STA311B Multichannel digital audio processor with FFXTM Datasheet - production data – – – – – – – – – – VFQFN-56 – Features 8 channels of 24-bit FFX 32 preset EQ curves (rock, jazz, pop, etc.) Automatic volume-controlled loudness 5.1 to 2-channel downmix Simultaneous 5.1- and 2-channel downmix outputs 3 preset volume curves 2 preset anti-clipping modes Preset movie nighttime listening mode Preset TV channel/commercial AGC mode 5.1, 2.1 bass management configurations AM frequency automatic output PWM frequency shifting 8 preset crossover filters Individual channel and master soft/hard mute ™ Automatic zero-detect and invalid input mute >100 dB SNR and dynamic range Automatic amplifier power-down on clock loss Selectable 32 kHz-192 kHz input sampling rates Advanced AM interference frequency switching and noise suppression modes 6 channels of DSD/SACD I²S output channel mapping function Digital gain/attenuation +58 dB to -100 dB in 0.5 dB steps Independent channel volume and DSP bypass Advanced “pop-free” operation Channel mapping of any input to any processing/FFX channel Digital “pop-free” operation for single-ended mode Selectable per-channel FFX damped ternary or binary PWM output Soft volume update Max power correction for lower full-power THD Individual channel and master gain/attenuation plus channel trim (-10 dB to +10 dB) Variable per-channel FFX output delay control Up to 10 independent 32-bit userprogrammable biquads (EQ) per channel 192 kHz internal processing sampling rate, 24-bit to 36-bit precision Bass/treble tone control Table 1. Device summary Pre- and post-EQ full 8-channel input mix on all 8 channels Dual independent limiters/compressors Dynamic range compression or anti-clipping modes Order code Package Packaging STA311B VFQFPN56 Tray STA311BTR VFQFPN56 Tape and reel AutoModes – 5-band graphic EQ October 2013 This is information on a product in full production. DocID024340 Rev 1 1/102 www.st.com Contents STA311B Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 4 2.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Serial data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 I²S recombination interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Startup/shutdown pop noise removal in SE application . . . . . . . . . . . 17 7 6.1 PWM start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 PWM stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 I²C bus operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1 2/102 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DocID024340 Rev 1 STA311B Contents 7.4 8 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.4.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8.1 Register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8.2 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.2.1 Configuration register A (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.2.2 Configuration register B (0x01) - serial input formats . . . . . . . . . . . . . . 30 8.2.3 Configuration register C (0x02) - serial output formats . . . . . . . . . . . . . 32 8.2.4 Configuration register D (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.2.5 Configuration register E (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.2.6 Configuration register F (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.2.7 Configuration register G (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.2.8 Configuration register H (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.2.9 Configuration register I (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8.2.10 Master mute register (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.2.11 Master volume register (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.2.12 Channel 1 volume (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.2.13 Channel 2 volume (0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.2.14 Channel 3 volume (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2.15 Channel 4 volume (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2.16 Channel 5 volume (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2.17 Channel 6 volume (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2.18 Channel 7 volume (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2.19 Channel 8 volume (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.2.20 Channel 1 volume trim, mute, bypass (0x13) . . . . . . . . . . . . . . . . . . . . 41 8.2.21 Channel 2 volume trim, mute, bypass (0x14) . . . . . . . . . . . . . . . . . . . . 42 8.2.22 Channel 3 volume trim, mute, bypass (0x15) . . . . . . . . . . . . . . . . . . . . 42 8.2.23 Channel 4 volume trim, mute, bypass (0x16) . . . . . . . . . . . . . . . . . . . . 42 8.2.24 Channel 5 volume trim, mute, bypass (0x17) . . . . . . . . . . . . . . . . . . . . 42 8.2.25 Channel 6 volume trim, mute, bypass (0x18) . . . . . . . . . . . . . . . . . . . . 42 8.2.26 Channel 7 volume trim, mute, bypass (0x19) . . . . . . . . . . . . . . . . . . . . 42 8.2.27 Channel 8 volume trim, mute, bypass (0x1A) . . . . . . . . . . . . . . . . . . . . 42 8.2.28 Channel input mapping channels 1 and 2 (0x1B) . . . . . . . . . . . . . . . . . 44 DocID024340 Rev 1 3/102 102 Contents 4/102 STA311B 8.2.29 Channel input mapping channels 3 and 4 (0x1C) . . . . . . . . . . . . . . . . . 44 8.2.30 Channel input mapping channels 5 and 6 (0x1D) . . . . . . . . . . . . . . . . . 44 8.2.31 Channel input mapping channels 7 and 8 (0x1E) . . . . . . . . . . . . . . . . . 44 8.2.32 AUTO1 - AutoModes EQ, volume, GC (0x1F) . . . . . . . . . . . . . . . . . . . . 45 8.2.33 AUTO2 - AutoModes bass management2 (0x20) . . . . . . . . . . . . . . . . . 46 8.2.34 AUTO3 - AutoMode AM/pre-scale/bass management scale (0x21) . . . 48 8.2.35 PREEQ - Preset EQ settings (0x22) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.2.36 AGEQ - graphic EQ 80-Hz band (0x23) . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2.37 BGEQ - graphic EQ 300-Hz band (0x24) . . . . . . . . . . . . . . . . . . . . . . . 50 8.2.38 CGEQ - graphic EQ 1-kHz band (0x25) . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2.39 DGEQ - graphic EQ 3-kHz band (0x26) . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2.40 EGEQ - graphic EQ 8-kHz band (0x27) . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2.41 Biquad internal channel loop-through (0x28) . . . . . . . . . . . . . . . . . . . . . 52 8.2.42 Mix internal channel loop-through (0x29) . . . . . . . . . . . . . . . . . . . . . . . 52 8.2.43 EQ bypass (0x2A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.2.44 Tone control bypass (0x2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.2.45 Tone control (0x2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.2.46 Channel limiter select channels 1, 2, 3, 4 (0x2D) . . . . . . . . . . . . . . . . . 54 8.2.47 Channel limiter select channels 5, 6, 7, 8 (0x2E) . . . . . . . . . . . . . . . . . 54 8.2.48 Limiter 1 attack/release rate (0x2F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.2.49 Limiter 1 attack/release threshold (0x30) . . . . . . . . . . . . . . . . . . . . . . . . 54 8.2.50 Limiter 2 attack/release rate (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.2.51 Limiter 2 attack/release threshold (0x32) . . . . . . . . . . . . . . . . . . . . . . . . 54 8.2.52 Bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.2.53 Channel 1 and 2 output timing (0x33) . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.54 Channel 3 and 4 output timing (0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.55 Channel 5 and 6 output timing (0x35) . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.56 Channel 7 and 8 output timing (0x36) . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.57 Channel I²S output mapping channels 1 and 2 (0x37) . . . . . . . . . . . . . 60 8.2.58 Channel I²S output mapping channels 3 and 4 (0x38) . . . . . . . . . . . . . 60 8.2.59 Channel I²S output mapping channels 5 and 6 (0x39) . . . . . . . . . . . . . 60 8.2.60 Channel I²S output mapping channels 7 and 8 (0x3A) . . . . . . . . . . . . . 60 8.2.61 Coefficient address register 1 (0x3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.2.62 Coefficient address register 2 (0x3C) . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.2.63 Coefficient b1 data register, bits 23:16 (0x3D) . . . . . . . . . . . . . . . . . . . . 61 8.2.64 Coefficient b1 data register, bits 15:8 (0x3E) . . . . . . . . . . . . . . . . . . . . . 61 8.2.65 Coefficient b1 data register, bits 7:0 (0x3F) . . . . . . . . . . . . . . . . . . . . . . 61 DocID024340 Rev 1 STA311B 9 Contents 8.2.66 Coefficient b2 data register, bits 23:16 (0x40) . . . . . . . . . . . . . . . . . . . . 61 8.2.67 Coefficient b2 data register, bits 15:8 (0x41) . . . . . . . . . . . . . . . . . . . . . 62 8.2.68 Coefficient b2 data register, bits 7:0 (0x42) . . . . . . . . . . . . . . . . . . . . . . 62 8.2.69 Coefficient a1 data register, bits 23:16 (0x43) . . . . . . . . . . . . . . . . . . . . 62 8.2.70 Coefficient a1 data register, bits 15:8 (0x44) . . . . . . . . . . . . . . . . . . . . . 62 8.2.71 Coefficient a1 data register, bits 7:0 (0x45) . . . . . . . . . . . . . . . . . . . . . . 62 8.2.72 Coefficient a2 data register, bits 23:16 (0x46) . . . . . . . . . . . . . . . . . . . . 62 8.2.73 Coefficient a2 data register, bits 15:8 (0x47) . . . . . . . . . . . . . . . . . . . . . 63 8.2.74 Coefficient a2 data register, bits 7:0 (0x48) . . . . . . . . . . . . . . . . . . . . . . 63 8.2.75 Coefficient b0 data register, bits 23:16 (0x49) . . . . . . . . . . . . . . . . . . . . 63 8.2.76 Coefficient b0 data register, bits 15:8 (0x4A) . . . . . . . . . . . . . . . . . . . . . 63 8.2.77 Coefficient b0 data register, bits 7:0 (0x4B) . . . . . . . . . . . . . . . . . . . . . . 63 8.2.78 Coefficient write control register (0x4C) . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.3 Reading a coefficient from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.4 Reading a set of coefficients from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.5 Writing a single coefficient to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.6 Writing a set of coefficients to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Configuration registers (0x77; 0x78; 0x79) . . . . . . . . . . . . . . . . . . . . . . 66 9.1 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2 Variable max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 9.2.1 9.3 Variable distortion compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 9.3.1 9.4 9.5 MPCC1-2 (0x4D, 0x4E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 DCC1-2 (0x4F, 0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 PSCorrect registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 9.4.1 PSC1-2: ripple correction value (RCV) (0x51, 0x52) . . . . . . . . . . . . . . . 71 9.4.2 PSC3: correction normalization value (CNV) (0x53) . . . . . . . . . . . . . . . 71 Extended DRC configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 9.5.1 Extended limiter/dynamic range control LUT (NLENAR)(0x5A) . . . . . . 71 9.5.2 Extended limiter/dynamic range LUT registers (nLxAT/RT) (0x6B, 0x6C, 0x6D, 0x6E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 9.5.3 Recombination control register 1 (0x5D) . . . . . . . . . . . . . . . . . . . . . . . . 81 9.5.4 Recombination control register 5, 6 and 7 (0x62; 0x63; 0x64) . . . . . . . 83 9.5.5 Recombination control register 8, 9 and 10 (0x65; 0x66; 0x67) . . . . . . 85 9.5.6 Recombination control register 11, 12 and 13 (0x68; 0x69; 0x6A) . . . . 86 9.5.7 Zero-mute threshold/hysteresis and RMS zero-mute selectors (0x6F) . 87 DocID024340 Rev 1 5/102 102 Contents 10 STA311B 9.5.8 RMS post-processing selectors and Fs autodetection (0x70) . . . . . . . . 89 9.5.9 Clock manager configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.5.10 RMS level registers (0x7A, 0x7B, 0x7C, 0x7D) . . . . . . . . . . . . . . . . . . . 92 Startup/shutdown pop noise removal . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.1 DPT: PWM and tristate delay (0x80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.2 Configuration register (0x81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.3 User-defined delay time (0x82) and (0x83) . . . . . . . . . . . . . . . . . . . . . . . 96 11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6/102 DocID024340 Rev 1 STA311B List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 General interface electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DC electrical characteristics: 3.3-V buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timing parameters for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Serial data bit first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Serial audio input formats according to sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Serial audio input formats according to sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Serial audio output formats according to sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 RAM block for biquads, mixing, and bass management. . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Extended release thresholds (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Extended attack thresholds (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Extended attack thresholds (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Extended release thresholds (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Gain adjustment (sensitivity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Normal channel attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Threshold configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 RMS channel select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Zero-detect threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Zero-detect hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 RMS post-processing channel select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 VFQFPN-56 (8 x 8 mm) package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Exposed pad variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DocID024340 Rev 1 7/102 102 List of figures STA311B List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. 8/102 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin connections VFQFPN-56 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Timing diagram for SAI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Processing data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 I²S recombination block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Power-on sequence for pop-free startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Biquad filter structure with quantization error noise shaping . . . . . . . . . . . . . . . . . . . . . . . 69 Channel mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 VFQFPN-56 (8 x 8 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DocID024340 Rev 1 STA311B 1 Description Description The STA311B is a single-chip solution for digital audio processing and control in multichannel applications and provides output capabilities for FFX™ (full flexible amplification). In conjunction with an FFX™ power device, it provides high-quality, highefficiency, all digital amplification. The device is extremely versatile, allowing for input of most digital formats including 6.1/7.1-channel and 192 kHz, 24-bit DVD-audio, DSD/SACD. In the 5.1 application the additional 2 channels can be used for audio line-out or headphone drive. DocID024340 Rev 1 9/102 102 Device overview STA311B 2 Device overview 2.1 Block diagram Figure 1. Block diagram SA SCL SDA MVO LRCKI OUT1A/B I2C BICKI OUT2A/B SDI12 I2S SDI34 Data In OUT3A/B Oversampling System Control OUT4A/B FFX SDI56 OUT5A/B SDI78 OUT6A/B OUT7A/B Channel Mapping Treble, Bass Equal. (Biquads) Variable Oversampling OUT8A/B Volume Limiting LRCKO BICKO PLLB PLL Powerdown Variable Downsampling I2S SDO12 Data Out SDO34 SDO56 SDO78 XTI 10/102 CKOUT PWDN EAPD DocID024340 Rev 1 STA311B Pin description PWDN SDO_78 SDO_56 GND VDD SDO_34 SDO_12 LRCKO BIKO GND VDD EAPD OUT1A OUT1B 56 55 54 53 52 51 50 49 48 47 46 45 44 43 Figure 2. Pin connections VFQFPN-56 (top view) MVO 1 42 OUT2A RES 2 41 OUT2B VDD 3 40 GND GND 4 39 VDD SDI_78 5 38 OUT3A SDI_56 6 37 OUT3B SDI_34 7 36 OUT4A SDI_12 8 35 OUT4B LRCKI 9 34 OUT5A BICKI 10 33 OUT5B VDD 11 32 GND GND 12 31 VDD RESET 13 30 OUT6A RES 14 29 OUT6B 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SDA SCL XTI NC GNDA VDD CKOUT GND VDD OUT8B OUT8A OUT7B OUT7A EXPOSED PAD CONNECTED TO GND SA 2.2 Device overview DocID024340 Rev 1 11/102 102 Device overview STA311B Table 2. Pin description Pin Type Name Description 1 5-V tolerant TTL input buffer MVO/DSD_CLK Master volume override/ DSD input clock 2 Reserved RES Connect to GND 5 5-V tolerant TTL input buffer SDI_78/DSD_6 Input serial data channels 7 & 8/ DSD input channel 6 6 5-V tolerant TTL input buffer SDI_56/DSD_5 Input serial data channels 5 & 6/ DSD input channel 5 7 5-V tolerant TTL input buffer SDI_34/DSD_4 Input serial data channels 3 & 4/ DSD input channel 4 8 5-V tolerant TTL input buffer SDI_12/DSD_3 Input serial data channels 1 & 2/ DSD input channel 3 9 5-V tolerant TTL input buffer LRCKI/DSD_2 Input left/right clock/ DSD input channel 2 10 5-V tolerant TTL input buffer BICKI/DSD_1 Input serial clock/ DSD input channel 1 18 5-V tolerant TTL Schmitt trigger input buffer RESETN Global reset 14 Reserved RES Connect to GND 15 1.8V CMOS input buffer with pull-down SA Select address (I²C) 16 Bidirectional buffer: 5-V tolerant TTL Schmitt trigger input; 3.3-V capable 2 mA SDA slew-rate controlled output. Serial data (I²C) 17 5-V tolerant TTL Schmitt trigger input buffer SCL Serial clock (I²C) 18 5-V tolerant TTL Schmitt trigger input buffer XTI Crystal oscillator input (clock input) 19 Not connected NC Reserved 20 Analog ground GNDA PLL ground 22 3.3-V capable TTL tristate 4 mA output buffer CKOUT Clock output 25 3.3-V capable TTL 2 mA output buffer OUT8B PWM channel 8 output B 26 3.3-V capable TTL 2 mA output buffer OUT8A PWM channel 8 output A 27 3.3-V capable TTL 2 mA output buffer OUT7B PWM channel 7 output B 28 3.3-V capable TTL 2 mA output buffer OUT7A PWM channel 7 output A 29 3.3-V capable TTL 2 mA output buffer OUT6B PWM channel 6 output B 30 3.3-V capable TTL 2 mA output buffer OUT6A PWM channel 6 output A 33 3.3-V capable TTL 2 mA output buffer OUT5B PWM channel 5 output B 34 3.3-V capable TTL 2 mA output buffer OUT5A PWM channel 5 output A 35 3.3-V capable TTL 2 mA output buffer OUT4B PWM channel 4 output B 12/102 DocID024340 Rev 1 STA311B Device overview Table 2. Pin description (continued) Pin Type Name Description 36 3.3-V capable TTL 2 mA output buffer OUT4A PWM channel 4 output A 37 3.3-V capable TTL 2 mA output buffer OUT3B PWM channel 3 output B 38 3.3-V capable TTL 2 mA output buffer OUT3A PWM channel 3 output A 41 3.3-V capable TTL 2 mA output buffer OUT2B PWM channel 2 output B 42 3.3-V capable TTL 2 mA output buffer OUT2A PWM channel 2 output A 43 3.3-V capable TTL 2 mA output buffer OUT1B PWM channel 1 output B 44 3.3-V capable TTL 2 mA output buffer OUT1A PWM channel 1 output A 45 3.3-V capable TTL 4 mA output buffer EAPD External amp power-down 48 3.3-V capable TTL 2 mA output buffer BICKO Output serial clock 49 3.3-V capable TTL 2 mA output buffer LRCKO Output left/right clock 50 3.3-V capable TTL 2 mA output buffer SDO_12 Output serial data channels 1&2 51 3.3-V capable TTL 2 mA output buffer SDO_34 Output serial data channels 3&4 54 3.3-V capable TTL 2 mA bidirectional buffer SDO_56 Output serial data channels 5&6 External power bridge fault input 55 3.3-V capable TTL 2mA output buffer SDO_78 Output serial data channels 7&8 External power bridge tristate signal (‘0’ = tristate) 56 5-V tolerant TTL Schmitt trigger input buffer PWDN Device power-down 3, 11,21,24, 3.3-V digital supply voltage 31, 39, 46, 52 VDD 3.3-V supply 4, 12, 23, 32, Digital ground 40, 47, 53 GND Ground Master volume override (MVO) This pin enables the user to bypass the volume control on all channels. When MVO is pulled high, the master volume register is set to 0x00, which corresponds to its full-scale setting. The master volume register setting offsets the individual channel volume settings, which default to 0 dB. Serial data in (SDI_12, SDI_34, SDI_56, SDI_78) Audio information enters the device here. Six format choices are available including I²S, leftjustified or right-justified, LSB or MSB first, with word widths of 16, 18, 20 and 24 bits. RESET Driving this pin low turns off the outputs and returns all settings to their defaults. I²C bus The SA, SDA and SCL pins operate per the Phillips I²C specification. See Section 7: I²C bus operation on page 23. DocID024340 Rev 1 13/102 102 Device overview STA311B Phase-locked loop (PLL) The phase-locked loop section provides the system timing signals and CKOUT. Clock output (CKOUT) System synchronization and master clocks are provided by CKOUT. PWM outputs (OUT1 through OUT8) The PWM outputs provide the input signal for the power devices. External amplifier power-down (EAPD) This signal can be used to control the power-down of the FFX power devices. Serial data out (SDO_12, SDO_34, SDO_56, SDO_78) When the pop-noise removal feature is disabled, these are the outputs for the audio information. Six different formats are available including I²S, left-or right-justified, LSB or MSB first, with word widths of 16, 18, 20 and 24 bits. However, when the pop-noise removal feature is enabled, SDO_12 and SDO_34 output the audio information, whereas SDO_56 is used as the external power bridge fault input and SDO_78 as the external power bridge tristate signal. Device power-down (PWDN) Pulling PWDN low begins the power-down sequence which puts the STA311B into a low-power state. EAPD goes low approximately 30 ms later. Frequency sampling autodetection The system clock is generated by PLL using XTI or BICKI input, and the ratio (IR) between the frequency sampling (Fs) of the audio serial and the PLL clock has to be set in the appropriate registers via the I²C interface. If the Fs autodetection function has been enabled, the IR parameter will be set automatically based on the Fs input (see Fs autodetection on page 32). 14/102 DocID024340 Rev 1 STA311B Electrical characteristics 3 Electrical characteristics 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol 3.2 Parameter Min Typ Max Unit VDD 3.3-V I/O power supply -0.5 4 Vi Voltage on input pins -0.5 VDD + 0.5 V Vo Voltage on output pins -0.5 VDD + 0.3 V VSA Voltage on SA pin 15 -0.5 2.0 V Tstg Storage temperature -40 150 °C Tamb Ambient operating temperature -40 90 °C V Thermal data Table 4. Thermal data Symbol Rthj-amb 3.3 Parameter Min Thermal resistance, junction to ambient Typ Max 85 Unit °C/W Recommended operating conditions Table 5. Recommended operating conditions Symbol Parameter Min Typ Max Unit VDD I/O power supply 3.0 3.3 3.6 V VSA Voltage on SA pin 15 0.0 1.8 1.95 V Tj Operating junction temperature -40 25 125 °C DocID024340 Rev 1 15/102 102 Electrical characteristics 3.4 STA311B Electrical specifications The following specifications are valid for VDD =3.3 V ± 0.3 V, VSA=0V and Tamb = 25 °C, unless otherwise stated. Table 6. General interface electrical specifications Symbol Parameter Conditions Min Typ Max Unit Iil Low-level input, no pull-up Vi = 0 V 1 µA Iih High-level input, no pull-down Vi = VDD 2 µA IOZ Tristate output leakage without pull-up/down Vi = VDD 2 µA Vesd Electrostatic protection (human body model) Leakage < 1 A 2000 V Table 7. DC electrical characteristics: 3.3-V buffers Symbol Conditions Min Typ Max Unit 0.8 V VIL Low-level input voltage VIH High-level input voltage VILhyst Low-level threshold Input falling 0.8 1.35 V VIHhyst High-level threshold Input rising 1.3 2.0 V Vhyst Schmitt trigger hysteresis 0.3 0.8 V Vol Low-level output 0.2 V Voh Idd fCKOUT 16/102 Parameter High-level output 2.0 V IoI = 100 µA Ioh = -100 µA VDD0.2 V Ioh = -2 mA 2.4 V Reset conditions 15 mA Normal conditions with CKOUT 60 mA Reset=1 PWDN=1 2.85 MHz Quiescent current DocID024340 Rev 1 STA311B 4 Serial audio interface Serial audio interface The STA311B audio serial input interfaces with standard digital audio components and accepts a number of serial data formats. The STA311B always acts as a slave when receiving audio input from standard digital audio components. Serial data for eight channels is provided using 6 input pins: left/right clock LRCKI, serial clock BICKI, serial data 1 and 2 SDI_12, serial data 3 and 4 SDI_34, serial data 5 and 6 SDI_56, and serial data 7 and 8 SDI_78. The SAI/SAIFB register (configuration register B, address 0x01) is used to specify the serial data format. The default serial data format is I²S, MSB-first. 4.1 Timings In the STA311B, the BICKI and LRCKI pins are configured as inputs and they must be supplied by the external peripheral. Figure 3. Timing diagram for SAI interface tBCH tBCL BICKI tBCy LRCKI tDS tLRH tLRSU SDIxx tDD Table 8. Timing parameters for slave mode Symbol Parameter Min Typ Max Unit tBCy BICK cycle time 50 - - ns tBCH BICK pulse width high 20 - - ns tBCL BICK pulse width low 20 - - ns tLRSU LRCKI setup time to BICKI strobing edge 10 - - ns tLRH LRCKI hold time to BICKI strobing edge 10 - - ns tDD SDI propagation delay from BICKI active edge 0 - 10 ns DocID024340 Rev 1 17/102 102 Serial audio interface 4.2 STA311B Serial data formats Available formats are shown in the following tables. Table 9. Serial data bit first Bit 4 Note: RW RW RST 0 Name Description Determines MSB or LSB first for all SAO formats: 0: MSB first 1: LSB first SAIFB Serial input and output formats are specified separately For example, SAI = 1110 and SAIFB = 1 would specify right-justified 16-bit data, LSB-first. The table below lists the serial audio input formats supported by the STA311B as related to BICKI = 32 * fs, 48 * fs, 64 * fs, where the sampling rate, fs = 32, 44.1, 48, 88.2, 96, 176.4, 192 kHz. Table 10. Serial audio input formats according to sampling rate BICKI SAI [3:0] SAIFB Interface format 1100 X I²SI²S 15-bit data 1110 X Left/right-justified 16-bit data 0100 X I²S 23-bit data 0100 X I²S 20-bit data 1000 X I²S 18-bit data 0100 0 MSB-first I²S 16-bit data 1100 1 LSB-first I²S 16-bit data 0001 X Left-justified 24-bit data 0101 X Left-justified 20-bit data 1001 X Left-justified 18-bit data 1101 X Left-justified 16-bit data 0010 X Right-justified 24-bit data 0110 X Right-justified 20-bit data 1010 X Right-justified 18-bit data 1110 X Right-justified 16-bit data 32 * fs 48 * fs 18/102 DocID024340 Rev 1 STA311B Serial audio interface Table 10. Serial audio input formats according to sampling rate (continued) BICKI SAI [3:0] 64 * fs 4.3 SAIFB Interface format 0000 X I²S 24-bit data 0100 X I²S 20-bit data 1000 X I²S 18-bit data 0000 0 MSB-first I²S 16-bit data 1100 1 LSB-first I²S 16-bit data 0001 X Left-justified 24-bit data 0101 X Left-justified 20-bit data 1001 X Left-justified 18-bit data 1101 X Left-justified 16-bit data 0010 X Right-justified 24-bit data 0110 X Right-justified 20-bit data 1010 X Right-justified 18-bit data 1110 X Right-justified 16-bit data Processing data paths The whole STA311B processing chain is depicted in Figure 4. A programmable rate conversion algorithm is applied to the incoming digital audio data (x3,x2,x1,/2) resampling it to the processing rate. A dual-channel plus line out processing is then implemented, with mixing, EQ capability followed by a Volume/DRC block and final DC cut filter. The final oversampling stage and post scaler will provide the output data stream to the PWM modulators. Three different DRC configurations can be used, single-band, dual-band or enhanced dual-band DRC, as shown below. Figure 4. Processing data path 6 Inputs From DSD DSD Conversion Interp_Rate 8 Inputs From I2S 1x,2x,4x Interp PreScale Hard Set to -18dB when AutoMode EQ (AMEQ) High-Pass Filter User Progammable Biquad #1 when High-Pass Bypassed (HPB) Mapping/ Mix #1 Biquads B/T Volume Limiter Mix #2 2x Interp FFX Output Distortion Compensation From Mix#1 Engine Or Previous Channel Biquad#10 Output (CxBLP) DSDE NS Biquad #2 Biquad #3 C_Con Biquad #4 Biquad #5 Hard Set Coeffecients when AutoMode EQ (AMEQ) DocID024340 Rev 1 PWM Biquad #6 Biquad #7 Biquad #8 Hard Set Hard Set Coeffecients when Coeffecients when AutoMode DeEmphasis Bass Management Enabled Crossover (DEMP) (AMBMXE) To Mix#2 Engine Bass Treble User Programmable Biquads #9 and #10 When Tone Bypassed (CxTCB) 19/102 102 I²S recombination interface 5 STA311B I²S recombination interface The I²S recombination interface shares the same controls for thresholds and gains. However, the low-pass filter is not present and thus the I²S signals coming from the outside should be correctly filtered and conditioned for a correct recombination. Figure 5. I²S recombination block diagram I2S Low Pass Norm_Atten Level Meter Sens_Adj I2S Recomb Output TH_H TH_N I2S Low Pass 20/102 DocID024340 Rev 1 Recombination Engine STA311B 6 Startup/shutdown pop noise removal in SE application Startup/shutdown pop noise removal in SE application Click and pop can generally be defined as undesired audible transients generated by the amplifier system not coming from the system input signal. Such transients can be generated when the amplifier system changes its operating mode: system power-up/power-down, mute/unmute. Every time the PWM starts or stops, if no soft charge method is applied, the result is an audible pop noise. The STA311B integrates a “pop-elimination” circuitry that removes undesired audible pop noise at the PWM switching start and stop either in single-ended or single-ended virtual ground configurations. In particular the pop elimination circuit receives as inputs the PWMs generated by the modulator (PWMs_in) and it generates both a delayed version of the PWMs (PWMs_out) and a tristate signal that are sent to the Power stages to attenuate the audible pop at the power up/down. 6.1 PWM start At power-up as soon as the external amplifier power-down (EAPD) is set to one, if at least one channel at the output of the modulator is in binary mode, the pop elimination circuit selects the related PWM input which exhibits the lower PWM timing delay (set using the I²C registers 0x33, 0x34,0x35, 0x36), and it uses it as a PWM reference to synchronize the remaining PWMs_in whose channels are set in binary mode (synchronization phase). Moreover, during the synchronization phase the modulator is internally muted by setting the audio input signal to zero. At the end of this phase, all the PWMs_in are synchronous with the PWM reference and they have a duty cycle of 50%. At each rising edge of the PWM reference, twoTristate_ramp pulses with increasing duty cycle are generated. As depicted in Figure 10, where for the sake of simplicity, only two PWMs_in (PWM1_in and PWM2_in) are shown, each pulse is centered with respect to both the rising and falling edges of the PWM reference, and their duty cycle initially set to 21.87% increases gradually and becomes equal to 100% at the end of theTristate_ramp. DocID024340 Rev 1 21/102 102 Startup/shutdown pop noise removal in SE application STA311B Figure 6. Power-on sequence for pop-free startup Moreover in order to compensate an internal delay between the tristate signal and the PWM present in the Power stage devices, the pop noise removal circuit generates a delayed version of the PWM_in with respect to the Tristate_ramp signal named PWM1_out and PWM2_out in Figure 6. The delay value delta between the Tristate_ramp and the PWM_in is programmable using the I²C register 0x80 and the default value is 290 ns. Finally when the Tristate_ramp duty cycle is equal to 100%, during the de-synchronization phase the PWM time slots, equal for all the PWMs outputs, are changed so that the final channel shift will be the one configured by registers 0x33, 0x34, 0x35 and 0x36. At this point the PWM modulator is automatically un-muted so that the processing outputs can be played. 6.2 PWM stop When the EAPD signal is set to zero, the modulator is stopped internally, forcing the input audio signal, used to feed the modulator, to zero. After that, the PWM which exhibits the lower PWM timing delay is internally selected and used as a reference. Using the PWM reference, all the PWMs are re-synchronized, and as soon as all PWMs are aligned, at each rising edge of a PWM reference, a reverse tristate_ramp signal is generated. As during startup, the reverse tristate_ramp pulses are centered with respect to the rising and falling edge of the PWM reference, but in this case the starting duty cycle is equal to 100% and gradually becomes equal to zero when the reverse tristate_ramp finishes. In the STA311B the pop-elimination circuit is activated only when at least one channel is set in binary mode, and the PWMs out speed is set to 384 kHz. In all the other cases the no pop-free PWM switching start/stop procedure is adopted. 22/102 DocID024340 Rev 1 STA311B 7 I²C bus operation I²C bus operation The STA311B supports the I²C protocol via the input ports SCL and SDA_IN (master to slave) and the output port SDA_OUT (slave to master). This protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. The STA311B is always a slave device in all of its communications. 7.1 Communication protocol 7.1.1 Data transition or change Data changes on the SDA line must only occur when the SCL clock is low. An SDA transition while the clock is high is used to identify a START or STOP condition. 7.1.2 Start condition START is identified by a high-to-low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must precede any command for data transfer. 7.1.3 Stop condition STOP is identified by a low-to-high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A STOP condition terminates communication between the STA311B and the bus master. 7.1.4 Data input During the data input the STA311B samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low. 7.2 Device addressing To start communication between the master and the Omega FFX core, the master must initiate with a start condition. Following this, the master sends 8 bits onto the SDA line (MSB first) corresponding to the device select address and read or write mode. The 7 most significant bits are the device address identifiers, corresponding to the I²C bus definition. In the STA311B the I²C interface has two device addresses depending on the SA port configuration, 0x40 or 0100000x when SA = 0, and 0x42 or 0100001x when SA = 1. The 8th bit (LSB) identifies read or write operation RW, this bit is set to 1 in read mode and 0 for write mode. After a START condition the STA311B identifies on the bus the device address and if a match is found, it acknowledges the identification on SDA bus during the 9th-bit time. The byte following the device identification byte is the internal space address. DocID024340 Rev 1 23/102 102 I²C bus operation 7.3 STA311B Write operation Following the START condition the master sends a device select code with the RW bit set to 0. The STA311B acknowledges this and the writes for the byte of internal address. After receiving the internal byte address the STA311B again responds with an acknowledgement. 7.3.1 Byte write In the byte write mode the master sends one data byte, this is acknowledged by the Omega FFX core. The master then terminates the transfer by generating a STOP condition. 7.3.2 Multi-byte write The multi-byte write modes can start from any internal address. The master generating a STOP condition terminates the transfer. Figure 7. Write mode sequence ACK DEV-ADDR BYTE WRITE ACK SUB-ADDR RW START STOP ACK MULTIBYTE WRITE ACK DATA IN DEV-ADDR START ACK SUB-ADDR ACK DATA IN ACK DATA IN STOP RW 7.4 Read operation 7.4.1 Current address byte read Following the START condition, the master sends a device select code with the RW bit set to 1. The STA311B acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. 7.4.2 Current address multi-byte read The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA311B. The master acknowledges each data byte read and then generates a STOP condition, terminating the transfer. 7.4.3 Random address byte read Following the START condition, the master sends a device select code with the RW bit set to 0. The STA311B acknowledges this and then the master writes the internal address byte. After receiving the internal byte address, the STA311B again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA311B acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. 24/102 DocID024340 Rev 1 STA311B 7.4.4 I²C bus operation Random address multi-byte read The multi-byte read mode can start from any internal address. Sequential data bytes are read from sequential addresses within the STA311B. The master acknowledges each data byte read and then generates a STOP condition, terminating the transfer. Figure 8. Read mode sequence ACK CURRENT ADDRESS READ DEV-ADDR NO ACK DATA RW START STOP ACK RANDOM ADDRESS READ DEV-ADDR RW RW= ACK HIGH START SEQUENTIAL CURRENT READ ACK ACK SUB-ADDR DEV-ADDR DEV-ADDR S TAR T NO ACK DATA RW ACK STOP ACK DATA DATA NO ACK DATA START STOP ACK SEQUENTIAL RANDOM READ DEV-ADDR START ACK ACK SUB-ADDR RW DEV-ADDR S TAR T ACK DATA RW DocID024340 Rev 1 ACK DATA NO ACK DATA STOP 25/102 102 Registers STA311B 8 Registers 8.1 Register summary Table 11. Register summary Addr Name D7 D6 D5 COS1 COS0 DSPB D4 D3 D2 D1 D0 Configuration 0x00 CONFA IR1 IR0 MCS2 MCS1 MCS0 0x01 ConfB SAIFB SAI3 SAI2 SAI1 SAI0 0x02 ConfC SAOD4 SAOFB SAO3 SAO2 SAO1 SAO0 0x03 ConfD MPC CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 0x04 ConfE C8BO C7BO C6BO C5BO C4BO C3BO C2BO C1BO 0x05 ConfF PWMS2 PWMS1 PWMS0 BQL PSL DEMP DRC HPB 0x06 ConfG MPCV DCCV HPE AM2E AME COD SID PWMD 0x07 ConfH ECLE LDTE BCLE IDE ZDE SVE ZCE NSBW 0x08 ConfI EAPD PSCE Volume control 26/102 0x09 MMUTE MMUTE 0x0A Mvol MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0 0x0B C1Vol C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0 0x0C C2Vol C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0 0x0D C3Vol C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0 0x0E C4Vol C4V7 C4V6 C4V5 C4V4 C4V3 C4V2 C4V1 C4V0 0x0F C5Vol C5V7 C5V6 C5V5 C5V4 C5V3 C5V2 C5V1 C5V0 0x10 C6Vol C6V7 C6V6 C6V5 C6V4 C6V3 C6V2 C6V1 C6V0 0x11 C7Vol C7V7 C7V6 C7V5 C7V4 C7V3 C7V2 C7V1 C7V0 0x12 C8Vol C8V7 C8V6 C8V5 C8V4 C8V3 C8V2 C8V1 C8V0 0x13 C1VTM B C1M C1VBP C1VT4 C1VT3 C1VT2 C1VT1 C1VT0 0x14 C2VTM B C2M C2VBP C2VT4 C2VT3 C2VT2 C2VT1 C2VT0 0x15 C3VTM B C3M C3VBP C3VT4 C3VT3 C3VT2 C3VT1 C3VT0 0x16 C4VTM B C4M C4VBP C4VT4 C4VT3 C4VT2 C4VT1 C4VT0 0x17 C5VTM B C5M C5VBP C5VT4 C5VT3 C5VT2 C5VT1 C5VT0 0x18 C6VTM B C6M C6VBP C6VT4 C6VT3 C6VT2 C6VT1 C6VT0 DocID024340 Rev 1 STA311B Registers Table 11. Register summary (continued) Addr Name D7 D6 D5 D4 D3 D2 D1 D0 0x19 C7VTM B C7M C7VBP C7VT4 C7VT3 C7VT2 C7VT1 C7VT0 0x1A C8VTM B C8M C8VBP C8VT4 C8VT3 C8VT2 C8VT1 C8VT0 Input mapping 0x1B C12im C2IM2 C2IM1 C2IM0 C1IM2 C1IM1 C1IM0 0x1C C34im C4IM2 C4IM1 C4IM0 C3IM2 C3IM1 C3IM0 0x1D C56im C6IM2 C6IM1 C6IM0 C5IM2 C5IM1 C5IM0 0x1E C78im C8IM2 C8IM1 C8IM0 C7IM2 C7IM1 C7IM0 AMEQ0 AutoMode 0x1F Auto1 AMDM AMGC2 AMGC1 AMGC0 AMV1 AMV0 AMEQ1 0x20 Auto2 SUB RSS1 CSS0 FSS AMBMX AMBMM E E 0x21 Auto3 AMAM2 AMAM1 AMAM0 AMAME 0x22 PreEQ XO2 0x23 XO1 RSS0 XO0 CSS1 MSA AMPS PEQ4 PEQ3 PEQ2 PEQ1 PEQ0 Ageq AGEQ4 AGEQ3 AGEQ2 AGEQ1 AGEQ0 0x24 Bgeq BGEQ4 BGEQ3 BGEQ2 BGEQ1 BGEQ0 0x25 Cgeq CGEQ4 CGEQ3 CGEQ2 CGEQ1 CGEQ0 0x26 Dgeq DGEQ4 DGEQ3 DGEQ2 DGEQ1 DGEQ0 0x27 Egeq EGEQ4 EGEQ3 EGEQ2 EGEQ1 EGEQ0 Processing loop 0x28 BQlp C8BLP C7BLP C6BLP C5BLP C4BLP C3BLP C2BLP C1BLP 0x29 MXlp C8MXL P C7MXL P C6MXL P C5MXLP C4MXL P C3MXL P C2MXL P C1MXLP Processing bypass 0x2A EQbp C8EQB P C7EQB P C6EQB P C5EQB C4EQB P C3EQB P C2EQB P C1EQBP 0x2B ToneBP C8TCB C7TCB C6TCB C5TCB C4TCB C3TCB C2TCB C1TCB TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 Tone control 0x2C Tone TTC3 Dynamics control 0x2D C1234ls C4LS1 C4LS0 C3LS1 C3LS0 C2LS1 C2LS0 C1LS1 C1LS0 0x2E C5678ls C8LS1 C8LS0 C7LS1 C7LS0 C6LS1 C6LS0 C5LS1 C5LS0 0x2F L1ar L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0x30 L1atrt L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0x31 L2ar L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 DocID024340 Rev 1 27/102 102 Registers STA311B Table 11. Register summary (continued) Addr 0x32 Name L2atrt D7 L2AT3 D6 D5 D4 L2AT2 L2AT1 L2AT0 D3 L2RT3 D2 D1 D0 L2RT2 L2RT1 L2RT0 PWM output timing 0x33 C12ot C2OT2 C2OT1 C2OT0 C1OT2 C1OT1 C1OT0 0x34 C34ot C4OT2 C4OT1 C4OT0 C3OT2 C3OT1 C3OT0 0x35 C56ot C6OT2 C6OT1 C6OT0 C5OT2 C5OT1 C5OT0 0x36 C78ot C8OT2 C8OT1 C8OT0 C7OT2 C7OT1 C7OT0 I²S output channel mapping 0x37 C12om C2OM2 C2OM1 C2OM0 C1OM2 C1OM1 C1OM0 0x38 C34om C4OM2 C4OM1 C4OM0 C3OM2 C3OM1 C3OM0 0x39 C56om C6OM2 C6OM1 C6OM0 C5OM2 C5OM1 C5OM0 0x3A C78om C8OM2 C8OM1 C8OM0 C7OM2 C7OM1 C7OM0 CFA9 CFA8 User-defined coefficient RAM 28/102 0x3B Cfaddr1 0x3C Cfaddr2 CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0x3D B1cf1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0x3E B1cf2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0x3F B1cf3 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0x40 B2cf1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0x41 B2cf2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0x42 B2cf3 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0x43 A1cf1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16 0x44 A1cf2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0x45 A1cf3 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0 0x46 A2cf1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0x47 A2cf2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8 0x48 A2cf3 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0 0x49 B0cf1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0x4A B0cf2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0x4B B0cf3 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0x4C Cfud WA W1 0x4D MPCC1 MPCC1 5 MPCC1 4 MPCC1 3 MPCC12 MPCC1 1 MPCC1 0 MPCC9 MPCC8 0x4E MPCC2 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 0x4F DCC1 DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8 0x50 DCC2 DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0 DocID024340 Rev 1 STA311B Registers Table 11. Register summary (continued) Addr Name D7 D6 D5 D4 D3 D2 D1 D0 0x51 PSC1 RCV11 RCV10 RCV9 RCV8 RCV7 RCV6 RCV5 RCV4 0x52 PSC2 RCV3 RCV2 RCV1 RCV0 CNV11 CNV10 CNV9 CNV8 0x53 PSC3 CNV7 CNV6 CNV5 CNV4 CNV3 CNV2 CNV1 CNV0 I²S_byp I²S_en AdvM3 AdvM2 AdvM1 I²S recombination interface Boost6d b 0x5D RCTR1 0x5E PDMCT AdvM6 AdvM5 0x5F RCTR2 bypRM1 CH1GG[5:0] 0x60 RCTR3 bypRM2 CH2GG[5:0] 0x61 RCTR4 bypRM3 CH3GG[5:0] 0x62 RCTR5 LP1en CH1NCA[5:0] 0x63 RCTR6 LP2en CH2NCA[5:0] 0x64 RCTR7 LP3en CH3NCA[5:0] 0x65 RCTR8 CH1TH_N[5:0] 0x66 RCTR9 CH2TH_N[5:0] 0x67 RCTR1 0 CH3TH_N[5:0] 0x68 RCTR11 CH1TH_H[5:0] 0x69 RCTR1 2 CH2TH_H[5:0] 0x6A RCTR1 3 CH3TH_H[5:0] AdvM4 Extended DRC configuration registers 0x6B nL1at L1AT6 L1AT5 L1AT4 L1AT3 L1AT2 L1AT1 L1AT0 0x6C nL2at L2AT6 L2AT5 L2AT4 L2AT3 L2AT2 L2AT1 L2AT0 0x6D nL1rt L1RT5 L1RT4 L1RT3 L1RT2 L1RT1 L1RT0 0x6E nL2rt L2RT5 L2RT4 L2RT3 L2RT2 L2RT1 L2RT0 0x6F 0Mute ZMTHS 0 ZMHYS 1 ZMHYS0 0x70 ZMTHS RMSZS RMSZS RMSZS ZMTHS2 1 2 1 0 RMS2 RMS1 RMS0 FXLRC0 Clock manager configuration/status registers 0x71 pllfrac1 PLFI15 PLFI14 PLFI13 PLFI12 PLFI11 PLFI10 PLFI9 PLFI8 0x72 pllfrac0 PLFI7 PLFI6 PLFI5 PLFI4 PLFI3 PLFI2 PLFI1 PLFI0 0x73 pll div PLLDD1 PLLDD0 PLLND5 PLLND4 0x74 pll conf0 PDPDC PLLFC PLSTR B PLLND3 PLLND2 PLLND1 PLLND0 PLSTBB PLIFD3 DocID024340 Rev 1 PLIFD2 PLIFD1 PLIFD0 29/102 102 Registers STA311B Table 11. Register summary (continued) Addr Name D7 D6 D5 D4 D3 D2 PLLDP R D1 0x75 pll conf1 PLLBYP 0x76 pll stat PLLBYS PLLPDS OSCOK D0 LOWEN BST32K LOWCK S Biquad configuration 0x77 CBQ1 EBQ3_1 EBQ3_0 EBQ2_1 EBQ2_0 EBQ1_1 EBQ1_0 EBQ0_0 EBQ0_0 0x78 CBQ2 EBQ7_1 EBQ7_0 EBQ6_1 EBQ6_0 EBQ5_1 EBQ5_0 EBQ4_0 EBQ4_0 0x79 CBQ3 nshen EBQ9_1 EBQ9_0 EBQ8_0 EBQ8_0 RMS status registers 0x7A rmsZMH RZM15 RZM14 RZM13 RZM12 RZM11 RZM10 RZM9 RZM8 0X7B rmsZML RZM7 RZM6 RZM5 RZM4 RZM3 RZM2 RZM1 RZM0 0X7C rmsPOH RPO15 RPO14 RPO13 RPO12 RPO11 RPO10 RPO9 RPO8 0X7D rmsPOL RPO7 RPO6 RPO5 RPO4 RPO3 RPO2 RPO1 RPO0 DPT4 DPT3 DPT2 DPT1 DPT0 RD SID1 FBYP RTP Tristate startup/shutdown pop removal signals 30/102 0x80 DPT 0x81 CFR129 RL3 0x82 TSDLY1 0x83 RL2 RL1 RL0 UDDT1 5 UDDT1 4 UDDT1 3 UDDT12 UDDT11 UDDT1 0 UDDT9 UDDT8 TSDLY2 UDDT7 UDDT6 UDDT5 UDDT4 UDDT2 UDDT1 UDDT0 DocID024340 Rev 1 UDDT3 STA311B Registers 8.2 Register description 8.2.1 Configuration register A (0x00) D7 D6 D5 D4 D3 D2 D1 D0 COS1 COS0 DSPB IR1 IR0 MCS2 MCS1 MCS0 1 0 0 0 0 0 1 1 Bit RW RST Name 0 RW 1 MCS0 1 RW 1 MCS1 2 RW 0 MCS2 Description Master clock select: selects the ratio between the input I²S sampling frequency and the input clock. The STA311B supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, 192 kHz, 2.8224 MHz DSD. Therefore the internal clocks are: 65.536 MHz for 32 kHz 90.3168 MHz for 44.1 kHz, 88.2 kHz, 176.4 kHz, and DSD 98.304 MHz for 48 kHz, 96 kHz, 192 kHz The external clock frequency provided to the XTI or BICKI pin (depending on the MCS settings) must be a multiple of the input sampling frequency (fs). The relationship between the input clock (either XTI or BICKI) and the input sampling rate is determined by both the MCS[2:0] and the IR[1:0] (input rate) register bits in normal mode, if the Fs autodetect mode has been set, the IR[1:0] parameter and the BST32K bit will be set automatically (see Fs autodetection on page 32). The MCS[2:0] bits determine the PLL factor generating the internal clock and the IR[1:0] bits determine the oversampling ratio used internally. If XTI input is not used, related pin must be tied to GND. To get 98.304 MHz of system clock frequency when fs = 32 kHz, an extra oversampling factor is available by setting the BST32K bit in the 0x75 register (see Clock manager configuration register (0x75) on page 93). MCS[2:0] Input sampling rate fs (kHz) IR BICKI XTI 111 110 10- 011 010 001 000 32, 44.1, 48 00 64*fs na 128*fs 256*fs 384*fs 512*fs 768*fs 88.2, 96 01 64*fs 32*fs 64*fs 128*fs 192*fs 256*fs 384*fs 176.4, 192 10 64*fs 32*fs 64*fs 128*fs 192*fs 256*fs na DSD/PDM 11 2*fs 2*fs 2*fs 4*fs 6*fs 8*fs 12*fs DocID024340 Rev 1 31/102 102 Registers STA311B Fs autodetection When FXLRC0 = ‘0’ (see 0x70 register), the autodetection function is disabled, IR[1:0] and BST32K must be set via I²C. When FXLRC0 = ‘1’ the autodetection function is enabled, then IR and BST32K will be set automatically based on Fs. Before and after enabling the function m, LRCKI must be stable for at least 3 cycles with a fixed Fs as reference. After 3 fixed Fs cycles when the function has been enabled, the real Fs can be fed to LRCKI. Interpolation ratio select Bit RW RST Name 3 RW 0 IR0 4 RW 0 IR1 Description Interpolation ratio select: selects internal interpolation ratio based on input I²S sample frequency The STA311B has variable interpolation (oversampling) settings such that internal processing and FFX output rates remain consistent. The first processing block interpolates by either 4 times, 2 times, or 1 time (pass-through). The oversampling ratio of this interpolation is determined by the IR bits. I Input sample rate IR[1,0] 1st stage interpolation ratio Fs (kHz) 00 32 4-times oversampling 00 44.1 4-times oversampling 00 48 4-times oversampling 01 88.2 2-times oversampling 01 96 2-times oversampling 10 176.4 Pass-through 10 192 Pass-through 11 DSD DSD to 176.4 kHz conversion Bit RW RST Name Description 0 RW 0 DSPB DSP bypass bit: 0: normal operation 1: bypass of biquad and bass/treble functions Setting the DSPB bit bypasses the biquad function of the processing core of the STA311B. COS[1,0] 32/102 CKOUT frequency 00 PLL output 01 PLL output / 4 10 PLL output / 8 11 PLL output / 16 DocID024340 Rev 1 STA311B 8.2.2 Registers Configuration register B (0x01) - serial input formats D7 D6 D5 Bit RW RST Name 0 RW 0 SAI0 1 RW 0 SAI1 2 RW 0 SAI2 3 RW 0 SAI3 D4 D3 D2 D1 D0 SAIFB SAI3 SAI2 SAI1 SAI0 0 0 0 0 0 Description Serial audio input interface format: determines the interface format of the input serial digital audio interface Serial data interface The STA311B audio serial input interfaces with standard digital audio components and accepts a number of serial data formats. The STA311B always acts a slave when receiving audio input from standard digital audio components. Serial data for eight channels is provided using 6 input pins: left/right clock LRCKI, serial clock BICKI, serial data 1 and 2 SDI_12, serial data 3 and 4 SDI_34, serial data 5 and 6 SDI_56, and serial data 7 and 8 SDI_78. The SAI/SAIFB register (configuration register B, address 0x01) is used to specify the serial data format. The default serial data format is I²S, MSB-first. Available formats are shown in the tables that follow. Note: Bit RW RST Name 4 RW 0 SAIFB Description Determines MSB or LSB first for all SAO formats: 0: MSB first 1: LSB first Serial input and output formats are specified separately. For example, SAI = 1110 and SAIFB = 1 would specify right-justified 16-bit data, LSB-first. The table below lists the serial audio input formats supported by STA311B as related to BICKI = 32 * fs, 48 * fs, 64 * fs, where sampling rate, fs = 32, 44.1, 48, 88.2, 96, 176.4, 192 kHz. DocID024340 Rev 1 33/102 102 Registers STA311B Table 12. Serial audio input formats according to sampling rate BICKI SAI [3:0] SAIFB Interface format 1100 X I²S 15-bit data 1110 X Left/right-justified 16-bit data 0100 X I²S 23-bit data 0100 X I²S 20-bit data 1000 X I²S 18-bit data 0100 0 MSB-first I²S 16-bit data 1100 1 LSB-first I²S 16-bit data 0001 X Left-justified 24-bit data 0101 X Left-justified 20-bit data 1001 X Left-justified 18-bit data 1101 X Left-justified 16-bit data 0010 X Right-justified 24-bit data 0110 X Right-justified 20-bit data 1010 X Right-justified 18-bit data 1110 X Right-justified 16-bit data 0000 X I²S 24-bit data 0100 X I²S 20-bit data 1000 X I²S 18-bit data 0000 0 MSB-first I²S 16-bit data 1100 1 LSB-first I²S 16-bit data 0001 X Left-justified 24-bit data 0101 X Left-justified 20-bit data 1001 X Left-justified 18-bit data 1101 X Left-justified 16-bit data 0010 X Right-justified 24-bit data 0110 X Right-justified 20-bit data 1010 X Right-justified 18-bit data 1110 X Right-justified 16-bit data 32 * fs 48 * fs 64 * fs 34/102 DocID024340 Rev 1 STA311B 8.2.3 Registers Configuration register C (0x02) - serial output formats D7 D6 D5 D4 D3 D2 D1 D0 SAOD4 SAOFB SAO3 SAO2 SAIO SAO0 0 0 0 0 0 0 Bit RW RST Name 0 RW 0 SAO0 1 RW 0 SAO1 2 RW 0 SAO2 3 RW 0 SAO3 Description Serial audio output interface format: determines the interface format of the output serial digital audio interface. The STA311B features a serial audio output interface that consists of 8 channels. The serial audio output always acts as a slave to the serial audio input interface and, therefore, all output clocks are synchronous with the input clocks. The output sampling frequency (fs) is also equivalent to the input sampling frequency. In the case of SACD/DSD input, the serial audio output acts as a master with an output sampling frequency of 8 xfs, 4 xfs or fs depending on SAOD4 bit. The output serial format can be selected independently from the input format and is done via the SAO and SAOFB bits. Bit RW RST Name 4 RW 0 SAOFB Bit RW RST Name 5 RW 0 SAOD4 Description Determines MSB or LSB first for all SAO formats: 0: MSB first 1: LSB first Description Enables decimation by 4 on SAO interface for SACD/DSD input; no effect for others. 0: div by 1 1: div by 4 (1) 1. To avoid any aliasing on SAO streaming, a low-pass filter is needed to be implemented in one of the available user-programmable biquads. DocID024340 Rev 1 35/102 102 Registers STA311B Table 13. Serial audio output formats according to sampling rate BICKI = BICKO SAO[3:0] Interface data format 0111 I²S data 1111 Left/right-justified 16-bit data 1110 I²S data 0001 Left-justified data 1010 Right-justified 24-bit data 1011 Right-justified 20-bit data 1100 Right-justified 18-bit data 1101 Right-justified 16-bit data 0000 I²S data 0001 Left-justified data 0010 Right-justified 24-bit data 0011 Right-justified 20-bit data 0100 Right-justified 18-bit data 0101 Right-justified 16-bit data 32 * fs 48 * fs 64 * fs 36/102 DocID024340 Rev 1 STA311B 8.2.4 Registers Configuration register D (0x03) D7 D6 D5 D4 D3 D2 D1 D0 MPC CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 1 1 1 1 1 1 1 0 Bit RW RST Name 0 RW 0 OM0 1 RW 1 OM1 Description FFX power output mode: selects configuration of FFX output The FFX power output mode selects how the FFX output timing is configured. Different power devices use different output modes. The STA50x recommended use is OM = 10. OM[1,0] Output stage - mode 00 STA50x/STA51xB - drop compensation 01 Discrete output stage - tapered compensation 10 STA50x/STA51xB - full-power mode 11 Variable drop compensation (CSZn bits) Bit RW RST Name 2 RW 1 CSZ0 3 RW 1 CSZ1 4 RW 1 CSZ2 5 RW 1 CSZ3 6 RW 1 CSZ4 CSZ[4:0] Description Contra size register: when OM[1,0] = 11, this register determines the size of the FFX compensating pulse from 0 clock ticks to 31 clock periods Compensating pulse size 00000 0 clock period compensating pulse size 00001 1 clock period compensating pulse size … … 11111 31 clock period compensating pulse size Bit RW RST Name 7 RW 1 MPC Description Max power correction: setting of 1 enables STA50x correction for THD reduction near maximum power output. DocID024340 Rev 1 37/102 102 Registers STA311B Setting the MPC bit turns on special processing that corrects the STA50x power device at high power. This mode should lower the THD+N of a full STA50x FFX system at maximum power output and slightly below. This mode will only be operational in OM[1,0] = 01. 8.2.5 Configuration register E (0x04) D7 D6 D5 D4 D3 D2 D1 D0 C8BO C7BO C6BO C5BO C4BO C3BO C2BO C1BO 0 0 0 0 0 0 0 0 Bit RW RST Name 0 RW 0 C1BO 1 RW 0 C2BO 2 RW 0 C3BO 3 RW 0 C4BO 4 RW 0 C5BO 5 RW 0 C6BO 6 RW 0 C7BO 7 RW 0 C8BO Description Channels 1, 2, 3, 4, 5, 6, 7, and 8 binary output mode enable bits. A setting of 0 indicates ordinary FFX tristate output. A setting of 1 indicates binary output mode. Each individual channel output can be set to output a binary PWM stream. In this mode output A of a channel will be considered the positive output and output B is the negative inverse. 8.2.6 Configuration register F (0x05) D7 D6 D5 D4 D3 D2 D1 D0 PWMS2 PWMS1 PWMS0 BQL PSL DEMP DRC HPB 0 0 0 0 0 0 0 0 Bit RW RST Name 0 RW 0 HPB Description High-pass filter bypass bit: setting of one bypasses internal AC coupling digital high-pass filter The STA311B features an internal digital high-pass filter for the purpose of AC coupling. The purpose of this filter is to prevent DC signals from passing through an FFX amplifier. DC signals can cause speaker damage. If HPB = 1, then the filter that the high-pass filter utilizes is made available as userprogrammable biquad #1. 38/102 DocID024340 Rev 1 STA311B Registers Bit RW RST Name 1 RW 0 DRC Description Dynamic range compression/anti-clipping 0: limiters act in anti-clipping mode 1: limiters act in dynamic range compression mode Both limiters can be used in one of two ways, anti-clipping or dynamic range compression. When used in anti-clipping mode, the limiter threshold values are constant and dependent on the limiter settings. In dynamic range compression mode, the limiter threshold values vary with the volume settings allowing a nighttime listening mode that provides a reduction in the dynamic range regardless of the volume level. Bit RW RST Name 2 RW 0 DEMP Description De-emphasis: 0: no de-emphasis 1: de-emphasis By setting this bit to one de-emphasis will be implemented on all channels. When this is used it takes the place of biquad #7 in each channel and any coefficients using biquad #1 will be ignored. The DSPB (DSP bypass) bit must be set to 0 for de-emphasis to function. Bit RW RST Name 3 RW 0 PSL Description Post-scale link: 0: each channel uses individual post-scale value 1: each channel uses channel 1 post-scale value Post-scale functionality can be used for power-supply error correction. For multi-channel applications running off the same power-supply, the post-scale values can be linked to the value of channel 1 for ease of use and in order to update the values faster. Bit RW RST Name 4 RW 0 BQL Description Biquad link: 0: each channel uses coefficient values 1: each channel uses channel 1 coefficient values For ease of use, all channels can use the biquad coefficients loaded into the channel 1 coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once. Bit RW RST Name 7:5 RW 00 PWMS[2:0] Description PWM speed selection DocID024340 Rev 1 39/102 102 Registers STA311B PWMS[1:0] 8.2.7 PWM output speed 000 Normal speed (384 kHz) (all channels) 001 Half-speed (192 kHz) (all channels) 010 Double-speed (768 kHz) (all channels) 011 Normal speed (channels 1-6), double-speed (channels 7-8) 100 Odd speed (341.3 kHz) (all channels) Configuration register G (0x06) D7 D6 D5 D4 D3 D2 D1 D0 MPCV DCCV HPE AM2E AME COD SID PWMD 0 0 0 0 0 0 0 0 Bit RW RST Name 0 RW 0 PWMD 1 RW 0 SID Serial interface (I²S out) disable: 0: I²S output normal 1: no I²S output 2 RW 0 COD Clock output disable: 0: clock output normal 1: no clock output Bit RW RST Name 3 RW 0 AME Description PWM output disable: 0: PWM output normal 1: no PWM output Description AM mode enable: 0: normal FFX operation 1: AM reduction mode FFX operation The STA311B features an FFX processing mode that minimizes the amount of noise generated in the frequency range of AM radio. This mode is intended for use when FFX is operating in a device with an active AM tuner. The SNR of the FFX processing is reduced to ~83 dB in this mode, which is still greater than the SNR of AM radio. Bit RW RST Name 4 RW 0 AM2E Description AM2 mode enable: 0: normal FFX operation 1: AM2 reduction mode FFX operation The STA311B features two FFX processing modes that minimize the amount of noise generated in the frequency range of AM radio. This second mode is intended for use when 40/102 DocID024340 Rev 1 STA311B Registers FFX is operating in a device with an active AM tuner. This mode eliminates the noiseshaper. Bit RW RST Name 5 RW 0 HPE Description FFX headphone enable: 0: channels 7 and 8 normal FFX operation 1: channels 7 and 8 headphone operation Channels 7 and 8 can be configured to be processed and output in such a manner that headphones can be driven using an appropriate output device. This signal is a differential 3-wire drive called FFX headphone. 8.2.8 Bit RW RST Name 6 RW 0 DCCV Bit RW RST Name 7 RW 0 MPCV Description Distortion compensation variable enable: 0: uses the preset DC coefficient 1: uses the DCC coefficient Description Max power correction variable: 0: uses the standard MPC coefficient 1: uses the MPCC bits for the MPC coefficient Configuration register H (0x07) D7 D6 D5 D4 D3 D2 D1 D0 ECLE LDTE BCLE IDE ZDE SVE ZCE NSBW 0 1 1 1 1 1 1 0 Bit RW RST Name Description 0 RW 0 NSBW Noise-shaper bandwidth selection: 1: 3rd order NS 0: 4th order NS Bit RW RST Name Description 1 RW 1 ZCE Zero-crossing volume enable: 1: volume adjustments will only occur at digital zerocrossings 0: volume adjustments will occur immediately The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings, no clicks will be audible. DocID024340 Rev 1 41/102 102 Registers STA311B Bit RW RST Name 2 RW 1 SVE Bit RW RST Name 3 RW 1 ZDE Description Soft volume enable: 1: volume adjustments use soft volume 0: volume adjustments occur immediately Description Zero-detect mute enable: setting of 1 enables the automatic zero-detect mute Setting the ZDE bit enables the zero-detect automatic mute. See Section 9.5.7 for more details. Bit RW RST Name 4 RW 1 IDE Description Invalid input detect mute enable: 1: enable the automatic invalid input detect mute Setting the IDE bit enables this function, which looks at the input I²S data and will automatically mute if the signals are perceived as invalid. Bit RW RST Name 5 RW 1 BCLE Description Binary output mode clock loss detection enable The BCLE bit detects loss of input MCLK in binary mode and will output 50% duty cycle. Bit RW RST Name 6 RW 1 LDTE Description LRCLK double trigger protection enable The LDTE bit actively prevents double triggering of LRCLK. Bit RW RST Name 7 RW 0 ECLE Description Auto EAPD on clock loss When active, the ECLE bit will issue a device power-down signal (EAPD) on clock loss detection. 8.2.9 Configuration register I (0x08) D7 42/102 D6 D5 D4 D3 D2 D1 D0 EAPD PSCE 0 0 DocID024340 Rev 1 STA311B Registers This feature utilizes an ADC on SDI78 that provides power supply ripple information for correction. Registers PSC1, PSC2, PSC3 are utilized in this mode. 8.2.10 Bit RW RST Name 0 RW 0 PSCE Bit RW RST Name 7 RW 0 EAPD Description Power supply ripple correction enable: 0: normal operation 1: PSCorrect operation Description External amplifier power-down: 0: external power stage power-down active 1: normal operation Master mute register (0x09) D7 D6 D5 D4 D3 D2 D1 D0 MMUTE 0 8.2.11 Master volume register (0x0A) D7 D6 D5 D4 D3 D2 D1 D0 MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0 1 1 1 1 1 1 1 1 Note: The value of the volume derived from MVOL is dependent on the AMV AutoMode volume settings. 8.2.12 Channel 1 volume (0x0B) 8.2.13 D7 D6 D5 D4 D3 D2 D1 D0 C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0 0 1 1 0 0 0 0 0 Channel 2 volume (0x0C) D7 D6 D5 D4 D3 D2 D1 D0 C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0 0 1 1 0 0 0 0 0 DocID024340 Rev 1 43/102 102 Registers 8.2.14 8.2.15 8.2.16 8.2.17 8.2.18 8.2.19 8.2.20 44/102 STA311B Channel 3 volume (0x0D) D7 D6 D5 D4 D3 D2 D1 D0 C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0 0 1 1 0 0 0 0 0 Channel 4 volume (0x0E) D7 D6 D5 D4 D3 D2 D1 D0 C4V7 C4V6 C4V5 C4V4 C4V3 C4V2 C4V1 C4V0 0 1 1 0 0 0 0 0 Channel 5 volume (0x0F) D7 D6 D5 D4 D3 D2 D1 D0 C5V7 C5V6 C5V5 C5V4 C5V3 C5V2 C5V1 C5V0 0 1 1 0 0 0 0 0 Channel 6 volume (0x10) D7 D6 D5 D4 D3 D2 D1 D0 C6V7 C6V6 C6V5 C6V4 C6V3 C6V2 C6V1 C6V0 0 1 1 0 0 0 0 0 Channel 7 volume (0x11) D7 D6 D5 D4 D3 D2 D1 D0 C7V7 C7V6 C7V5 C7V4 C7V3 C7V2 C7V1 C7V0 0 1 1 0 0 0 0 0 Channel 8 volume (0x12) D7 D6 D5 D4 D3 D2 D1 D0 C8V7 C8V6 C8V5 C8V4 C8V3 C8V2 C8V1 C8V0 0 1 1 0 0 0 0 0 Channel 1 volume trim, mute, bypass (0x13) D7 D6 C1M C1VBP 0 0 D5 0 D4 D3 D2 D1 D0 C1VT4 C1VT3 C1VT2 C1VT1 C1VT0 1 0 0 0 0 DocID024340 Rev 1 STA311B 8.2.21 8.2.22 8.2.23 8.2.24 8.2.25 8.2.26 8.2.27 Registers Channel 2 volume trim, mute, bypass (0x14) D7 D6 C2M C2VBP 0 0 D5 0 D4 D3 D2 D1 D0 C2VT4 C2VT3 C2VT2 C2VT1 C2VT0 1 0 0 0 0 Channel 3 volume trim, mute, bypass (0x15) D7 D6 C3M C3VBP 0 0 D5 0 D4 D3 D2 D1 D0 C3VT4 C3VT3 C3VT2 C3VT1 C3VT0 1 0 0 0 0 Channel 4 volume trim, mute, bypass (0x16) D7 D6 C4M C4VBP 0 0 D5 0 D4 D3 D2 D1 D0 C4VT4 C4VT3 C4VT2 C4VT1 C4VT0 1 0 0 0 0 Channel 5 volume trim, mute, bypass (0x17) D7 D6 C5M C5VBP 0 0 D5 0 D4 D3 D2 D1 D0 C5VT4 C5VT3 C5VT2 C5VT1 C5VT0 1 0 0 0 0 Channel 6 volume trim, mute, bypass (0x18) D7 D6 C6M C6VBP 0 0 D5 0 D4 D3 D2 D1 D0 C6VT4 C6VT3 C6VT2 C6VT1 C6VT0 1 0 0 0 0 Channel 7 volume trim, mute, bypass (0x19) D7 D6 C7M C7VBP 0 0 D5 0 D4 D3 D2 D1 D0 C7VT4 C7VT3 C7VT2 C7VT1 C7VT0 1 0 0 0 0 Channel 8 volume trim, mute, bypass (0x1A) D7 D6 C8M C8VBP 0 0 D5 0 D4 D3 D2 D1 D0 C8VT4 C8VT3 C8VT2 C8VT1 C8VT0 1 0 0 0 0 DocID024340 Rev 1 45/102 102 Registers STA311B The volume structure of the STA311B consists of individual volume registers for each channel and a master volume register that provides an offset to each channel’s volume setting. There is also an additional offset for each channel called channel volume trim. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to -78 dB. As an example if C5V = 0xXX or +XXX dB and MV = 0xXX or -XX dB, then the total gain for channel 5 = XX dB. The channel volume trim is adjustable independently on each channel from -10 dB to +10 dB in 1 dB steps. The master mute when set to 1 will mute all channels at once, whereas the individual channel mutes (CnM) will mute only that channel. Both the master mute and the channel mutes provide a "soft mute" with the volume ramping down to mute in 8192 samples from the maximum volume setting at the internal processing rate (~192 kHz). A "hard mute" can be obtained by commanding a value of 0xFF (255) to any channel volume register or the master volume register. When volume offsets are provided via the master volume register any channel whose total volume is less than -91 dB will be muted. All changes in volume take place at zero-crossings when ZCE = 1 (configuration register H) on a per-channel basis as this creates the smoothest possible volume transitions. When ZCE = 0, volume updates occur immediately. Each channel also contains an individual channel volume bypass. If a particular channel has volume bypassed via the CnVBP = 1 register, then only the channel volume setting for that particular channel affects the volume setting, the master volume setting will not affect that channel. Each channel also contains a channel mute. If CnM = 1 a soft mute is performed on that channel. 46/102 MV[7:0] Volume offset from channel value 0x00 0 dB 0x01 -0.5 dB 0x02 -1 dB … … 0x4C -38 dB … … 0xFE -127 dB 0xFF Hardware channel mute CnV[7:0] Volume 0x00 +48 dB 0x01 +47.5 dB 0x02 +47 dB … … 0x5F +0.5 dB 0x60 0 dB 0x61 -0.5 dB … … 0xFE -79.5 dB 0xFF Hardware channel mute DocID024340 Rev 1 STA311B 8.2.28 Registers +10 dB 0x07 +9 dB … … 0x0F +1 dB 0x10 0 dB 0x11 -1 dB … … 0x19 -9 dB 0x1A to 0x1F -10 dB D6 D5 D4 C2IM2 C2IM1 0 0 D3 D2 D1 D0 C2IM0 C1IM2 C1IM1 C1IM0 1 0 0 0 D2 D1 D0 D6 D5 D4 D3 C4IM2 C4IM1 C4IM0 C3IM2 C3IM1 C3IM0 0 1 1 0 1 0 D2 D1 D0 Channel input mapping channels 5 and 6 (0x1D) D7 8.2.31 0x00 to 0x06 Channel input mapping channels 3 and 4 (0x1C) D7 8.2.30 Volume Channel input mapping channels 1 and 2 (0x1B) D7 8.2.29 CnVT[4:0] D6 D5 D4 D3 C6IM2 C6IM1 C6IM0 C5IM2 C5IM1 C5IM0 1 0 1 1 0 0 D2 D1 D0 Channel input mapping channels 7 and 8 (0x1E) D7 D6 D5 D4 D3 C8IM2 C8M1 C8IM0 C7IM2 C7IM1 C7IM0 1 1 1 1 1 0 Each channel received via I²S can be mapped to any internal processing channel via the channel input mapping registers. This allows for flexibility in processing, simplifies output stage designs, and enables the ability to perform crossovers. The default settings of these registers map each I²S input channel to its corresponding processing channel. DocID024340 Rev 1 47/102 102 Registers 8.2.32 STA311B CnIM[2:0] Serial input from 000 Channel 1 001 Channel 2 010 Channel 3 011 Channel 4 100 Channel 5 101 Channel 6 110 Channel 7 111 Channel 8 AUTO1 - AutoModes EQ, volume, GC (0x1F) D7 D6 D5 D4 D3 D2 D1 D0 AMDM AMGC2 AMGC1 AMGC0 AMV1 AMV0 AMEQ1 AMEQ0 0 0 0 0 0 0 0 0 Bit 1:0 RW RW RST 0 Name AMEQ[1:0] Description Biquad 2-6 mode is: 00: user-programmable 01: preset EQ - PEQ bits 10: graphic EQ - xGEQ bits 11: auto volume-controlled loudness curve Setting AMEQ to any setting other than 00 enables AutoMode EQ, biquads 1-5 are not userprogrammable. Any coefficient settings for these biquads will be ignored. Also when AutoMode EQ is used, the pre-scale value for channels 1-6 becomes hard-set to -18 dB. Bit 3:2 6:4 48/102 RW RW RW RST 0 0 Name AMV[1:0] AMGC[2:0] Description AutoMode volume mode (MVOL) is: 00: MVOL 0.5 dB 256 steps (standard) 01: MVOL auto curve 30 steps 10: MVOL auto curve 40 steps 11: MVOL auto curve 50 steps AutoMode gain compression/limiters mode is: 000: user programmable GC 001: AC no clipping 010: AC limited clipping (10%) 011: DRC nighttime listening mode 100: DRC TV commercial/channel AGC 101: AC 5.1 no clipping 110: AC 5.1 limited clipping (10%) DocID024340 Rev 1 STA311B Registers Bit RW 7 RST RW 0 Name Description AMDM AutoMode 5.1 downmix: 0: normal operation 1: channels 7-8 are 2-channel downmix of channels 1-6 AutoMode downmix setting uses channels 7-8 of Mix#1 engine and therefore these channels of this function are fixed and not allowed to be set by the user when in this mode. Channels 1-6 must be arranged via channel mapping (registers CnIM) if necessary in the following manner for this operation: Channel 1: left Channel 2: right Channel 3: left surround Channel 4: right surround Channel 5: center Channel 6: LFE 8.2.33 AUTO2 - AutoModes bass management2 (0x20) D7 D6 D5 D4 D3 D2 D1 D0 SUB RSS1 RSS0 CSS1 CSS0 FSS AMBMXE AMBMME 1 0 0 0 0 0 0 0 Bit RW RST Name 0 RW 0 AMBMME Bit RW RST Name 1 RW 0 AMBMXE Description 0: AutoMode bass management mix disabled 1: AutoMode bass management mix enabled Description 0: AutoMode bass management crossover disabled 1: AutoMode bass management crossover enabled Setting the AMBMME bit enables the proper mixing to take place for various preset bass management configurations. Setting the AMBMXE bit enables the proper crossover filtering in biquad #7 to take place. The crossover for bass management is always 2nd order (24 dB/oct) and the crossover frequency is determined by register bits PREEQ.XO[2:0]. All configurations of Dolby Bass Management can be performed in the IC. These different configurations are selected by the end user. The AutoMode bass management settings utilize channels 1-6 on the mix #1 engine, channels 1-6 biquad #6, and channels 1-2 on the mix #2 engine in configuration #2. These functions cannot be user-programmed while the bass management automode is active. Not all settings are valid as some configurations are unlikely and do not have to be supported by Dolby specifications. DocID024340 Rev 1 49/102 102 Registers STA311B Automatic crossover settings are provided or custom crossovers can be implemented using the available programmable biquads. Input channels must be mapped using the channel-mapping feature in the following manner for bass management to be performed properly. 1: left front 2: right front 3: left rear 4: right rear 5: center 6: LFE Bitfield 10 01 00 CSS - center speaker size Off Large Small RSS - rear speaker size Off Large Small 1 0 Large Small On Off Bitfield FSS - front speaker size SUB - subwoofer When AMBMXE = 1, biquad #7 on channels 1-6 are utilized for the bass-management crossover filter, this biquad is not user-programmable in this mode. The XO settings determine the crossover frequency used, the crossover is 2nd order for both high-pass and low-pass with a -3 dB cross point. Higher order filters can be obtained by programming coefficients in other biquads if desired. It is recommended to use settings of 120-160 Hz when using small, single-driver satellite speakers as the frequency response of these speakers normally are limited to this region. 8.2.34 50/102 AUTO3 - AutoMode AM/pre-scale/bass management scale (0x21) D7 D6 D5 D4 AMAM2 AMAM1 AMAM0 0 0 0 Bit RW RST Name 0 RW 0 AMPS D3 D2 D1 D0 AMAME MSA AMPS 0 0 1 Description AutoMode pre-scale 1: -18 dB used for pre-scale when AMEQ /= 00 0: user-defined pre-scale when AMEQ /= 00 DocID024340 Rev 1 STA311B 8.2.35 Registers Bit RW RST Name 1 RW 0 MSA Bit RW RST Name 4 RW 0 AMAME Description Bass management mix scale adjustment 0: -12 dB scaling on satellite channels in config #1 1: no scaling on satellite channels in config #1 Description AutoMode AM enable 0: switching frequency determined by PWMS settings 1: switching frequency determined by AMAM settings AMAM[2:0] 48 kHz/96 kHz input Fs 44.1 / 88.2 kHz input Fs 000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz 001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz 010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz 011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz 100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz 101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz 110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz PREEQ - Preset EQ settings (0x22) D7 D6 D5 D4 D3 D2 D1 D0 XO2 XO1 XO0 PEQ4 PEQ3 PEQ2 PEQ1 PEQ0 1 0 1 0 0 0 0 0 XO[2:0] Bass management crossover frequency 000 70 Hz 001 80 Hz 010 90 Hz 011 100 Hz 100 110 Hz 101 120 Hz 110 140 Hz 111 160 Hz DocID024340 Rev 1 51/102 102 Registers 52/102 STA311B PEQ[4:0] Mode / setting 00000 Flat 00001 Rock 00010 Soft Rock 00011 Jazz 00100 Classical 00101 Dance 00110 Pop 00111 Soft 01000 Hard 01001 Party 01010 Vocal 01011 Hip-Hop 01100 Dialog 01101 Bass-boost #1 01110 Bass-boost #2 01111 Bass-boost #3 10000 Loudness 1 10001 Loudness 2 10010 Loudness 3 10011 Loudness 4 10100 Loudness 5 10101 Loudness 6 10110 Loudness 7 10111 Loudness 8 11000 Loudness 9 11001 Loudness 10 11010 Loudness 11 11011 Loudness 12 11100 Loudness 13 11101 Loudness 14 11110 Loudness 15 11111 Loudness 16 DocID024340 Rev 1 STA311B 8.2.36 Registers AGEQ - graphic EQ 80-Hz band (0x23) D7 8.2.37 D3 D2 D1 D0 AGEQ4 AGEQ3 AGEQ2 AGEQ1 AGEQ0 0 1 1 1 1 D6 D5 D4 D3 D2 D1 D0 BGEQ4 BGEQ3 BGEQ2 BGEQ1 BGEQ0 0 1 1 1 1 D6 D5 D4 D3 D2 D1 D0 CGEQ4 CGEQ3 CGEQ2 CGEQ1 CGEQ0 0 1 1 1 1 D4 D3 D2 D1 D0 DGEQ4 DGEQ3 DGEQ2 DGEQ1 DGEQ0 0 1 1 1 1 D4 D3 D2 D1 D0 EGEQ4 EGEQ3 EGEQ2 EGEQ1 EGEQ0 0 1 1 1 1 DGEQ - graphic EQ 3-kHz band (0x26) D7 8.2.40 D4 CGEQ - graphic EQ 1-kHz band (0x25) D7 8.2.39 D5 BGEQ - graphic EQ 300-Hz band (0x24) D7 8.2.38 D6 D6 D5 EGEQ - graphic EQ 8-kHz band (0x27) D7 D6 D5 xGEQ[4:0] Boost / cut 11111 +16 11110 +15 11101 +14 … … 10000 +1 01111 0 01110 -1 … … 00001 -14 00000 -15 DocID024340 Rev 1 53/102 102 Registers 8.2.41 STA311B Biquad internal channel loop-through (0x28) D7 D6 D5 D4 D3 D2 D1 D0 C8BLP C7BLP C6BLP C5BLP C4BLP C3BLP C2BLP C1BLP 0 0 0 0 0 0 0 0 Each internal processing channel can receive two possible inputs at the input to the biquad block. The input can come either from the output of that channel’s MIX#1 engine or from the output of the bass/treble (biquad #10) of the previous channel. In this scenario, channel 1 receives channel 8. This enables the use of more than 10 biquads on any given channel at the loss of the number of separate internal processing channels. Bit RW 7:0 8.2.42 RW RST 0 Name CnBLP Description For n = 1 to 8: 0: input from channel n MIX#1 engine output - normal operation 1: input from channel (n - 1) biquad #10 output - loop operation. Mix internal channel loop-through (0x29) D7 D6 D5 D4 D3 D2 D1 D0 C8MXLP C7MXLP C6MXLP C5MXLP C4MXLP C3MXLP C2MXLP C1MXLP 0 0 0 0 0 0 0 0 Each internal processing channel can receive two possible sets of inputs at the input to the Mix#1 block. The inputs can come from the outputs of the interpolation block as normally occurs (CnMXLP = 0) or they can come from the outputs of the Mix#2 block. This enables the use of additional filtering after the second mix block at the expense of losing this processing capability on the channel. Bit RW 7:0 8.2.43 RW RST 0 Name Description CnMXLP For n = 1 to 8: 0: inputs to channel n MIX#1 engine from interpolation outputs - normal operation 1: inputs to channel n MIX#1 engine from MIX#2 engine outputs - loop operation EQ bypass (0x2A) D7 D6 D5 D4 D3 D2 D1 D0 C8EQBP C7EQBP C6EQBP C5EQBP C4EQCBP C3EQBP C2EQBP C1EQBP 0 0 0 0 0 0 0 0 EQ control can be bypassed on a per-channel basis. If EQ control is bypassed on a given channel, the prescale and all 10 filters (high-pass, biquads, de-emphasis, bass management cross-over, bass, treble in any combination) are bypassed for that channel. 54/102 DocID024340 Rev 1 STA311B 8.2.44 Registers Bit RW RST Name 7:0 RW 0 CnEQBP Description For n = 1 to 8: 0: perform EQ on channel n - normal operation 1: bypass EQ on channel n Tone control bypass (0x2B) D7 D6 D5 D4 D3 D2 D1 D0 C8TCB C7TCB C6TCB C5TCB C4TCB C3TCB C2TCB C1TCB 0 0 0 0 0 0 0 0 Tone control (bass/treble) can be bypassed on a per-channel basis. If tone control is bypassed on a given channel, the two filters that tone control utilizes are made available as user-programmable biquads #9 and #10. 8.2.45 Tone control (0x2C) D7 D6 D5 D4 D3 D2 D1 D0 TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0 1 1 1 0 1 1 1 This is the tone control boost / cut as a function of the BTC and TTC bits. BTC[3:0] / TTC[3:0) Boost / cut 0000 -12 dB 0001 -12 dB … … 0111 -4 dB 0110 -2 dB 0111 0 dB 1000 +2 dB 1001 +4 dB … … 1101 +12 dB 1110 +12 dB 1111 +12dB DocID024340 Rev 1 55/102 102 Registers 8.2.46 8.2.47 8.2.48 8.2.49 8.2.50 8.2.51 8.2.52 STA311B Channel limiter select channels 1, 2, 3, 4 (0x2D) D7 D6 D5 D4 D3 D2 D1 D0 C4LS1 C4LS0 C3LS1 C3LS0 C2LS1 C2LS0 C1LS1 C1LS0 0 0 0 0 0 0 0 0 Channel limiter select channels 5, 6, 7, 8 (0x2E) D7 D6 D5 D4 D3 D2 D1 D0 C8LS1 C8LS0 C7LS1 C7LS0 C6LS1 C6LS0 C5LS1 C5LS0 0 0 0 0 0 0 0 0 Limiter 1 attack/release rate (0x2F) D7 D6 D5 D4 D3 D2 D1 D0 L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0 1 1 0 1 0 1 0 Limiter 1 attack/release threshold (0x30) D7 D6 D5 D4 D3 D2 D1 D0 L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0 1 1 0 1 0 0 1 Limiter 2 attack/release rate (0x31) D7 D6 D5 D4 D3 D2 D1 D0 L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0 1 1 0 1 0 1 0 Limiter 2 attack/release threshold (0x32) D7 D6 D5 D4 D3 D2 D1 D0 L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0 1 1 0 1 0 0 1 Bit description The STA311B includes two independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode or to actively reduce the dynamic range for a better listening environment such as a nighttime listening mode which is often needed for DVDs. The two modes are selected via the DRC bit in configuration register B, bit 7 address 0x02. Each channel can be mapped to either limiter or not mapped, meaning that channel will clip when 56/102 DocID024340 Rev 1 STA311B Registers 0 dBFS is exceeded. Each limiter will look at the present value of each channel that is mapped to it, select the maximum absolute value of all these channels, perform the limiting algorithm on that value, and then, if needed, adjust the gain of the mapped channels in unison. The limiter attack thresholds are determined by the LnAT registers. It is recommended in anti-clipping mode to set this to 0 dBFS, which corresponds to the maximum unclipped output power of an FFX amplifier. Since gain can be added digitally within the STA311B it is possible to exceed 0 dBFS or any other LnAT setting. When this occurs, the limiter, when active, will automatically start reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. The gain reduction occurs on a peak-detect algorithm. The release of the limiter, when the gain is again increased, is dependent on an RMS-detect algorithm. The output of the volume/limiter block is passed through an RMS filter. The output of this filter is compared to the release threshold, determined by the release threshold register. When the RMS filter output falls below the release threshold, the gain is again increased at a rate dependent upon the release rate register. The gain can never be increased past its set value and therefore the release will only occur if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range, this is helpful as overlimiting can reduce the dynamic range to virtually zero and cause program material to sound lifeless. In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold. Figure 9. Basic limiter and volume flow diagram Limiter RMS Gain/Volume Input Output Gain Attenuation Saturation CnLS[1,0] Channel limiter mapping 00 Channel has limiting disabled 01 Channel is mapped to limiter #1 10 Channel is mapped to limiter #2 DocID024340 Rev 1 57/102 102 Registers 58/102 STA311B LnA[3:0] Attack rate (dB/ms) 0000 3.1584 (fast) 0001 2.7072 0010 2.2560 0011 1.8048 0100 1.3536 0101 0.9024 0110 0.4512 0111 0.2256 1000 0.1504 1001 0.1123 1010 0.0902 1011 0.0752 1100 0.0645 1101 0.0564 1110 0.0501 1111 0.0451 (slow) LnR[3:0] Release rate (dB/ms) 0000 0.5116 (fast) 0001 0.1370 0010 0.0744 0011 0.0499 0100 0.0360 0101 0.0299 0110 0.0264 0111 0.0208 1000 0.0198 1001 0.0172 1010 0.0147 1011 0.0137 1100 0.0134 1101 0.0117 1110 0.0110 1111 0.0104 (slow) DocID024340 Rev 1 STA311B Registers LnAT[3:0] Anti-clipping (AC) (dB relative to FS) 0000 -12 0001 -10 0010 -8 0011 -6 0100 -4 0101 -2 0110 0 0111 +2 1000 +3 1001 +4 1010 +5 1011 +6 1100 +7 1101 +8 1110 +9 1111 +10 LnRT[3:0] Anti-clipping (AC) (dB relative to FS) 0000 - 0001 -29 dB 0010 -20 dB 0011 -16 dB 0100 -14 dB 0101 -12 dB 0110 -10 dB 0111 -8 dB 1000 -7 dB 1001 -6 dB 1010 -5 dB 1011 -4 dB 1100 -3 dB 1101 -2 dB 1110 -1 dB 1111 -0 dB DocID024340 Rev 1 59/102 102 Registers 60/102 STA311B LnAT[3:0] Dynamic range compression (DRC) (dB relative to volume) 0000 -31 0001 -29 0010 -27 0011 -25 0100 -23 0101 -21 0110 -19 0111 -17 1000 -16 1001 -15 1010 -14 1011 -13 1100 -12 1101 -10 1110 -7 1111 -4 LnRT[3:0] Dynamic range compression (DRC) (db relative to volume + LnAT) 0000 - 0001 -38 dB 0010 -36 dB 0011 -33 dB 0100 -31 dB 0101 -30 dB 0110 -28 dB 0111 -26 dB 1000 -24 dB 1001 -22 dB 1010 -20 dB 1011 -18 dB 1100 -15 dB 1101 -12 dB 1110 -9 dB 1111 -6 dB DocID024340 Rev 1 STA311B 8.2.53 Registers Channel 1 and 2 output timing (0x33) D7 8.2.54 D4 C2OT2 C2OT1 1 0 D3 D2 D1 D0 C2OT0 C1OT2 C1OT1 C1OT0 0 0 0 0 D2 D1 D0 D6 D5 D4 D3 C4OT2 C4OT1 C4OT0 C3OT2 C3OT1 C3OT0 1 1 0 0 1 0 D2 D1 D0 Channel 5 and 6 output timing (0x35) D7 8.2.56 D5 Channel 3 and 4 output timing (0x34) D7 8.2.55 D6 D6 D5 D4 D3 C6OT2 C6OT1 C6OT0 C5OT2 C5OT1 C5OT0 1 0 1 0 0 1 D2 D1 D0 Channel 7 and 8 output timing (0x36) D7 D6 D5 D4 D3 C8OT2 C8OT1 C8OT0 C7OT2 C7OT1 C7OT0 1 1 1 0 1 1 The centering of the individual channel PWM output periods can be adjusted by the output timing registers. The PWM slot settings can be chosen to ensure that pulse transitions do not occur at the same time on different channels using the same power device. There are 8 possible settings, the appropriate setting varies based on the application and connections to the FFX power devices. CnOT[2:0] PWM slot 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111 8 DocID024340 Rev 1 61/102 102 Registers 8.2.57 STA311B Channel I²S output mapping channels 1 and 2 (0x37) D7 8.2.58 D4 C2OM2 C2OM1 0 0 D3 D2 D1 D0 C2OM0 C1OM2 C1OM1 C1OM0 1 0 0 0 D2 D1 D0 D6 D5 D4 D3 C4OM2 C4OM1 C4OM0 C3OM2 C3OM1 C3OM0 0 1 1 0 1 0 D2 D1 D0 Channel I²S output mapping channels 5 and 6 (0x39) D7 8.2.60 D5 Channel I²S output mapping channels 3 and 4 (0x38) D7 8.2.59 D6 D6 D5 D4 D3 C6OM2 C6OM1 C6OM0 C5OM2 C5OM1 C5OM0 1 0 1 1 0 0 D2 D1 D0 Channel I²S output mapping channels 7 and 8 (0x3A) D7 D6 D5 D4 D3 C8OM2 C8M1 C8OM0 C7OM2 C7OM1 C7OM0 1 1 1 1 1 0 Each I²S output channel can receive data from any channel output of the volume block. Which channel a particular I²S output receives is dependent upon that channel’s CnOM register bits. 62/102 CnOM[2:0] Serial output from 000 Channel 1 001 Channel 2 010 Channel 3 011 Channel 4 100 Channel 5 101 Channel 6 110 Channel 7 111 Channel 8 DocID024340 Rev 1 STA311B 8.2.61 Registers Coefficient address register 1 (0x3B) D7 8.2.62 8.2.63 8.2.64 8.2.65 8.2.66 8.2.67 D6 D5 D4 D3 D2 D1 D0 CFA9 CFA8 0 0 Coefficient address register 2 (0x3C) D7 D6 D5 D4 D3 D2 D1 D0 CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0 0 0 0 0 0 0 0 Coefficient b1 data register, bits 23:16 (0x3D) D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 Coefficient b1 data register, bits 15:8 (0x3E) D7 D6 D5 D4 D3 D2 D1 D0 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0 0 0 0 0 0 0 0 Coefficient b1 data register, bits 7:0 (0x3F) D7 D6 D5 D4 D3 D2 D1 D0 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0 0 0 0 0 0 0 0 Coefficient b2 data register, bits 23:16 (0x40) D7 D6 D5 D4 D3 D2 D1 D0 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0 0 0 0 0 0 0 0 Coefficient b2 data register, bits 15:8 (0x41) D7 D6 D5 D4 D3 D2 D1 D0 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0 0 0 0 0 0 0 0 DocID024340 Rev 1 63/102 102 Registers 8.2.68 8.2.69 8.2.70 8.2.71 8.2.72 8.2.73 8.2.74 64/102 STA311B Coefficient b2 data register, bits 7:0 (0x42) D7 D6 D5 D4 D3 D2 D1 D0 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0 0 0 0 0 0 0 0 Coefficient a1 data register, bits 23:16 (0x43) D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 Coefficient a1 data register, bits 15:8 (0x44) D7 D6 D5 D4 D3 D2 D1 D0 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0 0 0 0 0 0 0 0 Coefficient a1 data register, bits 7:0 (0x45) D7 D6 D5 D4 D3 D2 D1 D0 C3B7 0 C3B6 0 C3B5 0 C3B4 0 C3B3 0 C3B2 0 C3B1 0 C3B0 0 Coefficient a2 data register, bits 23:16 (0x46) D7 D6 D5 D4 D3 D2 D1 D0 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0 0 0 0 0 0 0 0 Coefficient a2 data register, bits 15:8 (0x47) D7 D6 D5 D4 D3 D2 D1 D0 C4B15 0 C4B14 0 C4B13 0 C4B12 0 C4B11 0 C4B10 0 C4B9 0 C4B8 0 Coefficient a2 data register, bits 7:0 (0x48) D7 D6 D5 D4 D3 D2 D1 D0 C4B7 0 C4B6 0 C4B5 0 C4B4 0 C4B3 0 C4B2 0 C4B1 0 C4B0 0 DocID024340 Rev 1 STA311B 8.2.75 8.2.76 8.2.77 8.2.78 Registers Coefficient b0 data register, bits 23:16 (0x49) D7 D6 D5 D4 D3 D2 D1 D0 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0 0 0 0 0 0 0 0 Coefficient b0 data register, bits 15:8 (0x4A) D7 D6 D5 D4 D3 D2 D1 D0 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0 0 0 0 0 0 0 0 Coefficient b0 data register, bits 7:0 (0x4B) D7 D6 D5 D4 D3 D2 D1 D0 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0 0 0 0 0 0 0 0 D3 D2 D1 D0 WA W1 0 0 Coefficient write control register (0x4C) D7 D6 D5 D4 Coefficients for EQ and Bass Management are handled internally in the STA311B via RAM. Access to this RAM is available to the user via an I²C register interface. A collection of I²C registers are dedicated to this function. One contains a coefficient base address, five sets of three store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the write of the coefficient(s) to RAM. The following are instructions for reading and writing coefficients. DocID024340 Rev 1 65/102 102 Registers 8.3 8.4 STA311B Reading a coefficient from RAM 1. Write the top 2 bits of address to I²C register 0x3B 2. Write the bottom 8 bits of address to I²C register 0x3C 3. Read the top 8 bits of coefficient in I²C address 0x3D 4. Read the middle 8 bits of coefficient in I²C address 0x3E 5. Read the bottom 8 bits of coefficient in I²C address 0x3F Reading a set of coefficients from RAM 1. Write the top 2 bits of address to I²C register 0x3B 2. Write the bottom 8 bits of address to I²C register 0x3C 3. Read the top 8 bits of coefficient in I²C address 0x3D 4. Read the middle 8 bits of coefficient in I²C address 0x3E 5. Read the bottom 8 bits of coefficient in I²C address 0x3F 6. Read the top 8 bits of coefficient b2 in I²C address 0x40 7. Read the middle 8 bits of coefficient b2 in I²C address 0x41 8. Read the bottom 8 bits of coefficient b2 in I²C address 0x42 9. Read the top 8 bits of coefficient a1 in I²C address 0x43 10. Read the middle 8 bits of coefficient a1 in I²C address 0x44 11. Read the bottom 8 bits of coefficient a1 in I²C address 0x45 12. Read the top 8 bits of coefficient a2 in I²C address 0x46 13. Read the middle 8 bits of coefficient a2 in I²C address 0x47 14. Read the bottom 8 bits of coefficient a2 in I²CI²C address 0x48 15. Read the top 8 bits of coefficient b0 in I²C address 0x49 16. Read the middle 8 bits of coefficient b0 in I²C address 0x4A 17. Read the bottom 8 bits of coefficient b0 in I²C address 0x4B 8.5 66/102 Writing a single coefficient to RAM 1. Write the top 2 bits of address to I²C register 0x3B 2. Write the bottom 8 bits of address to I²C register 0x3C 3. Write the top 8 bits of coefficient in I²C address 0x3D 4. Write the middle 8 bits of coefficient in I²C address 0x3E 5. Write the bottom 8 bits of coefficient in I²C address 0x3F 6. Write 1 to the W1 bit in I²C address 0x4C DocID024340 Rev 1 STA311B 8.6 Registers Writing a set of coefficients to RAM 1. Write the top 2 bits of starting address to I²C register 0x3B 2. Write the bottom 8 bits of starting address to I²C register 0x3C 3. Write the top 8 bits of coefficient b1 in I²C address 0x3D 4. Write the middle 8 bits of coefficient b1 in I²C address 0x3E 5. Write the bottom 8 bits of coefficient b1 in I²C address 0x3F 6. Write the top 8 bits of coefficient b2 in I²C address 0x40 7. Write the middle 8-bits of coefficient b2 in I²C address 0x41 8. Write the bottom 8 bits of coefficient b2 in I²C address 0x42 9. Write the top 8 bits of coefficient a1 in I²C address 0x43 10. Write the middle 8 bits of coefficient a1 in I²C address 0x44 11. Write the bottom 8 bits of coefficient a1 in I²C address 0x45 12. Write the top 8 bits of coefficient a2 in I²C address 0x46 13. Write the middle 8 bits of coefficient a2 in I²C address 0x47 14. Write the bottom 8 bits of coefficient a2 in I²C address 0x48 15. Write the top 8-bits of coefficient b0 in I²C address 0x49 16. Write the middle 8 bits of coefficient b0 in I²C address 0x4A 17. Write the bottom 8 bits of coefficient b0 in I²C address 0x4B 18. Write 1 to the WA bit in I²C address 0x4C The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects. When using this technique, the 10-bit address would specify the address of the biquad b1 coefficient (for example, decimals 0, 5, 10, 15, …, 100, … 395), and the STA311B will generate the RAM addresses as offsets from this base value to write the complete set of coefficient data. DocID024340 Rev 1 67/102 102 Configuration registers (0x77; 0x78; 0x79) 9 STA311B Configuration registers (0x77; 0x78; 0x79) CBQ1 (reg 0x77) D7 D6 D5 D4 D3 D2 D1 D0 EBQ3_1 EBQ3_0 EBQ2_1 EBQ2_0 EBQ1_1 EBQ1_0 EBQ0_0 EBQ0_0 0 0 0 0 0 0 0 0 CBQ2 (reg 0x78) D7 D6 D5 D4 D3 D2 D1 D0 EBQ7_1 EBQ7_0 EBQ6_1 EBQ6_0 EBQ5_1 EBQ5_0 EBQ4_1 EBQ4_0 0 0 0 0 0 0 0 0 D5 D4 D3 D2 D1 D0 nshen EBQ9_1 EBQ9_0 EBQ8_1 EBQ8_0 1 0 0 0 0 CBQ3 (reg 0x79) D7 D6 0 0 0 The STA311B EQ biquads use the following equation: Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2] = b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2] where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999995231628). The default coefficient range (+/-1) can be reconfigured to 2 or 4 with the 0x77, 0x78 and 0x79 I²C registers. The coefficients range setting is common for all the channels. (EBQx_1;EBQx_0)=”00”: Biquad x use +/-1 range (EBQx_1;EBQx_0)=”01”: Biquad x use +/-2 range (EBQx_1;EBQx_0)=”10”: Biquad x use +/-4 range (EBQx_1;EBQx_0)=”11”: reserved Coefficients stored in the user-defined coefficient RAM are referenced in the following manner: CxHy0 = b1 / 2 CxHy1 = b2 CxHy2 = -a1 / 2 CxHy3 = -a2 CxHy4 = b0 / 2 where x represents the channel and the y the biquad number. For example, C0H41 is the b2 coefficient in the fourth biquad for channel 2. By default, all user-defined filters are pass-through where all coefficients are set to 0, except the b0/2 coefficient which is set to 0x400000 (representing 0.5). Mix coefficients use only 1 range. 68/102 DocID024340 Rev 1 STA311B Configuration registers (0x77; 0x78; 0x79) A special feature inside the digital processing block is available (active when the ashen bit is set to ‘1’). In case of poles positioned at very low frequencies, biquads filters can generate some audible quantization noise or unwanted DC level. In order to avoid this kind of effect a quantization noise-shaping capability can be used. The filter structure including this special feature, relative to each biquad is shown in Figure 10. The new feature can be enabled independently for each biquad using the I²C registers. The D7 bit, when set, is responsible for activating this function on the crossover filter while the other bits address any specific biquads according to the previous table. Channels 1 and 2 share the same settings. Bit D7 is effective also for channel 3 if the related OCFG is used. Figure 10. Biquad filter structure with quantization error noise shaping In(t) b0 z-1 - + Q z-1 Out(t) z-1 b1 a1 z-1 z-1 b2 a2 Figure 11. Channel mixer CxMIX1 Channel 1 CxMIX2 Channel 2 CxMIX3 Channel 3 CxMIX4 Channel x Channel 4 CxMIX5 Channel 5 CxMIX6 Channel 6 CxMIX7 Channel 7 CxMIX8 Channel 8 DocID024340 Rev 1 69/102 102 Configuration registers (0x77; 0x78; 0x79) 9.1 STA311B Post-scale The STA311B provides one additional multiplication after the last interpolation stage and before the distortion compensation on each channel. This is a 24-bit signed fractional multiply. The scale factor for this multiply is loaded into RAM using the same I²C registers as the biquad coefficients and the bass-management. This post-scale factor can be used in conjunction with an ADC-equipped microcontroller to perform power-supply error correction. All channels can use the channel 1 by setting the post-scale link bit. Table 14. RAM block for biquads, mixing, and bass management 70/102 Index Index (decimal) (hex) 0 0x00 1 Coefficient Default C1H10 (b1/2) 0x000000 0x01 C1H11 (b2) 0x000000 2 0x02 C1H12 (a1/2) 0x000000 3 0x03 C1H13 (a2) 0x000000 4 0x04 C1H14 (b0/2) 0x400000 5 0x05 Channel 1 - Biquad 2 C1H20 0x000000 … … … … … 49 0x31 Channel 1 - Biquad 10 C1HA4 0x400000 50 0x32 Channel 2 - Biquad 1 C2H10 0x000000 51 0x33 C2H11 0x000000 … … … … … 99 0x63 Channel 2 - Biquad 10 C2HA4 0x4000000 100 0x64 Channel 3 - Biquad 1 C3H10 0x000000 … … … … … 399 0x18F Channel 8 - Biquad 10 C8HA4 0x400000 400 0x190 Channel 1 - Pre-scale C1PreS 0x7FFFFF 401 0x191 Channel 2 - Pre-scale C2PreS 0x7FFFFF 402 0x192 Channel 3 - Pre-scale C3PreS 0x7FFFFF … … … … … 407 0x197 Channel 8 - Pre-scale C8PreS 0x7FFFFF 408 0x198 Channel 1 - Post-scale C1PstS 0x7FFFFF 409 0x199 Channel 2 - Post-scale C2PstS 0x7FFFFF … … … … … 415 0x19F Channel 8 - Post-scale C8PstS 0x7FFFFF 416 0x1A0 Channel 1 - Mix# 1 1 C1MX11 0x7FFFFF 417 0x1A1 Channel 1 - Mix#1 2 C1MX12 0x000000 Channel 1 - Biquad 1 DocID024340 Rev 1 STA311B Configuration registers (0x77; 0x78; 0x79) Table 14. RAM block for biquads, mixing, and bass management (continued) Index Index (decimal) (hex) … … 423 Coefficient Default … … … 0x1A7 Channel 1 - Mix#1 8 C1MX18 0x000000 424 0x1A8 Channel 2 - Mix#1 1 C2MX11 0x000000 425 0x1A9 Channel 2 - Mix#1 2 C2MX12 0x7FFFFF … … … … … 479 0x1DF Channel 8 - Mix#1 8 C8MX18 0x7FFFFF 480 0x1E0 Channel 1 - Mix#2 1 C1MX21 0x7FFFFF 481 0x1E1 Channel 1 - Mix#2 2 C1MX22 0x000000 … … … … … 487 0x1E7 Channel 1 - Mix#2 8 C1MX28 0x000000 488 0x1E8 Channel 2 - Mix#2 1 C2MX21 0x000000 489 0x1E9 Channel 2 - Mix#2 2 C2MX22 0x7FFFFF … … … … … 543 0x21F Channel 8 - Mix#2 8 C8MX28 0x7FFFFF DocID024340 Rev 1 71/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B 9.2 Variable max power correction 9.2.1 MPCC1-2 (0x4D, 0x4E) MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1. D7 D6 D5 D4 D3 D2 D1 D0 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8 0 0 1 0 1 1 0 1 D7 D6 D5 D4 D3 D2 D1 D0 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 1 1 0 0 0 0 0 0 9.3 Variable distortion compensation 9.3.1 DCC1-2 (0x4F, 0x50) The DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient is used in place of the default coefficient when DCCV = 1. 72/102 D7 D6 D5 D4 D3 D2 D1 D0 DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8 1 1 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0 0 0 1 1 0 0 1 1 DocID024340 Rev 1 STA311B 9.4 Configuration registers (0x77; 0x78; 0x79) PSCorrect registers An ADC is used to input ripple data to SDI78. The left channel (7) is used internally. No audio data can therefore be used on these channels, although all channel mapping and mixing from other inputs to channels 7 and 8 internally are still valid. 9.4.1 PSC1-2: ripple correction value (RCV) (0x51, 0x52) This value is equivalent to the negative maximum ripple peak as a percentage of Vcc (MPR), scaled by the inverse of the maximum ripple p-p as a percentage of the full-scale analog input to the ADC. It is represented as a 1.11 signed fractional number. 9.4.2 D7 D6 D5 D4 D3 D2 D1 D0 RCV11 RCV10 RCV9 RCV8 RCV7 RCV6 RCV5 RCV4 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 RCV3 RCV2 RCV1 RCV0 CNV11 CNV10 CNV9 CNV8 0 0 0 0 1 1 1 1 PSC3: correction normalization value (CNV) (0x53) This value is equivalent to 1 / (1+MPR) expressed as a 0.12 unsigned fractional number. D7 D6 D5 D4 D3 D2 D1 D0 CNV7 CNV6 CNV5 CNV4 CNV3 CNV2 CNV1 CNV0 1 1 1 1 1 1 1 1 9.5 Extended DRC configuration registers 9.5.1 Extended limiter/dynamic range control LUT (NLENAR)(0x5A) An extended limiter/DRC LUT has been implemented to provide incremental steps of 0.25/0.50 dB. To enable this feature the NLENAR bit has to be set, refer to the following tables. D7 D6 D5 D4 D3 D2 D1 D0 NLENAR 0 Bit 0 RW RW RST 0 Name NLENAR Description Enables a new limiter/DRC LUT 0: Extended LUT disabled 1: Extended LUT enabled DocID024340 Rev 1 73/102 102 Configuration registers (0x77; 0x78; 0x79) 9.5.2 STA311B Extended limiter/dynamic range LUT registers (nLxAT/RT) (0x6B, 0x6C, 0x6D, 0x6E) nL1at (0x6B) D7 D6 D5 D4 D3 D2 D1 D0 L1AT6 L1AT5 L1AT4 L1AT3 L1AT2 L1AT1 L1AT0 0 1 1 0 0 0 0 D6 D5 D4 D3 D2 D1 D0 L2AT6 L2AT5 L2AT4 L2AT3 L2AT2 L2AT1 L2AT0 0 1 1 0 0 0 0 D6 D5 D4 D3 D2 D1 D0 L1RT5 L1RT4 L1RT3 L1RT2 L1RT1 L1RT0 0 1 0 1 1 1 1 D6 D5 D4 D3 D2 D1 D0 L2RT5 L2RT4 L2RT3 L2RT2 L2RT1 L2RT0 1 0 1 1 1 1 0 nL2at (0x6C) D7 0 nL1rt (0x6D) D7 0 nL2rt (0x6E) D7 0 0 Table 15. Extended release thresholds (AC mode) 74/102 LnRT[5:0] Anti-clipping(AC) (dB relative to full scale) 000000 - 000001 -29.00 000010 -28.50 000011 -28.00 000100 -27.50 000101 -27.00 000110 -26.50 000111 -26.00 001000 -25.50 001001 -25.00 001010 -24.50 DocID024340 Rev 1 STA311B Configuration registers (0x77; 0x78; 0x79) Table 15. Extended release thresholds (AC mode) (continued) LnRT[5:0] Anti-clipping(AC) (dB relative to full scale) 001011 -24.00 001100 -23.50 001101 -23.00 001110 -22.50 001111 -22.00 010000 -21.50 010001 -21.00 010010 -20.50 010011 -20.00 010100 -19.50 010101 -19.00 010110 -18.50 010111 -18.00 011000 -17.50 011001 -17.00 011010 -16.50 011011 -16.00 011100 -15.50 011101 -15.00 011110 -14.50 011111 -14.00 100000 -13.50 100001 -13.00 100010 -12.50 100011 -12.00 100100 -11.50 100101 -11.00 100110 -10.50 100111 -10.00 101000 -9.50 101001 -9.00 101010 -8.50 101011 -8.00 101100 -7.50 DocID024340 Rev 1 75/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 15. Extended release thresholds (AC mode) (continued) LnRT[5:0] Anti-clipping(AC) (dB relative to full scale) 101101 -7.00 101110 -6.50 101111 -6.00 110000 -5.50 110001 -5.00 110010 -4.50 110011 -4.00 110100 -3.50 110101 -3.00 110110 -2.50 110111 -2.00 111000 -1.50 111001 -1.00 111010 -0.50 OTHERS 0.00 Table 16. Extended attack thresholds (AC mode) 76/102 LnAT[6:0] Anti-clipping (AC) (dB relative to volume) 0000000 -12.00 0000001 -11.75 0000010 -11.50 0000011 -11.25 0000100 -11.00 0000101 -10.75 0000110 -10.50 0000111 -10.25 0001000 -10.00 0001001 -9.75 0001010 -9.50 0001011 -9.25 0001100 -9.00 0001101 -8.75 0001110 -8.50 DocID024340 Rev 1 STA311B Configuration registers (0x77; 0x78; 0x79) Table 16. Extended attack thresholds (AC mode) (continued) LnAT[6:0] Anti-clipping (AC) (dB relative to volume) 0001111 -8.25 0010000 -8.00 0010001 -7.75 0010010 -7.50 0010011 -7.25 0010100 -7.00 0010101 -6.75 0010110 -6.50 0010111 -6.25 0011000 -6.00 0011001 -5.75 0011010 -5.50 0011011 -5.25 0011100 -5.00 0011101 -4.75 0011110 -4.50 0011111 -4.25 0100000 -4.00 0100001 -3.75 0100010 -3.50 0100011 -3.25 0100100 -3.00 0100101 -2.75 0100110 -2.50 0100111 -2,25 0101000 -2.00 0101001 -1.75 0101010 -1.50 0101011 -1.25 0101100 -1.00 0101101 -0.75 0101110 -0.50 0101111 -0.25 0110000 0.00 DocID024340 Rev 1 77/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 16. Extended attack thresholds (AC mode) (continued) 78/102 LnAT[6:0] Anti-clipping (AC) (dB relative to volume) 0110001 +0.25 0110010 +0.50 0110011 +0.75 0110100 +1.00 0110101 +1.25 0110110 +1.50 0110111 +1.75 0111000 +2.00 0111001 +2.25 0111010 +2.50 0111011 +2.75 0111100 +3.00 0111101 +3.25 0111110 +3.50 0111111 +3.75 1000000 +4.00 1000001 +4.25 1000010 +4.50 1000011 +4.75 1000100 +5.00 1000101 +5.25 1000110 +5.50 1000111 +5.75 1001000 +6.00 1001001 +6.25 1001010 +6.50 1001011 +6.75 1001100 +7.00 1001101 +7.25 1001110 +7.50 1001111 +7.75 1010000 +8.00 1010001 +8.25 1010010 +8.50 DocID024340 Rev 1 STA311B Configuration registers (0x77; 0x78; 0x79) Table 16. Extended attack thresholds (AC mode) (continued) LnAT[6:0] Anti-clipping (AC) (dB relative to volume) 1010011 +8.75 1010100 +9.00 1010101 +9.25 1010110 +9.50 1010111 +9.75 OTHERS +10.00 Table 17. Extended attack thresholds (DRC mode) LnAT[6:0] Dynamic range compression (DRC) (dB relative to volume) 0000000 -31.00 0000001 -30.50 0000010 -30.00 0000011 -29.50 0000100 -29.00 0000101 -28.50 0000110 -28.00 0000111 -27.50 0001000 -27.00 0001001 -26.50 0001010 -26.00 0001011 -25.50 0001100 -25.00 0001101 -24.50 0001110 -24.00 0001111 -23.50 0010000 -23.00 0010001 -22.50 0010010 -22.00 0010011 -21.50 0010100 -21.00 0010101 -20.50 0010110 -20.00 0010111 -19.50 DocID024340 Rev 1 79/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 17. Extended attack thresholds (DRC mode) (continued) 80/102 LnAT[6:0] Dynamic range compression (DRC) (dB relative to volume) 0011000 -19.00 0011001 -18.50 0011010 -18.00 0011011 -17.50 0011100 -17.00 0011101 -16.50 0011110 -16.00 0011111 -15.50 0100000 -15.00 0100001 -14.50 0100010 -14.00 0100011 -13.50 0100100 -13.00 0100101 -12.50 0100110 -12.00 0100111 -11.50 0101000 -11.00 0101001 -10.50 0101010 -10.00 0101011 -9.50 0101100 -9.00 0101101 -8.50 0101110 -8.00 0101111 -7.50 0110000 -7.00 0110001 -6.50 0110010 -6.00 0110011 -5.50 0110100 -5.00 0110101 -4.50 OTHERS -4.00 DocID024340 Rev 1 STA311B Configuration registers (0x77; 0x78; 0x79) Table 18. Extended release thresholds (DRC mode) LnRT[5:0] Dynamic range compression (DRC) (dB relative to volume) 000000 -inf 000001 -38.00 000010 -37.50 000011 -37.00 000100 -36.50 000101 -36.00 000110 -35.50 000111 -35.00 001000 -34.50 001001 -34.00 001010 -33.50 001011 -33.00 001100 -32.50 001101 -32.00 001110 -31.50 001111 -31.00 010000 -30.50 010001 -30.00 010010 -29.50 010011 -29.00 010100 -28.50 010101 -28.00 010110 -27.50 010111 -27.00 011000 -26.50 011001 -26.00 011010 -25.50 011011 -25.00 011100 -24.50 011101 -24.00 011110 -23.50 011111 -23.00 100000 -22.50 100001 -22.00 DocID024340 Rev 1 81/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 18. Extended release thresholds (DRC mode) (continued) 82/102 LnRT[5:0] Dynamic range compression (DRC) (dB relative to volume) 100010 -21.50 100011 -21.00 100100 -20.50 100101 -20.00 100110 -19.50 100111 -19.00 101000 -18.50 101001 -18.00 101010 -17.50 101011 -17.00 101100 -16.50 101101 -16.00 101110 -15.50 101111 -15.00 110000 -14.50 110001 -14.00 110010 -13.50 110011 -13.00 110100 -12.50 110101 -12.00 110110 -11.50 110111 -11.00 111000 -10.50 111001 -10.00 111010 -9.50 111011 -9.00 111100 -8.50 111101 -8.00 111110 -7.50 111111 -7.00 OTHERS -6.00 DocID024340 Rev 1 STA311B 9.5.3 Configuration registers (0x77; 0x78; 0x79) Recombination control register 1 (0x5D) D7 D6 D5 Boost6db 0 0 D4 D3 D2 D1 D0 I²S_byp I²S_en mike_en mike_byp m_mode 0 0 0 0 0 0 Bit RW RST Name Description 7 RW 0 Boost6dB(1) 6 RW 0 5 RW 0 4 RW 0 I²S_byp '1': I²S recombination is bypassed '0': I²S recombination is used 3 RW 0 I²S_en '1': I²S recombination IP is active ‘0': I²S recombination IP is not active (acts like a HW bypass) 0 RW 0 m_mode '1': Auto-configuration of the CKOUT generator to Fout = sys_clk/32 '0': CKOUT is configured only through COS bits '1': Output (after recombination) multiplied x2 '0': Output (after recombination) as it is 1. Mike recomb only DocID024340 Rev 1 83/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 19. Gain adjustment (sensitivity) 84/102 Index dB Index dB Index dB 0x00 -4 0x16 -1.25 0x2C 1.5 0x01 -3.875 0x17 -1.125 0x2D 1.625 0x02 -3.75 0x18 -1 0x2E 1.75 0x03 -3.625 0x19 -0.875 0x2F 1.875 0x04 -3.5 0x1A -0.75 0x30 2 0x05 -3.375 0x1B -0.625 0x31 2.125 0x06 -3.25 0x1C -0.5 0x32 2.25 0x07 -3.125 0x1D -0.375 0x33 2.375 0x08 -3 0x1E -0.25 0x34 2.5 0x09 -2.875 0x1F -0.125 0x35 2.625 0x0A -2.75 0x20 0 0x36 2.75 0x0B -2.625 0x21 0.125 0x37 2.875 0x0C -2.5 0x22 0.25 0x38 3 0x0D -2.375 0x23 0.375 0x39 3.125 0x0E -2.25 0x24 0.5 0x3A 3.25 0x0F -2.125 0x25 0.625 0x3B 3.375 0x10 -2 0x26 0.75 0x3C 3.5 0x11 -1.875 0x27 0.875 0x3D 3.625 0x12 -1.75 0x28 1 0x3E 3.75 0x13 -1.625 0x29 1.125 0x3F 3.875 0x14 -1.5 0x2A 1.25 0x15 -1.375 0x2B 1.375 DocID024340 Rev 1 STA311B 9.5.4 Configuration registers (0x77; 0x78; 0x79) Recombination control register 5, 6 and 7 (0x62; 0x63; 0x64) D7 D6 D5 D4 D3 LP1en D2 D1 D0 CH1NCA[5:0] 0 1 1 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 LP2en CH2NCA[5:0] 0 1 1 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 LP3en 0 CH3NCA[5:0] 1 Bit RW 7 RW 6 RW 5 RW 4 RW 3 RW 2 RW 1 RW 0 RW 1 RST 0 0 Name LPxen CHxNCA[5:0] 0 Description '1': Low-pass filter of mike x is enabled '0': Low-pass filter of mike x is not enabled see Table 20 DocID024340 Rev 1 85/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 20. Normal channel attenuation 86/102 Index dB Index dB Index dB 0x00 0 0x16 18.75 0x2C 21.5 0x01 10.5 0x17 18.875 0x2D 21.625 0x02 11 0x18 19 0x2E 21.75 0x03 11.5 0x19 19.125 0x2F 21.875 0x04 12 0x1A 19.25 0x30 22 0x05 12.5 0x1B 19.375 0x31 22.5 0x06 13 0x1C 19.5 0x32 23 0x07 13.5 0x1D 19.625 0x33 23.5 0x08 14 0x1E 19.75 0x34 24 0x09 14.5 0x1F 19.875 0x35 24.5 0x0A 15 0x20 20 0x36 25 0x0B 15.5 0x21 20.125 0x37 25.5 0x0C 16 0x22 20.25 0x38 26 0x0D 16.5 0x23 20.375 0x39 26.5 0x0E 17 0x24 20.5 0x3A 27 0x0F 17.5 0x25 20.625 0x3B 27.5 0x10 18 0x26 20.75 0x3C 28 0x11 18.125 0x27 20.875 0x3D 28.5 0x12 18.25 0x28 21 0x3E 29 0x13 18.375 0x29 21.125 0x3F 29.5 0x14 18.5 0x2A 21.25 0x15 18.625 0x2B 21.375 DocID024340 Rev 1 STA311B 9.5.5 Configuration registers (0x77; 0x78; 0x79) Recombination control register 8, 9 and 10 (0x65; 0x66; 0x67) D7 D6 D5 D4 D3 D2 D1 D0 CH1TH_N[5:0] 0 0 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 CH2TH_N[5:0] 0 0 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 1 1 CH3TH_N[5:0] 0 0 Bit RW 7 RW 6 RW 5 RW 4 RW 3 RW 2 RW 1 RW 0 RW 1 RST 1 0 Name 0 Description Reserved CHxTH_N[5:0] see Table 21 DocID024340 Rev 1 87/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 21. Threshold configuration 9.5.6 Index dB Index dB Index dB Index dB Index dB Index dB 0x00 0 0x0B -11 0x16 -22 0x21 -33 0x2C -44 0x37 -55 0x01 -1 0x0C -12 0x17 -23 0x22 -34 0x2D -45 0x38 -56 0x02 -2 0x0D -13 0x18 -24 0x23 -35 0x2E -46 0x39 -57 0x03 -3 0x0E -14 0x19 -25 0x24 -36 0x2F -47 0x3A -58 0x04 -4 0x0F -15 0x1A -26 0x25 -37 0x30 -48 0x3B -59 0x05 -5 0x10 -16 0x1B -27 0x26 -38 0x31 -49 0x3C -60 0x06 -6 0x11 -17 0x1C -28 0x27 -39 0x32 -50 0x3D -61 0x07 -7 0x12 -18 0x1D -29 0x28 -40 0x33 -51 0x3E -62 0x08 -8 0x13 -19 0x1E -30 0x29 -41 0x34 -52 0x3F -63 0x09 -9 0x14 -20 0x1F -31 0x2A -42 0x35 -53 0x0A -10 0x15 -21 0x20 -32 0x2B -43 0x36 -54 Recombination control register 11, 12 and 13 (0x68; 0x69; 0x6A) D7 D6 D5 D4 D3 D2 D1 D0 CH1TH_H[5:0] 0 0 0 1 1 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 CH2TH_H[5:0] 0 0 0 1 1 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 1 1 CH3TH_H[5:0] 0 88/102 0 0 1 DocID024340 Rev 1 1 0 STA311B Configuration registers (0x77; 0x78; 0x79) Bit RW RST 7 RW 0 6 RW 0 5 RW 0 4 RW 1 3 RW 1 2 RW 0 1 RW 1 0 RW 1 Name Description Reserved CHxHCT[5:0] 9.5.7 see Table 21 Zero-mute threshold/hysteresis and RMS zero-mute selectors (0x6F) Zero-mute (0x6F) D7 D6 D5 D4 D3 D2 D1 D0 RMSZS2 RMSZS1 RMSZS0 ZMTHS2 ZMTHS1 ZMTHS0 ZMHYS1 ZMHYS0 0 0 0 0 0 0 0 0 Bit RW RST Name 7 RW 0 RMSZS2 6 RW 0 RMSZS1 5 RW 0 RMSZS0 4 RW 0 ZMTHS2 3 RW 0 ZMTHS1 2 RW 0 ZMTHS1 1 RW 0 ZMHYS1 0 RW 0 ZMHYS0 Description Select channel for reading the zero-mute RMS level on registers rmsZMH (0x7A) & rmsZML (0x7B). Select the zero-mute threshold level. If signal is below this level, output will be in switch off mode. Select the hysteresis window width. The STA311B implements an RMS-based zero-detect function (on serial input interface data) able to detect in a very reliable way the presence of an input signal, so that the power bridge outputs can be automatically connected to ground. When active, the function will mute the output PWM when the input level become less than threshold - hysteresis. Once muted, the PWM will be unmuted when the input level is detected greater than threshold + hysteresis. The measured level is then reported (each input channel is selected by RMSZS[2:0] value) on registers 0x7A, 0x7B. DocID024340 Rev 1 89/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Table 22. RMS channel select RMSZS[2:0] Channel 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111 8 Table 23. Zero-detect threshold ZMTHS[2:0] Equivalent input level (dB) 000 -78 001 -84 010 -90 011 -96 100 -102 101 -108 110 -114 111 -114 Table 24. Zero-detect hysteresis 90/102 ZMHYS[1:0] Equivalent input level hysteresis(dB) 00 3 01 4 10 5 11 6 DocID024340 Rev 1 STA311B 9.5.8 Configuration registers (0x77; 0x78; 0x79) RMS post-processing selectors and Fs autodetection (0x70) D7 D6 D5 D4 RMSOS2 RMSOS1 RMSOS0 0 0 0 D3 D2 D1 D0 FXLRC0 0 0 0 0 0 RMS out selector Bit RW RST Name Description 7 RW 0 RMSOS2 6 RW 0 RMSOS1 5 RW 0 RMSOS0 RMS post-processing selectors. For each channel the current RMS value after the processing step is available on registers rmsPOH (0x7C) and rmsPOL (0x7D). Table 25. RMS post-processing channel select RMSOS[2:0] Channel 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111 8 Fs autodetection Bit RW RST Name Description 0 RW 0 FXLRC0 If set to 1, the IR and BST32K parameters are auto-selected by the Fs autodetection internal block; otherwise, the I²C register values are used. DocID024340 Rev 1 91/102 102 Configuration registers (0x77; 0x78; 0x79) 9.5.9 STA311B Clock manager configuration PLL configuration registers (0x71, 0x72, 0x73, 0x74) PLL multiplication factor (fractional part, H) (0x71) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 D2 D1 D0 0 0 0 PLLFI[15:8] 0 0 0 0 0 PLL multiplication factor (fractional part, L) (0x72) D7 D6 D5 D4 D3 PLLFI[7:0] 0 0 0 0 0 PLL multiplication factor (integral part) named as N Division Factor (NDIV) and dithering (0x73) D7 D6 D5 D4 D3 PLLDD[1:0] 0 92/102 D2 D1 D0 0 0 PLLND[5:0] 0 0 0 Bit RW RST Name 7 RW 0 PLLDD1 6 RW 0 PLLDD0 5 RW 0 PLLND5 4 RW 0 PLLND4 3 RW 0 PLLND3 2 RW 1 PLLND2 1 RW 0 PLLND1 0 RW 1 PLLND0 0 0 Description PLL dithering: 00 : PLL clock dithering disabled 01 : PLL clock dithering enabled (triangular) 10 : PLLclock dithering enabled (rectangular) 11 : reserved N (loop) Division Factor This factor should be: DocID024340 Rev 1 5 N DIV 55 STA311B Configuration registers (0x77; 0x78; 0x79) PLL input division factor and others (0x74) D7 D6 D5 D4 D3 D2 D1 D0 PDPDC PLLFC PLSTRB PLSTBB PLIDF3 PLIDF2 PLIDF1 PLIDF0 0 0 0 0 0 0 0 0 By default the STA311B is able to configure the embedded PLL automatically depending on the MCS bits (reg 0x00). For certain applications and to provide flexibility to the user, a manual PLL configuration can be used (setting PLLFC to 1). The output PLL frequency formula is: Fin FI Fout = ---------- ND + -------IDF 2 16 when PLLFC = 1 Fin Fout = ---------- ND IDF when PLLFC = 0 Clock manager configuration register (0x75) D7 D6 D5 D4 D3 D2 D1 D0 PLLBYP PLLDPR LOWEN BST32K 0 0 0 0 Bit RW RST Name 3 RW 0 PLLBYP PLL bypass enable ‘0’: disabled ‘1’: bypassed PLLDPR PLL direct programming ‘0’: PLL configuration depends on MCS ‘1’: PLL configuration depends on I²C regs (0x72, 0x73 and 0x74) LOWEN Low clock enable ‘0’: if input clock is too slow, master clock will become the internal oscillator clock (20 MHz), PLL bypassed ‘1’: disabled BST32K Boost oversampling for fs = 32 kHz ‘0’: disabled ‘1’: input oversampling is selected x 3 2 1 0 RW RW RW 0 0 0 Description DocID024340 Rev 1 93/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B Clock manager status register (0x76) D7 D5 D4 D3 D2 D1 D0 PLLBYS PLLPDS OSCOK LOWCKS 0 0 0 0 Bit RW RST Name 3 R 0 PLLBYS PLL bypass status ‘0’: normal ‘1’: bypassed 2 R 0 PLLPDS PLL power-down status ‘0’: normal ‘1’: standby 1 R 0 OSCOK Oscillator clock OK ‘0’: not ready ‘1’: ready 0 9.5.10 D6 R 0 LOWCKS Description Low clock status ‘0’: normal ‘1’: input clock too slow RMS level registers (0x7A, 0x7B, 0x7C, 0x7D) Two set of registers are available to monitor the RMS level detected by the zero-mute block and after the signal processing. The measured level for a selected channel is given in 0x7A & 0x7B (zero-mute level) and 0x7C & 0x7D (PWM out level) according to the following expression: Value(dB) = 20Log(rms[15:0]/(216 x 0.635)) where rms[15:0] is an unsigned integer formed by: rms[15:0] = rmsZMH[7:0], rmsZML[7:0] for zero-mute level or rms[15:0] = rmsPOH[7:0], rmsPOL[7:0] for PWM output level 94/102 DocID024340 Rev 1 STA311B Configuration registers (0x77; 0x78; 0x79) rmsZMx D7 D6 D5 D4 D3 D2 D1 D0 RZM15 RZM14 RZM13 RZM12 RZM11 RZM10 RZM9 RZM8 0 0 0 0 0 0 0 0 RZM7 RZM6 RZM5 RZM4 RZM3 RZM2 RZM1 RZM0 0 0 0 0 0 0 0 0 rmsZMH Bit RW RST Name Description 7 R RZM15 6 R RZM14 5 R RZM13 4 R RZM12 3 R RZM11 2 R RZM10 1 R RZM9 0 R RZM8 RMS zero-detect level register, H rmsZML Bit RW RST Name 7 R RZM7 6 R RZM6 5 R RZM5 4 R RZM4 3 R RZM3 2 R RZM2 1 R RZM1 0 R RZM0 Description RMS zero detect level register, L rmsPOx D7 D6 D5 D4 D3 D2 D1 D0 RPO15 RPO14 RPO13 RPO12 RPO11 RPO10 RPO9 RPO8 0 0 0 0 0 0 0 0 RPO7 RPO6 RPO5 RPO4 RPO3 RPO2 RPO1 RPO0 0 0 0 0 0 0 0 0 DocID024340 Rev 1 95/102 102 Configuration registers (0x77; 0x78; 0x79) STA311B rmsPOH Bit RW RST Name 7 R RPO15 6 R RPO14 5 R RPO13 4 R RPO12 3 R RPO11 2 R RPO10 1 R RPO9 0 R RPO8 Description RMS PWM out (post-processing) register, H rmsPOL Bit RW RST Name 7 R RPO7 6 R RPO6 5 R RPO5 4 R RPO4 3 R RPO3 2 R RPO2 1 R RPO1 0 R RPO0 Description RMS PWM out (post-processing) register, L 96/102 DocID024340 Rev 1 STA311B Startup/shutdown pop noise removal 10 Startup/shutdown pop noise removal 10.1 DPT: PWM and tristate delay (0x80) D7 10.2 D6 D5 D4 D3 D2 D1 D0 DPT4 DPT3 DPT2 DPT1 DPT0 1 1 0 0 0 Bit RW RST Name 0 RW 0 DPT0 1 RW 0 DPT1 2 RW 0 DPT2 3 RW 1 DPT3 4 RW 1 DPT4 Description Set a delay between the PWM and the tristate signal to compensate the external amplifier delay. Configuration register (0x81) D7 D6 D5 D4 D3 D2 D1 D0 RL3 RL2 RL1 RL0 RD SID1 FBYP RTP 0 0 0 0 0 1 0 1 RST Name Bit RW Description Remove tristate initial pulses 1: remove the tristate initial pulses with frequency less than 16 kHz 0: the tristate initial pulses are not removed 0 RW 1 RTP Bit RW RST Name 1 RW 0 FBYP Bit RW RST Name Description SID1 Serial interface (I²S out) 1: SDO_56 is connected to the fault signal and SDO_78 outputs the tristate signal 0: I²S out normal 2 RW 1 Description Fault user-defined bypass mode 1: the fault internal management is disabled 0: the fault internal management is enabled DocID024340 Rev 1 97/102 102 Startup/shutdown pop noise removal Bit RW 3 10.3 98/102 RST RW 0 STA311B Name Description RD Startup/shutdown pop noise disable 1: the startup/shutdown tristate sequence used to remove the pop noise is disabled 0: the startup/shutdown tristate signal sequence used to remove the pop noise is enabled. This feature is not activated by default, and can be activated only if at least one channel is in binary mode and the PWMs out speed is equal to 384KHz. Bit RW RST Name 4 RW 0 RL0 5 RW 0 RL1 6 RW 0 RL2 7 RW 0 RL3 Description Set a tristate duration (same value for startup/shutdown pop noise removal) RL[3:0] Tristate duration 0000 default duration equal to 116 ms 0001 default value x2 0010 default value x3 0011 default value x4 0100 default value x5 0101 default value x6 0110 default value x7 User-defined delay time (0x82) and (0x83) D7 D6 D5 D4 D3 D2 D1 D0 UDDT15 UDDT14 UDDT13 UDDT12 UDDT11 UDDT10 UDDT9 UDDT8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 UDDT7 UDDT6 UDDT5 UDDT4 UDDT3 UDDT2 UDDT1 UDDT0 1 1 1 1 1 1 1 1 DocID024340 Rev 1 STA311B 11 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Table 26. VFQFPN-56 (8 x 8 mm) package dimensions mm Reference Min. Typ. Max. A 0.80 0.90 1.00 A1 0 0.05 D 8.00 D2 See exposed pad variations E 8.00 E2 See exposed pad variations b 0.25 0.30 0.35 b1 0.20 0.25 0.30 e (pad pitch)(1) L1 0.05 0.15 aaa 0.15 bbb 0.10 ddd 0.05 eee 0.08 fff 0.10 ccc 0.10 1. Refer to Figure 12. Table 27. Exposed pad variations D2 E2 Variation Min. Typ. Max Min. Typ. Max. A 5.85 5.90 5.95 5.85 5.90 5.95 B 4.25 4.30 4.35 4.25 4.30 4.35 DocID024340 Rev 1 99/102 102 Package information STA311B Figure 12. VFQFPN-56 (8 x 8 mm) package outline The axis of each pad must lie simultaneously in both tolerance zones. (4) - The terminal A1 corner must be identified on the top surface through inked or lasered mark dot. A distinguishing feature is allowable on the bottom surface of the package, chamfer at die paddle corner to identify the terminal A1. Exact shape of each corner is optional. (5) – All dimensions are in mm. 826820 100/102 DocID024340 Rev 1 STA311B 12 Revision history Revision history Table 28. Document revision history Date Revision 21-Oct-2013 1 Changes Initial release. DocID024340 Rev 1 101/102 102 STA311B Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 102/102 DocID024340 Rev 1