TH72012 433MHz ASK Transmitter Features Fully integrated PLL-stabilized VCO Frequency range from 380 MHz to 450 MHz Single-ended RF output ASK achieved by on/off keying of internal power amplifier up to 40 kbit/s Wide power supply range from 1.95 V to 5.5 V Very low standby current On-chip low voltage detector High over-all frequency accuracy Adjustable output power range from -12 dBm to +11 dBm Adjustable current consumption from 3.2 mA to 10.3 mA Conforms to EN 300 220 and similar standards 8-pin Small Outline Integrated Circuit (SOIC) Ordering Information Part Number Temperature Code Package Code Delivery Form TH72012 K (-40°C to 125°C) DC (SOIC8) 98 pc/tube 2500 pc/T&R Application Examples Pin Description General digital data transmission Tire Pressure Monitoring Systems (TPMS) Remote Keyless Entry (RKE) Wireless access control Alarm and security systems Garage door openers Remote Controls Home and building automation Low-power telemetry systems 8 VEE ASKDTA 1 n. c. 2 ROI 3 ENTX 4 TH72012 7 OUT 6 VCC 5 PSEL General Description The TH72012 ASK transmitter IC is designed for applications in the European 433 MHz industrial-scientificmedical (ISM) band, according to the EN 300 220 telecommunications standard; but it can also be used in other countries with similar standards, e.g. FCC part 15.231. The transmitter's carrier frequency fc is determined by the frequency of the reference crystal fref. The integrated PLL synthesizer ensures that carrier frequencies, ranging from 380 MHz to 450 MHz, can be achieved. This is done by using a crystal with a reference frequency according to: fref = fc/N, where N = 32 is the PLL feedback divider ratio. 39010 72012 Rev. 010 Page 1 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter Document Content 1 Theory of Operation ...................................................................................................3 1.1 General ............................................................................................................................. 3 1.2 Block Diagram .................................................................................................................. 3 2 Functional Description ..............................................................................................4 2.1 Crystal Oscillator .............................................................................................................. 4 2.2 ASK Modulation ................................................................................................................ 4 2.3 Crystal Pulling................................................................................................................... 4 2.4 Output Power Selection .................................................................................................... 5 2.5 Lock Detection.................................................................................................................. 5 2.6 Low Voltage Detection...................................................................................................... 5 2.7 Mode Control Logic .......................................................................................................... 6 2.8 Timing Diagrams .............................................................................................................. 6 3 Pin Definition and Description ..................................................................................7 4 Electrical Characteristics ..........................................................................................8 4.1 Absolute Maximum Ratings .............................................................................................. 8 4.2 Normal Operating Conditions ........................................................................................... 8 4.3 Crystal Parameters ........................................................................................................... 8 4.4 DC Characteristics............................................................................................................ 9 4.5 AC Characteristics .......................................................................................................... 10 4.6 Output Power Steps ....................................................................................................... 10 5 Typical Operating Characteristics ..........................................................................11 5.1 DC Characteristics.......................................................................................................... 11 5.2 AC Characteristics .......................................................................................................... 14 6 Test Circuit ...............................................................................................................17 6.1 7 Test circuit component list to Fig. 18 .............................................................................. 17 Package Description ................................................................................................18 7.1 Soldering Information ..................................................................................................... 18 8 Reliability Information..............................................................................................19 9 ESD Precautions ......................................................................................................19 10 Disclaimer .................................................................................................................20 39010 72012 Rev. 010 Page 2 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 1 Theory of Operation 1.1 General As depicted in Fig.1, the TH72012 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter determines the dynamic behavior of the PLL and suppresses reference spurious signals. A Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO’s output signal feeds the power amplifier (PA). The RF signal power Pout can be adjusted in four steps from Pout = –12 dBm to +10 dBm, either by changing the value of resistor RPS or by varying the voltage VPS at pin PSEL. The open-collector output (OUT) can be used either to directly drive a loop antenna or to be matched to a 50Ohm load. Bandgap biasing ensures stable operation of the IC at a power supply range of 1.95 V to 5.5 V. 1.2 Block Diagram RPS VCC 6 PSEL ASKDTA 5 1 PLL ENTX 4 mode control 32 ROI PA 7 OUT antenna matching network PFD 3 XOSC XBUF XTAL CX1 CP VCO low voltage detector 2 8 VEE Fig. 1: 39010 72012 Rev. 010 Block diagram with external components Page 3 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 2 Functional Description 2.1 Crystal Oscillator A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about 18pF. The crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified supply voltage and temperature range in combination with a short start-up time. 2.2 ASK Modulation The PLL transmitter can be ASK-modulated by applying a data stream directly at the pin ASKDTA. This turns the internal current sources of the power amplifier on and off and therefore leads to an ASK signal at the output. 2.3 ASKDTA Description 0 Power amplifier is turned off 1 Power amplifier is turned on (according to the selected output power step) Crystal Pulling A crystal is tuned by the manufacturer to the required oscillation frequency f0 at a given load capacitance CL and within the specified calibration tolerance. The only way to pull the oscillation frequency is to vary the effective load capacitance CLeff seen by the crystal. Figure 2 shows the oscillation frequency of a crystal as a function of the effective load capacitance. This figure also illustrates the relationship between the external pulling capacitor and the center frequency. It can be seen that the pulling sensitivity increases with the reduction of CL. For highaccuracy ASK applications, a higher load capacitance should be chosen in order to reduce the frequency drift caused by the tolerances of the chip and the external pulling capacitor. f XTAL L1 C1 CL eff R1 fc CL= Fig. 2: 39010 72012 Rev. 010 C0 CX1 CRO CX1+CRO CL eff Crystal pulling characteristic Page 4 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 2.4 Output Power Selection The transmitter is provided with an output power selection feature. There are four predefined output power steps and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was chosen because of its high accuracy and stability. The number of steps and the step sizes as well as the corresponding power levels are selected to cover a wide spectrum of different applications. The implementation of the output power control logic is shown in figure 3. There are two matched current sources with an amount of about 8 µA. One current source is directly applied to the PSEL pin. The other current source is used for the generation of reference voltages with a resistor ladder. These reference voltages are defining the thresholds between the power steps. The four comparators deliver thermometer-coded control signals depending on the voltage level at the pin PSEL. In order to have a certain amount of ripple tolerance in a noisy environment the comparators are provided with a little hysteresis of about 20 mV. With these control signals, weighted current sources of the power amplifier are switched on or off to set the desired output power level (Digitally Controlled Current Source). The LOCK, ASK signal and the output of the low voltage detector are gating this current source. RPS PSEL & ASKDTA & & & & OUT Fig. 4: Block diagram of output power control circuitry There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL, then this voltage directly selects the desired output power step. This kind of power selection can be used if the transmission power must be changed during operation. For a fixed-power application a resistor can be used which is connected from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixed-power applications at the highest power step this resistor can be omitted. The pin PSEL is in a high impedance state during the “TX standby” mode. 2.5 Lock Detection The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted emission of the transmitter if the PLL is unlocked. 2.6 Low Voltage Detection The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply voltage drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the transmitter if the supply voltage is too low. 39010 72012 Rev. 010 Page 5 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 2.7 Mode Control Logic The mode control logic allows two different modes of operation as listed in the following table. The mode control pin ENTX is pulleddown internally. This guarantees that the whole circuit is shut down if this pin is left floating. ENTX Mode Description 0 TX standby TX disabled 1 TX active TX enable 2.8 Timing Diagrams After enabling the transmitter by the ENTX signal, the power amplifier remains inactive for the time ton, the transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency within the time duration ton. After successful PLL lock, the LOCK signal turns on the power amplifier, and then the RF carrier can be FSK modulated. high ENTX low high LOCK low high ASKDTA low RF carrier t t on Fig. 5: 39010 72012 Rev. 010 Timing diagram for ASK modulation Page 6 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 3 Pin Definition and Description Pin No. 1 Name ASKDTA I/O Type Functional Schematic 0: ENTX=1 1: ENTX=0 input 1.5kΩ ASKDTA 1 2 n. c. 3 ROI Description ASK data input, CMOS compatible with operation mode dependent pull-up circuit TX standby: no pull-up TX active: pull-up no connection analog I/O XOSC connection to XTAL, Colpitts type crystal oscillator 25k ROI 3 36p 36p 4 ENTX input mode control input, CMOS-compatible with internal pull-down circuit 1.5kΩ ENTX 4 5 PSEL power select input, highimpedance comparator logic analog I/O IPSEL PSEL 1.5kΩ TX standby: IPSEL = 0 TX active: IPSEL = 8µA 5 6 VCC supply 7 OUT output positive power supply VCC OUT power amplifier output, open collector 7 VEE 8 39010 72012 Rev. 010 VEE VEE ground negative power supply Page 7 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 4 Electrical Characteristics 4.1 Absolute Maximum Ratings Parameter Symbol Condition Min Max Unit Supply voltage VCC 0 7.0 V Input voltage VIN -0.3 VCC+0.3 V Storage temperature TSTG -65 150 °C Junction temperature TJ 150 °C Thermal Resistance RthJA 163 K/W Power dissipation Pdiss 0.12 W Electrostatic discharge VESD human body model (HBM) according to CDF-AECQ100-002 ±2.0 kV 4.2 Normal Operating Conditions Parameter Symbol Condition Min Max Unit Supply voltage VCC 1.95 5.5 V Operating temperature TA -40 125 °C Input low voltage CMOS VIL ENTX, ASKDTA pins 0.3*VCC V Input high voltage CMOS VIH ENTX, ASKDTA pins XOSC frequency fref set by the crystal 11.9 14 MHz VCO frequency fc fc = 32 • fref 380 450 MHz Data rate R NRZ 40 kbit/s Min Max Unit 11.9 14 MHz 10 15 pF 0.7*VCC V 4.3 Crystal Parameters Parameter Symbol Condition Crystal frequency f0 Load capacitance CL Static capacitance C0 7 pF Series resistance R1 70 Ω 39010 72012 Rev. 010 fundamental mode, AT Page 8 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 4.4 DC Characteristics all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 °C and VCC = 3 V Parameter Symbol Condition Min Typ Max Unit 0.2 200 nA 4 µA Operating Currents Standby current ISBY ENTX=0, TA=85°C ENTX=0, TA=125°C Supply current in power step 0 ICC0 ENTX=1 1.5 2.5 3.8 mA Supply current in power step 1 ICC1 ENTX=1 2.1 3.4 4.9 mA Supply current in power step 2 ICC2 ENTX=1 3.0 4.6 6.2 mA Supply current in power step 3 ICC3 ENTX=1 4.5 6.5 8.5 mA Supply current in power step 4 ICC4 ENTX=1 7.3 10.6 13.3 mA Input low voltage CMOS VIL ENTX, ASKDTA pins -0.3 0.3*Vcc V Input high voltage CMOS VIH ENTX, ASKDTA pins 0.7*VCC VCC+0.3 V 20 µA Digital Pin Characteristics Pull down current ENTX pin IPDEN ENTX=1 Low level input current ENTX pin IINLEN ENTX=0 0.02 µA High level input current ASKDTA pin IINHDTA ASKDTA=1 0.02 µA Pull up current ASKDTA pin active IPUDTAa ASKDTA=0 ENTX=1 12 µA Pull up current ASKDTA pin standby IPUDTAs ASKDTA=0 ENTX=0 0.02 µA 9.9 µA 0.035 V 0.2 0.1 2.0 1.5 Power Select Characteristics Power select current IPSEL ENTX=1 7.0 8.6 Power select voltage step 0 VPS0 ENTX=1 Power select voltage step 1 VPS1 ENTX=1 0.14 0.24 V Power select voltage step 2 VPS2 ENTX=1 0.37 0.60 V Power select voltage step 3 VPS3 ENTX=1 0.78 1.29 V Power select voltage step 4 VPS4 ENTX=1 1.55 ENTX=1 1.75 V Low Voltage Detection Characteristic Low voltage detect threshold 39010 72012 Rev. 010 VLVD Page 9 of 20 1.85 1.95 V Data Sheet March/08 TH72012 433MHz ASK Transmitter 4.5 AC Characteristics all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 °C and VCC = 3 V; test circuit shown in Fig. 18, fc = 433.92 MHz Parameter Symbol Condition Min Typ Max Unit -70 dBm -10 1) dBm -1.5 1) dBm 4.5 1) dBm 10 1) dBm CW Spectrum Characteristics Output power in step 0 (Isolation in off-state) Poff ENTX=1 Output power in step 1 P1 ENTX=1 Output power in step 2 P2 Output power in step 3 P3 Output power in step 4 P4 -13 ENTX=1 -3.5 ENTX=1 2 ENTX=1 Phase noise L(fm) @ 200kHz offset Spurious emissions according to EN 300 220-1 (2000.09) table 13 Pspur 4.5 -12 -3 3 8 -88 -83 dBc/Hz 47MHz< f <74MHz 87.5MHz< f <118MHz 174MHz< f <230MHz 470MHz< f <862MHz B=100kHz -54 dBm f < 1GHz, B=100kHz -36 dBm f > 1GHz, B=1MHz -30 dBm 1.2 ms ±3 ppm ±10 ppm ±20 ppm Start-up Parameters Start-up time ton from standby to transmit mode 0.8 Frequency Stability Frequency stability vs. supply voltage dfVCC Frequency stability vs. temperature dfTA Frequency stability vs. variation range of CRO dfCRO crystal at constant temperature 1) output matching network tuned for 5V supply 4.6 Output Power Steps Power step 0 1 2 3 4 RPS / kΩ <3 22 56 120 not connected 39010 72012 Rev. 010 Page 10 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 5 Typical Operating Characteristics 5.1 DC Characteristics I SBY Standby current 5µA 4µA 125°C 3µA 2µA 1µA 200nA 85°C 150nA 100nA 50nA 25°C 0 2.0 2.5 3.0 3.5 4.0 Vcc Fig. 6: 4.5 5.0 5.5 6.0 [V] Standby current limits power step 0 3.4 125°C 105°C 3.0 2.6 25°C Icc [mA] 85°C 0°C -20°C 2.2 -40°C 1.8 1.8 2.2 2.6 3.0 Fig. 7: 39010 72012 Rev. 010 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Supply current in power step 0 Page 11 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter power step 1 4.2 125°C 105°C 85°C [mA] 3.6 Icc 3.9 3.3 25°C 0°C -20°C 3.0 -40°C 2.7 1.8 2.2 2.6 3.0 Fig. 8: 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Supply current in power step 1 power step 2 5.4 125°C 105°C 85°C 25°C 4.6 Icc [mA] 5.0 0°C 4.2 -20°C -40°C 3.8 1.8 2.2 2.6 3.0 Fig. 9: 39010 72012 Rev. 010 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Supply current in power step 2 Page 12 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter power step 3 7.3 125°C 105°C 85°C 7.0 25°C 6.4 0°C Icc [mA] 6.7 6.1 -20°C 5.8 -40°C 5.5 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Fig. 10: Supply current in power step 3 power step 4 12.0 125°C 105°C 85°C 11.5 25°C 10.5 0°C Icc [mA] 11.0 10.0 -20°C 9.5 -40°C 9.0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Fig. 11: Supply current in power step 4 39010 72012 Rev. 010 Page 13 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 5.2 AC Characteristics • Data according to test circuit in Fig. 18 power step 1 -11.5 25°C 85°C 125°C [dBm] -12.5 Pout -12.0 -13.0 -40°C -13.5 -14.0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Fig. 12: Output power in step 1 power step 2 -1.0 Pout [dBm] -2.0 25°C 85°C 125°C -40°C -3.0 -4.0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Fig. 13: Output power in step 2 39010 72012 Rev. 010 Page 14 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter power step 3 5.0 [dBm] 3.0 Pout 4.0 2.0 25°C 85°C 125°C -40°C 1.0 0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Fig. 14: Output power in step 3 power step 4 12.0 [dBm] 8.0 Pout 10.0 6.0 25°C 85°C 125°C -40°C 4.0 2.0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 Fig. 15: Output power in step 4 39010 72012 Rev. 010 Page 15 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter Fig. 16: RF output signal with PLL reference spurs Fig. 17: Single sideband phase noise 39010 72012 Rev. 010 Page 16 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 6 Test Circuit CM1 CM2 CM3 LM LT CB1 RPS OUT 5 OUT VCC n.c. ROI ENTX VEE ASKDTA PSEL 6 7 8 XTAL CX1 CB0 1 2 VCC GND VCC ENTX GND 1 2 3 GND VCC DATA 1 2 3 Fig. 18: Test circuit for ASK with 50 Ω matching network 6.1 Test circuit component list to Fig. 18 Part Size Value @ 433.92 MHz Tolerance CM1 0805 5.6 pF ±5% impedance matching capacitor CM2 0805 10 pF ±5% impedance matching capacitor CM3 0805 82 pF ±5% impedance matching capacitor LM 0805 33 nH ±5% impedance matching inductor, note 2 LT 0805 33 nH ±5% output tank inductor, note 2 CX1 0805 27 pF ±5% XOSC capacitor, note 1 RPS 0805 see section 4.6 ±5% power-select resistor CB0 1206 220 nF ±20% de-coupling capacitor CB1 0805 330 pF ±10% de-coupling capacitor XTAL HC49/S 13.56000 MHz ±30ppm calibr. ±30ppm temp. Description fundamental wave crystal, CL = 12 pF, C0, max = 7 pF, R1 = 60 Ω Note 1: value depending on crystal parameters Note 2: for high-power applications high-Q wire-wound inductors should be used 39010 72012 Rev. 010 Page 17 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 7 Package Description The device TH72012 is RoHS compliant. D e 7° ZD E H 8 DETAIL - A 1 L B DETAIL - A A A2 0.38 x 45° BSC (0.015x45°) A1 C .10 (.004) Fig. 18: SOIC8 all Dimension in mm, coplanarity < 0.1mm D E H A A1 min 4.80 max 4.98 A2 3.81 5.80 1.52 0.10 1.37 3.99 6.20 1.72 0.25 1.57 e 1.27 B 0.36 0.46 ZD 0.53 C L α 0.19 0.41 0° 0.25 1.27 8° 0.075 0.016 0° 0.098 0.050 8° all Dimension in inch, coplanarity < 0.004” min 0.189 0.150 0.2284 0.060 0.0040 0.054 max 0.196 0.157 0.2440 0.068 0.0098 0.062 0.050 0.014 0.018 0.021 7.1 Soldering Information • 39010 72012 Rev. 010 The device TH72012 is qualified for MSL1 with soldering peak temperature 260 deg C according to JEDEC J-STD-20 Page 18 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 8 Reliability Information This Melexis device is classified and qualified regarding soldering technology, solderability and moisture sensitivity level, as defined in this specification, according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • IPC/JEDEC J-STD-020 “Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)” Wave Soldering SMD’s (Surface Mount Devices) • EN60749-20 “Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat” Solderability SMD’s (Surface Mount Devices) • EIA/JEDEC JESD22-B102 “Solderability” For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. 9 ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 39010 72012 Rev. 010 Page 19 of 20 Data Sheet March/08 TH72012 433MHz ASK Transmitter 10 Disclaimer 1) The information included in this documentation is subject to Melexis intellectual and other property rights. Reproduction of information is permissible only if the information will not be altered and is accompanied by all associated conditions, limitations and notices. 2) Any use of the documentation without the prior written consent of Melexis other than the one set forth in clause 1 is an unfair and deceptive business practice. Melexis is not responsible or liable for such altered documentation. 3) The information furnished by Melexis in this documentation is provided ’as is’. Except as expressly warranted in any other applicable license agreement, Melexis disclaims all warranties either express, implied, statutory or otherwise including but not limited to the merchantability, fitness for a particular purpose, title and non-infringement with regard to the content of this documentation. 4) Notwithstanding the fact that Melexis endeavors to take care of the concept and content of this documentation, it may include technical or factual inaccuracies or typographical errors. Melexis disclaims any responsibility in connection herewith. 5) Melexis reserves the right to change the documentation, the specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. 6) Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the information in this documentation. 7) The product described in this documentation is intended for use in normal commercial applications. Applications requiring operation beyond ranges specified in this documentation, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. 8) Any supply of products by Melexis will be governed by the Melexis Terms of Sale, published on www.melexis.com. © Melexis NV. All rights reserved. For the latest version of this document, go to our website at: www.melexis.com Or for additional information contact Melexis Direct: Europe, Asia: Americas: Asia: Phone: +32 1367 0495 Phone: +1 603 223 2362 Phone: +32 1367 0495 E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified 39010 72012 Rev. 010 Page 20 of 20 Data Sheet March/08