M61528FP SCF TYPE FIXED EQUALIZER FOR CAR AUDIO REJ03F0040-0101Z Rev.1.1 Dec.17.2003 Features • Fixed equalizer(3 bands equalizer with SCF) 4 independent fixed equalizer controls. Reduce the external C,R parts by using SCF (Switched Capacitor Filter) technology. • FADER 4 independent fader controls. 0dB to –50dB/2dBstep, -∞dB Built-in Soft-changing circuit for switching-noise. Application • Car Audio Recommended Operating Condition • Supply voltage range 7.0V to 9.0V • Rated supply voltage 8.0V System Configurations Fixed Equalizer FL-ch FADER FL IN FR-ch FRIN FADER RLIN FADER RL-ch RR-ch RRIN FADER Rev.1.1, Dec.17.2003, page 1 of 30 OSC OSCR SACTIVE DATA Microcomputer interface CLOC K GND VREF VCC Power supply M61528FP Function • Fixed equalizer Frequency range Center frequency f0[Hz] Control range Quality factor Q Low 120, 150, 200, 300 0dB to –8dB / 0.5dB step FRONT : 1.5 to 3.0 / 0.5 step REAR : 2.0 to 4.0 / 0.5 step Mid 800, 1.2K, 1.5K, 2K, 3K +4dB to –8dB / 0.5dB step 0.8 to 2.0 / 0.2 step High 8K, 10K, 18K +8dB to –8dB / 0.5dB step 0.4 to 1.0 / 0.2 step • FADER 0dB to –50dB / 2dB , -∞dB ( 4 independent fader controls ) The Soft-changing can work in gain step by 2dB. Refer to 15 page for Soft-changing. Pin configuration(top view) VREFIN 1 24 VCC FLOUT GND 2 23 FLIN 3 22 FROUT FRIN 4 21 RLOUT RLIN 5 20 RROUT RRIN 6 19 GND DGND 7 18 DGND TEST 8 17 DATA NC 9 16 CLOCK NC 10 15 SACTIVE NC 11 14 OSCIN OSCR 12 13 OSCOUT Outline 24pin SSOP Rev.1.1, Dec.17.2003, page 2 of 30 Note. 4 independent each equalizer controls. M61528FP Pin Description Pin No. Name Function 3 FLIN Input pin of FRONT L channel 4 5 FRIN RLIN Input pin of FRONT R channel Input pin of REAR L channel 6 23 RRIN FLOUT Input pin of REAR R channel Output pin of FRONT L channel 22 21 FROUT RLOUT Output pin of FRONT R channel Output pin of REAR L channel 20 2,19 RROUT GND Output pin of REAR R channel Analog ground pin 7,18 24 DGND VCC Digital ground pin Power supply pin 1 8 VREFIN TEST Signal ground of IC TEST pin 15 14 SACTIVE OSCIN Output pin of soft-changing ACTIVE signal Buffer input pin for the ceramics oscillation 13 12 OSCOUT OSCR Buffer output pin for the ceramics oscillation Input pin for the inside oscillation 17 16 DATA CLOCK Input pin of Serial DATA Input pin of CLOCK 9 to 11 N.C Non – connection pin Absolute Maximum Ratings Symbol Parameter VCC Power supply Pd K Power dissipation Thermal derating Topr Tstg Operating temperature Storage temperature Condition Ta ≤ 25 °C Ta > 25 °C (Circuit board installation) Ratings Unit 10.5 V 1.0 10 W mW/°C -30 to +85 -55 to +125 °C °C Recommended Operating Conditions Ratings Symbol Parameter VCC Power supply 7.0 8.0 9.0 VIH VIL Logic “H” level input voltage(16,17pin) Logic “L” level input voltage(16,17pin) 2.7 GND — — 5.0 0.7 Rev.1.1, Dec.17.2003, page 3 of 30 MIN TYP MAX Unit V M61528FP Thermal derating 1.2 POWER DISSIPATION pd (W) 1.0 0.8 0.6 0.4 0.2 0 -40 0 40 85 80 120 150 AMBIENT TEMPERATURE Ta (˚C) Rev.1.1, Dec.17.2003, page 4 of 30 M61528FP Electrical Characteristics Unless otherwise noted, VCC=8V, Ta=25 °C,Vi=1Vrms, f=1KHz, Fixed EQ(Low/Mid/High)=0dB, FADER=0dB, RL=10K Ω, Limits Symbol Parameter Condition min typ max Unit Characteristics Icc Circuit current No signal — 40 55 mA Gv Sc Pass gain Channel separation 20Hz to 20KHz Input side: Vi=1Vrms , f=1KHz, Measurement side: Input pin to GND with the capacitance DIN-AUDIO -2.0 70 0 85 -2.0 — dB dB Vo max Maximum output voltage 1.8 2.2 — Vrms THD Total harmonic distortion 400Hz to 30KHz BPF THD=1% 400Hz to 30KHz BPF — 0.01 0.03 % Vno Output noise voltage Input pin to GND with the capacitance, DIN-AUDIO Input pin to GND with the capacitance, DIN-AUDIO,FADER=-∞dB — 10 18 µVrms — 3.5 10 3 , 4 , 5 , 6 pin 10 20 30 KΩ Gv=-8dB,f0=300Hz,Q=2.0 Vi=1Vrms,f=300Hz Gv=-8dB,f0=120Hz,Q=2.0 -9.5 -8.0 -6.5 dB 102 120 138 Hz Gv=-8dB,f0=150Hz,Q=2.0 Gv=-8dB,f0=200Hz,Q=2.0 127.5 170 150 200 172.5 230 Gv=-8dB,f0=300Hz,Q=2.0 1.5 Gv=-8dB,f0=300Hz,Q=1.5 (FRONT only) 255 1.275 300 1.5 345 1.725 Gv=-8dB,f0=300Hz,Q=2.0 Gv=-8dB,f0=300Hz,Q=2.5 1.7 2.125 2.0 2.5 2.3 2.875 Gv=-8dB,f0=300Hz,Q=3.0 Gv=-8dB,f0=300Hz,Q=3.5 (REAR only) 2.55 2.975 3.0 3.5 3.45 4.025 Gv=-8dB,f0=300Hz,Q=4.0 (REAR only) 3.4 4.0 4.6 Zin Input resistance Fixed EQ(Low) Gv(Cut) Control range(Cut) f0 Center frequency Q Quality factor Rev.1.1, Dec.17.2003, page 5 of 30 M61528FP Unless otherwise noted , VCC=8V,Ta=25 °C,Vi=1Vrms, f=1KHz, Fixed EQ(Low/Mid/High)=0dB, FADER=0dB, RL=10K Ω, At the time of use of a ceramics oscillator. Symbol Parameter Condition min Limits typ max Unit Fixed EQ(Mid) Gv(Boost) Control range(Boost) Vi=0.1Vrms,f=3KHz Gv=+4dB,f0=3KHz,Q=1.0 +2.8 +4.0 +5.2 dB Gv(Cut) Control range(Cut) -9.5 -8.0 -6.5 dB f0 Center frequency Gv=-8dB,f0=3KHz,Q=1.0 Vi=1Vrms,f=3KHz Gv=-8dB,f0=800Hz,Q=1.0 0.68 0.8 0.92 KHz Gv=-8dB,f0=1.2KHz,Q=1.0 Gv=-8dB,f0=1.5KHz,Q=1.0 1.02 1.275 1.2 1.5 1.38 1.725 Gv=-8dB,f0=2.0KHz,Q=1.0 Gv=-8dB,f0=3.0KHz,Q=1.0 1.7 2.55 2.0 3.0 2.3 3.45 Gv=-8dB,f0=3.0KHz,Q=0.8 Gv=-8dB,f0=3.0KHz,Q=1.0 0.68 0.85 0.8 1.0 0.92 1.15 Gv=-8dB,f0=3.0KHz,Q=1.2 Gv=-8dB,f0=3.0KHz,Q=1.4 1.02 1.19 1.2 1.4 1.38 1.61 Gv=-8dB,f0=3.0KHz,Q=1.6 Gv=-8dB,f0=3.0KHz,Q=1.8 1.36 1.53 1.6 1.8 1.84 2.07 Gv=-8dB,f0=3.0KHz,Q=2.0 1.7 2.0 2.3 Q Quality factor Fixed EQ(High) Gv(Boost) Control range(Boost) Gv=+8dB,f0=8KHz,Q=1.0 Vi=0.1Vrms,f=8KHz +6.5 +8.0 +9.5 dB Gv(Cut) Control range(Cut) -9.5 -8.0 -6.5 dB f0 Center frequency Gv=-8dB,f0=8KHz,Q=1.0 Vi=1Vrms,f=8KHz Gv=-8dB,f0=8KHz,Q=1.0 6.8 8 9.2 KHz Gv=-8dB,f0=10KHz,Q=1.0 Gv=-8dB,f0=18KHz,Q=1.0 8.5 15.3 10 18 11.5 20.7 Gv=-8dB,f0=8KHz,Q=0.4 Gv=-8dB,f0=8KHz,Q=0.6 0.34 0.51 0.4 0.6 0.46 0.69 Gv=-8dB,f0=8KHz,Q=0.8 Gv=-8dB,f0=8KHz,Q=1.0 0.68 0.85 0.8 1.0 0.92 1.15 Q Quality factor FADER ATT max Maximum attenuation FADER=-∞dB , DIN-AUDIO 80 90 — dB ∆ATT Attenuation error ATT=0dB -2.0 0 +2.0 dB Rev.1.1, Dec.17.2003, page 6 of 30 M61528FP Fixed Equalizer Frequency Characteristic (1) Frequency characteristics of Low (This characteristics is a simulation result.) • Gain control : 0dB to –8dB / 0.5dB (f0=120Hz, Q=2.0 setting) (FRONT and REAR are the same characteristics.) • Center frequency : 120Hz / 150Hz / 200Hz / 300Hz (Gv=-8dB, Q=2.0 setting) (FRONT and REAR are the same characteristics.) • Quality factor FRONT characteristics : 1.5 / 2.0 / 2.5 / 3.0 (Gv=-8dB, f0=120Hz setting) Rev.1.1, Dec.17.2003, page 7 of 30 M61528FP REAR characteristics : 2.0 / 2.5 / 3.0 / 3.5 / 4.0 (Gv=-8dB, f0=120Hz setting) (2) Frequency characteristics of Mid (This characteristics is a simulation result.) • Gain control : +4dB to –8dB / 0.5dB (f0=1.2KHz, Q=1.0 setting) • Center frequency : 800Hz / 1.2KHz / 1.5KHz / 2.0KHz / 3.0KHz (Gv=-8dB, Q=1.0 setting) Rev.1.1, Dec.17.2003, page 8 of 30 M61528FP • Quality factor : 0.8 / 1.0 / 1.2 / 1.4 / 1.6 / 1.8 / 2.0 (Gv=-8dB, f0=1.2KHz setting) (3) Frequency characteristics of High (This characteristics is a simulation result.) • Gain control : +8dB to –8dB / 0.5dB (f0=10KHz, Q=1.0 setting) • Center frequency : 8KHz / 10KHz / 18KHz (Gv=+8dB, Q=1.0 setting) Rev.1.1, Dec.17.2003, page 9 of 30 M61528FP • Quality factor : 0.4 / 0.6 / 0.8 / 1.0 (Gv=+8dB, f0=10KHz setting) Power on Reset This IC builds in the power on reset function. The voltage of VCC (24 pin) less than 5.0V, the serial DATA can not accept. VCC (24pin) (V) 5.0V (S) Reset time After reset is canceled, the serial DATA can accept. Release of reset. Relationship Between Data and Clock The LATCH condition “H” “L” “H” D0 D1 D2 D3 D13 D14 D15 “L” The DATA signals are read at rising edges of the CLOCK. The LATCH signal “H” How to transmit DATA. This IC reads DATA signal at the rising edge of the CLOCK. When DATA are transmitted, setting up the DATA line is always “L” when the falling edge of the CLOCK. Rev.1.1, Dec.17.2003, page 10 of 30 M61528FP Clock and Data Timings t cr 75% CLOCK 25% tr t WHC tf t WLC DATA t SD t HD Timing Definition of Digital Block Limits Symbol Parameter MIN TYP MAX Unit t cr CLOCK cycle time 4.0 — — µS t WHC t WLC CLOCK pulse width (“H” level) CLOCK pulse width (“L” level) 1.6 1.6 — — — — tr tf Rising time of CLOCK Falling time of CLOCK — — — — 0.4 0.4 t SD t HD DATA setup time DATA hold time 0.8 0.8 — — — — Rev.1.1, Dec.17.2003, page 11 of 30 M61528FP Data Control Specification Data select(D11 to D14) DATA transmitting D0 D1 D2 D3 D4 D5 FRONT Lch Mi d (f0) D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 FRONT Lch Low (Gv) FRONT Lch FRONT Lch Low Low (Q) (f0) FRONT Lch Mi d (Q) FRONT Lch High (Gv) FRONT Rch FRONT Rch Low Low (f0) (Q) FRONT Rch Mi d (f0) FRONT Rch Low (Gv) FRONT Rch FRONT Rch High High (f0) (Q) REAR Lch High (f0) REAR Rch High (f0) REAR Lch Low (Gv) REAR Lch Mi d (Q) 0 0 SLOT1 0 0 0 1 SLOT2 0 0 0 1 0 SLOT3 0 0 0 1 1 SLOT4 0 1 0 0 SLOT5 0 0 1 0 1 SLOT6 0 0 1 1 0 SLOT7 0 1 1 1 SLOT8 0 1 0 0 0 SLOT9 0 1 0 0 1 SLOT10 1 0 1 0 SLOT11 0 1 0 1 1 SLOT12 REAR Lch Mi d (Gv) REAR Lch High (Q) REAR Lch High (Gv) REAR Rch Low (Q) REAR Rch Mi d (f0) 0 FRONT Rch High (Gv) REAR Lch Low (Q) REAR Rch Low (f0) 0 FRONT Rch Mi d (Gv) FRONT Rch Mi d (Q) REAR Lch Mi d (f0) 0 0 FRONT Lch Mi d (Gv) FRONT Lch FRONT Lch High High (f0) (Q) REAR Lch Low (f0) 0 REAR Rch Low (Gv) REAR Rch Mi d (Q) REAR Rch Mi d (Gv) REAR Rch High (Q) REAR Rch High (Gv) 0 1 1 0 0 SLOT13 REAR Lch REAR Rch 0 1 1 0 1 SLOT14 0 1 1 1 0 SLOT15 Soft-changing time Soft-changing ON/OFF FRONT Rch CLOCK select FRONT Lch Communication erro r countermeasure fu nctio n 0 0 0 Soft-changing form Rev.1.1, Dec.17.2003, page 12 of 30 FRONT Lch FRONT Rch REAR Lch REAR Rch Chip address · D15=“1” →Serial DATA is received. · D15=“0” →Serial DATA is not received. M61528FP Data Transmission of Fixed Equalizer Setting • Faulty operation in the communication error occurrence. Fixed equalizer setting premise no-change setting after setting is done once. By this premise, A noise countermeasure circuit of the setting change isn’t built in. Therefore, It has the possibility that noise is made by communication error. These countermeasures are taken by this IC as it is shown in next page. Fixed equalizer setting change in the communication error occurrence.(example) [ Transmitting data of normal.] SLOT 1, f0 setting: 300Hz , Q setting:3.0, Gv setting: -8.0dB LATCH condition CLOCK DATA D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 Communication error occurrence. [ Transmitting data of communication error. ] SLOT 1, f0 setting: 300Hz, Q setting: 3.0, Gv setting:0dB LATCH condition CLOCK DATA D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D4 is lack. * In the case of the upper figure, Fixed equalizer gain setting of FRONT Lch low range Gv= -8.0dB ⇒ Gv= 0dB occur faulty operation, and it has the possibility that noiseis made. Rev.1.1, Dec.17.2003, page 13 of 30 M61528FP • A communication error countermeasure function from the microcomputer. This IC has the function which changes a set up of an inside when the same data were continued twice and it was received to reduce the occurrence probability of the above communication error. This function is possible to effective or ineffective change by serial data. [An inside setting changing in the communication errormeasurement function [effective] .] LATCH condition CLOCK D15 D0 to D14 D15 SLOT 1 DATA LATCH condition LATCH condition D0 to D14 D15 SLOT 1 First time Transmitting data Second time Transmitting data Stereo signal • The second data reception. • The f irst datareception. • A setup of an inside doesn't change. • A setup of an inside ischanged when the second data were compared with the first time and it was judged the same data. [An inside setting changing in the communication errormeasurement function] ineffective] . ] LATCH condition CLOCK D0 to D14 DATA D15 SLOT 1 Stereo signal A setup of an inside is changing by the data transmission of one time. • The precaution of the communication error countermeasure function. (1) Communication error measurement function are function when are slot1 to slot12(Fixed equalizer setting) transmitting. (2) A communication error countermeasure function is [effective] at the time of the power supply injection. when you don‘t use a communication error countermeasure function,setting it up [ineffective] with serial data after the power supply injection. (Switching of effective or ineffective is possible with D5 of the slot 15.) (3) At the time of communication error measurement function [effective] ,Slot1 to slot12 transmit data of same slot twice by the continuance. (4) Transmit LATCH condition in every transmitting data of one time. Rev.1.1, Dec.17.2003, page 14 of 30 M61528FP Soft-Changing This IC built in the Soft-changing circuit for reduce the step-noise of Fader when internal switch changing. By this function, Switching noise of no-signal and some signals can be reduced. • SOFT-CHANGING 1 This is the circuit which changes gain smoothly at the setup time. This function can work as follows, (1) At the time of Soft-changing ON. (2) Slot15/D6=0 (3) After the last Soft-changing is completed. For example, the movement when Fader is changed from 0dB to –6dB is shown in the right figure(ex.1). After this IC receive the data of fader:-6dB , this circuit changes fader setting from 0dB to –6dB at a time. Switching time is the time when it was set up with Soft-changing time. (ex. 1) Fader : 0dB→-6dB changing. Soft-changing time : 33ms The latch condition CLOCK D0 to D14 DATA D15 Slot13 Fader 0dB Fader -6dB Output While Soft-changing works, PIN15 output “H” t=33mS 15 pin t:Soft-changing time (You may change it with serial DATA.) * 1) While Soft-changing works (PIN15 output “H”), next data isn't accepted. * 2) PIN15 outputs “L”exc ept for the time of Sof t-changing. Soft-Changing Time Time D0 D1 D2 83mS(41.5mS) 1 1 1/0 66mS(33mS) 41mS(20.5mS) 1 0 0 1 1/0 1/0 33mS(16.5mS) 0 0 1/0 The change of the Soft-changing time is possible by the setting of D2. •D2=“1” : The left time of the left table. (Soft-changing time : 83mS,66mS,41mS,33mS) •D2=“0” : The right time of the left table (Soft-changing time : 41.5mS,33mS,20.5mS,16.5mS) Rev.1.1, Dec.17.2003, page 15 of 30 M61528FP • SOFT-CHANGING 2 This is the circuit which changes gain by 2dB step. This function can work as follows, (1) At the time of Soft-changing ON. (2) Slot15/D6=1 (3) After the last Soft-changing is completed. For example, the movement when Fader is changed from 0dB to –6dBis shown in the right figure(ex.2). After this IC receive the data of fader:-6dB, “0dB ” ⇒ “-2dB ” ⇒ “-4dB ” ⇒ “-6dB ” this circuit changes fader setting from 0dB to –6dB by 2dB step. Switching time is the time when it was set up with Soft-changing time. Total changing time is as the follows. ●Total changing time=Soft-changing time × the number of the step In the case of the right figure, total changing time is 99mS. (33mS × 3 steps) When Soft-changing time is long, step noise is more reduced. Because the step noise is has relations with Softchanging time. We recommend SOFT-CHANGING 2. However, please confirm step noise by listening test, and judge it. (ex. 2) Fader : 0dB→-6dB changing. Soft-changing time : 33ms The latch condition CLOCK D0 to D14 DATA D15 Slot13 Fader 0dB Fader -6dB Output While Soft-changing works, PIN15 output “H” t=33mS 15 pin t:Soft-changing time (You may change it with serial DATA.) * 1) While Soft-changing works (PIN15 output “H”), next data isn't accepted. * 2) PIN15 outputs “L”exc ept for the time of Sof t-changing. Rev.1.1, Dec.17.2003, page 16 of 30 M61528FP Data Transmission and the Relation of the Soft-Changing Time This IC has the function which should make the following Serial DATA ineffective to the soft-changing movement completion after LATCH condition detection. (At the time of a slot 13 and the slot 14 transmission of the DATA input format.) (Note.1) Serial DATA transmitting in terval.:I T LATCH condition CLOCK D0 to D14 D15 SLOT13 DATA LATCH condition D0 to D14 D15 SLOT14 Stereo system signal soft-changing time:T By the DATA on the slot 13, a soft-changing movement start. The setting switching completion of the slot 13. (soft-changing movement completion.) * The order of the slot 14 becomes ineffective in the case as the upper figure. • In to make the Serial DATA transmitting interval IT from MCU(microcomputer)to M61528FP Serial DATA transmitting interval : IT > soft-changing time : T the reading error of the DATA doesn't occur. • DATA transmitting example The DATA transmitting interval when it was set up with the Soft-changing time = 33mS(Internal oscillator using). LATCH condition D0 toD14 DATA LATCH condition LATCH condition CLOCK D15 SLOT15 soft-changing time is setup. D0 toD14 SLOT13 D15 D0 toD14 LATCH condition D15 SLOT14 D15 SLOT1 IT ≥ 39.6mS (Note. 2 ) D0 toD14 (Note . 2) IT ≥ 39.6mS (Note. 2) Note1. Serial DATA transmitti ng interval = The interval of LATCH condition and L ATCH condition. Note2. About ± 20% of the maximums are in the dispersion of the soft-changing time (Internal oscillator using). Rev.1.1, Dec.17.2003, page 17 of 30 M61528FP SLOT1(FRONT Lch low range) FRONT Low (f0) FRONT Low (Gv) f0 D0 D1 300Hz 1 1 200Hz 1 0 150Hz 0 1 120Hz 0 0 Gv 0dB -0.5dB FRONT Low (Q) D4 0 D5 0 D6 0 D7 0 D8 0 -1.0dB 1 1 0 0 0 0 0 1 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 -4.0dB 1 1 0 0 0 -4.5dB 1 1 0 0 1 -5.0dB 1 1 0 1 0 Q D2 D3 -5.5dB 1 1 0 1 1 3.0 1 1 -6.0dB 1 1 1 0 0 2.5 1 0 -6.5dB 1 1 1 0 1 -7.0dB 1 1 1 1 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 2.0 0 1 1.5 0 0 SLOT2(FRONT Lch middle range) FRONT Mid (f0) FRONT Mid (Gv) Gv +4.0dB +3.5dB D6 0 0 D7 1 0 D8 0 1 D9 0 1 D10 0 1 f0 D0 D1 D2 3.0KHz 1 0 0 +3.0dB 0 0 1 1 0 2.0KHz 0 1 1 +2.5dB 0 0 1 0 1 1.5KHz 0 1 0 +2.0dB 0 0 1 0 0 1.2KHz 0 0 1 +1.5dB 0 0 0 1 1 0 +1.0dB 0 0 0 1 0 +0.5dB 0 0 0 0 1 0dB 0 0 0 0 0 -0.5dB 1 0 0 0 1 -1.0dB 1 0 0 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 800Hz 0 0 FRONT Mid (Q) Q D3 D4 D5 2.0 1 1 0 1.8 1 0 1 1.6 1 0 0 -4.0dB 1 1 0 0 0 1.4 0 1 1 -4.5dB 1 1 0 0 1 1.2 0 1 0 -5.0dB 1 1 0 1 0 -5.5dB 1 1 0 1 1 -6.0dB 1 1 1 0 0 -6.5dB 1 1 1 0 1 -7.0dB 1 1 1 1 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 1.0 0 0 1 0.8 0 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 18 of 30 M61528FP SLOT3(FRONT Lch high range) FRONT High (f0) FRONT High (Gv) f0 D0 D1 18KHz 1 0 10KHz 0 1 8KHz 0 0 FRONT High (Q) Gv +8.0dB D4 0 D5 1 D6 0 D7 0 D8 0 D9 0 +7.5dB +7.0dB 0 0 0 0 1 1 1 1 1 1 1 0 +6.5dB 0 0 1 1 0 1 +6.0dB 0 0 1 1 0 0 +5.5dB 0 0 1 0 1 1 +5.0dB 0 0 1 0 1 0 +4.5dB 0 0 1 0 0 1 +4.0dB 0 0 1 0 0 0 +3.5dB 0 0 0 1 1 1 +3.0dB 0 0 0 1 1 0 Q D2 D3 +2.5dB 0 0 0 1 0 1 1.0 1 1 +2.0dB 0 0 0 1 0 0 0.8 1 0 +1.5dB 0 0 0 0 1 1 +1.0dB 0 0 0 0 1 0 +0.5dB 0 0 0 0 0 1 0dB -0.5dB -1.0dB 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1.5dB 1 0 0 0 1 1 -2.0dB 1 0 0 1 0 0 -2.5dB 1 0 0 1 0 1 -3.0dB 1 0 0 1 1 0 -3.5dB 1 0 0 1 1 1 -4.0dB 1 0 1 0 0 0 -4.5dB 1 0 1 0 0 1 -5.0dB 1 0 1 0 1 0 -5.5dB 1 0 1 0 1 1 -6.0dB 1 0 1 1 0 0 -6.5dB 1 0 1 1 0 1 -7.0dB 1 0 1 1 1 0 -7.5dB 1 0 1 1 1 1 -8.0dB 1 1 0 0 0 0 0.6 0 1 0.4 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 19 of 30 M61528FP SLOT4(FRONT Rch low range) FRONT Low (f0) FRONT Low (Gv) f0 D0 D1 300Hz 1 1 Gv 0dB -0.5dB 200Hz 1 0 150Hz 0 1 120Hz 0 0 FRONT Low (Q) D4 0 D5 0 D6 0 D7 0 D8 0 -1.0dB 1 1 0 0 0 0 0 1 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 -4.0dB 1 1 0 0 0 -4.5dB 1 1 0 0 1 -5.0dB 1 1 0 1 0 -5.5dB 1 1 0 1 1 Q D2 D3 3.0 1 1 -6.0dB 1 1 1 0 0 2.5 1 0 -6.5dB 1 1 1 0 1 2.0 0 1 -7.0dB 1 1 1 1 0 1.5 0 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 SLOT5(FRONT Rch middle range) FRONT Mid (f0) FRONT Mid (Gv) Gv +4.0dB +3.5dB D6 0 0 D7 1 0 D8 0 1 D9 0 1 D10 0 1 f0 D0 D1 D2 3.0KHz 1 0 0 +3.0dB 0 0 1 1 0 2.0KHz 0 1 1 +2.5dB 0 0 1 0 1 1.5KHz 0 1 0 +2.0dB 0 0 1 0 0 1.2KHz 0 0 1 +1.5dB 0 0 0 1 1 800Hz 0 0 0 +1.0dB 0 0 0 1 0 +0.5dB 0 0 0 0 1 0dB 0 0 0 0 0 -0.5dB 1 0 0 0 1 -1.0dB 1 0 0 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 FRONT Mid (Q) Q D3 D4 D5 2.0 1 1 0 1.8 1 0 1 1.6 1 0 0 -4.0dB 1 1 0 0 0 1.4 0 1 1 -4.5dB 1 1 0 0 1 1.2 0 1 0 -5.0dB 1 1 0 1 0 -5.5dB 1 1 0 1 1 -6.0dB 1 1 1 0 0 -6.5dB 1 1 1 0 1 -7.0dB 1 1 1 1 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 1.0 0 0 1 0.8 0 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 20 of 30 M61528FP SLOT6(FRONT Rch high range) FRONT High (f0) f0 D0 D1 18KHz 1 0 10KHz 0 1 8KHz 0 0 FRONT High (Q) FRONT High (Gv) Gv +8.0dB D4 0 D5 1 D6 0 D7 0 D8 0 D9 0 +7.5dB +7.0dB 0 0 0 0 1 1 1 1 1 1 1 0 +6.5dB 0 0 1 1 0 1 +6.0dB 0 0 1 1 0 0 +5.5dB 0 0 1 0 1 1 +5.0dB 0 0 1 0 1 0 +4.5dB 0 0 1 0 0 1 +4.0dB 0 0 1 0 0 0 +3.5dB 0 0 0 1 1 1 +3.0dB 0 0 0 1 1 0 Q D2 D3 +2.5dB 0 0 0 1 0 1 1.0 1 1 +2.0dB 0 0 0 1 0 0 0.8 1 0 +1.5dB 0 0 0 0 1 1 +1.0dB 0 0 0 0 1 0 +0.5dB 0 0 0 0 0 1 0dB -0.5dB -1.0dB 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1.5dB 1 0 0 0 1 1 -2.0dB 1 0 0 1 0 0 -2.5dB 1 0 0 1 0 1 -3.0dB 1 0 0 1 1 0 -3.5dB 1 0 0 1 1 1 -4.0dB 1 0 1 0 0 0 -4.5dB 1 0 1 0 0 1 -5.0dB 1 0 1 0 1 0 -5.5dB 1 0 1 0 1 1 -6.0dB 1 0 1 1 0 0 -6.5dB 1 0 1 1 0 1 -7.0dB 1 0 1 1 1 0 -7.5dB 1 0 1 1 1 1 -8.0dB 1 1 0 0 0 0 0.6 0 1 0.4 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 21 of 30 M61528FP SLOT7(REAR Lch Low range) REAR Low (f0) REAR Low (Gv) f0 D0 D1 300Hz 1 1 Gv 0dB -0.5dB 200Hz 1 0 150Hz 0 1 120Hz 0 0 REAR Low (Q) D2 Q D3 D4 D5 0 D6 0 D7 0 D8 0 D9 0 -1.0dB 1 1 0 0 0 0 0 1 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 -4.0dB 1 1 0 0 0 -4.5dB 1 1 0 0 1 -5.0dB 1 1 0 1 0 -5.5dB 1 1 0 1 1 4.0 1 0 0 3.5 0 1 1 -6.0dB 1 1 1 0 0 3.0 0 1 0 -6.5dB 1 1 1 0 1 2.5 0 0 1 -7.0dB 1 1 1 1 0 2.0 0 0 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 SLOT8(REAR Lch middle range) REAR Mid (f0) REAR Mid (Gv) Gv +4.0dB +3.5dB D6 0 0 D7 1 0 D8 0 1 D9 0 1 D10 0 1 f0 D0 D1 D2 3.0KHz 1 0 0 +3.0dB 0 0 1 1 0 2.0KHz 0 1 1 +2.5dB 0 0 1 0 1 1.5KHz 0 1 0 +2.0dB 0 0 1 0 0 1.2KHz 0 0 1 +1.5dB 0 0 0 1 1 800Hz 0 0 0 +1.0dB 0 0 0 1 0 +0.5dB 0 0 0 0 1 0dB 0 0 0 0 0 -0.5dB 1 0 0 0 1 -1.0dB 1 0 0 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 REAR Mid (Q) Q D3 D4 D5 2.0 1 1 0 1.8 1 0 1 1.6 1 0 0 -4.0dB 1 1 0 0 0 1.4 0 1 1 -4.5dB 1 1 0 0 1 1.2 0 1 0 -5.0dB 1 1 0 1 0 -5.5dB 1 1 0 1 1 -6.0dB 1 1 1 0 0 -6.5dB 1 1 1 0 1 -7.0dB 1 1 1 1 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 1.0 0 0 1 0.8 0 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 22 of 30 M61528FP SLOT9(REAR Lch high range) REAR High (f0) REAR High (Gv) f0 D0 D1 18KHz 1 0 10KHz 0 1 8KHz 0 0 REAR High (Q) Gv +8.0dB D4 0 D5 1 D6 0 D7 0 D8 0 D9 0 +7.5dB +7.0dB 0 0 0 0 1 1 1 1 1 1 1 0 +6.5dB 0 0 1 1 0 1 +6.0dB 0 0 1 1 0 0 +5.5dB 0 0 1 0 1 1 +5.0dB 0 0 1 0 1 0 +4.5dB 0 0 1 0 0 1 +4.0dB 0 0 1 0 0 0 +3.5dB 0 0 0 1 1 1 +3.0dB 0 0 0 1 1 0 Q D2 D3 +2.5dB 0 0 0 1 0 1 1.0 1 1 +2.0dB 0 0 0 1 0 0 0.8 1 0 +1.5dB 0 0 0 0 1 1 +1.0dB 0 0 0 0 1 0 +0.5dB 0 0 0 0 0 1 0dB -0.5dB -1.0dB 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1.5dB 1 0 0 0 1 1 -2.0dB 1 0 0 1 0 0 -2.5dB 1 0 0 1 0 1 -3.0dB 1 0 0 1 1 0 -3.5dB 1 0 0 1 1 1 -4.0dB 1 0 1 0 0 0 -4.5dB 1 0 1 0 0 1 -5.0dB 1 0 1 0 1 0 -5.5dB 1 0 1 0 1 1 -6.0dB 1 0 1 1 0 0 -6.5dB 1 0 1 1 0 1 -7.0dB 1 0 1 1 1 0 -7.5dB 1 0 1 1 1 1 -8.0dB 1 1 0 0 0 0 0.6 0 1 0.4 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 23 of 30 M61528FP SLOT10(REAR Rch Low range) REAR Low (f0) REAR Low (Gv) f0 D0 D1 300Hz 1 1 200Hz 1 0 150Hz 0 1 120Hz 0 0 Gv 0dB -0.5dB REAR Low (Q) D2 Q D3 D4 D5 0 D6 0 D7 0 D8 0 D9 0 -1.0dB 1 1 0 0 0 0 0 1 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 -4.0dB 1 1 0 0 0 -4.5dB 1 1 0 0 1 -5.0dB 1 1 0 1 0 -5.5dB 1 1 0 1 1 4.0 1 0 0 3.5 0 1 1 -6.0dB 1 1 1 0 0 3.0 0 1 0 -6.5dB 1 1 1 0 1 2.5 0 0 1 -7.0dB 1 1 1 1 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 2.0 0 0 0 SLOT11(REAR Rch middle range) REAR Mid (f0) REAR Mid (Gv) Gv +4.0dB +3.5dB D6 0 0 D7 1 0 D8 0 1 D9 0 1 D10 0 1 f0 D0 D1 D2 3.0KHz 1 0 0 +3.0dB 0 0 1 1 0 2.0KHz 0 1 1 +2.5dB 0 0 1 0 1 1.5KHz 0 1 0 +2.0dB 0 0 1 0 0 1.2KHz 0 0 1 +1.5dB 0 0 0 1 1 0 +1.0dB 0 0 0 1 0 +0.5dB 0 0 0 0 1 0dB 0 0 0 0 0 -0.5dB 1 0 0 0 1 -1.0dB 1 0 0 1 0 -1.5dB 1 0 0 1 1 -2.0dB 1 0 1 0 0 -2.5dB 1 0 1 0 1 -3.0dB 1 0 1 1 0 -3.5dB 1 0 1 1 1 800Hz 0 0 REAR Mid (Q) Q D3 D4 D5 2.0 1 1 0 1.8 1 0 1 1.6 1 0 0 -4.0dB 1 1 0 0 0 1.4 0 1 1 -4.5dB 1 1 0 0 1 1.2 0 1 0 -5.0dB 1 1 0 1 0 -5.5dB 1 1 0 1 1 -6.0dB 1 1 1 0 0 -6.5dB 1 1 1 0 1 -7.0dB 1 1 1 1 0 -7.5dB 1 1 1 1 1 -8.0dB 1 0 0 0 0 1.0 0 0 1 0.8 0 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 24 of 30 M61528FP SLOT12(REAR Rch high range) REAR High (f0) REAR High (Gv) f0 D0 D1 18KHz 1 0 10KHz 0 1 8KHz 0 0 REAR High (Q) Gv +8.0dB D4 0 D5 1 D6 0 D7 0 D8 0 D9 0 +7.5dB +7.0dB 0 0 0 0 1 1 1 1 1 1 1 0 +6.5dB 0 0 1 1 0 1 +6.0dB 0 0 1 1 0 0 +5.5dB 0 0 1 0 1 1 +5.0dB 0 0 1 0 1 0 +4.5dB 0 0 1 0 0 1 +4.0dB 0 0 1 0 0 0 +3.5dB 0 0 0 1 1 1 +3.0dB 0 0 0 1 1 0 Q D2 D3 +2.5dB 0 0 0 1 0 1 1.0 1 1 +2.0dB 0 0 0 1 0 0 0.8 1 0 +1.5dB 0 0 0 0 1 1 +1.0dB 0 0 0 0 1 0 +0.5dB 0 0 0 0 0 1 0dB -0.5dB -1.0dB 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1.5dB 1 0 0 0 1 1 -2.0dB 1 0 0 1 0 0 -2.5dB 1 0 0 1 0 1 -3.0dB 1 0 0 1 1 0 -3.5dB 1 0 0 1 1 1 -4.0dB 1 0 1 0 0 0 -4.5dB 1 0 1 0 0 1 -5.0dB 1 0 1 0 1 0 -5.5dB 1 0 1 0 1 1 -6.0dB 1 0 1 1 0 0 -6.5dB 1 0 1 1 0 1 -7.0dB 1 0 1 1 1 0 -7.5dB 1 0 1 1 1 1 -8.0dB 1 1 0 0 0 0 0.6 0 1 0.4 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 25 of 30 M61528FP SLOT13 SLOT14 FADER( FRONT) FADER( REAR) FRONT Lch D0 D1 D2 D3 D4 FRONT Rch D5 D6 D7 D8 D9 0dB 1 1 0 1 0 -2dB 1 1 0 0 -4dB 1 1 0 0 -6dB 1 0 1 ATT REAR Lch D0 D1 D2 D3 D4 REAR Rch D5 D6 D7 D8 D9 0dB 1 1 0 1 0 1 -2dB 1 1 0 0 1 0 -4dB 1 1 0 0 0 1 1 -6dB 1 0 1 1 1 ATT -8dB 1 0 1 1 0 -8dB 1 0 1 1 0 -10dB 1 0 1 0 1 -10dB 1 0 1 0 1 -12dB 1 0 1 0 0 -12dB 1 0 1 0 0 -14dB 1 0 0 1 1 -14dB 1 0 0 1 1 -16dB 1 0 0 1 0 -16dB 1 0 0 1 0 -18dB 1 0 0 0 1 -18dB 1 0 0 0 1 -20dB 1 0 0 0 0 -20dB 1 0 0 0 0 -22dB 0 1 1 1 1 -22dB 0 1 1 1 1 -24dB 0 1 1 1 0 -24dB 0 1 1 1 0 -26dB 0 1 1 0 1 -26dB 0 1 1 0 1 -28dB 0 1 1 0 0 -28dB 0 1 1 0 0 -30dB 0 1 0 1 1 -30dB 0 1 0 1 1 -32dB 0 1 0 1 0 -32dB 0 1 0 1 0 -34dB 0 1 0 0 1 -34dB 0 1 0 0 1 -36dB 0 1 0 0 0 -36dB 0 1 0 0 0 -38dB 0 0 1 1 1 -38dB 0 0 1 1 1 -40dB 0 0 1 1 0 -40dB 0 0 1 1 0 -42dB 0 0 1 0 1 -42dB 0 0 1 0 1 -44dB 0 0 1 0 0 -44dB 0 0 1 0 0 -46dB 0 0 0 1 1 -46dB 0 0 0 1 1 -48dB 0 0 0 1 0 -48dB 0 0 0 1 0 -50dB 0 0 0 0 1 -50dB 0 0 0 0 1 -∞ dB 0 0 0 0 0 -∞ dB 0 0 0 0 0 It’s initial setting when VCC turn on. Rev.1.1, Dec.17.2003, page 26 of 30 M61528FP SLOT15 soft-changing time D0 D1 D2 Time 83mS(41.5mS) 1 1 1/0 66mS(33mS) 1 0 1/0 41mS(20. 5mS) 0 1 1/0 0 0 1/0 33mS( 16.5mS) CLOCK choice D3 External ceramic oscillator using 1 ON 1 0 OFF 0 Internal oscillator using Soft-changing time can be changed with 1/0 of D2. •D2=“1”: The left time of the left table. (soft-changing time: 83mS,66mS,41mS,33mS) •D2=“0”: ( ) time of the left table. (soft-changing time: 41.5mS,33mS,20.5mS,16.5mS) Communication erro r countermeasurefunction Countermeasure function Soft-changing ON / OFF CLOCK select D5 Soft-changing form Form D6 effective 1 Soft-changing 2 1 ineffective 0 Soft-changing 1 0 Rev.1.1, Dec.17.2003, page 27 of 30 Soft-changing D4 M61528FP Application Example 1. At the time of use the internal oscillator (When D3= "0" of the slot 15.) VCC= 8V 0.1µ 0.1µ + 1 VCC 24 VREFIN 2 GND FLOUT 23 3 FLIN FROUT 22 4 FRIN RLOUT 21 5 RLIN RROUT 20 6 RRIN GND 19 7 DGND DGND 18 8 TEST DATA 17 9 N.C CLOCK 16 10 N.C SACTIVE 15 11 N.C OSCIN 14 OSCOUT 13 + 100 µ 100µ 2.2µ 2.2µ + 2.2µ + 2.2µ + 2.2µ + + 2.2µ + 2.2µ + 2.2µ + MCU No Connect 12 OSCR 91K [ Unit] Resistance:Ω Capacitance:F Rev.1.1, Dec.17.2003, page 28 of 30 M61528FP 2. At the time of use the external ceramic oscillator (fCLK=4.00MHz). (When D3= “1" of the slot 15) 0.1µ 0.1µ 100µ VREFIN VCC 24 2 GND FLOUT 23 3 FLIN FROUT 22 4 FRIN RLOUT 21 5 RLIN RROUT 20 6 RRIN GND 19 7 DGND DGND 18 8 TEST DATA 17 9 N.C CLOCK 16 10 N.C SACTIVE 15 11 N.C OSCIN 14 OSCOUT 13 + + 1 100µ 2.2µ 2.2µ + 2.2µ + 2.2µ + 2.2µ + + 2.2µ + 2.2µ + 2.2µ + MCU No Connect 12 OSCR Rev.1.1, Dec.17.2003, page 29 of 30 The external 1M ceramic oscillator. 680 CERALOCK:CSTLS4M00G56-B0 (fCLK= 4.00MHz) Rev.1.1, Dec.17.2003, page 30 of 30 G Z1 E HE e 1 24 EIAJ Package Code SSOP24-P-300-0.80 z Detail G D y JEDEC Code — b 12 13 Weight(g) 0.2 Detail F A2 A Lead Material Cu Alloy L1 MMP A1 F c L A A1 A2 b c D E e HE L L1 z Z1 y Symbol e1 b2 e1 I2 b2 Dimension in Millimeters Min Nom Max — — 2.1 0 0.1 0.2 — 1.8 — 0.3 0.35 0.45 0.18 0.2 0.25 10.0 10.1 10.2 5.2 5.3 5.4 — 0.8 — 7.5 7.8 8.1 0.4 0.6 0.8 — 1.25 — — — 0.65 — — 0.8 — — 0.1 0˚ — 8˚ — 0.5 — — 7.62 — — 1.27 — Recommended Mount Pad e Plastic 24pin 300mil SSOP I2 24P2Q-A M61528FP Package Dimensions Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2003. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 1.0