PR OFET™ + 24V BTT6010-1EKA Smart High-Side Power Switch Single Channel, 10mΩ Data Sheet PROFET™+ 24V Rev. 1.1, 2014-12-17 Automotive Power BTT6010-1EKA Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 14 15 15 16 16 18 6 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 20 21 22 22 22 23 25 7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 7.3.4 7.3.5 7.3.6 7.4 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 26 27 28 28 29 30 30 30 31 31 32 32 33 8 8.1 8.2 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Data Sheet PROFET™+ 24V 2 7 7 7 8 Rev. 1.1, 2014-12-17 BTT6010-1EKA Table of Contents 8.3 8.4 Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9 9.1 9.2 9.3 9.4 9.5 Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Data Sheet PROFET™+ 24V 3 37 37 38 40 41 42 Rev. 1.1, 2014-12-17 Smart High-Side Power Switch 1 BTT6010-1EKA Overview Application • • • • Suitable for resistive, inductive and capacitive loads Replaces electromechanical relays, fuses and discrete circuits Most suitable for loads with high inrush current, such as lamps Suitable for 24V truck and transportation system Basic Features • • • • • • • • • PG-DSO-14-47 EP One channel device Very low stand-by current 3.3 V and 5 V compatible logic inputs Electrostatic discharge protection (ESD) Optimized electromagnetic compatibility Logic ground independent from load ground Very low power DMOS leakage current in OFF state Green product (RoHS compliant) AEC qualified Description The BTT6010-1EKA is a 10 mΩ single channel Smart High-Side Power Switch, embedded in a PG-DSO-14-47 EP, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed to drive lamps up to 7 x P21W 24V or 2 x 75W 24V, as well as LEDs in the harsh automotive environment. Table 1 Product Summary Parameter Symbol Value Operating voltage range VS(OP) VS(LD) RDS(ON) IL(NOM) kILIS IL5(SC) IS(OFF) 5 V ... 36 V Maximum supply voltage Maximum ON state resistance at TJ = 150 °C Nominal load current Typical current sense ratio Minimum current limitation Maximum standby current with load at TJ = 25 °C 66 V 22 mΩ 9A 3900 90 A 1.4 µA Type Package Marking BTT6010-1EKA PG-DSO-14-47 EP BTT6010-1EKA Data Sheet PROFET™+ 24V 4 Rev. 1.1, 2014-12-17 BTT6010-1EKA Overview Diagnostic Functions • • • • • • Proportional load current sense Open load in ON and OFF Short circuit to battery and ground Overtemperature Stable diagnostic signal during short circuit Enhanced kILIS dependency with temperature and load current Protection Functions • • • • • • • Stable behavior during undervoltage Reverse polarity protection with external components Secure load turn-off during logic ground disconnect with external components Overtemperature protection with latch Overvoltage protection with external components Voltage dependent current limitation Enhanced short circuit operation Data Sheet PROFET™+ 24V 5 Rev. 1.1, 2014-12-17 BTT6010-1EKA Block Diagram 2 Block Diagram VS voltage sensor internal power supply over temperature driver logic IN ESD protection DEN IS gate control & charge pump over current switch limit load current sense and open load detection OUT forward voltage drop detection GND Figure 1 T clamp for inductive load Block diagram.emf Block Diagram for the BTT6010-1EKA Data Sheet PROFET™+ 24V 6 Rev. 1.1, 2014-12-17 BTT6010-1EKA Pin Configuration 3 Pin Configuration 3.1 Pin Assignment NC 1 14 NC NC 2 13 NC GND 3 12 OUT IN 4 11 OUT DEN 5 10 OUT IS 6 9 NC NC 7 8 NC Pinout single SO14.vsd Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Function Cooling Tab VS Voltage Supply; Battery voltage 1, 2, 7, 8, 9, 13, 14 NC Not Connected; No internal connection to the chip 3 GND GrouND; Ground connection 4 IN INput channel; Input signal for channel activation 5 DEN Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device 6 IS Sense; Sense current of the selected channel 10, 11, 12 OUT OUTput; Protected high side power output channel1) 1) All output pins must be connected together on the PCB. All pins of the output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. Data Sheet PROFET™+ 24V 7 Rev. 1.1, 2014-12-17 BTT6010-1EKA Pin Configuration 3.3 Voltage and Current Definition Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IS VS VS IIN IN VIN VDS IDEN DEN VDEN IIS IS IOUT OUT VOUT GND VIS IGND voltage and current convention single.vsd Figure 3 Voltage and Current Definition Data Sheet PROFET™+ 24V 8 Rev. 1.1, 2014-12-17 BTT6010-1EKA General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings 1) TJ = -40 °C to +150°C; (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. VS -VS(REV) -0.3 – 48 V – P_4.1.1 0 – 28 V P_4.1.2 VBAT(SC) 0 – 36 V t < 2 min TA = 25 °C RL ≥ 4 Ω 2) RECU = 20 mΩ RCable= 16 mΩ/m LCable= 1 μH/m, l = 0 or 5 m Supply Voltages Supply voltage Reverse polarity voltage Supply voltage for short circuit protection P_4.1.3 See Chapter 6 and Figure 29 – 66 V 3) RI = 2 Ω RL = 4 Ω P_4.1.12 – 100 k cycles 2) P_4.1.4 -0.3 – – 6 7 V -2 – 2 mA -0.3 – – 6 7 V IDEN -2 – 2 mA – P_4.1.16 VIS IIS -0.3 – VS V – P_4.1.19 -25 – 50 mA – P_4.1.20 Load current | IL | – – IL(LIM) A – P_4.1.21 Power dissipation (DC) PTOT – – 1.6 W P_4.1.22 Maximum energy dissipation EAS Single pulse – – 219 mJ TA = 85 °C TJ < 150 °C IL(0) = 9 A TJ(0) = 150 °C VS = 28 V P_4.1.23 Voltage at power transistor – – 66 V – P_4.1.26 Supply voltage for Load dump VS(LD) protection – Short Circuit Capability Permanent short circuit IN pin toggles nRSC1 Vsupply = 28V Input Pins Voltage at INPUT pin Current through INPUT pin Voltage at DEN pin Current through DEN pin VIN IIN VDEN P_4.1.13 – t < 2 min – P_4.1.14 – P_4.1.15 t < 2 min Sense Pin Voltage at IS pin Current through IS pin Power Stage VDS Currents Data Sheet PROFET™+ 24V 9 Rev. 1.1, 2014-12-17 BTT6010-1EKA General Product Characteristics Table 2 Absolute Maximum Ratings (cont’d)1) TJ = -40 °C to +150°C; (unless otherwise specified) Parameter Current through ground pin Symbol Values Unit Note / Test Condition Number – P_4.1.27 Min. Typ. Max. -20 -200 – 20 20 mA TJ TSTG -40 – 150 °C – P_4.1.28 -55 – 150 °C – P_4.1.30 VESD VESD -2 – 2 kV 4) HBM P_4.1.31 -4 – 4 kV 4) HBM P_4.1.32 VESD VESD -500 – 500 V 5) CDM P_4.1.33 -750 – 750 V 5) CDM P_4.1.34 I GND t < 2 min Temperatures Junction temperature Storage temperature ESD Susceptibility ESD susceptibility (all pins) ESD susceptibility OUT Pin vs. GND and VS connected ESD susceptibility ESD susceptibility pin (corner pins) 1) Not subject to production test. Specified by design. 2) Threshold limit for short circuit failures : 100ppm. Please refer to the legal disclaimer for short circuit capability at the end of this document. 3) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1. 4) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001 5) ESD susceptibility, Charge Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1 Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet PROFET™+ 24V 10 Rev. 1.1, 2014-12-17 BTT6010-1EKA General Product Characteristics 4.2 Functional Range Table 3 Functional Range TJ = -40 °C to +150°C; (unless otherwise specified) Parameter Symbol Min. Typ. Max. Nominal operating voltage VNOM VS(OP) 8 28 36 VS(OP)_MIN 3.8 Extended operating voltage Minimum functional supply voltage Values 5 – 48 4.3 5 Unit Note / Test Condition Number V – P_4.2.1 V 2) V RL = 4 Ω VDS < 0.5 V 1) VIN = 4.5 V RL = 4 Ω From IOUT = 0 A VIN = 4.5 V P_4.2.2 P_4.2.3 to VDS < 0.5 V; See Figure 15 Undervoltage shutdown VS(UV) 3 3.5 4.1 V 1) VIN = 4.5 V VDEN = 0 V RL = 4 Ω From VDS < 1 V; to IOUT = 0 A P_4.2.4 See Figure 15 See Chapter 9 Undervoltage shutdown hysteresis VS(UV)_HYS – 850 – mV 2) Operating current channel active IGND_1 – 4.8 9 mA P_4.2.5 VIN = 5.5 V VDEN = 5.5 V Device in RDS(ON) VS = 36 V – P_4.2.13 See Chapter 9 Standby current for whole device with load (ambiente) IS(OFF) – 0.1 0.5 μA 1) VS = 36 V VOUT = 0 V VIN floating VDEN floating TJ ≤ 85 °C P_4.2.7 See Chapter 9 Maximum standby current for IS(OFF)_150 whole device with load – 8 15 μA Standby current for whole device with load, diagnostic active – 0.6 – mA VS = 36 V VOUT = 0 V VIN floating VDEN floating TJ = 150 °C P_4.2.10 See Chapter 9 IS(OFF_DEN) 2) P_4.2.8 VS = 36 V VOUT = 0 V VIN floating VDEN = 5.5 V 1) Test at TJ = -40°C only 2) Not subject to production test. Specified by design. Data Sheet PROFET™+ 24V 11 Rev. 1.1, 2014-12-17 BTT6010-1EKA General Product Characteristics Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Table 4 Thermal Resistance Parameter Symbol Junction to soldering point RthJS RthJA Junction to ambient Values Min. Typ. Max. – 5 – – 28 – Unit Note / Test Condition Number K/W 1) P_4.3.1 K/W 1) 2) P_4.3.2 1) Not subject to production test. Specified by design. 2) Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70μm Cu, 2 x 35 μm Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4. 4.3.1 PCB set up 70µm 1.5mm 35µm 0.3mm Figure 4 PCB 2 s2p .vsd 2s2p PCB Cross Section PCB bottom view PCB top view 1 14 2 13 3 4 12 COOLING TAB 11 VS 5 10 6 9 7 8 thermique SO14.vsd Figure 5 PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area Data Sheet PROFET™+ 24V 12 Rev. 1.1, 2014-12-17 BTT6010-1EKA General Product Characteristics 4.3.2 Thermal Impedance 2 10 1 Zth-ja [K/W] 10 0 10 2s2p 1s0p-600mm² 1s0p-300mm² 1s0p-footprint -1 10 -4 -3 10 -2 10 -1 10 0 10 1 10 2 10 10 3 10 time [s] Figure 6 Typical Thermal Impedance. 2s2p PCB set up according Figure 4 90 80 70 Rthja [K/W] 60 50 40 1s0p 30 20 10 0 footprint Figure 7 100 200 300 400 500 600 700 Area [mm2] Typical Thermal Resistance. PCB set up 1s0p Data Sheet PROFET™+ 24V 13 Rev. 1.1, 2014-12-17 BTT6010-1EKA Power Stage 5 Power Stage The power stage is built using an N-channel vertical power MOSFET (DMOS) with charge pump. 5.1 Output ON-state Resistance The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8 shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 6.4. 20 17 18 16 15 16 RDS(ON) [m Ω ] RDS(ON) [m Ω ] 14 14 12 13 12 11 10 10 9 8 8 7 6 -40 -20 0 20 40 60 80 100 Junction Temperature T [°C] 120 140 160 0 5 10 J Figure 8 15 20 Supply Voltage V [V] 25 30 35 S Typical ON-state Resistance A high signal (see Chapter 8) at the input pin causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission. 5.2 Turn ON/OFF Characteristics with Resistive Load Figure 9 shows the typical timing when switching a resistive load. IN V IN_H VIN_L t VOUT 90% VS dV/dt dV/dt ON OFF tON tOFF_DELAY 70% VS 30% VS tON_DELAY tOFF 10% VS t Switching times .vsd Figure 9 Switching a Resistive Load Timing Data Sheet PROFET™+ 24V 14 Rev. 1.1, 2014-12-17 BTT6010-1EKA Power Stage 5.3 Inductive Load 5.3.1 Output Clamping When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device by avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless, the maximum allowed load inductance is limited. VS ZDS(AZ) VDS IN LOGIC IL VBAT GND VIN OUT VOUT L, RL ZGND Output clamp.svg Figure 10 Output Clamp IN t V OUT VS t V S-VDS(AZ) IL t Switching an inductance.vsd Figure 11 Switching an Inductive Load Timing Data Sheet PROFET™+ 24V 15 Rev. 1.1, 2014-12-17 BTT6010-1EKA Power Stage 5.3.2 Maximum Load Inductance During demagnetization of inductive loads, energy has to be dissipated in the BTT6010-1EKA. This energy can be calculated with following equation: V S – V DS ( AZ ) RL × IL L E = V DS ( AZ ) × ------ × -------------------------------× ln ⎛ 1 – --------------------------------⎞ + I L ⎝ RL RL V S – V DS ( AZ )⎠ (1) Following equation simplifies under the assumption of RL = 0 Ω. VS 2 1 ⎞ E = --- × L × I × ⎛⎝ 1 – -------------------------------2 V S – V DS ( AZ )⎠ (2) The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for the maximum allowed energy dissipation as a function of the load current. EAS (mJ) 1000 100 10 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 IL(A) Figure 12 Maximum Energy Dissipation Single Pulse, TJ_START = 150 °C; VS = 28V 5.4 Inverse Current Capability In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are available. Data Sheet PROFET™+ 24V 16 Rev. 1.1, 2014-12-17 BTT6010-1EKA Power Stage VBAT VS Gate driver VINV IL(INV) OL comp. Device logic INV Comp. OUT GND ZGND inverse current.svg Figure 13 Inverse Current Circuitry Data Sheet PROFET™+ 24V 17 Rev. 1.1, 2014-12-17 BTT6010-1EKA Power Stage 5.5 Electrical Characteristics Power Stage Table 5 Electrical Characteristics: Power Stage VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter ON-state resistance per channel Symbol RDS(ON)_150 Values Min. Typ. Max. 15 20 22 Unit Note / Test Condition Number mΩ IL = IL4 = 10 A VIN = 4.5 V TJ = 150 °C P_5.5.1 TJ = 25 °C P_5.5.21 TA = 85 °C P_5.5.2 See Figure 8 ON-state resistance per channel RDS(ON)_25 – 10 – mΩ 1) Nominal load current IL(NOM) – 9 – A 1) Output voltage drop limitation VDS(NL) at small load currents – Drain to source clamping voltage VDS(AZ) = [VS - VOUT] VDS(AZ) 66 70 75 V IDS = 20 mA See Figure 11 See Chapter 9 P_5.5.5 Output leakage current TJ ≤ 85 °C IL(OFF) – 0.05 0.5 μA 2) P_5.5.6 Output leakage current TJ = 150 °C IL(OFF)_150 – 8 15 μA Slew rate 30% to 70% VS dV/dtON 0.3 0.65 1.4 V/μs Slew rate 70% to 30% VS -dV/dtOFF 0.3 0.65 1.4 V/μs Slew rate matching dV/dtON - dV/dtOFF ΔdV/dt -0.15 0 0.15 V/μs P_5.5.13 20 70 150 μs P_5.5.14 20 70 150 μs P_5.5.15 -50 0 50 μs P_5.5.16 – 35 70 μs P_5.5.17 – 35 70 μs P_5.5.18 Turn-ON time to VOUT = 90% tON 10 22 mV TJ < 150 °C IL = IL0 = 50 mA P_5.5.4 See Chapter 9 VIN floating VOUT = 0 V TJ ≤ 85 °C VIN floating VOUT = 0 V TJ = 150 °C RL = 4 Ω VS = 28 V See Figure 9 See Chapter 9 P_5.5.8 P_5.5.11 P_5.5.12 VS Turn-OFF time to VOUT = 10% tOFF VS Turn-ON / OFF matching tOFF - tON ΔtSW Turn-ON time to VOUT = 10% tON_delay VS Turn-OFF time to VOUT = 90% tOFF_delay VS Data Sheet PROFET™+ 24V 18 Rev. 1.1, 2014-12-17 BTT6010-1EKA Power Stage Table 5 Electrical Characteristics: Power Stage (cont’d) VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Switch ON energy Symbol EON Values Min. Typ. Max. – 2.1 – Unit Note / Test Condition Number mJ 1) P_5.5.19 RL = 4 Ω VOUT = 90% VS VS = 36 V See Chapter 9 Switch OFF energy EOFF – 2.3 – mJ 1) RL = 4 Ω VOUT = 10% VS VS = 36 V P_5.5.20 See Chapter 9 1) Not subject to production test, specified by design. 2) Test at TJ = -40°C only Data Sheet PROFET™+ 24V 19 Rev. 1.1, 2014-12-17 BTT6010-1EKA Protection Functions 6 Protection Functions The device provides integrated protection functions. These functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are designed for neither continuous nor repetitive operation. 6.1 Loss of Ground Protection In case of loss of the module ground and the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pin. In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the BTT6010-1EKA to ensure switching OFF of the channel. In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches the situation. VS ZIS(AZ) ZD(AZ) IS RSENSE VBAT ZDS(AZ) DEN RDEN IN RIN IOUT(GND) LOGIC OUT L, RL ZDESD GND RIS ZGND Loss of ground protection single.svg Figure 14 Loss of Ground Protection with External Components 6.2 Undervoltage Protection Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM range. Figure 15 sketches the undervoltage mechanism. Data Sheet PROFET™+ 24V 20 Rev. 1.1, 2014-12-17 BTT6010-1EKA Protection Functions VOUT VS(UV) VS VS(OP) Un d e rvo ltag e b eh a vio.e r mf Figure 15 Undervoltage Behavior 6.3 Overvoltage Protection There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to overvoltage, the BTT6010-1EKA remains ON. In the case the BTT6010-1EKA was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output transistor is still operational and follows the input. If the channel is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ISOV ZIS(AZ) VS IN1 ZD(AZ) IS RSENSE VBAT ZDS(AZ) DEN RDEN IN RIN LOGIC IN0 OUT ZDESD GND RIS ZGND L, RL Figure 16 Overvoltage Protection with External Components Data Sheet PROFET™+ 24V 21 Rev. 1.1, 2014-12-17 BTT6010-1EKA Protection Functions 6.4 Reverse Polarity Protection In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. The current in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDEN and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RIN = RSENSE = 10 kΩ. During reverse polarity, no protection functions are available. Micro controller protection diodes VS Z IS(AZ) ZD(AZ) IS RSENSE ZDS(AZ) VDS(REV) DEN R DEN LOGIC IN R IN -V S(REV) IN0 OUT ZDESD GND IS R GND R IS D Reverse Polarity.vsd Figure 17 Reverse Polarity Protection with External Components 6.5 Overload Protection In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6010-1EKA offers several protection mechanisms. 6.5.1 Current Limitation At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the behavior of the current limitation as a function of the drain to source voltage. Data Sheet PROFET™+ 24V 22 Rev. 1.1, 2014-12-17 BTT6010-1EKA Protection Functions 120 110 100 Current Limit IL(SC) (A) 90 80 70 60 50 40 30 3 8 13 18 23 28 33 38 43 48 Drain Source Voltage VDS (V) Figure 18 Current Limitation (typical behavior) 6.5.2 Temperature Limitation in the Power DMOS The channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the situation. No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior). Data Sheet PROFET™+ 24V 23 Rev. 1.1, 2014-12-17 BTT6010-1EKA Protection Functions IN t IL LOAD CURRENT LIMITATION PHASE IL(x)SC LOAD CURRENT BELOW LIMITATION PHASE IL(NOM) t TDMOS TJ(SC) Temperature protection phase ΔTJ(SW) TA tsIS(FAULT) t tsIS(OC_blank) IIS IIS(FAULT) IL(NOM) / kILIS 0A VDEN t tsIS(OF F) 0V t Hard start.vsd Figure 19 Overload Protection Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. Data Sheet PROFET™+ 24V 24 Rev. 1.1, 2014-12-17 BTT6010-1EKA Protection Functions 6.6 Electrical Characteristics for the Protection Functions Table 6 Electrical Characteristics: Protection VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. – 0.1 – mA 1) 2) VS = 48 V See Figure 14 P_6.6.1 420 650 700 mV IL = - 4 A TJ = 150 °C P_6.6.2 Loss of Ground Output leakage current while IOUT(GND) GND disconnected Reverse Polarity Drain source diode voltage during reverse polarity VDS(REV) See Figure 17 Overvoltage Overvoltage protection VS(AZ) 66 70 75 V ISOV = 5 mA P_6.6.3 See Figure 16 Overload Condition Load current limitation IL5(SC) 90 115 140 A 3) VDS = 7 V See Chapter 9 P_6.6.4 Load current limitation IL28(SC) – 57.5 – A 2) VDS = 42 V See Figure P_6.6.7 Dynamic temperature increase while switching ΔTJ(SW) – 80 – K 4) See Figure 19 P_6.6.8 Thermal shutdown temperature TJ(SC) 150 170 4) 200 4) °C 5) See Figure 19 P_6.6.10 30 – K 5) 4) Thermal shutdown hysteresis ΔTJ(SC) – 1) All pins are disconnected except VS and OUT. 2) 3) 4) 5) See Figure 19 P_6.6.11 Not Subject to production test, specified by design Test at TJ = -40°C only Functional test only Test at TJ = +150°C only Data Sheet PROFET™+ 24V 25 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions 7 Diagnostic Functions For diagnosis purpose, the BTT6010-1EKA provides a combination of digital and analog signals at pin IS. These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case DEN is activated, the sense current of the channel is enabled. 7.1 IS Pin The BTT6010-1EKA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic mechanism is described on Figure 20. The accuracy of the sense current depends on temperature and load current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the supplied device. Vs FAULT IIS(FAULT) IIS = IL / kILIS ZIS(AZ) 1 1 IS 0 0 DEN Sense schematic single.svg Figure 20 Diagnostic Block Diagram Data Sheet PROFET™+ 24V 26 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions 7.2 SENSE Signal in Different Operating Modes Table 7 gives a quick reference for the state of the IS pin during device operation. Table 7 Sense Signal, Function of Operation Mode Operation Mode Input level Channel X DEN Normal operation OFF H Output Level Diagnostic Output Z Z Short circuit to GND ~ GND Z Overtemperature Z Z Short circuit to VS IIS(FAULT) Current limitation VS < VOL(OFF) > VOL(OFF)1) ~ VINV ~ VS < VS Short circuit to GND ~ GND Overtemperature TJ(SW) event Z IIS(FAULT) IIS(FAULT) IIS = IL / kILIS IIS(FAULT) IIS(FAULT) IIS(FAULT) Short circuit to VS VS ~ VS2) ~ VINV ~ VS4) IIS < IL / kILIS IIS < IIS(OL) IIS < IIS(OL)3) IIS(OL) < IIS < IL / kILIS Don’t care Z Open Load Inverse current Normal operation ON Open Load Inverse current Underload Don’t care 1) 2) 3) 4) Don’t care L Z With additional pull-up resistor. The output current has to be smaller than IL(OL). After maximum tINV. The output current has to be higher than IL(OL). Data Sheet PROFET™+ 24V 27 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions 7.3 SENSE Signal in the Nominal Current Range Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually, a pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit the power losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal sense current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provide across full temperature range, at a defined current. 3 2.5 IIS [mA] 2 1.5 1 0.5 min/max Sense Current typical Sense Current 0 0 1 2 3 4 5 IL [A] 6 7 8 9 10 BTT6010-1EKA Figure 21 Current Sense for Nominal Load 7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this accuracy requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and temperature conditions, the BTT6010-1EKA allows limited derating of the kILIS value, at a given point (IL3; TJ = +25 °C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the sense current, assuming one calibration point at nominal load at +25 °C. The blue line indicates the ideal kILIS ratio. The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration point at nominal temperature and nominal battery voltage. The red lines indicate the kILIS accuracy without calibration. Data Sheet PROFET™+ 24V 28 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions 7000 calibrated k ILIS min/max k ILIS 6500 typical k ILIS 6000 5500 k ILIS 5000 4500 4000 3500 3000 2500 2000 0 1 2 3 4 5 IL [A] 6 7 8 9 10 BTT6010-1EKA Figure 22 Improved Current Sense Accuracy with One Calibration Point at 2A 7.3.2 SENSE Signal Timing Figure 23 shows the timing during settling and disabling of the sense. V IN t IL tON tOFF tON 90% of IL static t VDEN IIS t tsIS(LC) tsIS(ON) tsIS(OFF) tsIS(ON_DEN) 90% of IIS static t current sense settling disabling time .vsd Figure 23 Current Sense Settling / Disabling Timing Data Sheet PROFET™+ 24V 29 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions 7.3.3 SENSE Signal in Open Load 7.3.3.1 Open Load in ON Diagnostic If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal current sense. I IS IIS(OL) IL IL(OL) Sense for OL .vsd Figure 24 Current Sense Ratio for Low Currents 7.3.3.2 Open Load in OFF Diagnostic For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc.... in the application. To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched to the IIS(FAULT). An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be used as well for short circuit to battery detection, see Chapter 7.3.4. Data Sheet PROFET™+ 24V 30 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions Vbat SOL VS IIS(FAULT) ROL OL comp. OUT IS ILOFF Ileakage GND ZGND RIS VOL(OFF) RPD Rleakage Open Load in OFF.svg Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit 7.3.3.3 Open Load Diagnostic Timing Figure 26 shows the timing during either Open load in ON or OFF condition when the DEN pin is HIGH. Please note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input and rising edge of the DEN, when applying an open load in OFF diagnosis request, otherwise the voltage VOUT cannot be guaranteed and the diagnosis can be wrong. Load is present Open load VIN VOUT t VS-VOL(OFF) RDS(ON) x IL shutdown with load t IOUT IIS tsIS(FAULT_OL_ON_OFF) t tsIS(LC) Error Settling Disabling Time.vsd Figure 26 SENSE Signal in Open Load Timing 7.3.4 SENSE Signal with OUT in Short Circuit to VS t In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the normal operation will flow through the DMOS of the BTT6010-1EKA, which can be recognized at the current sense Data Sheet PROFET™+ 24V 31 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case, an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation. Vbat VS IIS(FAULT) VBAT OL comp. IS OUT VOL(OFF) GND RIS ZGND RSC_VS Short circuit to Vs.svg Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit 7.3.5 SENSE Signal in Case of Overload An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details. In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected. The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the DEN pin is activated the SENSE follows the output stage. If no reset of the latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, eventhough the DMOS is OFF. 7.3.6 SENSE Signal in Case of Inverse Current In the case of inverse current, the sense signal will indicate open load in OFF state and indicate open load in ON state. Data Sheet PROFET™+ 24V 32 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions 7.4 Electrical Characteristics Diagnostic Function Table 8 Electrical Characteristics: Diagnostics VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition – 6 V – 50 mA Number P_7.5.1 Load Condition Threshold for Diagnostic Open load detection threshold in OFF state VS - VOL(OFF) 4 Open load detection threshold in ON state IL(OL) 10 VIN = 0 V VDEN = 4.5 V VIN = VDEN = 4.5 V IIS(OL) = 6.5 μA P_7.5.2 See Figure 24 See Chapter 9 Sense Pin IS pin leakage current when sense is disabled IIS_(DIS) – – 1 μA Sense signal saturation voltage VS - VIS 1 – 3.5 V Sense signal maximum current in fault condition IIS(FAULT) 6 20 40 mA (RANGE) VIN = 4.5 V VDEN = 0 V IL = IL4 = 10 A VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V IIS = 6 mA P_7.5.4 P_7.5.6 See Chapter 9 VIS = VIN = 0 V VOUT = VS > 10 V VDEN = 4.5 V P_7.5.7 See Figure 20 See Chapter 9 Sense pin maximum voltage VIS(AZ) 66 70 75 V IIS = 5 mA P_7.5.3 See Figure 20 Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition Current sense ratio IL0 = 50 mA kILIS0 -50% 4500 +50% Current sense ratio IL1 = 0.5 A kILIS1 -40% 3900 +40% Current sense ratio kILIS2 -18% 3900 +18% P_7.5.10 kILIS3 -10% 3900 +10% P_7.5.11 -9% 3900 +9% P_7.5.12 -8 0 +8 VIN = 4.5 V VDEN = 4.5 V P_7.5.8 See Figure 21 P_7.5.9 TJ = -40 °C; 150 °C IL2 = 2 A Current sense ratio IL3 = 4 A Current sense ratio kILIS4 IL4 = 10 A kILIS derating with current and ΔkILIS temperature % 1) kILIS3 versus kILIS2 See Figure 22 P_7.5.17 Diagnostic Timing in Normal Condition Data Sheet PROFET™+ 24V 33 Rev. 1.1, 2014-12-17 BTT6010-1EKA Diagnostic Functions Table 8 Electrical Characteristics: Diagnostics (cont’d) VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Min. Typ. Max. Unit Note / Test Condition Current sense settling time to tsIS(ON) kILIS function stable after positive input slope on both INput and DEN – – 150 μs 1) VDEN = VIN = 0 to 4.5 V ; VS =28 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 4 A See Figure 23 P_7.5.18 Current sense settling time with load current stable and transition of the DEN – – 10 μs VIN = 4.5 V VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 4 A P_7.5.19 – – 20 μs tsIS(ON_DEN) Values Number See Figure 23 Current sense settling time to tsIS(LC) IIS stable after positive input slope on current load VIN = 4.5 V VDEN = 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL2 = 2 A to IL3 = P_7.5.20 4 A ; See Figure 23 Diagnostic Timing in Open Load Condition Current sense settling time to tsIS(FAULT_OL_ – IIS stable for open load OFF) detection in OFF state – 100 μs VIN = 0V VDEN = 0 to 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VOUT = VS = 28 V P_7.5.22 See Figure 26 Diagnostic Timing in Overload Condition μs Current sense settling time to tsIS(FAULT) IIS stable for overload detection 0 Current sense over current blanking time tsIS(OC_blank) – 350 – μs Diagnostic disable time DEN transition to IIS < 50% IL /kILIS tsIS(OFF) 0 – 20 μs – 150 1) VIN = VDEN = 0 to P_7.5.24 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VDS = 24 V See Figure 19 1) VIN =VDEN = 4.5 V RIS = 1.2 kΩ CSENSE < 100 pF VDS = 5 V to 0 V P_7.5.32 See Figure 19 VIN = 4.5 V VDEN = 4.5 V to 0 V RIS = 1.2 kΩ CSENSE < 100 pF IL = IL3 = 4 A P_7.5.25 1) Not subject to production test, specified by design Data Sheet PROFET™+ 24V 34 Rev. 1.1, 2014-12-17 BTT6010-1EKA Input Pins 8 Input Pins 8.1 Input Circuitry The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an input resistor. IN GND Figure 28 Input Pin Circuitry 8.2 DEN Pin Input circuitry.vsd The DEN pin enables and disables the diagnostic functionality of the device. The pin has the same structure as the INput pin, please refer to Figure 28. 8.3 Input Pin Voltage The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a hysteresis is implemented. This ensures a certain immunity to noise. Data Sheet PROFET™+ 24V 35 Rev. 1.1, 2014-12-17 BTT6010-1EKA Input Pins 8.4 Electrical Characteristics Table 9 Electrical Characteristics: Input Pins VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified). Typical values are given at VS = 28 V, TJ = 25 °C Parameter Symbol Values Min. Typ. Unit Max. Note / Test Condition Number INput Pins Characteristics Low level input voltage range VIN(L) -0.3 – 0.8 V See Chapter 9 P_8.4.1 High level input voltage range VIN(H) 2 – 6 V See Chapter 9 P_8.4.2 Input voltage hysteresis Low level input current High level input current VIN(HYS) IIN(L) IIN(H) – 250 – mV 1) 1 10 25 μA 2 10 25 μA VIN = 0.8 V VIN = 5.5 V See Chapter 9 P_8.4.3 P_8.4.4 P_8.4.5 See Chapter 9 DEN Pin Low level input voltage range VDEN(L) -0.3 – 0.8 V – P_8.4.6 High level input voltage range VDEN(H) 2 – 6 V – P_8.4.7 P_8.4.8 P_8.4.9 Input voltage hysteresis Low level input current High level input current VDEN(HYS) IDEN(L) IDEN(H) – 250 – mV 1) 1 10 25 μA 2 10 25 μA VDEN = 0.8 V VDEN = 5.5 V P_8.4.10 1) Not subject to production test, specified by design Data Sheet PROFET™+ 24V 36 Rev. 1.1, 2014-12-17 BTT6010-1EKA Characterization Results 9 Characterization Results The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed at 8 V, 28 V and 36 V over temperature range. 9.1 General Product Characteristics P_4.2.4 5 4 4.8 3.9 4.6 3.8 4.4 3.7 4.2 3.6 [V] [V] P_4.2.3 4 3.5 3.8 3.4 3.6 3.3 3.4 3.2 8V 3.2 8V 28V 28V 3.1 36V 36V 3 3 ‐50 ‐25 0 25 50 75 100 125 150 ‐50 Temperature [°C] ‐25 0 25 50 75 100 125 150 Temperature [°C] Undervoltage Threshold VS(UV) = f(TJ) Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ) P_4.2.7 12 8V 28V 10 36V [µA] 8 6 4 2 0 ‐50 ‐25 0 25 50 75 100 125 150 Temperature [°C] Standby Current for Whole Device with Load. IS(OFF) = f(TJ;VS) Data Sheet PROFET™+ 24V 37 Rev. 1.1, 2014-12-17 BTT6010-1EKA Characterization Results 9.2 Power Stage P_5.5.4 P_5.5.5 69.4 14 69.2 12 69 68.8 10 68.6 8 [V] [mV] 68.4 68.2 6 68 4 67.8 8V 2 28V 36V 67.4 0 ‐50 ‐25 0 25 50 75 100 125 8V 67.6 28V 36V 67.2 150 ‐50 Temperature [°C] ‐25 0 25 50 75 100 125 150 Temperature [°C] Output Voltage Drop Limitation at Low Load Current Drain to Source Clamp Voltage VDS(AZ) = f(TJ) VDS(NL) = f(TJ; VS) P_5.5.11 P_5.5.12 1 1 0.9 0.9 0.8 0.7 0.7 0.6 0.6 [V/µs] [V/µs] 0.8 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 8V 28V 0.1 8V 28V 0.1 36V 36V 0 0 ‐50 ‐50 ‐25 0 25 50 75 100 125 150 Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 4 Ω Data Sheet PROFET™+ 24V ‐25 0 25 50 75 100 125 150 Temperature [°C] Temperature [°C] Slew Rate at Turn OFF - dV/dtOFF = f(TJ;VS), RL = 4 Ω 38 Rev. 1.1, 2014-12-17 BTT6010-1EKA Characterization Results 90 80 80 70 70 60 60 50 50 [µs] P_5.5.15 90 [µs] P_5.5.14 40 40 30 30 20 20 8V 28V 10 8V 28V 10 36V 0 36V 0 ‐50 ‐25 0 25 50 75 100 125 150 ‐50 ‐25 0 25 Temperature [°C] 50 75 100 Turn ON TON = f(TJ;VS), RL = 4 Ω Turn OFF TOFF = f(TJ;VS), RL = 4 Ω P_5.5.19 P_5.5.20 6000 6000 5000 5000 4000 4000 [µJ] [µJ] 125 150 Temperature [°C] 3000 3000 25°C 25°C 2000 2000 ‐40°C ‐40°C 150°C 1000 150°C 1000 0 0 0 10 20 30 40 50 60 0 Supply Voltage [V] Switch ON Energy EON = f(TJ;VS), RL = 4 Ω Data Sheet PROFET™+ 24V 10 20 30 40 50 60 Supply Voltage [V] Switch OFF Energy EOFF = f(TJ;VS), RL = 4 Ω 39 Rev. 1.1, 2014-12-17 BTT6010-1EKA Characterization Results 9.3 Protection Functions P_6.6.4 P_6.6.7 56 115 55 54 110 53 [A] [A] 105 52 51 100 50 95 49 90 48 ‐50 ‐25 0 25 50 75 100 125 ‐50 150 Temperature [°C] Overload Condition in the Low Voltage Area IL5(SC) = f(TJ); Data Sheet PROFET™+ 24V ‐25 0 25 50 75 100 125 150 Temperature [°C] Overload Condition in the High Voltage Area IL28(SC) = f(TJ); 40 Rev. 1.1, 2014-12-17 BTT6010-1EKA Characterization Results 9.4 Diagnostic Mechanism P_7.5.2 2.5 29 2 27 25 [µA] [mA] 1.5 1 23 21 19 0.5 8V 8V 28V 17 28V 36V 36V 0 15 ‐50 ‐25 0 25 50 75 100 125 150 ‐50 ‐25 0 25 Temperature [°C] 50 75 100 125 150 Temperature [°C] Current Sense at no Load Open Load Detection ON State Threshold IIS = f(TJ;VS), IL = 0 IL(OL) = f(TJ;VS) P_7.5.6 P_7.5.7 2.4 30 2.35 25 2.3 2.25 20 [V] [mA] 2.2 15 2.15 2.1 10 2.05 8V 8V 5 28V 2 28V 36V 36V 1.95 0 ‐50 ‐25 0 25 50 75 100 125 150 ‐50 Temperature [°C] Sense Signal Maximum Voltage VS - VIS(RANGE) = f(TJ) Data Sheet PROFET™+ 24V ‐25 0 25 50 75 100 125 150 Temperature [°C] Sense Signal Maximum Current in Fault Condition IIS(FAULT) = f(TJ;VS) 41 Rev. 1.1, 2014-12-17 BTT6010-1EKA Characterization Results 9.5 Input Pins P_8.4.2 1.9 1.9 1.7 1.7 1.5 1.5 1.3 1.3 [V] [V] P_8.4.1 1.1 1.1 8V 8V 28V 28V 36V 0.9 36V 0.9 0.7 0.7 0.5 0.5 ‐50 ‐25 0 25 50 75 100 125 150 ‐50 ‐25 0 25 Temperature [°C] 50 75 100 125 150 Temperature [°C] Input Voltage Threshold Input Voltage Threshold VVIN(L)= f(TJ;VS) VVIN(H)= f(TJ;VS) P_8.4.3 P_8.4.5 450 16 400 14 350 12 300 10 [µA] [mV] 250 8 200 8V 8V 6 28V 150 28V 36V 36V 4 100 2 50 0 0 ‐50 ‐25 0 25 50 75 100 125 150 ‐50 Temperature [°C] Input Voltage Hysteresis VIN(HYS) = f(TJ;VS) Data Sheet PROFET™+ 24V ‐25 0 25 50 75 100 125 150 Temperature [°C] Input Current High Level IIN(H) = f(TJ) 42 Rev. 1.1, 2014-12-17 BTT6010-1EKA Application Information 10 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBAT Voltage Regulator OUT T1 VS GND C VS Z ROL VS VDD I/O R DEN I/O R IN DEN Micro controller OUT IN OUT4 C OUT RPD OUT3 A/D IS R SENSE GND CSENSE RIS GND R GND D Figure 29 Application Diagram with BTT6010-1EKA Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 10 Bill of Material Reference Value Purpose RIN 10 kΩ Protection of the micro controller during overvoltage, reverse polarity Guarantee BTT6010-1EKA channels OFF during loss of ground RDEN 10 kΩ Protection of the micro controller during overvoltage, reverse polarity Guarantee BTT6010-1EKA channels OFF during loss of ground RPD 47 kΩ Polarization of the output Improve BTT6010-1EKA immunity to electromagnetic noise RIS RSENSE 1.2 kΩ Sense resistor 10 kΩ Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro controller specification. ROL 1.5 kΩ Ensure polarization of the BTT6010-1EKA output during open load in OFF diagnostic D BAS21 Protection of the BTT6010-1EKA during reverse polarity Data Sheet PROFET™+ 24V 43 Rev. 1.1, 2014-12-17 BTT6010-1EKA Application Information Table 10 Bill of Material (cont’d) Reference Value Purpose RGND Z 27 Ω To limit the GND current at a safe value during ISO pulse 58 V Zener diode Protection of the device during overvoltage T1 CSENSE CVS COUT Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic 100 pF Sense signal filtering 100 nF Filtering of the voltage spikes on the battery line 10 nF Protection of the BTT6010-1EKA during ESD and BCI Data Sheet PROFET™+ 24V 44 Rev. 1.1, 2014-12-17 BTT6010-1EKA Application Information 10.1 Further Application Information • Please contact us to get the pin FMEA • Existing App. Notes • For further information you may visit http://www.infineon.com/profet Data Sheet PROFET™+ 24V 45 Rev. 1.1, 2014-12-17 BTT6010-1EKA Revision History 11 Revision History Version Date Changes 1.1 2014-12-17 Update of Figure 21 and 22 1.0 2014-10-30 Creation of the document Data Sheet PROFET™+ 24V 46 Rev. 1.1, 2014-12-17 BTT6010-1EKA Package Outlines 12 Package Outlines 0.35 x 45˚ 0.41±0.09 0˚...8˚ C 2) 0.2 M 0.19 +0.06 0.1 C D 2x 8˚ MAX. 0.08 C Seating Plane C A-B D 14x 0˚...8˚ 0.64 ±0.25 6 ±0.2 D 0.2 8˚ MAX. 1.27 1.7 MAX. 8˚ MAX. Stand Off (1.47) 0.1+0 -0.1 0.12 -0.085 3.9 ±0.11) M D Bottom View 14 8 1 1 7 14 7 8 2.65 ±0.25 6.4 ±0.25 A B 8.65 ±0.1 Index Marking 0.1 C A-B 2x 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion of 0.13 max. 3) JEDEC reference MS-012 variation BB PG-DSO-14-33,-40,-43 V02 Figure 30 PG-DSO-14-47 EP (Plastic Dual Small Outline Package) (RoHS-Compliant) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Data Sheet PROFET™+ 24V 47 Rev. 1.1, 2014-12-17 Edition 2014-12-17 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Legal Disclaimer for short-circuit capability Infineon disclaims any warranties and liabilities, whether expressed nor implied, for any short-circuit failures below the threshold limit. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.