Datasheet, Rev. 1.0, Aug. 2008 BTS50080-1TEA Smart High-Side Power Switch PROFET™ One Channel Automotive Power Smart High-Side Power Switch BTS50080-1TEA Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 2.1 2.2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Assignment BTS50080-1TEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 4.1 4.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 5.1 5.2 5.3 5.3.1 5.4 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output On-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output Inductive Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short circuit impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection - Reversave™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Vbb Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7.1 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Datasheet 2 15 15 16 17 18 18 18 19 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch PROFET™ One Channel 1 BTS50080-1TEA Overview Features • • • • • • • • • • Part of scalable product family Load current sense Reversave™ Very low standby current Current controlled input pin Improved electromagnetic compatibility (EMC) Fast demagnetization of inductive loads Stable behavior at under-voltage Green Product (RoHS compliant) AEC Qualified PG-TO252-5-11 Vbb(on) Minimum overvoltage protection VON(CL) Maximum on-state resistance at 150°C RDS(ON) Nominal load current IL(nom) Minimum load current limitation peak ILpeak(SC) Maximum stand-by current for whole device with load at Tj = 25 °C Ibb(OFF) Operating voltage 5.5 .. 30 V 39 V 16 mΩ 10 A 70 A 6 µA The BTS50080-1TEA is a one channel high-side power switch in PG-TO252-5-11 package providing embedded protective functions. The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on Smart SIPMOS chip on chip technology. The BTS50080-1TEA has a current controlled input and offers a diagnostic feedback with load current sense and a defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown. Type Package Marking BTS50080-1TEA PG-TO252-5-11 S50080A Datasheet 3 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Overview Protective Functions • • • • • • • • • • Reversave™, channel switches on in case of reverse polarity Reverse battery protection without external components Short circuit protection with latch Overload protection Multi-step current limitation Thermal shutdown with restart Overvoltage protection (including load dump) Loss of ground protection Loss of Vbb protection (with external diode for charged inductive loads) Electrostatic discharge protection (ESD) Diagnostic Functions • • Proportional load current sense (with defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown) Open load detection in ON-state by load current sense Applications • • • • µC compatible high-side power switch with diagnostic feedback for 12 V grounded loads All types of resistive, inductive and capacitive loads Most suitable for loads with high inrush currents, so as lamps Replaces electromechanical relays, fuses and discrete circuits Datasheet 4 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Block Diagram and Terms 2 Block Diagram and Terms 2.1 Block Diagram logic IC base chip Rbb Vbb voltage sensor over temperature IIN IS VIN gate control & charge pump driver logic current limitation OUT load current sense I IS IL forward voltage drop detection LOAD VIS ESD IN T clamp for inductive load RIS Overview .emf Figure 1 Block Diagram 2.2 Terms Following figure shows all terms used in this data sheet. V bb V bIN V bIS Ibb IIN V IN IN V ON, VOFF VBB BTS50080-1TEA R IN IIS IS OUT V IS IL V OUT RIS Terms.emf Figure 2 Datasheet Terms 5 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Pin Configuration 3 Pin Configuration 3.1 Pin Assignment BTS50080-1TEA TAB IS OUT 4 5 V bb IN 2 3 OUT 1 Vbb TO252-5 .emf Figure 3 Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Function 1 OUT Output; output to the load; pin 1 and 5 must be externally shorted.1) 2 IN Input; activates the power switch if shorted to ground. 3 Vbb Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted. 4 IS Sense Output; Diagnostic feedback; provides at normal operation a sense current proportional to the load current; in case of overload, overtemperature and/or short circuit a defined current is provided (see Table 1 “Truth Table” on Page 21). 5 OUT Output; output to the load; pin 1 and 5 must be externally shorted.1) TAB Vbb Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted. 1) Not shorting all outputs will considerably increase the on-state resistance, reduce the peak current capability, the clamping capability and decrease the current sense accuracy. Datasheet 6 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = 25°C (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Unit Conditions Max. Supply Voltages 4.1.1 4.1.2 Vbb Supply voltage for short circuit protection Vbb(SC) Supply voltage -16 38 V – 0 30 V – – 45 V RI = 2 Ω, RL = 1.5 Ω -16 63 V – -140 15 mA – -16 63 V – -140 15 mA – -20 20 V/µs – IL EAS - ILx(SC) A – - 0.3 J Vbb = 12 V, IL(0) = 20 A, Tj(0) = 150°C Tj Tstg -40 150 °C – -55 150 °C – kV -2 -2 -4 2 2 4 according to EIA/JESD 22-A 114B (single pulse)2) 4.1.3 Supply Voltage for Load Dump protection3) Vbb(LD) Logic Pins 4.1.4 Voltage at input pin 4.1.5 Current through input pin 4.1.6 Voltage at current sense pin 4.1.7 Current through sense pin 4.1.8 Input voltage slew rate 4) VbIN IIN VbIS IIS dVbIN/dt Power Stages 4.1.9 Load current 5) 4.1.10 Maximum energy dissipation per channel (single pulse) Temperatures 4.1.11 Junction temperature 4.1.12 Storage temperature ESD Susceptibility 4.1.13 ESD susceptibility HBM Pin 2 (IN) Pin 4 (IS) Pin1/5 (OUT) VESD 1) 2) 3) 4) Not subject to production test, specified by design. Short circuit is defined as a combination of remaining resistances and inductances. See Figure 13. Load Dump is specified in ISO 7637, RI is the internal resistance of the Load Dump pulse generator. Slew rate limitation can be achieved by means of using a series resistor for the small signal driver or in series in the input path. A series resistor RIN in the input path is also required for reverse operation at Vbb ≤ -16V. See also Figure 14. 5) Current limitation is a protection feature. Operation in current limitation is considered as “outside” normal operating range. Protection features are not designed for continuous repetitive operation. Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Datasheet 7 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA General Product Characteristics Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Pos. 4.2.1 4.2.2 Thermal Resistance Parameter Symbol 1) Junction to Case 1) Junction to Ambient free air device on small PCB 2) device on standard PCB3) Limit Values Min. Typ. Max. – - 1.1 - 80 45 22 - RthJC RthJA Unit Conditions K/W – K/W – 1) Not subject to production test, specified by design. 2) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm thick) for Vbb connection. PCB is vertical without blown air. 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Datasheet 8 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Power Stages 5 Power Stages The power stage is built by a N-channel vertical power MOSFET (DMOS) with charge pump. 5.1 Input Circuit Figure 4 shows the input circuit of the BTS50080-1TEA. The current source to Vbb ensures that the device switches off in case of open input pin. The zener diode protects the input circuit against ESD pulses. VbIN Rbb IIN IN Vbb VZ,IN I VIN Input.emf Figure 4 Input Circuit A high signal at the required external small signal transistor pulls the input pin to ground. A logic supply current IIN is flowing and the power DMOS switches on with a dedicated slope, which is optimized in terms of EMC emission. IIN VOUT tON tOFF (dV/dt)ON (dV/dt)OFF t 90% 50% 25% 10% t Figure 5 Switching a Load (resistive) 5.2 Output On-State Resistance SwitchOn.emf The on-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature Tj. Figure 6 shows these dependencies for the typical on-state resistance. The voltage drop in reverse polarity mode is described in Section 6.3. Datasheet 9 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Power Stages ȍ ȍ Figure 6 Typical On-State Resistance Vbb = 12 V Tj = 25°C ≥ Figure 7 Typical Output Voltage Drop Limitation 5.3 Output Inductive Clamp When switching off inductive loads, the output voltage VOUT drops below ground potential due to the involved inductance ( -diL/dt = -vL/L ; -VOUT ≅ -VL ). Datasheet 10 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Power Stages V bb VON VBB IL OUT V OUT L, RL OutputClamp .emf Figure 8 Output Clamp To prevent destruction of the device, there is a voltage clamp mechanism implemented that keeps the voltage drop across the device at a certain level (VON(CL)). See Figure 8 and Figure 9 for details. The maximum allowed load inductance is limited. V OUT ON OFF Vbb t VON(CL) V OUT(CL) IL t Figure 9 Switching an Inductance 5.3.1 Maximum Load Inductance InductiveLoad.emf While de-energizing inductive loads, energy has to be dissipated in the BTS50080-1TEA. This energy can be calculated via the following equation: E V bb – V ON ( CL ) RL ⋅ IL L = V ON ( CL ) ⋅ ------------------------------------ ⋅ ln 1 + ---------------------------------- + I L ⋅ ----- R RL V ON(CL) – V bb L In the event of de-energizing very low ohmic inductances (RL≈0) the following, simplified equation can be used: E V ON(CL) 1 = --- LI L 2 ⋅ ----------------------------------V ON(CL) – V bb 2 The energy, which is converted into heat, is limited by the thermal design of the component. For given starting currents the maximum allowed inductance is therefore limited. See Figure 10 for the maximum allowed inductance at Vbb=12V. Datasheet 11 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Power Stages Vbb = 12 V Tj(o) ≤ 150°C L 10 mH 1 0,1 0,01 1 Figure 10 Datasheet 10 A 100 IL Maximum load inductance for single pulse, Tj(0) ≤ 150°C. 12 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Power Stages 5.4 Electrical Characteristics Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions Max. General 5.4.1 Operating voltage 1) 5.4.2 Undervoltage shutdown 2) 5.4.3 Undervoltage restart of charge pump 5.4.4 Operating current 5.4.5 Stand-by current Tj = -40 °C, Tj = 25 °C Tj ≤120 °C2) Tj = 150 °C Vbb(on) VbIN(u) Vbb(ucp) 5.5 - 30 V - 2.5 3.5 V VIN = 0 V Tj = 25 °C - 4 5.5 V – IIN Ibb(OFF) - 1.4 2.2 mA – µA IIN = 0 A - 3 3 6 6 6 14 Input characteristics 5.4.6 Input current for turn-on IIN(on) - 1.4 2.2 mA VbIN ≥ Vbb(ucp) - VIN 5.4.7 Input current for turn-off IIN(off) - - 30 µA – mΩ - 8 14 10 18 16 22 VIN = 0 V, IL = 7.5 A, Output characteristics 5.4.8 On-state resistance Tj = 25 °C Tj = 150 °C Vbb = 5.5 V, Tj = 25 °C Vbb = 5.5 V, Tj = 150 °C RDS(ON) 5.4.9 Output voltage drop limitation at small load currents VON(NL) - 30 65 5.4.10 Nominal load current (Tab to pin 1 and 5) 3) 4) IL(nom) - 10 5.4.11 Output clamp VON(CL) 39 42 5.4.12 Inverse current output voltage drop 2) 5) (Tab to pin 1 and 5) Tj = 25 °C Tj = 150 °C -VON(inv) 5.4.13 Turn-on time to 90% VOUT 5.4.14 5.4.15 (Tab to pin 1 and 5) mV – - A - V Ta = 85 °C, VON ≤ 0.5 V, Tj ≤ 150 °C IL = 40 mA, Tj = 25 °C IL = -7.5 A, RIS = 1 kΩ mV - 700 300 - tON - 300 500 µs RL = 2.2 Ω Turn-off time to 10% VOUT tOFF - 300 500 µs RL = 2.2 Ω Turn-on delay after inverse operation 2) td(inv) - 1 - ms Vbb > VOUT, VIN(inv) = VIN(fwd) = 0V Timings Datasheet 13 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Power Stages Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions Max. 5.4.16 Slew rate On 25% to 50% VOUT (dV / dt)ON - 0.3 0.5 V/µs RL = 2.2 Ω 5.4.17 Slew rate Off 50% to 25% VOUT -(dV/dt)OFF - 0.3 0.6 V/µs RL = 2.2 Ω 1) Please mind the limitations of the embedded protection functions. See Chapter 4.1 and Chapter 6 for details. 2) Not subject to production test, specified by design 3) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm thick) for Vbb connection. PCB is vertical without blown air. 4) Not subject to production test, parameters are calculated from RDS(ON) and Rth 5) During inverse operation (IL < 0 A, VbIN > 0 V), a current through the intrinsic body diode causing a voltage drop of VON(inv) results in a delayed switch on with a time delay td(inv) after the transition from inverse to forward operation. A sense current IIS(fault) can be provided by the pin IS until standard forward operation is reached. Note: Characteristics show the deviation of parameter at the given supply voltage and junction temperature. Typical values show the typical parameters expected from manufacturing. Datasheet 14 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Protection Functions 6 Protection Functions The device provides embedded protective functions. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are neither designed for continuous nor repetitive operation. 6.1 Overload Protection The load current IL is limited by the device itself in case of overload or short circuit to ground. There are multiple steps of current limitation ILx(SC) which are selected automatically depending on the voltage drop VON across the power DMOS. Please note that the voltage at the OUT pin is Vbb - VON. Figure 11 shows the dependency for a typical device. Figure 11 Typical Current Limitation Depending on the severity of the short condition as well as on the battery voltage the resulting voltage drop across the device varies. Whenever the resulting voltage drop VON exceeds the short circuit detection threshold VON(SC), the device will switch off immediately and latch until being reset via the input. The VON(SC) detection functionality is activated, when VbIN > 10 V typ. and the blanking time td(SC1) expired after switch on. In the event that either the short circuit detection via VON(SC) is not activated or that the on chip temperature sensor senses overtemperature before the blanking time td(SC1) expired, the device switches off resulting from overtemperature detection. After cooling down with thermal hysteresis, the device switches on again. The device will react as during normal switch on triggered by the input signal. Please refer to Figure 12 and Figure 19 for details. Datasheet 15 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Protection Functions VON(SC) detection Overtemperature detection IIN IIN t VON t IL V ONx > VON(SC) t ILx(SC) IL t Τj tm td(SC1) thermal hysteresis t t Over_Temp.emf V_ON_detect .emf Figure 12 Overload Behavior 6.2 Short circuit impedance The capability to handle single short circuit events depends on the battery voltage as well as on the primary and secondary short impedance. Figure 13 outlines allowable combinations for a single short circuit event of maximum, secondary inductance for given secondary resistance. L SC 5uH 10mΩ Vbb IN OUT LSC PROFET R SC V bb = 16V 18V 15 24V 30V µH 12,5 10 7,5 IS V bb SHORT CIRCUIT LO AD 5 2,5 0 short_circuit.emf Figure 13 Datasheet 0 50 100 150 200 mΩ 250 R SC Short circuit 16 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Protection Functions 6.3 Reverse Polarity Protection - Reversave™ The device can not block a current flow in reverse polarity condition. In order to minimize power dissipation, the device offers Reversave™ functionality. In reverse polarity condition the channel will be switched on provided a sufficient gate to source voltage is generated VGS ≈ VRbb. Please refer to Figure 14 for details. -Vbb IS -I IN D RIS -IL -IIS signal ground Figure 14 Vbb LOAD IN RIN Rbb Logic IRbb power ground Reverse.emf Reverse battery protection Additional power is dissipated by the integrated Rbb resistor. Use following formula for estimation of overall power dissipation Pdiss(rev) in reverse polarity mode. 2 2 P diss(rev) ≈ R ON(rev) ⋅ I L + R bb ⋅ I Rbb For reverse battery voltages up to Vbb < 16 V the pin IN or the pin IS should be low ohmic connected to signal ground. This can be achieved e.g. by using a small signal diode D in parallel to the input switch or by using a small signal MOSFET driver. For reverse battery voltages higher then Vbb = 16 V an additional resistor RIN is recommended. The overall current through Rbb should not be above 80 mA. 1 1 0.08A --------- + -------- = ------------------------------V bb – 12V R IN R IS Note: No protection mechanism is active during reverse polarity. The IC logic is not functional. Datasheet 17 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Protection Functions 6.4 Overvoltage Protection Beside the output clamp for the power stage as described in Section 5.3 there is a clamp mechanism implemented for all logic pins. See Figure 15 for details. Vbb Logic VZ,IS VZ,IN Rbb IN IS Figure 15 Overvoltage Protection 6.5 Loss of Ground Protection OUT OverVoltage .emf In case of complete loss of the device ground connections the BTS50080-1TEA securely changes to or remains in off state. 6.6 Loss of Vbb Protection In case of complete loss of Vbb the BTS50080-1TEA remains in off state. In case of loss of Vbb connection with charged inductive loads a current path with load current capability has to be provided, to demagnetize the charged inductances. It is recommended to use a diode, a Z-diode, or a varistor (VZL+VD < 30 V or VZb+VD < 16 V if RIN = 0). For higher clamp voltages currents through IN and IS have to be limited to -140 mA. Please refer to Figure 16 for details. V bb IS VD VZb VD RIN RIS inductive LOAD Datasheet IN IS RIN VZL Vbb_disconnect_A.emf Figure 16 R bb Vbb Logic IN Vbb Vbb Logic Rbb R IS inductive LOAD Vbb_disconnect_B.emf Loss of Vbb 18 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Protection Functions 6.7 Electrical Characteristics Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions A VON = 1.5 V, (Tab to pin 1 and 5) A VON = 12 V, tm = 170 µs, Max. Overload Protection Load current limitation peak1) 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C ILpeak(SC) Load current limitation 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C IL12(SC) Load current limitation1) 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C IL18(SC) Load current limitation 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C IL24(SC) Load current limitation1) 2) Tj = -40 °C Tj = +25 °C Tj = +150 °C IL30(SC) 6.7.6 Short circuit shutdown detection voltage 1) 6.7.7 6.7.8 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.9 70 180 125 90 220 - 45 80 75 60 110 - 33 60 55 50 80 - 20 40 40 35 60 - 15 25 25 25 40 - VON(SC) 2.5 3.5 Short circuit shutdown delay after input current pos. slope3) td(SC1) 350 Thermal shut down temperature Tj(SC) 150 Thermal hysteresis 1) (Tab to pin 1 and 5) A VON = 18 V, (Tab to pin 1 and 5) A VON = 24 V, tm = 170 µs, (Tab to pin 1 and 5) A VON = 30 V, (Tab to pin 1 and 5) 4.5 V 650 1200 µs VbIN > 10 V typ., Tj = 25 °C VON > VON(SC) 175 - °C - - K - mΩ VIN = 0 V, IL = -7.5 A, RIS = 1 kΩ, 1) ∆ Tj - 10 Reverse Polarity 6.7.10 6.7.11 On-State resistance in case of reverse polarity Vbb = -8 V, Tj =25 °C 1) Vbb = -8 V, Tj =150 °C 1) Vbb = -12 V, Tj =25 °C Vbb = -12 V, Tj =150 °C RON(rev) Integrated resistor in Vbb line Rbb - 9.5 16 9 15 20 18 - 100 150 (pin 1 and 5 to TAB) Ω Tj = 25 °C V Ibb = 15 mA Overvoltage 6.7.12 Overvoltage protection Input pin Sense pin VZ VZ,IN VZ,IS 63 67 - V 63 67 - V 1) Not subject to production test, specified by design Datasheet 19 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Protection Functions 2) Short circuit current limit for max. duration of td(SC1), prior to shutdown, see also Figure 12. 3) min. value valid only if input “off-signal” time exceeds 30 µs Datasheet 20 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Diagnosis 7 Diagnosis For diagnosis purpose, the BTS50080-1TEA provides an enhanced sense signal at the pin IS. The pin IS provides during normal operation a sense current, which is proportional to the load current as long as VbIS > 5 V. The ratio of the output current is defined as kILIS = IL/IIS. During switch-on no current is provided, until the forward voltage drops below VON < 1 V typ. The output sense current is limited to IIS(lim). The pin IS provides in case of any fault conditions a defined fault current IIS(fault) as long as VbIS > 8 V. Fault conditions are overcurrent (VON > 1 V typ.), current limit or overtemperature switch off. The pin IS provides no current during open load in ON and de-energisation of inductive loads. Vb,IS Vbb R bb IIS VZ,IS I IS(fault) IS VIS R IS Sense.emf Figure 17 Block Diagram: Diagnosis Table 1 Truth Table Parameter Input Current Level 1) Output Level Current Sense IIS Normal operation L H1) L H ≈ 0 (IIS(LL)) nominal Overload L H L H ≈ 0 (IIS(LL)) Short circuit to GND L H L L Overtemperature L H L L Short circuit to Vbb L H H H Open load L H Z1) H IIS(fault) ≈ 0 (IIS(LL)) IIS(fault) ≈ 0 (IIS(LL)) IIS(fault) ≈ 0 (IIS(LL)) < nominal2) ≈ 0 (IIS(LL)) ≈ 0 (IIS(LH)) 1) H = “High” Level, L = “Low” Level, Z = high impedance, potential depends on external circuit 2) Low ohmic short to Vbb may reduce the output current IL and therefore also the sense current IIS. The accuracy of the provided current sense ratio (kILIS = IL / IIS) depends on the load current. Please refer to Figure 18 for details. A typical resistor RIS of 1 kΩ is recommended. Datasheet 21 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Diagnosis 25000 k ILIS 20000 15000 max. 10000 typ. min. 5000 0 0 Figure 18 5 10 15 20 25 A 30 IL Current sense ratio kILIS1) Details about timings between the diagnosis signal IIS, the forward voltage drop VON and the load current IL in ONstate can be found in Figure 19. Note: During operation at low load current and at activated forward voltage drop limitation the “two level control” of VON(NL) can cause a sense current ripple synchronous to the “two level control” of VON(NL) . The ripple frequency increases at reduced load currents. IIN normal operation VON VON<1V typ. IL I L1 IIS I IS1 0.9*I IS1 t son(IS) Figure 19 I IN VON>1V typ. IL2 IIS2 IIS(lim) I IS(fault) t VON t IL t IIS short VON>VON(SC) over-temperature t I Lx(SC) IIS(fault) t VON<1V typ. IL I IS(fault) t IIS(LL) tslc(IS) t tdelay(fault) t SwitchOn.emf Timing of Diagnosis Signal in ON-state 1) The curves show the behavior based on characterization data. The marked points are guaranteed in this Datasheet in Section 7.1 (Position 7.1.1). Datasheet 22 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Diagnosis 7.1 Electrical Characteristics Vbb = 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C Pos. Parameter Symbol Limit Values Min. Typ. - 10 - 8.3 7.5 7.1 5 9.7 9.7 9.7 12 11 11.4 13.4 21 Unit Conditions k VIN = 0 V, IIS < IIS(lim) - - VON < 1 V, typ. VON > 1 V, typ. Max. Load Current Sense 7.1.1 Current sense ratio, static oncondition kILIS IL=30A IL=7.5A IL=2.5A IL=0.5A IIN = 0 (e.g. during de energizing of inductive loads) 1) disabled 7.1.2 Sense saturation current 1) 7.1.3 Sense current under fault conditions 7.1.4 IIS(LL) Current sense offset current IIS(LH) Current sense settling time to 90% tson(IS) IIS_stat. 1) Current sense settling time to 90% tslc(IS) IIS_stat. 1) Fault-Sense signal delay after input tdelay(fault) 7.1.5 7.1.6 7.1.7 7.1.8 IIS(lim) IIS(fault) Current sense leakage current 4.0 6 7.5 mA 4.0 5.2 7.5 mA – 0.1 0.5 µA – 0.1 1 µA – 250 500 µs IIN = 0 VIN = 0, IL ≤ 0 IL = 0 20 A – 50 100 µs IL = 10 350 650 1200 µs VON > 1 V, typ. 20 A current positive slope 1) Not subject to production test, specified by design Datasheet 23 Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Package Outlines 8 Package Outlines Figure 20 PG-TO252-5-11 Green Product To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Packages”: http://www.infineon.com/packages. Datasheet 24 Dimensions in mm Rev. 1.0, 2008-08-28 Smart High-Side Power Switch BTS50080-1TEA Revision History 9 Version Data sheet Rev. 1.0 Datasheet Revision History Date Changes 2008-08-22 Initial version of data sheet. 25 Rev. 1.0, 2008-08-28 Edition 2008-08-28 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.infineon.com Published by Infineon Technologies AG