Technical Specification PQ60260HTB10 48Vin 26Vout 250W 2000Vdc Half-brick Input Output Power Isolation DC/DC Converter The PQ60260HTB10 PowerQor® Tera converter is a nextgeneration, board-mountable, isolated, fixed switching frequency dc/dc converter that uses synchronous rectification to achieve extremely high conversion efficiency. The power dissipated by the converter is so low that a heatsink is not required. However, this unit provides a baseplate for clamshell applications and optional heatsinking in severe thermal environments. The Tera series converters offer the maximum usable current output for any standard “half-brick” module. The Tera units also feature active current sharing for N+1 and parallel applications. RoHS Compliant see last page. PQ60260HTB10 Module Control Features Operational Features •Ultra-high efficiency, 92% at full rated load current •Delivers up to 250 Watts of output power with minimal derating - heatsink optional •Wide input voltage range: 35V – 75V, with 100V 100ms input voltage transient capability •Fixed frequency switching provides predictable EMI performance • On/Off control referenced to input side (positive and negative logic options are available) • Remote sense for the output voltage compensates for output distribution drops • Output voltage trim permits custom voltages and voltage margining Protection Features Mechanical Features •Industry standard half-brick pin-out configuration •Industry standard size: 2.3” x 2.4” (58.4 x 61.0mm) •Total height 0.50” (12.7mm) •Baseplate allows heatsink attachment or “clamshell” configuration •Total weight: 4.3 oz (122 g) Optional Features (full-feature) Safety Features •2000V, 30 MW input-to-output isolation •UL/cUL 60950-1 recognized (US & Canada), basic insulation rating •TUV certified to EN60950-1 •Meets 72/23/EEC and 93/68/EEC directives •Meets UL94V-0 flammability requirements Product # PQ60260HTB10 • Input under-voltage lockout disables converter at low input voltage conditions • Output current limit and short circuit protection • Active back bias limit prevents damage to converter from external load induced pre-bias • Output over-voltage protection • Thermal shutdown Phone 1-888-567-9596 • Active current share for N+1 and parallel applications • External Clock Synchronization pin for better EMI characteristics • Startup Synchronization pin for more consistent start-up sequence • ORing FET drive supply for efficient ORing protection www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 1 Input: Output: Current: Package: Technical Specification MECHANICAL DIAGRAM 35-75 V 26 V 9.6 A (250W) Half-brick 2.40 (61.0) 2.00 (50.8) 1.400 (35.56) 0.20 (5.1) 1.000 (25.40) 0.20 0.700 (5.1) (17.78) 0.400 (10.16) Side View Top View 0.50 (12.7) 1.90 (48.3) 2.30 Bottom side Clearance 0.19 (58.4) .065 +.020/-.023 (1.65 +.51/-.58) 1.90 (48.3) M3 Threaded Standoff Ref. (4.8) 0.12 typ. (3.0) See Note 4 M3 Threaded Standoff 4 Places See Note 5 0.400 (10.16) 0.600 (15.24) Pin Farside Typical 0.800 (20.32) 1.000 (25.40) 0.50 (12.7) 1.400 (35.56) NOTES 1) Pins 1-4, 6-8, A, B are 0.040” (1.02mm) diameter with 0.080” (2.03mm) diameter standoff shoulders. 2) Pins 5 and 9 are 0.080” (2.03 mm) diameter with 0.125” (3.18mm) diameter standoff shoulders. 3) Pins 3, A & B only included in Full-Feature models. 4) Pin length shown corresponds to pin with 0.145” extension. Other pin extension lengths available. Recommended pin length is 0.03” (0.76mm) greater than the PCB thickness. 5) Applied torque per screw should not exceed 3 in-lb (.33Nm) 6) Baseplate flatness tolerance is 0.004” (0.10mm) TIR for surface. 7) All Pins: Material - Copper Alloy Finish (5/6 RoHS) - Tin/Lead over Nickel plate Finish (6/6 RoHS) - Tin over Nickel plate 8) Undimensioned components are shown for visual reference only. 9) All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm) 10) Weight: 4.3 oz (122 g) typical 11) Workmanship: Meets or exceeds IPC-A-610C Class II Product # PQ60260HTB10 Phone 1-888-567-9596 PIN DESIGNATIONS Pin No. Name Function 1 Vin(+) Positive input voltage 2 ON/OFF TTL input to turn converter on and off, referenced to Vin(-), with internal pull up. 3 I share Single wire parallel signal 4 Vin(-) Negative input voltage 5 Vout(-) Negative output voltage 6 SENSE(-) Return remote sense 7 TRIM Output voltage trim 8 SENSE(+) Positive remote sense 9 Vout(+) Positive output voltage A Clock Sync Clock synchronization B Start Sync Startup synchronization www.synqor.com Pins in Italics Shaded text are Optional Doc.# 005-2HTB26F Rev. H 10/10/08 Page 2 Input: Output: Current: Package: Technical Specification 35-75 V 26 V 9.6 A (250W) Half-brick PQ60260HTB10 ELECTRICAL CHARACTERISTICS TA=25°C, airflow rate=300 LFM, Vin=48Vdc unless otherwise noted; full operating temperature range is -40°C to +100°C ambient temperature with appropriate power derating. Specifications subject to change without notice. Parameter ABSOLUTE MAXIMUM RATINGS Input Voltage Non-Operating Operating Operating Transient Protection Isolation Voltage (input to output) Operating Temperature Storage Temperature Voltage at ON/OFF input pin Voltage at Clock Sync pin INPUT CHARACTERISTICS Operating Input Voltage Range Input Under-Voltage Lockout Turn-On Voltage Threshold Turn-Off Voltage Threshold Lockout Voltage Hysteresis Maximum Input Current No-Load Input Current Disabled Input Current Inrush Current Transient Rating Response to Input Transient Input Reflected Ripple Current Recommended Input Fuse Input Filter Component Values (C1\L\C2) Recommended External Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Set Point Output Voltage Regulation Over Line Over Load Over Temperature Total Output Voltage Range Output Voltage Ripple and Noise1 Peak-to-Peak RMS Operating Output Current Range Output DC Current-Limit Inception Output DC Current-Limit Shutdown Voltage Short-Circuit Current-Limit Current Share Accuracy (2 units paralleled) Back-Drive Current Limit while Enabled Back-Drive Current Limit while Disabled Maximum Output Capacitance DYNAMIC CHARACTERISTICS Input Voltage Ripple Rejection Output Voltage during Load Current Transient For a Step Change in Output Current (0.1A/µs) For a Step Change in Output Current (5A/µs) Settling Time Turn-On Transient Turn-On Time Start-Up Inhibit Time Output Voltage Overshoot Min. Typ. Max. -40 -55 -2 -15 100 80 100 2000 100 125 18 18 V V V V °C °C V V 35 48 75 V 30.6 28.2 2.3 32.5 30.1 2.4 115 2 1.5 20 1.6\4\3.3 47 34.4 32.1 2.5 8.5 150 5 0.01 20 26.0 26.4 25.6 25.12 0 10.2 0.1 0 Units Notes & Conditions Continuous Continuous 100ms transient, square wave Basic insulation, Pollution degree 2 Applies to Full Feature option only V V V A 100% Load, 35 Vin mA mA A 2s V 1000V/ms input transient; Figure 16 mA RMS thru 10µH inductor; Figures 11 & 13 A Fast blow external fuse recommended µF\µH\µF Internal values; see Figure E µF Typical ESR 0.1-0.2W; see Figure 11 V +0.1 \ 30 +0.15 \ 40 %\mV +0.1 \ 30 +0.15 \ 40 %\mV +150 +300 mV 26.98 V 50 90 mV 15 30 mV 9.6 A 11.0 12.0 A 2.0 V 20 A +2 +5 % 0.2 0.6 A 10 50 mA 5,000 µF Over sample, line, load, temperature & life 20MHz bandwidth; Figures 11 & 14 Full Load; see Figures 11 & 14 Full Load; see Figures 11 & 14 Output Voltage 10% Low; Figure 6 % of rated output current Negative current drawn from output Negative current drawn from output 26Vout at 9.6A Resistive Load 60 750 500 300 dB mV mV µs 120 Hz; Figure 18 180 25 200 0 40 240 ms ms % Full load, Vout=90% nom.; Figures 7 & 8 -40°C to +125°C; Figure A 5,000 µF load capacitance, Iout = 0A 100% Load 50% Load 92 92.5 % % Figures 1 - 4 Figures 1 - 4 Baseplate Temperature 100 °C Figures 5 Isolation Voltage (dielectric strength) Isolation Resistance Isolation Capacitance2 2000 30 3300 V MW pF EFFICIENCY TEMPERATURE LIMITS FOR POWER DERATING CURVES ISOLATION CHARACTERISTICS 50% to 75% to 50% Iout max; Figure 9 50% to 75% to 50% Iout max; Figure 10 To within 1% Vout nom Note 1: For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: [email protected]) Note 2: Higher values of isolation capacitance can be added external to the module. Product # PQ60260HTB10 Phone 1-888-567-9596 www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 3 Input: Output: Current: Package: Technical Specification 35-75 V 26 V 9.6 A (250W) Half-brick ELECTRICAL CHARACTERISTICS (Continued) Parameter P FEATURE CHARACTERISTICS Switching Frequency ON/OFF Control (Option P) Off-State Voltage On-State Voltage ON/OFF Control (Option N) Off-State Voltage On-State Voltage ON/OFF Control (Either Option) Pull-Up Voltage Pull-Up Resistance Output Voltage Trim Range Output Voltage Remote Sense Range Output Over-Voltage Protection Over-Temperature Shutdown Over-Temperature Shutdown Restart Hysteresis Load Current Scale Factor RELIABILITY CHARACTERISTICS Calculated MTBF (Telcordia) Calculated MTBF (MIL-217) Field Demonstrated MTBF Min. Typ. Max. Units Notes & Conditions 270 300 340 kHz -2 2.7 0.8 18 V V 2.7 -2 -20 Vin/6 42 117 120 10 TBD 18 0.8 15 +10 +10 V V V kW % % % °C °C 2.2 1.3 Regulation stage and Isolation stage Figures A & B Measured across Pins 9 & 5; Figure C Measured across Pins 9 & 5 Over full temp range; % of nominal Vout Average PCB Temperature See App Note: Output Load Current Calc. 10 Hrs. TR-NWT-000332; 80% load,300LFM, 40oC Ta 106 Hrs. MIL-HDBK-217F; 80% load, 300LFM, 40oC Ta 106 Hrs. See our website for details 6 STANDARDS COMPLIANCE Parameter P Notes File # E194341, Basic insulation & pollution degree 2 Certified by TUV STANDARDS COMPLIANCE UL/cUL 60950-1 EN60950-1 72/23/EEC 93/68/EEC Needle Flame Test (IEC 695-2-2) IEC 61000-4-2 GR-1089-CORE Telcordia (Bellcore) GR-513 Test on entire assembly; board & plastic components UL94V-0 compliant ESD test, 8kV - NP, 15kV air - NP (Normal Performance) Section 7 - electrical safety, Section 9 - bonding/grounding • An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety certificates on new releases or download from the SynQor website. QUALIFICATION TESTING Parameter P QUALIFICATION TESTING Life Test Vibration Mechanical Shock Temperature Cycling Power/Thermal Cycling Design Marginality Humidity Solderability # Units 32 5 5 10 5 5 5 15 pins Test Conditions 95% rated Vin and load, units at derating point, 1000 hours 10-55Hz sweep, 0.060” total excursion,1 min./sweep, 120 sweeps for 3 axis 100g minimum, 2 drops in x and y axis, 1 drop in z axis -40°C to 100°C, unit temp. ramp 15°C/min., 500 cycles Toperating = min to max, Vin = min to max, full load, 100 cycles Tmin-10°C to Tmax+10°C, 5°C steps, Vin = min to max, 0-105% load 85°C, 85% RH, 1000 hours, 2 minutes on and 6 hours off MIL-STD-883, method 2003 • Extensive characterization testing of all SynQor products and manufacturing processes is performed to ensure that we supply robust, reliable product. Contact the factory for official product family qualification documents. Product # PQ60260HTB10 Phone 1-888-567-9596 www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 4 Input: Output: Current: Package: 100 94 95 93 90 92 Efficiency (%) Efficiency (%) Technical Specification 85 80 75 35-75 V 26 V 9.6 A (250W) Half-brick 91 90 89 70 36 Vin 88 65 48 Vin 75 Vin 87 25 C 40 C 55 C 86 60 0 1 2 3 4 5 6 Load Current (A) 7 8 9 0 10 100 200 300 400 500 Air Flow (LFM) Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C. Figure 2: Efficiency at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C and nominal input voltage. 16 25 15 20 Power Dissipation (W) Power Dissipation (W) 14 13 15 12 10 11 36 Vin 25 C 40 C 55 C 10 48 Vin 5 75 Vin 9 8 0 0 1 2 3 4 5 6 Load Current (A) 7 8 9 0 10 Figure 3: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C. 100 200 300 Air Flow (LFM) 400 500 Figure 4: Power dissipation at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C (nominal input voltage). 10 27 9 24 8 Output Voltage (V) Iout (A) 7 6 5 4 400 LFM (2.0 m/s) 300 LFM (1.5 m/s) 200 LFM (1.0 m/s) 3 2 100 LFM (0.5 m/s) 0 LFM (0 m/s) 1 21 18 15 36 V 48 V 75 V 12 9 0 0 25 40 55 Ambient Air Temperature (oC) 70 Figure 5: Maximum output power derating curves (no heatsink) vs. ambient air temperature for airflow rates of 0 LFM through 400 LFM with air flowing from pin 3 to pin 1 (nominal input voltage). Product # PQ60260HTB10 Phone 1-888-567-9596 0 85 2 4 6 8 Load Current (A) 10 12 14 Figure 6: Output voltage vs. load current showing typical current limit curves and converter shutdown points. www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 5 Input: Output: Current: Package: Technical Specification 35-75 V 26 V 9.6 A (250W) Half-brick Figure 7: Turn-on transient at full load (resistive load) (10 ms/div). Input voltage pre-applied. Top Trace: Vout (10V/div). Bottom Trace: ON/OFF input (5V/div). Figure 8: Turn-on transient at zero load (10 ms/div). Top Trace: Vout (10V/div). Bottom Trace: ON/OFF input (5V/div). Figure 9: Output voltage response to step-change in load current (50%-75%50% of Iout(max); dI/dt = 0.1A/µs). Load cap: 15µF, 450 mW ESR tantalum cap and 1µF ceramic cap. Top trace: Vout (500mV/div), Bottom trace: Iout (5A/div). Figure 10: Output voltage response to step-change in load current (50%-75%50% of Iout(max): dI/dt = 5A/µs). Load cap: 480µF, 15 mW ESR tantalum cap and 1µF ceramic cap. Top trace: Vout (500mV/div), Bottom trace: Iout (5A/div). See Fig. 13 10 µH source impedance See Fig. 12 See Fig. 14 iS VSOURCE iC 47 µF, <1W ESR electrolytic capacitor DC/DC Converter VOUT 1 µF 15 µF, ceramic 450mW ESR capacitor tantalum capacitor Figure 11: Test set-up diagram showing measurement points for Input Terminal Ripple Current (Figure 12), Input Reflected Ripple Current (Figure 13) and Output Voltage Ripple (Figure 14). Product # PQ60260HTB10 Phone 1-888-567-9596 Figure 12: Input Terminal Ripple Current, ic, at full rated output current and nominal input voltage with 10µH source impedance and 47µF electrolytic capacitor (500 mA/div). See Figure 11. www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 6 Input: Output: Current: Package: Technical Specification 35-75 V 26 V 9.6 A (250W) Half-brick Figure 13: Input reflected ripple current, is, through a 10 µH source inductor at nominal input voltage and rated load current (10 mA/div). See Figure 11. Figure 14: Output voltage ripple at nominal input voltage and rated load current (20 mV/div). Load capacitance: 1µF ceramic capacitor and 15µF tantalum capacitor. Bandwidth: 20 MHz. See Figure 11. Figure 15: Load current (5A/div) as a function of time when the converter attempts to turn on into a 10 mW short circuit. Top trace (2ms/ div) is an expansion of the on-time portion of the bottom trace. Figure 16: Output voltage response to step-change in input voltage (1000V/ms). Ch1: Vin (20V/div), Ch2: Vout (1V/div). Product # PQ60260HTB10 Phone 1-888-567-9596 www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 7 Input: Output: Current: Package: Technical Specification 35-75 V 26 V 9.6 A (250W) Half-brick -20 10 -30 Forward Transmission (dB) Output Impedance (W) 1 0.1 0.01 36 Vin 0.001 -40 -50 -60 -70 -80 35 Vin 48 Vin 75 Vin 48 Vin 75 Vin -90 0.0001 -100 10 100 1,000 10,000 100,000 10 100 Hz Figure 17: Magnitude of incremental output impedance (Zout = vout/ iout) for minimum, nominal, and maximum input voltage at full rated power. 1,000 Hz 10,000 100,000 Figure 18: Magnitude of incremental forward transmission (FT = vout/ vin) for minimum, nominal, and maximum input voltage at full rated power. 100 20 Input Impedance (Ohmn) Reverse Transmission (dB) 10 0 -10 -20 -30 10 1 36 Vin 35 Vin 48 Vin 75 Vin -40 48 Vin 75 Vin -50 0.1 10 100 1,000 Hz 10,000 100,000 Figure 19: Magnitude of incremental reverse transmission (RT = iin/iout) for minimum, nominal, and maximum input voltage at full rated power. Product # PQ60260HTB10 Phone 1-888-567-9596 10 100 1,000 Hz 10,000 100,000 Figure 20: Magnitude of incremental input impedance (Zin = vin/iin) for minimum, nominal, and maximum input voltage at full rated power. www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 8 Input: Output: Current: Package: Technical Specification BASIC OPERATION AND FEATURES In the positive logic version, the ON/OFF input is active high (meaning that a high turns the converter on). In the negative logic version, the ON/OFF signal is active low (meaning that a low turns the converter on). Figure A details five possible circuits for driving the ON/OFF pin. Figure B is a detailed look of the internal ON/OFF circuitry. The PowerQor series converter uses a two-stage power conversion topology. The first stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. The second stage uses a transformer to provide the functions of input/output isolation and voltage step-down to achieve the low output voltage required. REMOTE SENSE(+) (Pins 8 and 6): The SENSE(+) inputs correct for voltage drops along the conductors that connect the converter’s output pins to the load. Both the first stage and the second stage switch at a fixed frequency for predictable EMI performance. Rectification of the transformer’s output is accomplished with synchronous rectifiers. These devices, which are MOSFETs with a very low on-state resistance, dissipate far less energy than Schottky diodes. This is the primary reason that the PowerQor converter has such high efficiency, even at very low output voltages and very high output currents. Pin 8 should be connected to Vout(+) and Pin 6 should be connected to Vout(-) at the point on the board where regulation is desired. A remote connection at the load can adjust for a voltage drop only as large as that specified in this datasheet, that is [Vout(+) - Vout(-)] – [Vsense(+) - Vsense(-)] < Dissipation throughout the converter is so low that it does not require a heatsink for operation. Since a heatsink is not required, the PowerQor converter does not need a metal baseplate or potting material to help conduct the dissipated energy to the heatsink. The PowerQor converter can thus be built more simply and reliably using high yield surface mount techniques on a PCB substrate. Sense Range % x Vout Pins 8 and 6 must be connected for proper regulation of the output voltage. If these connections are not made, the converter will deliver an output voltage that is slightly higher than its specified value. The PowerQor series of half-brick, quarter-brick and eighth-brick converters uses the industry standard footprint and pin-out configuration. Note: the output over-voltage protection circuit senses the voltage across the output (pins 9 and 5) to determine when it should trigger, not the voltage across the converter’s sense leads (pins 8 and 6). Therefore, the resistive drop on the board should be small enough so that output OVP does not trigger, even during load transients. CONTROL FEATURES REMOTE ON/OFF (Pin 2): The ON/OFF input, Pin 2, permits the user to control when the converter is on or off. This input is referenced to the return terminal of the input bus, Vin(-). There are two versions of the converter that differ by the sense of the logic used for the ON/OFF input. OUTPUT VOLTAGE TRIM (Pin 7): The TRIM input permits the user to adjust the output voltage across the sense leads up or down according to the trim range specifications. ON/OFF ON/OFF ON/OFF Vin(_) Vin(_) Vin(_) Remote Enable Circuit Negative Logic (Permanently Enabled) ON/OFF Positive Logic (Permanently Enabled) 5V 5V 274k ON/OFF ON/OFF Vin(_) Vin(_) 50k 100pF 50k Vin(_) Direct Logic Drive Figure A: Various circuits for driving the ON/OFF pin. Product # PQ60260HTB10 Vin(+) TTL TTL/ CMOS Open Collector Enable Circuit 35-75 V 26 V 9.6 A (250W) Half-brick Phone 1-888-567-9596 www.synqor.com Figure B: Internal ON/OFF pin circuitry Doc.# 005-2HTB26F Rev. H 10/10/08 Page 9 Input: Output: Current: Package: Technical Specification To decrease the output voltage, the user should connect a resistor between Pin 7 and Pin 6 (SENSE(-) input). For a desired decrease of the nominal output voltage, the value of the resistor should be Rtrim-down = - 2 (kW) (100% D ) where D% = Vnominal – Vdesired Vnominal x 100% To increase the output voltage, the user should connect a resistor between Pin 7 and Pin 8 (SENSE(+) input). For a desired increase of the nominal output voltage, the value of the resistor should be Rtrim-up = ( ) Vnominal – 2 x VDES + VNOM 1.225 (kW) VDES - VNOM Figure C graphs the relationship between the trim resistor value and Rtrim-up and Rtrim-down, showing the total range the output voltage can be trimmed up or down. 100,000 Trim Resistance (kOhms) 10,000 35-75 V 26 V 9.6 A (250W) Half-brick PROTECTION FEATURES Input Under-Voltage Lockout: The converter is designed to turn off when the input voltage is too low, helping avoid an input system instability problem, described in more detail in the application note titled “Input System Instability” on the SynQor website. The lockout circuitry is a comparator with DC hysteresis. When the input voltage is rising, it must exceed the typical Turn-On Voltage Threshold value (listed on the specification page) before the converter will turn on. Once the converter is on, the input voltage must fall below the typical Turn-Off Voltage Threshold value before the converter will turn off. Input Over-Voltage Shutdown: Available on PQ48 models only. The converter turns off when the input voltage is too high, allowing the converter to withstand an input voltage as high as 100V without destruction. The shutdown circuitry is a comparator with DC hysteresis. When the input voltage exceeds the typical Input Over-Voltage Shutdown value, the converter will turn off. Once the converter is off, it will turn back on when the input voltage falls below the minimum Input Over-Voltage Shutdown value. Output Current Limit: The maximum current limit remains constant as the output voltage drops. However, once the impedance of the short across the output is small enough to make the output voltage drop below the specified Output DC Current-Limit Shutdown Voltage, the converter turns off. The converter then enters a “hiccup mode” where it repeatedly turns on and off at a 5 Hz (nominal) frequency with a 5% duty cycle until the short circuit condition is removed. This prevents excessive heating of the converter or the load board. 1,000 100 10 1 0 2 4 6 8 10 % Increase in Vout 12 14 16 18 20 % Decrease in Vout Figure C: Trim Graph for 26Vout module Note: the TRIM feature does not affect the voltage at which the output over-voltage protection circuit is triggered. Trimming the output voltage too high may cause the over-voltage protection circuit to engage, particularly during transients. It is not necessary for the user to add capacitance at the Trim pin. The node is internally bypassed to eliminate noise. Output Over-Voltage Limit: If the voltage across the output pins exceeds the Output Over-Voltage Protection threshold, the converter will immediately stop switching. This prevents damage to the load circuit due to 1) excessive series resistance in output current path from converter output pins to sense point, 2) a release of a short-circuit condition, or 3) a release of a current limit condition. Load capacitance determines exactly how high the output voltage will rise in response to these conditions. After 200 ms the converter will automatically restart. Over-Temperature Shutdown: A temperature sensor on the converter senses the average temperature of the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location reaches the Over-Temperature Shutdown value. It will allow the converter to turn on again when the temperature of the sensed location falls by the amount of the Over-Temperature Shutdown Restart Hysteresis value. Total DC Variation of Vout: For the converter to meet its full specifications, the maximum variation of the DC value of Vout, due to both trimming and remote load voltage drops, should not be greater than that specified for the output voltage trim range. Product # PQ60260HTB10 Phone 1-888-567-9596 www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 10 Input: Output: Current: Package: Technical Specification APPLICATION CONSIDERATIONS • Input Under-Voltage Lockout • Input Over-Voltage Shutdown (not present in Quarter-brick) Input System Instability: This condition can occur because any DC/DC converter appears incrementally as a negative resistance load. A detailed application note titled “Input System Instability” is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it. • Output Over-Voltage Protection • Over Temperature Shutdown • Current Limit • Short Circuit Protection Application Circuits: Figure D below provides a typical circuit diagram which details the input filtering and voltage trimming. • Turned off by the ON/OFF input Input Filtering and External Capacitance: Figure E below provides a diagram showing the internal input filter components. This filter dramatically reduces input terminal ripple current, which otherwise could exceed the rating of an external electrolytic input capacitor. The recommended external input capacitance is specified in the Input Characteristics section on the Electrical Specifications page. More detailed information is available in the application note titled “EMI Characteristics” on the SynQor website. Figure F shows three turn-on scenarios, where a Startup Inhibit Period is initiated at t0, t1, and t2: Before time t0, when the input voltage is below the UVL threshold, the unit is disabled by the Input Under-Voltage Lockout feature. When the input voltage rises above the UVL threshold, the Input Under-Voltage Lockout is released, and a Startup Inhibit Period is initiated. At the end of this delay, the ON/OFF pin is evaluated, and since it is active, the unit turns on. At time t1, the unit is disabled by the ON/OFF pin, and it cannot be enabled again until the Startup Inhibit Period has elapsed. Startup Inhibit Period: The Startup Inhibit Period ensures that the converter will remain off for approximately 200ms when it is shut down for any reason. When an output short is present, this generates a 5Hz “hiccup mode,” which prevents the converter from overheating. In all, there are seven ways that the converter can be shut down, initiating a Startup Inhibit Period: When the ON/OFF pin goes high after t2, the Startup Inhibit Period has elapsed, and the output turns on within the typical Turn-On Time. Vin(+) Vin External Input Filter 35-75 V 26 V 9.6 A (250W) Half-brick Electrolytic Capacitor 47µF Vout(+) Vsense(+) ON/OFF Trim Vsense(_) Vin(_) Rtrim-up or Rtrim-down Cload Iload Vout(_) Figure D: Typical application circuit (negative logic unit, permanently enabled). L Vin(+) C1 C2 Vin(_) Figure E: Internal Input Filter Diagram (component values listed on page 3). Product # PQ60260HTB10 Phone 1-888-567-9596 www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 11 Input: Output: Current: Package: Technical Specification Full Feature Application Notes This section provides some basic application information for the full-feature version of the PowerQor series converter. The pin-out configuration for these optional feature pins is shown on page 2, and the part numbering format is shown on the last page of this specification sheet. All units in this product family include back-drive protection to simplify the use of multiple converters in a parallel or sequencing application. However, any voltage applied to the output of the converter should be kept below 120% of the rated output voltage of the converter. In addition to back-drive protection, these units include the following features (pins): Current Share (pin 3): The active current share feature allows for N+1 and parallel applications. To achieve load sharing, directly connect the I share pins of multiple units. The load current will share equally among the multiple units (±5% at full rated current). It is important that the Vin(-) pins of the sharing units be directly connected and NOT placed outside of an EMI filter or other impedance path. The voltage at the I Share pin will range from 0 to 5 volts (at full rated current), referenced to the primary-side ground, Vin(-). Start Sync (pin B): The Start Synchronization pin will allow a more consistent start-up sequence. To operate this feature, connect together the Start-Sync pins of multiple current-sharing units. This will permit immediate start-up with loads greater than the current limit of a single unit. Without this connection, any set of converters attempting to asynchronously start (or re-start) with a load greater than the current limit of a single unit will “hiccup”. This “hiccup” mode will 35-75 V 26 V 9.6 A (250W) Half-brick continue until one converter attempts a start at the same time as the minimum number of additional units necessary to sustain the load condition. For example, three 50 amp units starting into a 90 amp load would require two units to simultaneously attempt a start. The Start Sync connection synchronizes these starting attempts and provides a more consistent and reliable start-up sequence. For details about the “hiccup mode” or repeated startup attempts, please see the “Startup Inhibit Period” note in this Technical Specification. Clock Sync (pin A): The External Clock Synchronization pin provides the ability for the user to control the EMI signature and synchronize sensitive circuitry to quiet periods in the converter operation. With this option, the converter can be synchronized to an external clock signal whose frequency is greater than that of the free-running internal clock. However, substantially raising the converter’s frequency will reduce its efficiency. Therefore, the recommended frequency range for the external clock synchronization signal applied to this pin would be the lowest value possible without dropping below the minimum frequency listed below: 340 KHz for the 26V unit The following requirements should also be met: •The external clock signal should be referenced to the negative input voltage, Vin(-). •The high level of the signal should be between 3.5V and 5.0V. •The low level should be between -0.5V and +1.2V. •Do not apply a clock signal lower than the specified frequency. Vin Under-Voltage Lockout Turn-On Threshold ON/OFF (pos logic) ON Vout OFF ON OFF ON 25ms (typical turn on time) 200ms (typical start-up inhibit period) t1 t0 200ms 200ms t t2 Figure F: Startup Inhibit Period (turn-on time not to scale) Product # PQ60260HTB10 Phone 1-888-567-9596 www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 12 Input: Output: Current: Package: Technical Specification 35-75 V 26 V 9.6 A (250W) Half-brick PART NUMBERING SYSTEM ORDERING INFORMATION The part numbering system for SynQor’s dc-dc converters follows the format shown in the example below. The tables below show the valid model numbers and ordering options for converters in this product family. When ordering SynQor converters, please ensure that you use the complete 15 character part number consisting of the 12 character base part number and the additional 3 characters for options. A “-G” suffix indicates the product is 6/6 RoHS compliant. P Q 60 2 60 H T B 10 N N S 6/6RoHS Options(see OrderingInformation) OutputCurrent ThermalDesign PerformanceLevel PackageSize OutputVoltage InputVoltage Model Number Input Voltage Output Voltage PQ60012HTB60xyz PQ60018HTB09xyz PQ60240HTB10xyz PQ60260HTB10xyz PQ60525HTB04xyz 35 - 75 V 35 - 75 V 35 - 75 V 35 - 75 V 35 - 75 V 1.2 V 18 V 24 V 26 V 52.5 V Maximum Output Current 60 A 9.2 A 9.6 A 9.6 A 3.8 A ProductFamily The first 12 characters comprise the base part number and the last 3 characters indicate available options. The “-G” suffix indicates 6/6 RoHS compliance. The following options must be included in place of the x y z spaces in the model numbers listed above. Options Description: x y z Application Notes A variety of application notes and technical white papers can be downloaded in pdf format from our website. RoHS Compliance: The EU led RoHS (Restriction of Hazardous Substances) Directive bans the use of Lead, Cadmium, Hexavalent Chromium, Mercury, Polybrominated Biphenyls (PBB), and Polybrominated Diphenyl Ether (PBDE) in Electrical and Electronic Equipment. This SynQor product is 6/6 RoHS compliant. For more information please refer to SynQor’s RoHS addendum available at our RoHS Compliance / Lead Free Initiative web page or e-mail us at [email protected]. Enable Logic Pin Style Feature Set P - Positive N - Negative K - 0.110" N - 0.145" R - 0.180" Y - 0.250" S - Standard F - Full Feature Not all combinations make valid part numbers, please contact SynQorforavailability. PATENTS SynQor holds the following patents, one or more of which might apply to this product: 5,999,417 6,594,159 6,927,987 7,119,524 6,222,742 6,731,520 7,050,309 7,269,034 6,545,890 6,894,468 7,072,190 7,272,021 6,577,109 6,896,526 7,085,146 7,272,023 Contact SynQor for further information: Phone: Toll Free: Fax: E-mail: Web: Address: Product # PQ60260HTB10 978-849-0600 888-567-9596 978-849-0602 [email protected] www.synqor.com 155 Swanson Road Boxborough, MA 01719 USA Phone 1-888-567-9596 Warranty SynQor offers a three (3) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor. Information furnished by SynQor is believed to be accurate and reliable. However, no responsibility is assumed by SynQor for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SynQor. www.synqor.com Doc.# 005-2HTB26F Rev. H 10/10/08 Page 13