...the world's most energy friendly microcontrollers EFM32LG395 DATASHEET F256/F128/F64 • ARM Cortex-M3 CPU platform • High Performance 32-bit processor @ up to 48 MHz • Memory Protection Unit • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.4 µA @ 3 V Shutoff Mode with RTC • 0.65 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 0.95 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 63 µA/MHz @ 3 V Sleep Mode • 211 µA/MHz @ 3 V Run Mode, with code executed from flash • 256/128/64 KB Flash • 32 KB RAM • 93 General Purpose I/O pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 16 asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • 12 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware AES with 128/256-bit keys in 54/75 cycles • Timers/Counters • 4× 16-bit Timer/Counter • 4×3 Compare/Capture/PWM channels • Dead-Time Insertion on TIMER0 • 16-bit Low Energy Timer • 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter • 3× 16/8-bit Pulse Counter • Watchdog Timer with dedicated RC oscillator @ 50 nA • Backup Power Domain • RTC and retention registers in a separate power domain, available in all energy modes • Operation from backup battery when main power drains out • External Bus Interface for up to 4×256 MB of external memory mapped space • TFT Controller with Direct Drive • Communication interfaces • 3× Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S • 2× Universal Asynchronous Receiver/Transmitter • 2× Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • 2× I C Interface with SMBus support • Address recognition in Stop Mode • Universal Serial Bus (USB) with Host & OTG support • Fully USB 2.0 compliant • On-chip PHY and embedded 5V to 3.3V regulator • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s Analog to Digital Converter • 8 single ended channels/4 differential channels • On-chip temperature sensor • 12-bit 500 ksamples/s Digital to Analog Converter • 2× Analog Comparator • Capacitive sensing with up to 16 inputs • 3× Operational Amplifier • 6.1 MHz GBW, Rail-to-rail, Programmable Gain • Supply Voltage Comparator • Low Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in Deep Sleep Mode • Wide range of sensors supported, including LC sensors and capacitive buttons • Ultra efficient Power-on Reset and Brown-Out Detector • Debug Interface • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • Embedded Trace Module v3.5 (ETM) • Pre-Programmed USB/UART Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.98 to 3.8 V • BGA120 package 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories • Alarm and security systems • Industrial and home automation ...the world's most energy friendly microcontrollers 1 Ordering Information Table 1.1 (p. 2) shows the available EFM32LG395 devices. Table 1.1. Ordering Information Ordering Code Flash (kB) RAM (kB) Max Speed (MHz) Supply Voltage (V) Temperature (ºC) Package EFM32LG395F64G-E-BGA120 64 32 48 1.98 - 3.8 -40 - 85 BGA120 EFM32LG395F128G-E-BGA120 128 32 48 1.98 - 3.8 -40 - 85 BGA120 EFM32LG395F256G-E-BGA120 256 32 48 1.98 - 3.8 -40 - 85 BGA120 Visit www.silabs.com for information on global distributors and representatives. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 2 www.silabs.com ...the world's most energy friendly microcontrollers 2 System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32LG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32LG395 devices. For a complete feature set and indepth information on the modules, the reader is referred to the EFM32LG Reference Manual. A block diagram of the EFM32LG395 is shown in Figure 2.1 (p. 3) . Figure 2.1. Block Diagram LG395F64/ 128/ 256 Core and Mem ory Clock Managem ent Mem ory Protection Unit ARM Cortex ™- M3 processor Flash Program Mem ory RAM Mem ory Debug Interface w/ ETM DMA Controller Energy Managem ent Aux High Freq. RC Oscillator High Freq RC Oscillator Voltage Regulator Voltage Com parator High Freq. Crystal Oscillator Low Freq. RC Oscillator Brown- out Detector Power- on Reset Low Freq. Crystal Oscillator Ultra Low Freq. RC Oscillator Back- up Power Dom ain 32- bit bus Peripheral Reflex System Serial Interfaces USART Low Energy UART USB UART 2 I C I/ O Ports Tim ers and Triggers Ex t. Bus Interface TFT Driver Ex ternal Interrupts General Purpose I/ O Pin Reset Pin Wakeup Tim er/ Counter LESENSE Low Energy Tim er Real Tim e Counter Pulse Counter Watchdog Tim er Analog Interfaces ADC DAC Back- up RTC Security Hardware AES Operational Am plifier Analog Com parator 2.1.1 ARM Cortex-M3 Core The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual. 2.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32LG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3 www.silabs.com ...the world's most energy friendly microcontrollers into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 2.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 2.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32LG. 2.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32LG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 2.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32LG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 2.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 2.1.10 External Bus Interface (EBI) The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices. 2.1.11 TFT Direct Drive The EBI contains a TFT controller which can drive a TFT via a 565 RGB interface. The TFT controller supports programmable display and port sizes and offers accurate control of frequency and setup and 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 4 www.silabs.com ...the world's most energy friendly microcontrollers hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface. 2.1.12 Universal Serial Bus Controller (USB) The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device, On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both fullspeed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for supplying 5V to VBUS when operating as host. 2.1.13 Inter-Integrated Circuit Interface (I2C) 2 2 The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. 2 The interface provided to software by the I C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 2.1.14 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 2.1.15 Pre-Programmed USB/UART Bootloader The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART without the need for a debugger. The autobaud feature, interface and commands are described further in the application note. 2.1.16 Universal Asynchronous Receiver/Transmitter (UART) The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication. 2.1.17 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) TM The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.18 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 5 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.19 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.20 Backup Real Time Counter (BURTC) The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it operational even if the main power should drain out. 2.1.21 Low Energy Timer (LETIMER) TM The unique LETIMER , the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC. 2.1.22 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 – EM3. 2.1.23 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.24 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.25 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals. 2.1.26 Digital to Analog Converter (DAC) The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output. 2.1.27 Operational Amplifier (OPAMP) The EFM32LG395 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 6 www.silabs.com ...the world's most energy friendly microcontrollers and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc. 2.1.28 Low Energy Sensor Interface (LESENSE) TM The Low Energy Sensor Interface (LESENSE ), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 2.1.29 Backup Power Domain The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup power domain enables the EFM32LG395 to keep track of time and retain data, even if the main power source should drain out. 2.1.30 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.31 General Purpose Input/Output (GPIO) In the EFM32LG395, there are 93 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. 2.2 Configuration Summary The features of the EFM32LG395 is a subset of the feature set described in the EFM32LG Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features. Table 2.1. Configuration Summary Module Configuration Pin Connections Cortex-M3 Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, DBG_SWO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 7 www.silabs.com ...the world's most energy friendly microcontrollers Module Configuration Pin Connections CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA USB Full configuration USB_VBUS, USB_VBUSEN, USB_VREGI, USB_VREGO, USB_DM, USB_DMPU, USB_DP, USB_ID EBI Full configuration EBI_A[27:0], EBI_AD[15:0], EBI_ARDY, EBI_ALE, EBI_BL[1:0], EBI_CS[3:0], EBI_CSTFT, EBI_DCLK, EBI_DTEN, EBI_HSNC, EBI_NANDREn, EBI_NANDWEn, EBI_REn, EBI_VSNC, EBI_WEn I2C0 Full configuration I2C0_SDA, I2C0_SCL I2C1 Full configuration I2C1_SDA, I2C1_SCL USART0 Full configuration with IrDA US0_TX, US0_RX. US0_CLK, US0_CS USART1 Full configuration with I2S US1_TX, US1_RX, US1_CLK, US1_CS USART2 Full configuration with I2S US2_TX, US2_RX, US2_CLK, US2_CS UART0 Full configuration U0_TX, U0_RX UART1 Full configuration U1_TX, U1_RX LEUART0 Full configuration LEU0_TX, LEU0_RX LEUART1 Full configuration LEU1_TX, LEU1_RX TIMER0 Full configuration with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 Full configuration TIM1_CC[2:0] TIMER2 Full configuration TIM2_CC[2:0] TIMER3 Full configuration TIM3_CC[2:0] RTC Full configuration NA BURTC Full configuration NA LETIMER0 Full configuration LET0_O[1:0] PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] PCNT1 Full configuration, 8-bit count register PCNT1_S[1:0] PCNT2 Full configuration, 8-bit count register PCNT2_S[1:0] ACMP0 Full configuration ACMP0_CH[7:0], ACMP0_O ACMP1 Full configuration ACMP1_CH[7:0], ACMP1_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[7:0] DAC0 Full configuration DAC0_OUT[1:0], DAC0_OUTxALT OPAMP Full configuration Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx AES Full configuration NA GPIO 93 pins Available pins are shown in Table 4.3 (p. 68) 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 8 www.silabs.com ...the world's most energy friendly microcontrollers 2.3 Memory Map The EFM32LG395 memory map is shown in Figure 2.2 (p. 9) , with RAM and Flash sizes for the largest memory configuration. Figure 2.2. EFM32LG395 Memory Map with largest RAM and Flash sizes 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 9 www.silabs.com ...the world's most energy friendly microcontrollers 3 Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10) , by simulation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 10) , by simulation and/or technology characterisation unless otherwise specified. 3.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 10) . Table 3.1. Absolute Maximum Ratings Symbol Parameter Condition Min Typ Max -40 Unit 150 1 TSTG Storage temperature range TS Maximum soldering temperature VDDMAX External main supply voltage 0 3.8 V VIOPIN Voltage on any I/O pin -0.3 VDD+0.3 V Latest IPC/JEDEC J-STD-020 Standard °C 260 °C 1 Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 3.3 General Operating Conditions 3.3.1 General Operating Conditions Table 3.2. General Operating Conditions Symbol Parameter TAMB Ambient temperature range VDDOP Operating supply voltage fAPB Internal APB clock frequency 48 MHz fAHB Internal AHB clock frequency 48 MHz 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 Min Typ -40 1.98 10 Max Unit 85 °C 3.8 V www.silabs.com ...the world's most energy friendly microcontrollers 3.3.2 Environmental Table 3.3. Environmental Symbol Parameter Condition Min Typ Max Unit VESDHBM ESD (Human Body Model HBM) TAMB=25°C 2500 V VESDCDM ESD (Charged Device Model, CDM) TAMB=25°C 500 V Latch-up sensitivity passed: ±100 mA/1.5 × VSUPPLY(max) according to JEDEC JESD 78 method Class II, 85°C. 3.4 Current Consumption Table 3.4. Current Consumption Symbol IEM0 Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) Condition Min Typ Max Unit 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 211 µA/ MHz 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 211 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 212 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 213 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 214 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 215 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 216 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 217 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 218 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 219 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 224 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 224 µA/ MHz 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 11 www.silabs.com ...the world's most energy friendly microcontrollers Symbol IEM1 IEM2 Parameter EM1 current (Production test condition = 14 MHz) EM2 current Condition Min Typ Max Unit 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 257 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 261 µA/ MHz 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 63 75 µA/ MHz 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 65 76 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 64 75 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 65 77 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 65 76 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 66 78 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 67 79 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 68 82 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 68 81 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 70 83 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 74 87 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 76 89 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 106 120 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 112 129 µA/ MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 12 1 0.95 1.7 1 µA www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter IEM3 Condition Min Typ Max 1 Unit 4.0 1 EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 3.0 µA VDD= 3.0 V, TAMB=25°C 0.65 1.3 µA VDD= 3.0 V, TAMB=85°C 2.65 4.0 µA VDD= 3.0 V, TAMB=25°C 0.02 0.055 µA VDD= 3.0 V, TAMB=85°C 0.44 0.9 µA EM3 current IEM4 EM4 current 1 Using backup RTC. 3.4.1 EM1 Current Consumption Figure 3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at 48MHz 3.10 3.10 3.05 3.05 Idd [m A] 3.15 Idd [m A] 3.15 3.00 3.00 - 40°C - 15°C 5°C 25°C 45°C 65°C 85°C 2.95 2.90 2.0 2.0V 2.2V 2.4V 2.6V 2.8V 3.0V 3.2V 3.4V 3.6V 3.8V 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.95 2.90 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 Figure 3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28MHz 1.80 1.80 1.75 1.75 Idd [m A] 1.85 Idd [m A] 1.85 1.70 1.70 - 40°C - 15°C 5°C 25°C 45°C 65°C 85°C 1.65 1.60 2.0 2.0V 2.2V 2.4V 2.6V 2.8V 3.0V 3.2V 3.4V 3.6V 3.8V 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3.4 3.6 1.65 1.60 –40 3.8 13 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 1.42 1.42 1.40 1.40 1.38 1.38 1.36 1.36 Idd [m A] Idd [m A] Figure 3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21MHz 1.34 1.32 - 40°C - 15°C 5°C 25°C 45°C 65°C 85°C 1.30 1.28 1.26 1.24 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.34 2.0V 2.2V 2.4V 2.6V 2.8V 3.0V 3.2V 3.4V 3.6V 3.8V 1.32 1.30 1.28 1.26 1.24 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 0.98 0.98 0.96 0.96 0.94 0.94 Idd [m A] Idd [m A] Figure 3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14MHz 0.92 - 40°C - 15°C 5°C 25°C 45°C 65°C 85°C 0.90 0.88 0.86 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3.4 3.6 2.0V 2.2V 2.4V 2.6V 2.8V 3.0V 3.2V 3.4V 3.6V 3.8V 0.92 0.90 0.88 0.86 –40 3.8 14 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 0.78 0.78 0.76 0.76 Idd [m A] Idd [m A] Figure 3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11MHz 0.74 - 40°C - 15°C 5°C 25°C 45°C 65°C 85°C 0.72 0.70 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0V 2.2V 2.4V 2.6V 2.8V 3.0V 3.2V 3.4V 3.6V 3.8V 0.74 0.72 0.70 3.8 –40 –15 5 25 Tem perature [°C] 45 65 85 0.52 0.52 0.51 0.51 0.50 0.50 0.49 0.49 Idd [m A] Idd [m A] Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6MHz 0.48 - 40°C - 15°C 5°C 25°C 45°C 65°C 85°C 0.47 0.46 0.45 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3.4 3.6 2.0V 2.2V 2.4V 2.6V 2.8V 3.0V 3.2V 3.4V 3.6V 3.8V 0.48 0.47 0.46 0.45 –40 3.8 15 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 1.2MHz 0.138 0.160 - 40°C - 15°C 5°C 25°C 45°C 65°C 85°C 0.136 0.134 0.150 0.145 Idd [m A] Idd [m A] 0.132 0.155 0.130 0.140 2.0V 2.2V 2.4V 2.6V 2.8V 3.0V 3.2V 3.4V 3.6V 3.8V 0.135 0.128 0.130 0.126 0.125 0.124 0.122 2.0 0.120 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.115 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 3.4.2 EM2 Current Consumption 1 Figure 3.8. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. 3.5 3.5 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 3.0 2.5 Idd [uA] Idd [uA] 2.5 3.0 2.0 2.0 1.5 1.5 1.0 1.0 0.5 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.5 –40 3.8 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –20 0 20 40 Tem perature [°C] 60 80 1 Using backup RTC. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 16 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.3 EM3 Current Consumption Figure 3.9. EM3 current consumption. 3.0 3.0 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.5 2.0 Idd [uA] Idd [uA] 2.0 2.5 1.5 1.5 1.0 1.0 0.5 0.5 0.0 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.0 –40 3.8 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –20 0 20 40 Tem perature [°C] 60 80 0 20 40 Tem perature [°C] 60 80 3.4.4 EM4 Current Consumption Figure 3.10. EM4 current consumption. 0.7 0.6 0.6 0.5 0.4 Idd [uA] Idd [uA] 0.5 0.7 - 40.0°C - 15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.3 0.4 0.3 0.2 0.2 0.1 0.1 0.0 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.0 –40 3.8 Vdd= 2.0V Vdd= 2.2V Vdd= 2.4V Vdd= 2.6V Vdd= 2.8V Vdd= 3.0V Vdd= 3.2V Vdd= 3.4V Vdd= 3.6V Vdd= 3.8V –20 3.5 Transition between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 3.5. Energy Modes Transitions Symbol Parameter tEM10 Transition time from EM1 to EM0 0 HFCORECLK cycles tEM20 Transition time from EM2 to EM0 2 µs tEM30 Transition time from EM3 to EM0 2 µs tEM40 Transition time from EM4 to EM0 163 µs 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 Min 17 Typ Max Unit www.silabs.com ...the world's most energy friendly microcontrollers 3.6 Power Management The EFM32LG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations". Table 3.6. Power Management Symbol Parameter Condition Min Typ Max VBODextthr- BOD threshold on falling external supply voltage VBODextthr+ BOD threshold on rising external supply voltage VPORthr+ Power-on Reset (POR) threshold on rising external supply voltage tRESET Delay from reset is released until program execution starts Applies to Power-on Reset, Brown-out Reset and pin reset. 163 µs CDECOUPLE Voltage regulator decoupling capacitor. X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF CUSB_VREGO USB voltage regulator out decoupling capacitor. X5R capacitor recommended. Apply between USB_VREGO pin and GROUND 1 µF CUSB_VREGI USB voltage regula- X5R capacitor recommended. tor in decoupling ca- Apply between USB_VREGI pacitor. pin and GROUND 4.7 µF 1.74 Unit 1.96 V 1.85 1.98 V 1.98 V 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 18 www.silabs.com ...the world's most energy friendly microcontrollers 3.7 Flash Table 3.7. Flash Symbol Parameter ECFLASH Flash erase cycles before failure Condition Min TAMB<150°C RETFLASH Flash data retention Typ Max Unit 20000 cycles 10000 h TAMB<85°C 10 years TAMB<70°C 20 years µs tW_PROG Word (32-bit) programming time 20 tPERASE Page erase time 20 20.4 20.8 ms tDERASE Device erase time 40 40.8 41.6 ms IERASE Erase current 7 1 mA IWRITE Write current 7 1 mA VFLASH Supply voltage during flash erase and write 1.98 3.8 V 1 Measured at 25°C 3.8 General Purpose Input Output Table 3.8. GPIO Symbol Parameter VIOIL Input low voltage VIOIH Input high voltage VIOOH Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Condition Min Typ Max Unit 0.30VDD V 0.70VDD V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.80VDD V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.90VDD V Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.85VDD V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.90VDD V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75VDD V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85VDD V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60VDD V 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 19 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH VIOOL Output low voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Typ Max 0.80VDD Unit V Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.20VDD V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.10VDD V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.10VDD V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.05VDD V Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.30VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.20VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.35VDD V Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.25VDD V IIOLEAK Input leakage current RPU I/O pin pull-up resistor 40 kOhm RPD I/O pin pull-down resistor 40 kOhm RIOESD Internal ESD series resistor 200 Ohm tIOGLITCH Pulse width of pulses to be removed by the glitch suppression filter tIOOF VIOHYST High Impedance IO connected to GROUND or Vdd ±0.1 ±100 nA 10 50 ns GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25pF. 20+0.1CL 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600pF 20+0.1CL 250 ns Output fall time I/O pin hysteresis (VIOTHR+ - VIOTHR-) VDD = 1.98 - 3.8 V 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 0.10VDD 20 V www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.11. Typical Low-Level Output Current, 2V Supply Voltage 5 0.20 4 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.15 0.10 3 2 0.05 1 - 40°C 25°C 85°C 0.00 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] - 40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low- Level Output Current [m A] Low- Level Output Current [m A] 15 10 30 25 20 15 5 10 5 - 40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 - 40°C 25°C 85°C 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 21 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.12. Typical High-Level Output Current, 2V Supply Voltage 0.00 0.0 - 40°C 25°C 85°C - 40°C 25°C 85°C –0.5 High- Level Output Current [m A] High- Level Output Current [m A] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –2.5 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] High- Level Output Current [m A] –5 –10 –20 –30 –15 –40 –20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –50 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 22 www.silabs.com ...the world's most energy friendly microcontrollers 0.5 10 0.4 8 Low- Level Output Current [m A] Low- Level Output Current [m A] Figure 3.13. Typical Low-Level Output Current, 3V Supply Voltage 0.3 0.2 0.1 6 4 2 - 40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 40 50 35 40 Low- Level Output Current [m A] Low- Level Output Current [m A] 30 25 20 15 30 20 10 10 5 0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 23 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.14. Typical High-Level Output Current, 3V Supply Voltage 0.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –1 High- Level Output Current [m A] High- Level Output Current [m A] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 2.5 3.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –50 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 24 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.15. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 14 0.7 12 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.6 0.5 0.4 0.3 10 8 6 4 0.2 2 0.1 0.0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 50 50 40 40 30 20 10 30 20 10 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low- Level Output Current [m A] Low- Level Output Current [m A] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 25 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.16. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 –0.1 0 - 40°C 25°C 85°C –1 - 40°C 25°C 85°C –2 High- Level Output Current [m A] High- Level Output Current [m A] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –50 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 26 www.silabs.com ...the world's most energy friendly microcontrollers 3.9 Oscillators 3.9.1 LFXO Table 3.9. LFXO Symbol Parameter Condition Min Typ Max fLFXO Supported nominal crystal frequency ESRLFXO Supported crystal equivalent series resistance (ESR) CLFXOL Supported crystal external load range ILFXO Current consumption for core and buffer after startup. ESR=30 kOhm, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 190 nA tLFXO Start- up time. ESR=30 kOhm, CL=10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 400 ms 32.768 kHz 30 X Unit 120 kOhm 1 25 pF 1 See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration". 3.9.2 HFXO Table 3.10. HFXO Symbol Parameter fHFXO Supported nominal crystal Frequency ESRHFXO The transconductance of the HFXO input transistor at crystal startup CHFXOL Supported crystal external load range tHFXO Min Typ Current consumption for HFXO after startup Startup time Max 4 Crystal frequency 48 MHz Supported crystal equivalent series re- Crystal frequency 32 MHz sistance (ESR) Crystal frequency 4 MHz gmHFXO IHFXO Condition HFXOBOOST in CMU_CTRL equals 0b11 Unit 48 MHz 50 Ohm 30 60 Ohm 400 1500 Ohm 20 mS 5 25 pF 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 85 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 165 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 400 µs 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 27 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.3 LFRCO Table 3.11. LFRCO Symbol Parameter fLFRCO Oscillation frequency , VDD= 3.0 V, TAMB=25°C tLFRCO Startup time not including software calibration 150 µs ILFRCO Current consumption 300 nA TUNESTEPL- Frequency step for LSB change in TUNING value 1.5 % FRCO Condition Min Typ 31.29 Max 32.768 Unit 34.28 kHz 42 42 40 40 38 38 Frequency [MHz] Frequency [MHz] Figure 3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage - 40°C 25°C 85°C 36 34 34 32 32 30 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3.4 3.6 30 –40 3.8 28 2.0 V 3.0 V 3.8 V 36 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.4 HFRCO Table 3.12. HFRCO Symbol Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C fHFRCO Condition Min Current consumption IHFRCO DCHFRCO Duty cycle TUNESTEPH- Frequency step for LSB change in TUNING value FRCO Unit 27.5 28.0 28.5 MHz 21 MHz frequency band 20.6 21.0 21.4 MHz 14 MHz frequency band 13.7 14.0 14.3 MHz 11 MHz frequency band 10.8 11.0 11.2 MHz 1 MHz frequency band Settling time after start-up Max 28 MHz frequency band 7 MHz frequency band tHFRCO_settling Typ 6.48 1 1.15 2 1 6.60 2 1.20 6.72 1 MHz 1.25 2 MHz fHFRCO = 14 MHz 0.6 fHFRCO = 28 MHz 165 215 µA fHFRCO = 21 MHz 134 175 µA fHFRCO = 14 MHz 106 140 µA fHFRCO = 11 MHz 94 125 µA fHFRCO = 6.6 MHz 77 105 µA fHFRCO = 1.2 MHz 25 40 µA 50 51 % 3 % fHFRCO = 14 MHz 48.5 Cycles 0.3 1 For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable. 3 The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 2 1.45 1.45 1.40 1.40 1.35 1.35 Frequency [MHz] Frequency [MHz] Figure 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 1.30 - 40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3.4 3.6 1.05 –40 3.8 29 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 6.70 6.70 6.65 6.65 6.60 6.60 Frequency [MHz] Frequency [MHz] Figure 3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature 6.55 6.50 6.45 6.40 6.50 6.45 6.40 - 40°C 25°C 85°C 6.35 6.30 2.0 6.55 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 6.30 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 11.2 11.2 11.1 11.1 11.0 11.0 Frequency [MHz] Frequency [MHz] Figure 3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 10.9 10.8 10.8 10.7 10.6 2.0 10.9 10.7 - 40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 10.6 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 14.2 14.2 14.1 14.1 14.0 14.0 Frequency [MHz] Frequency [MHz] Figure 3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature 13.9 13.8 13.7 13.6 13.8 13.7 13.6 - 40°C 25°C 85°C 13.5 13.4 2.0 13.9 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3.4 3.6 2.0 V 3.0 V 3.8 V 13.5 13.4 –40 3.8 30 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 21.2 21.2 21.0 21.0 Frequency [MHz] Frequency [MHz] Figure 3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 20.8 20.6 20.4 20.8 20.6 20.4 - 40°C 25°C 85°C 20.2 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 20.2 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 Figure 3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature 28.2 28.4 28.2 28.0 28.0 Frequency [MHz] Frequency [MHz] 27.8 27.6 27.4 27.8 27.6 27.4 27.2 27.2 - 40°C 25°C 85°C 27.0 26.8 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 3.4 3.6 2.0 V 3.0 V 3.8 V 27.0 26.8 –40 3.8 31 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.5 AUXHFRCO Table 3.13. AUXHFRCO Symbol fAUXHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C Condition Min Max Unit 28 MHz frequency band 27.5 28.0 28.5 MHz 21 MHz frequency band 20.6 21.0 21.4 MHz 14 MHz frequency band 13.7 14.0 14.3 MHz 11 MHz frequency band 10.8 11.0 11.2 MHz 6.48 1 1 1.15 2 7 MHz frequency band 1 MHz frequency band tAUXHFRCO_settlingSettling time after start-up fAUXHFRCO = 14 MHz DCAUXHFRCO fAUXHFRCO = 14 MHz Duty cycle Typ 6.60 2 1.20 0.6 48.5 TUNESTEPAUX- Frequency step for LSB change in HFRCO TUNING value 6.72 1 MHz 1.25 2 MHz Cycles 50 51 % 3 % 0.3 1 For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable. 3 The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 2 3.9.6 ULFRCO Table 3.14. ULFRCO Symbol Parameter Condition Min Typ Max fULFRCO Oscillation frequency 25°C, 3V TCULFRCO Temperature coefficient 0.05 %/°C VCULFRCO Supply voltage coefficient -18.2 %/V 0.7 Unit 1.75 kHz 3.10 Analog Digital Converter (ADC) Table 3.15. ADC Symbol Parameter VADCIN Input voltage range Condition Min Single ended Differential VADCREFIN Input range of external reference voltage, single ended and differential VADCREFIN_CH7 Input range of external negative reference voltage on channel 7 See VADCREFIN 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 32 Typ Max Unit 0 VREF V -VREF/2 VREF/2 V 1.25 VDD V 0 VDD - 1.1 V www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter VADCREFIN_CH6 Input range of external positive reference voltage on channel 6 VADCCMIN Common mode input range IADCIN Input current CMRRADC Analog input common mode rejection ratio IADC Average active current IADCREF Current consumption of internal voltage reference CADCIN Input capacitance RADCIN Input ON resistance RADCFILT Input RC filter resistance CADCFILT Input RC filter/decoupling capacitance fADCCLK ADC Clock Frequency tADCCONV Condition Min See VADCREFIN Typ Acquisition time tADCACQVDD3 Required acquisition time for VDD/3 reference Unit 0.625 VDD V 0 VDD V 2pF sampling capacitors <100 nA 65 dB 1 MSamples/s, 12 bit, external reference 351 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b00 67 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01 63 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10 64 µA Internal voltage reference 65 µA 2 pF 1 MOhm 10 250 kOhm fF 13 MHz 6 bit 7 ADCCLK Cycles 8 bit 11 ADCCLK Cycles 12 bit 13 ADCCLK Cycles 1 256 ADCCLK Cycles Conversion time tADCACQ Max Programmable 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 2 33 µs www.silabs.com ...the world's most energy friendly microcontrollers Symbol tADCSTART SNRADC Parameter Condition Min Max Unit Startup time of reference generator and ADC core in NORMAL mode 5 µs Startup time of reference generator and ADC core in KEEPADCWARM mode 1 µs 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 59 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 1 MSamples/s, 12 bit, single ended, VDD reference 65 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 65 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 67 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 69 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 200 kSamples/s, 12 bit, single ended, VDD reference 67 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 66 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 70 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 62 dB 1 MSamples/s, 12 bit, single ended, VDD reference 64 dB Signal to Noise Ratio (SNR) 200 kSamples/s, 12 bit, differential, VDD reference SINADADC Typ SIgnal-to-Noise And Distortion-ratio (SINAD) 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 34 63 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min SFDRADC Max Unit 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 64 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 66 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 68 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 61 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 65 dB 200 kSamples/s, 12 bit, single ended, VDD reference 66 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 66 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 69 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 64 dBc 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 76 dBc 1 MSamples/s, 12 bit, single ended, VDD reference 73 dBc 1 MSamples/s, 12 bit, differential, internal 1.25V reference 66 dBc 1 MSamples/s, 12 bit, differential, internal 2.5V reference 77 dBc 1 MSamples/s, 12 bit, differential, VDD reference 76 dBc 1 MSamples/s, 12 bit, differential, 2xVDD reference 75 dBc 1 MSamples/s, 12 bit, differential, 5V reference 69 dBc 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 75 dBc 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 75 dBc 200 kSamples/s, 12 bit, differential, VDD reference Spurious-Free Dynamic Range (SFDR) Typ 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 35 62 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ 76 dBc 200 kSamples/s, 12 bit, differential, internal 1.25V reference 79 dBc 200 kSamples/s, 12 bit, differential, internal 2.5V reference 79 dBc 200 kSamples/s, 12 bit, differential, 5V reference 78 dBc 79 dBc 79 dBc 0.3 3 mV 0.3 mV 68 200 kSamples/s, 12 bit, differential, 2xVDD reference After calibration, single ended -3.5 Offset voltage After calibration, differential TGRADADCTH Thermometer output gradient DNLADC Differential non-linearity (DNL) INLADC Integral non-linearity (INL), End point method MCADC No missing codes -1 11.999 OFFSETED 1 -1.92 mV/°C -6.3 ADC Codes/ °C ±0.7 4 LSB ±1.2 ±3 LSB 12 2 1.25V reference GAINED Unit 200 kSamples/s, 12 bit, single ended, VDD reference 200 kSamples/s, 12 bit, differential, VDD reference VADCOFFSET Max 0.033 2 0.03 3 %/°C 2 0.7 3 LSB/°C 2 0.62 3 LSB/°C 0.01 Gain error drift 2.5V reference 0.01 1.25V reference 0.2 2.5V reference 0.2 Offset error drift bits 3 %/°C 1 On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue. 2 Typical numbers given by abs(Mean) / (85 - 25). 3 Max number given by (abs(Mean) + 3x stddev) / (85 - 25). The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.24 (p. 37) and Figure 3.25 (p. 37) , respectively. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 36 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.24. Integral Non-Linearity (INL) Digital ouput code INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1 4095 4094 Actual ADC tranfer function before offset and gain correction 4093 4092 Actual ADC tranfer function after offset and gain correction INL Error (End Point INL) Ideal transfer curve 3 2 1 VOFFSET 0 Analog Input Figure 3.25. Differential Non-Linearity (DNL) Digital ouput code DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2 Full Scale Range 4095 4094 Example: Adjacent input value VD+ 1 corrresponds to digital output code D+ 1 4093 4092 Actual transfer function with one m issing code. Example: Input value VD corrresponds to digital output code D Code width = 2 LSB DNL= 1 LSB Ideal transfer curve 5 0.5 LSB Ideal spacing between two adjacent codes VLSBIDEAL= 1 LSB 4 3 2 1 Ideal 50% Transition Point Ideal Code Center 0 Analog Input 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 37 www.silabs.com ...the world's most energy friendly microcontrollers 3.10.1 Typical performance Figure 3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 38 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 39 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 40 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.29. ADC Absolute Offset, Common Mode = Vdd /2 5 2.0 Vref= 1V25 Vref= 2V5 Vref= 2XVDDVSS Vref= 5VDIFF Vref= VDD 4 1.5 2 Actual Offset [LSB] Actual Offset [LSB] 3 VRef= 1V25 VRef= 2V5 VRef= 2XVDDVSS VRef= 5VDIFF VRef= VDD 1 0 –1 1.0 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 –1.0 –40 3.8 Offset vs Supply Voltage, Temp = 25°C –15 5 25 Tem p (C) 45 65 85 Offset vs Temperature, Vdd = 3V Figure 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [dB] SNR [dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 25 Tem perature [°C] 45 65 5VDIFF 1V25 85 78.0 –40 Signal to Noise Ratio (SNR) 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 –15 5 25 Tem perature [°C] 45 65 85 Spurious-Free Dynamic Range (SFDR) 41 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.31. ADC Temperature sensor readout 2600 Vdd= 2.0 Vdd= 3.0 Vdd= 3.8 Sensor readout 2500 2400 2300 2200 2100 –40 –25 –15 –5 5 15 25 35 Tem perature [°C] 45 55 65 75 85 3.11 Digital Analog Converter (DAC) Table 3.16. DAC Symbol VDACOUT VDACCM Parameter Output voltage range Condition Min Typ 0 VDD V VDD voltage reference, differential -VDD VDD V 0 VDD V 500 kSamples/s, 12 bit IDAC 100 kSamples/s, 12 bit 1 kSamples/s 12 bit NORMAL SRDAC Sample rate fDAC DAC clock frequency 400 1 µA 200 1 µA 1 µA 17 500 ksamples/s Continuous Mode CYCDACCONV Clock cyckles per conversion tDACCONV Conversion time tDACSETTLE Settling time SNRDAC Signal to Noise Ratio (SNR) Unit VDD voltage reference, single ended Output common mode voltage range Active current including references for 2 channels Max 1000 kHz Sample/Hold Mode 250 kHz Sample/Off Mode 250 kHz 2 2 µs 5 µs 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 59 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 58 dB 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 42 www.silabs.com ...the world's most energy friendly microcontrollers Symbol SNDRDAC SFDRDAC VDACOFFSET Parameter Signal to Noisepulse Distortion Ratio (SNDR) Spurious-Free Dynamic Range(SFDR) Condition Min Typ Max Unit 500 kSamples/s, 12 bit, differential, internal 2.5V reference 58 dB 500 kSamples/s, 12 bit, differential, VDD reference 59 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 57 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 54 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 56 dB 500 kSamples/s, 12 bit, differential, internal 2.5V reference 53 dB 500 kSamples/s, 12 bit, differential, VDD reference 55 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dBc 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 56 dBc 500 kSamples/s, 12 bit, differential, internal 1.25V reference 61 dBc 500 kSamples/s, 12 bit, differential, internal 2.5V reference 55 dBc 500 kSamples/s, 12 bit, differential, VDD reference 60 dBc After calibration, single ended 2 9 mV After calibration, differential 2 mV Offset voltage DNLDAC Differential non-linearity ±1 LSB INLDAC Integral non-linearity ±5 LSB MCDAC No missing codes 12 bits 1 Measured with a static input code and no loading on the output. 3.12 Operational Amplifier (OPAMP) The electrical characteristics for the Operational Amplifiers are based on simulations. Table 3.17. OPAMP Symbol IOPAMP Parameter Active Current Condition Min Typ Max Unit (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain 370 460 µA (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain 95 135 µA 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 43 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, Unity Gain GOL GBWOPAMP PMOPAMP Open Loop Gain Gain Bandwidth Product Phase Margin RINPUT Input Resistance RLOAD Load Resistance ILOAD_DC DC Load Current VINPUT Input Voltage VOUTPUT 25 µA (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 101 dB (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 98 dB (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 91 dB (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 6.1 MHz (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 1.8 MHz (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 0.25 MHz (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, CL=75 pF 64 ° (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, CL=75 pF 58 ° (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, CL=75 pF 58 ° 100 200 Ohm OPAxHCMDIS=0 VSS VDD V OPAxHCMDIS=1 VSS VDD-1.2 V VSS VDD V Output Voltage -13 0 11 mV 1 mV Input Offset Voltage VOFFSET_DRIFT Input Offset Voltage Drift NOPAMP Mohm 11 mA Unity Gain, VSS<Vin<VDD-1.2, OPAxHCMDIS=1 SROPAMP Unit 13 Unity Gain, VSS<Vin<VDD, OPAxHCMDIS=0 VOFFSET Max Slew Rate Voltage Noise 0.02 mV/°C (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 3.2 V/µs (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 0.8 V/µs (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 0.1 V/µs Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 101 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 141 µVRMS 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 44 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 196 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 229 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 1230 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 2130 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 1630 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 2590 µVRMS Figure 3.32. OPAMP Common Mode Rejection Ratio Figure 3.33. OPAMP Positive Power Supply Rejection Ratio 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 45 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.34. OPAMP Negative Power Supply Rejection Ratio Figure 3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V Figure 3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 46 www.silabs.com ...the world's most energy friendly microcontrollers 3.13 Analog Comparator (ACMP) Table 3.18. ACMP Symbol Parameter VACMPIN Input voltage range 0 VDD V VACMPCM ACMP Common Mode voltage range 0 VDD V IACMP IACMPREF Active current Current consumption of internal voltage reference Condition Min Typ Max Unit BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register 0.1 0.4 µA BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register 2.87 15 µA BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register 195 520 µA Internal voltage reference off. Using external voltage reference 0 µA Internal voltage reference 5 µA 0 12 mV VACMPOFFSET Offset voltage BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register VACMPHYST ACMP hysteresis Programmable 17 mV CSRESSEL=0b00 in ACMPn_INPUTSEL 39 kOhm CSRESSEL=0b01 in ACMPn_INPUTSEL 71 kOhm CSRESSEL=0b10 in ACMPn_INPUTSEL 104 kOhm CSRESSEL=0b11 in ACMPn_INPUTSEL 136 kOhm RCSRES tACMPSTART Capacitive Sense Internal Resistance Startup time -12 10 µs The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 47) . IACMPREF is zero if an external voltage reference is used. Total ACMP Active Current IACMPTOTAL = IACMP + IACMPREF 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 47 (3.1) www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 4.5 2.5 HYSTSEL= 0.0 HYSTSEL= 2.0 HYSTSEL= 4.0 HYSTSEL= 6.0 4.0 3.5 Response Tim e [us] Current [uA] 2.0 1.5 1.0 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 0.0 12 Current consumption, HYSTSEL = 4 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response time 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12.0 Hysteresis [m V] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 48 www.silabs.com ...the world's most energy friendly microcontrollers 3.14 Voltage Comparator (VCMP) Table 3.19. VCMP Symbol Parameter VVCMPIN Input voltage range VDD V VVCMPCM VCMP Common Mode voltage range VDD V IVCMP Condition Min Typ Max Unit BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register 0.3 0.6 µA BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. 22 35 µA NORMAL 10 µs Single ended 10 mV Differential 10 mV 61 210 mV Active current tVCMPREF Startup time reference generator VVCMPOFFSET Offset voltage VVCMPHYST VCMP hysteresis tVCMPSTART Startup time 10 µs The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VCMP Trigger Level as a Function of Level Setting VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL (3.2) 3.15 EBI Figure 3.38. EBI Write Enable Timing WRSETUP (0, 1, 2, ...) EBI_BL[N- 1:0] WRSTRB (1, 2, 3, ...) Z EBI_BL t OSU_WEn EBI_A[N- 1:0] t OH_WEn Z EBI_A t OSU_WEn EBI_AD[15:0] WRHOLD (0, 1, 2, ...) t OH_WEn Z DATA[15:0] t OSU_WEn t OH_WEn t OSU_WEn t OH_WEn EBI_CSn t WIDTH_WEn EBI_WEn 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 49 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.20. EBI Write Enable Timing Symbol Parameter Min tOH_WEn 1 2 3 4 Output hold time, from trailing EBI_WEn/ EBI_NANDWEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid tOSU_WEn 1 2 3 4 5 Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn/ EBI_NANDWEn edge tWIDTH_WEn 1 2 3 4 5 EBI_WEn/EBI_NANDWEn pulse width Typ Max Unit -6.00 + (WRHOLD * tHFCORECLK) ns -14.00 + (WRSETUP * tHFCORECLK) ns -7.00 + ((WRSTRB +1) * tHFCORECLK) ns 1 Applies for all addressing modes (figure only shows D16 addressing mode) Applies for both EBI_WEn and EBI_NANWEn (figure only shows EBI_WEn) 3 Applies for all polarities (figure only shows active low signals) 4 Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 5 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of tWIDTH_WEn and increases the length of tOSU_WEn by 1/2 * tHFCLKNODIV. 2 Figure 3.39. EBI Address Latch Enable Related Output Timing ADDRSETUP (1, 2, 3, ...) EBI_AD[15:0] ADDRHOLD (0, 1, 2, ...) WRSETUP (0, 1, 2, ...) WRSTRB (1, 2, 3, ...) ADDR[16:1] WRHOLD (0, 1, 2, ...) DATA[15:0] Z t WIDTH_ALEn EBI_ALE t OSU_ALEn t WIDTH_ALEn EBI_CSn EBI_WEn Table 3.21. EBI Address Latch Enable Related Output Timing Symbol Parameter Min Typ Max Unit tOH_ALEn 1 2 3 4 Output hold time, from trailing EBI_ALE edge to EBI_AD invalid -6.00 + (AD5 DRHOLD * tHFCORECLK) ns tOSU_ALEn 1 2 4 Output setup time, from EBI_AD valid to leading EBI_ALE edge -13.00 + (0 * tHFCORECLK) ns tWIDTH_ALEn 1 2 3 4 EBI_ALEn pulse width -7.00 + (ADDRSETUP+1) * tHFCORECLK) ns 1 Applies to addressing modes D8A24ALE and D16A16ALE (figure only shows D16A16ALE) Applies for all polarities (figure only shows active low signals) 3 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALE can be moved to the left by setting HALFALE=1. This decreases the length of tWIDTH_ALEn and increases the length of tOH_ALEn by tHFCORECLK - 1/2 * tHFCLKNODIV. 4 Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 5 Figure only shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state. 2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 50 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.40. EBI Read Enable Related Output Timing RDSETUP (0, 1, 2, ...) EBI_BL[1:0] RDSTRB (1, 2, 3, ...) RDHOLD (0, 1, 2, ...) EBI_BL Z t SU_REn EBI_A[27:0] t H_REn EBI_A Z t H_REn t SU_REn EBI_AD[15:8] ADDR[7:0] Z t SU_REn t H_REn t SU_REn t H_REn EBI_CSn EBI_AD[7:0] Z DATA[7:0] Z t WIDTH_REn EBI_REn Table 3.22. EBI Read Enable Related Output Timing Symbol Parameter Min Typ Max Unit tOH_REn 1 2 3 4 Output hold time, from trailing EBI_REn/ EBI_NANDREn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid -10.00 + (RDHOLD * tHFCORECLK) ns tOSU_REn 1 2 3 4 5 Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_REn/EBI_NANDREn edge -10.00 + (RDSETUP * tHFCORECLK) ns tWIDTH_REn 1 2 3 4 5 6 EBI_REn pulse width -9.00 + ((RDSTRB+1) * tHFCORECLK) ns 1 Applies for all addressing modes (figure only shows D8A8. Output timing for EBI_AD only applies to multiplexed addressing modes D8A24ALE and D16A16ALE) 2 Applies for both EBI_REn and EBI_NANDREn (figure only shows EBI_REn) 3 Applies for all polarities (figure only shows active low signals) 4 Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 5 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of tWIDTH_REn and increases the length of tOSU_REn by 1/2 * tHFCLKNODIV. 6 When page mode is used, RDSTRB is replaced by RDPA for page hits. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 51 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.41. EBI Read Enable Related Timing Requirements EBI_A[N- 1:0] ADDR[N:1] EBI_AD[15:0] Z RDHOLD (0, 1, 2, ...) RDSTRB (1, 2, 3, ...) RDSETUP (0, 1, 2, ...) Z DATA[15:0] Z EBI_CSn t SU_REn EBI_REn t H_REn Table 3.23. EBI Read Enable Related Timing Requirements Symbol Parameter Min Typ Max Unit tSU_REn 1 2 3 4 Setup time, from EBI_AD valid to trailing EBI_REn edge 37 ns tH_Ren 1 2 3 4 Hold time, from trailing EBI_REn edge to EBI_AD invalid -1 ns 1 Applies for all addressing modes (figure only shows D16A8). Applies for both EBI_REn and EBI_NANDREn (figure only shows EBI_REn) 3 Applies for all polarities (figure only shows active low signals) 4 Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 Figure 3.42. EBI Ready/Wait Related Timing Requirements RDSETUP (0, 1, 2, ...) RDSTRB (1, 2, 3, ...) SYNC (3) RDHOLD (0, 1, 2, ...) EBI_RDY EBI_AD[15:0] DATA[15:0] Z EBI_CSn t SU_ARDY EBI_REn t H_ARDY Table 3.24. EBI Ready/Wait Related Timing Requirements Symbol Parameter Min tSU_ARDY 1 2 3 4 Setup time, from EBI_ARDY valid to trailing EBI_REn, EBI_WEn edge 37 + (3 * tHFCORECLK) 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 52 Typ Max Unit ns www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Min tH_ARDY 1 2 3 4 Hold time, from trailing EBI_REn, EBI_WEn edge to EBI_ARDY invalid Typ Max Unit -1 + (3 * tHFCORECLK) ns 1 Applies for all addressing modes (figure only shows D16A8.) Applies for EBI_REn, EBI_WEn (figure only shows EBI_REn) 3 Applies for all polarities (figure only shows active low signals) 4 Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 3.16 I2C Table 3.25. I2C Standard-mode (Sm) Symbol Parameter Min Typ Max 0 Unit 100 1 fSCL SCL clock frequency tLOW SCL clock low time 4.7 µs tHIGH SCL clock high time 4.0 µs tSU,DAT SDA set-up time 250 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 4.7 µs tHD,STA (Repeated) START condition hold time 4.0 µs tSU,STO STOP condition set-up time 4.0 µs tBUF Bus free time between a STOP and a START condition 4.7 µs 2,3 8 3450 kHz ns 1 For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32LG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 4). 2 Table 3.26. I2C Fast-mode (Fm) Symbol Parameter Min Typ fSCL SCL clock frequency tLOW SCL clock low time 1.3 µs tHIGH SCL clock high time 0.6 µs tSU,DAT SDA set-up time 100 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 0.6 µs tHD,STA (Repeated) START condition hold time 0.6 µs tSU,STO STOP condition set-up time 0.6 µs tBUF Bus free time between a STOP and a START condition 1.3 µs 0 8 Max Unit 400 1 2,3 900 kHz ns 1 For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32LG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 4). 2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 53 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.27. I2C Fast-mode Plus (Fm+) Symbol Parameter Min Typ Max Unit fSCL SCL clock frequency tLOW SCL clock low time 0.5 µs tHIGH SCL clock high time 0.26 µs tSU,DAT SDA set-up time 50 ns tHD,DAT SDA hold time 8 ns tSU,STA Repeated START condition set-up time 0.26 µs tHD,STA (Repeated) START condition hold time 0.26 µs tSU,STO STOP condition set-up time 0.26 µs tBUF Bus free time between a STOP and a START condition 0.5 µs 1 0 1000 kHz 1 For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32LG Reference Manual. 3.17 USART SPI Figure 3.43. SPI Master Timing CS t CS_MO t SCKL_MO SCLK CLKPOL = 0 t SCLK SCLK CLKPOL = 1 MOSI t SU_MI t H_MI MISO Table 3.28. SPI Master Timing Symbol Parameter tSCLK 1 2 SCLK period Condition Min Typ 2 * tHFPER- Max Unit ns CLK tCS_MO 1 2 CS to MOSI -2.00 2.00 ns tSCLK_MO 1 2 SCLK to MOSI -1.00 3.00 ns tSU_MI 1 2 MISO setup time 36.00 ns tH_MI 1 2 MISO hold time -6.00 ns IOVDD = 3.0 V 1 Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 54 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.29. SPI Master Timing with SSSEARLY and SMSDELAY Symbol Parameter tSCLK 1 2 SCLK period Condition Min Typ Max 2 * tHFPER- Unit ns CLK tCS_MO 12 CS to MOSI -2.00 2.00 ns tSCLK_MO 12 SCLK to MOSI -1.00 3.00 ns tSU_MI 12 MISO setup time -32.00 ns tH_MI 12 MISO hold time 63.00 ns IOVDD = 3.0 V 1 Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 Figure 3.44. SPI Slave Timing CS t CS_ACT_MI t CS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 t SCLK_HI t SU_MO t SCLK_LO t SCLK t H_MO MOSI t SCLK_MI MISO Table 3.30. SPI Slave Timing Symbol Parameter tSCLK_sl 1 2 SCKL period Min Typ Max 6 * tHFPER- Unit ns CLK tSCLK_hi 1 2 SCLK high period 3 * tHFPER- ns CLK tSCLK_lo 1 2 SCLK low period 3 * tHFPER- ns CLK tCS_ACT_MI 1 2 CS active to MISO 5.00 35.00 ns tCS_DIS_MI 1 2 CS disable to MISO 5.00 35.00 ns tSU_MO 1 2 MOSI setup time 5.00 ns tH_MO 1 2 MOSI hold time 2 + 2 * tHF- ns PERCLK tSCLK_MI 1 2 SCLK to MISO 7 + tHFPER- 42 + 2 * ns tHFPERCLK CLK 1 Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 Table 3.31. SPI Slave Timing with SSSEARLY and SMSDELAY Symbol Parameter tSCLK_sl 12 SCKL period Min Typ 6 * tHFPER- Max Unit ns CLK 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 55 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter tSCLK_hi 12 SCLK high period Min Typ Max 3 * tHFPER- Unit ns CLK tSCLK_lo 12 SCLK low period 3 * tHFPER- ns CLK tCS_ACT_MI 12 CS active to MISO 5.00 35.00 ns tCS_DIS_MI 12 CS disable to MISO 5.00 35.00 ns tSU_MO 12 MOSI setup time 5.00 ns tH_MO 12 MOSI hold time 2 + 2 * tHF- ns PERCLK tSCLK_MI 12 SCLK to MISO -264 + tHF- -234 + 2 * ns tHFPERCLK PERCLK 1 Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 3.18 Digital Peripherals Table 3.32. Digital Peripherals Symbol Parameter Condition IUSART USART current USART idle current, clock enabled 4.0 µA/ MHz IUART UART current UART idle current, clock enabled 3.8 µA/ MHz ILEUART LEUART current LEUART idle current, clock enabled 194.0 II2C I2C current I2C idle current, clock enabled 7.6 µA/ MHz ITIMER TIMER current TIMER_0 idle current, clock enabled 6.5 µA/ MHz ILETIMER LETIMER current LETIMER idle current, clock enabled 85.8 nA IPCNT PCNT current PCNT idle current, clock enabled 91.4 nA IRTC RTC current RTC idle current, clock enabled 54.6 nA IAES AES current AES idle current, clock enabled 1.8 µA/ MHz IGPIO GPIO current GPIO idle current, clock enabled 3.4 µA/ MHz IEBI EBI current EBI idle current, clock enabled 6.5 µA/ MHz IPRS PRS current PRS idle current 3.9 µA/ MHz IDMA DMA current Clock enable 10.9 µA/ MHz 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 Min 56 Typ Max Unit nA www.silabs.com ...the world's most energy friendly microcontrollers 4 Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32LG395. 4.1 Pinout The EFM32LG395 pinout is shown in Figure 4.1 (p. 57) and Table 4.1 (p. 57). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 4.1. EFM32LG395 Pinout (top view, not to scale) Table 4.1. Device Pinout Pin Alternate Functionality / Description Pin # BGA120 Pin# and Name Pin Name Analog A1 PE15 EBI_AD07 #0/1/2 TIM3_CC1 #0 LEU0_RX #2 A2 PE14 EBI_AD06 #0/1/2 TIM3_CC0 #0 LEU0_TX #2 A3 PE12 EBI_AD04 #0/1/2 TIM1_CC2 #1 US0_RX #3 US0_CLK #0 I2C0_SDA #6 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 EBI Timers Communication 57 Other CMU_CLK1 #2 LES_ALTEX6 #0 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # BGA120 Pin# and Name Pin Name Analog EBI Timers PCNT2_S1IN #1 Communication Other A4 PE9 EBI_AD01 #0/1/2 A5 PD11 EBI_CS2 #0/1/2 A6 PD9 EBI_CS0 #0/1/2 A7 PF7 EBI_BL1 #0/1/2 TIM0_CC1 #2 U0_RX #0 A8 PF5 EBI_REn #0/2 TIM0_CDTI2 #2/5 USB_VBUSEN #0 A9 PF4 EBI_WEn #0/2 TIM0_CDTI1 #2/5 A10 PF2 EBI_ARDY #0/1/2 TIM0_CC2 #5 A11 USB_VREGI USB Input to internal 3.3 V regulator. A12 USB_VREGO USB Decoupling for internal 3.3 V USB regulator and regulator output. A13 PF11 B1 PA15 EBI_AD08 #0/1/2 B2 PE13 EBI_AD05 #0/1/2 B3 PE11 EBI_AD03 #0/1/2 TIM1_CC1 #1 B4 PE8 EBI_AD00 #0/1/2 PCNT2_S0IN #1 PRS_CH3 #1 B5 PD12 EBI_CS3 #0/1/2 B6 PD10 EBI_CS1 #0/1/2 B7 PF8 EBI_WEn #1 TIM0_CC2 #2 ETM_TCLK #1 B8 PF6 EBI_BL0 #0/1/2 TIM0_CC0 #2 B9 PF3 EBI_ALE #0 TIM0_CDTI0 #2/5 B10 PF1 B11 PF12 B12 USB_VBUS B13 PF10 C1 PA1 EBI_AD10 #0/1/2 TIM0_CC1 #0/1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 C2 PA0 EBI_AD09 #0/1/2 TIM0_CC0 #0/1/4 LEU0_RX #4 I2C0_SDA #0 PRS_CH0 #0 GPIO_EM4WU0 C3 PE10 EBI_AD02 #0/1/2 TIM1_CC0 #1 US0_TX #0 BOOT_TX C4 PD13 C5 VSS C6 IOVDD_0 C7 PF9 C8 VSS C9 IOVDD_1 C10 PF0 PRS_CH2 #1 PRS_CH1 #1 LEU0_TX #4 ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4 U1_RX #1 USB_DP TIM3_CC2 #0 TIM0_CC1 #5 LETIM0_OUT1 #2 US0_TX #3 US0_CS #0 I2C0_SCL #6 LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5 US0_RX #0 LES_ALTEX5 #0 BOOT_RX U0_TX #0 PRS_CH0 #1 ETM_TD3 #1 US1_CS #2 LEU0_RX #3 I2C0_SCL #5 DBG_SWDIO #0/1/2/3 GPIO_EM4WU3 USB_ID USB 5.0 V VBUS input. U1_TX #1 USB_DM ETM_TD1 #1 Ground Digital IO power supply 0. EBI_REn #1 ETM_TD0 #1 Ground Digital IO power supply 1. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 TIM0_CC0 #5 LETIM0_OUT0 #2 58 US1_CLK #2 LEU0_TX #3 DBG_SWCLK #0/1/2/3 www.silabs.com ...the world's most energy friendly microcontrollers Pin # BGA120 Pin# and Name Pin Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other I2C0_SDA #5 C11 PE4 EBI_A11 #0/1/2 US0_CS #1 C12 PC14 ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0 US0_CS #3 U0_TX #3 LES_CH14 #0 C13 PC15 ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT TIM0_CDTI2 #1/3 TIM1_CC2 #0 US0_CLK #3 U0_RX #3 LES_CH15 #0 DBG_SWO #1 D1 PA3 EBI_AD12 #0/1/2 TIM0_CDTI0 #0 U0_TX #2 LES_ALTEX2 #0 ETM_TD1 #3 D2 PA2 EBI_AD11 #0/1/2 TIM0_CC2 #0/1 D3 PB15 D11 PE5 D12 PC12 ACMP1_CH4 DAC0_OUT1ALT #0/ OPAMP_OUT1ALT D13 PC13 ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT E1 PA6 EBI_AD15 #0/1/2 E2 PA5 EBI_AD14 #0/1/2 E3 PA4 EBI_AD13 #0/1/2 E11 PE6 EBI_A13 #0/1/2 E12 PC10 ACMP1_CH2 EBI_A10 #1/2 E13 PC11 ACMP1_CH3 EBI_ALE #1/2 F1 PB0 EBI_A16 #0/1/2 TIM1_CC0 #2 F2 PB1 EBI_A17 #0/1/2 TIM1_CC1 #2 F3 PB2 EBI_A18 #0/1/2 TIM1_CC2 #2 F11 PE7 EBI_A14 #0/1/2 F12 PC8 ACMP1_CH0 EBI_A15 #0/1/2 TIM2_CC0 #2 US0_CS #2 LES_CH8 #0 F13 PC9 ACMP1_CH1 EBI_A09 #1/2 TIM2_CC1 #2 US0_CLK #2 LES_CH9 #0 GPIO_EM4WU2 G1 PB3 EBI_A19 #0/1/2 PCNT1_S0IN #1 US2_TX #1 G2 PB4 EBI_A20 #0/1/2 PCNT1_S1IN #1 US2_RX #1 G3 IOVDD_2 G11 PE0 EBI_A07 #0/1/2 TIM3_CC0 #1 PCNT0_S0IN #1 U0_TX #1 I2C1_SDA #2 G12 PE1 EBI_A08 #0/1/2 TIM3_CC1 #1 PCNT0_S1IN #1 U0_RX #1 I2C1_SCL #2 G13 PE3 H1 CMU_CLK0 #0 ETM_TD0 #3 ETM_TD2 #1 EBI_A12 #0/1/2 US0_CLK #1 U1_TX #0 CMU_CLK0 #1 LES_CH12 #0 U1_RX #0 LES_CH13 #0 LEU1_RX #1 ETM_TCLK #3 GPIO_EM4WU1 TIM0_CDTI2 #0 LEU1_TX #1 LES_ALTEX4 #0 ETM_TD3 #3 TIM0_CDTI1 #0 U0_RX #2 LES_ALTEX3 #0 ETM_TD2 #3 TIM0_CDTI0 #1/3 TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0 US0_RX #1 TIM2_CC2 #2 US0_RX #2 LES_CH10 #0 US0_TX #2 LES_CH11 #0 US0_TX #1 Digital IO power supply 2. BU_STAT EBI_A10 #0 U1_RX #3 PB5 EBI_A21 #0/1/2 US2_CLK #1 H2 PB6 EBI_A22 #0/1/2 US2_CS #1 H3 VSS ACMP1_O #1 Ground 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 59 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # BGA120 Pin# and Name Pin Name Analog EBI Timers Communication Other H11 VDD_DREG H12 PE2 BU_VOUT EBI_A09 #0 TIM3_CC2 #1 U1_TX #3 ACMP0_O #1 H13 PC7 ACMP0_CH7 EBI_A06 #0/1/2 LEU1_RX #0 I2C0_SCL #2 LES_CH7 #0 ETM_TD0 #2 J1 PD14 I2C0_SDA #3 J2 PD15 I2C0_SCL #3 J3 VSS J11 IOVDD_3 J12 PC6 J13 DECOUPLE K1 PC0 ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT EBI_A23 #0/1/2 TIM0_CC1 #4 PCNT0_S0IN #2 US0_TX #5 US1_TX #0 I2C0_SDA #4 LES_CH0 #0 PRS_CH2 #0 K2 PC1 ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT EBI_A24 #0/1/2 TIM0_CC2 #4 PCNT0_S1IN #2 US0_RX #5 US1_RX #0 I2C0_SCL #4 LES_CH1 #0 PRS_CH3 #0 K3 IOVDD_4 K11 VSS Ground K12 VSS Ground K13 PD8 BU_VIN L1 PC2 ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT EBI_A25 #0/1/2 TIM0_CDTI0 #4 US2_TX #0 LES_CH2 #0 L2 PC3 ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT EBI_NANDREn #0/1/2 TIM0_CDTI1 #4 US2_RX #0 LES_CH3 #0 L3 PA7 L4 IOVDD_5 L5 VSS Ground L6 VSS Ground L7 IOVDD_6 L8 PB9 EBI_A03 #0/1/2 U1_TX #2 L9 PB10 EBI_A04 #0/1/2 U1_RX #2 L10 PD0 ADC0_CH0 DAC0_OUT0ALT #4/ OPAMP_OUT0ALT OPAMP_OUT2 #1 PCNT2_S0IN #0 US1_TX #1 L11 PD1 ADC0_CH1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT TIM0_CC0 #3 PCNT2_S1IN #0 US1_RX #1 DBG_SWO #2 L12 PD4 ADC0_CH4 OPAMP_P2 LEU0_TX #0 ETM_TD2 #0/2 L13 PD7 ADC0_CH7 DAC0_N1 / OPAMP_N1 TIM1_CC1 #4 LETIM0_OUT1 #0 PCNT0_S1IN #3 US1_TX #2 I2C0_SCL #1 CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2 ETM_TCLK #0 M1 PB7 LFXTAL_P TIM1_CC0 #3 US0_TX #4 US1_CLK #0 Power supply for on-chip voltage regulator. Ground Digital IO power supply 3. ACMP0_CH6 LEU1_TX #0 I2C0_SDA #2 EBI_A05 #0/1/2 LES_CH6 #0 ETM_TCLK #2 Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. Digital IO power supply 4. CMU_CLK1 #1 EBI_CSTFT #0/1/2 Digital IO power supply 5. Digital IO power supply 6. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 60 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # BGA120 Pin# and Name Pin Name Analog EBI Timers Communication Other M2 PC4 ACMP0_CH4 DAC0_P0 / OPAMP_P0 EBI_A26 #0/1/2 TIM0_CDTI2 #4 LETIM0_OUT0 #3 PCNT1_S0IN #0 US2_CLK #0 I2C1_SDA #0 LES_CH4 #0 M3 PA8 EBI_DCLK #0/1/2 TIM2_CC0 #0 M4 PA10 EBI_VSNC #0/1/2 TIM2_CC2 #0 M5 PA13 EBI_A01 #0/1/2 TIM2_CC1 #1 M6 PA14 EBI_A02 #0/1/2 TIM2_CC2 #1 M7 RESETn Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. M8 AVSS_1 Analog ground 1. M9 AVDD_2 Analog power supply 2. M10 AVDD_1 Analog power supply 1. M11 AVSS_0 Analog ground 0. M12 PD3 ADC0_CH3 OPAMP_N2 TIM0_CC2 #3 US1_CS #1 ETM_TD1 #0/2 M13 PD6 ADC0_CH6 DAC0_P1 / OPAMP_P1 TIM1_CC0 #4 LETIM0_OUT0 #0 PCNT0_S0IN #3 US1_RX #2 I2C0_SDA #1 LES_ALTEX0 #0 ACMP0_O #2 ETM_TD0 #0 N1 PB8 LFXTAL_N TIM1_CC1 #3 US0_RX #4 US1_CS #0 N2 PC5 ACMP0_CH5 DAC0_N0 / OPAMP_N0 EBI_NANDWEn #0/1/2 LETIM0_OUT1 #3 PCNT1_S1IN #0 US2_CS #0 I2C1_SCL #0 N3 PA9 EBI_DTEN #0/1/2 TIM2_CC1 #0 N4 PA11 EBI_HSNC #0/1/2 N5 PA12 EBI_A00 #0/1/2 N6 PB11 DAC0_OUT0 / OPAMP_OUT0 TIM1_CC2 #3 LETIM0_OUT0 #1 I2C1_SDA #1 N7 PB12 DAC0_OUT1 / OPAMP_OUT1 LETIM0_OUT1 #1 I2C1_SCL #1 N8 AVSS_2 N9 PB13 HFXTAL_P US0_CLK #4/5 LEU0_TX #1 N10 PB14 HFXTAL_N US0_CS #4/5 LEU0_RX #1 N11 AVDD_0 Analog power supply 0. N12 PD2 ADC0_CH2 N13 PD5 ADC0_CH5 OPAMP_OUT2 #0 LES_CH5 #0 TIM2_CC0 #1 Analog ground 2. EBI_A27 #0/1/2 TIM0_CC1 #3 USB_DMPU #0 US1_CLK #1 DBG_SWO #3 LEU0_RX #0 ETM_TD3 #0/2 4.2 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 62) . The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 61 www.silabs.com ...the world's most energy friendly microcontrollers Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 4.2. Alternate functionality overview Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description ACMP0_CH0 PC0 Analog comparator ACMP0, channel 0. ACMP0_CH1 PC1 Analog comparator ACMP0, channel 1. ACMP0_CH2 PC2 Analog comparator ACMP0, channel 2. ACMP0_CH3 PC3 Analog comparator ACMP0, channel 3. ACMP0_CH4 PC4 Analog comparator ACMP0, channel 4. ACMP0_CH5 PC5 Analog comparator ACMP0, channel 5. ACMP0_CH6 PC6 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 7. ACMP0_O PE13 ACMP1_CH0 PC8 Analog comparator ACMP1, channel 0. ACMP1_CH1 PC9 Analog comparator ACMP1, channel 1. ACMP1_CH2 PC10 Analog comparator ACMP1, channel 2. ACMP1_CH3 PC11 Analog comparator ACMP1, channel 3. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 4. ACMP1_CH5 PC13 Analog comparator ACMP1, channel 5. ACMP1_CH6 PC14 Analog comparator ACMP1, channel 6. ACMP1_CH7 PC15 Analog comparator ACMP1, channel 7. ACMP1_O PF2 ADC0_CH0 PD0 Analog to digital converter ADC0, input channel number 0. ADC0_CH1 PD1 Analog to digital converter ADC0, input channel number 1. ADC0_CH2 PD2 Analog to digital converter ADC0, input channel number 2. ADC0_CH3 PD3 Analog to digital converter ADC0, input channel number 3. ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOT_RX PE11 Bootloader RX BOOT_TX PE10 Bootloader TX BU_STAT PE3 Backup Power Domain status, whether or not the system is in backup mode BU_VIN PD8 Battery input for Backup Power Domain BU_VOUT PE2 Power output for Backup Power Domain CMU_CLK0 PA2 PC12 PD7 Clock Management Unit, clock output number 0. CMU_CLK1 PA1 PD8 PE12 Clock Management Unit, clock output number 1. DAC0_N0 / OPAMP_N0 PC5 Operational Amplifier 0 external negative input. DAC0_N1 / OPAMP_N1 PD7 Operational Amplifier 1 external negative input. PE2 PE3 PD6 Analog comparator ACMP0, digital output. PD7 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 Analog comparator ACMP1, digital output. 62 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description OPAMP_N2 PD3 Operational Amplifier 2 external negative input. DAC0_OUT0 / OPAMP_OUT0 PB11 Digital to Analog Converter DAC0_OUT0 / OPAMP output channel number 0. DAC0_OUT0ALT / PC0 OPAMP_OUT0ALT DAC0_OUT1 / OPAMP_OUT1 PC1 PC2 PC3 Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0. PD0 Digital to Analog Converter DAC0_OUT1 / OPAMP output channel number 1. PB12 DAC0_OUT1ALT / PC12 OPAMP_OUT1ALT PC13 OPAMP_OUT2 PD5 PD0 DAC0_P0 / OPAMP_P0 PC4 Operational Amplifier 0 external positive input. DAC0_P1 / OPAMP_P1 PD6 Operational Amplifier 1 external positive input. OPAMP_P2 PD4 Operational Amplifier 2 external positive input. DBG_SWCLK PF0 PF0 PF0 PF0 DBG_SWDIO PF1 PF1 PF1 PF1 DBG_SWO PF2 PC15 PD1 PD2 EBI_A00 PA12 PA12 PA12 External Bus Interface (EBI) address output pin 00. EBI_A01 PA13 PA13 PA13 External Bus Interface (EBI) address output pin 01. EBI_A02 PA14 PA14 PA14 External Bus Interface (EBI) address output pin 02. EBI_A03 PB9 PB9 PB9 External Bus Interface (EBI) address output pin 03. EBI_A04 PB10 PB10 PB10 External Bus Interface (EBI) address output pin 04. EBI_A05 PC6 PC6 PC6 External Bus Interface (EBI) address output pin 05. EBI_A06 PC7 PC7 PC7 External Bus Interface (EBI) address output pin 06. EBI_A07 PE0 PE0 PE0 External Bus Interface (EBI) address output pin 07. EBI_A08 PE1 PE1 PE1 External Bus Interface (EBI) address output pin 08. EBI_A09 PE2 PC9 PC9 External Bus Interface (EBI) address output pin 09. EBI_A10 PE3 PC10 PC10 External Bus Interface (EBI) address output pin 10. EBI_A11 PE4 PE4 PE4 External Bus Interface (EBI) address output pin 11. EBI_A12 PE5 PE5 PE5 External Bus Interface (EBI) address output pin 12. EBI_A13 PE6 PE6 PE6 External Bus Interface (EBI) address output pin 13. EBI_A14 PE7 PE7 PE7 External Bus Interface (EBI) address output pin 14. EBI_A15 PC8 PC8 PC8 External Bus Interface (EBI) address output pin 15. EBI_A16 PB0 PB0 PB0 External Bus Interface (EBI) address output pin 16. EBI_A17 PB1 PB1 PB1 External Bus Interface (EBI) address output pin 17. EBI_A18 PB2 PB2 PB2 External Bus Interface (EBI) address output pin 18. EBI_A19 PB3 PB3 PB3 External Bus Interface (EBI) address output pin 19. EBI_A20 PB4 PB4 PB4 External Bus Interface (EBI) address output pin 20. EBI_A21 PB5 PB5 PB5 External Bus Interface (EBI) address output pin 21. PC14 PC15 Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1. PD1 Operational Amplifier 2 output. Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up. Debug-interface Serial Wire viewer Output. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 Note that this function is not enabled after reset, and must be enabled by software to be used. 63 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description EBI_A22 PB6 PB6 PB6 External Bus Interface (EBI) address output pin 22. EBI_A23 PC0 PC0 PC0 External Bus Interface (EBI) address output pin 23. EBI_A24 PC1 PC1 PC1 External Bus Interface (EBI) address output pin 24. EBI_A25 PC2 PC2 PC2 External Bus Interface (EBI) address output pin 25. EBI_A26 PC4 PC4 PC4 External Bus Interface (EBI) address output pin 26. EBI_A27 PD2 PD2 PD2 External Bus Interface (EBI) address output pin 27. EBI_AD00 PE8 PE8 PE8 External Bus Interface (EBI) address and data input / output pin 00. EBI_AD01 PE9 PE9 PE9 External Bus Interface (EBI) address and data input / output pin 01. EBI_AD02 PE10 PE10 PE10 External Bus Interface (EBI) address and data input / output pin 02. EBI_AD03 PE11 PE11 PE11 External Bus Interface (EBI) address and data input / output pin 03. EBI_AD04 PE12 PE12 PE12 External Bus Interface (EBI) address and data input / output pin 04. EBI_AD05 PE13 PE13 PE13 External Bus Interface (EBI) address and data input / output pin 05. EBI_AD06 PE14 PE14 PE14 External Bus Interface (EBI) address and data input / output pin 06. EBI_AD07 PE15 PE15 PE15 External Bus Interface (EBI) address and data input / output pin 07. EBI_AD08 PA15 PA15 PA15 External Bus Interface (EBI) address and data input / output pin 08. EBI_AD09 PA0 PA0 PA0 External Bus Interface (EBI) address and data input / output pin 09. EBI_AD10 PA1 PA1 PA1 External Bus Interface (EBI) address and data input / output pin 10. EBI_AD11 PA2 PA2 PA2 External Bus Interface (EBI) address and data input / output pin 11. EBI_AD12 PA3 PA3 PA3 External Bus Interface (EBI) address and data input / output pin 12. EBI_AD13 PA4 PA4 PA4 External Bus Interface (EBI) address and data input / output pin 13. EBI_AD14 PA5 PA5 PA5 External Bus Interface (EBI) address and data input / output pin 14. EBI_AD15 PA6 PA6 PA6 External Bus Interface (EBI) address and data input / output pin 15. EBI_ALE PF3 PC11 PC11 External Bus Interface (EBI) Address Latch Enable output. EBI_ARDY PF2 PF2 PF2 External Bus Interface (EBI) Hardware Ready Control input. EBI_BL0 PF6 PF6 PF6 External Bus Interface (EBI) Byte Lane/Enable pin 0. EBI_BL1 PF7 PF7 PF7 External Bus Interface (EBI) Byte Lane/Enable pin 1. EBI_CS0 PD9 PD9 PD9 External Bus Interface (EBI) Chip Select output 0. EBI_CS1 PD10 PD10 PD10 External Bus Interface (EBI) Chip Select output 1. EBI_CS2 PD11 PD11 PD11 External Bus Interface (EBI) Chip Select output 2. EBI_CS3 PD12 PD12 PD12 External Bus Interface (EBI) Chip Select output 3. EBI_CSTFT PA7 PA7 PA7 External Bus Interface (EBI) Chip Select output TFT. EBI_DCLK PA8 PA8 PA8 External Bus Interface (EBI) TFT Dot Clock pin. EBI_DTEN PA9 PA9 PA9 External Bus Interface (EBI) TFT Data Enable pin. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 64 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description EBI_HSNC PA11 PA11 PA11 External Bus Interface (EBI) TFT Horizontal Synchronization pin. EBI_NANDREn PC3 PC3 PC3 External Bus Interface (EBI) NAND Read Enable output. EBI_NANDWEn PC5 PC5 PC5 External Bus Interface (EBI) NAND Write Enable output. EBI_REn PF5 PF9 PF5 External Bus Interface (EBI) Read Enable output. EBI_VSNC PA10 PA10 PA10 External Bus Interface (EBI) TFT Vertical Synchronization pin. EBI_WEn PF4 PF8 PF4 External Bus Interface (EBI) Write Enable output. ETM_TCLK PD7 PF8 PC6 PA6 Embedded Trace Module ETM clock . ETM_TD0 PD6 PF9 PC7 PA2 Embedded Trace Module ETM data 0. ETM_TD1 PD3 PD13 PD3 PA3 Embedded Trace Module ETM data 1. ETM_TD2 PD4 PB15 PD4 PA4 Embedded Trace Module ETM data 2. ETM_TD3 PD5 PF3 PD5 PA5 Embedded Trace Module ETM data 3. GPIO_EM4WU0 PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU1 PA6 Pin can be used to wake the system up from EM4 GPIO_EM4WU2 PC9 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 PE13 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. I2C0_SCL PA1 PD7 PC7 PD15 PC1 PF1 PE13 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PC6 PD14 PC0 PF0 PE12 I2C0 Serial Data input / output. I2C1_SCL PC5 PB12 PE1 I2C1 Serial Clock Line input / output. I2C1_SDA PC4 PB11 PE0 I2C1 Serial Data input / output. LES_ALTEX0 PD6 LESENSE alternate exite output 0. LES_ALTEX1 PD7 LESENSE alternate exite output 1. LES_ALTEX2 PA3 LESENSE alternate exite output 2. LES_ALTEX3 PA4 LESENSE alternate exite output 3. LES_ALTEX4 PA5 LESENSE alternate exite output 4. LES_ALTEX5 PE11 LESENSE alternate exite output 5. LES_ALTEX6 PE12 LESENSE alternate exite output 6. LES_ALTEX7 PE13 LESENSE alternate exite output 7. LES_CH0 PC0 LESENSE channel 0. LES_CH1 PC1 LESENSE channel 1. LES_CH2 PC2 LESENSE channel 2. LES_CH3 PC3 LESENSE channel 3. LES_CH4 PC4 LESENSE channel 4. LES_CH5 PC5 LESENSE channel 5. LES_CH6 PC6 LESENSE channel 6. LES_CH7 PC7 LESENSE channel 7. LES_CH8 PC8 LESENSE channel 8. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 65 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description LES_CH9 PC9 LESENSE channel 9. LES_CH10 PC10 LESENSE channel 10. LES_CH11 PC11 LESENSE channel 11. LES_CH12 PC12 LESENSE channel 12. LES_CH13 PC13 LESENSE channel 13. LES_CH14 PC14 LESENSE channel 14. LES_CH15 PC15 LESENSE channel 15. LETIM0_OUT0 PD6 PB11 PF0 PC4 Low Energy Timer LETIM0, output channel 0. LETIM0_OUT1 PD7 PB12 PF1 PC5 Low Energy Timer LETIM0, output channel 1. LEU0_RX PD5 PB14 PE15 PF1 PA0 LEUART0 Receive input. LEU0_TX PD4 PB13 PE14 PF0 PF2 LEUART0 Transmit output. Also used as receive input in half duplex communication. LEU1_RX PC7 PA6 LEUART1 Receive input. LEU1_TX PC6 PA5 LEUART1 Transmit output. Also used as receive input in half duplex communication. LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. PCNT0_S0IN PC13 PE0 PC0 PD6 Pulse Counter PCNT0 input number 0. PCNT0_S1IN PC14 PE1 PC1 PD7 Pulse Counter PCNT0 input number 1. PCNT1_S0IN PC4 PB3 Pulse Counter PCNT1 input number 0. PCNT1_S1IN PC5 PB4 Pulse Counter PCNT1 input number 1. PCNT2_S0IN PD0 PE8 Pulse Counter PCNT2 input number 0. PCNT2_S1IN PD1 PE9 Pulse Counter PCNT2 input number 1. PRS_CH0 PA0 PF3 Peripheral Reflex System PRS, channel 0. PRS_CH1 PA1 PF4 Peripheral Reflex System PRS, channel 1. PRS_CH2 PC0 PF5 Peripheral Reflex System PRS, channel 2. PRS_CH3 PC1 PE8 Peripheral Reflex System PRS, channel 3. TIM0_CC0 PA0 PA0 PF6 PD1 PA0 PF0 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 PA1 PA1 PF7 PD2 PC0 PF1 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 PA2 PA2 PF8 PD3 PC1 PF2 Timer 0 Capture Compare input / output channel 2. TIM0_CDTI0 PA3 PC13 PF3 PC13 PC2 PF3 Timer 0 Complimentary Deat Time Insertion channel 0. TIM0_CDTI1 PA4 PC14 PF4 PC14 PC3 PF4 Timer 0 Complimentary Deat Time Insertion channel 1. TIM0_CDTI2 PA5 PC15 PF5 PC15 PC4 PF5 Timer 0 Complimentary Deat Time Insertion channel 2. TIM1_CC0 PC13 PE10 PB0 PB7 PD6 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 PC14 PE11 PB1 PB8 PD7 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 PC15 PE12 PB2 PB11 PC13 Timer 1 Capture Compare input / output channel 2. TIM2_CC0 PA8 PA12 PC8 Timer 2 Capture Compare input / output channel 0. TIM2_CC1 PA9 PA13 PC9 Timer 2 Capture Compare input / output channel 1. TIM2_CC2 PA10 PA14 PC10 Timer 2 Capture Compare input / output channel 2. TIM3_CC0 PE14 PE0 Timer 3 Capture Compare input / output channel 0. TIM3_CC1 PE15 PE1 Timer 3 Capture Compare input / output channel 1. TIM3_CC2 PA15 PE2 Timer 3 Capture Compare input / output channel 2. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 66 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description U0_RX PF7 PE1 PA4 PC15 UART0 Receive input. U0_TX PF6 PE0 PA3 PC14 UART0 Transmit output. Also used as receive input in half duplex communication. U1_RX PC13 PF11 PB10 PE3 UART1 Receive input. U1_TX PC12 PF10 PB9 PE2 UART1 Transmit output. Also used as receive input in half duplex communication. US0_CLK PE12 PE5 PC9 PC15 PB13 PB13 USART0 clock input / output. US0_CS PE13 PE4 PC8 PC14 PB14 PB14 USART0 chip select input / output. US0_RX PE11 PE6 PC10 PE12 PB8 PC1 USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. US0_TX PE10 PE7 PC11 PE13 PB7 PC0 USART0 Synchronous mode Master Output / Slave Input (MOSI). US1_CLK PB7 PD2 PF0 USART1 clock input / output. US1_CS PB8 PD3 PF1 USART1 chip select input / output. US1_RX PC1 PD1 PD6 USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. US1_TX PC0 PD0 PD7 USART1 Synchronous mode Master Output / Slave Input (MOSI). US2_CLK PC4 PB5 USART2 clock input / output. US2_CS PC5 PB6 USART2 chip select input / output. US2_RX PC3 PB4 USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO). USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. US2_TX PC2 PB3 USART2 Synchronous mode Master Output / Slave Input (MOSI). USB_DM PF10 USB D- pin. USB_DMPU PD2 USB D- Pullup control. USB_DP PF11 USB D+ pin. USB_ID PF12 USB ID pin. Used in OTG mode. USB_VBUS USB_VBUS USB 5 V VBUS input. USB_VBUSEN PF5 USB 5 V VBUS enable. USB_VREGI USB_VREGI USB Input to internal 3.3 V regulator USB_VREGO USB_VREGO USB Decoupling for internal 3.3 V USB regulator and regulator output 4.3 GPIO Pinout Overview The specific GPIO pins available in EFM32LG395 is shown in Table 4.3 (p. 68) . Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 67 www.silabs.com ...the world's most energy friendly microcontrollers Table 4.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port A PA15 PA14 PA13 PA12 PA11 PA10 PA9 PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Port B PB15 PB14 PB13 PB12 PB11 PB10 PB9 PB8 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 Port C PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 Port D PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Port E PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8 PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 Port F - - - PF12 PF11 PF10 PF9 PF8 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 4.4 Opamp Pinout Overview The specific opamp terminals available in EFM32LG395 is shown in Figure 4.2 (p. 68) . Figure 4.2. Opamp Pinout PC4 PC5 PD4 PD3 PD6 PD7 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 OUT0ALT + OPA0 OUT0 + OPA2 OUT2 OUT1ALT + OPA1 OUT1 - 68 PB11 PB12 PC0 PC1 PC2 PC3 PC12 PC13 PC14 PC15 PD0 PD1 PD5 www.silabs.com ...the world's most energy friendly microcontrollers 4.5 BGA120 Package Figure 4.3. BGA120 Note: 1. The dimensions in parenthesis are reference. 2. Datum "C" and seating plane are defined by the crown of the soldier balls. 3. All dimensions are in millimeters. The BGA120 Package uses SAC105 solderballs. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 69 www.silabs.com ...the world's most energy friendly microcontrollers 5 PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. BGA120 PCB Land Pattern b a e d Table 5.1. BGA120 PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dim. (mm) a 0.25 b 0.50 d 6.00 e 6.00 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 70 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.2. BGA120 PCB Solder Mask b a e d Table 5.2. BGA120 PCB Solder Mask Dimensions (Dimensions in mm) Symbol Dim. (mm) a 0.35 b 0.50 d 6.00 e 6.00 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 71 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.3. BGA120 PCB Stencil Design b a e d Table 5.3. BGA120 PCB Stencil Design Dimensions (Dimensions in mm) 1. 2. 3. 4. 5. 6. Symbol Dim. (mm) a 0.25 b 0.50 d 6.00 e 6.00 The drawings are not to scale. All dimensions are in millimeters. All drawings are subject to change without notice. The PCB Land Pattern drawing is in compliance with IPC-7351B. Stencil thickness 0.125 mm. For detailed pin-positioning, see Figure 4.3 (p. 69) . 5.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 72 www.silabs.com ...the world's most energy friendly microcontrollers 6 Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking (top view) 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 73) . 6.3 Errata Please see the errata document for EFM32LG395 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 73 www.silabs.com ...the world's most energy friendly microcontrollers 7 Revision History 7.1 Revision 1.30 June 13th, 2014 Removed "Preliminary" markings. Updated electrical characteristics and updated/added plots. Updated orderable part numbers. Added AUXHFRCO to block diagram and electrical characteristics. Added EBI timing chapter. 7.2 Revision 1.21 November 21st, 2013 Updated figures. Updated errata-link. Updated chip marking. Added link to Environmental and Quality information. Re-added missing DAC-data. 7.3 Revision 1.20 September 30th, 2013 Added I2C characterization data. Added SPI characterization data. Corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section. Corrected GPIO operating voltage from 1.8 V to 1.85 V. Added the USB bootloader information. Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. Updated Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections. 7.4 Revision 1.10 June 28th, 2013 Updated power requirements in the Power Management section. Updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 74 www.silabs.com ...the world's most energy friendly microcontrollers Removed minimum load capacitance figure and table. Added reference to application note. Other minor corrections. 7.5 Revision 1.00 September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Corrected BGA solder balls material from Sn96.5/Ag3/Cu0.5 to SAC105. Other minor corrections. 7.6 Revision 0.92 May 25th, 2012 Corrected BGA solder balls material description. Corrected EM3 current consumption in the Electrical Characteristics section. 7.7 Revision 0.90 April 27th, 2012 Initial preliminary release. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 75 www.silabs.com ...the world's most energy friendly microcontrollers A Disclaimer and Trademarks A.1 Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. A.2 Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 76 www.silabs.com ...the world's most energy friendly microcontrollers B Contact Information Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 77 www.silabs.com ...the world's most energy friendly microcontrollers Table of Contents 1. Ordering Information .................................................................................................................................. 2 2. System Summary ...................................................................................................................................... 3 2.1. System Introduction ......................................................................................................................... 3 2.2. Configuration Summary .................................................................................................................... 7 2.3. Memory Map ................................................................................................................................. 9 3. Electrical Characteristics ........................................................................................................................... 10 3.1. Test Conditions ............................................................................................................................. 10 3.2. Absolute Maximum Ratings ............................................................................................................. 10 3.3. General Operating Conditions .......................................................................................................... 10 3.4. Current Consumption ..................................................................................................................... 11 3.5. Transition between Energy Modes .................................................................................................... 17 3.6. Power Management ....................................................................................................................... 18 3.7. Flash .......................................................................................................................................... 19 3.8. General Purpose Input Output ......................................................................................................... 19 3.9. Oscillators .................................................................................................................................... 27 3.10. Analog Digital Converter (ADC) ...................................................................................................... 32 3.11. Digital Analog Converter (DAC) ...................................................................................................... 42 3.12. Operational Amplifier (OPAMP) ...................................................................................................... 43 3.13. Analog Comparator (ACMP) .......................................................................................................... 47 3.14. Voltage Comparator (VCMP) ......................................................................................................... 49 3.15. EBI ........................................................................................................................................... 49 3.16. I2C ........................................................................................................................................... 53 3.17. USART SPI ................................................................................................................................ 54 3.18. Digital Peripherals ....................................................................................................................... 56 4. Pinout and Package ................................................................................................................................. 57 4.1. Pinout ......................................................................................................................................... 57 4.2. Alternate Functionality Pinout .......................................................................................................... 61 4.3. GPIO Pinout Overview ................................................................................................................... 67 4.4. Opamp Pinout Overview ................................................................................................................. 68 4.5. BGA120 Package .......................................................................................................................... 69 5. PCB Layout and Soldering ........................................................................................................................ 70 5.1. Recommended PCB Layout ............................................................................................................ 70 5.2. Soldering Information ..................................................................................................................... 72 6. Chip Marking, Revision and Errata .............................................................................................................. 73 6.1. Chip Marking ................................................................................................................................ 73 6.2. Revision ...................................................................................................................................... 73 6.3. Errata ......................................................................................................................................... 73 7. Revision History ...................................................................................................................................... 74 7.1. Revision 1.30 ............................................................................................................................... 74 7.2. Revision 1.21 ............................................................................................................................... 74 7.3. Revision 1.20 ............................................................................................................................... 74 7.4. Revision 1.10 ............................................................................................................................... 74 7.5. Revision 1.00 ............................................................................................................................... 75 7.6. Revision 0.92 ............................................................................................................................... 75 7.7. Revision 0.90 ............................................................................................................................... 75 A. Disclaimer and Trademarks ....................................................................................................................... 76 A.1. Disclaimer ................................................................................................................................... 76 A.2. Trademark Information ................................................................................................................... 76 B. Contact Information ................................................................................................................................. 77 B.1. ................................................................................................................................................. 77 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 78 www.silabs.com ...the world's most energy friendly microcontrollers List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32LG395 Memory Map with largest RAM and Flash sizes ........................................................................ 9 3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at 48MHz ................................. 13 3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28MHz ............................... 13 3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21MHz ............................... 14 3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14MHz ............................... 14 3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11MHz ............................... 15 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6MHz .............................. 15 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 1.2MHz .............................. 16 3.8. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ......................................................... 16 3.9. EM3 current consumption. ..................................................................................................................... 17 3.10. EM4 current consumption. ................................................................................................................... 17 3.11. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21 3.12. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22 3.13. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23 3.14. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24 3.15. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25 3.16. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26 3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29 3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30 3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30 3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30 3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31 3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31 3.24. Integral Non-Linearity (INL) ................................................................................................................... 37 3.25. Differential Non-Linearity (DNL) .............................................................................................................. 37 3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38 3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39 3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40 3.29. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41 3.31. ADC Temperature sensor readout ......................................................................................................... 42 3.32. OPAMP Common Mode Rejection Ratio ................................................................................................. 45 3.33. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 45 3.34. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 46 3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 46 3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 46 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 48 3.38. EBI Write Enable Timing ....................................................................................................................... 49 3.39. EBI Address Latch Enable Related Output Timing ..................................................................................... 50 3.40. EBI Read Enable Related Output Timing ................................................................................................. 51 3.41. EBI Read Enable Related Timing Requirements ........................................................................................ 52 3.42. EBI Ready/Wait Related Timing Requirements .......................................................................................... 52 3.43. SPI Master Timing ............................................................................................................................... 54 3.44. SPI Slave Timing ................................................................................................................................ 55 4.1. EFM32LG395 Pinout (top view, not to scale) .............................................................................................. 57 4.2. Opamp Pinout ...................................................................................................................................... 68 4.3. BGA120 .............................................................................................................................................. 69 5.1. BGA120 PCB Land Pattern ..................................................................................................................... 70 5.2. BGA120 PCB Solder Mask ..................................................................................................................... 71 5.3. BGA120 PCB Stencil Design ................................................................................................................... 72 6.1. Example Chip Marking (top view) ............................................................................................................. 73 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 79 www.silabs.com ...the world's most energy friendly microcontrollers List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 7 3.1. Absolute Maximum Ratings ..................................................................................................................... 10 3.2. General Operating Conditions .................................................................................................................. 10 3.3. Environmental ....................................................................................................................................... 11 3.4. Current Consumption ............................................................................................................................. 11 3.5. Energy Modes Transitions ...................................................................................................................... 17 3.6. Power Management ............................................................................................................................... 18 3.7. Flash .................................................................................................................................................. 19 3.8. GPIO .................................................................................................................................................. 19 3.9. LFXO .................................................................................................................................................. 27 3.10. HFXO ................................................................................................................................................ 27 3.11. LFRCO .............................................................................................................................................. 28 3.12. HFRCO ............................................................................................................................................. 29 3.13. AUXHFRCO ....................................................................................................................................... 32 3.14. ULFRCO ............................................................................................................................................ 32 3.15. ADC .................................................................................................................................................. 32 3.16. DAC .................................................................................................................................................. 42 3.17. OPAMP ............................................................................................................................................. 43 3.18. ACMP ............................................................................................................................................... 47 3.19. VCMP ............................................................................................................................................... 49 3.20. EBI Write Enable Timing ....................................................................................................................... 50 3.21. EBI Address Latch Enable Related Output Timing ..................................................................................... 50 3.22. EBI Read Enable Related Output Timing ................................................................................................. 51 3.23. EBI Read Enable Related Timing Requirements ........................................................................................ 52 3.24. EBI Ready/Wait Related Timing Requirements .......................................................................................... 52 3.25. I2C Standard-mode (Sm) ...................................................................................................................... 53 3.26. I2C Fast-mode (Fm) ............................................................................................................................ 53 3.27. I2C Fast-mode Plus (Fm+) .................................................................................................................... 54 3.28. SPI Master Timing ............................................................................................................................... 54 3.29. SPI Master Timing with SSSEARLY and SMSDELAY ................................................................................. 55 3.30. SPI Slave Timing ................................................................................................................................ 55 3.31. SPI Slave Timing with SSSEARLY and SMSDELAY .................................................................................. 55 3.32. Digital Peripherals ............................................................................................................................... 56 4.1. Device Pinout ....................................................................................................................................... 57 4.2. Alternate functionality overview ................................................................................................................ 62 4.3. GPIO Pinout ........................................................................................................................................ 68 5.1. BGA120 PCB Land Pattern Dimensions (Dimensions in mm) ......................................................................... 70 5.2. BGA120 PCB Solder Mask Dimensions (Dimensions in mm) ......................................................................... 71 5.3. BGA120 PCB Stencil Design Dimensions (Dimensions in mm) ....................................................................... 72 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 80 www.silabs.com ...the world's most energy friendly microcontrollers List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 47 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 49 2014-06-13 - EFM32LG395FXX - d0114_Rev1.30 81 www.silabs.com