Download Datasheet

STA311B
Multichannel digital audio processor with FFXTM
Datasheet - production data
–
–
–
–
–
–
–
–
–
–
VFQFN-56
–
Features
 8 channels of 24-bit FFX
32 preset EQ curves (rock, jazz, pop, etc.)
Automatic volume-controlled loudness
5.1 to 2-channel downmix
Simultaneous 5.1- and 2-channel downmix
outputs
3 preset volume curves
2 preset anti-clipping modes
Preset movie nighttime listening mode
Preset TV channel/commercial AGC mode
5.1, 2.1 bass management configurations
AM frequency automatic output PWM
frequency shifting
8 preset crossover filters
 Individual channel and master soft/hard mute
™
 Automatic zero-detect and invalid input mute
 >100 dB SNR and dynamic range
 Automatic amplifier power-down on clock loss
 Selectable 32 kHz-192 kHz input sampling
rates
 Advanced AM interference frequency
switching and noise suppression modes
 6 channels of DSD/SACD
 I²S output channel mapping function
 Digital gain/attenuation +58 dB to -100 dB in
0.5 dB steps
 Independent channel volume and DSP bypass
 Advanced “pop-free” operation
 Channel mapping of any input to any
processing/FFX channel
 Digital “pop-free” operation for single-ended
mode
 Selectable per-channel FFX damped ternary or
binary PWM output
 Soft volume update
 Max power correction for lower full-power THD
 Individual channel and master gain/attenuation
plus channel trim (-10 dB to +10 dB)
 Variable per-channel FFX output delay control
 Up to 10 independent 32-bit userprogrammable biquads (EQ) per channel
 192 kHz internal processing sampling rate,
24-bit to 36-bit precision
 Bass/treble tone control
Table 1. Device summary
 Pre- and post-EQ full 8-channel input mix on all
8 channels
 Dual independent limiters/compressors
 Dynamic range compression or anti-clipping
modes
Order code
Package
Packaging
STA311B
VFQFPN56
Tray
STA311BTR
VFQFPN56
Tape and reel
 AutoModes
– 5-band graphic EQ
October 2013
This is information on a product in full production.
DocID024340 Rev 1
1/102
www.st.com
Contents
STA311B
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
4
2.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1
Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Serial data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3
Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
I²S recombination interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
Startup/shutdown pop noise removal in SE application . . . . . . . . . . . 17
7
6.1
PWM start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2
PWM stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
I²C bus operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1
2/102
Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1.1
Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1.2
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1.3
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1.4
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3.2
Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DocID024340 Rev 1
STA311B
Contents
7.4
8
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4.1
Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4.2
Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4.3
Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4.4
Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.1
Register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2.1
Configuration register A (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2.2
Configuration register B (0x01) - serial input formats . . . . . . . . . . . . . . 30
8.2.3
Configuration register C (0x02) - serial output formats . . . . . . . . . . . . . 32
8.2.4
Configuration register D (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2.5
Configuration register E (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.6
Configuration register F (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.7
Configuration register G (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2.8
Configuration register H (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.9
Configuration register I (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2.10
Master mute register (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2.11
Master volume register (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2.12
Channel 1 volume (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2.13
Channel 2 volume (0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2.14
Channel 3 volume (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.15
Channel 4 volume (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.16
Channel 5 volume (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.17
Channel 6 volume (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.18
Channel 7 volume (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.19
Channel 8 volume (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.20
Channel 1 volume trim, mute, bypass (0x13) . . . . . . . . . . . . . . . . . . . . 41
8.2.21
Channel 2 volume trim, mute, bypass (0x14) . . . . . . . . . . . . . . . . . . . . 42
8.2.22
Channel 3 volume trim, mute, bypass (0x15) . . . . . . . . . . . . . . . . . . . . 42
8.2.23
Channel 4 volume trim, mute, bypass (0x16) . . . . . . . . . . . . . . . . . . . . 42
8.2.24
Channel 5 volume trim, mute, bypass (0x17) . . . . . . . . . . . . . . . . . . . . 42
8.2.25
Channel 6 volume trim, mute, bypass (0x18) . . . . . . . . . . . . . . . . . . . . 42
8.2.26
Channel 7 volume trim, mute, bypass (0x19) . . . . . . . . . . . . . . . . . . . . 42
8.2.27
Channel 8 volume trim, mute, bypass (0x1A) . . . . . . . . . . . . . . . . . . . . 42
8.2.28
Channel input mapping channels 1 and 2 (0x1B) . . . . . . . . . . . . . . . . . 44
DocID024340 Rev 1
3/102
102
Contents
4/102
STA311B
8.2.29
Channel input mapping channels 3 and 4 (0x1C) . . . . . . . . . . . . . . . . . 44
8.2.30
Channel input mapping channels 5 and 6 (0x1D) . . . . . . . . . . . . . . . . . 44
8.2.31
Channel input mapping channels 7 and 8 (0x1E) . . . . . . . . . . . . . . . . . 44
8.2.32
AUTO1 - AutoModes EQ, volume, GC (0x1F) . . . . . . . . . . . . . . . . . . . . 45
8.2.33
AUTO2 - AutoModes bass management2 (0x20) . . . . . . . . . . . . . . . . . 46
8.2.34
AUTO3 - AutoMode AM/pre-scale/bass management scale (0x21) . . . 48
8.2.35
PREEQ - Preset EQ settings (0x22) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2.36
AGEQ - graphic EQ 80-Hz band (0x23) . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.37
BGEQ - graphic EQ 300-Hz band (0x24) . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.38
CGEQ - graphic EQ 1-kHz band (0x25) . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.39
DGEQ - graphic EQ 3-kHz band (0x26) . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.40
EGEQ - graphic EQ 8-kHz band (0x27) . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.41
Biquad internal channel loop-through (0x28) . . . . . . . . . . . . . . . . . . . . . 52
8.2.42
Mix internal channel loop-through (0x29) . . . . . . . . . . . . . . . . . . . . . . . 52
8.2.43
EQ bypass (0x2A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2.44
Tone control bypass (0x2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.45
Tone control (0x2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2.46
Channel limiter select channels 1, 2, 3, 4 (0x2D) . . . . . . . . . . . . . . . . . 54
8.2.47
Channel limiter select channels 5, 6, 7, 8 (0x2E) . . . . . . . . . . . . . . . . . 54
8.2.48
Limiter 1 attack/release rate (0x2F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.49
Limiter 1 attack/release threshold (0x30) . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.50
Limiter 2 attack/release rate (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.51
Limiter 2 attack/release threshold (0x32) . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.52
Bit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.53
Channel 1 and 2 output timing (0x33) . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.54
Channel 3 and 4 output timing (0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.55
Channel 5 and 6 output timing (0x35) . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.56
Channel 7 and 8 output timing (0x36) . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.57
Channel I²S output mapping channels 1 and 2 (0x37) . . . . . . . . . . . . . 60
8.2.58
Channel I²S output mapping channels 3 and 4 (0x38) . . . . . . . . . . . . . 60
8.2.59
Channel I²S output mapping channels 5 and 6 (0x39) . . . . . . . . . . . . . 60
8.2.60
Channel I²S output mapping channels 7 and 8 (0x3A) . . . . . . . . . . . . . 60
8.2.61
Coefficient address register 1 (0x3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.62
Coefficient address register 2 (0x3C) . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.63
Coefficient b1 data register, bits 23:16 (0x3D) . . . . . . . . . . . . . . . . . . . . 61
8.2.64
Coefficient b1 data register, bits 15:8 (0x3E) . . . . . . . . . . . . . . . . . . . . . 61
8.2.65
Coefficient b1 data register, bits 7:0 (0x3F) . . . . . . . . . . . . . . . . . . . . . . 61
DocID024340 Rev 1
STA311B
9
Contents
8.2.66
Coefficient b2 data register, bits 23:16 (0x40) . . . . . . . . . . . . . . . . . . . . 61
8.2.67
Coefficient b2 data register, bits 15:8 (0x41) . . . . . . . . . . . . . . . . . . . . . 62
8.2.68
Coefficient b2 data register, bits 7:0 (0x42) . . . . . . . . . . . . . . . . . . . . . . 62
8.2.69
Coefficient a1 data register, bits 23:16 (0x43) . . . . . . . . . . . . . . . . . . . . 62
8.2.70
Coefficient a1 data register, bits 15:8 (0x44) . . . . . . . . . . . . . . . . . . . . . 62
8.2.71
Coefficient a1 data register, bits 7:0 (0x45) . . . . . . . . . . . . . . . . . . . . . . 62
8.2.72
Coefficient a2 data register, bits 23:16 (0x46) . . . . . . . . . . . . . . . . . . . . 62
8.2.73
Coefficient a2 data register, bits 15:8 (0x47) . . . . . . . . . . . . . . . . . . . . . 63
8.2.74
Coefficient a2 data register, bits 7:0 (0x48) . . . . . . . . . . . . . . . . . . . . . . 63
8.2.75
Coefficient b0 data register, bits 23:16 (0x49) . . . . . . . . . . . . . . . . . . . . 63
8.2.76
Coefficient b0 data register, bits 15:8 (0x4A) . . . . . . . . . . . . . . . . . . . . . 63
8.2.77
Coefficient b0 data register, bits 7:0 (0x4B) . . . . . . . . . . . . . . . . . . . . . . 63
8.2.78
Coefficient write control register (0x4C) . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3
Reading a coefficient from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.4
Reading a set of coefficients from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5
Writing a single coefficient to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.6
Writing a set of coefficients to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Configuration registers (0x77; 0x78; 0x79) . . . . . . . . . . . . . . . . . . . . . . 66
9.1
Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2
Variable max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.2.1
9.3
Variable distortion compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.3.1
9.4
9.5
MPCC1-2 (0x4D, 0x4E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DCC1-2 (0x4F, 0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
PSCorrect registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.4.1
PSC1-2: ripple correction value (RCV) (0x51, 0x52) . . . . . . . . . . . . . . . 71
9.4.2
PSC3: correction normalization value (CNV) (0x53) . . . . . . . . . . . . . . . 71
Extended DRC configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.5.1
Extended limiter/dynamic range control LUT (NLENAR)(0x5A) . . . . . . 71
9.5.2
Extended limiter/dynamic range LUT registers (nLxAT/RT)
(0x6B, 0x6C, 0x6D, 0x6E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.5.3
Recombination control register 1 (0x5D) . . . . . . . . . . . . . . . . . . . . . . . . 81
9.5.4
Recombination control register 5, 6 and 7 (0x62; 0x63; 0x64) . . . . . . . 83
9.5.5
Recombination control register 8, 9 and 10 (0x65; 0x66; 0x67) . . . . . . 85
9.5.6
Recombination control register 11, 12 and 13 (0x68; 0x69; 0x6A) . . . . 86
9.5.7
Zero-mute threshold/hysteresis and RMS zero-mute selectors (0x6F) . 87
DocID024340 Rev 1
5/102
102
Contents
10
STA311B
9.5.8
RMS post-processing selectors and Fs autodetection (0x70) . . . . . . . . 89
9.5.9
Clock manager configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.5.10
RMS level registers (0x7A, 0x7B, 0x7C, 0x7D) . . . . . . . . . . . . . . . . . . . 92
Startup/shutdown pop noise removal . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.1
DPT: PWM and tristate delay (0x80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2
Configuration register (0x81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.3
User-defined delay time (0x82) and (0x83) . . . . . . . . . . . . . . . . . . . . . . . 96
11
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6/102
DocID024340 Rev 1
STA311B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
General interface electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DC electrical characteristics: 3.3-V buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Timing parameters for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Serial data bit first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Serial audio input formats according to sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Serial audio input formats according to sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Serial audio output formats according to sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
RAM block for biquads, mixing, and bass management. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Extended release thresholds (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Extended attack thresholds (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Extended attack thresholds (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Extended release thresholds (DRC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Gain adjustment (sensitivity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Normal channel attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Threshold configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
RMS channel select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Zero-detect threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Zero-detect hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
RMS post-processing channel select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
VFQFPN-56 (8 x 8 mm) package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Exposed pad variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
DocID024340 Rev 1
7/102
102
List of figures
STA311B
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
8/102
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin connections VFQFPN-56 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Timing diagram for SAI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Processing data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
I²S recombination block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Power-on sequence for pop-free startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Biquad filter structure with quantization error noise shaping . . . . . . . . . . . . . . . . . . . . . . . 69
Channel mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
VFQFPN-56 (8 x 8 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DocID024340 Rev 1
STA311B
1
Description
Description
The STA311B is a single-chip solution for digital audio processing and control in
multichannel applications and provides output capabilities for FFX™ (full flexible
amplification). In conjunction with an FFX™ power device, it provides high-quality, highefficiency, all digital amplification. The device is extremely versatile, allowing for input of
most digital formats including 6.1/7.1-channel and 192 kHz, 24-bit DVD-audio, DSD/SACD.
In the 5.1 application the additional 2 channels can be used for audio line-out or headphone
drive.
DocID024340 Rev 1
9/102
102
Device overview
STA311B
2
Device overview
2.1
Block diagram
Figure 1. Block diagram
SA
SCL
SDA
MVO
LRCKI
OUT1A/B
I2C
BICKI
OUT2A/B
SDI12
I2S
SDI34
Data In
OUT3A/B
Oversampling
System Control
OUT4A/B
FFX
SDI56
OUT5A/B
SDI78
OUT6A/B
OUT7A/B
Channel
Mapping
Treble, Bass
Equal.
(Biquads)
Variable
Oversampling
OUT8A/B
Volume
Limiting
LRCKO
BICKO
PLLB
PLL
Powerdown
Variable
Downsampling
I2S
SDO12
Data Out
SDO34
SDO56
SDO78
XTI
10/102
CKOUT
PWDN
EAPD
DocID024340 Rev 1
STA311B
Pin description
PWDN
SDO_78
SDO_56
GND
VDD
SDO_34
SDO_12
LRCKO
BIKO
GND
VDD
EAPD
OUT1A
OUT1B
56
55
54
53
52
51
50
49
48
47
46
45
44
43
Figure 2. Pin connections VFQFPN-56 (top view)
MVO
1
42
OUT2A
RES
2
41
OUT2B
VDD
3
40
GND
GND
4
39
VDD
SDI_78
5
38
OUT3A
SDI_56
6
37
OUT3B
SDI_34
7
36
OUT4A
SDI_12
8
35
OUT4B
LRCKI
9
34
OUT5A
BICKI
10
33
OUT5B
VDD
11
32
GND
GND
12
31
VDD
RESET
13
30
OUT6A
RES
14
29
OUT6B
15
16
17
18
19
20
21
22
23
24
25
26
27
28
SDA
SCL
XTI
NC
GNDA
VDD
CKOUT
GND
VDD
OUT8B
OUT8A
OUT7B
OUT7A
EXPOSED
PAD
CONNECTED
TO GND
SA
2.2
Device overview
DocID024340 Rev 1
11/102
102
Device overview
STA311B
Table 2. Pin description
Pin
Type
Name
Description
1
5-V tolerant TTL input buffer
MVO/DSD_CLK
Master volume override/
DSD input clock
2
Reserved
RES
Connect to GND
5
5-V tolerant TTL input buffer
SDI_78/DSD_6
Input serial data channels 7 & 8/
DSD input channel 6
6
5-V tolerant TTL input buffer
SDI_56/DSD_5
Input serial data channels 5 & 6/
DSD input channel 5
7
5-V tolerant TTL input buffer
SDI_34/DSD_4
Input serial data channels 3 & 4/
DSD input channel 4
8
5-V tolerant TTL input buffer
SDI_12/DSD_3
Input serial data channels 1 & 2/
DSD input channel 3
9
5-V tolerant TTL input buffer
LRCKI/DSD_2
Input left/right clock/
DSD input channel 2
10
5-V tolerant TTL input buffer
BICKI/DSD_1
Input serial clock/
DSD input channel 1
18
5-V tolerant TTL Schmitt trigger input
buffer
RESETN
Global reset
14
Reserved
RES
Connect to GND
15
1.8V CMOS input buffer with pull-down
SA
Select address (I²C)
16
Bidirectional buffer: 5-V tolerant TTL
Schmitt trigger input; 3.3-V capable 2 mA SDA
slew-rate controlled output.
Serial data (I²C)
17
5-V tolerant TTL Schmitt trigger input
buffer
SCL
Serial clock (I²C)
18
5-V tolerant TTL Schmitt trigger input
buffer
XTI
Crystal oscillator input (clock input)
19
Not connected
NC
Reserved
20
Analog ground
GNDA
PLL ground
22
3.3-V capable TTL tristate 4 mA output
buffer
CKOUT
Clock output
25
3.3-V capable TTL 2 mA output buffer
OUT8B
PWM channel 8 output B
26
3.3-V capable TTL 2 mA output buffer
OUT8A
PWM channel 8 output A
27
3.3-V capable TTL 2 mA output buffer
OUT7B
PWM channel 7 output B
28
3.3-V capable TTL 2 mA output buffer
OUT7A
PWM channel 7 output A
29
3.3-V capable TTL 2 mA output buffer
OUT6B
PWM channel 6 output B
30
3.3-V capable TTL 2 mA output buffer
OUT6A
PWM channel 6 output A
33
3.3-V capable TTL 2 mA output buffer
OUT5B
PWM channel 5 output B
34
3.3-V capable TTL 2 mA output buffer
OUT5A
PWM channel 5 output A
35
3.3-V capable TTL 2 mA output buffer
OUT4B
PWM channel 4 output B
12/102
DocID024340 Rev 1
STA311B
Device overview
Table 2. Pin description (continued)
Pin
Type
Name
Description
36
3.3-V capable TTL 2 mA output buffer
OUT4A
PWM channel 4 output A
37
3.3-V capable TTL 2 mA output buffer
OUT3B
PWM channel 3 output B
38
3.3-V capable TTL 2 mA output buffer
OUT3A
PWM channel 3 output A
41
3.3-V capable TTL 2 mA output buffer
OUT2B
PWM channel 2 output B
42
3.3-V capable TTL 2 mA output buffer
OUT2A
PWM channel 2 output A
43
3.3-V capable TTL 2 mA output buffer
OUT1B
PWM channel 1 output B
44
3.3-V capable TTL 2 mA output buffer
OUT1A
PWM channel 1 output A
45
3.3-V capable TTL 4 mA output buffer
EAPD
External amp power-down
48
3.3-V capable TTL 2 mA output buffer
BICKO
Output serial clock
49
3.3-V capable TTL 2 mA output buffer
LRCKO
Output left/right clock
50
3.3-V capable TTL 2 mA output buffer
SDO_12
Output serial data channels 1&2
51
3.3-V capable TTL 2 mA output buffer
SDO_34
Output serial data channels 3&4
54
3.3-V capable TTL 2 mA bidirectional
buffer
SDO_56
Output serial data channels 5&6
External power bridge fault input
55
3.3-V capable TTL 2mA output buffer
SDO_78
Output serial data channels 7&8
External power bridge tristate signal
(‘0’ = tristate)
56
5-V tolerant TTL Schmitt trigger input
buffer
PWDN
Device power-down
3, 11,21,24,
3.3-V digital supply voltage
31, 39, 46, 52
VDD
3.3-V supply
4, 12, 23, 32,
Digital ground
40, 47, 53
GND
Ground
Master volume override (MVO)
This pin enables the user to bypass the volume control on all channels. When MVO is pulled
high, the master volume register is set to 0x00, which corresponds to its full-scale setting.
The master volume register setting offsets the individual channel volume settings, which
default to 0 dB.
Serial data in (SDI_12, SDI_34, SDI_56, SDI_78)
Audio information enters the device here. Six format choices are available including I²S, leftjustified or right-justified, LSB or MSB first, with word widths of 16, 18, 20 and 24 bits.
RESET
Driving this pin low turns off the outputs and returns all settings to their defaults.
I²C bus
The SA, SDA and SCL pins operate per the Phillips I²C specification. See Section 7: I²C bus
operation on page 23.
DocID024340 Rev 1
13/102
102
Device overview
STA311B
Phase-locked loop (PLL)
The phase-locked loop section provides the system timing signals and CKOUT.
Clock output (CKOUT)
System synchronization and master clocks are provided by CKOUT.
PWM outputs (OUT1 through OUT8)
The PWM outputs provide the input signal for the power devices.
External amplifier power-down (EAPD)
This signal can be used to control the power-down of the FFX power devices.
Serial data out (SDO_12, SDO_34, SDO_56, SDO_78)
When the pop-noise removal feature is disabled, these are the outputs for the audio
information. Six different formats are available including I²S, left-or right-justified, LSB or
MSB first, with word widths of 16, 18, 20 and 24 bits.
However, when the pop-noise removal feature is enabled, SDO_12 and SDO_34 output the
audio information, whereas SDO_56 is used as the external power bridge fault input and
SDO_78 as the external power bridge tristate signal.
Device power-down (PWDN)
Pulling PWDN low begins the power-down sequence which puts the STA311B into a
low-power state. EAPD goes low approximately 30 ms later.
Frequency sampling autodetection
The system clock is generated by PLL using XTI or BICKI input, and the ratio (IR) between
the frequency sampling (Fs) of the audio serial and the PLL clock has to be set in the
appropriate registers via the I²C interface. If the Fs autodetection function has been
enabled, the IR parameter will be set automatically based on the Fs input (see Fs
autodetection on page 32).
14/102
DocID024340 Rev 1
STA311B
Electrical characteristics
3
Electrical characteristics
3.1
Absolute maximum ratings
Table 3. Absolute maximum ratings
Symbol
3.2
Parameter
Min
Typ
Max
Unit
VDD
3.3-V I/O power supply
-0.5
4
Vi
Voltage on input pins
-0.5
VDD + 0.5 V
Vo
Voltage on output pins
-0.5
VDD + 0.3 V
VSA
Voltage on SA pin 15
-0.5
2.0
V
Tstg
Storage temperature
-40
150
°C
Tamb
Ambient operating temperature
-40
90
°C
V
Thermal data
Table 4. Thermal data
Symbol
Rthj-amb
3.3
Parameter
Min
Thermal resistance, junction to ambient
Typ
Max
85
Unit
°C/W
Recommended operating conditions
Table 5. Recommended operating conditions
Symbol
Parameter
Min
Typ
Max
Unit
VDD
I/O power supply
3.0
3.3
3.6
V
VSA
Voltage on SA pin 15
0.0
1.8
1.95
V
Tj
Operating junction temperature
-40
25
125
°C
DocID024340 Rev 1
15/102
102
Electrical characteristics
3.4
STA311B
Electrical specifications
The following specifications are valid for VDD =3.3 V ± 0.3 V, VSA=0V and Tamb = 25 °C,
unless otherwise stated.
Table 6. General interface electrical specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Iil
Low-level input, no pull-up
Vi = 0 V
1
µA
Iih
High-level input, no pull-down
Vi = VDD
2
µA
IOZ
Tristate output leakage without
pull-up/down
Vi = VDD
2
µA
Vesd
Electrostatic protection
(human body model)
Leakage < 1 A
2000
V
Table 7. DC electrical characteristics: 3.3-V buffers
Symbol
Conditions
Min
Typ
Max
Unit
0.8
V
VIL
Low-level input voltage
VIH
High-level input voltage
VILhyst
Low-level threshold
Input falling
0.8
1.35
V
VIHhyst
High-level threshold
Input rising
1.3
2.0
V
Vhyst
Schmitt trigger hysteresis
0.3
0.8
V
Vol
Low-level output
0.2
V
Voh
Idd
fCKOUT
16/102
Parameter
High-level output
2.0
V
IoI = 100 µA
Ioh = -100 µA
VDD0.2
V
Ioh = -2 mA
2.4
V
Reset conditions
15
mA
Normal conditions with CKOUT
60
mA
Reset=1
PWDN=1
2.85
MHz
Quiescent current
DocID024340 Rev 1
STA311B
4
Serial audio interface
Serial audio interface
The STA311B audio serial input interfaces with standard digital audio components and
accepts a number of serial data formats. The STA311B always acts as a slave when
receiving audio input from standard digital audio components. Serial data for eight channels
is provided using 6 input pins: left/right clock LRCKI, serial clock BICKI, serial data 1 and 2
SDI_12, serial data 3 and 4 SDI_34, serial data 5 and 6 SDI_56, and serial data 7 and 8
SDI_78. The SAI/SAIFB register (configuration register B, address 0x01) is used to specify
the serial data format. The default serial data format is I²S, MSB-first.
4.1
Timings
In the STA311B, the BICKI and LRCKI pins are configured as inputs and they must be
supplied by the external peripheral.
Figure 3. Timing diagram for SAI interface
tBCH
tBCL
BICKI
tBCy
LRCKI
tDS
tLRH
tLRSU
SDIxx
tDD
Table 8. Timing parameters for slave mode
Symbol
Parameter
Min
Typ
Max
Unit
tBCy
BICK cycle time
50
-
-
ns
tBCH
BICK pulse width high
20
-
-
ns
tBCL
BICK pulse width low
20
-
-
ns
tLRSU
LRCKI setup time to BICKI strobing edge
10
-
-
ns
tLRH
LRCKI hold time to BICKI strobing edge
10
-
-
ns
tDD
SDI propagation delay from BICKI active edge
0
-
10
ns
DocID024340 Rev 1
17/102
102
Serial audio interface
4.2
STA311B
Serial data formats
Available formats are shown in the following tables.
Table 9. Serial data bit first
Bit
4
Note:
RW
RW
RST
0
Name
Description
Determines MSB or LSB first for all SAO formats:
0: MSB first
1: LSB first
SAIFB
Serial input and output formats are specified separately
For example, SAI = 1110 and SAIFB = 1 would specify right-justified 16-bit data, LSB-first.
The table below lists the serial audio input formats supported by the STA311B as related to
BICKI = 32 * fs, 48 * fs, 64 * fs, where the sampling rate, fs = 32, 44.1, 48, 88.2, 96, 176.4,
192 kHz.
Table 10. Serial audio input formats according to sampling rate
BICKI
SAI [3:0]
SAIFB
Interface format
1100
X
I²SI²S 15-bit data
1110
X
Left/right-justified 16-bit data
0100
X
I²S 23-bit data
0100
X
I²S 20-bit data
1000
X
I²S 18-bit data
0100
0
MSB-first I²S 16-bit data
1100
1
LSB-first I²S 16-bit data
0001
X
Left-justified 24-bit data
0101
X
Left-justified 20-bit data
1001
X
Left-justified 18-bit data
1101
X
Left-justified 16-bit data
0010
X
Right-justified 24-bit data
0110
X
Right-justified 20-bit data
1010
X
Right-justified 18-bit data
1110
X
Right-justified 16-bit data
32 * fs
48 * fs
18/102
DocID024340 Rev 1
STA311B
Serial audio interface
Table 10. Serial audio input formats according to sampling rate (continued)
BICKI
SAI [3:0]
64 * fs
4.3
SAIFB
Interface format
0000
X
I²S 24-bit data
0100
X
I²S 20-bit data
1000
X
I²S 18-bit data
0000
0
MSB-first I²S 16-bit data
1100
1
LSB-first I²S 16-bit data
0001
X
Left-justified 24-bit data
0101
X
Left-justified 20-bit data
1001
X
Left-justified 18-bit data
1101
X
Left-justified 16-bit data
0010
X
Right-justified 24-bit data
0110
X
Right-justified 20-bit data
1010
X
Right-justified 18-bit data
1110
X
Right-justified 16-bit data
Processing data paths
The whole STA311B processing chain is depicted in Figure 4. A programmable rate
conversion algorithm is applied to the incoming digital audio data (x3,x2,x1,/2) resampling it
to the processing rate. A dual-channel plus line out processing is then implemented, with
mixing, EQ capability followed by a Volume/DRC block and final DC cut filter. The final
oversampling stage and post scaler will provide the output data stream to the PWM
modulators. Three different DRC configurations can be used, single-band, dual-band or
enhanced dual-band DRC, as shown below.
Figure 4. Processing data path
6 Inputs
From DSD
DSD
Conversion
Interp_Rate
8 Inputs
From I2S
1x,2x,4x
Interp
PreScale
Hard Set to
-18dB when
AutoMode EQ
(AMEQ)
High-Pass
Filter
User Progammable
Biquad #1 when
High-Pass Bypassed
(HPB)
Mapping/
Mix #1
Biquads
B/T
Volume
Limiter
Mix #2
2x
Interp
FFX
Output
Distortion
Compensation
From
Mix#1
Engine
Or
Previous
Channel
Biquad#10
Output
(CxBLP)
DSDE
NS
Biquad
#2
Biquad
#3
C_Con
Biquad
#4
Biquad
#5
Hard Set Coeffecients when AutoMode EQ
(AMEQ)
DocID024340 Rev 1
PWM
Biquad
#6
Biquad
#7
Biquad
#8
Hard Set
Hard Set
Coeffecients when Coeffecients when
AutoMode
DeEmphasis
Bass Management
Enabled
Crossover
(DEMP)
(AMBMXE)
To
Mix#2
Engine
Bass
Treble
User Programmable
Biquads #9 and #10
When Tone Bypassed
(CxTCB)
19/102
102
I²S recombination interface
5
STA311B
I²S recombination interface
The I²S recombination interface shares the same controls for thresholds and gains.
However, the low-pass filter is not present and thus the I²S signals coming from the outside
should be correctly filtered and conditioned for a correct recombination.
Figure 5. I²S recombination block diagram
I2S
Low Pass
Norm_Atten
Level Meter
Sens_Adj
I2S Recomb Output
TH_H
TH_N
I2S
Low Pass
20/102
DocID024340 Rev 1
Recombination Engine
STA311B
6
Startup/shutdown pop noise removal in SE application
Startup/shutdown pop noise removal in SE
application
Click and pop can generally be defined as undesired audible transients generated by the
amplifier system not coming from the system input signal. Such transients can be generated
when the amplifier system changes its operating mode: system power-up/power-down,
mute/unmute. Every time the PWM starts or stops, if no soft charge method is applied, the
result is an audible pop noise.
The STA311B integrates a “pop-elimination” circuitry that removes undesired audible pop
noise at the PWM switching start and stop either in single-ended or single-ended virtual
ground configurations.
In particular the pop elimination circuit receives as inputs the PWMs generated by the
modulator (PWMs_in) and it generates both a delayed version of the PWMs (PWMs_out)
and a tristate signal that are sent to the Power stages to attenuate the audible pop at the
power up/down.
6.1
PWM start
At power-up as soon as the external amplifier power-down (EAPD) is set to one, if at least
one channel at the output of the modulator is in binary mode, the pop elimination circuit
selects the related PWM input which exhibits the lower PWM timing delay (set using the I²C
registers 0x33, 0x34,0x35, 0x36), and it uses it as a PWM reference to synchronize the
remaining PWMs_in whose channels are set in binary mode (synchronization phase).
Moreover, during the synchronization phase the modulator is internally muted by setting the
audio input signal to
zero. At the end of this phase, all the PWMs_in are synchronous with the PWM reference
and they have a duty cycle of 50%.
At each rising edge of the PWM reference, twoTristate_ramp pulses with increasing duty
cycle are generated. As depicted in Figure 10, where for the sake of simplicity, only two
PWMs_in (PWM1_in and PWM2_in) are shown, each pulse is centered with respect to both
the rising and falling edges of the PWM reference, and their duty cycle initially set to 21.87%
increases gradually and becomes equal to 100% at the end of theTristate_ramp.
DocID024340 Rev 1
21/102
102
Startup/shutdown pop noise removal in SE application
STA311B
Figure 6. Power-on sequence for pop-free startup
Moreover in order to compensate an internal delay between the tristate signal and the PWM
present in the Power stage devices, the pop noise removal circuit generates a delayed
version of the PWM_in with respect to the Tristate_ramp signal named PWM1_out and
PWM2_out in Figure 6. The delay value delta between the Tristate_ramp and the PWM_in
is programmable using the I²C register 0x80 and the default value is 290 ns.
Finally when the Tristate_ramp duty cycle is equal to 100%, during the de-synchronization
phase the PWM time slots, equal for all the PWMs outputs, are changed so that the final
channel shift will be the one configured by registers 0x33, 0x34, 0x35 and 0x36. At this point
the PWM modulator is automatically un-muted so that the processing outputs can be
played.
6.2
PWM stop
When the EAPD signal is set to zero, the modulator is stopped internally, forcing the input
audio signal, used to feed the modulator, to zero. After that, the PWM which exhibits the
lower PWM timing delay is internally selected and used as a reference. Using the PWM
reference, all the PWMs are re-synchronized, and as soon as all PWMs are aligned, at each
rising edge of a PWM reference, a reverse tristate_ramp signal is generated. As during
startup, the reverse tristate_ramp pulses are centered with respect to the rising and falling
edge of the PWM reference, but in this case the starting duty cycle is equal to 100% and
gradually becomes equal to zero when the reverse tristate_ramp finishes.
In the STA311B the pop-elimination circuit is activated only when at least one channel is set
in binary mode, and the PWMs out speed is set to 384 kHz. In all the other cases the no
pop-free PWM switching start/stop procedure is adopted.
22/102
DocID024340 Rev 1
STA311B
7
I²C bus operation
I²C bus operation
The STA311B supports the I²C protocol via the input ports SCL and SDA_IN (master to
slave) and the output port SDA_OUT (slave to master).
This protocol defines any device that sends data on to the bus as a transmitter and any
device that reads the data as a receiver.
The device that controls the data transfer is known as the master and the other as the slave.
The master always starts the transfer and provides the serial clock for synchronization. The
STA311B is always a slave device in all of its communications.
7.1
Communication protocol
7.1.1
Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. An SDA
transition while the clock is high is used to identify a START or STOP condition.
7.1.2
Start condition
START is identified by a high-to-low transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A START condition must precede any command for
data transfer.
7.1.3
Stop condition
STOP is identified by a low-to-high transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A STOP condition terminates communication between
the STA311B and the bus master.
7.1.4
Data input
During the data input the STA311B samples the SDA signal on the rising edge of clock SCL.
For correct device operation the SDA signal must be stable during the rising edge of the
clock and the data can change only when the SCL line is low.
7.2
Device addressing
To start communication between the master and the Omega FFX core, the master must
initiate with a start condition. Following this, the master sends 8 bits onto the SDA line (MSB
first) corresponding to the device select address and read or write mode.
The 7 most significant bits are the device address identifiers, corresponding to the I²C bus
definition. In the STA311B the I²C interface has two device addresses depending on the SA
port configuration, 0x40 or 0100000x when SA = 0, and 0x42 or 0100001x when SA = 1.
The 8th bit (LSB) identifies read or write operation RW, this bit is set to 1 in read mode and 0
for write mode. After a START condition the STA311B identifies on the bus the device
address and if a match is found, it acknowledges the identification on SDA bus during the
9th-bit time. The byte following the device identification byte is the internal space address.
DocID024340 Rev 1
23/102
102
I²C bus operation
7.3
STA311B
Write operation
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA311B acknowledges this and the writes for the byte of internal address.
After receiving the internal byte address the STA311B again responds with an
acknowledgement.
7.3.1
Byte write
In the byte write mode the master sends one data byte, this is acknowledged by the Omega
FFX core. The master then terminates the transfer by generating a STOP condition.
7.3.2
Multi-byte write
The multi-byte write modes can start from any internal address. The master generating a
STOP condition terminates the transfer.
Figure 7. Write mode sequence
ACK
DEV-ADDR
BYTE
WRITE
ACK
SUB-ADDR
RW
START
STOP
ACK
MULTIBYTE
WRITE
ACK
DATA IN
DEV-ADDR
START
ACK
SUB-ADDR
ACK
DATA IN
ACK
DATA IN
STOP
RW
7.4
Read operation
7.4.1
Current address byte read
Following the START condition, the master sends a device select code with the RW bit set
to 1. The STA311B acknowledges this and then responds by sending one byte of data. The
master then terminates the transfer by generating a STOP condition.
7.4.2
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA311B. The master acknowledges each data
byte read and then generates a STOP condition, terminating the transfer.
7.4.3
Random address byte read
Following the START condition, the master sends a device select code with the RW bit set
to 0. The STA311B acknowledges this and then the master writes the internal address byte.
After receiving the internal byte address, the STA311B again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA311B acknowledges this and then responds by
sending one byte of data. The master then terminates the transfer by generating a STOP
condition.
24/102
DocID024340 Rev 1
STA311B
7.4.4
I²C bus operation
Random address multi-byte read
The multi-byte read mode can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA311B. The master acknowledges each data
byte read and then generates a STOP condition, terminating the transfer.
Figure 8. Read mode sequence
ACK
CURRENT
ADDRESS
READ
DEV-ADDR
NO ACK
DATA
RW
START
STOP
ACK
RANDOM
ADDRESS
READ
DEV-ADDR
RW
RW= ACK
HIGH
START
SEQUENTIAL
CURRENT
READ
ACK
ACK
SUB-ADDR
DEV-ADDR
DEV-ADDR
S TAR T
NO ACK
DATA
RW
ACK
STOP
ACK
DATA
DATA
NO ACK
DATA
START
STOP
ACK
SEQUENTIAL
RANDOM
READ
DEV-ADDR
START
ACK
ACK
SUB-ADDR
RW
DEV-ADDR
S TAR T
ACK
DATA
RW
DocID024340 Rev 1
ACK
DATA
NO ACK
DATA
STOP
25/102
102
Registers
STA311B
8
Registers
8.1
Register summary
Table 11. Register summary
Addr
Name
D7
D6
D5
COS1
COS0
DSPB
D4
D3
D2
D1
D0
Configuration
0x00
CONFA
IR1
IR0
MCS2
MCS1
MCS0
0x01
ConfB
SAIFB
SAI3
SAI2
SAI1
SAI0
0x02
ConfC
SAOD4
SAOFB
SAO3
SAO2
SAO1
SAO0
0x03
ConfD
MPC
CSZ4
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
0x04
ConfE
C8BO
C7BO
C6BO
C5BO
C4BO
C3BO
C2BO
C1BO
0x05
ConfF
PWMS2 PWMS1 PWMS0 BQL
PSL
DEMP
DRC
HPB
0x06
ConfG
MPCV
DCCV
HPE
AM2E
AME
COD
SID
PWMD
0x07
ConfH
ECLE
LDTE
BCLE
IDE
ZDE
SVE
ZCE
NSBW
0x08
ConfI
EAPD
PSCE
Volume control
26/102
0x09
MMUTE
MMUTE
0x0A
Mvol
MV7
MV6
MV5
MV4
MV3
MV2
MV1
MV0
0x0B
C1Vol
C1V7
C1V6
C1V5
C1V4
C1V3
C1V2
C1V1
C1V0
0x0C
C2Vol
C2V7
C2V6
C2V5
C2V4
C2V3
C2V2
C2V1
C2V0
0x0D
C3Vol
C3V7
C3V6
C3V5
C3V4
C3V3
C3V2
C3V1
C3V0
0x0E
C4Vol
C4V7
C4V6
C4V5
C4V4
C4V3
C4V2
C4V1
C4V0
0x0F
C5Vol
C5V7
C5V6
C5V5
C5V4
C5V3
C5V2
C5V1
C5V0
0x10
C6Vol
C6V7
C6V6
C6V5
C6V4
C6V3
C6V2
C6V1
C6V0
0x11
C7Vol
C7V7
C7V6
C7V5
C7V4
C7V3
C7V2
C7V1
C7V0
0x12
C8Vol
C8V7
C8V6
C8V5
C8V4
C8V3
C8V2
C8V1
C8V0
0x13
C1VTM
B
C1M
C1VBP
C1VT4
C1VT3
C1VT2
C1VT1
C1VT0
0x14
C2VTM
B
C2M
C2VBP
C2VT4
C2VT3
C2VT2
C2VT1
C2VT0
0x15
C3VTM
B
C3M
C3VBP
C3VT4
C3VT3
C3VT2
C3VT1
C3VT0
0x16
C4VTM
B
C4M
C4VBP
C4VT4
C4VT3
C4VT2
C4VT1
C4VT0
0x17
C5VTM
B
C5M
C5VBP
C5VT4
C5VT3
C5VT2
C5VT1
C5VT0
0x18
C6VTM
B
C6M
C6VBP
C6VT4
C6VT3
C6VT2
C6VT1
C6VT0
DocID024340 Rev 1
STA311B
Registers
Table 11. Register summary (continued)
Addr
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x19
C7VTM
B
C7M
C7VBP
C7VT4
C7VT3
C7VT2
C7VT1
C7VT0
0x1A
C8VTM
B
C8M
C8VBP
C8VT4
C8VT3
C8VT2
C8VT1
C8VT0
Input mapping
0x1B
C12im
C2IM2
C2IM1
C2IM0
C1IM2
C1IM1
C1IM0
0x1C
C34im
C4IM2
C4IM1
C4IM0
C3IM2
C3IM1
C3IM0
0x1D
C56im
C6IM2
C6IM1
C6IM0
C5IM2
C5IM1
C5IM0
0x1E
C78im
C8IM2
C8IM1
C8IM0
C7IM2
C7IM1
C7IM0
AMEQ0
AutoMode
0x1F
Auto1
AMDM
AMGC2 AMGC1 AMGC0
AMV1
AMV0
AMEQ1
0x20
Auto2
SUB
RSS1
CSS0
FSS
AMBMX AMBMM
E
E
0x21
Auto3
AMAM2 AMAM1 AMAM0 AMAME
0x22
PreEQ
XO2
0x23
XO1
RSS0
XO0
CSS1
MSA
AMPS
PEQ4
PEQ3
PEQ2
PEQ1
PEQ0
Ageq
AGEQ4
AGEQ3
AGEQ2
AGEQ1
AGEQ0
0x24
Bgeq
BGEQ4
BGEQ3
BGEQ2
BGEQ1
BGEQ0
0x25
Cgeq
CGEQ4
CGEQ3
CGEQ2
CGEQ1
CGEQ0
0x26
Dgeq
DGEQ4
DGEQ3
DGEQ2
DGEQ1
DGEQ0
0x27
Egeq
EGEQ4
EGEQ3
EGEQ2
EGEQ1
EGEQ0
Processing loop
0x28
BQlp
C8BLP
C7BLP
C6BLP
C5BLP
C4BLP
C3BLP
C2BLP
C1BLP
0x29
MXlp
C8MXL
P
C7MXL
P
C6MXL
P
C5MXLP
C4MXL
P
C3MXL
P
C2MXL
P
C1MXLP
Processing bypass
0x2A
EQbp
C8EQB
P
C7EQB
P
C6EQB
P
C5EQB
C4EQB
P
C3EQB
P
C2EQB
P
C1EQBP
0x2B
ToneBP C8TCB
C7TCB
C6TCB
C5TCB
C4TCB
C3TCB
C2TCB
C1TCB
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
Tone control
0x2C
Tone
TTC3
Dynamics control
0x2D
C1234ls C4LS1
C4LS0
C3LS1
C3LS0
C2LS1
C2LS0
C1LS1
C1LS0
0x2E
C5678ls C8LS1
C8LS0
C7LS1
C7LS0
C6LS1
C6LS0
C5LS1
C5LS0
0x2F
L1ar
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0x30
L1atrt
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0x31
L2ar
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
DocID024340 Rev 1
27/102
102
Registers
STA311B
Table 11. Register summary (continued)
Addr
0x32
Name
L2atrt
D7
L2AT3
D6
D5
D4
L2AT2
L2AT1
L2AT0
D3
L2RT3
D2
D1
D0
L2RT2
L2RT1
L2RT0
PWM output timing
0x33
C12ot
C2OT2
C2OT1
C2OT0
C1OT2
C1OT1
C1OT0
0x34
C34ot
C4OT2
C4OT1
C4OT0
C3OT2
C3OT1
C3OT0
0x35
C56ot
C6OT2
C6OT1
C6OT0
C5OT2
C5OT1
C5OT0
0x36
C78ot
C8OT2
C8OT1
C8OT0
C7OT2
C7OT1
C7OT0
I²S output channel mapping
0x37
C12om
C2OM2
C2OM1
C2OM0
C1OM2
C1OM1
C1OM0
0x38
C34om
C4OM2
C4OM1
C4OM0
C3OM2
C3OM1
C3OM0
0x39
C56om
C6OM2
C6OM1
C6OM0
C5OM2
C5OM1
C5OM0
0x3A
C78om
C8OM2
C8OM1
C8OM0
C7OM2
C7OM1
C7OM0
CFA9
CFA8
User-defined coefficient RAM
28/102
0x3B
Cfaddr1
0x3C
Cfaddr2 CFA7
CFA6
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0x3D
B1cf1
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0x3E
B1cf2
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0x3F
B1cf3
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0x40
B2cf1
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0x41
B2cf2
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0x42
B2cf3
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0x43
A1cf1
C3B23
C3B22
C3B21
C3B20
C3B19
C3B18
C3B17
C3B16
0x44
A1cf2
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0x45
A1cf3
C3B7
C3B6
C3B5
C3B4
C3B3
C3B2
C3B1
C3B0
0x46
A2cf1
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0x47
A2cf2
C4B15
C4B14
C4B13
C4B12
C4B11
C4B10
C4B9
C4B8
0x48
A2cf3
C4B7
C4B6
C4B5
C4B4
C4B3
C4B2
C4B1
C4B0
0x49
B0cf1
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0x4A
B0cf2
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0x4B
B0cf3
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0x4C
Cfud
WA
W1
0x4D
MPCC1
MPCC1
5
MPCC1
4
MPCC1
3
MPCC12
MPCC1
1
MPCC1
0
MPCC9
MPCC8
0x4E
MPCC2
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
0x4F
DCC1
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
0x50
DCC2
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
DocID024340 Rev 1
STA311B
Registers
Table 11. Register summary (continued)
Addr
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x51
PSC1
RCV11
RCV10
RCV9
RCV8
RCV7
RCV6
RCV5
RCV4
0x52
PSC2
RCV3
RCV2
RCV1
RCV0
CNV11
CNV10
CNV9
CNV8
0x53
PSC3
CNV7
CNV6
CNV5
CNV4
CNV3
CNV2
CNV1
CNV0
I²S_byp
I²S_en
AdvM3
AdvM2
AdvM1
I²S recombination interface
Boost6d
b
0x5D
RCTR1
0x5E
PDMCT AdvM6
AdvM5
0x5F
RCTR2
bypRM1 CH1GG[5:0]
0x60
RCTR3
bypRM2 CH2GG[5:0]
0x61
RCTR4
bypRM3 CH3GG[5:0]
0x62
RCTR5
LP1en
CH1NCA[5:0]
0x63
RCTR6
LP2en
CH2NCA[5:0]
0x64
RCTR7
LP3en
CH3NCA[5:0]
0x65
RCTR8
CH1TH_N[5:0]
0x66
RCTR9
CH2TH_N[5:0]
0x67
RCTR1
0
CH3TH_N[5:0]
0x68
RCTR11
CH1TH_H[5:0]
0x69
RCTR1
2
CH2TH_H[5:0]
0x6A
RCTR1
3
CH3TH_H[5:0]
AdvM4
Extended DRC configuration registers
0x6B
nL1at
L1AT6
L1AT5
L1AT4
L1AT3
L1AT2
L1AT1
L1AT0
0x6C
nL2at
L2AT6
L2AT5
L2AT4
L2AT3
L2AT2
L2AT1
L2AT0
0x6D
nL1rt
L1RT5
L1RT4
L1RT3
L1RT2
L1RT1
L1RT0
0x6E
nL2rt
L2RT5
L2RT4
L2RT3
L2RT2
L2RT1
L2RT0
0x6F
0Mute
ZMTHS
0
ZMHYS
1
ZMHYS0
0x70
ZMTHS
RMSZS RMSZS RMSZS
ZMTHS2
1
2
1
0
RMS2
RMS1
RMS0
FXLRC0
Clock manager configuration/status registers
0x71
pllfrac1
PLFI15
PLFI14
PLFI13
PLFI12
PLFI11
PLFI10
PLFI9
PLFI8
0x72
pllfrac0
PLFI7
PLFI6
PLFI5
PLFI4
PLFI3
PLFI2
PLFI1
PLFI0
0x73
pll div
PLLDD1 PLLDD0 PLLND5 PLLND4
0x74
pll conf0 PDPDC PLLFC
PLSTR
B
PLLND3 PLLND2 PLLND1 PLLND0
PLSTBB PLIFD3
DocID024340 Rev 1
PLIFD2
PLIFD1
PLIFD0
29/102
102
Registers
STA311B
Table 11. Register summary (continued)
Addr
Name
D7
D6
D5
D4
D3
D2
PLLDP
R
D1
0x75
pll conf1
PLLBYP
0x76
pll stat
PLLBYS PLLPDS OSCOK
D0
LOWEN BST32K
LOWCK
S
Biquad configuration
0x77
CBQ1
EBQ3_1 EBQ3_0 EBQ2_1 EBQ2_0
EBQ1_1 EBQ1_0 EBQ0_0 EBQ0_0
0x78
CBQ2
EBQ7_1 EBQ7_0 EBQ6_1 EBQ6_0
EBQ5_1 EBQ5_0 EBQ4_0 EBQ4_0
0x79
CBQ3
nshen
EBQ9_1 EBQ9_0 EBQ8_0 EBQ8_0
RMS status registers
0x7A
rmsZMH RZM15
RZM14
RZM13
RZM12
RZM11
RZM10
RZM9
RZM8
0X7B
rmsZML RZM7
RZM6
RZM5
RZM4
RZM3
RZM2
RZM1
RZM0
0X7C
rmsPOH RPO15
RPO14
RPO13
RPO12
RPO11
RPO10
RPO9
RPO8
0X7D
rmsPOL RPO7
RPO6
RPO5
RPO4
RPO3
RPO2
RPO1
RPO0
DPT4
DPT3
DPT2
DPT1
DPT0
RD
SID1
FBYP
RTP
Tristate startup/shutdown pop removal signals
30/102
0x80
DPT
0x81
CFR129 RL3
0x82
TSDLY1
0x83
RL2
RL1
RL0
UDDT1
5
UDDT1
4
UDDT1
3
UDDT12 UDDT11
UDDT1
0
UDDT9
UDDT8
TSDLY2 UDDT7
UDDT6
UDDT5
UDDT4
UDDT2
UDDT1
UDDT0
DocID024340 Rev 1
UDDT3
STA311B
Registers
8.2
Register description
8.2.1
Configuration register A (0x00)
D7
D6
D5
D4
D3
D2
D1
D0
COS1
COS0
DSPB
IR1
IR0
MCS2
MCS1
MCS0
1
0
0
0
0
0
1
1
Bit
RW
RST
Name
0
RW
1
MCS0
1
RW
1
MCS1
2
RW
0
MCS2
Description
Master clock select: selects the ratio between the
input I²S sampling frequency and the input clock.
The STA311B supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,
176.4 kHz, 192 kHz, 2.8224 MHz DSD. Therefore the internal clocks are:

65.536 MHz for 32 kHz

90.3168 MHz for 44.1 kHz, 88.2 kHz, 176.4 kHz, and DSD

98.304 MHz for 48 kHz, 96 kHz, 192 kHz
The external clock frequency provided to the XTI or BICKI pin (depending on the MCS
settings) must be a multiple of the input sampling frequency (fs). The relationship between
the input clock (either XTI or BICKI) and the input sampling rate is determined by both the
MCS[2:0] and the IR[1:0] (input rate) register bits in normal mode, if the Fs autodetect mode
has been set, the IR[1:0] parameter and the BST32K bit will be set automatically (see Fs
autodetection on page 32). The MCS[2:0] bits determine the PLL factor generating the
internal clock and the IR[1:0] bits determine the oversampling ratio used internally.
If XTI input is not used, related pin must be tied to GND.
To get 98.304 MHz of system clock frequency when fs = 32 kHz, an extra oversampling
factor is available by setting the BST32K bit in the 0x75 register (see Clock manager
configuration register (0x75) on page 93).
MCS[2:0]
Input sampling rate
fs (kHz)
IR
BICKI
XTI
111
110
10-
011
010
001
000
32, 44.1, 48
00
64*fs
na
128*fs
256*fs
384*fs
512*fs
768*fs
88.2, 96
01
64*fs
32*fs
64*fs
128*fs
192*fs
256*fs
384*fs
176.4, 192
10
64*fs
32*fs
64*fs
128*fs
192*fs
256*fs
na
DSD/PDM
11
2*fs
2*fs
2*fs
4*fs
6*fs
8*fs
12*fs
DocID024340 Rev 1
31/102
102
Registers
STA311B
Fs autodetection
When FXLRC0 = ‘0’ (see 0x70 register), the autodetection function is disabled, IR[1:0] and BST32K
must be set via I²C. When FXLRC0 = ‘1’ the autodetection function is enabled, then IR and BST32K
will be set automatically based on Fs. Before and after enabling the function m, LRCKI must be stable
for at least 3 cycles with a fixed Fs as reference. After 3 fixed Fs cycles when the function has been
enabled, the real Fs can be fed to LRCKI.
Interpolation ratio select
Bit
RW
RST
Name
3
RW
0
IR0
4
RW
0
IR1
Description
Interpolation ratio select: selects internal
interpolation ratio based on input I²S sample
frequency
The STA311B has variable interpolation (oversampling) settings such that internal
processing and FFX output rates remain consistent. The first processing block interpolates
by either 4 times, 2 times, or 1 time (pass-through).
The oversampling ratio of this interpolation is determined by the IR bits.
I
Input sample rate
IR[1,0]
1st stage interpolation ratio
Fs (kHz)
00
32
4-times oversampling
00
44.1
4-times oversampling
00
48
4-times oversampling
01
88.2
2-times oversampling
01
96
2-times oversampling
10
176.4
Pass-through
10
192
Pass-through
11
DSD
DSD to 176.4 kHz conversion
Bit
RW
RST
Name
Description
0
RW
0
DSPB
DSP bypass bit:
0: normal operation
1: bypass of biquad and bass/treble functions
Setting the DSPB bit bypasses the biquad function of the processing core of the STA311B.
COS[1,0]
32/102
CKOUT frequency
00
PLL output
01
PLL output / 4
10
PLL output / 8
11
PLL output / 16
DocID024340 Rev 1
STA311B
8.2.2
Registers
Configuration register B (0x01) - serial input formats
D7
D6
D5
Bit
RW
RST
Name
0
RW
0
SAI0
1
RW
0
SAI1
2
RW
0
SAI2
3
RW
0
SAI3
D4
D3
D2
D1
D0
SAIFB
SAI3
SAI2
SAI1
SAI0
0
0
0
0
0
Description
Serial audio input interface format: determines the
interface format of the input serial digital audio
interface
Serial data interface
The STA311B audio serial input interfaces with standard digital audio components and
accepts a number of serial data formats. The STA311B always acts a slave when receiving
audio input from standard digital audio components. Serial data for eight channels is
provided using 6 input pins: left/right clock LRCKI, serial clock BICKI, serial data 1 and 2
SDI_12, serial data 3 and 4 SDI_34, serial data 5 and 6 SDI_56, and serial data 7 and 8
SDI_78. The SAI/SAIFB register (configuration register B, address 0x01) is used to specify
the serial data format. The default serial data format is I²S, MSB-first. Available formats are
shown in the tables that follow.
Note:
Bit
RW
RST
Name
4
RW
0
SAIFB
Description
Determines MSB or LSB first for all SAO formats:
0: MSB first
1: LSB first
Serial input and output formats are specified separately.
For example, SAI = 1110 and SAIFB = 1 would specify right-justified 16-bit data, LSB-first.
The table below lists the serial audio input formats supported by STA311B as related to
BICKI = 32 * fs, 48 * fs, 64 * fs, where sampling rate, fs = 32, 44.1, 48, 88.2, 96, 176.4,
192 kHz.
DocID024340 Rev 1
33/102
102
Registers
STA311B
Table 12.
Serial audio input formats according to sampling rate
BICKI
SAI [3:0]
SAIFB
Interface format
1100
X
I²S 15-bit data
1110
X
Left/right-justified 16-bit data
0100
X
I²S 23-bit data
0100
X
I²S 20-bit data
1000
X
I²S 18-bit data
0100
0
MSB-first I²S 16-bit data
1100
1
LSB-first I²S 16-bit data
0001
X
Left-justified 24-bit data
0101
X
Left-justified 20-bit data
1001
X
Left-justified 18-bit data
1101
X
Left-justified 16-bit data
0010
X
Right-justified 24-bit data
0110
X
Right-justified 20-bit data
1010
X
Right-justified 18-bit data
1110
X
Right-justified 16-bit data
0000
X
I²S 24-bit data
0100
X
I²S 20-bit data
1000
X
I²S 18-bit data
0000
0
MSB-first I²S 16-bit data
1100
1
LSB-first I²S 16-bit data
0001
X
Left-justified 24-bit data
0101
X
Left-justified 20-bit data
1001
X
Left-justified 18-bit data
1101
X
Left-justified 16-bit data
0010
X
Right-justified 24-bit data
0110
X
Right-justified 20-bit data
1010
X
Right-justified 18-bit data
1110
X
Right-justified 16-bit data
32 * fs
48 * fs
64 * fs
34/102
DocID024340 Rev 1
STA311B
8.2.3
Registers
Configuration register C (0x02) - serial output formats
D7
D6
D5
D4
D3
D2
D1
D0
SAOD4
SAOFB
SAO3
SAO2
SAIO
SAO0
0
0
0
0
0
0
Bit
RW
RST
Name
0
RW
0
SAO0
1
RW
0
SAO1
2
RW
0
SAO2
3
RW
0
SAO3
Description
Serial audio output interface format: determines the
interface format of the output serial digital audio
interface.
The STA311B features a serial audio output interface that consists of 8 channels. The serial
audio output always acts as a slave to the serial audio input interface and, therefore, all
output clocks are synchronous with the input clocks. The output sampling frequency (fs) is
also equivalent to the input sampling frequency. In the case of SACD/DSD input, the serial
audio output acts as a master with an output sampling frequency of 8 xfs, 4 xfs or fs
depending on SAOD4 bit. The output serial format can be selected independently from the
input format and is done via the SAO and SAOFB bits.
Bit
RW
RST
Name
4
RW
0
SAOFB
Bit
RW
RST
Name
5
RW
0
SAOD4
Description
Determines MSB or LSB first for all SAO formats:
0: MSB first
1: LSB first
Description
Enables decimation by 4 on SAO interface for
SACD/DSD input; no effect for others.
0: div by 1
1: div by 4 (1)
1. To avoid any aliasing on SAO streaming, a low-pass filter is needed to be implemented in one of the
available user-programmable biquads.
DocID024340 Rev 1
35/102
102
Registers
STA311B
Table 13.
Serial audio output formats according to sampling rate
BICKI = BICKO
SAO[3:0]
Interface data format
0111
I²S data
1111
Left/right-justified 16-bit data
1110
I²S data
0001
Left-justified data
1010
Right-justified 24-bit data
1011
Right-justified 20-bit data
1100
Right-justified 18-bit data
1101
Right-justified 16-bit data
0000
I²S data
0001
Left-justified data
0010
Right-justified 24-bit data
0011
Right-justified 20-bit data
0100
Right-justified 18-bit data
0101
Right-justified 16-bit data
32 * fs
48 * fs
64 * fs
36/102
DocID024340 Rev 1
STA311B
8.2.4
Registers
Configuration register D (0x03)
D7
D6
D5
D4
D3
D2
D1
D0
MPC
CSZ4
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
1
1
1
1
1
1
1
0
Bit
RW
RST
Name
0
RW
0
OM0
1
RW
1
OM1
Description
FFX power output mode: selects configuration of
FFX output
The FFX power output mode selects how the FFX output timing is configured. Different
power devices use different output modes. The STA50x recommended use is OM = 10.
OM[1,0]
Output stage - mode
00
STA50x/STA51xB - drop compensation
01
Discrete output stage - tapered compensation
10
STA50x/STA51xB - full-power mode
11
Variable drop compensation (CSZn bits)
Bit
RW
RST
Name
2
RW
1
CSZ0
3
RW
1
CSZ1
4
RW
1
CSZ2
5
RW
1
CSZ3
6
RW
1
CSZ4
CSZ[4:0]
Description
Contra size register: when OM[1,0] = 11, this register
determines the size of the FFX compensating pulse
from 0 clock ticks to 31 clock periods
Compensating pulse size
00000
0 clock period compensating pulse size
00001
1 clock period compensating pulse size
…
…
11111
31 clock period compensating pulse size
Bit
RW
RST
Name
7
RW
1
MPC
Description
Max power correction: setting of 1 enables STA50x
correction for THD reduction near maximum power
output.
DocID024340 Rev 1
37/102
102
Registers
STA311B
Setting the MPC bit turns on special processing that corrects the STA50x power device at
high power. This mode should lower the THD+N of a full STA50x FFX system at maximum
power output and slightly below. This mode will only be operational in OM[1,0] = 01.
8.2.5
Configuration register E (0x04)
D7
D6
D5
D4
D3
D2
D1
D0
C8BO
C7BO
C6BO
C5BO
C4BO
C3BO
C2BO
C1BO
0
0
0
0
0
0
0
0
Bit
RW
RST
Name
0
RW
0
C1BO
1
RW
0
C2BO
2
RW
0
C3BO
3
RW
0
C4BO
4
RW
0
C5BO
5
RW
0
C6BO
6
RW
0
C7BO
7
RW
0
C8BO
Description
Channels 1, 2, 3, 4, 5, 6, 7, and 8 binary output mode
enable bits. A setting of 0 indicates ordinary FFX
tristate output. A setting of 1 indicates binary output
mode.
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel will be considered the positive output and output B is the negative
inverse.
8.2.6
Configuration register F (0x05)
D7
D6
D5
D4
D3
D2
D1
D0
PWMS2
PWMS1
PWMS0
BQL
PSL
DEMP
DRC
HPB
0
0
0
0
0
0
0
0
Bit
RW
RST
Name
0
RW
0
HPB
Description
High-pass filter bypass bit: setting of one bypasses
internal AC coupling digital high-pass filter
The STA311B features an internal digital high-pass filter for the purpose of AC coupling. The
purpose of this filter is to prevent DC signals from passing through an FFX amplifier. DC
signals can cause speaker damage.
If HPB = 1, then the filter that the high-pass filter utilizes is made available as userprogrammable biquad #1.
38/102
DocID024340 Rev 1
STA311B
Registers
Bit
RW
RST
Name
1
RW
0
DRC
Description
Dynamic range compression/anti-clipping
0: limiters act in anti-clipping mode
1: limiters act in dynamic range compression mode
Both limiters can be used in one of two ways, anti-clipping or dynamic range compression.
When used in anti-clipping mode, the limiter threshold values are constant and dependent
on the limiter settings.
In dynamic range compression mode, the limiter threshold values vary with the volume
settings allowing a nighttime listening mode that provides a reduction in the dynamic range
regardless of the volume level.
Bit
RW
RST
Name
2
RW
0
DEMP
Description
De-emphasis:
0: no de-emphasis
1: de-emphasis
By setting this bit to one de-emphasis will be implemented on all channels. When this is
used it takes the place of biquad #7 in each channel and any coefficients using biquad #1
will be ignored. The DSPB (DSP bypass) bit must be set to 0 for de-emphasis to function.
Bit
RW
RST
Name
3
RW
0
PSL
Description
Post-scale link:
0: each channel uses individual post-scale value
1: each channel uses channel 1 post-scale value
Post-scale functionality can be used for power-supply error correction. For multi-channel
applications running off the same power-supply, the post-scale values can be linked to the
value of channel 1 for ease of use and in order to update the values faster.
Bit
RW
RST
Name
4
RW
0
BQL
Description
Biquad link:
0: each channel uses coefficient values
1: each channel uses channel 1 coefficient values
For ease of use, all channels can use the biquad coefficients loaded into the channel 1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
Bit
RW
RST
Name
7:5
RW
00
PWMS[2:0]
Description
PWM speed selection
DocID024340 Rev 1
39/102
102
Registers
STA311B
PWMS[1:0]
8.2.7
PWM output speed
000
Normal speed (384 kHz) (all channels)
001
Half-speed (192 kHz) (all channels)
010
Double-speed (768 kHz) (all channels)
011
Normal speed (channels 1-6), double-speed (channels 7-8)
100
Odd speed (341.3 kHz) (all channels)
Configuration register G (0x06)
D7
D6
D5
D4
D3
D2
D1
D0
MPCV
DCCV
HPE
AM2E
AME
COD
SID
PWMD
0
0
0
0
0
0
0
0
Bit
RW
RST
Name
0
RW
0
PWMD
1
RW
0
SID
Serial interface (I²S out) disable:
0: I²S output normal
1: no I²S output
2
RW
0
COD
Clock output disable:
0: clock output normal
1: no clock output
Bit
RW
RST
Name
3
RW
0
AME
Description
PWM output disable:
0: PWM output normal
1: no PWM output
Description
AM mode enable:
0: normal FFX operation
1: AM reduction mode FFX operation
The STA311B features an FFX processing mode that minimizes the amount of noise
generated in the frequency range of AM radio. This mode is intended for use when FFX is
operating in a device with an active AM tuner. The SNR of the FFX processing is reduced to
~83 dB in this mode, which is still greater than the SNR of AM radio.
Bit
RW
RST
Name
4
RW
0
AM2E
Description
AM2 mode enable:
0: normal FFX operation
1: AM2 reduction mode FFX operation
The STA311B features two FFX processing modes that minimize the amount of noise
generated in the frequency range of AM radio. This second mode is intended for use when
40/102
DocID024340 Rev 1
STA311B
Registers
FFX is operating in a device with an active AM tuner. This mode eliminates the noiseshaper.
Bit
RW
RST
Name
5
RW
0
HPE
Description
FFX headphone enable:
0: channels 7 and 8 normal FFX operation
1: channels 7 and 8 headphone operation
Channels 7 and 8 can be configured to be processed and output in such a manner that
headphones can be driven using an appropriate output device. This signal is a differential
3-wire drive called FFX headphone.
8.2.8
Bit
RW
RST
Name
6
RW
0
DCCV
Bit
RW
RST
Name
7
RW
0
MPCV
Description
Distortion compensation variable enable:
0: uses the preset DC coefficient
1: uses the DCC coefficient
Description
Max power correction variable:
0: uses the standard MPC coefficient
1: uses the MPCC bits for the MPC coefficient
Configuration register H (0x07)
D7
D6
D5
D4
D3
D2
D1
D0
ECLE
LDTE
BCLE
IDE
ZDE
SVE
ZCE
NSBW
0
1
1
1
1
1
1
0
Bit
RW
RST
Name
Description
0
RW
0
NSBW
Noise-shaper bandwidth selection:
1: 3rd order NS
0: 4th order NS
Bit
RW
RST
Name
Description
1
RW
1
ZCE
Zero-crossing volume enable:
1: volume adjustments will only occur at digital zerocrossings
0: volume adjustments will occur immediately
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital
zero-crossings, no clicks will be audible.
DocID024340 Rev 1
41/102
102
Registers
STA311B
Bit
RW
RST
Name
2
RW
1
SVE
Bit
RW
RST
Name
3
RW
1
ZDE
Description
Soft volume enable:
1: volume adjustments use soft volume
0: volume adjustments occur immediately
Description
Zero-detect mute enable: setting of 1 enables the
automatic zero-detect mute
Setting the ZDE bit enables the zero-detect automatic mute. See Section 9.5.7 for more
details.
Bit
RW
RST
Name
4
RW
1
IDE
Description
Invalid input detect mute enable:
1: enable the automatic invalid input detect mute
Setting the IDE bit enables this function, which looks at the input I²S data and will
automatically mute if the signals are perceived as invalid.
Bit
RW
RST
Name
5
RW
1
BCLE
Description
Binary output mode clock loss detection enable
The BCLE bit detects loss of input MCLK in binary mode and will output 50% duty cycle.
Bit
RW
RST
Name
6
RW
1
LDTE
Description
LRCLK double trigger protection enable
The LDTE bit actively prevents double triggering of LRCLK.
Bit
RW
RST
Name
7
RW
0
ECLE
Description
Auto EAPD on clock loss
When active, the ECLE bit will issue a device power-down signal (EAPD) on clock loss
detection.
8.2.9
Configuration register I (0x08)
D7
42/102
D6
D5
D4
D3
D2
D1
D0
EAPD
PSCE
0
0
DocID024340 Rev 1
STA311B
Registers
This feature utilizes an ADC on SDI78 that provides power supply ripple information for
correction. Registers PSC1, PSC2, PSC3 are utilized in this mode.
8.2.10
Bit
RW
RST
Name
0
RW
0
PSCE
Bit
RW
RST
Name
7
RW
0
EAPD
Description
Power supply ripple correction enable:
0: normal operation
1: PSCorrect operation
Description
External amplifier power-down:
0: external power stage power-down active
1: normal operation
Master mute register (0x09)
D7
D6
D5
D4
D3
D2
D1
D0
MMUTE
0
8.2.11
Master volume register (0x0A)
D7
D6
D5
D4
D3
D2
D1
D0
MV7
MV6
MV5
MV4
MV3
MV2
MV1
MV0
1
1
1
1
1
1
1
1
Note:
The value of the volume derived from MVOL is dependent on the AMV AutoMode volume
settings.
8.2.12
Channel 1 volume (0x0B)
8.2.13
D7
D6
D5
D4
D3
D2
D1
D0
C1V7
C1V6
C1V5
C1V4
C1V3
C1V2
C1V1
C1V0
0
1
1
0
0
0
0
0
Channel 2 volume (0x0C)
D7
D6
D5
D4
D3
D2
D1
D0
C2V7
C2V6
C2V5
C2V4
C2V3
C2V2
C2V1
C2V0
0
1
1
0
0
0
0
0
DocID024340 Rev 1
43/102
102
Registers
8.2.14
8.2.15
8.2.16
8.2.17
8.2.18
8.2.19
8.2.20
44/102
STA311B
Channel 3 volume (0x0D)
D7
D6
D5
D4
D3
D2
D1
D0
C3V7
C3V6
C3V5
C3V4
C3V3
C3V2
C3V1
C3V0
0
1
1
0
0
0
0
0
Channel 4 volume (0x0E)
D7
D6
D5
D4
D3
D2
D1
D0
C4V7
C4V6
C4V5
C4V4
C4V3
C4V2
C4V1
C4V0
0
1
1
0
0
0
0
0
Channel 5 volume (0x0F)
D7
D6
D5
D4
D3
D2
D1
D0
C5V7
C5V6
C5V5
C5V4
C5V3
C5V2
C5V1
C5V0
0
1
1
0
0
0
0
0
Channel 6 volume (0x10)
D7
D6
D5
D4
D3
D2
D1
D0
C6V7
C6V6
C6V5
C6V4
C6V3
C6V2
C6V1
C6V0
0
1
1
0
0
0
0
0
Channel 7 volume (0x11)
D7
D6
D5
D4
D3
D2
D1
D0
C7V7
C7V6
C7V5
C7V4
C7V3
C7V2
C7V1
C7V0
0
1
1
0
0
0
0
0
Channel 8 volume (0x12)
D7
D6
D5
D4
D3
D2
D1
D0
C8V7
C8V6
C8V5
C8V4
C8V3
C8V2
C8V1
C8V0
0
1
1
0
0
0
0
0
Channel 1 volume trim, mute, bypass (0x13)
D7
D6
C1M
C1VBP
0
0
D5
0
D4
D3
D2
D1
D0
C1VT4
C1VT3
C1VT2
C1VT1
C1VT0
1
0
0
0
0
DocID024340 Rev 1
STA311B
8.2.21
8.2.22
8.2.23
8.2.24
8.2.25
8.2.26
8.2.27
Registers
Channel 2 volume trim, mute, bypass (0x14)
D7
D6
C2M
C2VBP
0
0
D5
0
D4
D3
D2
D1
D0
C2VT4
C2VT3
C2VT2
C2VT1
C2VT0
1
0
0
0
0
Channel 3 volume trim, mute, bypass (0x15)
D7
D6
C3M
C3VBP
0
0
D5
0
D4
D3
D2
D1
D0
C3VT4
C3VT3
C3VT2
C3VT1
C3VT0
1
0
0
0
0
Channel 4 volume trim, mute, bypass (0x16)
D7
D6
C4M
C4VBP
0
0
D5
0
D4
D3
D2
D1
D0
C4VT4
C4VT3
C4VT2
C4VT1
C4VT0
1
0
0
0
0
Channel 5 volume trim, mute, bypass (0x17)
D7
D6
C5M
C5VBP
0
0
D5
0
D4
D3
D2
D1
D0
C5VT4
C5VT3
C5VT2
C5VT1
C5VT0
1
0
0
0
0
Channel 6 volume trim, mute, bypass (0x18)
D7
D6
C6M
C6VBP
0
0
D5
0
D4
D3
D2
D1
D0
C6VT4
C6VT3
C6VT2
C6VT1
C6VT0
1
0
0
0
0
Channel 7 volume trim, mute, bypass (0x19)
D7
D6
C7M
C7VBP
0
0
D5
0
D4
D3
D2
D1
D0
C7VT4
C7VT3
C7VT2
C7VT1
C7VT0
1
0
0
0
0
Channel 8 volume trim, mute, bypass (0x1A)
D7
D6
C8M
C8VBP
0
0
D5
0
D4
D3
D2
D1
D0
C8VT4
C8VT3
C8VT2
C8VT1
C8VT0
1
0
0
0
0
DocID024340 Rev 1
45/102
102
Registers
STA311B
The volume structure of the STA311B consists of individual volume registers for each
channel and a master volume register that provides an offset to each channel’s volume
setting. There is also an additional offset for each channel called channel volume trim. The
individual channel volumes are adjustable in 0.5 dB steps from +48 dB to -78 dB. As an
example if C5V = 0xXX or +XXX dB and MV = 0xXX or -XX dB, then the total gain for
channel 5 = XX dB. The channel volume trim is adjustable independently on each channel
from -10 dB to +10 dB in 1 dB steps.
The master mute when set to 1 will mute all channels at once, whereas the individual
channel mutes (CnM) will mute only that channel. Both the master mute and the channel
mutes provide a "soft mute" with the volume ramping down to mute in 8192 samples from
the maximum volume setting at the internal processing rate (~192 kHz). A "hard mute" can
be obtained by commanding a value of 0xFF (255) to any channel volume register or the
master volume register. When volume offsets are provided via the master volume register
any channel whose total volume is less than -91 dB will be muted. All changes in volume
take place at zero-crossings when ZCE = 1 (configuration register H) on a per-channel basis
as this creates the smoothest possible volume transitions. When ZCE = 0, volume updates
occur immediately. Each channel also contains an individual channel volume bypass. If a
particular channel has volume bypassed via the CnVBP = 1 register, then only the channel
volume setting for that particular channel affects the volume setting, the master volume
setting will not affect that channel. Each channel also contains a channel mute. If CnM = 1 a
soft mute is performed on that channel.
46/102
MV[7:0]
Volume offset from channel value
0x00
0 dB
0x01
-0.5 dB
0x02
-1 dB
…
…
0x4C
-38 dB
…
…
0xFE
-127 dB
0xFF
Hardware channel mute
CnV[7:0]
Volume
0x00
+48 dB
0x01
+47.5 dB
0x02
+47 dB
…
…
0x5F
+0.5 dB
0x60
0 dB
0x61
-0.5 dB
…
…
0xFE
-79.5 dB
0xFF
Hardware channel mute
DocID024340 Rev 1
STA311B
8.2.28
Registers
+10 dB
0x07
+9 dB
…
…
0x0F
+1 dB
0x10
0 dB
0x11
-1 dB
…
…
0x19
-9 dB
0x1A to 0x1F
-10 dB
D6
D5
D4
C2IM2
C2IM1
0
0
D3
D2
D1
D0
C2IM0
C1IM2
C1IM1
C1IM0
1
0
0
0
D2
D1
D0
D6
D5
D4
D3
C4IM2
C4IM1
C4IM0
C3IM2
C3IM1
C3IM0
0
1
1
0
1
0
D2
D1
D0
Channel input mapping channels 5 and 6 (0x1D)
D7
8.2.31
0x00 to 0x06
Channel input mapping channels 3 and 4 (0x1C)
D7
8.2.30
Volume
Channel input mapping channels 1 and 2 (0x1B)
D7
8.2.29
CnVT[4:0]
D6
D5
D4
D3
C6IM2
C6IM1
C6IM0
C5IM2
C5IM1
C5IM0
1
0
1
1
0
0
D2
D1
D0
Channel input mapping channels 7 and 8 (0x1E)
D7
D6
D5
D4
D3
C8IM2
C8M1
C8IM0
C7IM2
C7IM1
C7IM0
1
1
1
1
1
0
Each channel received via I²S can be mapped to any internal processing channel via the
channel input mapping registers. This allows for flexibility in processing, simplifies output
stage designs, and enables the ability to perform crossovers. The default settings of these
registers map each I²S input channel to its corresponding processing channel.
DocID024340 Rev 1
47/102
102
Registers
8.2.32
STA311B
CnIM[2:0]
Serial input from
000
Channel 1
001
Channel 2
010
Channel 3
011
Channel 4
100
Channel 5
101
Channel 6
110
Channel 7
111
Channel 8
AUTO1 - AutoModes EQ, volume, GC (0x1F)
D7
D6
D5
D4
D3
D2
D1
D0
AMDM
AMGC2
AMGC1
AMGC0
AMV1
AMV0
AMEQ1
AMEQ0
0
0
0
0
0
0
0
0
Bit
1:0
RW
RW
RST
0
Name
AMEQ[1:0]
Description
Biquad 2-6 mode is:
00: user-programmable
01: preset EQ - PEQ bits
10: graphic EQ - xGEQ bits
11: auto volume-controlled loudness curve
Setting AMEQ to any setting other than 00 enables AutoMode EQ, biquads 1-5 are not userprogrammable. Any coefficient settings for these biquads will be ignored. Also when
AutoMode EQ is used, the pre-scale value for channels 1-6 becomes hard-set to -18 dB.
Bit
3:2
6:4
48/102
RW
RW
RW
RST
0
0
Name
AMV[1:0]
AMGC[2:0]
Description
AutoMode volume mode (MVOL) is:
00: MVOL 0.5 dB 256 steps (standard)
01: MVOL auto curve 30 steps
10: MVOL auto curve 40 steps
11: MVOL auto curve 50 steps
AutoMode gain compression/limiters mode is:
000: user programmable GC
001: AC no clipping
010: AC limited clipping (10%)
011: DRC nighttime listening mode
100: DRC TV commercial/channel AGC
101: AC 5.1 no clipping
110: AC 5.1 limited clipping (10%)
DocID024340 Rev 1
STA311B
Registers
Bit
RW
7
RST
RW
0
Name
Description
AMDM
AutoMode 5.1 downmix:
0: normal operation
1: channels 7-8 are 2-channel downmix of channels
1-6
AutoMode downmix setting uses channels 7-8 of Mix#1 engine and therefore these
channels of this function are fixed and not allowed to be set by the user when in this mode.
Channels 1-6 must be arranged via channel mapping (registers CnIM) if necessary in the
following manner for this operation:
Channel 1: left
Channel 2: right
Channel 3: left surround
Channel 4: right surround
Channel 5: center
Channel 6: LFE
8.2.33
AUTO2 - AutoModes bass management2 (0x20)
D7
D6
D5
D4
D3
D2
D1
D0
SUB
RSS1
RSS0
CSS1
CSS0
FSS
AMBMXE
AMBMME
1
0
0
0
0
0
0
0
Bit
RW
RST
Name
0
RW
0
AMBMME
Bit
RW
RST
Name
1
RW
0
AMBMXE
Description
0: AutoMode bass management mix disabled
1: AutoMode bass management mix enabled
Description
0: AutoMode bass management crossover disabled
1: AutoMode bass management crossover enabled
Setting the AMBMME bit enables the proper mixing to take place for various preset bass
management configurations. Setting the AMBMXE bit enables the proper crossover filtering
in biquad #7 to take place. The crossover for bass management is always 2nd order
(24 dB/oct) and the crossover frequency is determined by register bits PREEQ.XO[2:0].
All configurations of Dolby Bass Management can be performed in the IC. These different
configurations are selected by the end user.
The AutoMode bass management settings utilize channels 1-6 on the mix #1 engine,
channels 1-6 biquad #6, and channels 1-2 on the mix #2 engine in configuration #2. These
functions cannot be user-programmed while the bass management automode is active.
Not all settings are valid as some configurations are unlikely and do not have to be
supported by Dolby specifications.
DocID024340 Rev 1
49/102
102
Registers
STA311B
Automatic crossover settings are provided or custom crossovers can be implemented using
the available programmable biquads.
Input channels must be mapped using the channel-mapping feature in the following manner
for bass management to be performed properly.
1: left front
2: right front
3: left rear
4: right rear
5: center
6: LFE
Bitfield
10
01
00
CSS - center speaker size
Off
Large
Small
RSS - rear speaker size
Off
Large
Small
1
0
Large
Small
On
Off
Bitfield
FSS - front speaker size
SUB - subwoofer
When AMBMXE = 1, biquad #7 on channels 1-6 are utilized for the bass-management
crossover filter, this biquad is not user-programmable in this mode. The XO settings
determine the crossover frequency used, the crossover is 2nd order for both high-pass and
low-pass with a -3 dB cross point. Higher order filters can be obtained by programming
coefficients in other biquads if desired.
It is recommended to use settings of 120-160 Hz when using small, single-driver satellite
speakers as the frequency response of these speakers normally are limited to this region.
8.2.34
50/102
AUTO3 - AutoMode AM/pre-scale/bass management scale (0x21)
D7
D6
D5
D4
AMAM2
AMAM1
AMAM0
0
0
0
Bit
RW
RST
Name
0
RW
0
AMPS
D3
D2
D1
D0
AMAME
MSA
AMPS
0
0
1
Description
AutoMode pre-scale
1: -18 dB used for pre-scale when AMEQ /= 00
0: user-defined pre-scale when AMEQ /= 00
DocID024340 Rev 1
STA311B
8.2.35
Registers
Bit
RW
RST
Name
1
RW
0
MSA
Bit
RW
RST
Name
4
RW
0
AMAME
Description
Bass management mix scale adjustment
0: -12 dB scaling on satellite channels in config #1
1: no scaling on satellite channels in config #1
Description
AutoMode AM enable
0: switching frequency determined by PWMS settings
1: switching frequency determined by AMAM settings
AMAM[2:0]
48 kHz/96 kHz input Fs
44.1 / 88.2 kHz input Fs
000
0.535 MHz - 0.720 MHz
0.535 MHz - 0.670 MHz
001
0.721 MHz - 0.900 MHz
0.671 MHz - 0.800 MHz
010
0.901 MHz - 1.100 MHz
0.801 MHz - 1.000 MHz
011
1.101 MHz - 1.300 MHz
1.001 MHz - 1.180 MHz
100
1.301 MHz - 1.480 MHz
1.181 MHz - 1.340 MHz
101
1.481 MHz - 1.600 MHz
1.341 MHz - 1.500 MHz
110
1.601 MHz - 1.700 MHz
1.501 MHz - 1.700 MHz
PREEQ - Preset EQ settings (0x22)
D7
D6
D5
D4
D3
D2
D1
D0
XO2
XO1
XO0
PEQ4
PEQ3
PEQ2
PEQ1
PEQ0
1
0
1
0
0
0
0
0
XO[2:0]
Bass management crossover frequency
000
70 Hz
001
80 Hz
010
90 Hz
011
100 Hz
100
110 Hz
101
120 Hz
110
140 Hz
111
160 Hz
DocID024340 Rev 1
51/102
102
Registers
52/102
STA311B
PEQ[4:0]
Mode / setting
00000
Flat
00001
Rock
00010
Soft Rock
00011
Jazz
00100
Classical
00101
Dance
00110
Pop
00111
Soft
01000
Hard
01001
Party
01010
Vocal
01011
Hip-Hop
01100
Dialog
01101
Bass-boost #1
01110
Bass-boost #2
01111
Bass-boost #3
10000
Loudness 1
10001
Loudness 2
10010
Loudness 3
10011
Loudness 4
10100
Loudness 5
10101
Loudness 6
10110
Loudness 7
10111
Loudness 8
11000
Loudness 9
11001
Loudness 10
11010
Loudness 11
11011
Loudness 12
11100
Loudness 13
11101
Loudness 14
11110
Loudness 15
11111
Loudness 16
DocID024340 Rev 1
STA311B
8.2.36
Registers
AGEQ - graphic EQ 80-Hz band (0x23)
D7
8.2.37
D3
D2
D1
D0
AGEQ4
AGEQ3
AGEQ2
AGEQ1
AGEQ0
0
1
1
1
1
D6
D5
D4
D3
D2
D1
D0
BGEQ4
BGEQ3
BGEQ2
BGEQ1
BGEQ0
0
1
1
1
1
D6
D5
D4
D3
D2
D1
D0
CGEQ4
CGEQ3
CGEQ2
CGEQ1
CGEQ0
0
1
1
1
1
D4
D3
D2
D1
D0
DGEQ4
DGEQ3
DGEQ2
DGEQ1
DGEQ0
0
1
1
1
1
D4
D3
D2
D1
D0
EGEQ4
EGEQ3
EGEQ2
EGEQ1
EGEQ0
0
1
1
1
1
DGEQ - graphic EQ 3-kHz band (0x26)
D7
8.2.40
D4
CGEQ - graphic EQ 1-kHz band (0x25)
D7
8.2.39
D5
BGEQ - graphic EQ 300-Hz band (0x24)
D7
8.2.38
D6
D6
D5
EGEQ - graphic EQ 8-kHz band (0x27)
D7
D6
D5
xGEQ[4:0]
Boost / cut
11111
+16
11110
+15
11101
+14
…
…
10000
+1
01111
0
01110
-1
…
…
00001
-14
00000
-15
DocID024340 Rev 1
53/102
102
Registers
8.2.41
STA311B
Biquad internal channel loop-through (0x28)
D7
D6
D5
D4
D3
D2
D1
D0
C8BLP
C7BLP
C6BLP
C5BLP
C4BLP
C3BLP
C2BLP
C1BLP
0
0
0
0
0
0
0
0
Each internal processing channel can receive two possible inputs at the input to the biquad
block. The input can come either from the output of that channel’s MIX#1 engine or from the
output of the bass/treble (biquad #10) of the previous channel. In this scenario, channel 1
receives channel 8. This enables the use of more than 10 biquads on any given channel at
the loss of the number of separate internal processing channels.
Bit
RW
7:0
8.2.42
RW
RST
0
Name
CnBLP
Description
For n = 1 to 8:
0: input from channel n MIX#1 engine output - normal
operation
1: input from channel (n - 1) biquad #10 output - loop
operation.
Mix internal channel loop-through (0x29)
D7
D6
D5
D4
D3
D2
D1
D0
C8MXLP
C7MXLP
C6MXLP
C5MXLP
C4MXLP
C3MXLP
C2MXLP
C1MXLP
0
0
0
0
0
0
0
0
Each internal processing channel can receive two possible sets of inputs at the input to the
Mix#1 block. The inputs can come from the outputs of the interpolation block as normally
occurs (CnMXLP = 0) or they can come from the outputs of the Mix#2 block. This enables
the use of additional filtering after the second mix block at the expense of losing this
processing capability on the channel.
Bit
RW
7:0
8.2.43
RW
RST
0
Name
Description
CnMXLP
For n = 1 to 8:
0: inputs to channel n MIX#1 engine from interpolation
outputs - normal operation
1: inputs to channel n MIX#1 engine from MIX#2 engine
outputs - loop operation
EQ bypass (0x2A)
D7
D6
D5
D4
D3
D2
D1
D0
C8EQBP
C7EQBP
C6EQBP
C5EQBP
C4EQCBP
C3EQBP
C2EQBP
C1EQBP
0
0
0
0
0
0
0
0
EQ control can be bypassed on a per-channel basis. If EQ control is bypassed on a given
channel, the prescale and all 10 filters (high-pass, biquads, de-emphasis, bass
management cross-over, bass, treble in any combination) are bypassed for that channel.
54/102
DocID024340 Rev 1
STA311B
8.2.44
Registers
Bit
RW
RST
Name
7:0
RW
0
CnEQBP
Description
For n = 1 to 8:
0: perform EQ on channel n - normal operation
1: bypass EQ on channel n
Tone control bypass (0x2B)
D7
D6
D5
D4
D3
D2
D1
D0
C8TCB
C7TCB
C6TCB
C5TCB
C4TCB
C3TCB
C2TCB
C1TCB
0
0
0
0
0
0
0
0
Tone control (bass/treble) can be bypassed on a per-channel basis. If tone control is
bypassed on a given channel, the two filters that tone control utilizes are made available as
user-programmable biquads #9 and #10.
8.2.45
Tone control (0x2C)
D7
D6
D5
D4
D3
D2
D1
D0
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0
1
1
1
0
1
1
1
This is the tone control boost / cut as a function of the BTC and TTC bits.
BTC[3:0] / TTC[3:0)
Boost / cut
0000
-12 dB
0001
-12 dB
…
…
0111
-4 dB
0110
-2 dB
0111
0 dB
1000
+2 dB
1001
+4 dB
…
…
1101
+12 dB
1110
+12 dB
1111
+12dB
DocID024340 Rev 1
55/102
102
Registers
8.2.46
8.2.47
8.2.48
8.2.49
8.2.50
8.2.51
8.2.52
STA311B
Channel limiter select channels 1, 2, 3, 4 (0x2D)
D7
D6
D5
D4
D3
D2
D1
D0
C4LS1
C4LS0
C3LS1
C3LS0
C2LS1
C2LS0
C1LS1
C1LS0
0
0
0
0
0
0
0
0
Channel limiter select channels 5, 6, 7, 8 (0x2E)
D7
D6
D5
D4
D3
D2
D1
D0
C8LS1
C8LS0
C7LS1
C7LS0
C6LS1
C6LS0
C5LS1
C5LS0
0
0
0
0
0
0
0
0
Limiter 1 attack/release rate (0x2F)
D7
D6
D5
D4
D3
D2
D1
D0
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0
1
1
0
1
0
1
0
Limiter 1 attack/release threshold (0x30)
D7
D6
D5
D4
D3
D2
D1
D0
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0
1
1
0
1
0
0
1
Limiter 2 attack/release rate (0x31)
D7
D6
D5
D4
D3
D2
D1
D0
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0
1
1
0
1
0
1
0
Limiter 2 attack/release threshold (0x32)
D7
D6
D5
D4
D3
D2
D1
D0
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0
1
1
0
1
0
0
1
Bit description
The STA311B includes two independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anti-clipping mode or to actively reduce the dynamic range for a better listening
environment such as a nighttime listening mode which is often needed for DVDs. The two
modes are selected via the DRC bit in configuration register B, bit 7 address 0x02. Each
channel can be mapped to either limiter or not mapped, meaning that channel will clip when
56/102
DocID024340 Rev 1
STA311B
Registers
0 dBFS is exceeded. Each limiter will look at the present value of each channel that is
mapped to it, select the maximum absolute value of all these channels, perform the limiting
algorithm on that value, and then, if needed, adjust the gain of the mapped channels in
unison.
The limiter attack thresholds are determined by the LnAT registers. It is recommended in
anti-clipping mode to set this to 0 dBFS, which corresponds to the maximum unclipped
output power of an FFX amplifier. Since gain can be added digitally within the STA311B it is
possible to exceed 0 dBFS or any other LnAT setting. When this occurs, the limiter, when
active, will automatically start reducing the gain. The rate at which the gain is reduced when
the attack threshold is exceeded is dependent upon the attack rate register setting for that
limiter. The gain reduction occurs on a peak-detect algorithm.
The release of the limiter, when the gain is again increased, is dependent on an RMS-detect
algorithm. The output of the volume/limiter block is passed through an RMS filter. The output
of this filter is compared to the release threshold, determined by the release threshold
register. When the RMS filter output falls below the release threshold, the gain is again
increased at a rate dependent upon the release rate register. The gain can never be
increased past its set value and therefore the release will only occur if the limiter has already
reduced the gain. The release threshold value can be used to set what is effectively a
minimum dynamic range, this is helpful as overlimiting can reduce the dynamic range to
virtually zero and cause program material to sound lifeless.
In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the
attack threshold is set relative to the maximum volume setting of the channels mapped to
that limiter and the release threshold is set relative to the maximum volume setting plus the
attack threshold.
Figure 9. Basic limiter and volume flow diagram
Limiter
RMS
Gain/Volume
Input
Output
Gain
Attenuation
Saturation
CnLS[1,0]
Channel limiter mapping
00
Channel has limiting disabled
01
Channel is mapped to limiter #1
10
Channel is mapped to limiter #2
DocID024340 Rev 1
57/102
102
Registers
58/102
STA311B
LnA[3:0]
Attack rate (dB/ms)
0000
3.1584 (fast)
0001
2.7072
0010
2.2560
0011
1.8048
0100
1.3536
0101
0.9024
0110
0.4512
0111
0.2256
1000
0.1504
1001
0.1123
1010
0.0902
1011
0.0752
1100
0.0645
1101
0.0564
1110
0.0501
1111
0.0451 (slow)
LnR[3:0]
Release rate (dB/ms)
0000
0.5116 (fast)
0001
0.1370
0010
0.0744
0011
0.0499
0100
0.0360
0101
0.0299
0110
0.0264
0111
0.0208
1000
0.0198
1001
0.0172
1010
0.0147
1011
0.0137
1100
0.0134
1101
0.0117
1110
0.0110
1111
0.0104 (slow)
DocID024340 Rev 1
STA311B
Registers
LnAT[3:0]
Anti-clipping (AC)
(dB relative to FS)
0000
-12
0001
-10
0010
-8
0011
-6
0100
-4
0101
-2
0110
0
0111
+2
1000
+3
1001
+4
1010
+5
1011
+6
1100
+7
1101
+8
1110
+9
1111
+10
LnRT[3:0]
Anti-clipping (AC)
(dB relative to FS)
0000
-
0001
-29 dB
0010
-20 dB
0011
-16 dB
0100
-14 dB
0101
-12 dB
0110
-10 dB
0111
-8 dB
1000
-7 dB
1001
-6 dB
1010
-5 dB
1011
-4 dB
1100
-3 dB
1101
-2 dB
1110
-1 dB
1111
-0 dB
DocID024340 Rev 1
59/102
102
Registers
60/102
STA311B
LnAT[3:0]
Dynamic range compression (DRC)
(dB relative to volume)
0000
-31
0001
-29
0010
-27
0011
-25
0100
-23
0101
-21
0110
-19
0111
-17
1000
-16
1001
-15
1010
-14
1011
-13
1100
-12
1101
-10
1110
-7
1111
-4
LnRT[3:0]
Dynamic range compression (DRC)
(db relative to volume + LnAT)
0000
-
0001
-38 dB
0010
-36 dB
0011
-33 dB
0100
-31 dB
0101
-30 dB
0110
-28 dB
0111
-26 dB
1000
-24 dB
1001
-22 dB
1010
-20 dB
1011
-18 dB
1100
-15 dB
1101
-12 dB
1110
-9 dB
1111
-6 dB
DocID024340 Rev 1
STA311B
8.2.53
Registers
Channel 1 and 2 output timing (0x33)
D7
8.2.54
D4
C2OT2
C2OT1
1
0
D3
D2
D1
D0
C2OT0
C1OT2
C1OT1
C1OT0
0
0
0
0
D2
D1
D0
D6
D5
D4
D3
C4OT2
C4OT1
C4OT0
C3OT2
C3OT1
C3OT0
1
1
0
0
1
0
D2
D1
D0
Channel 5 and 6 output timing (0x35)
D7
8.2.56
D5
Channel 3 and 4 output timing (0x34)
D7
8.2.55
D6
D6
D5
D4
D3
C6OT2
C6OT1
C6OT0
C5OT2
C5OT1
C5OT0
1
0
1
0
0
1
D2
D1
D0
Channel 7 and 8 output timing (0x36)
D7
D6
D5
D4
D3
C8OT2
C8OT1
C8OT0
C7OT2
C7OT1
C7OT0
1
1
1
0
1
1
The centering of the individual channel PWM output periods can be adjusted by the output
timing registers. The PWM slot settings can be chosen to ensure that pulse transitions do
not occur at the same time on different channels using the same power device. There are 8
possible settings, the appropriate setting varies based on the application and connections to
the FFX power devices.
CnOT[2:0]
PWM slot
000
1
001
2
010
3
011
4
100
5
101
6
110
7
111
8
DocID024340 Rev 1
61/102
102
Registers
8.2.57
STA311B
Channel I²S output mapping channels 1 and 2 (0x37)
D7
8.2.58
D4
C2OM2
C2OM1
0
0
D3
D2
D1
D0
C2OM0
C1OM2
C1OM1
C1OM0
1
0
0
0
D2
D1
D0
D6
D5
D4
D3
C4OM2
C4OM1
C4OM0
C3OM2
C3OM1
C3OM0
0
1
1
0
1
0
D2
D1
D0
Channel I²S output mapping channels 5 and 6 (0x39)
D7
8.2.60
D5
Channel I²S output mapping channels 3 and 4 (0x38)
D7
8.2.59
D6
D6
D5
D4
D3
C6OM2
C6OM1
C6OM0
C5OM2
C5OM1
C5OM0
1
0
1
1
0
0
D2
D1
D0
Channel I²S output mapping channels 7 and 8 (0x3A)
D7
D6
D5
D4
D3
C8OM2
C8M1
C8OM0
C7OM2
C7OM1
C7OM0
1
1
1
1
1
0
Each I²S output channel can receive data from any channel output of the volume block.
Which channel a particular I²S output receives is dependent upon that channel’s CnOM
register bits.
62/102
CnOM[2:0]
Serial output from
000
Channel 1
001
Channel 2
010
Channel 3
011
Channel 4
100
Channel 5
101
Channel 6
110
Channel 7
111
Channel 8
DocID024340 Rev 1
STA311B
8.2.61
Registers
Coefficient address register 1 (0x3B)
D7
8.2.62
8.2.63
8.2.64
8.2.65
8.2.66
8.2.67
D6
D5
D4
D3
D2
D1
D0
CFA9
CFA8
0
0
Coefficient address register 2 (0x3C)
D7
D6
D5
D4
D3
D2
D1
D0
CFA7
CFA6
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0
0
0
0
0
0
0
0
Coefficient b1 data register, bits 23:16 (0x3D)
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
Coefficient b1 data register, bits 15:8 (0x3E)
D7
D6
D5
D4
D3
D2
D1
D0
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0
0
0
0
0
0
0
0
Coefficient b1 data register, bits 7:0 (0x3F)
D7
D6
D5
D4
D3
D2
D1
D0
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0
0
0
0
0
0
0
0
Coefficient b2 data register, bits 23:16 (0x40)
D7
D6
D5
D4
D3
D2
D1
D0
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0
0
0
0
0
0
0
0
Coefficient b2 data register, bits 15:8 (0x41)
D7
D6
D5
D4
D3
D2
D1
D0
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0
0
0
0
0
0
0
0
DocID024340 Rev 1
63/102
102
Registers
8.2.68
8.2.69
8.2.70
8.2.71
8.2.72
8.2.73
8.2.74
64/102
STA311B
Coefficient b2 data register, bits 7:0 (0x42)
D7
D6
D5
D4
D3
D2
D1
D0
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0
0
0
0
0
0
0
0
Coefficient a1 data register, bits 23:16 (0x43)
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
Coefficient a1 data register, bits 15:8 (0x44)
D7
D6
D5
D4
D3
D2
D1
D0
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0
0
0
0
0
0
0
0
Coefficient a1 data register, bits 7:0 (0x45)
D7
D6
D5
D4
D3
D2
D1
D0
C3B7
0
C3B6
0
C3B5
0
C3B4
0
C3B3
0
C3B2
0
C3B1
0
C3B0
0
Coefficient a2 data register, bits 23:16 (0x46)
D7
D6
D5
D4
D3
D2
D1
D0
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0
0
0
0
0
0
0
0
Coefficient a2 data register, bits 15:8 (0x47)
D7
D6
D5
D4
D3
D2
D1
D0
C4B15
0
C4B14
0
C4B13
0
C4B12
0
C4B11
0
C4B10
0
C4B9
0
C4B8
0
Coefficient a2 data register, bits 7:0 (0x48)
D7
D6
D5
D4
D3
D2
D1
D0
C4B7
0
C4B6
0
C4B5
0
C4B4
0
C4B3
0
C4B2
0
C4B1
0
C4B0
0
DocID024340 Rev 1
STA311B
8.2.75
8.2.76
8.2.77
8.2.78
Registers
Coefficient b0 data register, bits 23:16 (0x49)
D7
D6
D5
D4
D3
D2
D1
D0
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0
0
0
0
0
0
0
0
Coefficient b0 data register, bits 15:8 (0x4A)
D7
D6
D5
D4
D3
D2
D1
D0
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0
0
0
0
0
0
0
0
Coefficient b0 data register, bits 7:0 (0x4B)
D7
D6
D5
D4
D3
D2
D1
D0
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0
0
0
0
0
0
0
0
D3
D2
D1
D0
WA
W1
0
0
Coefficient write control register (0x4C)
D7
D6
D5
D4
Coefficients for EQ and Bass Management are handled internally in the STA311B via RAM.
Access to this RAM is available to the user via an I²C register interface.
A collection of I²C registers are dedicated to this function. One contains a coefficient base
address, five sets of three store the values of the 24-bit coefficients to be written or that were
read, and one contains bits used to control the write of the coefficient(s) to RAM. The
following are instructions for reading and writing coefficients.
DocID024340 Rev 1
65/102
102
Registers
8.3
8.4
STA311B
Reading a coefficient from RAM
1.
Write the top 2 bits of address to I²C register 0x3B
2.
Write the bottom 8 bits of address to I²C register 0x3C
3.
Read the top 8 bits of coefficient in I²C address 0x3D
4.
Read the middle 8 bits of coefficient in I²C address 0x3E
5.
Read the bottom 8 bits of coefficient in I²C address 0x3F
Reading a set of coefficients from RAM
1.
Write the top 2 bits of address to I²C register 0x3B
2.
Write the bottom 8 bits of address to I²C register 0x3C
3.
Read the top 8 bits of coefficient in I²C address 0x3D
4.
Read the middle 8 bits of coefficient in I²C address 0x3E
5.
Read the bottom 8 bits of coefficient in I²C address 0x3F
6.
Read the top 8 bits of coefficient b2 in I²C address 0x40
7.
Read the middle 8 bits of coefficient b2 in I²C address 0x41
8.
Read the bottom 8 bits of coefficient b2 in I²C address 0x42
9.
Read the top 8 bits of coefficient a1 in I²C address 0x43
10. Read the middle 8 bits of coefficient a1 in I²C address 0x44
11. Read the bottom 8 bits of coefficient a1 in I²C address 0x45
12. Read the top 8 bits of coefficient a2 in I²C address 0x46
13. Read the middle 8 bits of coefficient a2 in I²C address 0x47
14. Read the bottom 8 bits of coefficient a2 in I²CI²C address 0x48
15. Read the top 8 bits of coefficient b0 in I²C address 0x49
16. Read the middle 8 bits of coefficient b0 in I²C address 0x4A
17. Read the bottom 8 bits of coefficient b0 in I²C address 0x4B
8.5
66/102
Writing a single coefficient to RAM
1.
Write the top 2 bits of address to I²C register 0x3B
2.
Write the bottom 8 bits of address to I²C register 0x3C
3.
Write the top 8 bits of coefficient in I²C address 0x3D
4.
Write the middle 8 bits of coefficient in I²C address 0x3E
5.
Write the bottom 8 bits of coefficient in I²C address 0x3F
6.
Write 1 to the W1 bit in I²C address 0x4C
DocID024340 Rev 1
STA311B
8.6
Registers
Writing a set of coefficients to RAM
1.
Write the top 2 bits of starting address to I²C register 0x3B
2.
Write the bottom 8 bits of starting address to I²C register 0x3C
3.
Write the top 8 bits of coefficient b1 in I²C address 0x3D
4.
Write the middle 8 bits of coefficient b1 in I²C address 0x3E
5.
Write the bottom 8 bits of coefficient b1 in I²C address 0x3F
6.
Write the top 8 bits of coefficient b2 in I²C address 0x40
7.
Write the middle 8-bits of coefficient b2 in I²C address 0x41
8.
Write the bottom 8 bits of coefficient b2 in I²C address 0x42
9.
Write the top 8 bits of coefficient a1 in I²C address 0x43
10. Write the middle 8 bits of coefficient a1 in I²C address 0x44
11. Write the bottom 8 bits of coefficient a1 in I²C address 0x45
12. Write the top 8 bits of coefficient a2 in I²C address 0x46
13. Write the middle 8 bits of coefficient a2 in I²C address 0x47
14. Write the bottom 8 bits of coefficient a2 in I²C address 0x48
15. Write the top 8-bits of coefficient b0 in I²C address 0x49
16. Write the middle 8 bits of coefficient b0 in I²C address 0x4A
17. Write the bottom 8 bits of coefficient b0 in I²C address 0x4B
18. Write 1 to the WA bit in I²C address 0x4C
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side-effects.
When using this technique, the 10-bit address would specify the address of the biquad b1
coefficient (for example, decimals 0, 5, 10, 15, …, 100, … 395), and the STA311B will
generate the RAM addresses as offsets from this base value to write the complete set of
coefficient data.
DocID024340 Rev 1
67/102
102
Configuration registers (0x77; 0x78; 0x79)
9
STA311B
Configuration registers (0x77; 0x78; 0x79)
CBQ1 (reg 0x77)
D7
D6
D5
D4
D3
D2
D1
D0
EBQ3_1
EBQ3_0
EBQ2_1
EBQ2_0
EBQ1_1
EBQ1_0
EBQ0_0
EBQ0_0
0
0
0
0
0
0
0
0
CBQ2 (reg 0x78)
D7
D6
D5
D4
D3
D2
D1
D0
EBQ7_1
EBQ7_0
EBQ6_1
EBQ6_0
EBQ5_1
EBQ5_0
EBQ4_1
EBQ4_0
0
0
0
0
0
0
0
0
D5
D4
D3
D2
D1
D0
nshen
EBQ9_1
EBQ9_0
EBQ8_1
EBQ8_0
1
0
0
0
0
CBQ3 (reg 0x79)
D7
D6
0
0
0
The STA311B EQ biquads use the following equation:
Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
= b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999995231628). The default coefficient range (+/-1) can be reconfigured to 2 or 4
with the 0x77, 0x78 and 0x79 I²C registers. The coefficients range setting is common for all
the channels.

(EBQx_1;EBQx_0)=”00”: Biquad x use +/-1 range

(EBQx_1;EBQx_0)=”01”: Biquad x use +/-2 range

(EBQx_1;EBQx_0)=”10”: Biquad x use +/-4 range

(EBQx_1;EBQx_0)=”11”: reserved
Coefficients stored in the user-defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1 / 2
CxHy1 = b2
CxHy2 = -a1 / 2
CxHy3 = -a2
CxHy4 = b0 / 2
where x represents the channel and the y the biquad number. For example, C0H41 is the b2
coefficient in the fourth biquad for channel 2.
By default, all user-defined filters are pass-through where all coefficients are set to 0, except
the b0/2 coefficient which is set to 0x400000 (representing 0.5). Mix coefficients use only 1
range.
68/102
DocID024340 Rev 1
STA311B
Configuration registers (0x77; 0x78; 0x79)
A special feature inside the digital processing block is available (active when the ashen bit is
set to ‘1’). In case of poles positioned at very low frequencies, biquads filters can generate
some audible quantization noise or unwanted DC level. In order to avoid this kind of effect a
quantization noise-shaping capability can be used. The filter structure including this special
feature, relative to each biquad is shown in Figure 10.
The new feature can be enabled independently for each biquad using the I²C registers. The
D7 bit, when set, is responsible for activating this function on the crossover filter while the
other bits address any specific biquads according to the previous table. Channels 1 and 2
share the same settings. Bit D7 is effective also for channel 3 if the related OCFG is used.
Figure 10. Biquad filter structure with quantization error noise shaping
In(t)
b0
z-1
-
+
Q
z-1
Out(t)
z-1
b1
a1
z-1
z-1
b2
a2
Figure 11. Channel mixer
CxMIX1
Channel 1
CxMIX2
Channel 2
CxMIX3
Channel 3
CxMIX4
Channel x
Channel 4
CxMIX5
Channel 5
CxMIX6
Channel 6
CxMIX7
Channel 7
CxMIX8
Channel 8
DocID024340 Rev 1
69/102
102
Configuration registers (0x77; 0x78; 0x79)
9.1
STA311B
Post-scale
The STA311B provides one additional multiplication after the last interpolation stage and
before the distortion compensation on each channel. This is a 24-bit signed fractional
multiply.
The scale factor for this multiply is loaded into RAM using the same I²C registers as the
biquad coefficients and the bass-management.
This post-scale factor can be used in conjunction with an ADC-equipped microcontroller to
perform power-supply error correction. All channels can use the channel 1 by setting the
post-scale link bit.
Table 14. RAM block for biquads, mixing, and bass management
70/102
Index
Index
(decimal)
(hex)
0
0x00
1
Coefficient
Default
C1H10 (b1/2)
0x000000
0x01
C1H11 (b2)
0x000000
2
0x02
C1H12 (a1/2)
0x000000
3
0x03
C1H13 (a2)
0x000000
4
0x04
C1H14 (b0/2)
0x400000
5
0x05
Channel 1 - Biquad 2
C1H20
0x000000
…
…
…
…
…
49
0x31
Channel 1 - Biquad 10
C1HA4
0x400000
50
0x32
Channel 2 - Biquad 1
C2H10
0x000000
51
0x33
C2H11
0x000000
…
…
…
…
…
99
0x63
Channel 2 - Biquad 10
C2HA4
0x4000000
100
0x64
Channel 3 - Biquad 1
C3H10
0x000000
…
…
…
…
…
399
0x18F
Channel 8 - Biquad 10
C8HA4
0x400000
400
0x190
Channel 1 - Pre-scale
C1PreS
0x7FFFFF
401
0x191
Channel 2 - Pre-scale
C2PreS
0x7FFFFF
402
0x192
Channel 3 - Pre-scale
C3PreS
0x7FFFFF
…
…
…
…
…
407
0x197
Channel 8 - Pre-scale
C8PreS
0x7FFFFF
408
0x198
Channel 1 - Post-scale
C1PstS
0x7FFFFF
409
0x199
Channel 2 - Post-scale
C2PstS
0x7FFFFF
…
…
…
…
…
415
0x19F
Channel 8 - Post-scale
C8PstS
0x7FFFFF
416
0x1A0
Channel 1 - Mix# 1 1
C1MX11
0x7FFFFF
417
0x1A1
Channel 1 - Mix#1 2
C1MX12
0x000000
Channel 1 - Biquad 1
DocID024340 Rev 1
STA311B
Configuration registers (0x77; 0x78; 0x79)
Table 14. RAM block for biquads, mixing, and bass management (continued)
Index
Index
(decimal)
(hex)
…
…
423
Coefficient
Default
…
…
…
0x1A7
Channel 1 - Mix#1 8
C1MX18
0x000000
424
0x1A8
Channel 2 - Mix#1 1
C2MX11
0x000000
425
0x1A9
Channel 2 - Mix#1 2
C2MX12
0x7FFFFF
…
…
…
…
…
479
0x1DF
Channel 8 - Mix#1 8
C8MX18
0x7FFFFF
480
0x1E0
Channel 1 - Mix#2 1
C1MX21
0x7FFFFF
481
0x1E1
Channel 1 - Mix#2 2
C1MX22
0x000000
…
…
…
…
…
487
0x1E7
Channel 1 - Mix#2 8
C1MX28
0x000000
488
0x1E8
Channel 2 - Mix#2 1
C2MX21
0x000000
489
0x1E9
Channel 2 - Mix#2 2
C2MX22
0x7FFFFF
…
…
…
…
…
543
0x21F
Channel 8 - Mix#2 8
C8MX28
0x7FFFFF
DocID024340 Rev 1
71/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
9.2
Variable max power correction
9.2.1
MPCC1-2 (0x4D, 0x4E)
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is
used in place of the default coefficient when MPCV = 1.
D7
D6
D5
D4
D3
D2
D1
D0
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0
0
1
0
1
1
0
1
D7
D6
D5
D4
D3
D2
D1
D0
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
1
1
0
0
0
0
0
0
9.3
Variable distortion compensation
9.3.1
DCC1-2 (0x4F, 0x50)
The DCC bits determine the 16 MSBs of the distortion compensation coefficient. This
coefficient is used in place of the default coefficient when DCCV = 1.
72/102
D7
D6
D5
D4
D3
D2
D1
D0
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
1
1
1
1
0
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
0
0
1
1
0
0
1
1
DocID024340 Rev 1
STA311B
9.4
Configuration registers (0x77; 0x78; 0x79)
PSCorrect registers
An ADC is used to input ripple data to SDI78. The left channel (7) is used internally. No
audio data can therefore be used on these channels, although all channel mapping and
mixing from other inputs to channels 7 and 8 internally are still valid.
9.4.1
PSC1-2: ripple correction value (RCV) (0x51, 0x52)
This value is equivalent to the negative maximum ripple peak as a percentage of Vcc
(MPR), scaled by the inverse of the maximum ripple p-p as a percentage of the full-scale
analog input to the ADC. It is represented as a 1.11 signed fractional number.
9.4.2
D7
D6
D5
D4
D3
D2
D1
D0
RCV11
RCV10
RCV9
RCV8
RCV7
RCV6
RCV5
RCV4
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
RCV3
RCV2
RCV1
RCV0
CNV11
CNV10
CNV9
CNV8
0
0
0
0
1
1
1
1
PSC3: correction normalization value (CNV) (0x53)
This value is equivalent to 1 / (1+MPR) expressed as a 0.12 unsigned fractional number.
D7
D6
D5
D4
D3
D2
D1
D0
CNV7
CNV6
CNV5
CNV4
CNV3
CNV2
CNV1
CNV0
1
1
1
1
1
1
1
1
9.5
Extended DRC configuration registers
9.5.1
Extended limiter/dynamic range control LUT (NLENAR)(0x5A)
An extended limiter/DRC LUT has been implemented to provide incremental steps of
0.25/0.50 dB. To enable this feature the NLENAR bit has to be set, refer to the following
tables.
D7
D6
D5
D4
D3
D2
D1
D0
NLENAR
0
Bit
0
RW
RW
RST
0
Name
NLENAR
Description
Enables a new limiter/DRC LUT
0: Extended LUT disabled
1: Extended LUT enabled
DocID024340 Rev 1
73/102
102
Configuration registers (0x77; 0x78; 0x79)
9.5.2
STA311B
Extended limiter/dynamic range LUT registers (nLxAT/RT) (0x6B, 0x6C,
0x6D, 0x6E)
nL1at (0x6B)
D7
D6
D5
D4
D3
D2
D1
D0
L1AT6
L1AT5
L1AT4
L1AT3
L1AT2
L1AT1
L1AT0
0
1
1
0
0
0
0
D6
D5
D4
D3
D2
D1
D0
L2AT6
L2AT5
L2AT4
L2AT3
L2AT2
L2AT1
L2AT0
0
1
1
0
0
0
0
D6
D5
D4
D3
D2
D1
D0
L1RT5
L1RT4
L1RT3
L1RT2
L1RT1
L1RT0
0
1
0
1
1
1
1
D6
D5
D4
D3
D2
D1
D0
L2RT5
L2RT4
L2RT3
L2RT2
L2RT1
L2RT0
1
0
1
1
1
1
0
nL2at (0x6C)
D7
0
nL1rt (0x6D)
D7
0
nL2rt (0x6E)
D7
0
0
Table 15. Extended release thresholds (AC mode)
74/102
LnRT[5:0]
Anti-clipping(AC)
(dB relative to full scale)
000000
-
000001
-29.00
000010
-28.50
000011
-28.00
000100
-27.50
000101
-27.00
000110
-26.50
000111
-26.00
001000
-25.50
001001
-25.00
001010
-24.50
DocID024340 Rev 1
STA311B
Configuration registers (0x77; 0x78; 0x79)
Table 15. Extended release thresholds (AC mode) (continued)
LnRT[5:0]
Anti-clipping(AC)
(dB relative to full scale)
001011
-24.00
001100
-23.50
001101
-23.00
001110
-22.50
001111
-22.00
010000
-21.50
010001
-21.00
010010
-20.50
010011
-20.00
010100
-19.50
010101
-19.00
010110
-18.50
010111
-18.00
011000
-17.50
011001
-17.00
011010
-16.50
011011
-16.00
011100
-15.50
011101
-15.00
011110
-14.50
011111
-14.00
100000
-13.50
100001
-13.00
100010
-12.50
100011
-12.00
100100
-11.50
100101
-11.00
100110
-10.50
100111
-10.00
101000
-9.50
101001
-9.00
101010
-8.50
101011
-8.00
101100
-7.50
DocID024340 Rev 1
75/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 15. Extended release thresholds (AC mode) (continued)
LnRT[5:0]
Anti-clipping(AC)
(dB relative to full scale)
101101
-7.00
101110
-6.50
101111
-6.00
110000
-5.50
110001
-5.00
110010
-4.50
110011
-4.00
110100
-3.50
110101
-3.00
110110
-2.50
110111
-2.00
111000
-1.50
111001
-1.00
111010
-0.50
OTHERS
0.00
Table 16. Extended attack thresholds (AC mode)
76/102
LnAT[6:0]
Anti-clipping (AC)
(dB relative to volume)
0000000
-12.00
0000001
-11.75
0000010
-11.50
0000011
-11.25
0000100
-11.00
0000101
-10.75
0000110
-10.50
0000111
-10.25
0001000
-10.00
0001001
-9.75
0001010
-9.50
0001011
-9.25
0001100
-9.00
0001101
-8.75
0001110
-8.50
DocID024340 Rev 1
STA311B
Configuration registers (0x77; 0x78; 0x79)
Table 16. Extended attack thresholds (AC mode) (continued)
LnAT[6:0]
Anti-clipping (AC)
(dB relative to volume)
0001111
-8.25
0010000
-8.00
0010001
-7.75
0010010
-7.50
0010011
-7.25
0010100
-7.00
0010101
-6.75
0010110
-6.50
0010111
-6.25
0011000
-6.00
0011001
-5.75
0011010
-5.50
0011011
-5.25
0011100
-5.00
0011101
-4.75
0011110
-4.50
0011111
-4.25
0100000
-4.00
0100001
-3.75
0100010
-3.50
0100011
-3.25
0100100
-3.00
0100101
-2.75
0100110
-2.50
0100111
-2,25
0101000
-2.00
0101001
-1.75
0101010
-1.50
0101011
-1.25
0101100
-1.00
0101101
-0.75
0101110
-0.50
0101111
-0.25
0110000
0.00
DocID024340 Rev 1
77/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 16. Extended attack thresholds (AC mode) (continued)
78/102
LnAT[6:0]
Anti-clipping (AC)
(dB relative to volume)
0110001
+0.25
0110010
+0.50
0110011
+0.75
0110100
+1.00
0110101
+1.25
0110110
+1.50
0110111
+1.75
0111000
+2.00
0111001
+2.25
0111010
+2.50
0111011
+2.75
0111100
+3.00
0111101
+3.25
0111110
+3.50
0111111
+3.75
1000000
+4.00
1000001
+4.25
1000010
+4.50
1000011
+4.75
1000100
+5.00
1000101
+5.25
1000110
+5.50
1000111
+5.75
1001000
+6.00
1001001
+6.25
1001010
+6.50
1001011
+6.75
1001100
+7.00
1001101
+7.25
1001110
+7.50
1001111
+7.75
1010000
+8.00
1010001
+8.25
1010010
+8.50
DocID024340 Rev 1
STA311B
Configuration registers (0x77; 0x78; 0x79)
Table 16. Extended attack thresholds (AC mode) (continued)
LnAT[6:0]
Anti-clipping (AC)
(dB relative to volume)
1010011
+8.75
1010100
+9.00
1010101
+9.25
1010110
+9.50
1010111
+9.75
OTHERS
+10.00
Table 17. Extended attack thresholds (DRC mode)
LnAT[6:0]
Dynamic range compression (DRC)
(dB relative to volume)
0000000
-31.00
0000001
-30.50
0000010
-30.00
0000011
-29.50
0000100
-29.00
0000101
-28.50
0000110
-28.00
0000111
-27.50
0001000
-27.00
0001001
-26.50
0001010
-26.00
0001011
-25.50
0001100
-25.00
0001101
-24.50
0001110
-24.00
0001111
-23.50
0010000
-23.00
0010001
-22.50
0010010
-22.00
0010011
-21.50
0010100
-21.00
0010101
-20.50
0010110
-20.00
0010111
-19.50
DocID024340 Rev 1
79/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 17. Extended attack thresholds (DRC mode) (continued)
80/102
LnAT[6:0]
Dynamic range compression (DRC)
(dB relative to volume)
0011000
-19.00
0011001
-18.50
0011010
-18.00
0011011
-17.50
0011100
-17.00
0011101
-16.50
0011110
-16.00
0011111
-15.50
0100000
-15.00
0100001
-14.50
0100010
-14.00
0100011
-13.50
0100100
-13.00
0100101
-12.50
0100110
-12.00
0100111
-11.50
0101000
-11.00
0101001
-10.50
0101010
-10.00
0101011
-9.50
0101100
-9.00
0101101
-8.50
0101110
-8.00
0101111
-7.50
0110000
-7.00
0110001
-6.50
0110010
-6.00
0110011
-5.50
0110100
-5.00
0110101
-4.50
OTHERS
-4.00
DocID024340 Rev 1
STA311B
Configuration registers (0x77; 0x78; 0x79)
Table 18. Extended release thresholds (DRC mode)
LnRT[5:0]
Dynamic range compression (DRC)
(dB relative to volume)
000000
-inf
000001
-38.00
000010
-37.50
000011
-37.00
000100
-36.50
000101
-36.00
000110
-35.50
000111
-35.00
001000
-34.50
001001
-34.00
001010
-33.50
001011
-33.00
001100
-32.50
001101
-32.00
001110
-31.50
001111
-31.00
010000
-30.50
010001
-30.00
010010
-29.50
010011
-29.00
010100
-28.50
010101
-28.00
010110
-27.50
010111
-27.00
011000
-26.50
011001
-26.00
011010
-25.50
011011
-25.00
011100
-24.50
011101
-24.00
011110
-23.50
011111
-23.00
100000
-22.50
100001
-22.00
DocID024340 Rev 1
81/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 18. Extended release thresholds (DRC mode) (continued)
82/102
LnRT[5:0]
Dynamic range compression (DRC)
(dB relative to volume)
100010
-21.50
100011
-21.00
100100
-20.50
100101
-20.00
100110
-19.50
100111
-19.00
101000
-18.50
101001
-18.00
101010
-17.50
101011
-17.00
101100
-16.50
101101
-16.00
101110
-15.50
101111
-15.00
110000
-14.50
110001
-14.00
110010
-13.50
110011
-13.00
110100
-12.50
110101
-12.00
110110
-11.50
110111
-11.00
111000
-10.50
111001
-10.00
111010
-9.50
111011
-9.00
111100
-8.50
111101
-8.00
111110
-7.50
111111
-7.00
OTHERS
-6.00
DocID024340 Rev 1
STA311B
9.5.3
Configuration registers (0x77; 0x78; 0x79)
Recombination control register 1 (0x5D)
D7
D6
D5
Boost6db
0
0
D4
D3
D2
D1
D0
I²S_byp
I²S_en
mike_en
mike_byp
m_mode
0
0
0
0
0
0
Bit
RW
RST
Name
Description
7
RW
0
Boost6dB(1)
6
RW
0
5
RW
0
4
RW
0
I²S_byp
'1': I²S recombination is bypassed
'0': I²S recombination is used
3
RW
0
I²S_en
'1': I²S recombination IP is active
‘0': I²S recombination IP is not active (acts like a
HW bypass)
0
RW
0
m_mode
'1': Auto-configuration of the CKOUT generator to
Fout = sys_clk/32
'0': CKOUT is configured only through COS bits
'1': Output (after recombination) multiplied x2
'0': Output (after recombination) as it is
1. Mike recomb only
DocID024340 Rev 1
83/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 19. Gain adjustment (sensitivity)
84/102
Index
dB
Index
dB
Index
dB
0x00
-4
0x16
-1.25
0x2C
1.5
0x01
-3.875
0x17
-1.125
0x2D
1.625
0x02
-3.75
0x18
-1
0x2E
1.75
0x03
-3.625
0x19
-0.875
0x2F
1.875
0x04
-3.5
0x1A
-0.75
0x30
2
0x05
-3.375
0x1B
-0.625
0x31
2.125
0x06
-3.25
0x1C
-0.5
0x32
2.25
0x07
-3.125
0x1D
-0.375
0x33
2.375
0x08
-3
0x1E
-0.25
0x34
2.5
0x09
-2.875
0x1F
-0.125
0x35
2.625
0x0A
-2.75
0x20
0
0x36
2.75
0x0B
-2.625
0x21
0.125
0x37
2.875
0x0C
-2.5
0x22
0.25
0x38
3
0x0D
-2.375
0x23
0.375
0x39
3.125
0x0E
-2.25
0x24
0.5
0x3A
3.25
0x0F
-2.125
0x25
0.625
0x3B
3.375
0x10
-2
0x26
0.75
0x3C
3.5
0x11
-1.875
0x27
0.875
0x3D
3.625
0x12
-1.75
0x28
1
0x3E
3.75
0x13
-1.625
0x29
1.125
0x3F
3.875
0x14
-1.5
0x2A
1.25
0x15
-1.375
0x2B
1.375
DocID024340 Rev 1
STA311B
9.5.4
Configuration registers (0x77; 0x78; 0x79)
Recombination control register 5, 6 and 7 (0x62; 0x63; 0x64)
D7
D6
D5
D4
D3
LP1en
D2
D1
D0
CH1NCA[5:0]
0
1
1
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
LP2en
CH2NCA[5:0]
0
1
1
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
LP3en
0
CH3NCA[5:0]
1
Bit
RW
7
RW
6
RW
5
RW
4
RW
3
RW
2
RW
1
RW
0
RW
1
RST
0
0
Name
LPxen
CHxNCA[5:0]
0
Description
'1': Low-pass filter of mike x is enabled
'0': Low-pass filter of mike x is not enabled
see Table 20
DocID024340 Rev 1
85/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 20. Normal channel attenuation
86/102
Index
dB
Index
dB
Index
dB
0x00
0
0x16
18.75
0x2C
21.5
0x01
10.5
0x17
18.875
0x2D
21.625
0x02
11
0x18
19
0x2E
21.75
0x03
11.5
0x19
19.125
0x2F
21.875
0x04
12
0x1A
19.25
0x30
22
0x05
12.5
0x1B
19.375
0x31
22.5
0x06
13
0x1C
19.5
0x32
23
0x07
13.5
0x1D
19.625
0x33
23.5
0x08
14
0x1E
19.75
0x34
24
0x09
14.5
0x1F
19.875
0x35
24.5
0x0A
15
0x20
20
0x36
25
0x0B
15.5
0x21
20.125
0x37
25.5
0x0C
16
0x22
20.25
0x38
26
0x0D
16.5
0x23
20.375
0x39
26.5
0x0E
17
0x24
20.5
0x3A
27
0x0F
17.5
0x25
20.625
0x3B
27.5
0x10
18
0x26
20.75
0x3C
28
0x11
18.125
0x27
20.875
0x3D
28.5
0x12
18.25
0x28
21
0x3E
29
0x13
18.375
0x29
21.125
0x3F
29.5
0x14
18.5
0x2A
21.25
0x15
18.625
0x2B
21.375
DocID024340 Rev 1
STA311B
9.5.5
Configuration registers (0x77; 0x78; 0x79)
Recombination control register 8, 9 and 10 (0x65; 0x66; 0x67)
D7
D6
D5
D4
D3
D2
D1
D0
CH1TH_N[5:0]
0
0
1
1
0
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
CH2TH_N[5:0]
0
0
1
1
0
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
1
1
CH3TH_N[5:0]
0
0
Bit
RW
7
RW
6
RW
5
RW
4
RW
3
RW
2
RW
1
RW
0
RW
1
RST
1
0
Name
0
Description
Reserved
CHxTH_N[5:0]
see Table 21
DocID024340 Rev 1
87/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 21. Threshold configuration
9.5.6
Index
dB
Index
dB
Index
dB
Index
dB
Index
dB
Index
dB
0x00
0
0x0B
-11
0x16
-22
0x21
-33
0x2C
-44
0x37
-55
0x01
-1
0x0C
-12
0x17
-23
0x22
-34
0x2D
-45
0x38
-56
0x02
-2
0x0D
-13
0x18
-24
0x23
-35
0x2E
-46
0x39
-57
0x03
-3
0x0E
-14
0x19
-25
0x24
-36
0x2F
-47
0x3A
-58
0x04
-4
0x0F
-15
0x1A
-26
0x25
-37
0x30
-48
0x3B
-59
0x05
-5
0x10
-16
0x1B
-27
0x26
-38
0x31
-49
0x3C
-60
0x06
-6
0x11
-17
0x1C
-28
0x27
-39
0x32
-50
0x3D
-61
0x07
-7
0x12
-18
0x1D
-29
0x28
-40
0x33
-51
0x3E
-62
0x08
-8
0x13
-19
0x1E
-30
0x29
-41
0x34
-52
0x3F
-63
0x09
-9
0x14
-20
0x1F
-31
0x2A
-42
0x35
-53
0x0A
-10
0x15
-21
0x20
-32
0x2B
-43
0x36
-54
Recombination control register 11, 12 and 13 (0x68; 0x69; 0x6A)
D7
D6
D5
D4
D3
D2
D1
D0
CH1TH_H[5:0]
0
0
0
1
1
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
CH2TH_H[5:0]
0
0
0
1
1
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
1
1
CH3TH_H[5:0]
0
88/102
0
0
1
DocID024340 Rev 1
1
0
STA311B
Configuration registers (0x77; 0x78; 0x79)
Bit
RW
RST
7
RW
0
6
RW
0
5
RW
0
4
RW
1
3
RW
1
2
RW
0
1
RW
1
0
RW
1
Name
Description
Reserved
CHxHCT[5:0]
9.5.7
see Table 21
Zero-mute threshold/hysteresis and RMS zero-mute selectors (0x6F)
Zero-mute (0x6F)
D7
D6
D5
D4
D3
D2
D1
D0
RMSZS2
RMSZS1
RMSZS0
ZMTHS2
ZMTHS1
ZMTHS0
ZMHYS1
ZMHYS0
0
0
0
0
0
0
0
0
Bit
RW
RST
Name
7
RW
0
RMSZS2
6
RW
0
RMSZS1
5
RW
0
RMSZS0
4
RW
0
ZMTHS2
3
RW
0
ZMTHS1
2
RW
0
ZMTHS1
1
RW
0
ZMHYS1
0
RW
0
ZMHYS0
Description
Select channel for reading the zero-mute RMS
level on registers rmsZMH (0x7A) & rmsZML
(0x7B).
Select the zero-mute threshold level. If signal is
below this level, output will be in switch off mode.
Select the hysteresis window width.
The STA311B implements an RMS-based zero-detect function (on serial input interface
data) able to detect in a very reliable way the presence of an input signal, so that the power
bridge outputs can be automatically connected to ground. When active, the function will
mute the output PWM when the input level become less than threshold - hysteresis.
Once muted, the PWM will be unmuted when the input level is detected greater than
threshold + hysteresis.
The measured level is then reported (each input channel is selected by RMSZS[2:0] value)
on registers 0x7A, 0x7B.
DocID024340 Rev 1
89/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Table 22. RMS channel select
RMSZS[2:0]
Channel
000
1
001
2
010
3
011
4
100
5
101
6
110
7
111
8
Table 23. Zero-detect threshold
ZMTHS[2:0]
Equivalent input level (dB)
000
-78
001
-84
010
-90
011
-96
100
-102
101
-108
110
-114
111
-114
Table 24. Zero-detect hysteresis
90/102
ZMHYS[1:0]
Equivalent input level hysteresis(dB)
00
3
01
4
10
5
11
6
DocID024340 Rev 1
STA311B
9.5.8
Configuration registers (0x77; 0x78; 0x79)
RMS post-processing selectors and Fs autodetection (0x70)
D7
D6
D5
D4
RMSOS2
RMSOS1
RMSOS0
0
0
0
D3
D2
D1
D0
FXLRC0
0
0
0
0
0
RMS out selector
Bit
RW
RST
Name
Description
7
RW
0
RMSOS2
6
RW
0
RMSOS1
5
RW
0
RMSOS0
RMS post-processing selectors. For each
channel the current RMS value after the
processing step is available on registers rmsPOH
(0x7C) and rmsPOL (0x7D).
Table 25.
RMS post-processing channel select
RMSOS[2:0]
Channel
000
1
001
2
010
3
011
4
100
5
101
6
110
7
111
8
Fs autodetection
Bit
RW
RST
Name
Description
0
RW
0
FXLRC0
If set to 1, the IR and BST32K parameters are
auto-selected by the Fs autodetection internal
block; otherwise, the I²C register values are used.
DocID024340 Rev 1
91/102
102
Configuration registers (0x77; 0x78; 0x79)
9.5.9
STA311B
Clock manager configuration
PLL configuration registers (0x71, 0x72, 0x73, 0x74)
PLL multiplication factor (fractional part, H) (0x71)
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
D2
D1
D0
0
0
0
PLLFI[15:8]
0
0
0
0
0
PLL multiplication factor (fractional part, L) (0x72)
D7
D6
D5
D4
D3
PLLFI[7:0]
0
0
0
0
0
PLL multiplication factor (integral part) named as N Division Factor (NDIV)
and dithering (0x73)
D7
D6
D5
D4
D3
PLLDD[1:0]
0
92/102
D2
D1
D0
0
0
PLLND[5:0]
0
0
0
Bit
RW
RST
Name
7
RW
0
PLLDD1
6
RW
0
PLLDD0
5
RW
0
PLLND5
4
RW
0
PLLND4
3
RW
0
PLLND3
2
RW
1
PLLND2
1
RW
0
PLLND1
0
RW
1
PLLND0
0
0
Description
PLL dithering:
00 : PLL clock dithering disabled
01 : PLL clock dithering enabled (triangular)
10 : PLLclock dithering enabled (rectangular)
11 : reserved
N (loop) Division Factor
This factor should be:
DocID024340 Rev 1
5  N DIV  55
STA311B
Configuration registers (0x77; 0x78; 0x79)
PLL input division factor and others (0x74)
D7
D6
D5
D4
D3
D2
D1
D0
PDPDC
PLLFC
PLSTRB
PLSTBB
PLIDF3
PLIDF2
PLIDF1
PLIDF0
0
0
0
0
0
0
0
0
By default the STA311B is able to configure the embedded PLL automatically depending on
the MCS bits (reg 0x00). For certain applications and to provide flexibility to the user, a
manual PLL configuration can be used (setting PLLFC to 1). The output PLL frequency
formula is:
Fin
FI 
Fout = ----------   ND + -------IDF 
2 16
when PLLFC = 1
Fin
Fout = ----------   ND 
IDF
when PLLFC = 0
Clock manager configuration register (0x75)
D7
D6
D5
D4
D3
D2
D1
D0
PLLBYP
PLLDPR
LOWEN
BST32K
0
0
0
0
Bit
RW
RST
Name
3
RW
0
PLLBYP
PLL bypass enable
‘0’: disabled
‘1’: bypassed
PLLDPR
PLL direct programming
‘0’: PLL configuration depends on MCS
‘1’: PLL configuration depends on I²C regs (0x72, 0x73
and 0x74)
LOWEN
Low clock enable
‘0’: if input clock is too slow, master clock will become
the internal oscillator clock (20 MHz), PLL bypassed
‘1’: disabled
BST32K
Boost oversampling for fs = 32 kHz
‘0’: disabled
‘1’: input oversampling is selected x 3
2
1
0
RW
RW
RW
0
0
0
Description
DocID024340 Rev 1
93/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
Clock manager status register (0x76)
D7
D5
D4
D3
D2
D1
D0
PLLBYS
PLLPDS
OSCOK
LOWCKS
0
0
0
0
Bit
RW
RST
Name
3
R
0
PLLBYS
PLL bypass status
‘0’: normal
‘1’: bypassed
2
R
0
PLLPDS
PLL power-down status
‘0’: normal
‘1’: standby
1
R
0
OSCOK
Oscillator clock OK
‘0’: not ready
‘1’: ready
0
9.5.10
D6
R
0
LOWCKS
Description
Low clock status
‘0’: normal
‘1’: input clock too slow
RMS level registers (0x7A, 0x7B, 0x7C, 0x7D)
Two set of registers are available to monitor the RMS level detected by the zero-mute block
and after the signal processing.
The measured level for a selected channel is given in 0x7A & 0x7B (zero-mute level) and
0x7C & 0x7D (PWM out level) according to the following expression:
Value(dB) = 20Log(rms[15:0]/(216 x 0.635))
where rms[15:0] is an unsigned integer formed by:
rms[15:0] = rmsZMH[7:0], rmsZML[7:0] for zero-mute level
or
rms[15:0] = rmsPOH[7:0], rmsPOL[7:0] for PWM output level
94/102
DocID024340 Rev 1
STA311B
Configuration registers (0x77; 0x78; 0x79)
rmsZMx
D7
D6
D5
D4
D3
D2
D1
D0
RZM15
RZM14
RZM13
RZM12
RZM11
RZM10
RZM9
RZM8
0
0
0
0
0
0
0
0
RZM7
RZM6
RZM5
RZM4
RZM3
RZM2
RZM1
RZM0
0
0
0
0
0
0
0
0
rmsZMH
Bit
RW
RST
Name
Description
7
R
RZM15
6
R
RZM14
5
R
RZM13
4
R
RZM12
3
R
RZM11
2
R
RZM10
1
R
RZM9
0
R
RZM8
RMS zero-detect level register, H
rmsZML
Bit
RW
RST
Name
7
R
RZM7
6
R
RZM6
5
R
RZM5
4
R
RZM4
3
R
RZM3
2
R
RZM2
1
R
RZM1
0
R
RZM0
Description
RMS zero detect level register, L
rmsPOx
D7
D6
D5
D4
D3
D2
D1
D0
RPO15
RPO14
RPO13
RPO12
RPO11
RPO10
RPO9
RPO8
0
0
0
0
0
0
0
0
RPO7
RPO6
RPO5
RPO4
RPO3
RPO2
RPO1
RPO0
0
0
0
0
0
0
0
0
DocID024340 Rev 1
95/102
102
Configuration registers (0x77; 0x78; 0x79)
STA311B
rmsPOH
Bit
RW
RST
Name
7
R
RPO15
6
R
RPO14
5
R
RPO13
4
R
RPO12
3
R
RPO11
2
R
RPO10
1
R
RPO9
0
R
RPO8
Description
RMS PWM out (post-processing) register, H
rmsPOL
Bit
RW
RST
Name
7
R
RPO7
6
R
RPO6
5
R
RPO5
4
R
RPO4
3
R
RPO3
2
R
RPO2
1
R
RPO1
0
R
RPO0
Description
RMS PWM out (post-processing) register, L
96/102
DocID024340 Rev 1
STA311B
Startup/shutdown pop noise removal
10
Startup/shutdown pop noise removal
10.1
DPT: PWM and tristate delay (0x80)
D7
10.2
D6
D5
D4
D3
D2
D1
D0
DPT4
DPT3
DPT2
DPT1
DPT0
1
1
0
0
0
Bit
RW
RST
Name
0
RW
0
DPT0
1
RW
0
DPT1
2
RW
0
DPT2
3
RW
1
DPT3
4
RW
1
DPT4
Description
Set a delay between the PWM and the tristate
signal to compensate the external amplifier delay.
Configuration register (0x81)
D7
D6
D5
D4
D3
D2
D1
D0
RL3
RL2
RL1
RL0
RD
SID1
FBYP
RTP
0
0
0
0
0
1
0
1
RST
Name
Bit
RW
Description
Remove tristate initial pulses
1: remove the tristate initial pulses with frequency less
than 16 kHz
0: the tristate initial pulses are not removed
0
RW
1
RTP
Bit
RW
RST
Name
1
RW
0
FBYP
Bit
RW
RST
Name
Description
SID1
Serial interface (I²S out)
1: SDO_56 is connected to the fault signal and SDO_78
outputs the tristate signal
0: I²S out normal
2
RW
1
Description
Fault user-defined bypass mode
1: the fault internal management is disabled
0: the fault internal management is enabled
DocID024340 Rev 1
97/102
102
Startup/shutdown pop noise removal
Bit
RW
3
10.3
98/102
RST
RW
0
STA311B
Name
Description
RD
Startup/shutdown pop noise disable
1: the startup/shutdown tristate sequence used to remove
the pop noise is disabled
0: the startup/shutdown tristate signal sequence used to
remove the pop noise is enabled. This feature is not
activated by default, and can be activated only if at least
one channel is in binary mode and the PWMs out speed
is equal to 384KHz.
Bit
RW
RST
Name
4
RW
0
RL0
5
RW
0
RL1
6
RW
0
RL2
7
RW
0
RL3
Description
Set a tristate duration (same value for
startup/shutdown pop noise removal)
RL[3:0]
Tristate duration
0000
default duration equal to 116 ms
0001
default value x2
0010
default value x3
0011
default value x4
0100
default value x5
0101
default value x6
0110
default value x7
User-defined delay time (0x82) and (0x83)
D7
D6
D5
D4
D3
D2
D1
D0
UDDT15
UDDT14
UDDT13
UDDT12
UDDT11
UDDT10
UDDT9
UDDT8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
UDDT7
UDDT6
UDDT5
UDDT4
UDDT3
UDDT2
UDDT1
UDDT0
1
1
1
1
1
1
1
1
DocID024340 Rev 1
STA311B
11
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Table 26. VFQFPN-56 (8 x 8 mm) package dimensions
mm
Reference
Min.
Typ.
Max.
A
0.80
0.90
1.00
A1
0
0.05
D
8.00
D2
See exposed pad variations
E
8.00
E2
See exposed pad variations
b
0.25
0.30
0.35
b1
0.20
0.25
0.30
e (pad pitch)(1)
L1
0.05
0.15
aaa
0.15
bbb
0.10
ddd
0.05
eee
0.08
fff
0.10
ccc
0.10
1. Refer to Figure 12.
Table 27. Exposed pad variations
D2
E2
Variation
Min.
Typ.
Max
Min.
Typ.
Max.
A
5.85
5.90
5.95
5.85
5.90
5.95
B
4.25
4.30
4.35
4.25
4.30
4.35
DocID024340 Rev 1
99/102
102
Package information
STA311B
Figure 12. VFQFPN-56 (8 x 8 mm) package outline
The axis of each pad must lie simultaneously in both tolerance zones.
(4) - The terminal A1 corner must be identified on the top surface through inked or lasered mark dot.
A distinguishing feature is allowable on the bottom surface of the package, chamfer at die paddle corner to
identify the terminal A1. Exact shape of each corner is optional.
(5) – All dimensions are in mm.
826820
100/102
DocID024340 Rev 1
STA311B
12
Revision history
Revision history
Table 28. Document revision history
Date
Revision
21-Oct-2013
1
Changes
Initial release.
DocID024340 Rev 1
101/102
102
STA311B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
102/102
DocID024340 Rev 1