BTS5200-4EKA Data Sheet (2.1 MB)

PR OFET™ + 12V
BTS5200-4EKA
Smart High-Side Power Switch
Quad Channel, 200mΩ
Data Sheet
PROFET™+ 12V
Rev. 1.0, 2014-02-06
Automotive Power
BTS5200-4EKA
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
3.1
3.2
3.3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.3.1
4.3.2
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thermal Impedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
14
15
15
15
16
18
6
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Appearance with Channels in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
20
20
21
22
22
22
23
24
25
7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.5
7.3.6
7.4
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . .
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
26
27
27
28
29
30
30
30
31
32
32
32
33
8
8.1
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Data Sheet
PROFET™+ 12V
2
7
7
7
8
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Table of Contents
8.2
8.3
8.4
DEN / DSEL0,1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9
9.1
9.2
9.3
9.4
9.5
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Data Sheet
PROFET™+ 12V
3
38
38
39
41
42
43
Rev. 1.0, 2014-02-06
Smart High-Side Power Switch
1
BTS5200-4EKA
Overview
Application
•
•
•
Suitable for resistive, inductive and capacitive loads
Replaces electromechanical relays, fuses and discrete circuits
Most suitable for loads with high inrush current, such as lamps
Basic Features
•
•
•
•
•
•
•
•
•
Quad channel device
Very low stand-by current
3.3 V and 5 V compatible logic inputs
Electrostatic discharge protection (ESD)
Optimized electromagnetic compatibility
Logic ground independent from load ground
Very low power DMOS leakage current in OFF state
Green product (RoHS compliant)
AEC qualified
PG-DSO-14-48-EP
Description
The BTS5200-4EKA is a 200 mΩ quad channel Smart High-Side Power Switch, embedded in a PG-DSO-14-48EP, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially
designed to drive lamps up to R5W, as well as LEDs in the harsh automotive environment.
Table 1
Product Summary
Parameter
Symbol
Value
Operating voltage range
VS(OP)
VS(LD)
RDS(ON)
IL(NOM)1
IL(NOM)2
kILIS
IL5(SC)
IS(OFF)
5 V ... 28 V
Maximum supply voltage
Maximum ON state resistance at TJ = 150 °C per channel
Nominal load current (one channel active)
Nominal load current (all channels active)
Typical current sense ratio
Minimum current limitation
Maximum standby current with load at TJ = 25 °C
41 V
400 mΩ
1A
0.8 A
300
5.6 A
500 nA
Type
Package
Marking
BTS5200-4EKA
PG-DSO-14-48-EP
BTS5200-4EKA
Data Sheet
PROFET™+ 12V
4
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Overview
Diagnostic Functions
•
•
•
•
•
•
Proportional load current sense multiplexed for the 4 channels
Open load detection in ON and OFF
Short circuit to battery and ground indication
Overtemperature switch off detection
Stable diagnostic signal during short circuit
Enhanced kILIS dependency with temperature and load current
Protection Functions
•
•
•
•
•
•
•
Stable behavior during undervoltage
Reverse polarity protection with external components
Secure load turn-off during logic ground disconnection with external components
Overtemperature protection with restart
Overvoltage protection with external components
Enhanced short circuit operation
Voltage dependent current limitation
Data Sheet
PROFET™+ 12V
5
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Block Diagram
2
Block Diagram
Channel 0
VS
voltage sensor
internal
power
supply
IN0
DEN
over
temperature
driver
logic
gate control
&
charge pump
ESD
protection
T
clamp for
inductive load
over current
switch limit
load current sense and
open load detection
IS
OUT 0
forward voltage drop detection
VS
Channel 1
T
IN1
Control and protection circuit equivalent to channel 0
DSEL0
DSEL1
OUT 1
Channel 2
T
Control and protection circuit equivalent to channel 0
IN2
OUT 2
Channel 3
T
Control and protection circuit equivalent to channel 0
IN3
OUT 3
GND
Figure 1
Block diagram DxS.vsd
Block Diagram for the BTS5200-4EKA
Data Sheet
PROFET™+ 12V
6
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
OUT0
1
14
OUT2
OUT1
2
13
OUT3
NC
3
12
IS
DSEL1
4
11
GND
DSEL0
5
10
DEN
IN1
6
9
IN3
IN0
7
8
IN2
Pinout quad SO 14.vsd
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Function
1
OUT0
OUTput 0; Protected high side power output channel 01)
2
OUT1
OUTput 1; Protected high side power output channel 1 1)
3
NC
Not Connected; No internal connection to the chip
4
DSEL1
Diagnostic SELection; Digital signal to select the channel to be diagnosed
5
DSEL0
Diagnostic SELection; Digital signal to select the channel to be diagnosed
6
IN1
INput channel 1; Input signal for channel 1 activation
7
IN0
INput channel 0; Input signal for channel 0 activation
8
IN2
INput channel 2; Input signal for channel 2 activation
9
IN3
INput channel 3; Input signal for channel 3 activation
10
DEN
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device
11
GND
GrouND; Ground connection
12
IS
Sense; Sense current of the selected channel
13
OUT3
OUTput 3; Protected high side power output channel 3 1)
14
OUT2
OUTput 2; Protected high side power output channel 2 1)
Cooling Tab
VS
Voltage Supply; Battery voltage
1) All PCB traces that are connected to the ouput pin have to be designed to withstand the maximum current which can flow.
Data Sheet
PROFET™+ 12V
7
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Pin Configuration
3.3
Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
VDS0
IS
VS
VDS1
VDS2
VDS3
VOUT2
VOUT3
VS
IIN0
VIN0
IN0
IOUT0
OUT0
IIN1
IN1
VIN1
IIN2
IOUT1
IN2
VIN2
IIN3
VIN3
OUT1
IN3
IDEN
V DEN
DEN
DSEL0
IDSEL1
VDSEL 0
IOUT2
OUT2
IDSEL0
IIS
VDSEL 1
VIS
DSEL1
IOUT3
OUT3
IS
GND
IGND
VOUT0
VOUT 1
voltage and current convention.vsd
Figure 3
Voltage and Current Definition
Data Sheet
PROFET™+ 12V
8
Rev. 1.0, 2014-02-06
BTS5200-4EKA
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 2
Absolute Maximum Ratings 1)
TJ = -40°C to 150°C; (unless otherwise specified)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
VS
-VS(REV)
-0.3
–
28
V
–
P_4.1.1
0
–
16
V
P_4.1.2
VBAT(SC)
0
–
24
V
t < 2 min
TA = 25 °C
RL≥ 25 Ω
RGND = 150 Ω
2)
RECU = 20 mΩ
RCable= 16 mΩ/m
LCable= 1 μH/m,
l = 0 or 5 m
Supply Voltages
Supply voltage
Reverse polarity voltage
Supply voltage for short
circuit protection
P_4.1.3
See Chapter 6
and Figure 28
Supply voltage for Load dump VS(LD)
protection
3)
RI = 2 Ω
RL = 25 Ω
–
–
41
V
nRSC1
–
–
100
4)
k
cycles tON = 300ms
P_4.1.4
VIN
-0.3
–
–
6
7
V
P_4.1.13
IIN
VDEN
-2
–
2
mA
–
P_4.1.14
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.15
IDEN
VDSEL
-2
–
2
mA
–
P_4.1.16
-0.3
–
–
6
7
V
–
P_4.1.17
IDSEL
-2
–
2
mA
–
P_4.1.18
VIS
IIS
-0.3
–
VS
V
–
P_4.1.19
-25
–
50
mA
–
P_4.1.20
Load current
| IL |
–
–
IL(LIM)
A
–
P_4.1.21
Power dissipation (DC)
PTOT
–
–
1.4
W
TA = 85 °C
TJ < 150 °C
P_4.1.22
P_4.1.12
Short Circuit Capability
Permanent short circuit
IN pin toggles
Input Pins
Voltage at INPUT pins
Current through INPUT pins
Voltage at DEN pin
Current through DEN pin
Voltage at DSEL pin
Current through DSEL pin
–
t < 2 min
t < 2 min
Sense Pin
Voltage at IS pin
Current through IS pin
Power Stage
Data Sheet
PROFET™+ 12V
9
Rev. 1.0, 2014-02-06
BTS5200-4EKA
General Product Characteristics
Table 2
Absolute Maximum Ratings (cont’d)1)
TJ = -40°C to 150°C; (unless otherwise specified)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
Maximum energy dissipation EAS
Single pulse (one channel)
–
–
50
mJ
IL(0) = 0.5 A
TJ(0) = 150 °C
VS = 13.5 V
P_4.1.23
Maximum Energy dissipation EAR
repetitive pulse
–
–
20
mJ
1Mio cycles
TA < 105 °C
VS = 13.5 V
IL(0) = 350 mA
P_4.1.25
VDS
–
–
41
V
–
P_4.1.26
I GND
-10
-150
–
10
20
mA
–
P_4.1.27
TJ
TSTG
-40
–
150
°C
–
P_4.1.28
-55
–
150
°C
–
P_4.1.30
VESD
VESD
-2
–
2
kV
5)
HBM
P_4.1.31
-4
–
4
kV
5)
HBM
P_4.1.32
VESD
VESD
-500
–
500
V
6)
CDM
P_4.1.33
V
6)
CDM
P_4.1.34
Voltage at power transistor
Currents
Current through ground pin
t < 2 min
Temperatures
Junction temperature
Storage temperature
ESD Susceptibility
ESD susceptibility (all pins)
ESD susceptibility OUT Pin
vs. GND and VS connected
ESD susceptibility
ESD susceptibility pin
(corner pins)
-750
–
750
1) Not subject to production test. Specified by design.
2) Hardware set-up in accordance to AEC Q100-012 and AEC Q101-006.
3) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.
4) EOL tests according to AECQ100-012. Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer
for short-circuit capability at the end of this document.
5) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001
6) “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Data Sheet
PROFET™+ 12V
10
Rev. 1.0, 2014-02-06
BTS5200-4EKA
General Product Characteristics
4.2
Functional Range
Table 3
Functional Range TJ = -40°C to 150°C; (unless otherwise specified)
Parameter
Symbol
Min.
Typ.
Max.
Nominal operating voltage
VNOM
VS(OP)
8
13.5
18
Minimum functional supply
voltage
VS(OP)_MIN
3.5
4.3
5
V
Undervoltage shutdown
VS(UV)
2.6
3.5
4.1
V
Extended operating voltage
Values
5
–
28
Unit
Note /
Test Condition
Number
V
–
P_4.2.1
V
2)
VIN = 4.5 V
RL = 25 Ω
VDS < 0.5 V
1)
VIN = 4.5 V
RL = 25 Ω
From IOUT = 0 A
to VDS < 0.5 V;
1)
VIN = 4.5 V
VDEN = 0 V
RL = 25 Ω
From VDS < 1 V;
P_4.2.2
P_4.2.3
P_4.2.4
to IOUT = 0 A
See Chapter 9.1
Undervoltage shutdown
hysteresis
VS(UV)_HYS
–
850
–
mV
2)
Operating current
All channels active
IGND_4
–
4
11
mA
P_4.2.6
VIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 18 V
Standby current for whole
device with load (ambiente)
IS(OFF)
–
0.1
0.5
µA
–
P_4.2.13
See Chapter 9.1
Maximum standby current for IS(OFF)_150
whole device with load
Standby current for whole
device with load, diagnostic
active
IS(OFF_DEN)
–
–
10
µA
–
1.2
–
mA
1)
VS = 18 V
P_4.2.7
VOUT = 0 V
VIN floating
VDEN floating
TJ ≤ 85 °C
VS = 18 V
VOUT = 0 V
VIN floating
VDEN floating
TJ = 150 °C
2)
VS = 18 V
VOUT = 0 V
VIN floating
VDEN = 5.5 V
P_4.2.10
P_4.2.8
1) Test at TJ = -40°C only
2) Not subject to production test. Specified by design.
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
PROFET™+ 12V
11
Rev. 1.0, 2014-02-06
BTS5200-4EKA
General Product Characteristics
4.3
Thermal Resistance
Table 4
Thermal Resistance
Parameter
Symbol
Junction to soldering point
RthJS
RthJA
Junction to ambient
All channels active
Values
Min.
Typ.
Max.
–
5
–
–
40
–
Unit
Note /
Test Condition
Number
K/W
1)
P_4.3.1
K/W
1)2)
P_4.3.2
1) Not subject to production test. Specified by design.
2) Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip +
package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where
applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.
4.3.1
PCB set up
70µm
1.5mm
35µm
0.3mm
Figure 4
PCB 2s2p.vsd
2s2p PCB Cross Section
Data Sheet
PROFET™+ 12V
12
Rev. 1.0, 2014-02-06
BTS5200-4EKA
General Product Characteristics
4.3.2
Thermal Impedence
Zth‐JA [K/W]
100
10
1s0p‐footprint
1s0p‐300mm²
1s0p‐600mm²
2s2p
1
1.00E‐04
1.00E‐03
1.00E‐02
1.00E‐01
1.00E+00
1.00E+01
1.00E+02
1.00E+03
Time [s]
Figure 5
Typical Thermal Impedance. 2s2p PCB set up according Figure 4
110
100
Rthja [K/W]
90
80
70
1s0p
60
50
40
0
footprint
Figure 6
100
200
300
400
500
600
700
Area [mm2]
Typical Thermal Resistance. PCB set-up 1s0p
Data Sheet
PROFET™+ 12V
13
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Power Stage
5
Power Stage
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.
5.1
Output ON-state Resistance
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 7
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 6.4.
400
350
350
RDS(ON) [mΩ ]
RDS(ON) [mΩ ]
300
250
300
250
200
200
150
150
100
-50
Figure 7
0
50
100
Junction Temperature TJ [°C]
150
0
5
10
15
20
25
Supply Voltage VS [V]
30
35
Typical ON-state Resistance
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which
is optimized in terms of EMC emission.
5.2
Turn ON/OFF Characteristics with Resistive Load
Figure 8 shows the typical timing when switching a resistive load.
IN
VIN_H
VIN_L
t
VOUT
dV/dt ON
dV/dt
t ON
90% VS
tOFF_delay
70% VS
30% VS
10% VS
OFF
tON_delay
tOFF
t
Switching times.vsd
Figure 8
Switching a Resistive Load Timing
Data Sheet
PROFET™+ 12V
14
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Power Stage
5.3
Inductive Load
5.3.1
Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device by
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 9 and Figure 10 for details. Nevertheless,
the maximum allowed load inductance is limited.
VS
ZDS(AZ)
VDS
INx
LOGIC
IL
VBAT
GND
VIN
OUTx
L, RL
VOUT
ZGND
Output clamp.vsd
Figure 9
Output Clamp
IN
t
V OUT
VS
t
V S-VDS(AZ)
IL
t
Switching an inductance.vsd
Figure 10
Switching an Inductive Load Timing
5.3.2
Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTS5200-4EKA. This energy can
be calculated with following equation:
V S – V DS ( AZ )
RL × IL ⎞
L
E = V DS ( AZ ) × ------ × -------------------------------× ln ⎛ 1 – -------------------------------+ IL
⎝
RL
RL
V S – V DS ( AZ )⎠
Data Sheet
PROFET™+ 12V
15
(1)
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Power Stage
Following equation simplifies under the assumption of RL = 0 Ω.
VS
2
1
⎞
E = --- × L × I × ⎛⎝ 1 – -------------------------------2
V S – V DS ( AZ )⎠
(2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 11 for the
maximum allowed energy dissipation as a function of the load current.
EAS (mJ)
100
10
1
0
0.5
1
1.5
2
IL(A)
2.5
3
3.5
Figure 11
Maximum Energy Dissipation Single Pulse, TJ_START = 150 °C; VS = 13.5V
5.4
Inverse Current Capability
4
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV
will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 12). The output
stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular
case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not
be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel
is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of
VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV
vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are
available.
Data Sheet
PROFET™+ 12V
16
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Power Stage
VBAT
VS
Gate driver
IL(INV)
OL
comp.
Device
logic
INV
Comp.
VINV
OUT
GND
IS
ZGND
inverse current.vsd
Figure 12
Inverse Current Circuitry
Data Sheet
PROFET™+ 12V
17
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Power Stage
5.5
Electrical Characteristics Power Stage
Table 5
Electrical Characteristics: Power Stage
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
ON-state resistance per
channel
Symbol
RDS(ON)_150
Values
Min.
Typ.
Max.
300
360
400
Unit
Note /
Test Condition
Number
mΩ
IL = IL4 = 0.5 A
VIN = 4.5 V
TJ = 150 °C
P_5.5.1
TJ = 25 °C
P_5.5.21
TA=85 °C
P_5.5.2
See Figure 7
ON-state resistance per
channel
RDS(ON)_25
–
200
–
mΩ
1)
Nominal load current
One channel active
IL(NOM)1
–
1
–
A
1)
Nominal load current
All channels active
IL(NOM)2
–
0.8
–
A
Output voltage drop limitation VDS(NL)
at small load currents
–
10
25
mV
IL = IL0 = 25 mA
See Chapter 9.3
P_5.5.4
TJ < 150 °C
P_5.5.3
Drain to source clamping
voltage
VDS(AZ) = [VS - VOUT]
VDS(AZ)
41
47
53
V
IDS = 20 mA
See Figure 10
See Chapter 9.1
P_5.5.5
Output leakage current TJ ≤
85 °C per channel
IL(OFF)
–
0.1
0.5
μA
2)
P_5.5.6
Output leakage current TJ =
150 °C per channel
IL(OFF)_150
–
–
2.5
μA
Inverse current capability
IL(NV)
dV/dtON
–
0.8
–
A
0.1
0.25
0.5
V/μs
VIN floating
VOUT = 0 V
TJ ≤ 85 °C
VIN floating
VOUT = 0 V
TJ = 150 °C
1)
VS< VOUTX
RL = 25 Ω
VS = 13.5 V
Slew rate
70% to 30% VS
-dV/dtOFF
0.1
0.25
0.5
V/μs
See Figure 8
See Chapter 9.1
P_5.5.12
Slew rate matching
dV/dtON - dV/dtOFF
∆dV/dt
-0.15
0
0.15
V/μs
P_5.5.13
Turn-ON time to VOUT = 90% tON
30
90
230
μs
P_5.5.14
Turn-OFF time to VOUT = 10% tOFF
30
90
230
μs
P_5.5.15
-50
5
50
μs
P_5.5.16
Turn-ON time to VOUT = 10% tON_delay
10
35
100
μs
P_5.5.17
Turn-OFF time to VOUT = 90% tOFF_delay
10
35
100
μs
P_5.5.18
Slew rate
30% to 70% VS
P_5.5.8
P_5.5.9
P_5.5.11
VS
VS
Turn-ON / OFF matching
tOFF - tON
∆tSW
VS
VS
Data Sheet
PROFET™+ 12V
18
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Power Stage
Table 5
Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Switch ON energy
Symbol
EON
Values
Min.
Typ.
Max.
–
210
–
Unit
Note /
Test Condition
Number
µJ
1)
P_5.5.19
RL = 25 Ω
VOUT = 90% VS
VS = 18 V
See Chapter 9.1
Switch OFF energy
EOFF
–
140
–
µJ
1)
RL = 25 Ω
VOUT = 10% VS
VS = 18 V
P_5.5.20
See Chapter 9.1
1) Not subject to production test, specified by design.
2) Test at TJ = -40°C only
Data Sheet
PROFET™+ 12V
19
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Protection Functions
6
Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction of
the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal
operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1
Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN
pins.
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the
BTS5200-4EKA to ensure switching OFF of channels.
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 13 sketches
the situation.
ZGND is recommended to be a diode in parallel to a resistor (1 kΩ).
ZIS(AZ)
VS
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DSEL0
R DSEL
DSEL1
R DSEL
DEN
R DEN
LOGIC
INx
R IN
IOUT(GND)
OUTx
ZDESD
GND
RIS
IS
ZGND
Loss of ground protection
.vsd
Figure 13
Loss of Ground Protection with External Components
6.2
Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON.
If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the
supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch
is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM
range. Figure 14 sketches the undervoltage mechanism.
Data Sheet
PROFET™+ 12V
20
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Protection Functions
VOUT
undervoltage behavior
.vsd
VS(UV)
Figure 14
Undervoltage Behavior
6.3
Overvoltage Protection
VS(OP)
VS
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 15
shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power
transistor switches ON and the voltage across the logic section is clamped. As a result, the internal ground
potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx, DSELx, and DEN rises almost
to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to
overvoltage, the BTS5200-4EKA remains ON. In the case the BTS5200-4EKA was OFF, prior to overvoltage, the
power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output
transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no
longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts
the short circuit robustness, as well as the maximum energy EAS capability. ZGND with a resistor (27 Ω) in series to
the diode will offer better results.
ISOV
ZIS(AZ)
VS
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DSEL0
R DSEL
DSEL1
R DSEL
DEN
R DEN
LOGIC
INx
R IN
OUTx
ZDESD
GND
R IS
ZGND
Overvoltage protection.vsd
Figure 15
Overvoltage Protection with External Components
Data Sheet
PROFET™+ 12V
21
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Protection Functions
6.4
Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in
this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins
has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 16 shows a
typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL,
RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used
to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL =
RIN = RSENSE = 4.7 kΩ. ZGND is recommended to be a 1 kΩ resistor in parallel to a diode.
During reverse polarity, no protection functions are available.
Micro controller
protection diodes
Z IS(AZ)
VS
ZD(AZ)
IS
RSENSE
ZDS(AZ)
VDS(REV)
DSEL0
RDSEL0
DSEL1
RDSEL1
DEN
R DEN
LOGIC
INx
R IN
-V S(REV)
IN0
OUTx
ZDESD
GND
IS
R IS
ZGND
Reverse Polarity.vsd
Figure 16
Reverse Polarity Protection with External Components
6.5
Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTS5200-4EKA offers
several protection mechanisms.
6.5.1
Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects
the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 17 shows the behavior of
the current limitation as a function of the drain to source voltage.
Data Sheet
PROFET™+ 12V
22
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Protection Functions
8
7
IL5(SC)
6
Current Limit IL(SC) (A)
typical
5
4
3
IL28(SC)
2
1
0
2
7
12
17
Drain Source Voltage VDS (V)
Figure 17
Current Limitation (typical behavior)
6.5.2
Temperature Limitation in the Power DMOS
22
27
current limitation _200m.vsd
Each channel incorporates an absolute (TJ(SC)) temperature sensor and a switch OFF timer that is started by an
overcurrent event. The activation of these protection mechanisms will cause an overheated channel to switch OFF
to prevent destruction. A temperature limitation switch OFF latches the output until the temperature has reached
an acceptable value. Figure 18 gives a sketch of the situation.
A retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is
switched ON again, if the IN pin signal is still high (restart behavior).
Data Sheet
PROFET™+ 12V
23
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Protection Functions
IN
t
IL
LOAD CURRENT LIMITATION PHASE
IL(x)SC
LOAD CURRENT BELOW
LIMITATION PHASE
IL(NOM)
t
TDMOS
ΔTJ(SW)
TJ(SC)
ΔTJ(SW)
ΔTJ(SW)
TA
tsIS(FAULT)
t
ΔTSTEP
IIS
tsIS(OT_blank)
IIS(FAULT)
IL( NOM) / kILIS
0A
V DEN
t
tsIS(OFF)
0V
t
Hard start.vsd
Figure 18
Overload Protection
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant
and cannot be described.
6.5.3
Short Circuit Appearance with Channels in Parallel
The four channels are not synchronised in the restart event. When the channels are in temperature limitation, the
channel which has cooled down the fastest doesn’t wait for the other to be cooled down as well to restart. Thus,
it is not recommended to use the device with channels in parallel.
Data Sheet
PROFET™+ 12V
24
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Protection Functions
6.6
Electrical Characteristics for the Protection Functions
Table 6
Electrical Characteristics: Protection
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
–
0.1
–
mA
1)2)
VS = 28 V
See Figure 13
P_6.6.1
200
650
700
mV
3)
P_6.6.2
Loss of Ground
Output leakage current while IOUT(GND)
GND disconnected
Reverse Polarity
Drain source diode voltage
during reverse polarity
VDS(REV)
IL = - 0.5 A
TJ = 150 °C
See Figure 16
Overvoltage
Overvoltage protection
VS(AZ)
41
47
53
V
ISOV = 5 mA
P_6.6.3
See Figure 15
Overload Condition
Load current limitation
IL5(SC)
5.6
7.3
9
A
4)
VDS = 5 V
See Figure 17 and
Chapter 9.3
P_6.6.4
Load current limitation
IL28(SC)
–
3
–
A
2)
VDS = 28 V
See Figure 17 and
Chapter 9.3
P_6.6.7
Short circuit average current
after several minutes of
thermal toggling
IL(RMS)
–
1
–
A
2)
VIN = 4.5 V
RSHORT = 100 mΩ
LSHORT = 5 µH
P_6.6.12
Thermal shutdown
temperature
TJ(SC)
150
170
200
°C
3) 5)
P_6.6.10
20
–
K
2)
Thermal shutdown hysteresis ΔTJ(SC)
–
1) All pins are disconnected except VS and OUT.
2)
3)
4)
5)
See Figure 18
See Figure 18
P_6.6.11
Not Subject to production test, specified by design
Test at TJ = +150°C only
Test at TJ = -40°C only
Functional test only
Data Sheet
PROFET™+ 12V
25
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
7
Diagnostic Functions
For diagnosis purpose, the BTS5200-4EKA provides a combination of digital and analog signals at pin IS. In case
the diagnostic is disabled via DEN, pin IS becomes high impedance. In case DEN is activated, the sense current
of the channel X is enabled/disabled via associated pins DSEL0 and DSEL1. Table 7 gives the truth table.
Table 7
Diagnostic Truth Table
DEN
DSEL1
DSEL0
IS0
IS1
IS2
IS3
0
don’t care
don’t care
Z
Z
Z
Z
1
0
0
IIS0
0
0
0
1
0
1
0
IIS1
0
0
1
1
0
0
0
IIS2
0
1
1
1
0
0
0
IIS3
7.1
IS Pin
The BTS5200-4EKA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at
OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic
mechanism is described on Figure 19. The accuracy of the sense current depends on temperature and load
current. The sense pin multiplexes the currents IIS(0), IIS(1), IIS(2) and IIS(3) via the pins DSEL0 and DSEL1. Thanks
to this multiplexing, the matching between kILISCHANNEL0, kILISCHANNEL1, kILISCHANNEL2 and kILISCHANNEL3 is optimized.
Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if
these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the
IS pin of the supplied device.
VS
I IS0 =
I L0 / k ILIS
IIS(FAULT)
IIS1 =
IL1 / kILIS
I IS2 =
I L2 / kILIS
IIS 3 =
IL3 / kILIS
ZIS(AZ)
0
0
IS
0
FAULT
1
1
1
0
DEN
1
FAULT
DSEL1
DSEL0
Figure 19
Sense schematic.vsd
Diagnostic Block Diagram
Data Sheet
PROFET™+ 12V
26
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
7.2
SENSE Signal in Different Operating Modes
Table 8 gives a quick reference for the state of the IS pin during device operation.
Table 8
Sense Signal, Function of Operation Mode
Operation Mode
Input level Channel X
DEN1)
Normal operation
OFF
H
Output Level Diagnostic Output
Z
Z
Short circuit to GND
~ GND
Z
Overtemperature
Z
Z
Short circuit to VS
IIS(FAULT)
Current limitation
VS
< VOL(OFF)
> VOL(OFF)2)
~ VINV
~ VS
< VS
Short circuit to GND
~ GND
Overtemperature TJ(SW)
event
Z
IIS(FAULT)
IIS(FAULT)
IIS = IL / kILIS
IIS(FAULT)
IIS(FAULT)
IIS(FAULT)
Short circuit to VS
VS
~ VS3)
~ VINV
~ VS5)
IIS < IL / kILIS
IIS < IIS(OL)
IIS < IIS(OL)4)
IS(OL) < IIS < IL / kILIS
Don’t care
Z
Open Load
Inverse current
Normal operation
ON
Open Load
Inverse current
Underload
Don’t care
1)
2)
3)
4)
5)
Don’t care
L
Z
The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pins.
Stable with additional pull-up resistor.
The output current has to be smaller than IL(OL).
After maximum tINV.
The output current has to be higher than IL(OL).
7.3
SENSE Signal in the Nominal Current Range
Figure 20 and Figure 21 show the current sense as a function of the load current in the power DMOS. Usually, a
pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit
the power losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal sense
current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full
temperature range at a defined current.
Data Sheet
PROFET™+ 12V
27
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
3
IIS =
2.5
IL
kILIS
kILIS4
IIS [mA]
2
1.5
1
kILIS3
0.5
kILIS2
kILIS1
min/max Sense Current
typical Sense Current
0
0
0.1
0.2
0.3
0.4
IL [A]
0.5
0.6
0.7
BTS5200-4EKA
Figure 20
Current Sense for Nominal Load
7.3.1
SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a
calibration on the application is possible. To avoid multiple calibration points at different load and temperature
conditions, the BTS5200-4EKA allows limited derating of the kILIS value, at a given point (IL3; TJ = +25 °C). This
derating is described by the parameter ∆kILIS. Figure 21 shows the behavior of the sense current, assuming one
calibration point at nominal load at +25 °C.
The blue line indicates the ideal kILIS ratio.
The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration
point at nominal temperature and nominal battery voltage.
The red lines indicate the kILIS accuracy without calibration.
Data Sheet
PROFET™+ 12V
28
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
550
calibrated k ILIS
min/max kILIS
500
typical kILIS
450
400
k ILIS
Calibration Point
350
300
250
200
150
0
0.05
0.1
0.15
0.2
0.25
IL [A]
0.3
0.35
0.4
0.45
0.5
BTS5200-4EKA
Figure 21
Improved Current Sense Accuracy with One Calibration Point
7.3.2
SENSE Signal Timing
Figure 22 shows the timing during settling and disabling of the SENSE.
VINx
t
ILx
tONx
tOFFx
tONx
90% of
IL static
t
VDEN
IIS
tsIS(LC)
tsIS(ON)
90% of
IIS static
tsIS(OFF)
t
tsIS(chC)
tsIS(ON_DEN)
t
VDSEL
t
VINy
t
ILy
tONy
t
current sense settling disabling time .vsd
Figure 22
Current Sense Settling / Disabling Timing
Data Sheet
PROFET™+ 12V
29
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
7.3.3
SENSE Signal in Open Load
7.3.3.1
Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power
DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case, the
SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL).
Figure 23 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue
curve shows the ideal current sense.
I IS
IIS(OL)
IL
IL(OL)
Sense for OL .vsd
Figure 23
Current Sense Ratio for Low Currents
7.3.3.2
Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be
taken into account. Figure 24 gives a sketch of the situation. Ileakage defines the leakage current in the complete
system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the
application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched
to the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be
used as well for short circuit to battery detection, see Chapter 7.3.4.
Data Sheet
PROFET™+ 12V
30
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
Vbat
SOL
VS
R OL
IIS(FAULT)
OL
comp.
OUT
IS
ILOFF
Ileakage
GND
Rleakage
VOL(OFF)
R PD
RIS
ZGND
Open Load in OFF.vsd
Figure 24
Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3
Open Load Diagnostic Timing
Figure 25 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open
load in OFF diagnosis request, otherwise the diagnosis can be wrong.
Load is present
Open load
VIN
VOUT
t
VS-VOL(OFF)
RDS(ON) x IL
shutdown with load
t
IOUT
IIS
tsIS(FAULT_OL_OFF)
t
tsIS(LC)
90% of IIIS(FAULT) static
Error Settling Disabling Time.vsd
Figure 25
t
Sense Signal in Open Load Timing
Data Sheet
PROFET™+ 12V
31
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
7.3.4
SENSE Signal in Short Circuit to VS
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTS5200-4EKA, which can be recognized at the current sense
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,
an external resistor to ground RSC_VS is required. Figure 26 gives a sketch of the situation.
Vbat
VS
IIS(FAULT)
VBAT
OL
comp.
IS
OUT
V OL(OFF)
GND
RIS
IS
ZGND
RSC_VS
Short circuit to Vs.vsd
Figure 26
Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5
SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the
absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal
shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has an thermal restart behavior, such that when the overtemperature or the exceed dynamic
temperature condition has disappeared, the DMOS is reactivated if the IN is still at logical level one. If the DEN
pin is activated, and DSEL pin is selected to the correct channel, the IS pin is not toggling with the restart
mechanism and remains to IIS(FAULT).
7.3.6
SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and
indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is not
exceeding the maximum value specified in Chapter 5.4.
Data Sheet
PROFET™+ 12V
32
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
7.4
Electrical Characteristics Diagnostic Function
Measurement setup used for kILIS (unless otherwise specified):
All channels are ON at the same time with equal IL.
Table 9
Electrical Characteristics: Diagnostics
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
–
6
V
Number
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS - VOL(OFF) 4
1)
VIN = 0 V
VDEN = 4.5 V
P_7.5.1
See Figure 25
Open load detection
threshold in ON state
IL(OL)
2
–
9
mA
VIN = VDEN = 4.5 V
IIS(OL) = 15 µA
P_7.5.2
See Figure 23
See Chapter 9.4
Sense Pin
IS pin leakage current when
sense is disabled
IIS_(DIS)
–
Sense signal saturation
voltage
VS VIS(RANGE)
1
–
1
–
3
μA
V
1)
VIN = 4.5 V
P_7.5.4
VDEN = 0 V
IL = IL4 = 0.5 A
3)
VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
P_7.5.6
See Chapter 9.4
Sense signal maximum
current in fault condition
IIS(FAULT)
6
15
30
mA
VIS = VIN = VDSEL = 0 V P_7.5.7
VOUT = VS > 10 V
VDEN = 4.5 V
See Figure 19
See Chapter 9.4
Sense pin maximum voltage
VIS(AZ)
41
47
53
V
IIS = 5 mA
P_7.5.3
See Figure 19
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
kILIS0
-50%
360
+50%
Current sense ratio
IL1 = 0.025 A
kILIS1
-35%
350
+35%
Current sense ratio
kILIS2
-22%
340
+22%
P_7.5.10
kILIS3
-18%
330
+18%
P_7.5.11
Current sense ratio
kILIS4
IL4 = 0.5 A
kILIS derating with current and ∆kILIS
-10%
320
+10%
P_7.5.12
-8
0
+8
Current sense ratio
IL0 = 10 mA
IL2 = 0.05 A
Current sense ratio
IL3 = 0.1 A
temperature
VIN = 4.5 V
VDEN = 4.5 V
P_7.5.8
See Figure 20
P_7.5.9
TJ = -40 °C; 150 °C
%
3)
kILIS4 versus kILIS3
See Figure 21
P_7.5.17
Diagnostic Timing in Normal Condition
Data Sheet
PROFET™+ 12V
33
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
Table 9
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Current sense settling time to tsIS(ON)
kILIS function stable after
positive input slope on both
INput and DEN
Current sense settling time
with load current stable and
transition of the DEN
tsIS(ON_DEN)
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
0
–
250
μs
3)
VDEN = VIN = 0 to
4.5 V
VS = 13.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL4 = 0.5 A
P_7.5.18
0
–
20
μs
1)
P_7.5.19
VIN = 4.5 V
Number
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL4 = 0.5 A
See Figure 22
Current sense settling time to tsIS(LC)
IIS stable after positive input
slope on current load
0
–
20
μs
1)
VIN = 4.5 V
P_7.5.20
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 0.1 A to IL =
IL4 = 0.5 A
See Figure 22
Diagnostic Timing in Open Load Condition
Current sense settling time to tsIS(FAULT_OL_ 0
IIS stable for open load
OFF)
detection in OFF state
–
100
μs
1)
VIN = 0V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 13.5 V
P_7.5.22
See Figure 25
200
450
μs
1)
VIN = 4.5V to 0
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 13.5 V
P_7.5.23
0
–
250
μs
1)2)
VIN = VDEN = 0 to
4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V
See Figure 18
P_7.5.24
–
350
–
μs
3)
P_7.5.32
Current sense settling time to tsIS(FAULT_OL_ 0
IIS stable for open load
ON_OFF)
detection in ON-OFF
transition
Diagnostic Timing in Overload Condition
Current sense settling time to tsIS(FAULT)
IIS stable for overload
detection
Current sense over
temperature blanking time
tsIS(OT_blank)
VIN = VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V to 0 V
See Figure 18
Data Sheet
PROFET™+ 12V
34
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Diagnostic Functions
Table 9
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Diagnostic disable time
DEN transition to
IIS < 50% IL /kILIS
Symbol
tsIS(OFF)
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
0
–
30
μs
1)
VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL4 = 0.5 A
Number
P_7.5.25
See Figure 22
Current sense settling time
from one channel to another
tsIS(ChC)
0
–
20
μs
VIN0 = VIN1 = 4.5 V
VDEN = 4.5 V
VDSEL = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL(OUT0) = IL4 = 0.5 A
IL(OUT1) == IL3= 0.1 A
P_7.5.26
See Figure 22
1) DSEL pin select channel 0 only.
2) Test at TJ = -40°C only
3) Not subject to production test, specified by design
Data Sheet
PROFET™+ 12V
35
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Input Pins
8
Input Pins
8.1
Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage
thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly
increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input
circuitry is compatible with PWM applications. Figure 27 shows the electrical equivalent input circuitry. In case the
pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an
input resistor.
IN
GND
Figure 27
Input Pin Circuitry
8.2
DEN / DSEL0,1 Pin
Input circuitry .vsd
The DEN / DSEL0,1 pins enable and disable the diagnostic functionality of the device. The pins have the same
structure as the INput pins, please refer to Figure 27.
8.3
Input Pin Voltage
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region,
set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown
and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a
hysteresis is implemented. This ensures a certain immunity to noise.
Data Sheet
PROFET™+ 12V
36
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Input Pins
8.4
Electrical Characteristics
Table 10
Electrical Characteristics: Input Pins
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Test Condition
Number
INput Pins Characteristics
Low level input voltage range VIN(L)
-0.3
–
0.8
V
See Chapter 9.5
P_8.4.1
High level input voltage range VIN(H)
2
–
6
V
See Chapter 9.5
P_8.4.2
P_8.4.3
Input voltage hysteresis
VIN(HYS)
–
250
–
mV
1)
Low level input current
IIN(L)
IIN(H)
1
10
20
µA
2
10
25
µA
VIN = 0.8 V
VIN = 5.5 V
See Chapter 9.5
High level input current
P_8.4.4
P_8.4.5
See Chapter 9.5
DEN Pin
Low level input voltage range VDEN(L)
-0.3
–
0.8
V
–
P_8.4.6
High level input voltage range VDEN(H)
2
–
6
V
–
P_8.4.7
P_8.4.8
P_8.4.9
Input voltage hysteresis
Low level input current
High level input current
VDEN(HYS)
IDEN(L)
IDEN(H)
–
250
–
mV
1)
1
10
20
µA
2
10
25
µA
VDEN = 0.8V
VDEN = 5.5 V
P_8.4.10
DSEL Pins
Low level input voltage range VDSEL(L)
-0.3
–
0.8
V
–
P_8.4.11
High level input voltage range VDSEL(H)
2
–
6
V
–
P_8.4.12
–
250
–
mV
1)
P_8.4.13
1
10
20
µA
P_8.4.14
2
10
25
µA
VDSEL = 0.8V
VDSEL = 5.5 V
Input voltage hysteresis
Low level input current
High level input current
VDSEL(HYS)
IDSEL(L)
IDSEL(H)
P_8.4.15
1) Not subject to production test, specified by design
Data Sheet
PROFET™+ 12V
37
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Characterization Results
9
Characterization Results
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed
at 8 V, 13.5 V and 18 V over temperature range. When there is no voltage dependency seen, only a single curve
is sketched.
9.1
General Product Characteristics
P_4.2.3
P_4.2.4
4
4.7
3.9
3.8
3.7
VS(UV) [V]
VS(OP)_MIN [V]
4.65
4.6
4.55
3.6
3.5
3.4
3.3
4.5
3.2
3.1
4.45
3
‐50
‐25
0
25
50
75
100 125 150
‐50
‐25
0
JunctionTemperature[°C] 50
75
100
125
150
JunctionTemperature[°C] Undervoltage Threshold VS(UV) = f(TJ)
Minimum Functional Supply Voltage
VS(OP)_MIN = f(TJ)
P_4.2.6
P_4.2.7, P_4.2.10
9
1.8
8
1.6
VS=8V
VS=13.5 V
1.4
7
VS=18V
1.2
6
IS(OFF)
IGND_4 [mA]
25
VS=8V
VS=13.5 V
5
VS=18V
1
0.8
0.6
4
0.4
3
0.2
0
2
‐50
‐25
0
25
50
75
100
125
‐50
150
‐25
Current Consumption for Whole Device with Load. All
Channels Active IGND_4 = f(TJ;VS)
Data Sheet
PROFET™+ 12V
0
25
50
75
100
125
150
JunctionTemperature[°C] JunctionTemperature[°C]
Standby Current for Whole Device with Load.
IS(OFF) = f(TJ;VS)
38
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Characterization Results
9.2
Power Stage
P_5.5.4
P_5.5.5
14
46.3
13
46.2
12
46.1
VS=13.5 V
VS=18V
46
10
9
VS=8V
8
VS=13.5 V
7
VS=18V
VDS(AZ)
VDS(NL) [mV]
11
VS=8V
45.9
45.8
45.7
6
45.6
5
45.5
4
45.4
‐50
‐25
0
25
50
75
100
125
150
‐50
‐25
0
JunctionTemperature[°C]
Output Voltage Drop Limitation at Low Load Current
VDS(NL) = f(TJ;VS)
50
75
100 125 150
Drain to Source Clamp Voltage VDS(AZ) = f(TJ)
P_5.5.12
0.35
0.24
0.3
0.22
0.25
0.2
‐dV/dtOFF [V/μs]
P_5.5.11
dV/dtON [V/μs]
25
JunctionTemperature[°C]
0.2
0.15
VS=8V
0.1
0.18
VS=8V
0.16
VS=13.5 V
VS=18V
0.14
VS=13.5 V
0.05
0.12
VS=18V
0.1
0
‐50
‐25
0
25
50
75
100
125
150
‐50
JunctionTemperature[°C] Slew Rate at Turn ON
dV/dtON = f(TJ;VS), RL = 25 Ω
Data Sheet
PROFET™+ 12V
‐25
0
25
50
75
100
125
150
JunctionTemperature[°C]
Slew Rate at Turn OFF
- dV/dtOFF = f(TJ;VS), RL = 25 Ω
39
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Characterization Results
P_5.5.14
P_5.5.15
130
180
VS=8V
VS=13.5 V
120
VS=13.5 V
140
VS=18V
VS=18V
120
tOFF [us]
110
tON [us]
VS=8V
160
100
90
100
80
60
40
80
20
70
0
‐50
‐25
0
25
50
75
100
125
150
‐50
‐25
JunctionTemperature[°C] 0
25
50
75
100
Turn ON TON = f(TJ;VS), RL = 25 Ω
Turn OFF TOFF = f(TJ;VS), RL = 25 Ω
P_5.5.19
P_5.5.20
300.00
250.00
150
VS=8V
VS=8V
VS=13.5 V
200.00
125
JunctionTemperature[°C]
VS=13.5 V
250.00
VS=18V
VS=18V
150.00
EOF [uJ]
EON [uJ]
200.00
100.00
150.00
100.00
50.00
50.00
0.00
0.00
‐50
‐25
0
25
50
75
100 125 150
‐50
JunctionTemperature[°C] Switch ON Energy EON = f(TJ;VS), RL = 25 Ω
Data Sheet
PROFET™+ 12V
‐25
0
25
50
75
100 125 150
JunctionTemperature[°C]
Switch OFF Energy EOFF = f(TJ;VS), RL = 25 Ω
40
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Characterization Results
9.3
Protection Functions
P_6.6.4
P_6.6.7
9
5
4.5
8.5
IL28(SC) [A]
IL5(SC) [A]
4
8
7.5
7
3.5
3
2.5
2
6.5
1.5
6
1
‐50
‐25
0
25
50
75
100 125 150
‐50
JunctionTemperature[°C] Overload Condition in the Low Voltage Area
IL5(SC) = f(TJ);
Data Sheet
PROFET™+ 12V
‐25
0
25
50
75
100 125 150
JunctionTemperature[°C] Overload Condition in the High Voltage Area
IL28(SC) = f(TJ);
41
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Characterization Results
9.4
Diagnostic Mechanism
P_7.5.2
3
7
2.5
6.5
2
6
VS=8V
VS=13.5 V
1.5
IL(OL) [mA]
IIS [uA]
VS=18V
VS=8V
VS=13.5V
1
VS=18V
5.5
5
4.5
0.5
4
0
‐50
‐25
0
25
50
75
100
125
‐50
150
‐25
0
25
50
75
100
125
150
JunctionTemperature[°C] JunctionTemperature[°C] Current Sense at no Load IIS
= f(TJ), IL = 0
Open Load Detection ON State Threshold IIL(OL)
= f(TJ;VS)
P_7.5.3
P_7.5.7
44.6
VS=13.5 V
44.4
20
VS=18V
IIS(FAULT) [mA]
44.3
VIS(RANGE) [V]
25
VS=8V
44.5
44.2
44.1
44
43.9
15
VS=8V
10
VS=13.5 V
VS=18V
43.8
5
43.7
43.6
0
43.5
‐50
‐25
0
25
50
75
100
125
‐50
150
Sense Signal Maximum Voltage (Clamping Voltage)
Data Sheet
PROFET™+ 12V
0
25
50
75
100
125
150
JunctionTemperature[°C] JunctionTemperature[°C] VIS(AZ) = f(TJ)
‐25
Sense Signal Maximum Current in Fault Condition
IS(FAULT) = f(TJ)
42
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Characterization Results
9.5
Input Pins
P_8.4.1
P_8.4.2
1.36
1.57
VS=8V
1.34
1.32
VS=13.5 V
1.55
VS=18V
1.3
VS=18V
1.54
VVIN(H) [V]
VVIN(L) [V]
VS=8V
1.56
VS=13.5 V
1.28
1.26
1.24
1.53
1.52
1.51
1.22
1.5
1.2
1.49
1.18
1.48
1.47
1.16
‐50
‐25
0
25
50
75
100
125
‐50
150
‐25
0
25
Input Voltage Threshold
VVIN(L)= f(TJ;VS)
Input Voltage Threshold
VVIN(H)= f(TJ;VS)
P_8.4.3
P_8.4.5
75
100
125
150
16
350
14
300
12
IIN(H) [uA]
250
VIN(HYS) [mV]
50
JunctionTemperature[°C] JunctionTemperature[°C] 200
VS=8V
150
VS=13.5 V
10
8
VS=8V
VS=13.5 V
6
VS=18V
VS=18V
100
4
50
2
0
‐50
‐25
0
25
50
75
100
125
0
150
‐50
JunctionTemperature[°C] Input Voltage Hysteresis
VIN(HYS) = f(TJ;VS)
Data Sheet
PROFET™+ 12V
‐25
0
25
50
75
100
125
150
JunctionTemperature[°C] Input Current High Level
IIN(H) = f(TJ)
43
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Application Information
10
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
Voltage Regulator
OUT
VS
GND
Z
CVS
VS
VDD
R DEN
DEN
I/O
R DSEL
DSEL0
I/O
OUT0
R PD
I/O
86
30
85
87
OUT1
DSEL1
R DSEL
Relay
RPD
Micro I/O
controller
I/O
R IN
IN0
R IN
IN1
+
OUT2
E.C.U.
R IN
IN2
I/O
R IN
IN3
OUT3
IS
R SENSE
GND
R5W
CSENSE
LED
R IS
GND
D
R GND
Figure 28
OUT4
RPD
A/D
R LED
I/O
R PD
OUT3
Application Diagram with BTS5200-4EKA
Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
Table 11
Bill of Material
Reference
Value
Purpose
RIN
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
Guarantee BTS5200-4EKA channels OFF during loss of ground
RDSEL
RDEN
RPD
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
47 kΩ
Polarization of the output for short circuit to VS detection
Improve BTS5200-4EKA immunity to electomagnetic noise
RIS
RSENSE
1.2 kΩ
Sense resistor
4.7 kΩ
Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro
controller specification.
Data Sheet
PROFET™+ 12V
44
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Application Information
Table 11
Bill of Material (cont’d)
Reference
Value
Purpose
CSENSE
RLED
RGND
100 pF
Sense signal filtering.
680 Ω
Overvoltage protection of the LED. Value to be tuned with LED specification.
1 kΩ
Protection of the BTS5200-4EKA during loss of inductive load
D
BAS21
Protection of the BTS5200-4EKA during reverse polarity
Z
36 V Zener
diode
Protection of the device during overvoltage
CVS
100 nF
Filtering of voltage spikes at the battery line
Data Sheet
PROFET™+ 12V
45
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Application Information
10.1
Further Application Information
Please contact us to get
•
•
Existing App. Notes
For further information you may visit http://www.infineon.com/profet
Data Sheet
PROFET™+ 12V
46
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Package Outlines
11
Package Outlines
0.35 x 45˚
0.41±0.09
0˚...8˚
C
2)
0.2
M
0.19 +0.06
0.1 C D 2x
8˚ MAX.
0.08 C
Seating Plane
C A-B D 14x
0˚...8˚
0.64 ±0.25
6 ±0.2
D
0.2
8˚ MAX.
1.27
1.7 MAX.
0.2 -0.1
8˚ MAX.
Stand Off
(1.47)
0.1+0
-0.1
3.9 ±0.11)
M
D
Bottom View
14
8
1
1
7
14
7
8
2.65 ±0.1
6.4 ±0.1
A
B
8.65 ±0.1
Index Marking
0.1 C A-B 2x
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion of 0.13 max.
3) JEDEC reference MS-012 variation BB
Figure 29
GPS01207
PG-DSO-14-48-EP (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
PROFET™+ 12V
47
Rev. 1.0, 2014-02-06
BTS5200-4EKA
Revision History
12
Revision History
Revision Date
Changes
1.0
Creation of the document
2014-02-06
Data Sheet
PROFET™+ 12V
48
Rev. 1.0, 2014-02-06
Edition 2014-02-06
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Legal Disclaimer for short-circuit capability
Infineon disclaims any warranties and liabilities, whether expressed nor implied, for any short-circuit failures below
the threshold limit.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.