Atmel 8-bit Microcontroller with 16K Bytes In-System Programmable Flash AT90PWM216 /AT90PWM316 Summary Features • High Performance, Low Power AVR® 8-bit Microcontroller • Advanced RISC Architecture • • • • • • • • • – 129 Powerful Instructions - Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 1 MIPS throughput per MHz – On-chip 2-cycle Multiplier Data and Non-Volatile Program Memory – 16K Bytes Flash of In-System Programmable Program Memory • Endurance: 10,000 Write/Erase Cycles – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – 512 Bytes of In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles – 1024 Bytes Internal SRAM – Programming Lock for Flash Program and EEPROM Data Security On Chip Debug Interface (debugWIRE) Peripheral Features – Two or three 12-bit High Speed PSC (Power Stage Controllers) with 4-bit Resolution Enhancement • Non Overlapping Inverted PWM Output Pins With Flexible Dead-Time • Variable PWM duty Cycle and Frequency • Synchronous Update of all PWM Registers • Auto Stop Function for Event Driven PFC Implementation • Less than 25Hz Step Width at 150kHz Output Frequency • PSC2 with four Output Pins and Output Matrix – One 8-bit General purpose Timer/Counter with Separate Prescaler and Capture Mode – One 16-bit General purpose Timer/Counter with Separate Prescaler, Compare Mode and Capture Mode – Programmable Serial USART • Standard UART mode • 16/17 bit Biphase Mode for DALI Communications – Master/Slave SPI Serial Interface – 10-bit ADC • Up To 11 Single Ended Channels and 2 Fully Differential ADC Channel Pairs • Programmable Gain (5x, 10x, 20x, 40x on Differential Channels) • Internal Reference Voltage – 10-bit DAC – Two or three Analog Comparator with Resistor-Array to Adjust Comparison Voltage – 4 External Interrupts – Programmable Watchdog Timer with Separate On-Chip Oscillator Special Microcontroller Features – Low Power Idle, Noise Reduction, and Power Down Modes – Power On Reset and Programmable Brown Out Detection – Flag Array in Bit-programmable I/O Space (4 bytes) – In-System Programmable via SPI Port – Internal Calibrated RC Oscillator (8 MHz) – On-chip PLL for fast PWM (32 MHz, 64 MHz) and CPU (16 MHz) Operating Voltage: 2.7V - 5.5V Extended Operating Temperature: – -40°C to +105°C 7710HS–AVR–07/2013 7710HS–AVR–07/2013 Product Package 12 bit PWM with deadtime ADC Input ADC Diff Analog Comparator Application AT90PWM216 SO24 2x2 8 1 2 One fluorescent ballast AT90PWM316 SO32, QFN32 3x2 11 2 3 HID ballast, fluorescent ballast, Motor control 1. Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. 2. Pin Configurations Figure 2-1. SOIC 24-pin Package AT90PWM216 SOIC24 (PSCOUT00/XCK/SS_A) PD0 (RESET/OCD) PE0 (PSCIN0/CLKO) PD1 (PSCIN2/OC1A/MISO_A) PD2 (TXD/DALI/OC0A/SS/MOSI_A) PD3 VCC GND (MISO/PSCOUT20) PB0 (MOSI/PSCOUT21) PB1 (OC0B/XTAL1) PE1 (ADC0/XTAL2) PE2 (ADC1/RXD/DALI/ICP1A/SCK_A) PD4 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 PB7(ADC4/PSCOUT01/SCK) PB6 (ADC7/ICP1B) PB5 (ADC6/INT2) PB4 (AMP0+) PB3 (AMP0-) AREF AGND AVCC PB2 (ADC5/INT1) PD7 (ACMP0) PD6 (ADC3/ACMPM/INT0) PD5 (ADC2/ACMP2) AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 3 Figure 2-2. SOIC 32-pin Package AT90PWM316 SOIC 32 (PSCOUT00/XCK/SS_A) PD0 (INT3/PSCOUT10) PC0 (RESET/OCD) PE0 (PSCIN0/CLKO) PD1 (PSCIN2/OC1A/MISO_A) PD2 (TXD/DALI/OC0A/SS/MOSI_A) PD3 (PSCIN1/OC1B) PC1 VCC GND (T0/PSCOUT22) PC2 (T1/PSCOUT23) PC3 (MISO/PSCOUT20) PB0 (MOSI/PSCOUT21) PB1 (OC0B/XTAL1) PE1 (ADC0/XTAL2) PE2 (ADC1/RXD/DALI/ICP1A/SCK_A) PD4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 PB7(ADC4/PSCOUT01/SCK) PB6 (ADC7/PSCOUT11/ICP1B) PB5 (ADC6/INT2) PC7 (D2A) PB4 (AMP0+) PB3 (AMP0-) PC6 (ADC10/ACMP1) AREF AGND AVCC PC5 (ADC9/AMP1+) PC4 (ADC8/AMP1-) PB2 (ADC5/INT1) PD7 (ACMP0) PD6 (ADC3/ACMPM/INT0) PD5 (ADC2/ACMP2) AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 4 PB7 (ADC4/PSCOUT01/SCK) PB6 (ADC7/PSCOUT11/ICP1B) PB5 (ADC6/INT2) PC7 (D2A) PD0 (PSCOUT00/XCK/SS_A) PC0(INT3/PSCOUT10) 32 31 30 29 28 27 26 25 PE0 (RESET/OCD) QFN32 (7*7 mm) Package. PD1(PSCIN0/CLKO) Figure 2-3. 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 PB4 (AMP0+) PB3 (AMP0-) PC6 (ADC10/ACMP1) AREF AGND AVCC PC5 (ADC9/AMP1+) PC4 (ADC8/AMP1-) (MOSI/PSCOUT21) PB1 (OC0B/XTAL1) PE1 (ADC0/XTAL2) PE2 (ADC1/RXD/DALI/ICP1_A/SCK_A) PD4 (ADC2/ACMP2 ) PD5 (ADC3/ACMPM/INT0) PD6 (ACMP0) PD7 (ADC5/INT1) PB2 9 10 11 12 13 14 15 16 (PSCIN2/OC1A/MISO_A) PD2 (TXD/DALI/OC0A/SS/MOSI_A) PD3 (PSCIN1/OC1B) PC1 VCC GND (T0/PSCOUT22) PC2 (T1/PSCOUT23) PC3 (MISO/PSCOUT20) PB0 Note: The Center GND PADDLE has to be connected to GND. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 5 2.1 Pin Descriptions Table 2-1. Pin out description S024 Pin Number SO32 Pin Number QFN32 Pin Number Mnemonic Type 7 9 5 GND Power Ground: 0V reference 18 24 20 AGND Power Analog Ground: 0V reference for analog part 6 8 4 VCC power Power Supply: 17 23 19 AVCC Power 19 25 21 AREF Power 8 12 8 PBO I/O 9 13 9 PB1 I/O 16 20 16 PB2 I/O 20 27 23 PB3 I/O AMP0- (Analog Differential Amplifier 0 Input Channel ) 21 28 24 PB4 I/O AMP0+ (Analog Differential Amplifier 0 Input Channel ) 22 30 26 PB5 I/O 23 31 27 PB6 I/O Name, Function & Alternate Function Analog Power Supply: This is the power supply voltage for analog part For a normal use this pin must be connected. Analog Reference: reference for analog converter. This is the reference voltage of the A/D converter. As output, can be used by external analog MISO (SPI Master In Slave Out) PSCOUT20 output MOSI (SPI Master Out Slave In) PSCOUT21 output ADC5 (Analog Input Channel5) INT1 ADC6 (Analog Input Channel 6) INT 2 ADC7 (Analog Input Channel 7) ICP1B (Timer 1 input capture alternate input) PSCOUT11 output (see note 1) PSCOUT01 output 24 32 28 PB7 I/O ADC4 (Analog Input Channel 4) SCK (SPI Clock) 2 30 PC0 I/O 7 3 PC1 I/O 10 6 PC2 I/O 11 7 PC3 I/O 21 17 PC4 22 18 PC5 I/O 26 22 PC6 I/O 29 25 PC7 I/O NA I/O PSCOUT10 output (see note 1) INT3 PSCIN1 (PSC 1 Digital Input) OC1B (Timer 1 Output Compare B) T0 (Timer 0 clock input) PSCOUT22 output T1 (Timer 1 clock input) PSCOUT23 output ADC8 (Analog Input Channel 8) AMP1- (Analog Differential Amplifier 1 Input Channel) ADC9 (Analog Input Channel 9) AMP1+ (Analog Differential Amplifier 1 Input Channel) ADC10 (Analog Input Channel 10) ACMP1 (Analog Comparator 1 Positive Input) D2A : DAC output(2) AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 6 Table 2-1. S024 Pin Number Pin out description (Continued) SO32 Pin Number QFN32 Pin Number Mnemonic Type Name, Function & Alternate Function PSCOUT00 output(1) 1 1 29 PD0 I/O XCK (UART Transfer Clock) SS_A (Alternate SPI Slave Select) 3 4 32 PD1 I/O 4 5 1 PD2 I/O PSCIN0 (PSC 0 Digital Input) CLKO (System Clock Output) PSCIN2 (PSC 2 Digital Input) OC1A (Timer 1 Output Compare A) MISO_A (Programming & alternate SPI Master In Slave Out) TXD (Dali/UART Tx data) 5 6 2 PD3 I/O OC0A (Timer 0 Output Compare A) SS (SPI Slave Select) MOSI_A (Programming & alternate Master Out SPI Slave In) ADC1 (Analog Input Channel 1) 12 16 12 PD4 I/O RXD (Dali/UART Rx data) ICP1A (Timer 1 input capture) SCK_A (Programming & alternate SPI Clock) 13 17 13 PD5 I/O 14 18 14 PD6 I/O ADC2 (Analog Input Channel 2) ACMP2 (Analog Comparator 2 Positive Input) ADC3 (Analog Input Channel 3 ) ACMPM reference for analog comparators INT0 15 19 15 PD7 I/O 2 3 31 PE0 I/O or I 10 14 10 PE1 I/O 11 15 11 PE2 I/O Notes: ACMP0 (Analog Comparator 0 Positive Input) RESET (Reset Input) OCD (On Chip Debug I/O) XTAL1: XTAL Input OC0B (Timer 0 Output Compare B) XTAL2: XTAL OuTput ADC0 (Analog Input Channel 0) 1. PSCOUT10 & PSCOUT11 are not present on 24 pins package 2. D2A (DAC Output) not available on AT90PWM261 (SOIC 24-pins) 3. Overview The AT90PWM216/316 are low-power CMOS 8-bit microcontrollers based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the AT90PWM216/316 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 7 Block Diagram Figure 3-1. Block Diagram Data Bus 8-bit 16Kx8 Flash Program Memory Status and Control Program Counter 32 x 8 General Purpose Registrers Instruction Register Watchdog Timer Indirect Addressing 3 Analog Comparators Instruction Decoder Control Lines Interrupt Unit SPI Unit Direct Addressing 3.1 ALU DALI USART Timer 0 Timer 1 Data SRAM 1024 bytes EEPROM 512 bytes I/O Lines ADC DAC PSC 2/1/0 The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The AT90PWM216/316 provides the following features: 16K bytes of In-System Programmable Flash with ReadWhile-Write capabilities, 512 bytes EEPROM, 1024 bytes SRAM, 53 general purpose I/O lines, 32 general purpose working registers, three Power Stage Controllers, two flexible Timer/Counters with compare modes and PWM, one USART with DALI mode, an 11-channel 10-bit ADC with two differential input stage with programmable gain, a 10bit DAC, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, an On-chip Debug system and four software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Res- AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 8 onator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. The device is manufactured using the Atmel high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel AT90PWM216/316 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The AT90PWM216/316 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits. Note: AT90PWM216 device is available in SOIC 24-pin Package and does not have the D2A (DAC Output) brought out to I/0 pins. 3.2 Pin Descriptions 3.2.1 VCC Digital supply voltage. 3.2.2 GND Ground. 3.2.3 Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the AT90PWM216/316 as listed on page 63. 3.2.4 Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C is not available on 24 pins package. Port C also serves the functions of special features of the AT90PWM316 as listed on page 65. 3.2.5 Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the AT90PWM216/316 as listed on page 68. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 9 3.2.6 Port E (PE2..0) RESET/ XTAL1/ XTAL2 Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the RSTDISBL Fuse is programmed, PE0 is used as an I/O pin. Note that the electrical characteristics of PE0 differ from those of the other pins of Port C. If the RSTDISBL Fuse is unprogrammed, PE0 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 8-1 on page 41. Shorter pulses are not guaranteed to generate a Reset. Depending on the clock selection fuse settings, PE1 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit. Depending on the clock selection fuse settings, PE2 can be used as output from the inverting Oscillator amplifier. The various special features of Port E are elaborated in “Alternate Functions of Port E” on page 71 and “Clock Systems and their Distribution” on page 25. 3.2.7 AVCC AVCC is the supply voltage pin for the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. 3.2.8 AREF This is the analog reference pin for the A/D Converter. 3.3 About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 10 4. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page (0xFF) PICR2H (0xFE) PICR2L page 161 (0xFD) PFRC2B PCAE2B PISEL2B PELEV2B PFLTE2B PRFM2B3 PRFM2B2 PRFM2B1 PRFM2B0 page 160 (0xFC) PFRC2A PCAE2A PISEL2A PELEV2A PFLTE2A PRFM2A3 PRFM2A2 PRFM2A1 PRFM2A0 page 159 (0xFB) PCTL2 PPRE21 PPRE20 PBFM2 PAOC2B PAOC2A PARUN2 PCCYC2 PRUN2 page 159 (0xFA) PCNF2 PFIFTY2 PALOCK2 PLOCK2 PMODE21 PMODE20 POP2 PCLKSEL2 POME2 page 156 (0xF9) OCR2RBH page 155 (0xF8) OCR2RBL page 155 (0xF7) OCR2SBH page 155 (0xF6) OCR2SBL page 155 (0xF5) OCR2RAH page 155 (0xF4) OCR2RAL page 155 (0xF3) OCR2SAH page 155 (0xF2) OCR2SAL (0xF1) POM2 POMV2B3 POMV2B2 POMV2B1 POMV2B0 (0xF0) PSOC2 POS23 POS22 PSYNC21 PSYNC20 (0xEF) PICR1H (0xEE) PICR1L (0xED) PFRC1B PCAE1B PISEL1B PELEV1B PFLTE1B PRFM1B3 PRFM1B2 PRFM1B1 PRFM1B0 page 160 (0xEC) PFRC1A PCAE1A PISEL1A PELEV1A PFLTE1A PRFM1A3 PRFM1A2 PRFM1A1 PRFM1A0 page 159 (0xEB) PCTL1 PPRE11 PPRE10 PBFM1 PAOC1B PAOC1A PARUN1 PCCYC1 PRUN1 page 158 (0xEA) PCNF1 PFIFTY1 PALOCK1 PLOCK1 PMODE11 PMODE10 POP1 PCLKSEL1 - page 156 (0xE9) OCR1RBH page 155 (0xE8) OCR1RBL page 155 (0xE7) OCR1SBH page 155 (0xE6) OCR1SBL page 155 (0xE5) OCR1RAH page 155 (0xE4) OCR1RAL page 155 (0xE3) OCR1SAH page 155 (0xE2) OCR1SAL (0xE1) Reserved – – – – – – – – – – PSYNC11 PSYNC10 – POEN1B – POEN1A page 161 page 155 POMV2A3 POEN2D POMV2A2 POEN2B POMV2A1 POEN2C POMV2A0 page 162 POEN2A page 154 page 161 page 161 page 155 (0xE0) PSOC1 (0xDF) PICR0H page 153 (0xDE) PICR0L (0xDD) PFRC0B PCAE0B PISEL0B PELEV0B PFLTE0B PRFM0B3 PRFM0B2 PRFM0B1 PRFM0B0 page 160 (0xDC) PFRC0A PCAE0A PISEL0A PELEV0A PFLTE0A PRFM0A3 PRFM0A2 PRFM0A1 PRFM0A0 page 159 (0xDB) PCTL0 PPRE01 PPRE00 PBFM0 PAOC0B PAOC0A PARUN0 PCCYC0 PRUN0 page 157 (0xDA) PCNF0 PFIFTY0 PALOCK0 PLOCK0 PMODE01 PMODE00 POP0 PCLKSEL0 - page 155 (0xD9) OCR0RBH page 155 (0xD8) OCR0RBL page 155 (0xD7) OCR0SBH page 155 (0xD6) OCR0SBL page 155 (0xD5) OCR0RAH page 155 (0xD4) OCR0RAL page 155 (0xD3) OCR0SAH page 155 (0xD2) OCR0SAL (0xD1) Reserved – – – – – – – – (0xD0) PSOC0 – – PSYNC01 PSYNC00 – POEN0B – POEN0A (0xCF) Reserved – – – – – – – – page 161 page 161 page 155 page 153 (0xCE) EUDR EUDR7 EUDR6 EUDR5 EUDR4 EUDR3 EUDR2 EUDR1 EUDR0 page 209 (0xCD) MUBRRH MUBRR15 MUBRR014 MUBRR13 MUBRR12 MUBRR011 MUBRR010 MUBRR9 MUBRR8 page 214 (0xCC) MUBRRL MUBRR7 MUBRR6 MUBRR5 MUBRR4 MUBRR3 MUBRR2 MUBRR1 MUBRR0 page 214 (0xCB) Reserved – – – – – – – – (0xCA) EUCSRC – – – – FEM F1617 STP1 STP0 page 213 (0xC9) EUCSRB – – – EUSART EUSBS – EMCH BODR page 212 (0xC8) EUCSRA UTxS3 UTxS2 UTxS1 UTxS0 URxS3 URxS2 URxS1 URxS0 page 211 (0xC7) Reserved – – – – – – – – (0xC6) UDR UDR07 UDR06 UDR05 UDR04 UDR03 UDR02 UDR01 UDR00 page 209 & page 191 (0xC5) UBRRH – – – – UBRR011 UBRR010 UBRR09 UBRR08 page 195 (0xC4) UBRRL UBRR07 UBRR06 UBRR05 UBRR04 UBRR03 UBRR02 UBRR01 UBRR00 page 195 (0xC3) Reserved – – – – – – – – (0xC2) UCSRC – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 page 194 (0xC1) UCSRB RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 page 193 (0xC0) UCSRA RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 page 191 (0xBF) Reserved – – – – – – – – (0xBE) Reserved – – – – – – – – AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 11 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xBD) Reserved – – – – – – – – Page (0xBC) Reserved – – – – – – – – (0xBB) Reserved – – – – – – – – (0xBA) Reserved – – – – – – – – (0xB9) Reserved – – – – – – – – (0xB8) Reserved – – – – – – – – (0xB7) Reserved – – – – – – – – (0xB6) Reserved – – – – – – – – (0xB5) Reserved – – – – – – – – (0xB4) Reserved – – – – – – – – (0xB3) Reserved – – – – – – – – (0xB2) Reserved – – – – – – – – (0xB1) Reserved – – – – – – – – (0xB0) Reserved – – – – – – – – (0xAF) AC2CON AC2EN AC2IE AC2IS1 AC2IS0 – AC2M2 AC2M1 AC2M0 (0xAE) AC1CON AC1EN AC1IE AC1IS1 AC1IS0 AC1ICE AC1M2 AC1M1 AC1M0 page 217 (0xAD) AC0CON AC0EN AC0IE AC0IS1 AC0IS0 - AC0M2 AC0M1 AC0M0 page 216 (0xAC) DACH - / DAC9 - / DAC8 - / DAC7 - / DAC6 - / DAC5 - / DAC4 DAC9 / DAC3 DAC8 / DAC2 page 247 (0xAB) DACL DAC7 / DAC1 DAC6 /DAC0 DAC5 / - DAC4 / - DAC3 / - DAC2 / - DAC1 / - DAC0 / page 247 (0xAA) DACON DAATE DATS2 DATS1 DATS0 - DALA DAOE DAEN page 246 (0xA9) Reserved – – – – – – – – (0xA8) Reserved – – – – – – – – (0xA7) Reserved – – – – – – – – (0xA6) Reserved (0xA5) PIM2 – - – - – PSEIE2 – PEVE2B – PEVE2A – - – - – PEOPE2 page 162 (0xA4) PIFR2 - - PSEI2 PEV2B PEV2A PRN21 PRN20 PEOP2 page 163 (0xA3) PIM1 - - PSEIE1 PEVE1B PEVE1A - - PEOPE1 page 162 (0xA2) PIFR1 - - PSEI1 PEV1B PEV1A PRN11 PRN10 PEOP1 page 163 (0xA1) PIM0 - - PSEIE0 PEVE0B PEVE0A - - PEOPE0 page 162 (0xA0) PIFR0 - - PSEI0 PEV0B PEV0A PRN01 PRN00 PEOP0 page 163 (0x9F) Reserved – – – – – – – – page 218 (0x9E) Reserved – – – – – – – – (0x9D) Reserved – – – – – – – – (0x9C) Reserved – – – – – – – – (0x9B) Reserved – – – – – – – – (0x9A) Reserved – – – – – – – – (0x99) Reserved – – – – – – – – (0x98) Reserved – – – – – – – – (0x97) Reserved – – – – – – – – (0x96) Reserved – – – – – – – – (0x95) Reserved – – – – – – – – (0x94) Reserved – – – – – – – – (0x93) Reserved – – – – – – – – (0x92) Reserved – – – – – – – – (0x91) Reserved – – – – – – – – (0x90) Reserved – – – – – – – – (0x8F) Reserved – – – – – – – – (0x8E) Reserved – – – – – – – – (0x8D) Reserved – – – – – – – – (0x8C) Reserved – – – – – – – – (0x8B) OCR1BH OCR1B15 OCR1B14 OCR1B13 OCR1B12 OCR1B11 OCR1B10 OCR1B9 OCR1B8 page 119 (0x8A) OCR1BL OCR1B7 OCR1B6 OCR1B5 OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0 page 119 (0x89) OCR1AH OCR1A15 OCR1A14 OCR1A13 OCR1A12 OCR1A11 OCR1A10 OCR1A9 OCR1A8 page 119 (0x88) OCR1AL OCR1A7 OCR1A6 OCR1A5 OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 page 119 (0x87) ICR1H ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 page 119 (0x86) ICR1L ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICR11 ICR10 page 119 (0x85) TCNT1H TCNT115 TCNT114 TCNT113 TCNT112 TCNT111 TCNT110 TCNT19 TCNT18 page 119 (0x84) TCNT1L TCNT17 TCNT16 TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 page 119 (0x83) Reserved – – – – – – – – (0x82) TCCR1C FOC1A FOC1B – – – – – – page 118 (0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 page 117 (0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 page 114 (0x7F) DIDR1 – – ACMP0D AMP0PD AMP0ND ADC10D/ACMP1D ADC9D/AMP1PD ADC8D/AMP1ND page 239 (0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D/ACMPMD ADC2D/ACMP2D ADC1D ADC0D page 239 (0x7D) Reserved – – – – – – – – (0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 page 235 (0x7B) ADCSRB ADHSM – – – ADTS3 ADTS2 ADTS1 ADTS0 page 237 (0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 236 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 12 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page (0x79) ADCH - / ADC9 - / ADC8 - / ADC7 - / ADC6 - / ADC5 - / ADC4 ADC9 / ADC3 ADC8 / ADC2 page 238 page 238 (0x78) ADCL ADC7 / ADC1 ADC6 / ADC0 ADC5 / - ADC4 / - ADC3 / - ADC2 / - ADC1 / - ADC0 / (0x77) AMP1CSR AMP1EN - AMP1G1 AMP1G0 - AMP1TS2 AMP1TS1 AMP1TS0 page 244 (0x76) AMP0CSR AMP0EN - AMP0G1 AMP0G0 - AMP0TS2 AMP0TS1 AMP0TS0 page 243 (0x75) Reserved – – – – – – – – (0x74) Reserved – – – – – – – – (0x73) Reserved – – – – – – – – (0x72) Reserved – – – – – – – – (0x71) Reserved – – – – – – – – (0x70) Reserved – – – – – – – – (0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 page 120 (0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 page 93 (0x6D) Reserved – – – – – – – – (0x6C) Reserved – – – – – – – – (0x6B) Reserved – – – – – – – – (0x6A) Reserved – – – – – – – – (0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 (0x68) Reserved – – – – – – – – (0x67) Reserved – – – – – – – – (0x66) OSCCAL – CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 (0x65) Reserved – – – – – – – – (0x64) PRR PRPSC2 PRPSC1 PRPSC0 PRTIM1 PRTIM0 PRSPI PRUSART PRADC (0x63) Reserved – – – – – – – – (0x62) Reserved – – – – – – – – (0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 33 (0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 page 48 0x3F (0x5F) SREG I T H S V N Z C page 11 0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 page 14 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 14 0x3C (0x5C) Reserved – – – – – – – – 0x3B (0x5B) Reserved – – – – – – – – 0x3A (0x5A) Reserved – – – – – – – – 0x39 (0x59) Reserved – – – – – – – – 0x38 (0x58) Reserved – – – – – – – – 0x37 (0x57) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 0x36 (0x56) Reserved – – – – – – – – page 75 page 29 page 37 page 256 0x35 (0x55) MCUCR SPIPS – – PUD – – IVSEL IVCE page 54 & page 62 0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF page 44 0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 0x32 (0x52) MSMCR 0x31 (0x51) MONDR 0x30 (0x50) ACSR Monitor Stop Mode Control Register Monitor Data Register – AC2IF AC1IF AC0IF – page 35 reserved reserved AC2O AC1O AC0O page 219 0x2F (0x4F) Reserved – – – – – – – – 0x2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X page 171 0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 page 169 0x2B (0x4B) Reserved – – – – – – – – 0x2A (0x4A) Reserved – – – – – – – – 0x29 (0x49) PLLCSR - - - - - PLLF PLLE PLOCK page 31 0x28 (0x48) OCR0B OCR0B7 OCR0B6 OCR0B5 OCR0B4 OCR0B3 OCR0B2 OCR0B1 OCR0B0 page 93 0x27 (0x47) OCR0A OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 page 93 0x26 (0x46) TCNT0 TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 page 93 page 171 0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00 page 91 0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 page 89 0x23 (0x43) GTCCR TSM ICPSEL1 – – – – – PSRSYNC page 78 0x22 (0x42) EEARH – – – – EEAR11 EEAR10 EEAR9 EEAR8 page 19 0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 19 0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 page 19 0x1F (0x3F) EECR – – – – EERIE EEMWE EEWE EERE page 20 0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 page 24 0x1D (0x3D) EIMSK – – – – INT3 INT2 INT1 INT0 page 76 0x1C (0x3C) 0x1B (0x3B) EIFR – – – – INTF3 INTF2 INTF1 INTF0 page 76 GPIOR3 GPIOR37 GPIOR36 GPIOR35 GPIOR34 GPIOR33 GPIOR32 GPIOR31 GPIOR30 page 24 0x1A (0x3A) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 page 24 0x19 (0x39) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 page 24 0x18 (0x38) Reserved – – – – – – – – 0x17 (0x37) Reserved – – – – – – – – 0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 page 120 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 13 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0 page 94 0x14 (0x34) Reserved – – – – – – – – 0x13 (0x33) Reserved – – – – – – – – 0x12 (0x32) Reserved – – – – – – – – 0x11 (0x31) Reserved – – – – – – – – 0x10 (0x30) Reserved – – – – – – – – 0x0F (0x2F) Reserved – – – – – – – – 0x0E (0x2E) PORTE – – – – – PORTE2 PORTE1 PORTE0 page 74 0x0D (0x2D) DDRE – – – – – DDE2 DDE1 DDE0 page 74 0x0C (0x2C) PINE – – – – – PINE2 PINE1 PINE0 page 74 0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 page 73 0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 page 73 0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 page 74 0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 page 73 0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 page 73 0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 page 73 0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 73 0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 73 page 73 0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 0x02 (0x22) Reserved – – – – – – – – 0x01 (0x21) Reserved – – – – – – – – 0x00 (0x20) Reserved – – – – – – – – Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90PWM216/316 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 14 5. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd Rd + Rr Z,C,N,V,H 1 ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd Rd Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd Rd K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z,N,V 1 COM Rd One’s Complement Rd 0xFF Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd 0x00 Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd Rd (0xFF - K) Z,N,V 1 INC Rd Increment Rd Rd + 1 Z,N,V 1 DEC Rd Decrement Rd Rd 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd Rd Rd Z,N,V 1 CLR Rd Clear Register Rd Rd Rd Z,N,V 1 SER Rd Set Register Rd 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2 FMULS Rd, Rr Fractional Multiply Signed R1:R0 (Rd x Rr) << 1 Z,C 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2 RJMP k 2 BRANCH INSTRUCTIONS IJMP Relative Jump PC PC + k + 1 None Indirect Jump to (Z) PC Z None 2 JMP k Direct Jump PC k None 3 RCALL k Relative Subroutine Call PC PC + k + 1 None 3 Indirect Call to (Z) PC Z None 3 Direct Call PC k None 4 4 ICALL CALL k RET Subroutine Return PC STACK None RETI Interrupt Return PC STACK I 4 Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3 CPSE Rd,Rr CP Rd,Rr Compare Rd Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd Rr C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC PC + k + 1 None 1/2 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 15 Mnemonics Operands Description Operation Flags #Clocks BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) 0 None 2 LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1 BSET s Flag Set SREG(s) 1 SREG(s) 1 BCLR s Flag Clear SREG(s) 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) T None 1 1 SEC Set Carry C1 C CLC Clear Carry C0 C 1 SEN Set Negative Flag N1 N 1 CLN Clear Negative Flag N0 N 1 SEZ Set Zero Flag Z1 Z 1 CLZ Clear Zero Flag Z0 Z 1 SEI Global Interrupt Enable I1 I 1 CLI Global Interrupt Disable I 0 I 1 SES Set Signed Test Flag S1 S 1 CLS Clear Signed Test Flag S0 S 1 SEV Set Twos Complement Overflow. V1 V 1 CLV Clear Twos Complement Overflow V0 V 1 SET Set T in SREG T1 T 1 CLT Clear T in SREG T0 T 1 SEH CLH Set Half Carry Flag in SREG Clear Half Carry Flag in SREG H1 H0 H H 1 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers 1 Rd, Rr Copy Register Word Rd Rr Rd+1:Rd Rr+1:Rr None MOVW None 1 LDI Rd, K Load Immediate Rd K None 1 LD Rd, X Load Indirect Rd (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None 2 LD Rd, Y Load Indirect Rd (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2 2 LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2 LD Rd, Z Load Indirect Rd (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd (k) None 2 ST X, Rr Store Indirect (X) Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2 ST Y, Rr Store Indirect (Y) Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2 2 ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2 ST Z, Rr Store Indirect (Z) Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2 STS k, Rr Store Direct to SRAM (k) Rr None 2 Load Program Memory R0 (Z) None 3 LPM LPM Rd, Z Load Program Memory Rd (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3 Store Program Memory (Z) R1:R0 None - In Port Rd P None 1 1 SPM IN Rd, P OUT P, Rr Out Port P Rr None PUSH Rr Push Register on Stack STACK Rr None 2 POP Rd Pop Register from Stack Rd STACK None 2 None 1 None 1 MCU CONTROL INSTRUCTIONS NOP No Operation SLEEP Sleep (see specific descr. for Sleep function) AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 16 Mnemonics WDR BREAK Operands Description Operation Flags #Clocks Watchdog Reset Break (see specific descr. for WDR/timer) For On-chip Debug Only None None 1 N/A AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 17 6. Ordering Information Speed (MHz) Power Supply Ordering Code Package 16 Operation Range 2.7 - 5.5V AT90PWM316-16SE SO32 16 2.7 - 5.5V AT90PWM316-16ME QFN32 Engineering Samples 16 2.7 - 5.5V AT90PWM216-16SE SO24 Engineering Samples 16 2.7 - 5.5V AT90PWM316-16SU SO32 16 2.7 - 5.5V AT90PWM316-16MU QFN32 16 2.7 - 5.5V AT90PWM216-16SU SO24 Engineering Samples Extended (-40C to 105C) Extended (-40C to 105C) Extended (-40C to 105C) Note: All packages are Pb free, fully LHF Note: This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. Note: Parts numbers are for shipping in sticks (SO) or in trays (QFN). These devices can also be supplied in Tape and Reel. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 7. Package Information Package Type SO24 24-Lead, Small Outline Package SO32 32-Lead, Small Outline Package QFN32 32-Lead, Quad Flat No lead AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 18 7.1 SO24 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 19 7.2 SO32 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 20 7.3 QFN32 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 21 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 22 8. Errata AT90PWM216/316 8.1 Revision C • DAC Driver linearity above 3.6V 1. DAC Driver linearity above 3.6V With 5V VCC, the DAC driver linearity is poor when DAC output level is above VCC-1V. At 5V, DAC output for 1023 will be around 5V - 40mV. Work around: Use, when Vcc=5V, VREF below VCC-1V Or, when VREF=VCC=5V, do not uses codes above 800. 8.2 Revision B • DAC Driver linearity above 3.6V • PSC OCRxx Register update according to PLOCK2 usage 1. DAC Driver linearity above 3.6V With 5V VCC, the DAC driver linearity is poor when DAC output level is above VCC-1V. At 5V, DAC output for 1023 will be around 5V - 40mV. Work around: Use, when Vcc=5V, VREF below VCC-1V Or, when VREF=VCC=5V, do not uses codes above 800. 2. PSC OCRxx Register update according to PLOCK2 usage If the PSC is clocked from PLL, and if PLOCK2 bit is changed at the same time as PSC end of cycle occurs, and if OCRxx registers contents have been changed, then the updated OCRxx registers contents are not predictable. The cause is a synchronization issue between two registers in two different clock domains (PLL clock which clocks PSC and CPU clock). Workaround: Enable the PSC end of cycle interrupt. At the beginning of PSC EOC interrupt vector, change PLOCK value (OCRxx registers can be updated outside the interrupt vector). This process guarantees that UPDATE and PLOCK actions will not occur at the same moment. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 23 8.3 Revision A • DAC Driver linearity above 3.6V • PSC OCRxx Register update according to PLOCK2 usage 1. DAC Driver linearity above 3.6V With 5V VCC, the DAC driver linearity is poor when DAC output level is above VCC-1V. At 5V, DAC output for 1023 will be around 5V - 40mV. Work around: Use, when Vcc=5V, VREF below VCC-1V Or, when VREF=VCC=5V, do not uses codes above 800. 2. PSC OCRxx Register update according to PLOCK2 usage If the PSC is clocked from PLL, and if PLOCK2 bit is changed at the same time as PSC end of cycle occurs, and if OCRxx registers contents have been changed, then the updated OCRxx registers contents are not predictable. The cause is a synchronization issue between two registers in two different clock domains (PLL clock which clocks PSC and CPU clock). Workaround: Enable the PSC end of cycle interrupt. At the beginning of PSC EOC interrupt vector, change PLOCK value (OCRxx registers can be updated outside the interrupt vector). This process guarantees that UPDATE and PLOCK actions will not occur at the same moment. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 24 9. Datasheet Revision History for AT90PWM216/316 Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision. 9.1 9.2 Rev. 7710H – 07/2013 1. Removed “1. History” chapter. 2. Errata: “Revision C” on page 23: Errata added. “Revision B” on page 23: Errata added. “Revision A” on page 24: Errata updated. Rev. 7710G – 03/2013 1. Applied the Atmel new brand template that includes new logo and new addresses. 2. Added note to the MLF/QFN package: The Center GND PADDLE has to be connected to GND. 3. Updated the Figure 2-1 on page 3. Pin 18 changed to AGND instead of GND. 4. Updated the Figure 2-2 on page 4. Pin 24 changed to AGND instead of GND. 5. Added note to the MLF/QFN package: The Center GND PADDLE has to be connected to GND. 6. Updated Figure 5-2 on page 18. 7. Updated Table 6-2 on page 26. 8. Updated “MCU Control Register – MCUCR” on page 62. Added link for Bit 4: “Configuring the Pin” on page 57. 9. Corrected “typos” in “Overview” on page 122. 10. Updated “Features” on page 122. Correct feature is: Abnormality protection function, emergency input to force all outputs to low level. 11. Updated “Center Aligned Mode” on page 130. The label PSCn00 and PSCn01 are incorrect and are respectively replaced by PSCn0 and PSCn1. 12. Updated the formula of “The waveform frequency is defined by the following equation” in “Normal Mode” on page 134. 13. Updated the formula of fAVERAGE in “Enhanced Mode” on page 135. 14. Updated “Input Mode Operation” on page 140. Added a link to the Table 15-6. 15. Updated “PSC Synchronization” on page 151. The correct content: If the PSCn has its PARUNn bit set, then it can start at the same time as PSCn-1. 16. Updated “PSC 1 Control Register – PCTL1” on page 158. Bit 4 and Bit 3 linked to “PSC Input Configuration” on page 139. 17. Updated content description of Bit 1 and Bit 3 in “PSC 2 Synchro and Output Configuration – PSOC2” on page 154. 18. Updated “Output Compare SA Register – OCRnSAH and OCRnSAL” on page 155 and “Output Compare RB Register – OCRnRBH and OCRnRBL” on page 155. The registers are R/W and not only W. 19. 20. Updated “Overview” on page 215. Removed “or CLKi/O/2” from the overview description. 21. Updated Figure 19-1 on page 216, “Analog Comparator Block Diagram(1)(2)” . AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 25 9.3 9.4 9.5 22. Updated “Analog Comparator Status Register – ACSR” on page 219. Added Bit 3 - CLKPLL 23. Updated “Amplifier” on page 239. The correct content: “The ADC starting is done by setting the ADSC (ADC Start conversion) bit in the ADCSRA register”. 24. Updated Figure 20-15 on page 240 and Figure 20-16 on page 241. Changed CKADC to CKADC2. 25. Updated “PSC Output Behavior During Reset” on page 266. If PSCRV fuse equals 0 (programmed), the selected PSC outputs will be forced to high state. If PSCRV fuse equals 1 (unprogrammed), the selected PSC outputs will be forced to low state. 26. Updated “Electrical Characteristics” on page 283. Added “DAC Characteristics” on page 290. 27. Updated the Table 25-1 on page 285. Replaced -40C - 85C with -40C to 105C 28. Updated Table 25-5 on page 289. Replaced VINT parameter by AREF. Min and Max values updated. Rev. 7710F – 09/11 1. Updated Table 8-1 on page 41. Added VPOR and VCCR in the table. 2. Updated Table 8-2 on page 42. Added min and max values for 101 and 010. 3. Updated Table 25-2 on page 286. VCC = 1.8 - 5.5V columns removed. Rev. 7710E – 08/10 1. Updated “Port C (PC7..PC0)” on page 9. 2. Inserted a footnote “AT90PWM216 device is available in SOIC 24-pin Package and does not have the D2A (DAC Output) brought out to I/0 pins.” on page 9. 3. Updated “Idle Mode” on page 35 by removing the reference to ACD. 4. Updated “Voltage Reference Enable Signals and Start-up Time” on page 44. Removed reference to ACBG. 4. Updated Table 15-14 on page 157; Table 15-15 on page 158 and Table 15-16 on page 159 5. Removed reference to the ACCKDIV from “Analog Comparator” on page 215 and from “Register Summary” on page 11. 6. Updated “ADC Prescaler Selection” on page 237. 7. Updated Table 25-5 on page 289 with Max and Min value for Internal Voltage Reference 8. Removed AC2SADE bit from “Register Summary” on page 11. Rev. 7710D 1. Updated table page 2. 2. Updated “Absolute Maximum Ratings*” on page 283 AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 26 9.6 Rev. 7710C 1. Updated table page 2. 2. Updated Section “Internal Calibrated RC Oscillator Operating Modes(1)(2)” on page 28. 3. Updated Section “Features” on page 245. 4. Updated table in Section “Electrical Characteristics” on page 283. 5. Added section Section “Calibrated Internal RC Oscillator Accuracy” on page 285. 6. Updated Table 25-5 on page 289. 7. Updated Figure 26-36 on page 312. 8. Updated Figure 26-37 on page 313. 9. Updated Figure 26-38 on page 313. 9.7 Rev. 7710B 1. Updated “Section “In-System Reprogrammable Flash Program Memory”, page 17 2. Updated “Figure 5-1 on page 17 3. Updated “Figure 6-1 on page 26 4. Updated “Figure 6-7 on page 30 5. Updated “Table 20-1 on page 227 6. Updated “Section “ADC Noise Canceler”, page 228 7. Updated “Table 20-6 on page 237 8. Added “Table 20-7 on page 238 9. Updated “Section “Amplifier”, page 239 10. Updated “Figure 20-15 on page 240 11. Added “Figure 20-16 on page 241 12. Updated “Figure 20-17 on page 242 13. Updated “Section “Amplifier 0 Control and Status register – AMP0CSR”, page 243 14. Updated “Table 20-9 on page 243 15. Updated “Section “Amplifier 1Control and Status register – AMP1CSR”, page 244 16. Updated “Table 20-9 on page 243 17. Updated “Table 20-11 on page 244 18. Updated “Table 23-6 on page 263 19. Updated “Table 23-7 on page 263 20. Updated “Table 23-8 on page 263 21. Updated “Section “DC Characteristics”, page 284 22. Updated “Table 25-5 on page 289 23. Updated “Section “Example 1”, page 298 24. Updated “Section “Example 2”, page 298 25. Updated “Section “Example 3”, page 298 26. Added “Figure 26-22 on page 305 27. Updated “Section “Instruction Set Summary”, page 15 28. Added “Section “Errata AT90PWM216/316”, page 23 9.8 Rev. 7710A 1. Document creation. AT90PWM216/316 [DATASHEET] 7710HS–AVR–07/2013 27 Atmel Corporation 1600 Technology Drive Atmel Asia Limited Unit 01-5 & 16, 19F Atmel Munich GmbH Business Campus Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku USA 418 Kwun Tong Roa D-85748 Garching b. Munich Tokyo 141-0032 Tel: (+1) (408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN Fax: (+1) (408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) (3) 6417-0300 www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) (3) 6417-0370 Fax: (+852) 2722-1369 © 2013 Atmel Corporation. All rights reserved. / Rev.: 7710HS–AVR–07/2013 Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.