ISO8200B Galvanic isolated octal high-side smart power solid state relay Datasheet - production data • IEC 61000-4-2, IEC 61000-4-4, IEC 61000-4-5 and IEC 61000-4-8 compliant Applications • Programmable logic control • Industrial PC peripheral input/output PowerSO-36 • Numerical control machines • Drivers for all types of loads (resistive, capacitive, inductive) Features Type Vdemag(1) ISO8200B Vcc- 45 V RDS(on)(1) IOUT(1) 0.11 Ω 0.7 A Vcc The ISO8200B is a galvanic isolated 8-channel driver featuring a very low supply current. It contains 2 independent galvanic isolated voltage domains (Vcc for the Power stage and Vdd for the Digital stage). Additional embedded functions are: loss of GND protection, undervoltage shutdown with hysteresis, and reset function for immediate power output shutdown. 1. Per channel • Parallel input interface • Direct and synchronous control mode • High common mode transient immunity • Output current: 0.7 A per channel • Short-circuit protection • Channel overtemperature protection • Thermal independence of separate channels • Common output disable pin • Case overtemperature protection • Loss of GNDcc and Vcc protection • Undervoltage shutdown with auto restart and hysteresis • Overvoltage protection (Vcc clamping) • Very low supply current • Common fault open drain output • 5 V and 3.3 V TTL/CMOS compatible I/Os • Fast demagnetization of inductive loads • Reset function for IC outputs disable • ESD protection April 2014 This is information on a product in full production. Description 45 V The IC is intended to drive any kind of load with one side connected to ground. Active channel current limitation combined with thermal shutdown, (independent for each channel), and automatic restart, protect the device against overload and short-circuit. In overload conditions, if junction temperature overtakes threshold, the channel involved is turned off and on again automatically after the IC temperature decreases below a reset threshold. If this condition causes case temperature to reach limit threshold TCR, the overloaded channel is turned off and it only restarts when case and junction temperature decrease down to the reset thresholds. Nonoverloaded channels continue operating normally. An internal circuit provides an OR-wired not latched common FAULT indicator signaling the channel OVT. The FAULT pin is an open drain active low fault indication pin. DocID023802 Rev 9 1/35 www.st.com 35 Contents ISO8200B Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1 Parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1.1 Input signals (IN1 to IN8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1.2 Load input data (LOAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1.3 Output synchronization (SYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1.4 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.5 Output enable (OUT_EN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 Direct control mode (DCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3 Synchronous control mode (SCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.4 Fault indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4.1 7 Junction overtemperature and case overtemperature . . . . . . . . . . . . . . 22 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.1 Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.2 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9 Reverse polarity on Vdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 10 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10.1 11 2/35 Supply voltage and power output conventions . . . . . . . . . . . . . . . . . . . . . 29 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID023802 Rev 9 ISO8200B Contents 11.1 Thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 12 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 13 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID023802 Rev 9 3/35 List of tables ISO8200B List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. 4/35 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Digital supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Diagnostic pin and output protection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power switching characteristics (VCC = 24 V; -40 °C < TJ < 125 °C) . . . . . . . . . . . . . . . . 12 Logic input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Parallel interface timings (Vdd = 5 V; Vcc= 24 V; -40 °C < TJ < 125 °C) . . . . . . . . . . . . . . . 14 IEC 60747-5-2 insulation characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Interface signal operation (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Interface signal operation in direct control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Interface signal operation in synchronous control mode . . . . . . . . . . . . . . . . . . . . . . . . . . 20 PowerSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Footprint data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID023802 Rev 9 ISO8200B List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 RDS(on) measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 dV/dT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 td(ON)-td(OFF) synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 td(ON)-td(OFF) direct control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Watchdog behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output channel enable timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Direct control mode IC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Direct control mode time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Synchronous control mode IC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Synchronous control mode time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multiple device synchronous control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Thermal status update (DCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Thermal status update (SCM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current limitation with different load conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Thermal protection flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Reverse polarity protection on Vdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Supply voltage and power output conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Simplified thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PowerSO-36 mechanical drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Footprint recommended data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DocID023802 Rev 9 5/35 Block diagram 1 ISO8200B Block diagram Figure 1. Block diagram Vdd Power management Undervoltage detection Vcc Vcc clamp SYNC LOAD OUT_EN IN1 Output clamp Logic Logic OUTi Current limit Junction temperature detection FAULT GNDdd Rpd IN8 Case temperature detection GNDcc AM14889v1 6/35 DocID023802 Rev 9 ISO8200B 2 Pin connection Pin connection Figure 2. Pin connection (top view) Table 1. Pin description Pin Name Description 1 NC Not connected 2 Vdd Positive logic supply 3 OUT_EN 4 SYNC Chip select 5 LOAD Load input data 6 IN1 Channel 1 input 7 IN2 Channel 2 input 8 IN3 Channel 3 input 9 IN4 Channel 4 input 10 IN5 Channel 5 input 11 IN6 Channel 6 input 12 IN7 Channel 7 input 13 IN8 Channel 8 input 14 FAULT Common fault indication - active low 15 GNDdd Input logic ground, negative logic supply 16 NC Output enable Not connected DocID023802 Rev 9 7/35 Pin connection ISO8200B Table 1. Pin description (continued) 8/35 Pin Name Description 17 NC Not connected 18 NC Not connected 19 GNDcc 20 NC 21 OUT8 Channel 8 power output 22 OUT8 Channel 8 power output 23 OUT7 Channel 7 power output 24 OUT7 Channel 7 power output 25 OUT6 Channel 6 power output 26 OUT6 Channel 6 power output 27 OUT5 Channel 5 power output 28 OUT5 Channel 5 power output 29 OUT4 Channel 4 power output 30 OUT4 Channel 4 power output 31 OUT3 Channel 3 power output 32 OUT3 Channel 3 power output 33 OUT2 Channel 2 power output 34 OUT2 Channel 2 power output 35 OUT1 Channel 1 power output 36 OUT1 Channel 1 power output TAB TAB Output power ground Not connected Exposed tab internally connected to Vcc, positive power supply voltage DocID023802 Rev 9 ISO8200B 3 Absolute maximum ratings Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Min. Max. Unit VCC Power supply voltage -0.3 45 V Vdd Digital supply voltage -0.3 6.5 V VIN DC input pins, Id and output enable voltage -0.3 +6.5 V VFAULT Fault voltage -0.3 +6.5 V IGNDdd DC digital ground reverse current -25 mA Internally limited A -250 mA -5 A IOUT IGNDcc Channel output current (continuous) DC power ground reverse current IR Reverse output current (per channel) IIN DC input pins, ld and output enable current -10 + 10 mA IFAULT Fault current -10 + 10 mA VESD Electrostatic discharge with human body model (R = 1.5 KΩ; C = 100 pF) 2000 V Single pulse avalanche energy per channel not simultaneously @Tamb= 125 °C, IOUT = 0.5 A 0.9 Single pulse avalanche energy per channel, all channels driven simultaneously @Tamb= 125 °C, IOUT = 0.5 A 0.2 EAS J PTOT Power dissipation at Tc = 25 °C Internally limited(1) W TJ Junction operating temperature Internally limited(1) °C Storage temperature -55 to 150 °C TSTG 1. Protection functions are intended to avoid IC damage in fault conditions and are not intended for continuous operation. Continuous or repetitive operations of protection functions may reduce the IC lifetime. DocID023802 Rev 9 9/35 Thermal data 4 ISO8200B Thermal data Table 3. Thermal data Symbol Rthj-case Rthj-amb Parameter Max. value Unit 1.3 °C/W 15 °C/W Thermal resistance, junction-case(1) (2) Thermal resistance, junction-ambient 1. For each channel. 2. 5 PSSO36 mounted on the product evaluation board STEVAL-IFP015V2 (FR4, 4 layers, 8 cm2 for each layer, copper thickness 35 μm. Electrical characteristics (10.5 V < VCC < 36 V; -40 °C < TJ < 125 °C, unless otherwise specified). Table 4. Power section Symbol Parameter Vcc(under)THON Vcc undervoltage turn-ON threshold Vcc(under)THOFF Vcc undervoltage turnOFF threshold Test conditions Vcc(hys) Vcc undervoltage hysteresis Vccclamp Clamp on Vcc pin Iclamp = 20 mA RDS(on) On-state resistance (1) IOUT = 0.5 A, TJ = 25 °C IOUT = 0.5 A TJ = 125 °C Typ. Max. Unit 9.5 10.5 V 9 V 0.35 0.5 V 45 50 52 V 0.24 Ω Ω 0.12 210 kΩ 5 9 mA mA Rpd Output pull-down resistor Icc Power supply current All channels in OFF state All channels in ON state ILGND Ground disconnection output current Vcc= VGND =0 V VOUT= 24 V 500 µA VOUT(OFF) Off-state output voltage Channel OFF and IOUT = 0 A 1 V IOUT(OFF) Off-state output current Channel OFF and VOUT = 0V 5 µA 1. See Figure 3. 10/35 Min. DocID023802 Rev 9 ISO8200B Electrical characteristics Table 5. Digital supply voltage Symbol Parameter Vdd(under) Vdd undervoltage protection turn-OFF threshold Vdd(hys) Vdd undervoltage hysteresis Idd Idd supply current Test conditions Min. Typ. Max. Unit 2.8 2.9 3 V 0.1 V Vdd = 5 V and input channel with a steady logic level 4.5 6 mA Vdd = 3.3 V and input channel with a steady logic level 4.4 5.9 mA Table 6. Diagnostic pin and output protection function Symbol Parameter Test conditions Min. Typ. Max. Unit VFAULT FAULT pin open drain voltage output low IFAULT = 10 mA 0.4 V ILFAULT FAULT output leakage current VFAULT = 5 V 1 µA IPEAK Maximum DC output current before limitation 1.4 ILIM Short-circuit current limitation RLOAD = 0 Ω Hyst ILIM tracking limits RLOAD = 0 Ω TJSD Junction shutdown temperature TJR 0.7 1.1 A 1.7 A 0.3 A 170 °C Junction reset temperature 150 °C THIST Junction thermal hysteresis 20 °C TCSD Case shutdown temperature TCR Case reset temperature 110 °C TCHYST Case thermal hysteresis 20 °C Vdemag 150 115 Output voltage at turn-OFF IOUT = 0.5 A; ILOAD > = 1 mH Vcc-45 DocID023802 Rev 9 130 Vcc-50 145 Vcc-52 °C V 11/35 Electrical characteristics ISO8200B Table 7. Power switching characteristics (VCC = 24 V; -40 °C < TJ < 125 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit dV/dt(ON) Turn-ON voltage slope IOUT = 0.5 A, resistive load 48 Ω - 5.6 - V/µs dV/dt(OFF) = 0.5 A, resistive I Turn-OFF voltage slope OUT load 48 Ω - 2.81 - V/µs td(ON) Turn-ON delay time(1) IOUT = 0.5 A, resistive load 48 Ω - 17 22 µs td(OFF) Turn-OFF delay time (1) IOUT = 0.5 A, resistive load 48 Ω - 22 40 µs tf Fall time (1) IOUT = 0.5 A, resistive load 48 Ω - 5 - µs tr Rise time (1) IOUT = 0.5 A, resistive load 48 Ω - 5 - µs 1. See Figure 4, Figure 5, and Figure 6. Figure 3. RDS(on) measurement TAB Vcc VRDS(on) Load AM14891v1 12/35 DocID023802 Rev 9 ISO8200B Electrical characteristics Figure 4. dV/dT Figure 5. td(ON)-td(OFF) synchronous mode Sync SCM 50% 90% t 80% td(OFF) dV (ON) Vout dV (OFF) Vout 90% 10% tr t tf 10% AM14892v1 t td(ON) AM14893v1 Figure 6. td(ON)-td(OFF) direct control mode In(i) DCM 50% t Vout 90% 10% td(ON) t td(OFF) AM14894v1 Table 8. Logic input and output Symbol Parameter VIL Logic input, LOAD and OUT_EN low level voltage VIH Logic input, LOAD and OUT_EN high level voltage VI(HYST) Logic input, LOAD and OUT_EN hysteresis voltage Vdd = 5 V IIN Logic input, LOAD and OUT_EN current VIN = 5 V tWM Test conditions Power side watchdog time DocID023802 Rev 9 Min. Typ. Max. Unit -0.3 0.3 x Vdd V 0.7 x Vdd Vdd+0.3 V 100 mV 10 272 µA 320 400 µs 13/35 Electrical characteristics ISO8200B Table 9. Parallel interface timings (Vdd = 5 V; Vcc= 24 V; -40 °C < TJ < 125 °C) Symbol Parameter tdis(SYNC) SYNC disable time Sync. control mode 10 µs tdis(DCM) SYNC LOAD disable time Direct control mode 80 ns tw(SYNC) SYNC negative pulse width Sync. control mode 20 tsu(LOAD) LOAD setup time Sync. control mode 80 ns th(LOAD) LOAD hold time Sync. control mode 400 ns tw(LOAD) LOAD pulse width Sync. control mode 240 ns tsu(IN) Input setup time 80 ns th(IN) Input hold time 10 ns Sync. control mode 160 ns tw(IN) Input pulse width Direct control mode 20 µs tINLD IN to LOAD time Direct control mode From IN variation to LOAD falling edge 80 ns tLDIN LOAD to IN time Direct control mode From LOAD falling edge to IN variation 400 ns tw(OUT_EN) OUT_EN pulse width 150 ns tp(OUT_EN) OUT_EN propagation delay tjitter(SCM) tjitter(DCM) frefresh 14/35 Jitter on single channel Test conditions Min. Typ. Max. Unit 195 22 40 Sync. mode 6 Direct mode 20 µs µs µs Refresh delay 15 DocID023802 Rev 9 kHz ISO8200B Electrical characteristics Table 10. IEC 60747-5-2 insulation characteristics Symbol CTI VISO VPR Parameter Test conditions Value Unit V Comparative tracking index (tracking resistance) DIN IEC 112/VDE 0303 part 1 ≥ 400 Isolation group Material group (DIN VDE 0110, 1/89, table 1 II Isolation voltage per UL 1577 100% production VTEST = 1.2 x VISO=1644 V, t=1s 1370 VPEAK 100% production test method b, tm = 1 s partial discharge < 5 pC 1644 VPEAK Characterization test method a, tm = 10 s partial discharge < 5 pC 1315 VPEAK 3500 VPEAK Input-to-output test voltage as per IEC 60747-5-2 VIOTM Transient overvoltage as per IEC 60747-5-2 Characterization test VTEST = 1.2 x VIOTM, t = 60 s CLR Clearance (minimum external air gap) Measured from input terminals to output terminals, the shortest distance through air 2.6 mm CPG Creepage (minimum external tracking) Measured from input terminals to output terminals, the shortest distance path analog body 2.6 mm DocID023802 Rev 9 15/35 Functional description ISO8200B 6 Functional description 6.1 Parallel interface Smart parallel interface built-in ISO8200B offers three interfacing signals easily managed by a microcontroller. The LOAD signal enables the input buffer storing the value of the channel inputs. The SYNC signal copies the input buffer value into the transmission buffer and manages the synchronization between low voltage side and the channel outputs on the isolated side. The OUT_EN signal enables the channel outputs. An internal refresh signal updates the configuration of the channel outputs with a frefresh frequency. This signal can be disabled forcing low the SYNC input when LOAD is high. SYNC and LOAD pins can be in direct control mode (DCM) or synchronous control mode (SCM). The operation of these two signals is described as follows: Table 11. Interface signal operation (general) LOAD SYNC OUT_EN Device behavior Don’t care Don’t care Low(1) High High High The outputs are left unchanged Low High High The input buffer is enabled The outputs are left unchanged High Low High The internal refresh signal is disabled The transmission buffer is updated The outputs are left unchanged Low Low High The device operates in direct control mode as described in the respective paragraph The outputs are disabled (turned off) 1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low. 6.1.1 Input signals (IN1 to IN8) Inputs from IN1 to IN8 are the driving signals of the corresponding OUT1 to OUT8 outputs. Data are direct loaded on related outputs if SYNC and LOAD inputs are low (DCM operation) or stored into input buffer when LOAD is low and SYNC is high. 6.1.2 Load input data (LOAD) The input is active low; it stores the data from IN1 to IN8 into the input buffer. 6.1.3 Output synchronization (SYNC) The input is active low; it enables the ISO8200B transmission buffer loading input buffer data and manages the transmission between the two isolated sides of the device. 16/35 DocID023802 Rev 9 ISO8200B 6.1.4 Functional description Watchdog The isolated side of the device provides a watchdog function in order to guarantee a safe condition when Vdd supply voltage is missing. If the logic side does not update the output status within tWD, all outputs are disabled until a new update request is received. The refresh signal is also considered a valid update signal, so the isolated side watchdog does not protect the system from a failure of the host controller (MCU freezing). Figure 7. Watchdog behavior Vdd ______ SYNCH Don’t Care _____ LOAD Don’t Care D0…D7 A B Don’t Care C C REFRESH SKIPPED If the isolated side does not receive an update request within the watchdog timeout all outputs are turned OFF OUT0…OUT7 A B ! Outputs are kept OFF until an update request is received C C Timeout Counter Any update request Resets the watchdog counter IPG1912131338LM 6.1.5 Output enable (OUT_EN) This pin provides a fast way to disable all outputs simultaneously. When the OUT_EN pin is driven low the outputs are disabled. To enable the output stage, the OUT_EN pin has to be raised. This timing execution is compatible with an external reset push, safety requirement, and allows, in a PLC system, the microcontroller polling to obtain all internal information during a reset procedure. Figure 8. Output channel enable timing OUT_EN tw(OUT_EN) t OUTx t tp(OUT_EN) DocID023802 Rev 9 AM14896v1 17/35 Functional description 6.2 ISO8200B Direct control mode (DCM) When SYNC and LOAD inputs are driven by the same signal, the device operates in direct control mode (DCM). In DCM the SYNC / LOAD signal operates as an active low input enable: • when the signal is high, the current output configuration is kept regardless the input values • when the signal is low, each channel input directly drives the respective output This operation mode can also be set shorting both signals to the digital ground; in this case the channel outputs are always directly driven by the inputs except when OUT_EN is low (outputs disabled). Table 12. Interface signal operation in direct control mode SYNC / LOAD OUT_EN Device behavior Don’t care Low(1) High High The outputs are left unchanged Low High The channel inputs drive the outputs The outputs are disabled (turned off) 1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low. Figure 9. Direct control mode IC configuration Vdd Vdd Vdd Vdd Vdd Vdd OUT_EN OUT_EN SYNC SYNC LOAD LOAD IN1 MCU IN2 IN3 IN1 ISO8200 IN4 IN5 IN6 GPIO MCU IN2 IN3 IN4 IN5 IN6 GPIO IN7 IN8 IN7 IN8 Vdd Vdd FAULT GND ISO8200 GNDdd Inputs are enabled by MCU through the SYNC/LOAD signals FAULT GND GNDdd Inputs are always enabled (outputs can be disabled through OUT_EN) AM14897v1 18/35 DocID023802 Rev 9 ISO8200B Functional description Figure 10. Direct control mode time diagram SYNC LOAD tds(DMC) INx t INLD t LDIN t SU(IN) t h(IN) Internal refresh 1/ f refresh OUTx td(OFF) 6.3 tf td(ON) tr AM14898v1 Synchronous control mode (SCM) When SYNC and LOAD inputs are independently driven, the device can operate in synchronous control mode (SCM). The SCM is used to reduce the jittering of the outputs and to drive all outputs of different devices at the same time. In SCM the LOAD signal is forced low to update the input buffer while the SYNC signal is high. The LOAD signal is raised and the SYNC one is forced low for at least tSYNC(SCM). During this period, the internal refresh is disabled and any pending transmission between the low voltage and the isolated side is completed. When the SYNC signal is raised the channel output configuration is changed according to the one stored in the input. If the tSYNC(SCM) limit is met, the maximum jitter of the channel outputs is tjitter(SCM). If more devices share the same SYNC signal, all device outputs change simultaneously with a maximum jitter related to maximum delay and maximum jitter for single device. DocID023802 Rev 9 19/35 Functional description ISO8200B Table 13. Interface signal operation in synchronous control mode LOAD SYNC OUT_EN Device behavior Don’t care Don’t care Low (1) High High High The outputs are left unchanged Low High High The input buffer is enabled The outputs are left unchanged High Low High The internal refresh signal is disabled The transmission buffer is updated The outputs are left unchanged High Rising edge High The outputs are updated according to the current transmission buffer value Low Low High Should be avoided (DCM operation only) The outputs are disabled (turned off) 1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low. Figure 11. Synchronous control mode IC configuration Vdd Vdd Vdd OUT_EN SYNC LOAD IN1 MCU IN2 IN3 ISO8200 IN4 GPIO IN5 IN6 IN7 IN8 Vdd FAULT GND GNDdd AM14899v1 20/35 DocID023802 Rev 9 ISO8200B Functional description Figure 12. Synchronous control mode time diagram tdis (SYNC) tw(SYNC) tsu(LOAD) tw(LOAD) th(LOAD) tsu(IN) th(IN) tw(IN) td(OFF) tf GIPGLM3101141151 Figure 13. Multiple device synchronous control mode DEV1 MCU SYNC LOAD SYNC LD1 LD2 DATA1..DATA8 8 SYNC IN1..IN8 OUT0..OUT7 8 LD1 LD2 DEV2 DATA1..DATA8 SYNC LOAD IN1..IN8 OUT0..OUT7 8 OUT1..OUT8 DEV1 OUT1..OUT8 DEV2 A B X A X B AM14901v1 DocID023802 Rev 9 21/35 Functional description 6.4 ISO8200B Fault indication The FAULT pin is an active low open drain output indicating fault conditions. This pin is active when at least one of the following conditions occurs: 6.4.1 • Junction overtemperature of one or more channels (TJ >TTJSD) • Communication error Junction overtemperature and case overtemperature The thermal status of the device is updated during each transmission sequence between the two isolated sides. In SCM operation, when the LOAD signal is high and the SYNC one is low, the communication is disabled. In this case the thermal status of the device cannot be updated and the FAULT indication can be different from the current status. In any case, the thermal protection of the channel outputs is always operative. Figure 14. Thermal status update (DCM) 22/35 DocID023802 Rev 9 ISO8200B Functional description Figure 15. Thermal status update (SCM) SYNC FAULT SKIPPED Internal refresh Tx/Rx Tx/Rx Tx/Rx THERMAL FAULT AM14992v1 DocID023802 Rev 9 23/35 Power section ISO8200B 7 Power section 7.1 Current limitation The current limitation process is active when the current sense connected on the output stage measures a current value, which is higher than a fixed threshold. When this condition is verified the gate voltage is modulated to avoid the increase of the output current over the limitation value. Figure 16 shows typical output current waveforms with different load conditions. Figure 16. Current limitation with different load conditions 24/35 DocID023802 Rev 9 ISO8200B 7.2 Power section Thermal protection The device is protected against overheating in case of overload conditions. During the driving period, if the output is overloaded, the device suffers two different thermal stresses, the former related to the junction, and the latter related to the case. The two faults have different trigger thresholds: the junction protection threshold is higher than the case protection one; generally the first protection, that is active in thermal stress conditions, is the junction thermal shutdown. The output is turned off when the temperature is higher than the related threshold and turned back on when it goes below the reset threshold. This behavior continues until the fault on the output is present. If the thermal protection is active and the temperature of the package increases over the fixed case protection threshold, the case protection is activated and the output is switched off and back on when the junction temperature of each channel in fault and case temperature is below the respective reset thresholds. Figure 17 shows the thermal protection behavior, while Figure 18 reports typical temperature trends and output vs. input state. Figure 17. Thermal protection flowchart Input IN(i) HIGH Output (i) ON Fault(i) Off N TJ(i) >TJSD Y N Output (i) OFF Fault(i) ON TC >TCSD N Y TJR >TJ(i) Y Y TC >TCR N AM14995v1 DocID023802 Rev 9 25/35 Power section ISO8200B Figure 18. Thermal protection 26/35 DocID023802 Rev 9 ISO8200B 8 Reverse polarity protection Reverse polarity protection Reverse polarity protection can be implemented on board using two different solutions: 1. Placing a resistor (RGND) between IC GND pin and load GND 2. Placing a diode between IC GND pin and load GND If option 1 is selected, the minimum resistance value has to be selected according to the following equation: Equation 1 RGND ≥ VCC/IGNDcc where IGNDcc is the DC reverse ground pin current and can be found in Section 3: Absolute maximum ratings of this datasheet. Power dissipated by RGND during reverse polarity situations is: Equation 2 PD = (VCC)2/RGND If option 2 is selected, the diode has to be chosen by taking into account VRRM >|Vcc| and its power dissipation capability: Equation 3 PD ≥ IS*VF In normal conditions (no reverse polarity) due to the diode, there is a voltage drop between GND of the device and GND of the system. Figure 19. Reverse polarity protection +Vdd Intputi GNDdd +Vcc Isolation Note: Outputi GNDCC Load RGND Diode GIPD2611131255LM This schematic can be used with any type of load. DocID023802 Rev 9 27/35 Reverse polarity on Vdd 9 ISO8200B Reverse polarity on Vdd The reverse polarity on Vdd can be implemented on board by placing a diode between GNDdd pin and GND digital ground. The diode has to be chosen by taking into account VRRM >|Vdd| and its power dissipation capability: Equation 4 PD ≥ Idd*VF Note: In normal conditions (no reverse polarity), due to the diode, there is a voltage drop between GNDdd of the device and digital ground of the system. Figure 20. Reverse polarity protection on Vdd +Vcc Isolation +Vdd Intputi Outputi GNDCC GNDdd Load Diode RGND Diode GIPD2611131302LM 28/35 DocID023802 Rev 9 ISO8200B Conventions 10 Conventions 10.1 Supply voltage and power output conventions Figure 21 shows the convention used in this paper for voltage and current usage. Figure 21. Supply voltage and power output conventions Idd Icc Vdd IFAULT IIN Vdd Vcc FAULT IN I OUT_EN OUT_EN Vcc Iout OUT ISYNC ILOAD SYNC LOAD GNDdd GNDcc Vout AM14997v1 11 Thermal information 11.1 Thermal impedance Figure 22. Simplified thermal model Rth1a Tj1 Rthc_a Rth2 Rth1b Cth Tj2 Rth1h Tj8 AM14998v1 DocID023802 Rev 9 29/35 Package mechanical data 12 ISO8200B Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Figure 23. PowerSO-36 mechanical drawings 30/35 DocID023802 Rev 9 ISO8200B Package mechanical data Table 14. PowerSO-36 mechanical data mm Dim. Min. Typ. A a1 Max. 3.60 0.10 0.30 a2 3.30 a3 0 0.10 b 0.22 0.38 c 0.23 0.32 D 15.80 16.00 D1 9.40 9.80 E 13.90 14.50 E1 10.90 11.10 E2 E3 2.90 5.8 6.2 e 0.65 e3 11.05 G 0 0.10 H 15.50 15.90 h L 1.10 0.80 N S 1.10 10° 0° DocID023802 Rev 9 8° 31/35 Package mechanical data ISO8200B Figure 24. Footprint recommended data Table 15. Footprint data 32/35 Dim. mm A 9.5 B 14.7-15.0 C 12.5-12.7 D 6.3 E 0.46 G 0.65 DocID023802 Rev 9 ISO8200B 13 Ordering information Ordering information Table 16. Ordering information Order code Package Packaging ISO8200B PowerSO-36 Tube ISO8200BTR PowerSO-36 Tape and reel DocID023802 Rev 9 33/35 Revision history 14 ISO8200B Revision history Table 17. Document revision history Date Revision 19-Oct-2012 1 Initial release. 01-Jul-2013 2 Updated Figure 24: Footprint recommended data and Table 15: Footprint data. 28-Oct-2013 3 Document status promoted from preliminary to production data. Added IEC bullet to features. Updated Table 4, Table 6, Table 7, and Table 9. Deleted table titled: “Insulation and safety-related specifications” and table titled: “Device immunity specifications”. Changed Table 10: IEC 60747-5-2 insulation characteristics Changed Figure 10. 12-Nov-2013 4 Added to Table 10 CLR and CPG parameters. 5 Removed VIORM parameter from Table 10. Updated Section 8: Reverse polarity protection. Added Section 9: Reverse polarity on Vdd . Changed Figure 19. Added Figure 20. 24-Jan-2014 6 Changed Figure 7. Added note to Table 3. Added test conditions: TJ = 125 °C to Table 4. Added typ. and max. values of Idd to Table 5. Added max. values of td(ON) and td(OFF) to Table 7. Added typ. and max. values of tp(OUT_EN) to Table 9. Added tjitter(DCM) value to Table 9. 03-Feb-2014 7 Updated Figure 12. 06-Feb-2014 8 Updated Figure 12 and Table 9. 22-Apr-2014 9 Updated EAS parameter in Table 2. Updated IPEAK parameter in Table 6. Updated mechanical data. 29-Nov-2013 34/35 Changes DocID023802 Rev 9 ISO8200B Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID023802 Rev 9 35/35