BTT6010-1EKA Data Sheet (2 MB, EN)

PR OFET™ + 24V
BTT6010-1EKA
Smart High-Side Power Switch
Single Channel, 10mΩ
Data Sheet
PROFET™+ 24V
Rev. 1.1, 2014-12-17
Automotive Power
BTT6010-1EKA
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
3.1
3.2
3.3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.3.1
4.3.2
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
14
15
15
16
16
18
6
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
20
20
21
22
22
22
23
25
7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.5
7.3.6
7.4
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . .
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
26
27
28
28
29
30
30
30
31
31
32
32
33
8
8.1
8.2
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Data Sheet
PROFET™+ 24V
2
7
7
7
8
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Table of Contents
8.3
8.4
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9
9.1
9.2
9.3
9.4
9.5
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Data Sheet
PROFET™+ 24V
3
37
37
38
40
41
42
Rev. 1.1, 2014-12-17
Smart High-Side Power Switch
1
BTT6010-1EKA
Overview
Application
•
•
•
•
Suitable for resistive, inductive and capacitive loads
Replaces electromechanical relays, fuses and discrete circuits
Most suitable for loads with high inrush current, such as lamps
Suitable for 24V truck and transportation system
Basic Features
•
•
•
•
•
•
•
•
•
PG-DSO-14-47 EP
One channel device
Very low stand-by current
3.3 V and 5 V compatible logic inputs
Electrostatic discharge protection (ESD)
Optimized electromagnetic compatibility
Logic ground independent from load ground
Very low power DMOS leakage current in OFF state
Green product (RoHS compliant)
AEC qualified
Description
The BTT6010-1EKA is a 10 mΩ single channel Smart High-Side Power Switch, embedded in a PG-DSO-14-47
EP, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially
designed to drive lamps up to 7 x P21W 24V or 2 x 75W 24V, as well as LEDs in the harsh automotive
environment.
Table 1
Product Summary
Parameter
Symbol
Value
Operating voltage range
VS(OP)
VS(LD)
RDS(ON)
IL(NOM)
kILIS
IL5(SC)
IS(OFF)
5 V ... 36 V
Maximum supply voltage
Maximum ON state resistance at TJ = 150 °C
Nominal load current
Typical current sense ratio
Minimum current limitation
Maximum standby current with load at TJ = 25 °C
66 V
22 mΩ
9A
3900
90 A
1.4 µA
Type
Package
Marking
BTT6010-1EKA
PG-DSO-14-47 EP
BTT6010-1EKA
Data Sheet
PROFET™+ 24V
4
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Overview
Diagnostic Functions
•
•
•
•
•
•
Proportional load current sense
Open load in ON and OFF
Short circuit to battery and ground
Overtemperature
Stable diagnostic signal during short circuit
Enhanced kILIS dependency with temperature and load current
Protection Functions
•
•
•
•
•
•
•
Stable behavior during undervoltage
Reverse polarity protection with external components
Secure load turn-off during logic ground disconnect with external components
Overtemperature protection with latch
Overvoltage protection with external components
Voltage dependent current limitation
Enhanced short circuit operation
Data Sheet
PROFET™+ 24V
5
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Block Diagram
2
Block Diagram
VS
voltage sensor
internal
power
supply
over
temperature
driver
logic
IN
ESD
protection
DEN
IS
gate control
&
charge pump
over current
switch limit
load current sense and
open load detection
OUT
forward voltage drop detection
GND
Figure 1
T
clamp for
inductive load
Block diagram.emf
Block Diagram for the BTT6010-1EKA
Data Sheet
PROFET™+ 24V
6
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
NC
1
14
NC
NC
2
13
NC
GND
3
12
OUT
IN
4
11
OUT
DEN
5
10
OUT
IS
6
9
NC
NC
7
8
NC
Pinout single SO14.vsd
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Function
Cooling Tab
VS
Voltage Supply; Battery voltage
1, 2, 7, 8, 9, 13, 14 NC
Not Connected; No internal connection to the chip
3
GND
GrouND; Ground connection
4
IN
INput channel; Input signal for channel activation
5
DEN
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device
6
IS
Sense; Sense current of the selected channel
10, 11, 12
OUT
OUTput; Protected high side power output channel1)
1) All output pins must be connected together on the PCB. All pins of the output are internally connected together. PCB traces
have to be designed to withstand the maximum current which can flow.
Data Sheet
PROFET™+ 24V
7
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Pin Configuration
3.3
Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
IS
VS
VS
IIN
IN
VIN
VDS
IDEN
DEN
VDEN
IIS
IS
IOUT
OUT
VOUT
GND
VIS
IGND
voltage and current convention single.vsd
Figure 3
Voltage and Current Definition
Data Sheet
PROFET™+ 24V
8
Rev. 1.1, 2014-12-17
BTT6010-1EKA
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 2
Absolute Maximum Ratings 1)
TJ = -40 °C to +150°C; (unless otherwise specified)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
VS
-VS(REV)
-0.3
–
48
V
–
P_4.1.1
0
–
28
V
P_4.1.2
VBAT(SC)
0
–
36
V
t < 2 min
TA = 25 °C
RL ≥ 4 Ω
2)
RECU = 20 mΩ
RCable= 16 mΩ/m
LCable= 1 μH/m,
l = 0 or 5 m
Supply Voltages
Supply voltage
Reverse polarity voltage
Supply voltage for short
circuit protection
P_4.1.3
See Chapter 6
and Figure 29
–
66
V
3)
RI = 2 Ω
RL = 4 Ω
P_4.1.12
–
100
k
cycles
2)
P_4.1.4
-0.3
–
–
6
7
V
-2
–
2
mA
-0.3
–
–
6
7
V
IDEN
-2
–
2
mA
–
P_4.1.16
VIS
IIS
-0.3
–
VS
V
–
P_4.1.19
-25
–
50
mA
–
P_4.1.20
Load current
| IL |
–
–
IL(LIM)
A
–
P_4.1.21
Power dissipation (DC)
PTOT
–
–
1.6
W
P_4.1.22
Maximum energy dissipation EAS
Single pulse
–
–
219
mJ
TA = 85 °C
TJ < 150 °C
IL(0) = 9 A
TJ(0) = 150 °C
VS = 28 V
P_4.1.23
Voltage at power transistor
–
–
66
V
–
P_4.1.26
Supply voltage for Load dump VS(LD)
protection
–
Short Circuit Capability
Permanent short circuit
IN pin toggles
nRSC1
Vsupply = 28V
Input Pins
Voltage at INPUT pin
Current through INPUT pin
Voltage at DEN pin
Current through DEN pin
VIN
IIN
VDEN
P_4.1.13
–
t < 2 min
–
P_4.1.14
–
P_4.1.15
t < 2 min
Sense Pin
Voltage at IS pin
Current through IS pin
Power Stage
VDS
Currents
Data Sheet
PROFET™+ 24V
9
Rev. 1.1, 2014-12-17
BTT6010-1EKA
General Product Characteristics
Table 2
Absolute Maximum Ratings (cont’d)1)
TJ = -40 °C to +150°C; (unless otherwise specified)
Parameter
Current through ground pin
Symbol
Values
Unit
Note /
Test Condition
Number
–
P_4.1.27
Min.
Typ.
Max.
-20
-200
–
20
20
mA
TJ
TSTG
-40
–
150
°C
–
P_4.1.28
-55
–
150
°C
–
P_4.1.30
VESD
VESD
-2
–
2
kV
4)
HBM
P_4.1.31
-4
–
4
kV
4)
HBM
P_4.1.32
VESD
VESD
-500
–
500
V
5)
CDM
P_4.1.33
-750
–
750
V
5)
CDM
P_4.1.34
I GND
t < 2 min
Temperatures
Junction temperature
Storage temperature
ESD Susceptibility
ESD susceptibility (all pins)
ESD susceptibility OUT Pin
vs. GND and VS connected
ESD susceptibility
ESD susceptibility pin
(corner pins)
1) Not subject to production test. Specified by design.
2) Threshold limit for short circuit failures : 100ppm. Please refer to the legal disclaimer for short circuit capability at the end
of this document.
3) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.
4) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001
5) ESD susceptibility, Charge Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Data Sheet
PROFET™+ 24V
10
Rev. 1.1, 2014-12-17
BTT6010-1EKA
General Product Characteristics
4.2
Functional Range
Table 3
Functional Range TJ = -40 °C to +150°C; (unless otherwise specified)
Parameter
Symbol
Min.
Typ.
Max.
Nominal operating voltage
VNOM
VS(OP)
8
28
36
VS(OP)_MIN
3.8
Extended operating voltage
Minimum functional supply
voltage
Values
5
–
48
4.3
5
Unit
Note /
Test Condition
Number
V
–
P_4.2.1
V
2)
V
RL = 4 Ω
VDS < 0.5 V
1)
VIN = 4.5 V
RL = 4 Ω
From IOUT = 0 A
VIN = 4.5 V
P_4.2.2
P_4.2.3
to
VDS < 0.5 V;
See Figure 15
Undervoltage shutdown
VS(UV)
3
3.5
4.1
V
1)
VIN = 4.5 V
VDEN = 0 V
RL = 4 Ω
From VDS < 1 V;
to IOUT = 0 A
P_4.2.4
See Figure 15
See Chapter 9
Undervoltage shutdown
hysteresis
VS(UV)_HYS
–
850
–
mV
2)
Operating current channel
active
IGND_1
–
4.8
9
mA
P_4.2.5
VIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 36 V
–
P_4.2.13
See Chapter 9
Standby current for whole
device with load (ambiente)
IS(OFF)
–
0.1
0.5
μA
1)
VS = 36 V
VOUT = 0 V
VIN floating
VDEN floating
TJ ≤ 85 °C
P_4.2.7
See Chapter 9
Maximum standby current for IS(OFF)_150
whole device with load
–
8
15
μA
Standby current for whole
device with load, diagnostic
active
–
0.6
–
mA
VS = 36 V
VOUT = 0 V
VIN floating
VDEN floating
TJ = 150 °C
P_4.2.10
See Chapter 9
IS(OFF_DEN)
2)
P_4.2.8
VS = 36 V
VOUT = 0 V
VIN floating
VDEN = 5.5 V
1) Test at TJ = -40°C only
2) Not subject to production test. Specified by design.
Data Sheet
PROFET™+ 24V
11
Rev. 1.1, 2014-12-17
BTT6010-1EKA
General Product Characteristics
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Table 4
Thermal Resistance
Parameter
Symbol
Junction to soldering point
RthJS
RthJA
Junction to ambient
Values
Min.
Typ.
Max.
–
5
–
–
28
–
Unit
Note /
Test Condition
Number
K/W
1)
P_4.3.1
K/W
1) 2)
P_4.3.2
1) Not subject to production test. Specified by design.
2) Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip +
package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70μm Cu, 2 x 35 μm Cu). Where
applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.
4.3.1
PCB set up
70µm
1.5mm
35µm
0.3mm
Figure 4
PCB 2 s2p .vsd
2s2p PCB Cross Section
PCB bottom view
PCB top view
1
14
2
13
3
4
12
COOLING
TAB
11
VS
5
10
6
9
7
8
thermique SO14.vsd
Figure 5
PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area
Data Sheet
PROFET™+ 24V
12
Rev. 1.1, 2014-12-17
BTT6010-1EKA
General Product Characteristics
4.3.2
Thermal Impedance
2
10
1
Zth-ja [K/W]
10
0
10
2s2p
1s0p-600mm²
1s0p-300mm²
1s0p-footprint
-1
10
-4
-3
10
-2
10
-1
10
0
10
1
10
2
10
10
3
10
time [s]
Figure 6
Typical Thermal Impedance. 2s2p PCB set up according Figure 4
90
80
70
Rthja [K/W]
60
50
40
1s0p
30
20
10
0
footprint
Figure 7
100
200
300
400
500
600
700
Area [mm2]
Typical Thermal Resistance. PCB set up 1s0p
Data Sheet
PROFET™+ 24V
13
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Power Stage
5
Power Stage
The power stage is built using an N-channel vertical power MOSFET (DMOS) with charge pump.
5.1
Output ON-state Resistance
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 6.4.
20
17
18
16
15
16
RDS(ON) [m Ω ]
RDS(ON) [m Ω ]
14
14
12
13
12
11
10
10
9
8
8
7
6
-40
-20
0
20
40
60
80
100
Junction Temperature T [°C]
120
140
160
0
5
10
J
Figure 8
15
20
Supply Voltage V [V]
25
30
35
S
Typical ON-state Resistance
A high signal (see Chapter 8) at the input pin causes the power DMOS to switch ON with a dedicated slope, which
is optimized in terms of EMC emission.
5.2
Turn ON/OFF Characteristics with Resistive Load
Figure 9 shows the typical timing when switching a resistive load.
IN
V IN_H
VIN_L
t
VOUT
90% VS
dV/dt
dV/dt
ON
OFF
tON
tOFF_DELAY
70% VS
30% VS
tON_DELAY
tOFF
10% VS
t
Switching times .vsd
Figure 9
Switching a Resistive Load Timing
Data Sheet
PROFET™+ 24V
14
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Power Stage
5.3
Inductive Load
5.3.1
Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device by
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,
the maximum allowed load inductance is limited.
VS
ZDS(AZ)
VDS
IN
LOGIC
IL
VBAT
GND
VIN
OUT
VOUT
L, RL
ZGND
Output clamp.svg
Figure 10
Output Clamp
IN
t
V OUT
VS
t
V S-VDS(AZ)
IL
t
Switching an inductance.vsd
Figure 11
Switching an Inductive Load Timing
Data Sheet
PROFET™+ 24V
15
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Power Stage
5.3.2
Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTT6010-1EKA. This energy can
be calculated with following equation:
V S – V DS ( AZ )
RL × IL
L
E = V DS ( AZ ) × ------ × -------------------------------× ln ⎛ 1 – --------------------------------⎞ + I L
⎝
RL
RL
V S – V DS ( AZ )⎠
(1)
Following equation simplifies under the assumption of RL = 0 Ω.
VS
2
1
⎞
E = --- × L × I × ⎛⎝ 1 – -------------------------------2
V S – V DS ( AZ )⎠
(2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for the
maximum allowed energy dissipation as a function of the load current.
EAS (mJ)
1000
100
10
0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
IL(A)
Figure 12
Maximum Energy Dissipation Single Pulse, TJ_START = 150 °C; VS = 28V
5.4
Inverse Current Capability
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV
will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output
stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular
case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not
be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel
is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of
VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV
vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are
available.
Data Sheet
PROFET™+ 24V
16
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Power Stage
VBAT
VS
Gate driver
VINV
IL(INV)
OL
comp.
Device
logic
INV
Comp.
OUT
GND
ZGND
inverse current.svg
Figure 13
Inverse Current Circuitry
Data Sheet
PROFET™+ 24V
17
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Power Stage
5.5
Electrical Characteristics Power Stage
Table 5
Electrical Characteristics: Power Stage
VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
ON-state resistance per
channel
Symbol
RDS(ON)_150
Values
Min.
Typ.
Max.
15
20
22
Unit
Note /
Test Condition
Number
mΩ
IL = IL4 = 10 A
VIN = 4.5 V
TJ = 150 °C
P_5.5.1
TJ = 25 °C
P_5.5.21
TA = 85 °C
P_5.5.2
See Figure 8
ON-state resistance per
channel
RDS(ON)_25
–
10
–
mΩ
1)
Nominal load current
IL(NOM)
–
9
–
A
1)
Output voltage drop limitation VDS(NL)
at small load currents
–
Drain to source clamping
voltage
VDS(AZ) = [VS - VOUT]
VDS(AZ)
66
70
75
V
IDS = 20 mA
See Figure 11
See Chapter 9
P_5.5.5
Output leakage current
TJ ≤ 85 °C
IL(OFF)
–
0.05
0.5
μA
2)
P_5.5.6
Output leakage current
TJ = 150 °C
IL(OFF)_150
–
8
15
μA
Slew rate
30% to 70% VS
dV/dtON
0.3
0.65
1.4
V/μs
Slew rate
70% to 30% VS
-dV/dtOFF
0.3
0.65
1.4
V/μs
Slew rate matching
dV/dtON - dV/dtOFF
ΔdV/dt
-0.15
0
0.15
V/μs
P_5.5.13
20
70
150
μs
P_5.5.14
20
70
150
μs
P_5.5.15
-50
0
50
μs
P_5.5.16
–
35
70
μs
P_5.5.17
–
35
70
μs
P_5.5.18
Turn-ON time to VOUT = 90% tON
10
22
mV
TJ < 150 °C
IL = IL0 = 50 mA
P_5.5.4
See Chapter 9
VIN floating
VOUT = 0 V
TJ ≤ 85 °C
VIN floating
VOUT = 0 V
TJ = 150 °C
RL = 4 Ω
VS = 28 V
See Figure 9
See Chapter 9
P_5.5.8
P_5.5.11
P_5.5.12
VS
Turn-OFF time to VOUT = 10% tOFF
VS
Turn-ON / OFF matching
tOFF - tON
ΔtSW
Turn-ON time to VOUT = 10% tON_delay
VS
Turn-OFF time to VOUT = 90% tOFF_delay
VS
Data Sheet
PROFET™+ 24V
18
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Power Stage
Table 5
Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Switch ON energy
Symbol
EON
Values
Min.
Typ.
Max.
–
2.1
–
Unit
Note /
Test Condition
Number
mJ
1)
P_5.5.19
RL = 4 Ω
VOUT = 90% VS
VS = 36 V
See Chapter 9
Switch OFF energy
EOFF
–
2.3
–
mJ
1)
RL = 4 Ω
VOUT = 10% VS
VS = 36 V
P_5.5.20
See Chapter 9
1) Not subject to production test, specified by design.
2) Test at TJ = -40°C only
Data Sheet
PROFET™+ 24V
19
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Protection Functions
6
Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction of
the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal
operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1
Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN
pin.
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the
BTT6010-1EKA to ensure switching OFF of the channel.
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches
the situation.
VS
ZIS(AZ)
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DEN
RDEN
IN
RIN
IOUT(GND)
LOGIC
OUT
L, RL
ZDESD
GND
RIS
ZGND
Loss of ground protection single.svg
Figure 14
Loss of Ground Protection with External Components
6.2
Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON.
If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the
supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch
is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM
range. Figure 15 sketches the undervoltage mechanism.
Data Sheet
PROFET™+ 24V
20
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Protection Functions
VOUT
VS(UV)
VS
VS(OP)
Un d e rvo ltag e b eh a vio.e
r mf
Figure 15
Undervoltage Behavior
6.3
Overvoltage Protection
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16
shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power
transistor switches ON and in addition the voltage across the logic section is clamped. As a result, the internal
ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and DEN rises almost to
that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to
overvoltage, the BTT6010-1EKA remains ON. In the case the BTT6010-1EKA was OFF, prior to overvoltage, the
power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output
transistor is still operational and follows the input. If the channel is in the ON state, parameters are no longer
guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the
short circuit robustness, as well as the maximum energy EAS capability.
ISOV
ZIS(AZ)
VS
IN1
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DEN
RDEN
IN
RIN
LOGIC
IN0
OUT
ZDESD
GND
RIS
ZGND
L, RL
Figure 16
Overvoltage Protection with External Components
Data Sheet
PROFET™+ 24V
21
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Protection Functions
6.4
Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. The current in
this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins
has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a
typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDEN
and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used to
limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RIN = RSENSE
= 10 kΩ.
During reverse polarity, no protection functions are available.
Micro controller
protection diodes
VS
Z IS(AZ)
ZD(AZ)
IS
RSENSE
ZDS(AZ)
VDS(REV)
DEN
R DEN
LOGIC
IN
R IN
-V S(REV)
IN0
OUT
ZDESD
GND
IS
R GND
R IS
D
Reverse Polarity.vsd
Figure 17
Reverse Polarity Protection with External Components
6.5
Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6010-1EKA offers
several protection mechanisms.
6.5.1
Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects
the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the behavior of
the current limitation as a function of the drain to source voltage.
Data Sheet
PROFET™+ 24V
22
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Protection Functions
120
110
100
Current Limit IL(SC) (A)
90
80
70
60
50
40
30
3
8
13
18
23
28
33
38
43
48
Drain Source Voltage VDS (V)
Figure 18
Current Limitation (typical behavior)
6.5.2
Temperature Limitation in the Power DMOS
The channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of either
sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches
the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the situation.
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is
switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior).
Data Sheet
PROFET™+ 24V
23
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Protection Functions
IN
t
IL
LOAD CURRENT LIMITATION PHASE
IL(x)SC
LOAD CURRENT BELOW
LIMITATION PHASE
IL(NOM)
t
TDMOS
TJ(SC)
Temperature
protection phase
ΔTJ(SW)
TA
tsIS(FAULT)
t
tsIS(OC_blank)
IIS
IIS(FAULT)
IL(NOM) / kILIS
0A
VDEN
t
tsIS(OF F)
0V
t
Hard start.vsd
Figure 19
Overload Protection
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant
and cannot be described.
Data Sheet
PROFET™+ 24V
24
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Protection Functions
6.6
Electrical Characteristics for the Protection Functions
Table 6
Electrical Characteristics: Protection
VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
–
0.1
–
mA
1) 2)
VS = 48 V
See Figure 14
P_6.6.1
420
650
700
mV
IL = - 4 A
TJ = 150 °C
P_6.6.2
Loss of Ground
Output leakage current while IOUT(GND)
GND disconnected
Reverse Polarity
Drain source diode voltage
during reverse polarity
VDS(REV)
See Figure 17
Overvoltage
Overvoltage protection
VS(AZ)
66
70
75
V
ISOV = 5 mA
P_6.6.3
See Figure 16
Overload Condition
Load current limitation
IL5(SC)
90
115
140
A
3)
VDS = 7 V
See Chapter 9
P_6.6.4
Load current limitation
IL28(SC)
–
57.5
–
A
2)
VDS = 42 V
See Figure
P_6.6.7
Dynamic temperature
increase while switching
ΔTJ(SW)
–
80
–
K
4)
See Figure 19
P_6.6.8
Thermal shutdown
temperature
TJ(SC)
150
170 4)
200 4)
°C
5)
See Figure 19
P_6.6.10
30
–
K
5) 4)
Thermal shutdown hysteresis ΔTJ(SC)
–
1) All pins are disconnected except VS and OUT.
2)
3)
4)
5)
See Figure 19
P_6.6.11
Not Subject to production test, specified by design
Test at TJ = -40°C only
Functional test only
Test at TJ = +150°C only
Data Sheet
PROFET™+ 24V
25
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
7
Diagnostic Functions
For diagnosis purpose, the BTT6010-1EKA provides a combination of digital and analog signals at pin IS. These
signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case
DEN is activated, the sense current of the channel is enabled.
7.1
IS Pin
The BTT6010-1EKA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at
OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic
mechanism is described on Figure 20. The accuracy of the sense current depends on temperature and load
current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other
devices if these devices are using another battery feed. The consequence is that the unsupplied device would be
fed via the IS pin of the supplied device.
Vs
FAULT
IIS(FAULT)
IIS =
IL / kILIS
ZIS(AZ)
1
1
IS
0
0
DEN
Sense schematic single.svg
Figure 20
Diagnostic Block Diagram
Data Sheet
PROFET™+ 24V
26
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
7.2
SENSE Signal in Different Operating Modes
Table 7 gives a quick reference for the state of the IS pin during device operation.
Table 7
Sense Signal, Function of Operation Mode
Operation Mode
Input level Channel X
DEN
Normal operation
OFF
H
Output Level Diagnostic Output
Z
Z
Short circuit to GND
~ GND
Z
Overtemperature
Z
Z
Short circuit to VS
IIS(FAULT)
Current limitation
VS
< VOL(OFF)
> VOL(OFF)1)
~ VINV
~ VS
< VS
Short circuit to GND
~ GND
Overtemperature TJ(SW)
event
Z
IIS(FAULT)
IIS(FAULT)
IIS = IL / kILIS
IIS(FAULT)
IIS(FAULT)
IIS(FAULT)
Short circuit to VS
VS
~ VS2)
~ VINV
~ VS4)
IIS < IL / kILIS
IIS < IIS(OL)
IIS < IIS(OL)3)
IIS(OL) < IIS < IL / kILIS
Don’t care
Z
Open Load
Inverse current
Normal operation
ON
Open Load
Inverse current
Underload
Don’t care
1)
2)
3)
4)
Don’t care
L
Z
With additional pull-up resistor.
The output current has to be smaller than IL(OL).
After maximum tINV.
The output current has to be higher than IL(OL).
Data Sheet
PROFET™+ 24V
27
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
7.3
SENSE Signal in the Nominal Current Range
Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually, a
pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit
the power losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal sense
current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provide across full
temperature range, at a defined current.
3
2.5
IIS [mA]
2
1.5
1
0.5
min/max Sense Current
typical Sense Current
0
0
1
2
3
4
5
IL [A]
6
7
8
9
10
BTT6010-1EKA
Figure 21
Current Sense for Nominal Load
7.3.1
SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this accuracy
requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and
temperature conditions, the BTT6010-1EKA allows limited derating of the kILIS value, at a given point (IL3; TJ =
+25 °C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the sense current,
assuming one calibration point at nominal load at +25 °C.
The blue line indicates the ideal kILIS ratio.
The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration
point at nominal temperature and nominal battery voltage.
The red lines indicate the kILIS accuracy without calibration.
Data Sheet
PROFET™+ 24V
28
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
7000
calibrated k ILIS
min/max k ILIS
6500
typical k ILIS
6000
5500
k ILIS
5000
4500
4000
3500
3000
2500
2000
0
1
2
3
4
5
IL [A]
6
7
8
9
10
BTT6010-1EKA
Figure 22
Improved Current Sense Accuracy with One Calibration Point at 2A
7.3.2
SENSE Signal Timing
Figure 23 shows the timing during settling and disabling of the sense.
V IN
t
IL
tON
tOFF
tON
90% of
IL static
t
VDEN
IIS
t
tsIS(LC)
tsIS(ON)
tsIS(OFF)
tsIS(ON_DEN)
90% of
IIS static
t
current sense settling disabling time .vsd
Figure 23
Current Sense Settling / Disabling Timing
Data Sheet
PROFET™+ 24V
29
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
7.3.3
SENSE Signal in Open Load
7.3.3.1
Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power
DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE current
is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24 shows the
SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve shows the ideal
current sense.
I IS
IIS(OL)
IL
IL(OL)
Sense for OL .vsd
Figure 24
Current Sense Ratio for Low Currents
7.3.3.2
Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be
taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete
system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc.... in the
application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel is
OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched
to the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be
used as well for short circuit to battery detection, see Chapter 7.3.4.
Data Sheet
PROFET™+ 24V
30
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
Vbat
SOL
VS
IIS(FAULT)
ROL
OL
comp.
OUT
IS
ILOFF
Ileakage
GND
ZGND
RIS
VOL(OFF)
RPD
Rleakage
Open Load in OFF.svg
Figure 25
Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3
Open Load Diagnostic Timing
Figure 26 shows the timing during either Open load in ON or OFF condition when the DEN pin is HIGH. Please
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input and rising edge of the DEN,
when applying an open load in OFF diagnosis request, otherwise the voltage VOUT cannot be guaranteed and the
diagnosis can be wrong.
Load is present
Open load
VIN
VOUT
t
VS-VOL(OFF)
RDS(ON) x IL
shutdown with load
t
IOUT
IIS
tsIS(FAULT_OL_ON_OFF)
t
tsIS(LC)
Error Settling Disabling Time.vsd
Figure 26
SENSE Signal in Open Load Timing
7.3.4
SENSE Signal with OUT in Short Circuit to VS
t
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTT6010-1EKA, which can be recognized at the current sense
Data Sheet
PROFET™+ 24V
31
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,
an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation.
Vbat
VS
IIS(FAULT)
VBAT
OL
comp.
IS
OUT
VOL(OFF)
GND
RIS
ZGND
RSC_VS
Short circuit to Vs.svg
Figure 27
Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5
SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the
absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal
shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature
condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the DEN pin is
activated the SENSE follows the output stage. If no reset of the latch occurs, the device remains in the latching
phase and IIS(FAULT) at the IS pin, eventhough the DMOS is OFF.
7.3.6
SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal will indicate open load in OFF state and indicate open load in ON
state.
Data Sheet
PROFET™+ 24V
32
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
7.4
Electrical Characteristics Diagnostic Function
Table 8
Electrical Characteristics: Diagnostics
VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
–
6
V
–
50
mA
Number
P_7.5.1
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS - VOL(OFF) 4
Open load detection
threshold in ON state
IL(OL)
10
VIN = 0 V
VDEN = 4.5 V
VIN = VDEN = 4.5 V
IIS(OL) = 6.5 μA
P_7.5.2
See Figure 24
See Chapter 9
Sense Pin
IS pin leakage current when
sense is disabled
IIS_(DIS)
–
–
1
μA
Sense signal saturation
voltage
VS - VIS
1
–
3.5
V
Sense signal maximum
current in fault condition
IIS(FAULT)
6
20
40
mA
(RANGE)
VIN = 4.5 V
VDEN = 0 V
IL = IL4 = 10 A
VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
P_7.5.4
P_7.5.6
See Chapter 9
VIS = VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
P_7.5.7
See Figure 20
See Chapter 9
Sense pin maximum voltage
VIS(AZ)
66
70
75
V
IIS = 5 mA
P_7.5.3
See Figure 20
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
Current sense ratio
IL0 = 50 mA
kILIS0
-50%
4500
+50%
Current sense ratio
IL1 = 0.5 A
kILIS1
-40%
3900
+40%
Current sense ratio
kILIS2
-18%
3900
+18%
P_7.5.10
kILIS3
-10%
3900
+10%
P_7.5.11
-9%
3900
+9%
P_7.5.12
-8
0
+8
VIN = 4.5 V
VDEN = 4.5 V
P_7.5.8
See Figure 21
P_7.5.9
TJ = -40 °C; 150 °C
IL2 = 2 A
Current sense ratio
IL3 = 4 A
Current sense ratio
kILIS4
IL4 = 10 A
kILIS derating with current and ΔkILIS
temperature
%
1)
kILIS3 versus kILIS2
See Figure 22
P_7.5.17
Diagnostic Timing in Normal Condition
Data Sheet
PROFET™+ 24V
33
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Diagnostic Functions
Table 8
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Min.
Typ.
Max.
Unit Note /
Test Condition
Current sense settling time to tsIS(ON)
kILIS function stable after
positive input slope on both
INput and DEN
–
–
150
μs
1)
VDEN = VIN = 0 to
4.5 V ; VS =28 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 4 A
See Figure 23
P_7.5.18
Current sense settling time
with load current stable and
transition of the DEN
–
–
10
μs
VIN = 4.5 V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 4 A
P_7.5.19
–
–
20
μs
tsIS(ON_DEN)
Values
Number
See Figure 23
Current sense settling time to tsIS(LC)
IIS stable after positive input
slope on current load
VIN = 4.5 V
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL2 = 2 A to IL3 =
P_7.5.20
4 A ; See Figure 23
Diagnostic Timing in Open Load Condition
Current sense settling time to tsIS(FAULT_OL_ –
IIS stable for open load
OFF)
detection in OFF state
–
100
μs
VIN = 0V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 28 V
P_7.5.22
See Figure 26
Diagnostic Timing in Overload Condition
μs
Current sense settling time to tsIS(FAULT)
IIS stable for overload
detection
0
Current sense over current
blanking time
tsIS(OC_blank)
–
350
–
μs
Diagnostic disable time
DEN transition to
IIS < 50% IL /kILIS
tsIS(OFF)
0
–
20
μs
–
150
1)
VIN = VDEN = 0 to
P_7.5.24
4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 24 V
See Figure 19
1)
VIN =VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V to 0 V
P_7.5.32
See Figure 19
VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 4 A
P_7.5.25
1) Not subject to production test, specified by design
Data Sheet
PROFET™+ 24V
34
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Input Pins
8
Input Pins
8.1
Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage
thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly
increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input
circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the
pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an
input resistor.
IN
GND
Figure 28
Input Pin Circuitry
8.2
DEN Pin
Input circuitry.vsd
The DEN pin enables and disables the diagnostic functionality of the device. The pin has the same structure as
the INput pin, please refer to Figure 28.
8.3
Input Pin Voltage
The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set
by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and
depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a
hysteresis is implemented. This ensures a certain immunity to noise.
Data Sheet
PROFET™+ 24V
35
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Input Pins
8.4
Electrical Characteristics
Table 9
Electrical Characteristics: Input Pins
VS = 8 V to 36 V, TJ = -40 °C to +150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Test Condition
Number
INput Pins Characteristics
Low level input voltage range VIN(L)
-0.3
–
0.8
V
See Chapter 9
P_8.4.1
High level input voltage range VIN(H)
2
–
6
V
See Chapter 9
P_8.4.2
Input voltage hysteresis
Low level input current
High level input current
VIN(HYS)
IIN(L)
IIN(H)
–
250
–
mV
1)
1
10
25
μA
2
10
25
μA
VIN = 0.8 V
VIN = 5.5 V
See Chapter 9 P_8.4.3
P_8.4.4
P_8.4.5
See Chapter 9
DEN Pin
Low level input voltage range VDEN(L)
-0.3
–
0.8
V
–
P_8.4.6
High level input voltage range VDEN(H)
2
–
6
V
–
P_8.4.7
P_8.4.8
P_8.4.9
Input voltage hysteresis
Low level input current
High level input current
VDEN(HYS)
IDEN(L)
IDEN(H)
–
250
–
mV
1)
1
10
25
μA
2
10
25
μA
VDEN = 0.8 V
VDEN = 5.5 V
P_8.4.10
1) Not subject to production test, specified by design
Data Sheet
PROFET™+ 24V
36
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Characterization Results
9
Characterization Results
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed
at 8 V, 28 V and 36 V over temperature range.
9.1
General Product Characteristics
P_4.2.4
5
4
4.8
3.9
4.6
3.8
4.4
3.7
4.2
3.6
[V]
[V]
P_4.2.3
4
3.5
3.8
3.4
3.6
3.3
3.4
3.2
8V
3.2
8V
28V
28V
3.1
36V
36V
3
3
‐50
‐25
0
25
50
75
100
125
150
‐50
Temperature [°C]
‐25
0
25
50
75
100
125
150
Temperature [°C]
Undervoltage Threshold VS(UV) = f(TJ)
Minimum Functional Supply Voltage
VS(OP)_MIN = f(TJ)
P_4.2.7
12
8V
28V
10
36V
[µA]
8
6
4
2
0
‐50
‐25
0
25
50
75
100
125
150
Temperature [°C]
Standby Current for Whole Device with Load.
IS(OFF) = f(TJ;VS)
Data Sheet
PROFET™+ 24V
37
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Characterization Results
9.2
Power Stage
P_5.5.4
P_5.5.5
69.4
14
69.2
12
69
68.8
10
68.6
8
[V]
[mV]
68.4
68.2
6
68
4
67.8
8V
2
28V
36V
67.4
0
‐50
‐25
0
25
50
75
100
125
8V
67.6
28V
36V
67.2
150
‐50
Temperature [°C]
‐25
0
25
50
75
100
125
150
Temperature [°C]
Output Voltage Drop Limitation at Low Load Current Drain to Source Clamp Voltage VDS(AZ) = f(TJ)
VDS(NL) = f(TJ; VS)
P_5.5.11
P_5.5.12
1
1
0.9
0.9
0.8
0.7
0.7
0.6
0.6
[V/µs]
[V/µs]
0.8
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
8V
28V
0.1
8V
28V
0.1
36V
36V
0
0
‐50
‐50
‐25
0
25
50
75
100
125
150
Slew Rate at Turn ON
dV/dtON = f(TJ;VS), RL = 4 Ω
Data Sheet
PROFET™+ 24V
‐25
0
25
50
75
100
125
150
Temperature [°C]
Temperature [°C]
Slew Rate at Turn OFF
- dV/dtOFF = f(TJ;VS), RL = 4 Ω
38
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Characterization Results
90
80
80
70
70
60
60
50
50
[µs]
P_5.5.15
90
[µs]
P_5.5.14
40
40
30
30
20
20
8V
28V
10
8V
28V
10
36V
0
36V
0
‐50
‐25
0
25
50
75
100
125
150
‐50
‐25
0
25
Temperature [°C]
50
75
100
Turn ON TON = f(TJ;VS), RL = 4 Ω
Turn OFF TOFF = f(TJ;VS), RL = 4 Ω
P_5.5.19
P_5.5.20
6000
6000
5000
5000
4000
4000
[µJ]
[µJ]
125
150
Temperature [°C]
3000
3000
25°C
25°C
2000
2000
‐40°C
‐40°C
150°C
1000
150°C
1000
0
0
0
10
20
30
40
50
60
0
Supply Voltage [V]
Switch ON Energy EON = f(TJ;VS), RL = 4 Ω
Data Sheet
PROFET™+ 24V
10
20
30
40
50
60
Supply Voltage [V]
Switch OFF Energy EOFF = f(TJ;VS), RL = 4 Ω
39
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Characterization Results
9.3
Protection Functions
P_6.6.4
P_6.6.7
56
115
55
54
110
53
[A]
[A]
105
52
51
100
50
95
49
90
48
‐50
‐25
0
25
50
75
100
125
‐50
150
Temperature [°C]
Overload Condition in the Low Voltage Area
IL5(SC) = f(TJ);
Data Sheet
PROFET™+ 24V
‐25
0
25
50
75
100
125
150
Temperature [°C]
Overload Condition in the High Voltage Area
IL28(SC) = f(TJ);
40
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Characterization Results
9.4
Diagnostic Mechanism
P_7.5.2
2.5
29
2
27
25
[µA]
[mA]
1.5
1
23
21
19
0.5
8V
8V
28V
17
28V
36V
36V
0
15
‐50
‐25
0
25
50
75
100
125
150
‐50
‐25
0
25
Temperature [°C]
50
75
100
125
150
Temperature [°C]
Current Sense at no Load
Open Load Detection ON State Threshold
IIS = f(TJ;VS), IL = 0
IL(OL) = f(TJ;VS)
P_7.5.6
P_7.5.7
2.4
30
2.35
25
2.3
2.25
20
[V]
[mA]
2.2
15
2.15
2.1
10
2.05
8V
8V
5
28V
2
28V
36V
36V
1.95
0
‐50
‐25
0
25
50
75
100
125
150
‐50
Temperature [°C]
Sense Signal Maximum Voltage
VS - VIS(RANGE) = f(TJ)
Data Sheet
PROFET™+ 24V
‐25
0
25
50
75
100
125
150
Temperature [°C]
Sense Signal Maximum Current in Fault Condition
IIS(FAULT) = f(TJ;VS)
41
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Characterization Results
9.5
Input Pins
P_8.4.2
1.9
1.9
1.7
1.7
1.5
1.5
1.3
1.3
[V]
[V]
P_8.4.1
1.1
1.1
8V
8V
28V
28V
36V
0.9
36V
0.9
0.7
0.7
0.5
0.5
‐50
‐25
0
25
50
75
100
125
150
‐50
‐25
0
25
Temperature [°C]
50
75
100
125
150
Temperature [°C]
Input Voltage Threshold
Input Voltage Threshold
VVIN(L)= f(TJ;VS)
VVIN(H)= f(TJ;VS)
P_8.4.3
P_8.4.5
450
16
400
14
350
12
300
10
[µA]
[mV]
250
8
200
8V
8V
6
28V
150
28V
36V
36V
4
100
2
50
0
0
‐50
‐25
0
25
50
75
100
125
150
‐50
Temperature [°C]
Input Voltage Hysteresis
VIN(HYS) = f(TJ;VS)
Data Sheet
PROFET™+ 24V
‐25
0
25
50
75
100
125
150
Temperature [°C]
Input Current High Level
IIN(H) = f(TJ)
42
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Application Information
10
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
Voltage Regulator
OUT
T1
VS
GND
C VS
Z
ROL
VS
VDD
I/O
R DEN
I/O
R IN
DEN
Micro
controller
OUT
IN
OUT4
C OUT
RPD
OUT3
A/D
IS
R SENSE
GND
CSENSE
RIS
GND
R GND
D
Figure 29
Application Diagram with BTT6010-1EKA
Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
Table 10
Bill of Material
Reference
Value
Purpose
RIN
10 kΩ
Protection of the micro controller during overvoltage, reverse polarity
Guarantee BTT6010-1EKA channels OFF during loss of ground
RDEN
10 kΩ
Protection of the micro controller during overvoltage, reverse polarity
Guarantee BTT6010-1EKA channels OFF during loss of ground
RPD
47 kΩ
Polarization of the output
Improve BTT6010-1EKA immunity to electromagnetic noise
RIS
RSENSE
1.2 kΩ
Sense resistor
10 kΩ
Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro
controller specification.
ROL
1.5 kΩ
Ensure polarization of the BTT6010-1EKA output during open load in OFF
diagnostic
D
BAS21
Protection of the BTT6010-1EKA during reverse polarity
Data Sheet
PROFET™+ 24V
43
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Application Information
Table 10
Bill of Material (cont’d)
Reference
Value
Purpose
RGND
Z
27 Ω
To limit the GND current at a safe value during ISO pulse
58 V Zener
diode
Protection of the device during overvoltage
T1
CSENSE
CVS
COUT
Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic
100 pF
Sense signal filtering
100 nF
Filtering of the voltage spikes on the battery line
10 nF
Protection of the BTT6010-1EKA during ESD and BCI
Data Sheet
PROFET™+ 24V
44
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Application Information
10.1
Further Application Information
•
Please contact us to get the pin FMEA
•
Existing App. Notes
•
For further information you may visit http://www.infineon.com/profet
Data Sheet
PROFET™+ 24V
45
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Revision History
11
Revision History
Version
Date
Changes
1.1
2014-12-17
Update of Figure 21 and 22
1.0
2014-10-30
Creation of the document
Data Sheet
PROFET™+ 24V
46
Rev. 1.1, 2014-12-17
BTT6010-1EKA
Package Outlines
12
Package Outlines
0.35 x 45˚
0.41±0.09
0˚...8˚
C
2)
0.2
M
0.19 +0.06
0.1 C D 2x
8˚ MAX.
0.08 C
Seating Plane
C A-B D 14x
0˚...8˚
0.64 ±0.25
6 ±0.2
D
0.2
8˚ MAX.
1.27
1.7 MAX.
8˚ MAX.
Stand Off
(1.47)
0.1+0
-0.1
0.12 -0.085
3.9 ±0.11)
M
D
Bottom View
14
8
1
1
7
14
7
8
2.65 ±0.25
6.4 ±0.25
A
B
8.65 ±0.1
Index Marking
0.1 C A-B 2x
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion of 0.13 max.
3) JEDEC reference MS-012 variation BB
PG-DSO-14-33,-40,-43 V02
Figure 30
PG-DSO-14-47 EP (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
PROFET™+ 24V
47
Rev. 1.1, 2014-12-17
Edition 2014-12-17
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Legal Disclaimer for short-circuit capability
Infineon disclaims any warranties and liabilities, whether expressed nor implied, for any short-circuit failures below
the threshold limit.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.