NCP4587 150 mA, Tri-Mode, LDO Linear Voltage Regulator The NCP4587 is a CMOS 150 mA LDO which switches to a low power mode under light current loads. The device automatically switches back to a fast response mode as the output load increases above 3 mA (typ.) or it can be placed in permanent fast mode through a mode select pin. The family is available in a variety of packages: SC−70, SOT23 and an ultra thin (0.4 mm) small 1.2 x 1.2 mm XDFN. http://onsemi.com MARKING DIAGRAMS Features • Operating Input Voltage Range: 1.4 V to 5.25 V • Output Voltage Range: 0.8 to 4.0 V (Available in 0.1 V steps) • Supply current: Low Power Mode – 1.0 mA • • • • • • • • Fast Mode – 55 mA Standby Mode – 0.1 mA Very Low Dropout: 120 mV Typ. at 150 mA (Vout > 2.6 V) ±1% Output Voltage Accuracy (VOUT > 2 V, TJ = 25°C) High PSRR: 70 dB at 1 kHz (Fast response mode) Line Regulation 0.02%/V Typ. Current Fold Back Protection Stable with Ceramic Capacitors Available in 1.2 x 1.2 XDFN, SC−70 and SOT23 Package These are Pb−Free Devices Typical Applications C1 1m VOUT VOUT 1 XX MM XXXMM SOT−23−5 CASE 1212 1 See detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet. C2 1m CE AE 1 ORDERING INFORMATION NCP4587x VIN XDFN6 CASE 711AA XXX XMM XX, XXX= Specific Device Code MM = Date Code • Battery Powered Equipments • Portable Communication Equipments • Cameras, Image Sensors and Camcorders VIN SC−70 CASE 419A GND Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2012 February, 2012 − Rev. 3 1 Publication Order Number: NCP4587/D NCP4587 AE AE VIN VOUT VIN VOUT Vref Vref Current Limit CE Current Limit CE GND GND NCP4587Hxxxx NCP4587Dxxxx Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN Pin No. SC−70 Pin No. SOT23 Pin Name 4 4 1 VIN Input pin 2 2 2 GND Ground 3 5 3 CE 6 3 5 VOUT 1 1 4 AE Auto Eco Pin 5 − − NC No connection Description Chip enable pin (active “H”) Output pin ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VIN 6.0 V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE −0.3 to 6.0 V Auto Eco Input VAE −0.3 to 6.0 V Output Current IOUT 400 mA PD 400 mW Input Voltage (Note 1) Power Dissipation XDFN Power Dissipation SC−70 380 Power Dissipation SOT23 420 Maximum Junction Temperature Storage Temperature Operation Temperature TJ(MAX) 150 °C TSTG −55 to 125 °C TA −40 to 85 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Machine Model (Note 2) ESDMM 200 V Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2 NCP4587 THERMAL CHARACTERISTICS Rating Symbol Thermal Characteristics, XDFN Thermal Resistance, Junction−to−Air RqJA Thermal Characteristics, SOT23 Thermal Resistance, Junction−to−Air RqJA Thermal Characteristics, SC−70 Thermal Resistance, Junction−to−Air RqJA Value Unit °C/W 250 °C/W 238 °C/W 263 ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.47 mF, unless otherwise noted. Typical values are at TA = +25°C. Parameter Test Conditions Operating Input Voltage Output Voltage Output Voltage Temp. Coefficient Line Regulation Symbol Min VIN VOUT Max Unit 1.4 5.25 V TA = +25 °C, IOUT = 5 mA VOUT > 2 V x0.99 x1.01 V VOUT ≤ 2 V −20 20 mV −40°C ≤ TA ≤ 85°C, IOUT = 5 mA VOUT > 2 V x0.975 x1.015 V VOUT ≤ 2 V −50 30 mV TA = −40 to 85°C VIN = VOUT + 0.5 V to 5 V, VIN ≥ 1.4 V IOUT = 1 mA, (Low Power Mode) IOUT = 1 mA to 10 mA LineReg 0.50 VOUT > 2.0 V 0.02 LineReg VOUT ≤ 2.0 V −1.0 −20 IOUT = 10 mA to 150 mA Dropout Voltage IOUT = 150 mA 0.8 V ≤ VOUT < 0.9 V 18 VDO 0.9 V ≤ VOUT < 1.0 V Supply Current mV 40 mV (Note 3) V 1.5 V ≤ VOUT < 2.6 V 0.19 0.25 0.12 0.18 VOUT ≤ 1.85 V 150 mA ISC 50 IQ 1.0 4.0 1.5 4.0 VOUT > 1.85 V IOUT = 10 mA, Fast Mode IGND 55 VCE = 0 V, TJ = 25°C ISTB 0.1 Fast Mode Switch−Over Current IOUT = light to heavy load IOUTH Low Power Switch−Over Current IOUT = heavy to light load IOUTL 1.0 CE Pin Threshold Voltage CE Input Voltage “H” VCEH 1.0 CE Input Voltage “L” VCEL Standby Current 20 0.4 IOUT IOUT = 0 mA, Low Power Mode (Note 4) % (Note 3) 2.6 V ≤ VOUT < 4.0 V Quiescent Current 1.0 0.24 VOUT = 0 V CE Pull Down Current ICEPD 3. VIN > 1.4 V condition is dominant against this specification 4. The value of quiescent current is excluding the pull−down current of CE and AE pin http://onsemi.com 3 %/V 0.20 1.0 V ≤ VOUT < 1.5 V Output Current Short Current Limit ppm/°C ±50 IOUT = 10 mA, (Fast Mode) Load Regulation Typ mA mA mA 1 mA 8.0 mA 2.0 mA V 0.4 0.1 mA NCP4587 ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.47 mF, unless otherwise noted. Typical values are at TA = +25°C. Parameter AE Pin Threshold Voltage Test Conditions Symbol Min AE Input Voltage “H” VAEH 1.0 AE Input Voltage “L” VAEL AE Pull Down Current Power Supply Rejection Ratio Output Noise Voltage Low Output Nch Tr. On Resistance Typ Max Unit V 0.4 IAEPD 0.1 mA VIN = VOUT + 1 V or 2.2 V whichever is higher, DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz, Fast Mode PSRR 70 dB VOUT = 1.2 V, IOUT = 30 mA, f = 10 Hz to 100 kHz VN 115 mVrms VIN = 4 V, VCE = 0 V RLOW 50 W 3. VIN > 1.4 V condition is dominant against this specification 4. The value of quiescent current is excluding the pull−down current of CE and AE pin http://onsemi.com 4 NCP4587 TYPICAL CHARACTERISTICS 1.4 3.0 1.2 2.5 3.8 V 2.8 V 1.8 V 2.0 VIN = 5.5 V 0.8 VOUT (V) VOUT (V) 1.0 0.6 1.0 0.4 0.5 0 50 100 150 200 250 IOUT (mA) 300 350 0.0 400 VIN = 5.5 V 0 0.18 0.25 0.15 0.20 0.12 0.09 25°C 0.10 0.06 85°C 0.05 30 60 90 IOUT (mA) 120 250 300 −40°C 0.03 0 200 85°C 150 0.00 0 Figure 5. Dropout Voltage vs. Output Current 1.2 V Version 30 60 90 IOUT (mA) 120 150 Figure 6. Dropout Voltage vs. Output Current 2.8 V Version 1.4 3.0 1.2 2.5 1.0 2.0 0.8 VOUT (V) VOUT (V) 150 IOUT (mA) 25°C −40°C 30 mA 1 mA 0.6 1.5 1.0 0.4 30 mA IOUT = 50 mA 1 mA 0.5 0.2 0 100 Figure 4. Output Voltage vs. Output Current 2.8 V Version (TA = 255C) 0.30 0.15 50 VDO (V) VDO (V) Figure 3. Output Voltage vs. Output Current 1.2 V Version (TA = 255C) 0.00 3.8 V 5.25 V 5.25 V 0.2 0.0 1.5 0 1 2 3 4 0.0 5 IOUT = 50 mA 0 1 2 3 4 VIN (V) VIN (V) Figure 7. Input Voltage vs. Output Voltage 1.2 V Version Figure 8. Input Voltage vs. Output Voltage 2.8 V Version http://onsemi.com 5 5 NCP4587 TYPICAL CHARACTERISTICS 2.84 1.24 VIN = 2.2 V VIN = 3.8 V 2.83 2.82 1.22 1.20 VOUT (V) VOUT (V) 2.81 1.18 2.80 2.79 2.78 2.77 2.76 1.16 2.75 1.14 −40 −20 0 20 40 60 2.74 −40 80 40 60 80 TJ, JUNCTION TEMPERATURE (°C) Figure 10. Output Voltage vs. Temperature, 2.8 V Version 70 IOUT = 10 mA 60 IOUT = 10 mA 50 IGND (mA) 50 IGND (mA) 20 TJ, JUNCTION TEMPERATURE (°C) 60 40 30 40 30 20 20 10 10 IOUT = 0 mA IOUT = 0 mA 0 0 0 1 2 3 4 0 5 4 5 Figure 12. Supply Current vs. Input Voltage, 2.8 V Version 140 140 120 120 100 100 80 60 Heavy to Light Load 0.1 3 Figure 11. Supply Current vs. Input Voltage, 1.2 V Version 160 20 2 VIN (V) 160 40 1 VIN (V) IGND (mA) IGND (mA) 0 Figure 9. Output Voltage vs. Temperature, 1.2 V Version 70 0 −20 1 80 60 40 Light to Heavy Load 10 IOUT (mA) Heavy to Light Load 20 Light to Heavy Load 0 100 1000 Figure 13. Supply Current vs. Output Current, 1.2 V Version, VIN = 2.2 V, VAE = 0 V 0.1 1 10 IOUT (mA) 100 1000 Figure 14. Supply Current vs. Output Current, 2.8 V Version, VIN = 3.8 V, VAE = 0 V http://onsemi.com 6 NCP4587 3.0 3.0 2.5 2.5 2.0 2.0 IIN (mA) IIN (mA) TYPICAL CHARACTERISTICS 1.5 1.5 1.0 1.0 0.5 0.5 0.0 −40 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 0.0 −40 80 50 50 45 45 IIN (mA) IIN (mA) 55 40 35 30 30 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 25 −40 80 Figure 17. Supply Current vs. Temperature, 1.2 Version, VIN = 2.2 V, VAE = 2.2 V IOUT = 30 mA 80 IOUT = 1 mA High 70 80 IOUT = 1 mA High 70 PSRR (dB) PSRR (dB) −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 90 IOUT = 30 mA 80 IOUT = 50 mA 40 IOUT = 1 mA Low 60 IOUT = 50 mA 50 40 30 IOUT = 100 mA 20 IOUT = 1 mA Low IOUT = 100 mA 10 10 0 0.1 80 100 90 20 60 Figure 18. Supply Current vs. Temperature, 2.8 Version, VIN = 3.8 V, VAE = 3.8 V 100 30 40 40 35 50 20 Figure 16. Supply Current vs. Temperature, 2.8 Version, VIN = 3.8 V, VAE = 0 V 55 60 0 TJ, JUNCTION TEMPERATURE (°C) Figure 15. Supply Current vs. Temperature, 1.2 Version, VIN = 2.2 V, VAE = 0 V 25 −40 −20 1 10 FREQUENCY (kHz) 100 1000 0 0.1 Figure 19. PSRR, 1.2 V Version, VIN = 2.2 V 1 10 100 FREQUENCY (kHz) Figure 20. PSRR, 2.8 V Version, VIN = 3.8 V http://onsemi.com 7 1000 NCP4587 TYPICAL CHARACTERISTICS 7.0 7.0 6.0 6.0 VN (mVrms/√Hz) 8.0 VN (mVrms/√Hz) 8.0 5.0 4.0 3.0 5.0 4.0 3.0 2.0 2.0 1.0 1.0 0 0.01 0.1 1 10 FREQUENCY (kHz) 100 0 0.01 1000 Figure 21. Output Voltage Noise, 1.2 V Version, IOUT = 30 mA, , VIN = 2.2 V 0.1 1 10 FREQUENCY (kHz) 3.2 2.7 VIN (V) VOUT (V) 2.2 1.24 1.22 1.20 1.18 1.16 1.14 0.2 0.4 0.6 0.8 1.0 1.2 t (ms) 1.4 1.6 1.8 2.0 Figure 23. Line Transients, 1.2 V Version, tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V 5.3 4.8 4.3 VIN (V) VOUT (V) 3.8 2.86 2.84 2.82 2.80 2.78 2.76 2.74 0.0 0.2 0.4 0.6 0.8 1000 Figure 22. Output Voltage Noise, 2.8 V Version, IOUT = 30 mA, VIN = 3.8 V 3.7 0.0 100 1.0 1.2 t (ms) 1.4 1.6 1.8 Figure 24. Line Transients, 2.8 V Version, tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V http://onsemi.com 8 2.0 NCP4587 TYPICAL CHARACTERISTICS 3.7 3.2 2.7 VIN (V) VOUT (V) 2.2 1.204 1.202 1.200 1.198 1.196 1.194 0.0 0.2 0.4 0.6 0.8 1.0 1.2 t (ms) 1.4 1.6 1.8 2.0 Figure 25. Line Transients, 1.2 V Version, tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V 5.3 4.8 4.3 VIN (V) VOUT (V) 3.8 2.804 2.802 2.800 2.798 2.796 2.794 0.0 0.2 0.4 0.6 0.8 1.0 1.2 t (ms) 1.4 1.6 1.8 2.0 Figure 26. Line Transients, 2.8 V Version, tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V 225 150 75 IOUT (mA) VOUT (V) 0 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 27. Load Transients, 1.2 V Version, IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = 0 V http://onsemi.com 9 NCP4587 TYPICAL CHARACTERISTICS 225 150 75 2.90 IOUT (mA) VOUT (V) 0 2.85 2.80 2.75 2.70 2.65 2.60 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 28. Load Transients, 2.8 V Version, IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = 0 V 225 150 75 1.30 IOUT (mA) VOUT (V) 0 1.25 1.20 1.15 1.10 1.05 1.00 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 29. Load Transients, 1.2 V Version, IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = VIN V 225 150 75 2.90 IOUT (mA) VOUT (V) 0 2.85 2.80 2.75 2.70 2.65 2.60 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 30. Load Transients, 2.8 V Version, IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V, AE = VIN V http://onsemi.com 10 NCP4587 TYPICAL CHARACTERISTICS 75 50 25 1.24 IOUT (mA) VOUT (V) 0 1.22 1.20 1.18 1.16 1.14 1.12 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 31. Load Transients, 1.2 V Version, IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = 0 V 75 50 25 IOUT (mA) VOUT (V) 0 2.84 2.82 2.80 2.78 2.76 2.74 2.72 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 32. Load Transients, 2.8 V Version, IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 3.8 V, AE = 0 V 75 50 25 1.24 IOUT (mA) VOUT (V) 0 1.22 1.20 1.18 1.16 1.14 1.12 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 33. Load Transients, 1.2 V Version, IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = VIN V http://onsemi.com 11 NCP4587 TYPICAL CHARACTERISTICS 75 50 25 IOUT (mA) VOUT (V) 0 2.84 2.82 2.80 2.78 2.76 2.74 2.72 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 34. Load Transients, 2.8 V Version, IOUT = 1 – 50 mA, tR = tF = 0.5 ms, VIN = 3.8 V, AE = VIN V 150 100 50 IOUT (mA) VOUT (V) 0 1.22 1.21 1.20 1.19 1.18 1.17 1.16 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 35. Load Transients, 1.2 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 2.2 V 150 100 50 IOUT (mA) VOUT (V) 0 2.82 2.81 2.80 2.79 2.78 2.77 2.76 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 36. Load Transients, 2.8 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V http://onsemi.com 12 NCP4587 TYPICAL CHARACTERISTICS 3 2 1 1.22 VAE (V) VOUT (V) 0 1.21 1.20 1.19 1.18 1.17 1.16 0 1 2 3 4 5 t (ms) 6 7 8 9 10 Figure 37. AE Switch Transients, 1.2 V Version, VIN = 2.2 V, IOUT = 1 mA 6 4 2 VAE (V) VOUT (V) 0 2.82 2.81 2.80 2.79 2.78 2.77 2.76 0 1 2 3 4 5 t (ms) 6 7 8 9 10 Figure 38. AE Switch Transients, 2.8 V Version, VIN = 3.8 V, IOUT = 1 mA 3 2 Chip Enable 1 1.5 IOUT = 150 mA IOUT = 1 mA 1.0 0.5 VCE (V) VOUT (V) 0 IOUT = 30 mA 0.0 −0.5 0 10 20 30 40 50 t (ms) 60 70 80 90 Figure 39. Start-up, 1.2 V Version, VIN = 2.0 V http://onsemi.com 13 100 NCP4587 TYPICAL CHARACTERISTICS 6 4 Chip Enable 2 VCE (V) VOUT (V) 0 IOUT = 150 mA 3.0 IOUT = 1 mA 2.0 1.0 IOUT = 30 mA 0.0 −1.0 0 10 20 30 40 50 t (ms) 60 70 80 90 100 Figure 40. Start-up, 2.8 V Version, VIN =3.8 V 3 2 1 0 VCE (V) VOUT (V) Chip Enable IOUT = 1 mA 1.5 IOUT = 30 mA 1.0 IOUT = 150 mA 0.5 0.0 −0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 41. Shutdown, 1.2 V Version, VIN = 2.2 V 6 4 2 0 VCE (V) VOUT (V) Chip Enable IOUT = 1 mA 3.0 IOUT = 30 mA 2.0 IOUT = 150 mA 1.0 0.0 −1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 42. Shutdown, 2.8 V Version, VIN = 3.8 V http://onsemi.com 14 NCP4587 APPLICATION INFORMATION A typical application circuit for NCP4587 series is shown in Figure 43. NCP4587x VIN VIN C1 1m VOUT VOUT C2 1m CE AE current capability in normal operation, but when over current occurs, the output voltage and current decrease until the over current condition ends. Typical characteristics of this protection type can be observed in the Output Voltage versus Output Current graphs shown in the typical characteristics chapter of this datasheet. Output Discharger The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. GND Auto ECO and Fast Mode The NCP4587 has two operation modes that have impact on supply current and transient response at low output current. These two modes can be selected by AE pin. If AE pin is at low level or floating Auto ECO mode is available. Please, see supply current vs. output current charts. If AE pin is at high level the device works in permanent Fast Transient Mode. Figure 43. Typical Application Schematic Input Decoupling Capacitor (C1) A 1 mF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4587. Higher values and lower ESR improves line transient response. Thermal A 1 mF ceramic output decoupling capacitor is sufficient to achieve stable operation of the IC. If tantalum capacitor is used, and its ESR is high, the loop oscillation may result. If output capacitor is composed from few ceramic capacitors in parallel, the operation can be unstable. The capacitor should be connected as close as possible to the output and ground pin. Larger values and lower ESR improves dynamic parameters. As power across the IC increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature rise for the part. That is to say, when the device has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications. Enable Operation PCB layout Output Decoupling Capacitor (C2) Make VIN and GND line sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible. Enable pin CE may be used for turning the regulator on and off. The regulator is switched on when CE pin voltage is above logic high level. Enable pin has internal pull down current source. If enable function is not needed connect CE pin to VIN. Current Limit This regulator includes fold-back type current limit circuit. This type of protection doesn’t limit current up to http://onsemi.com 15 NCP4587 ORDERING INFORMATION Nominal Output Voltage Description Marking Package Shipping† NCP4587DMX12TCG 1.2 V Auto discharge YE XDFN (Pb−Free) 5000 / Tape & Reel NCP4587DMX18TCG 1.8 V Auto discharge YL XDFN (Pb−Free) 5000 / Tape & Reel NCP4587DMX28TCG 2.8 V Auto discharge YW XDFN (Pb−Free) 5000 / Tape & Reel NCP4587DMX30TCG 3.0 V Auto discharge YY XDFN (Pb−Free) 5000 / Tape & Reel NCP4587DMX31TCG 3.1 V Auto discharge YZ XDFN (Pb−Free) 5000 / Tape & Reel NCP4587DMX33TCG 3.3 V Auto discharge ZB XDFN (Pb−Free) 5000 / Tape & Reel NCP4587DSN12T1G 1.2 V Auto discharge DBE SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4587DSN18T1G 1.8 V Auto discharge DBL SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4587DSN28T1G 2.8 V Auto discharge DBW SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4587DSN30T1G 3.0 V Auto discharge DBY SOT−23 (Pb−Free) 3000 / Tape & Reel NCP4587DSN33T1G 3.3 V Auto discharge EBB SOT−23 (Pb−Free) 3000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. NOTE: To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 16 NCP4587 PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE K A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 −B− S 1 2 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) M B M N J C H K http://onsemi.com 17 INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 NCP4587 PACKAGE DIMENSIONS XDFN6 1.2x1.2, 0.4P CASE 711AA−01 ISSUE O PIN ONE REFERENCE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25mm FROM TERMINAL TIPS. 4. COPLANARITY APPLIES TO ALL OF THE TERMINALS. A B D ÍÍÍ ÍÍÍ ÍÍÍ E DIM A A1 b C D E e L 0.05 C 2X 2X 0.05 C TOP VIEW A 0.05 C 0.05 C A1 SIDE VIEW NOTE 4 C MILLIMETERS MIN MAX --0.40 0.00 0.05 0.13 0.23 0.20 0.30 1.20 BSC 1.20 BSC 0.40 BSC 0.37 0.48 RECOMMENDED MOUNTING FOOTPRINT* SEATING PLANE 6X 6X 0.22 0.66 PACKAGE OUTLINE e 1 3 1.50 C 6X L 0.40 PITCH 6 4 DIMENSIONS: MILLIMETERS 6X 0.05 BOTTOM VIEW *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. b M C A B NOTE 3 http://onsemi.com 18 NCP4587 PACKAGE DIMENSIONS SOT−23 CASE 1212−01 ISSUE A A 5 E 1 L1 A1 4 2 L 3 5X e A2 0.05 S B D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A E1 b 0.10 C M C B S A S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 DIM A A1 A2 b c D E E1 e L L1 MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 5X 0.85 5X 0.95 PITCH 0.56 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 19 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCP4587/D