MCP1703A 250 mA, 16V, Low Quiescent Current LDO Regulator Features: Description: • • • • • • • The MCP1703A is an improved version of the MCP1703 low dropout (LDO) voltage regulator that can deliver up to 250 mA of current while consuming only 2.0 µA of quiescent current (typical). The input operating range is specified from 2.7V to 16.0V, making it an ideal choice for two to six primary cell batterypowered applications, 9V alkaline and one or two-cell Li-Ion-powered applications. • • • • • • • Reduced Ground Current During Dropout Faster Startup Time 2.0 µA Typical Quiescent Current Input Operating Voltage Range: 2.7V to16.0V 250 mA Output Current for Output Voltages ≥ 2.5V 200 mA Output Current for Output Voltages < 2.5V Low Dropout Voltage, 625 mV Typical @ 250 mA for VR = 2.8V 0.4% Typical Output Voltage Tolerance Standard Output Voltage Options: - 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V Output Voltage Range: 1.2V to 5.5V in 0.1V Increments (50 mV increments available upon request) A/D Friendly Voltage Options: 2.05V, 3.07V, 4.1V Stable with 1.0 µF to 22 µF Ceramic Output Capacitance Short-Circuit Protection Overtemperature Protection Applications: • • • • • • • • • • • • Battery-Powered Devices Battery-Powered Alarm Circuits Smoke Detectors CO2 Detectors Pagers and Cellular Phones Smart Battery Packs Low Quiescent Current Voltage Reference PDAs Digital Cameras Microcontroller Power Solar-Powered Instruments Consumer Products The MCP1703A is capable of delivering 250 mA with only 625 mV (typical) of input to output voltage differential (VOUT = 2.8V). The output voltage tolerance of the MCP1703A is typically ±0.4% at +25°C and ±3% maximum over the operating junction temperature range of -40°C to +125°C. Line regulation is ±0.1% typical at +25°C. Output voltages available for the MCP1703A range from 1.2V to 5.5V. The LDO output is stable when using only 1 µF of output capacitance. Ceramic, tantalum or aluminum electrolytic capacitors can all be used for input and output. Overcurrent limit and overtemperature shutdown provide a robust solution for any application. Package options include the SOT-223-3, SOT-23A, 2x3 DFN-8 and SOT-89-3. Package Types 8 VIN SOT-23A VIN 7 NC 3 2x3 DFN* VOUT 1 NC 2 NC 3 GND 4 EP 9 6 NC 5 NC 1 2 GND VOUT SOT-223 SOT-89 VIN Related Literature: • AN765, “Using Microchip’s Micropower LDOs”, DS00765, Microchip Technology Inc., 2007 • AN766, “Pin-Compatible CMOS Upgrades to Bipolar LDOs”, DS00766, Microchip Technology Inc., 2003 • AN792, “A Method to Determine How Much Power a SOT23 Can Dissipate in an Application”, DS00792, Microchip Technology Inc., 2001 2012-2013 Microchip Technology Inc. 1 2 3 GND VIN VOUT 1 2 3 VIN GND VOUT * Includes Exposed Thermal Pad (EP); see Table 3-1. DS20005122B-page 1 MCP1703A Functional Block Diagrams MCP1703A VOUT VIN Error Amplifier +VIN Voltage Reference + Overcurrent Overtemperature GND Typical Application Circuits MCP1703A VOUT 3.3V VOUT VIN 9V Battery DS20005122B-page 2 + CIN 1 µF Ceramic VIN VIN COUT 1 µF Ceramic IOUT 50 mA GND 2012-2013 Microchip Technology Inc. MCP1703A 1.0 † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † VDD..................................................................................+18V All inputs and outputs w.r.t. .............(VSS-0.3V) to (VIN+0.3V) Peak Output Current ...................................................500 mA Storage temperature .....................................-65°C to +150°C Maximum Junction Temperature ................................. +150°C ESD protection on all pins (HBM; MM) ............. ≥ 4 kV; ≥ 400V DC CHARACTERISTICS Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1, ILOAD = 1 mA, COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C. Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C. Parameters Symbol Min Typ Max Units Conditions VIN 2.7 — 16.0 V Note 1 Iq — 2.0 5 µA IL = 0 mA IOUT 250 — — mA For VR ≥ 2.5V 50 100 — mA For VR < 2.5V, VIN ≥ 2.7V 100 130 — mA For VR < 2.5V, VIN ≥ 2.95V 150 200 — mA For VR < 2.5V, VIN ≥ 3.2V 200 230 — mA For VR < 2.5V, VIN ≥ 3.45V IOUT_SC — 400 — mA VIN = VIN(MIN) (Note 1), VOUT = GND, Current (average current) measured 10 ms after short is applied. VOUT VR-3.0% VR±0.4% VR+3.0% V VR-2.0% VR±0.4% VR+2.0% V VR-1.0% VR±0.4% VR+1.0% V Input / Output Characteristics Input Operating Voltage Input Quiescent Current Maximum Output Current Output Short Circuit Current Output Voltage Regulation VOUT Temperature Coefficient Note 2 1% Custom TCVOUT — 65 — ppm/°C Line Regulation DVOUT/ (VOUTxΔVIN) -0.3 ±0.1 +0.3 %/V (VOUT(MAX) + VDROPOUT(MAX)) ≤ VIN ≤ 16V, Note 1 Load Regulation ΔVOUT/VOUT -2.5 ±1.0 +2.5 % IL = 1.0 mA to 250 mA for VR ≥ 2.5V IL = 1.0 mA to 200 mA for VR < 2.5V VIN = 3.65V, Note 4 Note 1: 2: 3: 4: 5: 6: 7: Note 3 The minimum VIN must meet two conditions: VIN ≥ 2.7V and VIN ≥ (VOUT(MAX) + VDROPOUT(MAX)). VR is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V or 5.0V. The input voltage VIN = VOUT(MAX) + VDROPOUT(MAX) or ViIN = 2.7V (whichever is greater); IOUT = 100 µA. TCVOUT = (VOUT-HIGH - VOUT-LOW) x 106/(VR x ΔTemperature), VOUT-HIGH = highest voltage measured over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range. Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCVOUT. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, qJA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. 2012-2013 Microchip Technology Inc. DS20005122B-page 3 MCP1703A DC CHARACTERISTICS (CONTINUED) Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1, ILOAD = 1 mA, COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C. Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C. Parameters Dropout Voltage Note 1, Note 5 Symbol VDROPOUT Output Delay Time 5: 6: 7: Units Conditions 330 650 mV IL = 250 mA, VR = 5.0V 525 725 mV IL = 250 mA, 3.3V ≤ VR < 5.0V — 625 975 mV IL = 250 mA, 2.8V ≤ VR < 3.3V — 750 1100 mV IL = 250 mA, 2.5V ≤ VR < 2.8V — — — mV VR < 2.5V, See Maximum Output Current Parameter TDELAY — 600 — µs VIN = 0V to 6V, VOUT = 90% VR, RL = 50Ω resistive eN — 1 PSRR — 35 — dB TSD — 150 — °C Thermal Shutdown Protection 4: Max — Power Supply Ripple Rejection Ratio 3: Typ — Output Noise Note 1: 2: Min µV/(Hz)1/2 IL = 50 mA, f = 1 kHz, COUT = 1 µF f = 100 Hz, COUT = 1 µF, IL = 10 mA, VINAC = 200 mV pk-pk, CIN = 0 µF, VR = 5.0V The minimum VIN must meet two conditions: VIN ≥ 2.7V and VIN ≥ (VOUT(MAX) + VDROPOUT(MAX)). VR is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V or 5.0V. The input voltage VIN = VOUT(MAX) + VDROPOUT(MAX) or ViIN = 2.7V (whichever is greater); IOUT = 100 µA. TCVOUT = (VOUT-HIGH - VOUT-LOW) x 106/(VR x ΔTemperature), VOUT-HIGH = highest voltage measured over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range. Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCVOUT. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, qJA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. TEMPERATURE SPECIFICATIONS(1) Parameters Sym Min Typ Max Units Conditions TJ -40 — +125 °C Steady State Transient Temperature Ranges Operating Junction Temperature Range Maximum Junction Temperature TJ — — +150 °C Storage Temperature Range TA -65 — +150 °C Thermal Resistance, 3LD SOT-223 θJA θJC — — 62 15 — — °C/W EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board Thermal Resistance, 3LD SOT-23A θJA θJC — — 336 110 — — °C/W EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board Thermal Resistance, 3LD SOT-89 θJA θJC — — 180 52 — — °C/W EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board Thermal Resistance, 8LD 2x3 DFN θJA θJC — — 70 13.4 — — °C/W EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board Thermal Package Resistance (Note 2) Note 1: 2: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. Thermal Resistance values are subject to change. Please visit the Microchip web site for the latest packaging information. DS20005122B-page 4 2012-2013 Microchip Technology Inc. MCP1703A 2.0 TYPICAL PERFORMANCE CURVES The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 1 mA, TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. Note: Junction Temperature (TJ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant. 60 VOUT = 1.2V IOUT = 0 µA 4.00 -45°C +130°C 3.00 0°C 2.00 +90°C +25°C 1.00 GND Current (µA) Quiescent Current (µA) 5.00 VOUT = 1.2V VIN = 2.7V 50 40 30 20 10 0.00 0 2 4 6 8 10 12 14 16 0 40 80 Input Voltage (V) FIGURE 2-1: Voltage. Quiescent Current vs. Input FIGURE 2-4: Current. 160 200 Ground Current vs. Load 60 VOUT = 2.5V IOUT = 0 µA 5.00 +130°C 4.00 +90°C 3.00 2.00 +90°C - 45°C 1.00 GND Current (µA) Quiescent Current (µA) 6.00 50 40 VOUT = 2.5V VIN = 3.5V 30 20 VOUT = 5.0V VIN = 6.0V 10 0°C 0.00 0 2 4 6 8 10 12 14 16 0 50 100 Input Voltage (V) FIGURE 2-2: Voltage. 150 200 250 Load Current (mA) Quiescent Current vs. Input FIGURE 2-5: Current. 7 Ground Current vs. Load 3.0 VOUT = 5.0V IOUT = 0 µA 6 Quiescent Current (µA) Quiescent Current (µA) 120 Load Current (mA) - 45°C +25°C 5 4 +130°C 3 0°C +90°C 2 1 IOUT = 0 mA 2.5 2.0 1.5 VOUT = 1.2V VIN = 2.7V 1.0 VOUT = 2.5V VIN = 3.5V VOUT = 5.0V VIN = 6.0V 0.5 0.0 6 8 10 12 14 16 Input Voltage (V) FIGURE 2-3: Voltage. Quiescent Current vs. Input 2012-2013 Microchip Technology Inc. -45 -20 5 30 55 80 105 130 Junction Temperature (°C) FIGURE 2-6: Quiescent Current vs. Junction Temperature. DS20005122B-page 5 MCP1703A Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 1 mA, TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. 1.24 VOUT = 1.2V ILOAD = 1 mA 1.23 -45°C 0°C 1.22 VIN = 3.0V VOUT = 1.2V 1.23 1.21 +130°C 1.20 +90°C +25°C 1.19 Output Voltage (V) Output Voltage (V) 1.24 -45°C 1.22 1.21 1.20 1.19 1.18 1.16 2 4 6 8 10 12 14 16 0 18 20 40 Input Voltage (V) FIGURE 2-7: Voltage. Output Voltage vs. Input FIGURE 2-10: Current. 80 100 120 140 160 180 200 Output Voltage vs. Load 2.54 VOUT = 2.5V ILOAD = 1 mA 2.56 +90°C 2.54 2.52 2.50 2.48 0°C -45°C +25°C 2.46 VIN = 3.5V VOUT = 2.5V 2.53 +130°C Output Voltage (V) Output Voltage (V) 60 Load Current (mA) 2.58 2.52 +90°C +130°C 2.51 2.50 2.49 2.48 +25°C -45°C 2.47 2.44 0°C 2.46 2 4 6 8 10 12 14 16 0 18 50 Input Voltage (V) FIGURE 2-8: Voltage. 100 150 Output Voltage vs. Input FIGURE 2-11: Current. Output Voltage (V) +90°C +130°C 5.08 5.04 5.00 -45°C 4.96 +25°C 250 Output Voltage vs. Load 5.06 VOUT = 5.0V ILOAD = 1 mA 5.12 200 Load Current (mA) 5.16 Output Voltage (V) +90°C +130°C 1.17 1.18 +25°C 0°C 0°C 4.92 5.04 +90°C 5.02 5.00 4.98 4.96 0°C -45°C +25°C 4.94 4.88 VIN = 6V VOUT = 5.0V +130°C 4.92 6 8 10 12 14 16 18 0 Input Voltage (V) FIGURE 2-9: Voltage. DS20005122B-page 6 Output Voltage vs. Input 50 100 150 200 250 Load Current (mA) FIGURE 2-12: Current. Output Voltage vs. Load 2012-2013 Microchip Technology Inc. MCP1703A Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 1 mA, TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. - 45°C 2.00 1.50 - 45°C, 0°C 0°C, +25°C, +90°C, +130°C 1.00 0.50 0.00 0 25 50 4 3 200 2 0 1 -200 0 75 100 125 150 175 200 225 250 0 500 1000 1500 Time (µs) FIGURE 2-16: -400 2500 Dynamic Line Response. 400 VIN VOUT = 2.5V +130°C +90°C +25°C 0°C - 45°C 0 25 50 75 100 125 150 175 200 225 250 VOUT = 2.5V IOUT = 100 mA 4 3 0 2 -200 1 -400 0 0 500 1000 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 Dropout Voltage vs. Load VOUT = 5.0V +130°C +90°C +25°C 0°C - 45°C 0 25 50 75 100 125 150 175 200 225 250 FIGURE 2-17: Dropout Voltage vs. Load 2012-2013 Microchip Technology Inc. 2000 -600 2500 Dynamic Line Response. 800 VOUT = 2.5V ROUT < 0.1Ω 700 600 500 400 300 200 100 0 0 2 4 6 8 10 12 14 16 18 Input Voltage (V) Load Current (mA) FIGURE 2-15: Current. 1500 Time (µs) Short Circuit Current (mA) FIGURE 2-14: Current. 200 VOUT(AC) Load Current (mA) Dropout Voltage (V) 2000 5 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 In nput Voltage (V) Dropout Voltage (V) Dropout Voltage vs. Load 400 VOUT(AC) Load Current (mA) FIGURE 2-13: Current. VOUT = 2.5V IOUT = 10 mA Output Voltage (mVac) 2.50 600 VIN Outp put Voltage (mVac) 5 VOUT = 1.2V In nput Voltage (V) Dropout Voltage (V) 3.00 FIGURE 2-18: Input Voltage. Short Circuit Current vs. DS20005122B-page 7 MCP1703A 1.00 0.80 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 VIN = 5V V = 3.45V IN 0.20 VOUT = 1.2V IOUT = 1 mA to 200 mA Line Regulation (%/V) Load Regulation (%) Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 1 mA, TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. VIN = 14V VIN = 8V 0.16 VIN = 3.45 to 16.0V VOUT = 1.2V -20 5 30 55 80 105 0.08 0.04 250 mA 130 -45 -20 5 VIN = 5V VIN = 10V VIN = 14V 80 105 130 Line Regulation vs. VOUT = 2.5V VIN = 3.5V to 16V 0.20 0.16 0 mA 0.12 0.08 0.04 100 mA 250 mA 0.00 -45 -20 5 30 55 80 105 130 -45 -20 5 Temperature (°C) FIGURE 2-20: Temperature. 30 55 80 105 130 Temperature (°C) Load Regulation vs. FIGURE 2-23: Temperature. Line Regulation vs. 0.24 VOUT = 5.0V IOUT = 1 to 250 mA VIN = 6V VIN = 8V VIN = 16V VIN = 12V VIN = 14V Line Regulation (%/V) Load Regulation (%) 55 0.24 Line Regulation (%/V) Load Regulation (%) FIGURE 2-22: Temperature. VOUT = 2.5V IOUT = 1 mA to 250 mA VIN = 3.65V 30 Temperature (°C) Load Regulation vs. 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60 200 mA 0.00 Temperature (°C) FIGURE 2-19: Temperature. 1 mA 0.12 100 mA -45 0.80 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 0 mA VOUT = 5.0V VIN = 6.0V to 16.0V 0.20 0 mA 100 mA 0.16 200 mA 0.12 0.08 250 mA 0.04 -45 -20 5 30 55 80 105 130 -45 -20 Temperature (°C) FIGURE 2-21: Temperature. DS20005122B-page 8 Load Regulation vs. FIGURE 2-24: Temperature. 5 30 55 80 Temperature (°C) 105 130 Line Regulation vs. 2012-2013 Microchip Technology Inc. MCP1703A 0 0 -10 -10 -20 -20 -30 -30 PSRR (dB) PSRR (dB) Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 1 mA, TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. -40 -50 VR = 1.2V VIN = 2.9V VINAC = 200 mV p-p CIN = 0 μF IOUT = 10 mA -60 -70 -80 -90 0.01 0.1 1 10 Frequency (kHz) 100 -90 0.01 1000 PSRR vs. Frequency. Output Noise (μV/¥Hz) -30 -40 -50 VR = 1.2V VIN = 3.7V VINAC = 200 mV p-p CIN = 0 μF IOUT = 200 mA -60 -70 -80 0.1 FIGURE 2-26: 1 10 Frequency (kHz) 100 PSRR vs. Frequency. 7 -20 6 -30 5 Volts (V) 8 -40 VR = 5.0V VIN = 6.2V VINAC = 200 mV p-p CIN = 0 ȝF F IOUT = 10 mA -60 -70 1000 VOUT = 1.2V VIN = 2.7V 1.000 VOUT = 5.0V VIN = 6.0V 0.100 VOUT = 2.5V VIN = 3.5V 0.010 0.1 FIGURE 2-29: 0 100 CIN = 1 μF, COUT = 1 μF, IOUT = 50 mA 0.001 0.01 1000 -10 -50 1 10 Frequency (kHz) PSRR vs. Frequency. 10.000 -20 PSRR (dB) 0.1 FIGURE 2-28: 0 PSRR (dB) -60 -70 -10 1 10 Frequency (kHz) 100 1000 Output Noise vs. Frequency. VR = 2.5V, RLOAD = 25Ω VIN = 0V to 5.3V Step VIN 4 3 2 1 -80 -90 0.01 VR = 5.0V VIN = 8.5V VINAC = 800 mV p-p CIN = 0 ȝF F IOUT = 250 mA -50 -80 FIGURE 2-25: -90 0.01 -40 VOUT 0 0.1 FIGURE 2-27: 1 10 Frequency (kHz) 100 PSRR vs. Frequency. 2012-2013 Microchip Technology Inc. 1000 0 200 400 600 800 1000 Time (µs) FIGURE 2-30: Power Up Timing. DS20005122B-page 9 MCP1703A Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 1 mA, TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater. VOUT = 2.5V Step 100µ to 100 mA 1000 25 20 500 VOUT (ac) 15 0 10 -500 100 mA 5 -1000 100 µA Ground Current (µA) Output Voltage (mV) 20 30 1500 12 8 4 0 -1500 0 500 1000 1500 2000 VOUT = 5.0V IOUT = 10 mA 16 0 2500 18 16 14 Time (µs) Dynamic Load Response. Output Voltage (mV) 1500 VOUT = 2.5V Step 1 mA to 200 mA 1000 500 6 25 5 20 0 15 -500 10 200 mA -1000 5 1 mA -1500 500 1000 1500 2000 FIGURE 2-34: Voltage. 30 VOUT (ac) 0 0 2500 6 4 2 0 Ground Current vs. Input IOUT = 1 mA 4 3 VOUT = 3.3V 2 1 0 6 5 4 3 2 1 0 Input Voltage (V) Dynamic Load Response. FIGURE 2-35: Voltage. 20 Output Voltage vs. Input 10 Dropout Current (µA) VOUT = 2.5V IOUT = 10 mA 16 Ground Current (µA) 8 VOUT = 5V Time (µs) FIGURE 2-32: 10 Input Voltage (V) Output Voltage (V) FIGURE 2-31: 12 12 8 4 0 IOUT = 1 mA VOUT = 5V 8 6 4 VOUT = 3.3V 2 0 18 16 14 12 10 8 6 4 2 0 6 5 Input Voltage (V) FIGURE 2-33: Voltage. DS20005122B-page 10 Ground Current vs. Input 4 3 2 1 0 Input Voltage (V) FIGURE 2-36: Voltage. Dropout Current vs. Input 2012-2013 Microchip Technology Inc. MCP1703A 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: MCP1703A PIN FUNCTION TABLE 2x3 DFN SOT-223 SOT-23A SOT-89 Name Function 4 2,Tab 1 1 GND Ground Terminal 1 3 2 3 VOUT Regulated Voltage Output 8 1 3 2,Tab VIN Unregulated Supply Voltage 2, 3, 5, 6, 7 — — — NC No Connection 9 — — — EP Exposed Thermal Pad (EP); must be connected to VSS 3.1 Ground Terminal (GND) Regulator ground. Tie GND to the negative side of the output and the negative side of the input capacitor. There is no high current and only the LDO bias current (2.0 µA typical) flows out of this pin. The LDO output regulation is referenced to this pin. Minimize voltage drops between this pin and the negative side of the load. 3.2 Regulated Output Voltage (VOUT) Connect VOUT to the positive side of the load and the positive terminal of the output capacitor. The positive side of the output capacitor should be physically located close to the LDO VOUT pin as is practical. The current flowing out of this pin is equal to the DC load current. 3.3 Unregulated Input Voltage (VIN) Connect VIN to the input unregulated source voltage. Like all low dropout linear regulators, low source impedance is necessary for stable operation of the LDO. The amount of capacitance required to ensure low source impedance depends on the proximity of the input source capacitors or battery type. For most applications, 1 µF of capacitance ensures stable operation of the LDO circuit. The input capacitance requirement can be lowered for applications that have load currents below 100 mA. The type of capacitor used can be ceramic, tantalum or aluminum electrolytic. The low ESR characteristics of the ceramic yields better noise and PSRR performance at high-frequency. 3.4 Exposed Thermal Pad (EP) An internal electrical connection between the Exposed Thermal Pad (EP) and the VSS pin. They must be connected to the same potential on the Printed Circuit Board (PCB). 2012-2013 Microchip Technology Inc. DS20005122B-page 11 MCP1703A 4.0 DETAILED DESCRIPTION 4.1 Output Regulation 4.3 A portion of the LDO output voltage is fed back to the internal error amplifier and compared with the precision internal band gap reference. The error amplifier output adjusts the amount of current that flows through the PChannel pass transistor, thus regulating the output voltage to the desired value. Any changes in input voltage or output current causes the error amplifier to respond and adjust the output voltage to the target voltage (see Figure 4-1). 4.2 Overtemperature The internal power dissipation within the LDO is a function of input-to-output voltage differential and load current. If the power dissipation within the LDO is excessive, the internal junction temperature rises above the typical shutdown threshold of 150°C. At that point, the LDO shuts down and begins to cool to the typical turn-on junction temperature of 130°C. If the power dissipation is low enough, the device will continue to cool and operate normally. If the power dissipation remains high, the thermal shutdown protection circuitry will again turn off the LDO, protecting it from catastrophic failure. Overcurrent The MCP1703A internal circuitry monitors the amount of current flowing through the P-Channel pass transistor. In the event of a short-circuit or excessive output current, the MCP1703A turns off the P-Channel device for a short period, after which the LDO attempts to restart. If the excessive current remains, the cycle will repeat itself. MCP1703A VOUT VIN Error Amplifier +VIN Voltage Reference + Overcurrent Overtemperature GND FIGURE 4-1: DS20005122B-page 12 Block Diagram. 2012-2013 Microchip Technology Inc. MCP1703A 5.0 FUNCTIONAL DESCRIPTION The MCP1703A CMOS low dropout linear regulator is intended for applications that need the lowest current consumption while maintaining output voltage regulation. The operating continuous load range of the MCP1703A is from 0 mA to 250 mA (VR ≥ 2.5V). The input operating voltage ranges from 2.7V to 16.0V, making it capable of operating from two or more alkaline cells or single and multiple Li-Ion cell batteries. 5.1 Input The input of the MCP1703A is connected to the source of the P-Channel PMOS pass transistor. As with all LDO circuits, a relatively low source impedance (10Ω) is needed to prevent the input impedance from causing the LDO to become unstable. The size and type of the capacitor needed depends heavily on the input source type (e.g., battery, power supply) and the output current range of the application. To ensure circuit stability, a 1 µF ceramic capacitor is sufficient for most applications up to 100 mA. Larger values can be used to improve circuit AC performance. The capacitance of the input capacitor should be equal to or greater than the capacitance of the selected output capacitor to ensure energy is available to keep the output capacitor charged during dynamic load changes. 2012-2013 Microchip Technology Inc. 5.2 Output The maximum rated continuous output current for the MCP1703A is 250 mA (VR ≥ 2.5V). For applications where VR < 2.5V, the maximum output current is 200 mA. A minimum output capacitance of 1.0 µF is required for small signal stability in applications that have up to 250 mA output current capability. The capacitor type can be ceramic, tantalum or aluminum electrolytic. The Equivalent Series Resistance (ESR) range on the output capacitor ranges from 0Ω to 2.0Ω. The output capacitor range for ceramic capacitors is 1 µF to 22 µF. Higher output capacitance values may be used for tantalum and electrolytic capacitors. Higher output capacitor values pull the pole of the LDO transfer function inward that results in higher phase shifts which in turn cause a lower crossover frequency. The circuit designer should verify the stability by applying line step and load step testing to their system when using capacitance values greater than 22 µF. 5.3 Output Rise Time When powering up the internal reference output, the typical output rise time of 600 µs is controlled to prevent overshoot of the output voltage. DS20005122B-page 13 MCP1703A 6.0 APPLICATION CIRCUITS AND ISSUES 6.1 The MCP1703A is most commonly used as a voltage regulator. Its low quiescent current and low dropout voltage make it ideal for many battery-powered applications. MCP1703A GND VIN COUT 1 µF Ceramic FIGURE 6-1: 6.1.1 VIN 2.7V to 4.8V VOUT IOUT 50 mA T J ( MAX ) = P TOTAL × Rθ JA + T A ( MAX ) Where: Typical Application VOUT 1.8V EQUATION 6-2: CIN 1 µF Ceramic TJ(MAX) = Maximum continuous junction temperature PTOTAL = Total device power dissipation RθJA = Thermal resistance from junction-to-ambient TA(MAX) = Maximum ambient temperature The maximum power dissipation capability for a package can be calculated given the junction-toambient thermal resistance and the maximum ambient temperature for the application. The following equation can be used to determine the package maximum internal power dissipation. Typical Application Circuit. APPLICATION INPUT CONDITIONS EQUATION 6-3: ( T J ( MAX ) – T A ( MAX ) ) P D ( MAX ) = --------------------------------------------------Rθ JA Package Type = SOT-23A Input Voltage Range = 2.7V to 4.8V Where: VIN maximum = 4.8V PD(MAX) = Maximum device power dissipation VOUT typical = 1.8V TJ(MAX) = Maximum continuous junction temperature TA(MAX) = Maximum ambient temperature RθJA = Thermal resistance from junction-to-ambient IOUT = 50 mA maximum 6.2 Power Calculations 6.2.1 POWER DISSIPATION The internal power dissipation of the MCP1703A is a function of input voltage, output voltage and output current. As a result of the quiescent current draw, the power dissipation is so low that it is insignificant (2.0 µA x VIN). The following equation can be used to calculate the internal power dissipation of the LDO. EQUATION 6-4: T J ( RISE ) = P D ( MAX ) × Rθ JA Where: TJ(RISE) = Rise in device junction temperature over the ambient temperature PTOTAL = Maximum device power dissipation RθJA = Thermal resistance from junction to ambient EQUATION 6-1: P LDO = ( V IN ( MAX ) – V OUT ( MIN ) ) × I OUT ( MAX ) Where: PLDO = LDO Pass device internal power dissipation VIN(MAX) = Maximum input voltage VOUT(MIN) = LDO minimum output voltage The maximum continuous operating junction temperature specified for the MCP1703A is +125°C. To estimate the internal junction temperature of the MCP1703A, the total internal power dissipation is multiplied by the thermal resistance from junction to ambient (RθJA). The thermal resistance from junction to ambient for the SOT-23A pin package is estimated at 336°C/W. DS20005122B-page 14 EQUATION 6-5: T J = T J ( RISE ) + T A Where: TJ = Junction temperature TJ(RISE) = Rise in device junction temperature over the ambient temperature TA = Ambient temperature 2012-2013 Microchip Technology Inc. MCP1703A 6.3 Voltage Regulator Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are calculated in the following example. As a result of ground current, the power dissipation is small enough to be neglected. 6.3.1 Junction Temperature Estimate To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below. TJ = TJ(RISE) + TA(MAX) POWER DISSIPATION EXAMPLE Package Package Type: SOT-23A Input Voltage: VIN = 2.7V to 4.8V TJ = 91.3°C Maximum Package Power Dissipation at +40°C Ambient Temperature Assuming Minimal Copper Usage. SOT-23A (336.0°C/Watt = RθJA) PD(MAX) = (+125°C - 40°C) / 336°C/W LDO Output Voltages and Currents VOUT = 1.8V IOUT = 50 mA PD(MAX) = 253 milli-Watts SOT-89 (153.3°C/Watt = RθJA) PD(MAX) = (+125°C - 40°C) / 153.3°C/W Maximum Ambient Temperature TA(MAX) = +40°C Internal Power Dissipation Internal Power dissipation is the product of the LDO output current multiplied by the voltage across the LDO (VIN to VOUT). PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX) PLDO = (4.8V - (0.97 x 1.8V)) x 50 mA PLDO = 152.7 milli-Watts Device Junction Temperature Rise The internal junction temperature rise is a function of internal power dissipation and the thermal resistance from junction to ambient for the application. The thermal resistance from junction to ambient (RθJA) is derived from an EIA/JEDEC standard for measuring thermal resistance for small surface mount packages. The EIA/JEDEC specification is JESD51-7, “High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages”. The standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. The actual thermal resistance for a particular application can vary depending on many factors, such as copper area and thickness. Refer to AN792, “A Method to Determine How Much Power a SOT23 Can Dissipate in an Application” (DS00792), for more information regarding this subject. PD(MAX) = 0.554 Watts SOT-223 (62.9°C/Watt = RθJA) PD(MAX) = (+125°C - 40°C) / 62.9°C/W PD(MAX) = 1.35 Watts 6.4 Voltage Reference The MCP1703A can be used not only as a regulator but also as a low quiescent current voltage reference. In many microcontroller applications, the initial accuracy of the reference can be calibrated using production test equipment or by using a ratio measurement. When the initial accuracy is calibrated, the thermal stability and line regulation tolerance are the only errors introduced by the MCP1703A LDO. The low-cost, low quiescent current and small ceramic output capacitor are all advantages when using the MCP1703A as a voltage reference. Ratio Metric Reference MCP1703A 2 µA Bias CIN 1 µF VIN VOUT GND COUT 1 µF PIC® Microcontroller VREF ADO AD1 Bridge Sensor TJ(RISE) = PTOTAL x RθJA TJ(RISE) = 152.7 milli-Watts x 336.0°C/Watt TJ(RISE) = 51.3°C 2012-2013 Microchip Technology Inc. FIGURE 6-2: Using the MCP1703A as a Voltage Reference. DS20005122B-page 15 MCP1703A 6.5 Pulsed Load Applications For some applications, there are pulsed load current events that may exceed the specified 250 mA maximum specification of the MCP1703A. The internal current limit of the MCP1703A prevents high peak load demands from causing non-recoverable damage. The 250 mA rating is a maximum average continuous rating. As long as the average current does not exceed 250 mA, pulsed higher load currents can be applied to the MCP1703A. The typical current limit for the MCP1703A is 500 mA (TA = +25°C). DS20005122B-page 16 2012-2013 Microchip Technology Inc. MCP1703A 7.0 PACKAGING INFORMATION 7.1 Package Marking Information 3-Lead SOT-23A Example: Standard Options for SOT-23A Symbol Voltage* Symbol Voltage* JGNN JMNN JFNN JHNN JNNN 1.2 1.5 1.8 2.5 2.8 JJNN JKNN JPNN JLNN — 3.0 3.3 4.0 5.0 — JG25 * Custom output voltages available upon request. Contact your local Microchip sales office for more information. Example: 3-Lead SOT-89 Standard Options for SOT-89 Symbol Voltage* Symbol Voltage* PA PF MZ PB PG 1.2 1.5 1.8 2.5 2.8 PC PD PH PE — 3.0 3.3 4.0 5.0 — PA1211 256 * Custom output voltages available upon request. Contact your local Microchip sales office for more information. Example: 3-Lead SOT-223 Standard Options for SOT-223 Symbol Voltage* Symbol Voltage* 12 15 18 25 28 1.2 1.5 1.8 2.5 2.8 30 33 40 50 — 3.0 3.3 4.0 5.0 — 33 3.3 — — 1703A 12E1211 256 Custom * Custom output voltages available upon request. Contact your local Microchip sales office for more information. 8-Lead DFN (2 x 3) Example: Standard Options for 8-Lead DFN (2 x 3) Symbol Voltage* Symbol Voltage* ALQ ALR ALS ALT ALU 1.2 1.5 1.8 2.5 2.8 ALV ALW ALX ALY — 3.0 3.3 4.0 5.0 — ALQ 211 25 * Custom output voltages available upon request. Contact your local Microchip sales office for more information. Legend: XX...X Y YY WW NNN e3 * Note: Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 2012-2013 Microchip Technology Inc. DS20005122B-page 17 MCP1703A ! "# )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D e1 e 2 1 E E1 N b A φ c A2 L A1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV 0,//,0(7(56 0,1 120 0$; 1 /HDG3LWFK H %6& 2XWVLGH/HDG3LWFK H 2YHUDOO+HLJKW $ ± 0ROGHG3DFNDJH7KLFNQHVV $ ± 6WDQGRII $ ± 2YHUDOO:LGWK ( ± 0ROGHG3DFNDJH:LGWK ( ± 2YHUDOO/HQJWK ' ± )RRW/HQJWK / ± )RRW$QJOH ± /HDG7KLFNQHVV F ± %6& /HDG:LGWK E ± "# 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% DS20005122B-page 18 2012-2013 Microchip Technology Inc. MCP1703A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2012-2013 Microchip Technology Inc. DS20005122B-page 19 MCP1703A $ % &'! "# )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 E H L 1 N 2 b b1 b1 e E1 e1 A C 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 0$; 3LWFK H %6& 2XWVLGH/HDG3LWFK H %6& 2YHUDOO+HLJKW $ 2YHUDOO:LGWK + 0ROGHG3DFNDJH:LGWKDW%DVH ( 0ROGHG3DFNDJH:LGWKDW7RS ( 2YHUDOO/HQJWK ' 7DE/HQJWK ' )RRW/HQJWK / /HDG7KLFNQHVV F /HDG:LGWK E /HDGV:LGWK E "# 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% DS20005122B-page 20 2012-2013 Microchip Technology Inc. MCP1703A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2012-2013 Microchip Technology Inc. DS20005122B-page 21 MCP1703A * ! "# )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D b2 E1 E 3 2 1 e e1 A2 A b c φ L A1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 120 0$; 1 /HDG3LWFK H %6& 2XWVLGH/HDG3LWFK H 2YHUDOO+HLJKW $ ± ± 6WDQGRII $ ± 0ROGHG3DFNDJH+HLJKW $ 2YHUDOO:LGWK ( 0ROGHG3DFNDJH:LGWK ( 2YHUDOO/HQJWK ' /HDG7KLFNQHVV F /HDG:LGWK E 7DE/HDG:LGWK E )RRW/HQJWK / ± ± /HDG$QJOH ± %6& "# 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% DS20005122B-page 22 2012-2013 Microchip Technology Inc. MCP1703A * ! "# )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ 2012-2013 Microchip Technology Inc. DS20005122B-page 23 MCP1703A & * +- " 48 % 9 ::;<' > *+"! "# )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ e D b N N L K E2 E EXPOSED PAD NOTE 1 NOTE 1 2 1 2 1 D2 BOTTOM VIEW TOP VIEW A A3 A1 NOTE 2 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV 0,//,0(7(56 0,1 1 120 0$; 3LWFK H 2YHUDOO+HLJKW $ 6WDQGRII $ &RQWDFW7KLFNQHVV $ 5() 2YHUDOO/HQJWK ' %6& 2YHUDOO:LGWK ( ([SRVHG3DG/HQJWK ' ± ([SRVHG3DG:LGWK ( ± E &RQWDFW/HQJWK / &RQWDFWWR([SRVHG3DG . ± ± &RQWDFW:LGWK %6& %6& "# 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD 3DFNDJHPD\KDYHRQHRUPRUHH[SRVHGWLHEDUVDWHQGV 3DFNDJHLVVDZVLQJXODWHG 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ && DS20005122B-page 24 2012-2013 Microchip Technology Inc. MCP1703A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2012-2013 Microchip Technology Inc. DS20005122B-page 25 MCP1703A NOTES: DS20005122B-page 26 2012-2013 Microchip Technology Inc. MCP1703A APPENDIX A: REVISION HISTORY Revision B (September 2013) The following is the list of modifications: 1. 2. Updated Figure 2-10, Figure 2-16, Figure 2-17, Figure 2-27, Figure 2-28, Figure 2-29 and Figure 2-30. Minor grammatical and editorial corrections. Revision A (March 2012) • Original Release of this Document. 2012-2013 Microchip Technology Inc. DS20005122B-page 27 MCP1703A NOTES: 2012-2013 Microchip Technology Inc. DS20005122B-page 28 MCP1703A PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X- XX X X X/ XX Tape Output Feature Tolerance Temp. Package and Reel Voltage Code Device: MCP1703A: 250 mA, 16V Low Quiescent Current LDO Tape and Reel: T Output Voltage*: 12 = 1.2V “Standard” 15 = 1.5V “Standard” 18 = 1.8V “Standard” 25 = 2.5V “Standard” 28 = 2.8V “Standard” 30 = 3.0V “Standard” 33 = 3.3V “Standard” 40 = 4.0V “Standard” 50 = 5.0V “Standard” *Contact factory for other output voltage options. Extra Feature Code: 0 Tolerance: 1 = 1.0% (Custom) 2 = 2.0% (Standard) Temperature: E = -40°C to +125°C (Extended) Package Type: CB DB MB MC = = = = = Tape and Reel = Fixed Plastic Small Outline Transistor (SOT-23A), 3-lead Plastic Small Outline Transistor (SOT-223), 3-lead Plastic Small Outline Transistor (SOT-89), 3-lead Plastic Dual Flat, No Lead Package (DFN) 2x3x0.9mm, 8-lead. 2012-2013 Microchip Technology Inc. Examples: a) MCP1703AT-1202E/XX: Tape and Reel, 1.2V Low Quiescent LDO, Extended Temperature b) MCP1703AT-1502E/XX: Tape and Reel, 1.5V Low Quiescent LDO, Extended Temperature c) MCP1703AT-1802E/XX: Tape and Reel, 1.8V Low Quiescent LDO, Extended Temperature d) MCP1703AT-2502E/XX: Tape and Reel, 2.5V Low Quiescent LDO, Extended Temperature e) MCP1703AT-2802E/XX: Tape and Reel, 2.8V Low Quiescent LDO, Extended Temperature f) MCP1703AT-3002E/XX: Tape and Reel, 3.0V Low Quiescent LDO, Extended Temperature g) MCP1703AT-3302E/XX: Tape and Reel, 3.3V Low Quiescent LDO, Extended Temperature h) MCP1703AT-4002E/XX: Tape and Reel, 4.0V Low Quiescent LDO, Extended Temperature i) MCP1703AT-5002E/XX: Tape and Reel, 5.0V Low Quiescent LDO, Extended Temperature XX = = = = CB for 3LD SOT-23A package DB for 3LD SOT-223 package MB for 3LD SOT-89 package MC for 8LD DFN package. DS20005122B-page 28 Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2012-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-62077-430-4 QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 == 2012-2013 Microchip Technology Inc. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS20005122B-page 29 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 India - Pune Tel: 91-20-3019-1500 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 DS20005122B-page 30 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 08/20/13 2012-2013 Microchip Technology Inc.