BTS54220-LBB Data Sheet (2.6 MB, EN)

SPOC™+ 12V
BTS54220-LBB
SPI Power Controller
Data Sheet
Rev. 2.1, 2014-12-05
Automotive
BTS54220-LBB
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 2.1, 2014-12-05
All
Data Sheet released
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, μVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2014-03-27
Data Sheet
2
Rev. 2.1, 2014-12-05
BTS54220-LBB
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
2.1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Assignment BTS54220-LBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
4.1
4.2
4.2.1
4.2.2
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCB Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13
16
16
18
5
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.2
5.2.1
5.3
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ready mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operative mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
21
22
22
22
23
23
23
23
24
25
6
6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.5
Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Status Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Stage Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulb and LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Channels in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
27
27
28
29
29
29
30
30
31
7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Over Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Over Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Over Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
35
35
39
39
39
39
40
8
8.1
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Diagnosis Word at SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Data Sheet
3
Rev. 2.1, 2014-12-05
BTS54220-LBB
Table of Contents
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.5
Load Current Sense Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Sense Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Sense Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load at ON Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switch Bypass Monitor Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Back Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
44
44
45
45
46
47
9
9.1
9.2
9.3
9.4
9.5
9.6
9.6.1
9.6.2
9.6.3
9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.7.6
9.7.7
9.7.8
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Daisy Chain Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Diagnosis Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Standard Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Errors Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Warnings Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Swap Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Mode Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Back Regulation Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hardware Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnosis Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration Register Bit Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
51
52
53
54
56
59
59
60
60
61
61
61
61
62
62
62
63
63
10
Application Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11
Package Outlines BTS54220-LBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Data Sheet
4
Rev. 2.1, 2014-12-05
BTS54220-LBB
List of Figures
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Data Sheet
Block Diagram BTS54220-LBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Configuration TSON-24-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2s2p PCB Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
PC Board for Thermal Simulation with 600 mm² Cooling Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PC Board for Thermal Simulation with 2s2p Cooling Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Solder Area / Vias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical Thermal Impedance. PCB setup according Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical Thermal Resistance. PCB setup 1s0p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Operation Mode state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Limp Home Activation as function of VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
VS undervoltage behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
RDS(ON) variation factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Input Switch Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Power Stage Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Switching a Load (resistive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Typical Current Limitation variation according to VDS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Dynamic Temperature Sensor Operations - Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Dynamic and Absolute Temperature Sensor Operations - Overload Condition . . . . . . . . . . . . . . . 38
Different counter reset according to HWCR.RCR bit value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Block Diagram: Diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Current Sense Signal Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Current Sense Multiplexer Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Current Sense Ratio in Open Load at ON condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Combinatorial Logic for TER Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Daisy Chain Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Data Transfer in Daisy Chain Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Timing Diagram SPI Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Relationship between SI and SO during SPI communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Register content sent back to µC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
BTS54220-LBB response after an error in transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
BTS54220-LBB response after coming out of Power-On reset at VDD . . . . . . . . . . . . . . . . . . . . . . 57
BTS54220-LBB response in case of a negative battery voltage transient . . . . . . . . . . . . . . . . . . . 57
Application Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
TSON-24-1 Package drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
TSON-24 Package pads and stencil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5
Rev. 2.1, 2014-12-05
BTS54220-LBB
List of Tables
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Data Sheet
Product Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Device capability as function of VS and VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Device function in relation to operation modes, VS and VDD voltages . . . . . . . . . . . . . . . . . . . . . . 22
Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Electrical Characteristics Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Electrical Characteristics Diagnosis kILIS 9 mΩ ch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Electrical Characteristics Diagnosis kILIS 27 mΩ ch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Electrical Characteristics Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
SPI Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Register Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Suggested Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6
Rev. 2.1, 2014-12-05
BTS54220-LBB
1
Overview
Features
•
8-bit serial peripheral interface (daisy chain capable SPI) for control
and diagnosis
•
CMOS compatible parallel input pins for four channels
•
Selectable AND- / OR-combination for parallel inputs (PWM control)
•
Load type configuration via SPI (bulbs or LEDs) for optimized load
control
•
Very low stand-by current
•
Device ground independent from load ground
•
Green Product (RoHS-Compliant)
•
AEC Qualified
TSON-24-1
Description
The BTS54220-LBB is a four channel high-side smart power switch in TSON-24-1 package providing embedded
protective functions. It is specially designed to control standard exterior lighting in automotive applications. In order
to use the same hardware, the device can be configured to bulb or LED mode. As a result, both load types are
optimized in terms of switching and diagnosis behavior.
It is designed to drive exterior lamps up to 65 W and 27 W, HIDL or the equivalent LED light.
Table 1
Product Summary
Operating Voltage Power Switch
VS
5.5 … 28 V
Logic Supply Voltage
VDD
3.8 … 5.5 V
Over Voltage Protection
VS(AZ,min)
42 V
Maximum Stand-By Current at 25 °C
IVS(STB)
1 µA
Maximum ON State Resistance at Tj = 150 °C
9 mΩ channels (Channel 1, 4)
RDS(ON,max)
18.2 mΩ
Maximum ON State Resistance at Tj = 150 °C
27 mΩ channels (Channel 2, 3)
RDS(ON,max)
55 mΩ
SPI Access Frequency
fSCLK(max)
3 MHz
Configuration and status diagnosis are done via SPI. An 8-bit serial peripheral interface (SPI) is used. The SPI is
daisy chain capable.
Type
Package
Marking
BTS54220-LBB
TSON-24-1
BTS54220-LBB
Data Sheet
7
Rev. 2.1, 2014-12-05
BTS54220-LBB
Overview
The device provides a current sense signal per channel that is multiplexed to the diagnosis pin IS. It can be
enabled and disabled via SPI commands. An over temperature flag per output is provided in the SPI diagnosis
word. A multiplexed switch bypass monitor provides short-circuit to VS diagnosis.
27 mΩ channels can be configured to bulb or LED mode for maximum flexibility.
The BTS54220-LBB provides a fail-safe feature via a Limp Home Input (LHI) pin and direct Input pins.
The power transistors are built by N-channel vertical power MOSFETs with charge pumps. The device is
monolithically integrated in SMART technology.
Applications
•
High-side power switch for 12 V in automotive or industrial applications such as lighting, heating, motor driving,
energy and power distribution
•
Especially designed for standard exterior lighting like high beam, low beam, position light, tail light, brake light,
parking light, license plate light, indicators and equivalent in the LED technology
•
Replaces electromechanical relays, fuses and discrete circuits
Protective Functions
•
Reverse battery protection with external components
•
Short circuit to ground protection
•
Stable behavior at under voltage
•
Current limitation
•
Absolute and dynamic temperature sensor
•
Thermal shutdown with latch after a limited amount of retries
•
Overvoltage protection
•
Loss of ground protection
•
Electrostatic discharge protection (ESD)
Diagnostic Functions
•
Multiplexed proportional load current sense signal (IS)
•
Enable function for current sense signal configurable via SPI
•
High accuracy of current sense signal at wide load current range
•
Current sense ratio (kILIS) configurable for LEDs or bulbs
•
Very fast diagnosis in LED mode
•
Feedback on over temperature via SPI
•
Short circuit to VS detection
•
Monitoring of Input pins status
Application Specific Functions
•
Fail-safe activation via LHI pin and control via input pins
•
Enhanced electromagnetic compatibility (EMC) for bulbs as well as LEDs
•
LED mode selection available
•
SPI with daisy chain capability
•
Switch bypass monitoring for detecting short circuit to VS
Data Sheet
8
Rev. 2.1, 2014-12-05
BTS54220-LBB
Block Diagram
2
Block Diagram
VS
VDD
power
supply
IN1
temperature
sensor
gate control
&
charge pump
driver
logic
IN2
IN3
clamp for
inductive
load
IN4
load current
sense
load current
limitation
channel 1 2
IS
LHI
CS
ESD
protection
34
OUT4
OUT3
OUT2
current sense multiplexer
limp home
control
LED mode
control
OUT1
switch bypass
monitor
SCLK
SPI
SO
SI
GND
BlockDiagram_4chnoED.emf
Figure 1
Data Sheet
Block Diagram BTS54220-LBB
9
Rev. 2.1, 2014-12-05
BTS54220-LBB
Block Diagram
2.1
Terms
Figure 2 shows all terms used in this data sheet, with associated convention for positive values.
VS
IS
VS
IDD
ISO
VDD
VDD
SO
I SI
VSO
SI
I CS
V SI
I L1
CS
V DS1
OUT1
ISCLK
VCS
VOUT1
SCLK
V SCLK
I L2
VDS 2
OUT2
ILHI
V OUT2
LHI
V LHI
I L3
VDS3
OUT3
VOUT3
IIN1
I L4
IN1
OUT4
IIN2
VIN 1
IIN3
VIN2
IIN4
V IN3
VIN4
I IS
VDS 4
V OUT4
IN2
IN3
IN4
IS
VIS
GND
IGND
Terms_4chnoED.emf
Figure 2
Voltage and Current Definition
In all tables of electrical characteristics, symbols related to channels without channel number are valid for each
channel separately (e.g. VDS specification is valid for VDS1 … VDS4).
All SPI register bits are marked as follows: ADDR.PARAMETER (e.g. HWCR.STB) with the exception of the bits in
the Diagnosis frames which are marked only with PARAMETER (e.g. VSMON).
Data Sheet
10
Rev. 2.1, 2014-12-05
BTS54220-LBB
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment BTS54220-LBB
(top view )
GND
VDD
SO
SI
SCLK
CS
LHI
IN1
IN2
IN3
IN4
IS
1
24
2
23
3
22
4
21
5
20
6
7
25
VS
10
18
17
8
9
19
exposed pad
(bottom )
16
15
11
14
12
13
OUT1
OUT1
OUT1
OUT1
OUT2
OUT2
OUT3
OUT3
OUT4
OUT4
OUT4
OUT4
Pinout_220noED.emf
Figure 3
Data Sheet
Pin Configuration TSON-24-1
11
Rev. 2.1, 2014-12-05
BTS54220-LBB
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
I/O
Function
25
VS
–
Positive power supply for high-side power switch
1
GND
–
Ground connection
2
VDD
–
Logic supply (5 V)
3
SO
O
Serial output of SPI interface
4
SI
I
Serial input of SPI interface (“high” active)
5
SCLK
I
Serial clock of SPI interface (“high” active)
6
CS
I
Chip select of SPI interface (“low” active); Integrated pull up to VDD
12
IS
O
Current sense output signal
Power Supply Pins
SPI & Diagnosis Pins
Limp Home Input Pin (integrated pull-down, leave unused Limp Home Input pin unconnected)
7
LHI
I
Limp home activation signal (“high” active)
Parallel Input Pins (integrated pull-down, leave unused pins unconnected)
8
IN1
I
Input signal of channel 1 (“high” active)
9
IN2
I
Input signal of channel 2 (“high” active)
10
IN3
I
Input signal of channel 3 (“high” active)
11
IN4
I
Input signal of channel 4 (“high” active)
21, 22, 23, 24 1)
OUT1
O
Protected high-side power output of channel 1
1)
OUT2
O
Protected high-side power output of channel 2
OUT3
O
Protected high-side power output of channel 3
OUT4
O
Protected high-side power output of channel 4
Power Output Pins
19, 20
17, 18 1)
13, 14, 15, 16
1)
1) All outputs pins of each channel must be connected together on the PCB. All pins of an output are internally connected
together. PCB traces have to be designed to withstand the maximum current which can flow.
Data Sheet
12
Rev. 2.1, 2014-12-05
BTS54220-LBB
Electrical Characteristics
4
Electrical Characteristics
4.1
Absolute Maximum Ratings
Tj = -40 to +150 °C; all voltages with respect to ground
Typical resistive loads connected to the outputs (unless otherwise specified):
9 mΩ channels: RL = 2.2 Ω
27 mΩ channels: RL = 6.8 Ω (33 Ω when LGCR.LEDn = “1”)
Table 2
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Note /
Test Condition
Number
Max.
Supply Voltage
Power supply voltage
VS
-0.3
28
V
–
P_4.1.1
Logic supply voltage
VDD
-0.3
5.5
V
–
P_4.1.2
V
2)
P_4.1.3
Reverse polarity voltage
-VS(rev)
–
16
TjStart = 25 °C
t ≤ 2 min.
See Chapter 10 for
setup
Supply voltage for short circuit
protection (single pulse)
VS(SC)
0
Permanent short circuit number
channel activations
All channels
nRSC1
-
Voltage at power transistor
VDS
–
28
V
3)
P_4.1.5
RECU = 20 mΩ
l = 0 or 5 m
RCable = 16 mΩ/m
LCable = 1 µH/m
100
k
3)
P_4.1.6
VDD = 5 V
tON = 300 ms
42
V
–
P_4.1.8
V
4)
P_4.1.9
Supply voltage for load dump
protection
VS(LD)
–
Current through ground pin
IGND
-100
25
mA
t ≤ 2 min.
P_4.1.10
Current through VDD pin
IDD
-25
30
mA
t ≤ 2 min.
P_4.1.11
|IL|
–
IL(LIM)
A
5)
P_4.1.12
mJ
6)
P_4.1.13
42
RI = 2 Ω
t = 400 ms
Power Stages
Load current
Maximum energy dissipation
single pulse - IL(nom)
9 mΩ ch.
EAS
–
145
Tj(0) = 150 °C
IL(0) = IL(nom) =
P_6.6.15
Maximum energy dissipation
single pulse - IL(nom)
27 mΩ ch.
EAS
–
135
mJ
6)
P_4.1.14
Tj(0) = 150 °C
IL(0) = IL(nom) =
P_6.6.16
Data Sheet
13
Rev. 2.1, 2014-12-05
BTS54220-LBB
Electrical Characteristics
Table 2
Absolute Maximum Ratings1) (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Unit
Note /
Test Condition
Number
Max.
Diagnosis Pin
Voltage at sense pin IS
VIS
-0.3
VS
V
–
P_4.1.24
Current through sense pin IS
IIS
-10
40
mA
t ≤ 2 min.
P_4.1.25
Voltage at input pins
VIN
-0.3
6.0
V
–
P_4.1.26
Current through input pins
IIN
-0.75
0.75
mA
–
P_4.1.27
Current through input pins
IIN
-2.0
10
mA
t ≤ 2 min.
P_4.1.28
Voltage at chip select pin
VCS
-0.3
6.0
V
–
P_4.1.29
Current through chip select pin
ICS
-0.75
0.75
mA
–
P_4.1.30
Current through chip select pin
ICS
-2.0
10
mA
t ≤ 2 min.
P_4.1.31
Voltage at serial input pin
VSI
-0.3
6.0
V
–
P_4.1.32
Current through serial input pin
ISI
-0.75
0.75
mA
–
P_4.1.33
Current through serial input pin
ISI
-2.0
10
mA
t ≤ 2 min.
P_4.1.34
Voltage at serial clock pin
VSCLK
-0.3
6.0
V
–
P_4.1.35
Current through serial clock pin
ISCLK
-0.75
0.75
mA
–
P_4.1.36
Current through serial clock pin
ISCLK
-2.0
10
mA
t ≤ 2 min.
P_4.1.37
Current through serial output pin SO ISO
-0.75
0.75
mA
–
P_4.1.38
Current through serial output pin SO ISO
-10
2.0
mA
t ≤ 2 min.
P_4.1.39
-0.3
6.0
V
–
P_4.1.40
Current through Limp Home Input pin ILHI
-0.75
0.75
mA
–
P_4.1.41
Current through Limp Home Input pin ILHI
-2.0
10
mA
t ≤ 2 min.
P_4.1.42
-40
150
°C
–
P_4.1.45
–
60
K
–
P_4.1.46
Tstg
-55
150
°C
–
P_4.1.47
VESD
-4
4
kV
7)
P_4.1.48
kV
7)
Input Pins
SPI Pins
Limp Home Input Pin
Voltage at Limp Home Input pin
VLHI
Temperatures
Junction temperature
Tj
Dynamic temperature increase while ∆Tj
switching
Storage temperature
ESD Susceptibility
ESD susceptibility HBM
OUT pins vs. VS
ESD susceptibility HBM
all pins vs. VDD
HBM
VESD
ESD susceptibility HBM
VESD
other pins vs. GND incl. OUT pins vs.
GND
Data Sheet
-1.5
1.5
P_4.1.54
HBM
-2
2
kV
7)
P_4.1.49
HBM
14
Rev. 2.1, 2014-12-05
BTS54220-LBB
Electrical Characteristics
Table 2
Absolute Maximum Ratings1) (cont’d)
Parameter
Symbol
Values
Min.
ESD Resistivity to GND
Typ.
ESD Resistivity Pin 1, 12, 13, 24
(corner pins) to GND
Number
V
8)
P_4.1.51
CDM
500
VESD1, 12,
13, 24
Note /
Test Condition
Max.
VESD
-500
Unit
V
-750
750
8)
P_4.1.52
CDM
1) Not subject to production test, specified by design.
2) Device is mounted on an FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection; The product (chip and
package) was simulated on a 76.4 * 114.3 * 1.5 mm board with 2 inner copper layers (2 * 70 µm Cu, 2 * 35 µm Cu). Where
applicable, a thermal via array under the package contacted the first inner copper layer.
3) EOL tests according to AECQ100-012. Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer
for short-circuit capability at the end of this document.
4) RI is the internal resistance of the load dump pulse generator.
5) Current limitation is a protection feature. Protection features are not designed for continuous repetitive operation.
6) Pulse shape represents inductive switch OFF: ID(t) = ID(0) × (1 - t / tpulse); 0 < t < tpulse
7) ESD resistivity, HBM according to ANSI/ESDA/JEDEC JS-001-2010
8) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Data Sheet
15
Rev. 2.1, 2014-12-05
BTS54220-LBB
Electrical Characteristics
4.2
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Table 3
Thermal Resistance
Parameter
Symbol
Junction to Soldering Point
Junction to Ambient
Values
Min.
Typ.
Max.
RthJSP
–
2
–
RthJA
–
Unit
Note / Test Condition Number
K/W
1)
P_4.2.1
Tj(0) = 105 °C
measured to pin 25
21
–
K/W
1)2)
P_4.2.2
Tj(0) = 105 °C
1) Not subject to production test, specified by design.
2) Specified RthJA values is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip
and package) was simulated on a 76.4 * 114.3 * 1.5 mm board with 2 inner copper layers (2 * 70 µm Cu, 2 * 35 µm Cu).
Where applicable, a thermal via array under the package contacted the first inner copper layer.
4.2.1
PCB Setup
70µm
1.5mm
35µm
0.3mm
Figure 4
Data Sheet
Zth_PCB_2s2p.emf
2s2p PCB Cross Section
16
Rev. 2.1, 2014-12-05
BTS54220-LBB
Electrical Characteristics
Figure 5
PC Board for Thermal Simulation with 600 mm² Cooling Area
Figure 6
PC Board for Thermal Simulation with 2s2p Cooling Area
Data Sheet
17
Rev. 2.1, 2014-12-05
BTS54220-LBB
Electrical Characteristics
Figure 7
Solder Area / Vias
4.2.2
Thermal Impedance
BTS54220LBx
100
ZthJA[K/W]
10
1
0,1
2s2p
1s0p600mm²
1s0p300mm²
1s0pfootprint
0,01
0,0001
Figure 8
Data Sheet
0,001
0,01
0,1
Time[s]
1
10
100
1000
Typical Thermal Impedance. PCB setup according Figure 6
18
Rev. 2.1, 2014-12-05
BTS54220-LBB
Electrical Characteristics
BTS54220LBx
60
55
1s0p
50
RthJA[K/W]
45
40
35
30
25
20
0
100
200
300
400
500
600
700
Area[mm²]
Figure 9
Data Sheet
Typical Thermal Resistance. PCB setup 1s0p
19
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Supply
5
Power Supply
The BTS54220-LBB is supplied by two voltage sources:
VS (analog supply voltage)
• VDD (digital supply voltage)
The VS supply line is connected to a battery feed and used for the driving circuitry of the power stages, while VDD
•
is used for the SPI logic and for driving SO pin.
VS and VDD supply voltages have an undervoltage detection circuit, which prevents the activation of the associated
function in case the measured voltage is below the undervoltage threshold. More in detail:
•
An undervoltage on VDD supply prevents SPI communication. SPI registers are reset to default values. The
retry counters used to protect the channels are reset therefore the channels are in “unlimited restart” mode.
•
An undervoltage on VS supply switches OFF all channels, even in Limp Home mode. The channels are
enabled again as soon as VS = VS(OP).
The voltage at pin VS is also monitored. In case of a negative voltage transient resulting in VS < VSMON with
DCR.MUX ≠ “111B”, any SPI command sent by the micro-controller is not accepted (see Chapter 9.5 for further
details).
An overview of channel behavior according to different VS and VDD supply voltages is shown in Table 4 (the table
is valid after a successful supply voltage ramp-up).
Table 4
Device capability as function of VS and VDD
VS ≤ VSMON
(VSMON = P_5.3.12)
VSMON < VS ≤ VS(UV)
(VS(UV) = P_5.3.2)
VS > VS(UV)3)
VDD ≤ VDD(PO)
(VDD(PO) = P_5.3.17)
VDD > VDD(PO)
Channels are OFF
Channels are OFF
SPI registers reset
SPI registers protected1)
SPI communication not available
(fSCLK = 0 MHz)
SPI communication available2)
(fSCLK = 3 MHz)
Limp Home mode not available
Limp Home mode not available
Channels are OFF
Channels are OFF
SPI registers reset
SPI registers available
SPI communication not available
(fSCLK = 0 MHz)
SPI communication available
(fSCLK = 3 MHz)
Limp Home mode available
(channels are OFF)
Limp Home mode available
(channels are OFF)
Channels cannot be controlled by SPI Channels can be switched ON and
OFF
SPI registers reset
SPI registers available
SPI communication not available
(fSCLK = 0 MHz)
SPI communication available
(fSCLK = 3 MHz)
Limp Home mode available
Limp Home mode available
1) If DCR.MUX ≠ 111B, othervise SPI registers are available.
2) SPI response depends on DCR.MUX value. See Chapter 9.5 for further details.
3) The undervoltage condition on VS supply must be considered. See Chapter 5.2.1 for further details.
Data Sheet
20
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Supply
5.1
Operation modes
BTS54220-LBB has the following operation modes:
•
Stand-by mode
•
Idle mode
•
Ready mode
•
Operative mode
•
Limp Home mode
The transition between operation modes is determined according to these variables:
•
logic level at LHI pin
•
logic level at INn pins
•
DCR.MUX bits state
•
OUT.OUTn bits state
The state diagram including the possible transitions is shown in Figure 10. The behavior of BTS54220-LBB as
well as some parameters may change in dependence from the operation mode of the device. Furthermore, due
to the undervoltage detection circuitry which monitors VS and VDD supply voltages, some changes within the same
operation mode can be seen accordingly.
Power -up
LHI = "low"
& INn = "low"
DCR.MUX ≠ "111"
Idle
Stand-by
DCR.MUX = "111" or
VDD < VDD(PO) or
HWCR.RST = "1"
(V
(H D D
WC <
R. VD
RS D( P
T O)
= &I
"1 N
" n
& =
I N „l o
n w
= “)
„l o or
w
“)
OUT.OUTn = "1"
or INn = "high"
LHI = "high"
OUT.OUTn = "0" or
(V DD < V DD(PO) & INn = "low") or
HWCR.RST = "1"
OUT.OUTn = "0"
& INn = "low"
Limp Home
OUT.OUTn = "1"
or INn = "high"
LHI = "low"
& INn = "high"
DCR.MUX ≠ "111"
Operative
Ready
DCR.MUX = "111" or
(VDD < VDD(PO ) & INn = "high") or
(HWCR.RST = "1" & INn = "high")
LHI = "high"
LHI = "high"
LHI = "high"
Note: Registers which are not mentioned are considered to be in default state
Figure 10
PowerSupply_OpModes.emf
Operation Mode state diagram
There are three parameters describing the behavior of BTS54220-LBB:
•
status of output channels
•
status of SPI registers
•
status of SPI communication
It is necessary to set DCR.MUX to a value different from 111B to command a switch ON of one or more channels.
In alternative it is necessary to set the LHI to “high” - in this case the logic state of the Input pins is reflected to the
outputs (if there is no undervoltage condition on VS supply).
Data Sheet
21
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Supply
Table 5 shows the correlation between device operation modes, VS and VDD supply voltages, and the state of the
most important functions (channel status, SPI communication and SPI registers).
Table 5
Device function in relation to operation modes, VS and VDD voltages
Operation Mode
Function
VS ≤ VSMON
VSMON > VS ≤ VS(UV) VS > VS(UV)
Stand-by
Channels
OFF
OFF
Idle
Ready
Operative
Limp Home
1)
OFF
1)
available1)
SPI comm.
available
SPI registers
available1)
available1)
available1)
Channels
OFF
OFF
OFF
available
1)
available1)
SPI comm.
all commands
rejected1)
available
SPI registers
available1)
available1)
available1)
Channels
OFF
OFF
OFF
1)
1)
available1)
SPI comm.
available
SPI registers
available1)
available1)
available1)
Channels
OFF
OFF
follow OUT.OUTn
and/or Input pins
SPI comm.
all commands
rejected1)
available1)
available1)
SPI registers
available1)
available1)
available1)
Channels
OFF
OFF
follow Input pins
SPI comm.
available
(read-only)1)2)
available
(read-only)1)2)
available
(read-only)1)2)
SPI registers
reset
reset
reset
available
1) If VDD > VDD(PO), otherwise not available or in reset.
2) HWCR.CTC and HWCR.RST commands are accepted.
5.1.1
Power-up
The Power-up condition is entered when one of the supply voltages (VS or VDD) is applied to the device. Both
supplies are rising until they are above the undervoltage thresholds VS(OP) and VDD(PO) therefore the internal poweron signals are set.
5.1.2
Stand-by mode
When BTS54220-LBB is in Stand-by mode, all outputs are OFF. The SPI registers can be programmed if VDD >
VDD(PO). The current consumption is minimum (see parameter IVS(STB)). The circuitry that monitors VS versus the
threshold VSMON is disabled, allowing the programming of the registers. Even if one Input pin is set to “high” or if
one OUT.OUTn bit is set to “1”, all outputs stay switched OFF.
5.1.3
Idle mode
In Idle mode, the internal supply circuitry is working and the device current consumption is increased. All channels
are OFF and a command to switch ON one or more outputs (either via SPI or via Input pins) is accepted and
executed, bringing the device into Operative mode.
Data Sheet
22
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Supply
5.1.4
Ready mode
In Ready mode, one or more outputs received a command to switch ON (either via SPI or via Input pins).
Nevertheless all outputs are OFF because of DCR.MUX bits still set to 111B. It is necessary to change the value of
those bits to bring the device into Operative mode and switch ON the channels.
5.1.5
Operative mode
Operative mode is the normal operation mode of BTS54220-LBB when no Limp Home condition is set and one or
more outputs are switched ON. Device current consumption is specified by parameter IGND. An undervoltage
condition on VDD supply voltage brings the device into Stand-by mode (if all Input pins are set to “low”) or into
Ready mode (if at least one Input pin is set to “high”).
5.1.6
Limp Home mode
BTS54220-LBB enters Limp Home mode when LHI pin is set to “high”. SPI registers are reset to the default values
after tLHI(ac) from the rising edge at pin LHI (see Figure 11 for further details). SPI communication is possible but
only in read-only mode (SPI registers can be read but cannot be written, meaning that current sensing is not
available). When VS ≤ VSMON and DCR.MUX ≠ 111B the logic state detected at pin LHI is ignored and the device
doesn’t enter Limp Home mode.
Note: The only write commands excepted in Limp Home mode are HWCR.CTC and HWCR.RST to clear the
protection latches.
VS
VSMON
LHI
pin
t < tLHI(ac ), min
t < tLHI(ac ), min
LHI
bit
t LHI(ac )
SPI state
Normal operation
t LHI(ac )
Reset
Normal operation
PowerSupply_LimpHomeActive.emf
Figure 11
Limp Home Activation as function of VS
5.2
Reset condition
One of the following 3 conditions resets the SPI registers to their default values:
•
VDD is not present or below the undervoltage threshold VDD(PO)
LHI pin is set to “high” and VS > VSMON
•
a reset command (HWCR.RST = 1B) is executed
•
In particular, all channels are switched OFF (if the device is not in Limp Home mode with one or more Input pins
set to “high”). In case of lack of VDD supply the internal retry counters are disabled therefore all channels are in
“unlimited restart” mode.
Data Sheet
23
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Supply
5.2.1
Undervoltage on VS
Between VS(OP) and VS(UV) the undervoltage mechanism is triggered. If the device is operative and the supply
voltage drops below the undervoltage threshold VS(UV), the logic switches OFF the channels. As soon as the supply
voltage VS is above the minimum operative voltage threshold VS(OP), the channels having either the corresponding
Input pin set to “high” or the OUT.OUTn bit set to “1” are switched ON again (as shown in Figure 12).
VOUT
t
VS
VS(OP )
VS (UV)
VS(HYS )
t
PowerSupply_UVRVS.emf
Figure 12
Data Sheet
VS undervoltage behavior
24
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Supply
5.3
Electrical Characteristics
Unless otherwise specified: VS = 7 V to 18 V, VDD = 3.8 V to 5.5 V, Tj = -40 °C to +150 °C
Typical values: VS = 13.5 V, VDD = 4.3 V, Tj = 25 °C
Typical resistive loads connected to the outputs (unless otherwise specified):
9 mΩ channels: RL = 2.2 Ω
27 mΩ channels: RL = 6.8 Ω (33 Ω when LGCR.LEDn = “1”)
Table 6
Electrical Characteristics Power Supply
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
VS pin
Operating voltage power switch
VS(OP)
5.5
–
281)
V
VDS < 0.5 V
P_5.3.1
Undervoltage shutdown
VS(UV)
–
–
4.5
V
OUTn = ON
From VDS < 1 V
to ILn = 0 A
(see Figure 12)
P_5.3.2
Undervoltage shutdown
Hysteresis
VS(HYS)
–
350
–
mV
1)
P_5.3.3
Stand-by current for whole device IVS(STB)
with loads
–
0.1
1
μA
1)
P_5.3.7
Stand-by current for whole device IVS(STB)
with loads
–
Stand-by current for whole device IVS(STB)
with loads
–
8
20
μA
VDD = 0 V
VLHI = 0 V
Tj = 150 °C
P_5.3.9
Idle current for whole device with IVS(idle)
loads, all channels OFF
–
2.25
5
mA
VDD = 5 V
P_5.3.10
VDD = 0 V
VLHI = 0 V
Tj = 25 °C
0.1
2.5
μA
1)
P_5.3.8
VDD = 0 V
VLHI = 0 V
Tj = 85 °C
DCR.MUX = 110B
Operating current for whole
device
IGND
–
11
18
mA
fSCLK = 0 MHz
P_5.3.11
VS threshold for Limp Home
VSMON
0.6
1.2
1.8
V
VSMON = 1
P_5.3.12
Logic supply voltage
VDD
3.8
–
5.51)
V
fSCLK = 3 MHz
P_5.3.13
Logic supply current Normal
operation
IDD
–
125
220
μA
fSCLK = 0 MHz
VCS = VDD= 5 V
P_5.3.14
validation
VDD pin
DCR.MUX ≠ 111B
Logic Stand-by current
IDD(STB)
–
35
70
μA
fSCLK = 0 MHz
VCS = VDD= 5 V
P_5.3.16
DCR.MUX = 111B
Data Sheet
25
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Supply
Table 6
Electrical Characteristics Power Supply (cont’d)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
VDD(PO)
2.3
2.75
3.8
V
SI = 0 V
SCLK = 0 V
CS = 0 V
SO from 0 to Z
P_5.3.17
L-input level at pin LHI
VLHI(L)
-0.3
–
1.0
V
LHI = 1 (see
Chapter 9.6.1)
P_5.3.18
H-input level at pin LHI
VLHI(H)
2.6
–
6.0
V
–
P_5.3.19
L-input current through pin LHI
ILHI(L)
3
27
75
μA
VLHI = 1.0 V
P_5.3.20
H-input current through pin LHI
ILHI(H)
7
30
75
μA
VLHI = 2.6 V
P_5.3.21
Power-On wake up time
tWU(PO)
–
200
–
μs
1)
P_5.3.22
Limp Home acknowledgement
time
tLHI(ac)
5
–
30
μs
P_5.3.23
VDD = 5 V
polling of Standard
Diagnosis (see
Chapter 9.6.1) until
LHI = STB = 1
Reset command delay time
td(RST)
–
–
100
μs
1)
Power-On reset threshold
voltage
LHI Input Characteristics
Timings
P_5.3.25
1) Not subject to production test, specified by design.
Note: Characteristics show the deviation of parameter at the given supply voltage and junction temperature.
Typical values show the typical parameters expected from manufacturing at VS = 13.5 V, VDD = 4.3 V and
Tj = 25 °C
Data Sheet
26
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
6
Power Stages
The high-side power stages are built by N-channel vertical power MOSFETs with charge pumps. There are four
channels implemented in the device. Each channel can be switched on via SPI register OUT or via an input pin,
when available. Channels 2 and 3 provide a load type configuration for bulbs or LEDs in register LGCR (see
Chapter 9.7.4). The load type configuration can be changed in ON- as well as in OFF-state.
6.1
Output ON-State Resistance
The ON-state resistance RDS(ON) depends mainly on the junction temperature Tj. Figure 13 shows the variation of
RDS(ON) across the whole temperature range. The value “1” corresponds to the typical RDS(ON) measured at
TJ = 25°C.
RDS(ON) variation factor ("1" = RDS(ON) typical @ 25°C)
2.00
1.80
1.60
RDS(ON) variation factor
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00
-40
-20
0
20
40
60
80
100
120
140
160
Junction Temperature (°C)
Figure 13
RDS(ON) variation factor
The behavior in reverse polarity mode is described in Chapter 7.
6.2
Input Circuit
There are two ways of using the input pins in combination with the register OUT by programming bit HWCR.COL in
register HWCR (see Chapter 9.7.6).
•
HWCR.COL = 0: A channel is switched ON either by the according OUT.OUTn bit or by the input pin.
•
HWCR.COL = 1: A channel is switched ON by the according OUT.OUTn bit only, when the input pin is “high”. In
this configuration, a PWM signal can be applied to the input pin and the channel is activated by the SPI register
OUT (see Chapter 9.7.1).
The default state (HWCR.COL = 0) is the OR-combination of the input signal and the SPI-bit. In Limp Home Mode
(LHI pin set to “high”) the combinatorial logic is switched to OR-mode to enable a channel activation via the input
pins only.
Figure 14 shows the complete input switch matrix.
Data Sheet
27
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
The zener diode protects the input circuit against ESD pulses. The current sink to ground ensures that the input
signal is low in case of an open input pin.
6.3
Input Status Monitor
The level of the input stage can be monitored via the input status monitor. The input status is indicated in the OUT
register for the available input pin. After setting the bit SWCR.SWR = 1B, the readout of OUT.INSTn shows the state
of the input pins.
OUT4
OUT3
OUT2
OUT1
OR
IN1
I IN1
&
OR
IN2
I IN2
&
OR
IN3
I IN2
&
OR
IN4
I IN3
INST
&
Gate Driver 1
Gate Driver 2
Gate Driver 3
Gate Driver 4
COL
INST4 INST3 INST2 INST1
PowerStage_InputMatrix_4chnoED.emf
Figure 14
Data Sheet
Input Switch Matrix
28
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
6.4
Power Stage Output
The power stages are built to be used in high side configuration (Figure 15).
The power DMOS switches with a dedicated slope, which is optimized in terms of electromagnetic emission
(EME). Defined slew rates allow lowest EME during PWM operation at low switching losses.
VS
VDS
VS
OUT
GND
VOUT
PowerStage_Output.emf
Figure 15
Power Stage Output
6.4.1
Bulb and LED Mode
Channel 2 and channel 3 can be configured in bulb and LED mode via the SPI initialization registers LGCR when
SWCR.SWR = 0. The default state is LGCR.LEDn = 0. During LED mode the following parameters are changed for
an optimized functionality with LED loads: ON-state resistance RDS(ON), switching timings (tdelay(ON), tdelay(OFF), tON,
tOFF), slew rates dV/dtON and dV/dtOFF, load current protections IL(LIM) and current sense ratio kILIS.
6.4.2
Switching Resistive Loads
When switching resistive loads the following switching times and slew rates can be considered.
IN /
OUT.OUTn
V OUT
tON
tOFF
t delay(ON)
tdelay (OFF )
t
90% of Vs
70% of Vs
70% of Vs
dV /
dtOFF
dV /
dtON
30% of Vs
30% of Vs
10% of Vs
t
PowerStage_SwitchON.emf
Figure 16
Data Sheet
Switching a Load (resistive)
29
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
6.4.3
Switching Inductive Loads
When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device due to
overvoltage, there is a voltage clamp mechanism implemented which limits that negative output voltage to a
certain level (VDS(CL) (Chapter 6.5)). See Figure 15 for details.Please refer also to Chapter 7.4. The maximum
allowed load inductance is limited.
6.4.4
Switching Channels in Parallel
In case of appearance of a short circuit with channels in parallel driving a single load, BTS54220-LBB output
stages are not synchronized in the restart event. When all channels connected to the same load are in temperature
limitation, the channel which has cooled down the fastest doesn't wait for the other ones to be cooled down as well
to restart. Thus, it is not recommended to use the device with channels in parallel.
Note: In case of parallel channel operation, short circuit robustness may be reduced and nRSC1 is not guaranteed
any more.
Data Sheet
30
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
6.5
Electrical Characteristics
Unless otherwise specified: VS = 7 V to 18 V, VDD = 3.8 V to 5.5 V, Tj = -40 °C to +150 °C
Typical values: VS = 13.5 V, VDD = 4.3 V, Tj = 25 °C
Typical resistive loads connected to the outputs (unless otherwise specified):
9 mΩ channels: RL = 2.2 Ω
27 mΩ channels: RL = 6.8 Ω (33 Ω when LGCR.LEDn = “1”)
Table 7
Electrical Characteristics Power Stages
Parameter
Symbol
Values
Min.
Typ.
Max.
9
–
Unit
Note / Test Condition
Number
mΩ
1)
P_6.6.1
Output Characteristics
On-State resistance
9 mΩ ch.
RDS(ON)
–
On-State resistance
9 mΩ ch.
RDS(ON)
–
–
18.2
mΩ
VS = 9 V to 18 V
IL = 7.5 A
Tj = 150 °C
P_6.6.2
On-State resistance
27 mΩ ch.
RDS(ON)
–
27
–
mΩ
1)
P_6.6.5
VS = 9 V to 18 V
IL = 7.5 A
Tj = 25 °C
VS = 9 V to 18 V
IL = 2.6 A
Tj = 25 °C
LGCR.LEDn = 0
On-State resistance
27 mΩ ch.
RDS(ON)
–
–
55
mΩ
VS = 9 V to 18 V
IL = 2.6 A
Tj = 150 °C
P_6.6.6
LGCR.LEDn = 0
On-State resistance
27 mΩ ch. in LED mode
RDS(ON)
–
97
–
mΩ
1)
P_6.6.7
VS = 9 V to 18 V
IL = 0.6 A
Tj = 25 °C
LGCR.LEDn = 1
On-State resistance
27 mΩ ch. in LED mode
RDS(ON)
–
–
195
mΩ
VS = 9 V to 18 V
IL = 0.6 A
Tj = 150 °C
P_6.6.8
LGCR.LEDn = 1
Nominal load current
9 mΩ ch.
(all channels active)
IL(nom)
–
Nominal load current
27 mΩ ch.
(all channels active)
IL(nom)
–
Output clamp
VDS(CL)
42
Data Sheet
5
–
A
1)
P_6.6.15
TA = 85 °C
Tj < 150 °C
3
–
A
1)
P_6.6.16
TA = 85 °C
Tj < 150 °C
47
54
31
V
IL = 20 mA
P_6.6.19
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
Table 7
Electrical Characteristics Power Stages (cont’d)
Parameter
Output leakage current
per channel
Tj ≤ 85°C
9 mΩ ch.
Symbol
IL(OFF)
Values
Min.
Typ.
Max.
–
0.02
1.4
Unit
Note / Test Condition
Number
µA
2)
P_6.6.20
VIN = 0 V or floating
OUT.OUTn = 0
Tj ≤ 85°C
Stand-by or Idle mode
Output leakage current
per channel
Tj ≤ 85°C
27 mΩ ch.
IL(OFF)
Output leakage current
per channel
Tj = 150°C
9 mΩ ch.
IL(OFF)
Output leakage current
per channel
Tj = 150°C
27 mΩ ch.
IL(OFF)
–
0.02
0.5
µA
2)
P_6.6.21
VIN = 0 V or floating
OUT.OUTn = 0
Tj ≤ 85°C
Stand-by or Idle mode
–
6
18
µA
VIN = 0 V or floating
P_6.6.24
OUT.OUTn = 0
Tj = 150°C
Stand-by or Idle mode
–
1.7
6
µA
VIN = 0 V or floating
P_6.6.25
OUT.OUTn = 0
Tj = 150°C
Stand-by or Idle mode
Input Characteristics
L-input level
VIN(L)
-0.3
–
1.0
V
–
P_6.6.28
H-input level
VIN(H)
2.6
–
6.0
V
–
P_6.6.29
L-input current
IIN(L)
3
27
75
µA
VIN = 1.0 V
P_6.6.30
H-input current
IIN(H)
7
30
75
µA
VIN = 2.6 V
P_6.6.31
Turn-ON delay to
tdelay(ON)
10% VS (Logical
propagation delay from
input INn to output OUTn)
9 mΩ ch.
30
75
140
µs
VS = 13.5 V
Tj = -40 °C
P_6.6.32
tdelay(ON)
Turn-ON delay to
10% VS (Logical
propagation delay from
input INn to output OUTn)
9 mΩ ch.
–
45
–
µs
1)
P_6.6.96
Turn-ON delay to
tdelay(ON)
10% VS (Logical
propagation delay from
input INn to output OUTn)
9 mΩ ch.
15
30
55
µs
VS = 13.5 V
Tj = 150 °C
P_6.6.97
tdelay(ON)
Turn-ON delay to
10% VS (Logical
propagation delay from
input INn to output OUTn)
27 mΩ ch.
10
30
70
µs
VS = 13.5 V
LGCR.LEDn = 0
P_6.6.34
Timings
Data Sheet
VS = 13.5 V
Tj = 25 °C
32
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
Table 7
Electrical Characteristics Power Stages (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Number
Min.
Typ.
Max.
Turn-ON delay to
tdelay(ON)
10% VS (Logical
propagation delay from
input INn to output OUTn)
27 mΩ ch. in LED mode
3
10
25
µs
VS = 13.5 V
LGCR.LEDn = 1
P_6.6.35
Turn-OFF delay to
tdelay(OFF)
90% VS (Logical
propagation delay from
input INn to output OUTn)
9 mΩ ch.
20
50
100
µs
VS = 13.5 V
P_6.6.39
tdelay(OFF)
Turn-OFF delay to
90% VS (Logical
propagation delay from
input INn to output OUTn)
27 mΩ ch.
10
30
70
µs
VS = 13.5 V
LGCR.LEDn = 0
P_6.6.41
Turn-OFF delay to
tdelay(OFF)
90% VS (Logical
propagation delay from
input INn to output OUTn)
27 mΩ ch. in LED mode
3
10
25
µs
VS = 13.5 V
LGCR.LEDn = 1
P_6.6.42
Turn-ON time to
90%
9 mΩ ch.
tON
45
95
170
µs
VS = 13.5 V
Tj = -40 °C
P_6.6.46
Turn-ON time to
90% VS
9 mΩ ch.
tON
–
65
–
µs
1)
P_6.6.100
Turn-ON time to
90% VS
9 mΩ ch.
tON
30
55
90
µs
VS = 13.5 V
Tj = 150 °C
P_6.6.101
Turn-ON time to
90% VS
27 mΩ ch.
tON
30
75
180
µs
VS = 13.5 V
LGCR.LEDn = 0
P_6.6.48
Turn-ON time to
90% VS
27 mΩ ch. in LED mode
tON
10
25
55
µs
VS = 13.5 V
LGCR.LEDn = 1
P_6.6.49
Turn-OFF time to
10% VS
9 mΩ ch.
tOFF
30
70
120
µs
VS = 13.5 V
P_6.6.53
Turn-OFF time to
10% VS
27 mΩ ch.
tOFF
30
85
180
µs
VS = 13.5 V
LGCR.LEDn = 0
P_6.6.55
Turn-OFF time to
10% VS
27 mΩ ch. in LED mode
tOFF
10
30
55
µs
VS = 13.5 V
LGCR.LEDn = 1
P_6.6.56
Data Sheet
VS = 13.5 V
Tj = 25 °C
33
Rev. 2.1, 2014-12-05
BTS54220-LBB
Power Stages
Table 7
Electrical Characteristics Power Stages (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Number
Turn-ON/OFF matching
9 mΩ ch.
tON - tOFF
-20
25
80
µs
VS = 13.5 V
Tj = -40°C
P_6.6.60
Turn-ON/OFF matching
9 mΩ ch.
tON - tOFF
–
-5
–
µs
1)
P_6.6.61
Turn-ON/OFF matching
9 mΩ ch.
tON - tOFF
-50
-20
10
µs
VS = 13.5 V
Tj = 150°C
P_6.6.62
Turn-ON/OFF matching
27 mΩ ch.
tON - tOFF
-50
-10
30
µs
VS = 13.5 V
LGCR.LEDn = 0
P_6.6.66
Turn-ON/OFF matching
27 mΩ ch. in LED mode
tON - tOFF
-25
-5
15
µs
VS = 13.5 V
P_6.6.67
Turn-ON slew rate
30% to 70% VS
9 mΩ ch.
dV/ dtON
0.3
0.6
0.9
V/µs
VS = 13.5 V
P_6.6.71
Turn-ON slew rate
30% to 70% VS
27 mΩ ch.
dV/ dtON
0.1
0.25
0.5
V/µs
VS = 13.5 V
P_6.6.73
Turn-ON slew rate
30% to 70% VS
27 mΩ ch. in LED mode
dV/ dtON
0.35
0.88
1.75
V/µs
VS = 13.5 V
LGCR.LEDn = 1
P_6.6.74
Turn-OFF slew rate
70% to 30% VS
9 mΩ ch.
-dV/dtOFF
0.3
0.6
0.9
V/µs
VS = 13.5 V
P_6.6.78
Turn-OFF slew rate
70% to 30% VS
27 mΩ ch.
-dV/dtOFF
0.1
0.25
0.5
V/µs
VS = 13.5 V
P_6.6.80
Turn-OFF slew rate
70% to 30% VS
27 mΩ ch. in LED mode
-dV/dtOFF
0.35
0.88
1.75
V/µs
VS = 13.5 V
LGCR.LEDn = 1
P_6.6.81
VDS(NL)
-
10
25
mV
IL = 50 mA
LGCR.GBRn = 1
P_6.6.93
VS = 13.5 V
Tj = 25°C
LGCR.LEDn = 1
LGCR.LEDn = 0
LGCR.LEDn = 0
Output Voltage Drop
Output voltage drop
limitation at small load
currents
All channels
1) Not subject to production test, specified by design.
2) Tested at Tj = -40 °C
Data Sheet
34
Rev. 2.1, 2014-12-05
BTS54220-LBB
Protection Functions
7
Protection Functions
The device provides embedded protective functions, which are designed to prevent IC destruction under fault
conditions described in this data sheet. Fault conditions are considered as “outside” normal operating range.
Protective functions are neither designed for continuous nor for repetitive operation.
7.1
Over Load Protection
The load current IL is limited by the device itself in case of over load or short circuit to ground. All channels have
2 steps of current limitation which are selected automatically depending on the voltage VDS across the power
DMOS as show in Figure 17. Please note that VOUT = VS - VDS. The current limitation threshold when VDS = 5 V is
taken as reference.
Current limitation to the value IL(LIM) is realized by increasing the resistance of the output channel, which leads to
fast DMOS temperature rise.
Current limitation variation ("1" = IL(LIM) @ VDS = 5 V)
1.1
1
0.9
Current limitation variation factor
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
4
8
12
16
20
24
28
Drain Source Voltage (V)
Figure 17
Typical Current Limitation variation according to VDS voltage
7.2
Over Temperature Protection
Each channel incorporates both an absolute (Tj(SC)) and a dynamic (∆Tj(SW)) temperature sensor. An increase of
junction temperature Tj above one of the two thresholds (Tj(SC) or ΔTj(SW)) switches OFF an overheated channel to
prevent destruction. Any protective switch OFF deactivates the output until the temperature has reached an
acceptable value.
Each protective switch OFF event increments the error counter by one. The number of automatic reactivations is
limited by nretry. If this number of retries is reached the channel turns OFF and latches OFF.
The error information related to the given channel is available on the Standard Diagnosis and Errors Diagnosis.
Executing HWCR.CTC = 1B will clear all thermal counters and errors on all channels. If the channel is active (either
OUT.OUTn = 1B or INn = “high” and DCR.MUX ≠ 111B) it is turned on immediately after the SPI command. In
addition the execution of the reset command (HWCR.RST = 1B) will clear the thermal counters.
Data Sheet
35
Rev. 2.1, 2014-12-05
BTS54220-LBB
Protection Functions
For the condition n < nretry the counter of automatic reactivations is reset by every channel activation if HWCR.RCR
bit is set to 1. In Figure 20 the different behavior of retry counters according to HWCR.RCR bit value can be seen.
In Limp Home Mode, the thermal counters of the protection functions are only operative if VDD is provided in the
specified range. Otherwise the counters are not active and all channels are in „unlimited restart“ mode.
In case of the short circuit to ground, current sense ratio (kILIS) is deactivated as soon as VDS > VDS(SB) (Switch
bypass monitor threshold). Usually a short circuit to ground condition tends to set VDS = VS therefore in most of
the cases no current sensing diagnostic is possible in short circuit.
The error information related to the given channel are available also on Warnings Diagnosis (ERRn bits).
Refer to Figure 18 and Figure 19 for details.
Data Sheet
36
Rev. 2.1, 2014-12-05
BTS54220-LBB
Protection Functions
IN /
OUT.OUTn
t
IL
IL(LIM)
t
Tj
ΔTjS W
ΔTjSW
ΔTj SW
ΔTjSW
Tj (SC)
t
I IS
t
Internal
counter
0
1
2
nretry
...
0
1
t
ERR
0
1
0
1
t
ERR_COUNTER
0
1
* ERR reset by :
HWCR.CTC = 1
Figure 18
Data Sheet
0
t
Protection_DynT_SC.emf
Dynamic Temperature Sensor Operations - Short Circuit
37
Rev. 2.1, 2014-12-05
BTS54220-LBB
Protection Functions
IN /
OUT.OUTn
t
IL
IL(LIM )
t
Tj
Tj(SC)
ΔTjSW
ΔTjSW
ΔTjSW
t
IIS
t
Internal
counter
0
1
2
...
n retry
0
t
ERR
0
1
0
t
ERR_COUNTER
0
1
0
t
* ERR reset by:
HWCR.CTC = 1
Protection_DynT_OverLoad.emf
Figure 19
Data Sheet
Dynamic and Absolute Temperature Sensor Operations - Overload Condition
38
Rev. 2.1, 2014-12-05
BTS54220-LBB
Protection Functions
IN /
OUT.OUTn
t
IL
I L(LIM )
t
Internal
counter
0
1
2
3
4
5
0
1
2
0
1
t
ERR
0
1
0
1
0
1
t
0 (default )
HWCR.RCR
1
t
Protection_RCR.emf
Figure 20
Different counter reset according to HWCR.RCR bit value
7.3
Reverse Polarity Protection
In reverse polarity condition, power dissipation is caused by the intrinsic body diode of each DMOS channel as
well as each ESD diode of the logic pins. The reverse current through the channels has to be limited by the
connected loads.The current through ground pin GND, sense pin IS, logic power supply pin VDD, SPI pins, input
pins and Limp Home Input pin has to be limited as well (please refer to the maximum ratings listed on
Chapter 4.1).
Note: No protection mechanism like temperature protection or current limitation is active during reverse polarity.
7.4
Over Voltage Protection
In the case of supply voltages between VS(SC)max and VS(AZ) the output transistors are still operational and follow
the input or the OUT register. Parameters are not warranted and lifetime is reduced compared to nominal voltage
supply.
In addition to the output clamp for inductive loads as described in Chapter 6.4.3, there is a clamp mechanism
available for over voltage protection for the logic and all channels.
7.5
Loss of Ground
In case of complete loss of the device ground connection, but loads connected to ground, the BTS54220-LBB
securely changes to or stays in OFF-state. Please refer to Chapter 10 where an application setup is described.
7.6
Loss of VS
In case of loss of VS connection in ON-state, all inductances of the loads have to be demagnetized through the
ground connection or through an additional path from VS to ground. For example, a suppressor diode is
recommended between VS and GND.
Data Sheet
39
Rev. 2.1, 2014-12-05
BTS54220-LBB
Protection Functions
7.7
Electrical Characteristics
Unless otherwise specified: VS = 7 V to 18 V, VDD = 3.8 V to 5.5 V, Tj = -40 °C to +150 °C
typical values: VS = 13.5 V, VDD = 4.3 V, Tj = 25 °C
Typical resistive loads connected to the outputs (unless otherwise specified):
9 mΩ channels: RL = 2.2 Ω
27 mΩ channels: RL = 6.8 Ω (33 Ω when LGCR.LEDn = “1”)
Table 8
Electrical Characteristics Protection Functions
Parameter
Symbol
Values
Min.
Typ.
Max.
82
99
Unit
Note /
Test Condition
Number
A
1)
P_7.7.1
Over Load Protection
Load current limitation
9 mΩ ch.
IL(LIM)
63
Load current limitation
9 mΩ ch.
IL(LIM)
–
Load current limitation
27 mΩ ch.
IL(LIM)
30
Load current limitation
27 mΩ ch.
IL(LIM)
–
VDS = 5 V
41
–
A
1)
P_7.7.2
VDS = 26 V
42
56
A
1)
P_7.7.5
VDS = 5 V
LGCR.LEDn = 0
21
–
A
1)
P_7.7.6
VDS = 26 V
LGCR.LEDn = 0
Load current limitation
27 mΩ ch. in LED mode
IL(LIM)
9.5
12
17
A
VDS = 5 V
Tj = -40 °C
P_7.7.7
LGCR.LEDn = 1
Load current limitation
27 mΩ ch. in LED mode
IL(LIM)
–
5
–
A
1)
P_7.7.8
VDS = 26 V
LGCR.LEDn = 1
Over Temperature Protection
Thermal shut down
temperature
Tj(SC)
150
170
200
°C
1)
P_7.7.14
Thermal hysteresis of
thermal shutdown
∆Tj(SC)
–
20
–
K
1)
P_7.7.15
Dynamic temperature
increase limitation while
switching
∆Tj(SW)
–
80
–
K
1)
P_7.7.16
Number of automatic
retries at dynamic
temperature sensor or
over temperature shut
down
nretry
–
8
9
1)
P_7.7.17
VDS(REV)
400
600
740
IL = IL(nom) =
P_6.6.15
Tj = 150 °C
P_7.7.18
Reverse Polarity
Drain source diode
voltage during reverse
polarity
9 mΩ ch.
Data Sheet
40
mV
Rev. 2.1, 2014-12-05
BTS54220-LBB
Protection Functions
Table 8
Electrical Characteristics Protection Functions (cont’d)
Parameter
Drain source diode
voltage during reverse
polarity
27 mΩ ch.
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
VDS(REV)
400
650
800
mV
IL = IL(nom) =
P_6.6.16
Tj = 150 °C
P_7.7.19
VS(AZ)
42
47
54
V
IS = 4 mA
P_7.7.22
Over Voltage
Overvoltage protection
1) Not subject to production test, specified by design.
Data Sheet
41
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
8
Diagnosis
For diagnosis purpose, the BTS54220-LBB provides a current sense signal at pin IS and a diagnosis word via SPI.
There is a current sense multiplexer implemented that is controlled via SPI. The sense signal can also be disabled
by SPI command. A switch bypass monitor allows to detect a short circuit between the output pin and the battery
voltage.
Please refer to Figure 21 for details.
VS
IIS 0
latch
temperature
sensor
T
gate
control
OR
load current
limitation
OUT4
OUT3
OUT2
latch
load
current
sense
ERR1
OUT1
channel 1
VS
DCR.MUX
V DS(SB )
DCR.
SBM
current sense multiplexer
IS
RIS
Diagnosis_4ch.emf
Figure 21
Block Diagram: Diagnosis
For diagnosis feedback at different operation modes, please see Table 9.
Data Sheet
42
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
Table 9
Operation Modes 1)
Operation Mode
Input Level Output Current
OUT.OUTn Level Sense
VOUT
IIS
Error Flag
ERR_COUNTERn2)
Warning DCR.SBM
Flag
bit
ERRn3)
Normal Operation (Channel OFF) L / 0
(OFF-state)
Short Circuit to GND
GND
Z
0
0
1
GND
Z
0
0
1
Thermal shut down
Z
Z
02)
02)
X
Short Circuit to VS
VS
Z
0
0
0
Open Load
Z
Z
0
0
X
~ VS
IL / kILIS
0
0
0
< VS
Z
0
0
X
Dynamic or Absolute Thermal
Limitation
→ Channel switched OFF
Z
Z
0
1
X
Dynamic or Absolute Thermal
Limitation nretry reached
→ Channel latched OFF
Z
Z
12)
1
X
Short Circuit to GND
~GND
Z
0
0
1
Short Circuit to VS
VS
< IL / kILIS 0
0
0
Open Load
VS
Z
0
0
Normal Operation (Channel ON)
Current Limitation
H/1
(ON-state)
0
1) L = “low” level, H = “high” level, Z = high impedance, potential depends on leakage currents and external circuit.
X = undefined.
2) The over temperature flag is set latched and can be cleared by setting HWCR.CTC = 1B.
3) The warning flags are latched until they are reset (see HWCR.RCR description).
8.1
Diagnosis Word at SPI
Diagnostic information about the status of each channel is provided through SPI. In the Standard Diagnosis the
ERR_MUX bit reports if there is a channel which had already enough restarts to reach the maximum allowed
number of retries nretry (P_7.7.17). If 2 or more channels are latched OFF due to that, ERR_MUX bits aren't enough
to identify which channels are OFF. In such cases, it is possible to get an overview channel by channel using
ERR_COUNTERn bits in Errors Diagnosis (see Chapter 9.6.2)
It is possible to check if one or more channels had some retries during switching ON, although the limit of nretry was
not reached. An overview channel by channel of thermal counter status is available using ERRn bits in Warnings
Diagnosis (see Chapter 9.6.3).
For both ERR_COUNTERn and ERRn the information on channel n is given at bit n-1 (e.g. bit 0 indicates status of
channel 1).
Data Sheet
43
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
8.2
Load Current Sense Diagnosis
There is a current sense signal available at pin IS which provides a current proportional to the load current of one
selected channel. The selection is done by a multiplexer which is configured via SPI.
8.2.1
Current Sense Signal
The current sense signal (ratio kILIS = IL / IS) is provided during ON-state as long as no failure mode occurs. For
dedicated channels the ratio kILIS can be adjusted to the load type (LED or bulb) via SPI register LGCR. The
accuracy of the ratio kILIS depends on the load current and temperature. Usually a resistor RIS is connected to the
current sense pin. It is recommended to use resistors 1.5 kΩ < RIS < 5 kΩ. A typical value is 2.7 kΩ.
The current sense signal of a channel is not active when the channel is OFF or when the protection functions
(current limitation, over temperature or dynamic temperature sensors) are active. If the maximum number of
automatic reactivations nretry is reached (n = nretry), the current sense signal of the affected channel is deactivated
until the reset of the counters by setting HWCR.CTC bit to 1.
Details about timings between the current sense signal IIS and the output voltage VOUT and the load current IL can
be found in Figure 22.
IN /
OUT.OUTn
OFF
ON
OFF
tON
tOFF
t
VOUT
t
IL
ts IS (ON)
ts IS (LC)
tdIS (OFF)
t
IIS
t
Diagnosis_SenseTiming.emf
Figure 22
Current Sense Signal Timings
8.2.2
Current Sense Multiplexer
There is a current sense multiplexer implemented in the BTS54220-LBB that routes the sense current of the
selected channel to the diagnosis pin IS. The channel is selected via SPI register DCR.MUX. The sense current
can also be disabled by SPI register DCR.MUX. For details on timing of the current sense multiplexer, please refer
to Figure 23.
Data Sheet
44
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
CS
DCR.MUX
110
001
000
110
ts IS (EN)
t s IS(MUX)
t
tdIS (MUX )
IIS
t
Diagnosis_MuxTiming.emf
Figure 23
Current Sense Multiplexer Timings
8.2.3
Open Load at ON Diagnosis
If a channel is ON in Open Load condition, a small current can still flow, for example because of humidity. The
parameter IL(OL) gives the threshold of recognition for such leakage current. If the voltage measured at the sense
resistor RSENSE corresponds to a current IIS(OL) (4 µA), then the current flowing at the output in ON state is within
the limits given by IL(OL). Figure 24 shows the sense current behavior once a channel in Open Load at ON
condition is selected with the sense current multiplexer. The red curve show a typical product curve. The blue line
shows the ideal kILIS ratio.
IIS
IIS(OL )
IIS(en)
IL(OL )
Figure 24
Current Sense Ratio in Open Load at ON condition
8.3
Switch Bypass Monitor Diagnosis
IL
To detect short circuit to VS, there is a switch bypass monitor implemented. In case of short circuit between the
output pin OUT and VS in ON-state, the current flows through the power transistor as well as through the short
circuit (bypass) with undefined share between the two. As a result, the current sense signal shows lower values
than expected by the load current. In OFF-state, the output voltage remains close to VS potential which leads to a
small VDS.
The switch bypass monitor compares the threshold VDS(SB) with the voltage VDS across the power transistor of that
channel which is selected by the current sense multiplexer (DCR.MUX). The result of the comparison can be read
in SPI register DCR.SBM.
Data Sheet
45
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
8.4
Gate Back Regulation
To increase the current sense accuracy, the Gate Back Regulation (GBR) function is implemented. This function
monitors the VDS voltage at the output and if the value is equal to or lower than VDS(NL) the output DMOS gate is
partially discharged. This increases output DMOS resistance so that VDS = VDS(NL) even for very small output
currents. The VDS increase allows the current sensing circuitry to work with better accuracy, providing tighter kILIS
values for output currents in the low range.
This function is active by default (LGCR.GBRn bits set to “1” after a reset). According to output current, GBR
function can be left active or disabled. Even if left active, Gate Back Regulation circuitry may not be working
because the measured VDS is bigger than VDS(NL) (depending on output current, junction temperature, output
DMOS resistance).
Due to production and temperature variations, GBR circuitry can affect kILIS performance in negative way for
some output current values. For this reason, Table 10 and Table 11 indicate for which output currents it is
necessary to deactivate GBR (setting the corresponding LGCR.GBRn bit to “0”) to reach the desired current
accuracy. If no indication is given, then the GBR function is assumed to be enabled (LGCR.GBRn bit set to “1”). It
is recommended to keep GBR circuitry enabled for Open Load at ON diagnosis.
The circuitry that controls GBR function can be deactivated with the following SPI command sequence:
•
SWCR.SWR = 1 (SPI command: 11001100B)
•
LGCR.GBRn = 0 (SPI command: 1101aaaaB where “aaaa”B is the new value for LGCR.GBRn bits)
•
(optional but recommended: SWCR.SWR = 0 (SPI command: 11000100B)
Refer to Chapter 9.7 for more details.
Data Sheet
46
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
8.5
Electrical Characteristics
Unless otherwise specified: VS = 7 V to 18 V, VDD = 3.8 V to 5.5 V, Tj = -40 °C to +150 °C
Typical values: VS = 13.5 V, VDD= 4.3 V, Tj = 25 °C
Typical resistive loads connected to the outputs (unless otherwise specified):
9 mΩ channels: RL = 2.2 Ω
27 mΩ channels: RL = 6.8 Ω (33 Ω when LGCR.LEDn = “1”)
Measurement setup used for kILIS (unless otherwise specified):
Channel 1, 4: when IL ≤ 1.3 A both channels are ON at the same time with equal IL, channels 2, 3 have IL = 0
Channel 2, 3: when IL ≤ 1.3 A both channels are ON at the same time with equal IL, channels 1, 4 have IL = 0
When IL ≥ 2.0 A only the measured channel is ON, all other channels have IL = 0
Table 10
Electrical Characteristics Diagnosis kILIS 9 mΩ ch.
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note /
Test Condition
Number
Current sense ratio
IL04 = 450 mA
kILIS04
-67 %
4500
+142 %
–
P_8.5.5
Current sense ratio
IL05 = 600 mA
kILIS05
-56 %
4500
+56 %
–
P_8.5.6
Current sense ratio
IL07 = 1.3 A
kILIS07
-33 %
4500
+41 %
LGCR.GBRn = 0
P_8.5.8
Current sense ratio
IL09 = 2.6 A
kILIS09
-18 %
4500
+18 %
LGCR.GBRn = 0
P_8.5.10
Current sense ratio
IL10 = 4 A
kILIS10
-15 %
4500
+15 %
–
P_8.5.11
Current sense ratio
IL11 = 7.5 A
kILIS11
-11 %
4500
+11 %
–
P_8.5.12
Note /
Test Condition
Number
Table 11
Electrical Characteristics Diagnosis kILIS 27 mΩ ch.
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
27 mΩ ch.
kILIS03
-42 %
2000
+42 %
–
P_8.5.28
Current sense ratio
IL05 = 600 mA
kILIS05
-33 %
2000
+33 %
–
P_8.5.30
Current sense ratio
IL07 = 1.3 A
kILIS07
-21 %
2000
+21 %
–
P_8.5.32
Current sense ratio
IL09 = 2.6 A
kILIS09
-12 %
2000
+12 %
–
P_8.5.34
Current sense ratio
IL10 = 4 A
kILIS10
-11 %
2000
+11 %
–
P_8.5.35
Current sense ratio
IL03 = 300 mA
Data Sheet
47
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
Table 11
Electrical Characteristics Diagnosis kILIS 27 mΩ ch. (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Test Condition
Number
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
27 mΩ ch. in LED mode
kILIS00
-52 %
620
+52 %
–
P_8.5.37
Current sense ratio
IL02 = 150 mA
kILIS02
-33 %
570
+33 %
–
P_8.5.39
Current sense ratio
IL03 = 300 mA
kILIS03
-25 %
570
+25 %
LGCR.GBRn = 0
P_8.5.40
Current sense ratio
IL05 = 600 mA
kILIS05
-14 %
570
+14 %
–
P_8.5.42
Current sense ratio
IL06 = 1 A
kILIS06
-11 %
570
+11 %
–
P_8.5.43
Unit
Note /
Test Condition
Number
V
IIS = 5 mA
P_8.5.75
%
1)
P_8.5.76
Current sense ratio
IL00 = 20 mA
Table 12
Electrical Characteristics Diagnosis
Parameter
Sense pin maximum
voltage
Symbol
VIS(AZ)
Values
Min.
Typ.
Max.
42
47
54
Current Sense Drift Over Current and Temperature per Device
Current sense drift over
current and temperature
per device
9 mΩ ch.
ΔkILIS(T)
-10
Current sense drift over
current and temperature
per device
27 mΩ ch.
ΔkILIS(T)
-8
Current sense drift over
current and temperature
per device
27 mΩ ch. in LED mode
ΔkILIS(T)
Data Sheet
–
10
kILIS11 versus kILIS09
–
8
%
1)
P_8.5.77
kILIS09 versus kILIS07
LGCR.LEDn = 0
-9.5
–
9.5
%
1)
P_8.5.78
kILIS05 versus kILIS03
LGCR.LEDn = 1
48
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
Table 12
Electrical Characteristics Diagnosis (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Test Condition
Number
Current Sense Drift of Unaffected Channel during Inverse Current of other Channels
One channel with IL(IC) = - ILn, all other channels with ILn
DCR.MUX ≠ <111, 110> and set to sense any of the channels not in Inverse current condition
Current sense drift of
ΔkILIS(IC)
unaffected channels during
inverse current of one
channel
-20
–
20
%
1)
P_8.5.83
IL1 = 7.5 A
IL2 = 2.6 A
IL3 = 2.6 A
IL4 = 7.5 A
Sense Pin - Currents
Maximum steady state
current sense output
current
9 mΩ ch.
IIS(MAX)
4.5
–
15
mA
VIS = 0 V
VS ≥ 8 V
P_8.5.86
Maximum steady state
current sense output
current
27 mΩ ch.
IIS(MAX)
3.8
–
15
mA
VIS = 0 V
VS ≥ 8 V
P_8.5.87
Current sense leakage /
offset current
IIS(en)
–
–
1
μA
1)
P_8.5.118
Tj ≤ 85 °C
IL = 0 mA
DCR.MUX ≠
<111,110>B
Current sense leakage /
offset current
IIS(en)
–
–
3.2
μA
Tj = 150 °C
IL = 0 mA
P_8.5.90
DCR.MUX ≠
<111,110>B
Open load detection
threshold in ON state
9 mΩ ch.
IL(OL)
–
–
48.5
mA
IIS(OL) = 4 μA
P_8.5.91
Open load detection
threshold in ON state
27 mΩ ch.
IL(OL)
–
–
21.5
mA
IIS(OL) = 4 μA
LGCR.LEDn = 0
P_8.5.93
Open load detection
threshold in ON state
27 mΩ ch. in LED mode
IL(OL)
–
–
7.5
mA
IIS(OL) = 4 μA
LGCR.LEDn = 1
P_8.5.94
Current sense leakage,
while diagnosis disabled
IIS(dis)
–
0.01
1
μA
IL2 = 2.6 A
P_8.5.98
DCR.MUX = 110B
Sense Pin - Timings
Current sense settling time tsIS(ON)
after channel activation
9 mΩ ch.
–
–
250
μs
VS = 13.5 V
RIS = 2.7 kΩ
P_8.5.99
Current sense settling time tsIS(ON)
after channel activation
27 mΩ ch.
–
–
250
μs
VS = 13.5 V
RIS = 2.7 kΩ
P_8.5.101
Data Sheet
LGCR.LEDn = 0
49
Rev. 2.1, 2014-12-05
BTS54220-LBB
Diagnosis
Table 12
Electrical Characteristics Diagnosis (cont’d)
Parameter
Symbol
Current sense settling time tsIS(ON)
after channel activation
27 mΩ ch. in LED mode
Current sense desettling
time after channel
deactivation
tdIS(OFF)
Values
Min.
Typ.
Max.
–
–
100
Unit
Note /
Test Condition
Number
μs
VS = 13.5 V
RIS = 2.7 kΩ
P_8.5.102
LGCR.LEDn = 1
–
–
25
P_8.5.106
μs
VS = 13.5 V
RIS = 2.7 kΩ
Current sense settling time tsIS(LC)
after change of load
current
9 mΩ ch.
–
Current sense settling time tsIS(LC)
after change of load
current
27 mΩ ch.
–
–
25
μs
1)
P_8.5.107
IL = 4 A to 2.6 A
VS = 13.5 V
RIS = 2.7 kΩ
–
25
μs
1)
P_8.5.109
IL = 2.6 A to 1.3 A
VS = 13.5 V
RIS = 2.7 kΩ
LGCR.LEDn = 0
Current sense settling time tsIS(LC)
after change of load
current
27 mΩ ch. in LED mode
–
–
25
μs
1)
P_8.5.110
IL = 1.3 A to 0.6 A
VS = 13.5 V
RIS = 2.7 kΩ
LGCR.LEDn = 1
Current sense settling time tsIS(EN)
after current sense
activation
–
–
25
μs
P_8.5.114
RIS = 2.7 kΩ
IL2 = 2.6 A
DCR.MUX: 110B →
001B
Current sense settling time tsIS(MUX)
after multiplexer channel
change
–
–
25
μs
P_8.5.115
RIS = 2.7 kΩ
IL2 = 2.6 A
IL3 = 4 A
DCR.MUX: 001B →
010B
Current sense deactivation tdIS(MUX)
time
–
–
25
μs
1)
P_8.5.116
RIS = 2.7 kΩ
DCR.MUX: 010B →
110B
Switch Bypass Monitor
Switch bypass monitor
threshold
VDS(SB)
1.5
3.3
4.5
V
OFF state
P_8.5.117
1) Not subject to production test, specified by design.
Data Sheet
50
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9
Serial Peripheral Interface (SPI)
The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines: SO,
SI, SCLK and CS. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of CS
indicates the beginning of an access. Data is sampled in on line SI at the falling edge of SCLK and shifted out on
line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CS. A modulo 8 counter
ensures that data is taken only when a multiple of 8 bit has been transferred. The interface provides daisy chain
capability with 8-bit SPI devices.
SO
SI
CS
MSB
MSB
6
5
4
3
2
1
6
5
4
3
2
1
LSB
LSB
CS
SCLK
time
SPI _8bit.emf
Figure 25
Serial Peripheral Interface
9.1
SPI Signal Description
CS - Chip Select
The system micro controller selects the BTS54220-LBB by means of the CS pin. Whenever the pin is in “low” state,
data transfer can take place. When CS is in “high” state, any signals at the SCLK and SI pins are ignored and SO
is forced into a high impedance state.
CS “high” to “low” Transition
•
The requested information is transferred into the shift register.
•
SO changes from high impedance state to “high” or “low” state depending on the signal level at pin SI.
TER
SI
OR
1
SO
0
SI
SO
S
SPI
CS
SCLK
S
SPI _TER.emf
Figure 26
Data Sheet
Combinatorial Logic for TER Flag
51
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
CS “low” to “high” Transition
•
Command decoding is only done, when after the falling edge of CS exactly a multiple (1, 2, 3, …) of eight SCLK
signals have been detected. In case of faulty transmission, the transmission error flag (TER) is set and the
command is ignored.
•
Data from shift register is transferred into the addressed register.
SCLK - Serial Clock
This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the falling
edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the serial clock.
It is essential that the SCLK pin is in “low” state whenever chip select CS makes any transition, otherwise the
command may be not accepted.
SI - Serial Input
Serial input data bits are shift-in at this pin, the most significant bit first. SI information is read on the falling edge
of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to Chapter 9.5 for
further information.
SO Serial Output
Data is shifted out serially at this pin, the most significant bit first. SO is in high impedance state until the CS pin
goes to “low” state. New data will appear at the SO pin following the rising edge of SCLK.
Please refer to Chapter 9.5 for further information.
9.2
Daisy Chain Capability
The SPI of BTS54220-LBB provides daisy chain capability. In this configuration several devices are activated by
the same CS signal MCS. The SI line of one device is connected with the SO line of another device (see
Figure 27), in order to build a chain. The end of the chain is connected to the output and input of the master device,
MO and MI respectively. The master device provides the master clock MCLK which is connected to the SCLK line
of each device in the chain.
Figure 27
SO
SPI
SI
SO
SPI
SCLK
SI
device 3
CS
SCLK
MI
MCS
MCLK
SO
SPI
CS
SI
CS
MO
device 2
SCLK
device 1
SPI_DaisyChain.emf
Daisy Chain Configuration
In the SPI block of each device, there is one shift register where each bit from SI line is shifted in each SCLK. The
bit shifted out occurs at the SO pin. After eight SCLK cycles, the data transfer for one device is finished. In single
chip configuration, the CS line must turn “high” to make the device acknowledge the transferred data. In daisy
chain configuration, the data shifted out at device 1 has been shifted in to device 2. When using three devices in
daisy chain, three times 8 bits have to be shifted through the devices. After that, the MCS line must turn “high”
(see Figure 28).
Data Sheet
52
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
MI
MO
SO device 3
SO device 2
SO device 1
SI device 3
SI device 2
SI device 1
MCS
MCLK
time
SPI_DaisyChain_2.emf
Figure 28
Data Transfer in Daisy Chain Configuration
9.3
Timing Diagrams
t CS(lead)
tCS (lag)
tCS(td)
tSCLK(P )
CS
tSCLK (H)
V CS(H)
V CS(L)
tSCLK (L)
V SCLK(H)
V SCLK(L)
SCLK
tSI (s u)
t SI (h)
V SI(H)
V SI(L)
SI
t SO(en)
tSO(v )
tSO (dis )
V SO(H)
V SO(L)
SO
SPI _Timings.emf
Figure 29
Data Sheet
Timing Diagram SPI Access
53
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9.4
Electrical Characteristics
Unless otherwise specified: VS = 7 V to 18 V, Tj = -40 °C to +150 °C, VDD = 3.8 V to 5.5 V
Typical values: VS = 13.5 V, Tj = 25 °C, VDD = 4.3 V
Table 13
Electrical Characteristics Serial Peripheral Interface (SPI)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
Input Characteristics (CS, SCLK, SI) - L Level of pin
CS
VCS(L)
-0.3
–
1.0
V
VDD = 4.3 V
P_9.4.1
SCLK
VSCLK(L)
-0.3
–
1.0
V
VDD = 4.3 V
P_9.4.2
SI
VSI(L)
-0.3
–
1.0
V
VDD = 4.3 V
P_9.4.3
Input Characteristics (CS, SCLK, SI) - H Level of pin
CS
VCS(H)
2.6
–
VDD
V
VDD = 4.3 V
P_9.4.4
SCLK
VSCLK(H)
2.6
–
VDD
V
VDD = 4.3 V
P_9.4.5
SI
VSI(H)
2.6
–
VDD
V
VDD = 4.3 V
P_9.4.6
L-input pull-up current at CS pin
-ICS(L)
7
30
75
μA
VDD = 4.3 V
VCS = 1.0 V
P_9.4.7
H-input pull-up current at CS pin
-ICS(H)
3
27
75
μA
VDD = 4.3 V
VCS = 2.6 V
P_9.4.8
SCLK
ISCLK(L)
3
27
75
μA
VSCLK = 1.0 V
VDD = 4.3 V
P_9.4.9
SI
ISI(L)
3
27
75
μA
VSI = 1.0 V
VDD = 4.3 V
P_9.4.10
SCLK
ISCLK(H)
7
30
75
μA
VSCLK = 2.6 V
VDD = 4.3 V
P_9.4.11
SI
ISI(H)
7
30
75
μA
VSI = 2.6 V
VDD = 4.3 V
P_9.4.12
L level output voltage
VSO(L)
0
–
0.5
V
ISO = -0.5 mA
P_9.4.13
H level output voltage
VSO(H)
VDD -
–
VDD
V
ISO = 0.5 mA
VDD = 4.3 V
P_9.4.14
L-Input Pull-Down Current at Pin
H-Input Pull-Down Current at Pin
Output Characteristics (SO)
0.5 V
ISO(OFF)
-1
–
1
μA
VCS =VDD
VSO = 0 V
VSO = VDD
P_9.4.15
Enable lead time (falling CS to
rising SCLK)
tCS(lead)
200
–
–
ns
–1)
P_9.4.16
Enable lag time (falling SCLK to
rising CS)
tCS(lag)
200
–
–
ns
–1)
P_9.4.17
Transfer delay time (rising CS to
falling CS)
tCS(td)
1
–
–
μs
–1)
P_9.4.18
Output tristate leakage current
Timings
Data Sheet
54
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
Table 13
Electrical Characteristics Serial Peripheral Interface (SPI) (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
–
1
μs
1)
Number
Output enable time (falling CS to
SO valid)
tSO(en)
–
Output disable time (rising CS to
SO tristate)
tSO(dis)
–
Serial clock frequency
fSCLK
0
–
3
MHz –1)
P_9.4.22
Serial clock period
tSCLK(P)
333
–
–
ns
–1)
P_9.4.24
ns
–
1)
P_9.4.26
–
1)
P_9.4.28
1)
P_9.4.30
Serial clock “high” time
Serial clock “low” time
tSCLK(H)
tSCLK(L)
P_9.4.19
CL = 50 pF
–
1
μs
1)
P_9.4.20
CL = 50 pF
150
150
–
–
–
–
ns
Data setup time (required time SI to tSI(su)
falling SCLK)
65
–
–
ns
–
Data hold time (falling SCLK to SI) tSI(h)
65
–
–
ns
–1)
P_9.4.32
ns
1)
P_9.4.34
Output data valid time with
capacitive load
tSO(v)
–
–
166
CL = 50 pF
1) Not subject to production test, specified by design
Data Sheet
55
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9.5
SPI Protocol
The relationship between SI and SO content during SPI communication is shown in Figure 30. SI line represents
the frame sent from the µC and SO line is the answer provided by BTS54220-LBB. The “(previous response)”
means that the frame sent back depends on the command frame sent from the µC before.
SI
frame A
frame B
frame C
SO
(previous
response )
response to
frame A
response to
frame B
SPI_SI2SO.emf
Figure 30
Relationship between SI and SO during SPI communication
The SPI protocol provides the answer to a command frame only with the next transmission triggered by the µC.
Although the biggest majority of commands and frames implemented in BTS54220-LBB can be decoded without
the knowledge of what happened before, it is advisable to consider what the µC sent in the previous transmission
to decode BTS54220-LBB response frame completely.
More in detail, the sequence of commands to “read” and “write” the content of a register will look as follows:
SI
write register A
read register A
(new command )
SO
(previous
response )
Standard
diagnostic
register A
content
SPI_RWseq.emf
Figure 31
Register content sent back to µC
There are 3 special situations where the frame sent back to the µC doesn't depend on the previous received frame:
•
in case an error in transmission happened during the previous frame (for instance, the clock pulses were not
multiple of 8), shown in Figure 32
•
when BTS54220-LBB logic supply comes out of Power-On reset condition, as shown in Figure 33
•
when VS < VSMON and DCR.MUX ≠ 111B, as shown in Figure 34
SI
frame A
(error in transmission )
SO
(previous response )
(new command)
Standard diagnostic + TER
SPI_SO_TER.emf
Figure 32
Data Sheet
BTS54220-LBB response after an error in transmission
56
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
VDD
VDD(PO)
SI
frame A
SO
frame B
frame C
Standard Diagnosis
+ TER
(SO = „Z“)
response to frame B
SPI _SO_POR.emf
Figure 33
BTS54220-LBB response after coming out of Power-On reset at VDD
VS
VSMON,max
V SMON,min
t
VSMON
0
x
1
x
0
t
SI
frame A
frame B
frame C
frame D
SO
(response )
Std. Diag. + TER
+ VSMON
Std. Diag. + TER
+ VSMON
(response to
frame C)
SPI_SO_VSMON.emf
Figure 34
BTS54220-LBB response in case of a negative battery voltage transient
A summary of all possible SPI commands is presented in Table 14, including the answer that BTS54220-LBB will
send back at the next transmission.
Data Sheet
57
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
Table 14
SPI Command Summary
Requested Operation
Frame sent to SPOC+ (SI pin)
Frame received from SPOC+ (SO pin)
with the next command
Write OUT register
100xaaaaB
where:
“xaaaaB” = new OUT register content
(“xxB” = don't care)
0aaaaaaaB
(Standard Diagnosis)
Read OUT register
00xx0000B
(“xxB” = don't care)
10aaaaaaB
(“aaaaaaB” = OUT register content)
Write Configuration register
11aabbbbB
where:
“aaB” = register address
“bbbbB” = new register content
0aaaaaaaB
(Standard Diagnosis)
Read Configuration register
01aa0000B
where:
“aaB” = register address
11aabbbbB
where:
“aaB” = register address
“bbbbB” = register content
Read Standard Diagnosis
0xxx0001B
(“xxxB” = don't care)
0aaaaaaaB
(Standard Diagnosis)
Read Errors Diagnosis
0xxx0011B
(“xxxB” = don't care)
00aaaaaaB
(Error Diagnosis)
Read Warnings Diagnosis
0xxx0101B
(“xxxB” = don't care)
00aaaaaaB
(Warning Diagnosis)
Data Sheet
58
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9.6
SPI Diagnosis Registers
9.6.1
Standard Diagnosis
SO
7
0
6
TER
5
LHI
4
STB
3
VSMON
2
1
ERR_MUX
0
Default
50H
Field
Bits
Type
Description
TER
6
r
Transmission Error
0B
Previous transmission was successful (modulo 8 clocks
received)
1B
(default) Previous transmission failed or first transmission after
reset
LHI
5
r
Limp Home monitor
0B
(default) Normal mode operation
1B
Limp Home Mode
STB
4
r
Standby mode monitor
0B
Normal mode operation
1B
(default) Stand-by mode
VSMON
3
r
VS monitor
0B
1B
ERR_MUX
Data Sheet
2:0
r
(default) VS always > VSMON since last Standard Diagnosis
readout
VS < VSMON at least once
Diagnosis of Channel n in error
000B (default) No channel latched OFF
001B Channel one latched OFF
010B Channel two latched OFF
011B Channel three latched OFF
100B Channel four latched OFF
101B Not used
110B Not used
111B More than one channel latched OFF
59
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9.6.2
Errors Diagnosis
SO
7
0
6
0
5
0
4
1
3
2
1
Default
10H
ERR_COUNTERn
Field
Bits
Type
Description
ERR_COUNTERn
n = 4 to 1
3:0
r
Diagnosis of Channel n
0B
(default) No failure
1B
Over temperature counter reached to nretry
9.6.3
0
Warnings Diagnosis
SO
7
0
6
0
5
1
4
0
3
2
ERRn
Field
Bits
Type
Description
ERRn
n = 4 to 1
3:0
r
Warning Diagnosis of Channel n
0B
(default) No failure
1B
Over temperature counter > 0
Data Sheet
60
1
0
Default
20H
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9.7
SPI Configuration Registers
The following table provides an overview on the registers available and the available addressing space.
Table 15
Register Overview
Register name
Register Bank
Address
SWCR.SWR bit
Content
OUT
0
(na)
0
Output configuration
OUT
0
(na)
1
Input status
SWCR
1
00
(na)
Swap configuration
LGCR
1
01
0
LED mode configuration
LGCR
1
01
1
Gate Back Regulation configuration
HWCR
1
10
(na)
Hardware configuration
DCR
1
11
(na)
Diagnostic configuration
9.7.1
Output Configuration Register
SWCR.SWR = 0
Bit
7
6
5
4
3
2
1
0
Name
W=1
R=0
RB
5
4
3
2
1
0
OUT
W/R
9.7.2
0
0
x
Default
80H
OUT.OUTn
Input Status Register
SWCR.SWR = 1
Bit
7
6
5
4
3
2
1
0
Name
W=1
R=0
RB
5
4
3
2
1
0
OUT
R
9.7.3
0
1
LHI
Default
90H
OUT.INSTn
Swap Configuration Register
Bit
7
6
Name
W=1
R=0
RB
SWCR
W/R
Data Sheet
1
5
4
3
2
1
0
ADDR
3
2
1
0
00
SWCR.SWR
1
0
61
0
Default
C4H
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9.7.4
LED Mode Configuration Register
SWCR.SWR = 0
Name
W=1
R=0
LGCR
W/R
9.7.5
RB
1
ADDR
01
3
0
2
1
0
0
LGCR.LEDn
Default
D0H
Gate Back Regulation Register
SWCR.SWR = 1
Name
W=1
R=0
LGCR
W/R
9.7.6
RB
1
ADDR
01
3
2
1
0
Default
DFH
LGCR.GBRn
Hardware Configuration Register
Name
W=1
R=0
HWCR
R
1
10
HWCR.RCR
HWCR.COL
HWCR.STB
0
E2H
W
1
10
HWCR.RCR
HWCR.COL
HWCR.RST
HWCR.CTC
-
Data Sheet
RB
ADDR
3
2
62
1
0
Default
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
9.7.7
Diagnosis Control Register
Name
W=1
R=0
DCR
R
1
11
DCR.SBM
DCR.MUX
F7H
W
1
11
0
DCR.MUX
-
9.7.8
RB
ADDR
3
2
1
0
Default
Configuration Register Bit Overview
Field
Bits
Type
Description
RB
6
rw
Register Bank
0B
(default) Read / write to OUT register
1B
Read / write to other registers
OUT.OUTn
n = 4 to 1
3:0
rw
Output Control Register of Channel n
0B
(default) channel is OFF
1B
Channel is ON
OUT.INSTn
n = 4 to 1
3:0
r
Input Status Monitor Channel n
0B
(default) Input signal is “low”
1B
Input signal is “high”
LGCR.LEDn
n = 3 to 2
2:1
rw
Set LED Mode for Channel n
0B
(default) Channel n is in bulb mode
1B
Channel n is in LED mode
LGCR.GBRn
n = 4 to 1
3:0
rw
Gate Back Regulation for Channel n
0B
Gate back regulation for Channel n is forced OFF
(default) Gate back regulation for Channel n is active
1B
HWCR.CTC
0
w
Clear Thermal Counter
0B
(default) Thermal latches are untouched
1B
Command: Clear all thermal latches
HWCR.RST
1
w
Reset Command
0B
(default) Normal operation
1B
Execute reset command
HWCR.STB
1
r
Standby Mode
0B
Device is awake
1B
(default) Device is in Standby mode
HWCR.COL
2
rw
Input Combinatorial Logic Configuration
0B
(default) Input signal OR-combined with according OUT register bit1)
1B
Input signal AND-combined with according OUT register bit
HWCR.RCR
3
rw
Retry Counter Reset
0B
(default) Retry Counter is reset only for HWCR.CTC=1 (and VDD reset)
1B
Retry Counter is reset for every IN-pin or OUT.OUTn “high” to “low”
transition for nretry < nretry,max and also for HWCR.CTC=1 (and VDD reset)
Data Sheet
63
Rev. 2.1, 2014-12-05
BTS54220-LBB
Serial Peripheral Interface (SPI)
Field
Bits
Type
Description
SWCR.SWR
1
rw
Switch Register
0B
(default) OUT.OUTn and LGCR.LEDn can be written and read
1B
OUT.INSTn can be read and LGCR.GBRn can be written and read
DCR.SBM
3
r
Switch Bypass Monitor2)
0B
VDS < VDS(SB)
1B
VDS > VDS(SB)
DCR.MUX
2:0
rw
Set Current Sense Multiplexer Configuration in OFF-state
000B IS pin is high impedance
001B IS pin is high impedance
010B IS pin is high impedance
011B IS pin is high impedance
100B IS pin is high impedance
101B IS pin is high impedance
110B IS pin is high impedance
111B Stand-by mode (IS pin is high impedance)
Set Multiplexer Configuration in ON-state
000B Current sense of channel 1 is routed to IS pin
001B Current sense of channel 2 is routed to IS pin
010B Current sense of channel 3 is routed to IS pin
011B Current sense of channel 4 is routed to IS pin
100B IS pin is high impedance
101B IS pin is high impedance
110B IS pin is high impedance
111B Stand-by mode (IS pin is high impedance))
1) In Limp Home Mode (LHI pin set to “high”) the combinatorial logic is switched to OR-mode.
2) The switch bypass monitor compares the threshold VDS(SB) with the voltage VDS across the power transistor of that channel
which is selected by the current sense multiplexer (DCR.MUX).
Data Sheet
64
Rev. 2.1, 2014-12-05
BTS54220-LBB
Application Description
10
Application Description
The following figure describes a typical operating circuit. It shall not be considered as a warranty of a certain
functionality, condition or quality of the device. The Table 16 shows suggested component values and purposes.
Vbat
5V
RVDD
CVS1
CVDD
WD-OUT
VDD
VS
VCC
IN1
RIN
GPIO
RIN
IN2
RIN
IN3
RIN
IN4
Z2
AD
SPI
27W
OUT4
65W
GND
COUT
CADC
VDD
µC
e.g. XC2267
27W
OUT3
RSENSE
RADC
CVS2
65W
OUT2
IS
R1
Z1
OUT1
RCS
RSCLK
CS
SPI
SCLK
RSO
SO
RSI
SI
LHI
RLHI
WD-OUT
GND
VSS
RGN D
RREC
CGND
DGND
Application _220noED.emf
Figure 35
Data Sheet
Application Circuit Example
65
Rev. 2.1, 2014-12-05
BTS54220-LBB
Application Description
Table 16
Suggested Component Values
Reference
Value
Purpose
RVDD
500 Ω
Device logic protection (Size 1206 recommended)
RIN
8 kΩ
Protection of the µC during overvoltage, reverse polarity and
loss of ground
R1
4.7 kΩ
Protection resistor for overvoltage, reverse polarity and loss
of ground. Value to be tuned with µC specification
RIS
2.7 kΩ
Sense resistor
RADC
1 kΩ
µC-ADC voltage spikes filtering
RCS
3.9 kΩ
Protection of the µC during overvoltage and reverse polarity
RSCLK
3.9 kΩ
Protection of the µC during overvoltage and reverse polarity
RSO
3.9 kΩ
Protection of the µC during overvoltage and reverse polarity
RSI
3.9 kΩ
Protection of the µC during overvoltage and reverse polarity
RLHI
8 kΩ
Protection of the µC during overvoltage and reverse polarity
CADC
1 nF
µC-ADC voltage spikes filtering
CVDD
100 nF
Logic supply voltage spikes filtering
CVS1
68 nF
Battery voltage spikes filtering
CVS2
100 nF
Battery voltage spikes filtering
COUT
10 nF
For improved electromagnetic compatibility (EMC)
CGND
8.2 nF
Ground voltage spikes filtering (optional for improved
robustness against battery voltage transients)
RGND
100 Ω
Ground voltage spikes filtering (optional for improved
robustness against battery voltage transients)
RREC
1 kΩ
Ground voltage recycling path (optional for providing a
recycle path in case of loss of Battery)
Z1
7V
Protection of µC during overvoltage. Zener diode
Z2
P6SMB30
Protection of device during overvoltage. Zener diode
DGND
BAS70
Protection of device during reverse polarity. Schottky diode
Data Sheet
66
Rev. 2.1, 2014-12-05
BTS54220-LBB
Package Outlines BTS54220-LBB
11
Package Outlines BTS54220-LBB
Figure 36
TSON-24-1 Package drawing
Data Sheet
67
Rev. 2.1, 2014-12-05
BTS54220-LBB
Package Outlines BTS54220-LBB
Figure 37
TSON-24 Package pads and stencil
Green Product (RoHS Compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Note: You can find all of our packages, sorts of packing and others in our Infineon Internet Page
“Products”: http://www.infineon.com/products.
Data Sheet
68
Rev. 2.1, 2014-12-05
Edition 2014-12-05
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Legal Disclaimer for short-circuit capability
Infineon disclaims any warranties and liabilities, whether expressed nor implied, for any short-circuit failures below
the threshold limit.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.