notice.
The PCB Land Pattern drawing is in compliance with IPC-7351B.
Stencil thickness 0.125 mm.
For detailed pin-positioning, see Figure 4.3 (p. 57) .
5.2 Soldering Information
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.
Place as many and as small as possible vias underneath each of the solder patches under the ground
pad.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
61
www.silabs.com
...the world's most energy friendly microcontrollers
6 Chip Marking, Revision and Errata
6.1 Chip Marking
In the illustration below package fields and position are shown.
Figure 6.1. Example Chip Marking (top view)
6.2 Revision
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 62) .
6.3 Errata
Please see the errata document for EFM32GG330 for description and resolution of device erratas. This
document is available in Simplicity Studio and online at:
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
62
www.silabs.com
...the world's most energy friendly microcontrollers
7 Revision History
7.1 Revision 1.40
March 21st, 2016
Added clarification on conditions for INLADC and DNLADC parameters.
Reduced maximum and typical current consumption for all EM0 entries except 48 MHz in the Current
Consumption table in the Electrical Characteristics section.
Increased maximum specifications for EM2 current, EM3 current, and EM4 current in the Current Consumption table in the Electrical Characteristics section.
Increased typical specification for EM2 and EM3 current at 85 C in the Current Consumption table in
the Electrical Characteristics section.
Added EM2, EM3, and EM4 current consumption vs. temperature graphs.
Added a new EM2 entry and specified the existing specification is for EM0 for the BOD threshold on
falling external supply voltage in the Power Management table in the Electrical Characteristics section.
Reduced maximum input leakage current in the GPIO table in the Electrical Characteristics section.
Added a maximum current consumption specification to the LFRCO table in the Electrical Characteristics
section.
Added maximum specifications for the active current including references for two channels to the DAC
table in the Electrical Characteristics section.
Increased the maximum specification for DAC offset voltage in the DAC table in the Electrical Characteristics section.
Increased the typical specifications for active current with FULLBIAS=1 and capacitive sense internal
resistance in the ACMP table in the Electrical Characteristics section.
Added minimum and maximum specifications and updated the typical value for the VCMP offset voltage
in the VCMP table in the Electrical Characteristics section.
Removed the maximum specification and reduced the typical value for hysteresis in the VCMP table in
the Electrical Characteristics section.
Updated all graphs in the Electrical Characteristics section to display data for 2.0 V as the minimum
voltage.
7.2 Revision 1.30
May 23rd, 2014
Removed "preliminary" markings
Updated HFRCO figures.
Corrected single power supply voltage minimum value from 1.85V to 1.98V.
Updated Current Consumption information.
Updated Power Management information.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
63
www.silabs.com
...the world's most energy friendly microcontrollers
Updated GPIO information.
Updated LFRCO information.
Updated HFRCO information.
Updated ULFRCO information.
Updated ADC information.
Updated DAC information.
Updated OPAMP information.
Updated ACMP information.
Updated VCMP information.
Added AUXHFRCO information.
7.3 Revision 1.21
November 21st, 2013
Updated figures.
Updated errata-link.
Updated chip marking.
Added link to Environmental and Quality information.
Re-added missing DAC-data.
7.4 Revision 1.20
September 30th, 2013
Added I2C characterization data.
Added SPI characterization data.
Corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section.
Corrected GPIO operating voltage from 1.8 V to 1.85 V.
Added the USB bootloader information.
Updated that the EM2 current consumption test was carried out with only one RAM block enabled.
Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit.
Removed UART mentioned incorrectly in the QFN64 parts.
Updated Environmental information.
Updated trademark, disclaimer and contact information.
Other minor corrections.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
64
www.silabs.com
...the world's most energy friendly microcontrollers
7.5 Revision 1.10
June 28th, 2013
Updated power requirements in the Power Management section.
Removed minimum load capacitance figure and table. Added reference to application note.
Other minor corrections.
7.6 Revision 1.00
September 11th, 2012
Updated the HFRCO 1 MHz band typical value to 1.2 MHz.
Updated the HFRCO 7 MHz band typical value to 6.6 MHz.
Other minor corrections.
7.7 Revision 0.98
May 25th, 2012
Corrected EM3 current consumption in the Electrical Characteristics section.
7.8 Revision 0.96
February 28th, 2012
Added reference to errata document.
Corrected QFN64 package drawing.
Updated PCB land pattern, solder mask and stencil design.
7.9 Revision 0.95
September 28th, 2011
Flash configuration for Giant Gecko is now 1024KB or 512KB. For flash sizes below 512KB, see the
Leopard Gecko Family.
Corrected operating voltage from 1.8 V to 1.85 V.
Added rising POR level to Electrical Characteristics section.
Updated Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup.
Added Gain error drift and Offset error drift to ADC table.
Added Opamp pinout overview.
Added reference to errata document.
Corrected QFN64 package drawing.
Updated PCB land pattern, solder mask and stencil design.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
65
www.silabs.com
...the world's most energy friendly microcontrollers
7.10 Revision 0.91
March 21th, 2011
Added new alternative locations for SWO.
Added new USB Pin to pinout table.
Corrected slew rate data for Opamps.
7.11 Revision 0.90
February 4th, 2011
Initial preliminary release.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
66
www.silabs.com
...the world's most energy friendly microcontrollers
A Disclaimer and Trademarks
A.1 Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation
of all peripherals and modules available for system and software implementers using or intending to use
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and
do vary in different applications. Application examples described herein are for illustrative purposes only.
Silicon Laboratories reserves the right to make changes without further notice and limitation to product
information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life
Support System" is any product or system intended to support or sustain life and/or health, which, if it
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories
products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological
or chemical weapons, or missiles capable of delivering such weapons.
A.2 Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products
or brand names mentioned herein are trademarks of their respective holders.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
67
www.silabs.com
...the world's most energy friendly microcontrollers
B Contact Information
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Please visit the Silicon Labs Technical Support web page:
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
68
www.silabs.com
...the world's most energy friendly microcontrollers
Table of Contents
1. Ordering Information .................................................................................................................................. 2
2. System Summary ...................................................................................................................................... 3
2.1. System Introduction ......................................................................................................................... 3
2.2. Configuration Summary .................................................................................................................... 7
2.3. Memory Map ................................................................................................................................. 8
3. Electrical Characteristics ........................................................................................................................... 10
3.1. Test Conditions ............................................................................................................................. 10
3.2. Absolute Maximum Ratings ............................................................................................................. 10
3.3. General Operating Conditions .......................................................................................................... 10
3.4. Current Consumption ..................................................................................................................... 11
3.5. Transition between Energy Modes .................................................................................................... 13
3.6. Power Management ....................................................................................................................... 13
3.7. Flash .......................................................................................................................................... 15
3.8. General Purpose Input Output ......................................................................................................... 15
3.9. Oscillators .................................................................................................................................... 23
3.10. Analog Digital Converter (ADC) ...................................................................................................... 28
3.11. Digital Analog Converter (DAC) ...................................................................................................... 38
3.12. Operational Amplifier (OPAMP) ...................................................................................................... 39
3.13. Analog Comparator (ACMP) .......................................................................................................... 43
3.14. Voltage Comparator (VCMP) ......................................................................................................... 45
3.15. I2C ........................................................................................................................................... 45
3.16. USART SPI ................................................................................................................................ 46
3.17. USB .......................................................................................................................................... 47
3.18. Digital Peripherals ....................................................................................................................... 48
4. Pinout and Package ................................................................................................................................. 49
4.1. Pinout ......................................................................................................................................... 49
4.2. Alternate Functionality Pinout .......................................................................................................... 52
4.3. GPIO Pinout Overview ................................................................................................................... 56
4.4. Opamp Pinout Overview ................................................................................................................. 56
4.5. QFN64 Package ........................................................................................................................... 57
5. PCB Layout and Soldering ........................................................................................................................ 59
5.1. Recommended PCB Layout ............................................................................................................ 59
5.2. Soldering Information ..................................................................................................................... 61
6. Chip Marking, Revision and Errata .............................................................................................................. 62
6.1. Chip Marking ................................................................................................................................ 62
6.2. Revision ...................................................................................................................................... 62
6.3. Errata ......................................................................................................................................... 62
7. Revision History ...................................................................................................................................... 63
7.1. Revision 1.40 ............................................................................................................................... 63
7.2. Revision 1.30 ............................................................................................................................... 63
7.3. Revision 1.21 ............................................................................................................................... 64
7.4. Revision 1.20 ............................................................................................................................... 64
7.5. Revision 1.10 ............................................................................................................................... 65
7.6. Revision 1.00 ............................................................................................................................... 65
7.7. Revision 0.98 ............................................................................................................................... 65
7.8. Revision 0.96 ............................................................................................................................... 65
7.9. Revision 0.95 ............................................................................................................................... 65
7.10. Revision 0.91 .............................................................................................................................. 66
7.11. Revision 0.90 .............................................................................................................................. 66
A. Disclaimer and Trademarks ....................................................................................................................... 67
A.1. Disclaimer ................................................................................................................................... 67
A.2. Trademark Information ................................................................................................................... 67
B. Contact Information ................................................................................................................................. 68
B.1. ................................................................................................................................................. 68
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
69
www.silabs.com
...the world's most energy friendly microcontrollers
List of Figures
2.1. Block Diagram ....................................................................................................................................... 3
2.2. EFM32GG330 Memory Map with largest RAM and Flash sizes ........................................................................ 9
3.1. EM2 current consumption. RTC prescaled to 1 Hz, 32.768 kHz LFRCO. ......................................................... 12
3.2. EM3 current consumption. ..................................................................................................................... 12
3.3. EM4 current consumption. ..................................................................................................................... 13
3.4. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 17
3.5. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. 18
3.6. Typical Low-Level Output Current, 3V Supply Voltage .................................................................................. 19
3.7. Typical High-Level Output Current, 3V Supply Voltage ................................................................................. 20
3.8. Typical Low-Level Output Current, 3.8V Supply Voltage ............................................................................... 21
3.9. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................... 22
3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 24
3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 25
3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 25
3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 26
3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 26
3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 26
3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 27
3.17. Integral Non-Linearity (INL) ................................................................................................................... 32
3.18. Differential Non-Linearity (DNL) .............................................................................................................. 33
3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 34
3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 35
3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 36
3.22. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 37
3.23. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 37
3.24. ADC Temperature sensor readout ......................................................................................................... 38
3.25. OPAMP Common Mode Rejection Ratio ................................................................................................. 41
3.26. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 41
3.27. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 42
3.28. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 42
3.29. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 42
3.30. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 44
3.31. SPI Master Timing ............................................................................................................................... 46
3.32. SPI Slave Timing ................................................................................................................................ 47
4.1. EFM32GG330 Pinout (top view, not to scale) ............................................................................................. 49
4.2. Opamp Pinout ...................................................................................................................................... 57
4.3. QFN64 ................................................................................................................................................ 57
5.1. QFN64 PCB Land Pattern ...................................................................................................................... 59
5.2. QFN64 PCB Solder Mask ....................................................................................................................... 60
5.3. QFN64 PCB Stencil Design .................................................................................................................... 61
6.1. Example Chip Marking (top view) ............................................................................................................. 62
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
70
www.silabs.com
...the world's most energy friendly microcontrollers
List of Tables
1.1. Ordering Information ................................................................................................................................ 2
2.1. Configuration Summary ............................................................................................................................ 7
3.1. Absolute Maximum Ratings ..................................................................................................................... 10
3.2. General Operating Conditions .................................................................................................................. 10
3.3. Current Consumption ............................................................................................................................. 11
3.4. Energy Modes Transitions ...................................................................................................................... 13
3.5. Power Management ............................................................................................................................... 14
3.6. Flash .................................................................................................................................................. 15
3.7. GPIO .................................................................................................................................................. 15
3.8. LFXO .................................................................................................................................................. 23
3.9. HFXO ................................................................................................................................................. 23
3.10. LFRCO .............................................................................................................................................. 24
3.11. HFRCO ............................................................................................................................................. 24
3.12. AUXHFRCO ....................................................................................................................................... 27
3.13. ULFRCO ............................................................................................................................................ 28
3.14. ADC .................................................................................................................................................. 28
3.15. DAC .................................................................................................................................................. 38
3.16. OPAMP ............................................................................................................................................. 39
3.17. ACMP ............................................................................................................................................... 43
3.18. VCMP ............................................................................................................................................... 45
3.19. I2C Standard-mode (Sm) ...................................................................................................................... 45
3.20. I2C Fast-mode (Fm) ............................................................................................................................ 46
3.21. I2C Fast-mode Plus (Fm+) .................................................................................................................... 46
3.22. SPI Master Timing ............................................................................................................................... 47
3.23. SPI Slave Timing ................................................................................................................................ 47
3.24. Digital Peripherals ............................................................................................................................... 48
4.1. Device Pinout ....................................................................................................................................... 49
4.2. Alternate functionality overview ................................................................................................................ 52
4.3. GPIO Pinout ........................................................................................................................................ 56
4.4. QFN64 (Dimensions in mm) .................................................................................................................... 58
5.1. QFN64 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 59
5.2. QFN64 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 60
5.3. QFN64 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 61
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
71
www.silabs.com
...the world's most energy friendly microcontrollers
List of Equations
3.1. Total ACMP Active Current ..................................................................................................................... 43
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 45
2016-03-21 - EFM32GG330FXX - d0038_Rev1.40
72
www.silabs.com
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
Quality
Support and Community
www.silabs.com/simplicity
www.silabs.com/quality
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com