Features • High-performance, Low-power AVR® 8-bit Microcontroller • RISC Architecture • • • • • • • – 118 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz Data and Non-volatile Program Memory – 2K Bytes of In-System Programmable Program Memory Flash Endurance: 10,000 Write/Erase Cycles – 128 Bytes of In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles – 128 Bytes Internal SRAM – Programming Lock for Flash Program and EEPROM Data Security Peripheral Features – 8-bit Timer/Counter with Separate Prescaler – 8-bit High-speed Timer with Separate Prescaler 2 High Frequency PWM Outputs with Separate Output Compare Registers Non-overlapping Inverted PWM Output Pins – Universal Serial Interface with Start Condition Detector – 10-bit ADC 11 Single Ended Channels 8 Differential ADC Channels 7 Differential ADC Channel Pairs with Programmable Gain (1x, 20x) – On-chip Analog Comparator – External Interrupt – Pin Change Interrupt on 11 Pins – Programmable Watchdog Timer with Separate On-chip Oscillator Special Microcontroller Features – Low Power Idle, Noise Reduction, and Power-down Modes – Power-on Reset and Programmable Brown-out Detection – External and Internal Interrupt Sources – In-System Programmable via SPI Port – Internal Calibrated RC Oscillator I/O and Packages – 20-lead PDIP/SOIC: 16 Programmable I/O Lines – 32-lead QFN/MLF: 16 programmable I/O Lines Operating Voltages – 2.7V - 5.5V for ATtiny26L – 4.5V - 5.5V for ATtiny26 Speed Grades – 0 - 8 MHz for ATtiny26L – 0 - 16 MHz for ATtiny26 Power Consumption at 1 MHz, 3V and 25°C for ATtiny26L – Active 16 MHz, 5V and 25°C: Typ 15 mA – Active 1 MHz, 3V and 25°C: 0.70 mA – Idle Mode 1 MHz, 3V and 25°C: 0.18 mA – Power-down Mode: < 1 µA 8-bit Microcontroller with 2K Bytes Flash ATtiny26 ATtiny26L Summary 1477KS–AVR–08/10 Pin Configuration PDIP/SOIC (MOSI/DI/SDA/OC1A) PB0 (MISO/DO/OC1A) PB1 (SCK/SCL/OC1B) PB2 (OC1B) PB3 VCC GND (ADC7/XTAL1) PB4 (ADC8/XTAL2) PB5 (ADC9/INT0/T0) PB6 (ADC10/RESET) PB7 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (AREF) GND AVCC PA4 (ADC3) PA5 (ADC4) PA6 (ADC5/AIN0) PA7 (ADC6/AIN1) 32 31 30 29 28 27 26 25 PB2 (SCK/SCL/OC1B) PB1 (MISO/DO/OC1A) PB0 (MOSI/DI/SDA/OC1A) NC NC NC PA0 (ADC0) PA1 (ADC1) MLF Top View 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 NC PA2 (ADC2) PA3 (AREF) GND NC NC AVCC PA4 (ADC3) NC (ADC9/INT0/T0) PB6 (ADC10/RESET) PB7 NC (ADC6/AIN1) PA7 (ADC5/AIN0) PA6 (ADC4) PA5 NC 9 10 11 12 13 14 15 16 NC (OC1B) PB3 NC VCC GND NC (ADC7/XTAL1) PB4 (ADC8/XTAL2) PB5 Note: 2 The bottom pad under the QFN/MLF package should be soldered to ground. ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) Description The ATtiny26(L) is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny26(L) achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATtiny26(L) has a high precision ADC with up to 11 single ended channels and 8 differential channels. Seven differential channels have an optional gain of 20x. Four out of the seven differential channels, which have the optional gain, can be used at the same time. The ATtiny26(L) also has a high frequency 8-bit PWM module with two independent outputs. Two of the PWM outputs have inverted non-overlapping output pins ideal for synchronous rectification. The Universal Serial Interface of the ATtiny26(L) allows efficient software implementation of TWI (Two-wire Serial Interface) or SM-bus interface. These features allow for highly integrated battery charger and lighting ballast applications, low-end thermostats, and firedetectors, among other applications. The ATtiny26(L) provides 2K bytes of Flash, 128 bytes EEPROM, 128 bytes SRAM, up to 16 general purpose I/O lines, 32 general purpose working registers, two 8-bit Timer/Counters, one with PWM outputs, internal and external Oscillators, internal and external interrupts, programmable Watchdog Timer, 11-channel, 10-bit Analog to Digital Converter with two differential voltage input gain stages, and four software selectable power saving modes. The Idle mode stops the CPU while allowing the Timer/Counters and interrupt system to continue functioning. The ATtiny26(L) also has a dedicated ADC Noise Reduction mode for reducing the noise in ADC conversion. In this sleep mode, only the ADC is functioning. The Power-down mode saves the register contents but freezes the oscillators, disabling all other chip functions until the next interrupt or hardware reset. The Standby mode is the same as the Power-down mode, but external oscillators are enabled. The wakeup or interrupt on pin change features enable the ATtiny26(L) to be highly responsive to external events, still featuring the lowest power consumption while in the Power-down mode. The device is manufactured using Atmel’s high density non-volatile memory technology. By combining an enhanced RISC 8-bit CPU with Flash on a monolithic chip, the ATtiny26(L) is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATtiny26(L) AVR is supported with a full suite of program and system development tools including: Macro assemblers, program debugger/simulators, In-circuit emulators, and evaluation kits. 3 1477KS–AVR–08/10 Block Diagram Figure 1. The ATtiny26(L) Block Diagram VCC 8-BIT DATA BUS INTERNAL OSCILLATOR INTERNAL CALIBRATED OSCILLATOR TIMING AND CONTROL GND PROGRAM COUNTER STACK POINTER WATCHDOG TIMER PROGRAM FLASH SRAM MCU CONTROL REGISTER AVCC INSTRUCTION REGISTER MCU STATUS REGISTER GENERAL PURPOSE REGISTERS TIMER/ COUNTER0 X Y Z INSTRUCTION DECODER TIMER/ COUNTER1 CONTROL LINES ALU UNIVERSAL SERIAL INTERFACE STATUS REGISTER INTERRUPT UNIT ANALOG COMPARATOR + - PROGRAMMING LOGIC DATA REGISTER PORT A DATA DIR. REG.PORT A PORT A DRIVERS PA0-PA7 4 EEPROM ISP INTERFACE ADC OSCILLATORS DATA REGISTER PORT B DATA DIR. REG.PORT B PORT B DRIVERS PB0-PB7 ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) Pin Descriptions VCC Digital supply voltage pin. GND Digital ground pin. AVCC AVCC is the supply voltage pin for Port A and the A/D Converter (ADC). It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. See page 94 for details on operating of the ADC. Port A (PA7..PA0) Port A is an 8-bit general purpose I/O port. PA7..PA0 are all I/O pins that can provide internal pull-ups (selected for each bit). Port A has alternate functions as analog inputs for the ADC and analog comparator and pin change interrupt as described in “Alternate Port Functions” on page 46. Port B (PB7..PB0) Port B is an 8-bit general purpose I/O port. PB6..0 are all I/O pins that can provide internal pullups (selected for each bit). PB7 is an I/O pin if not used as the reset. To use pin PB7 as an I/O pin, instead of RESET pin, program (“0”) RSTDISBL Fuse. Port B has alternate functions for the ADC, clocking, timer counters, USI, SPI programming, and pin change interrupt as described in “Alternate Port Functions” on page 46. An External Reset is generated by a low level on the PB7/RESET pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. XTAL1 Input to the inverting oscillator amplifier and input to the internal clock operating circuit. XTAL2 Output from the inverting oscillator amplifier. 5 1477KS–AVR–08/10 General Information Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. Code Examples This datasheet contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. 6 ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page $3F ($5F) SREG I T H S V N Z C 10 $3E ($5E) Reserved SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 11 $3D ($5D) SP $3C ($5C) Reserved $3B ($5B) GIMSK - INT0 PCIE1 PCIE0 - - - - 58 $3A ($5A) GIFR - INTF0 PCIF - - - - - 59 $39 ($59) TIMSK - OCIE1A OCIE1B - - TOIE1 TOIE0 - 59 $38 ($58) TIFR - OCF1A OCF1B - - TOV1 TOV0 - 60 $37 ($57) Reserved $36 ($56) Reserved $35 ($55) MCUCR - PUD SE SM1 SM0 - ISC01 ISC00 37 $34 ($54) MCUSR - - - - WDRF BORF EXTRF PORF 36 $33 ($53) TCCR0 - - - - PSR0 CS02 CS01 CS00 66 $32 ($52) TCNT0 Timer/Counter0 (8-Bit) 67 $31 ($51) OSCCAL Oscillator Calibration Register 29 $30 ($50) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B PWM1A PWM1B 70 $2F ($4F) TCCR1B CTC1 PSR1 - - CS13 CS12 CS11 CS10 71 $2E ($4E) TCNT1 Timer/Counter1 (8-Bit) 72 $2D ($4D) OCR1A Timer/Counter1 Output Compare Register A (8-Bit) 72 $2C ($4C) OCR1B Timer/Counter1 Output Compare Register B (8-Bit) 73 $2B ($4B) OCR1C Timer/Counter1 Output Compare Register C (8-Bit) 73 $2A ($4A) Reserved $29 ($49) PLLCSR $28 ($48) Reserved $27 ($47) Reserved $26 ($46) Reserved $25 ($45) Reserved $24 ($44) Reserved $23 ($43) Reserved $22 ($42) Reserved $21 ($41) WDTCR $20 ($40) Reserved $1F ($3F) Reserved - - - - - PCKE PLLE PLOCK - - - WDCE WDE WDP2 WDP1 WDP0 78 - EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 18 19 $1E ($3E) EEAR $1D ($3D) EEDR $1C ($3C) EECR - - - - EERIE EEMWE EEWE EERE $1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 $1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 $19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 $18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 $17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 $16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 $15 ($35) Reserved $14 ($34) Reserved $13 ($33) Reserved $12 ($32) Reserved $11 ($31) Reserved $10 ($30) Reserved $0F ($2F) USIDR $0E ($2E) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 81 $0D ($2D) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 82 $0C ($2C) Reserved $0B ($2)B Reserved $0A ($2A) Reserved $09 ($29) Reserved EEPROM Data Register (8-Bit) 19 Universal Serial Interface Data Register (8-Bit) 81 $08 ($28) ACSR ACD ACBG ACO ACI ACIE ACME ACIS1 ACIS0 91 $07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 101 $06 ($26) ADCSR ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 103 $05 ($25) ADCH ADC Data Register High Byte 104 $04 ($24) ADCL ADC Data Register Low Byte 104 … Reserved $00 ($20) Reserved 7 1477KS–AVR–08/10 Instruction Set Summary Mnemonic Operands Description Operation Flags # Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add Two Registers Rd ← Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry Two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl, K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract Two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry Two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl, K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 1 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 COM Rd One’s Complement Rd ← $FF - Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← $00 - Rd Z,C,N,V,H 1 SBR Rd, K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd, K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd - 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← $FF None 1 Relative Jump PC ← PC + k + 1 None 2 Indirect Jump to (Z) PC ← Z None 2 Relative Subroutine Call PC ← PC + k + 1 None 3 BRANCH INSTRUCTIONS RJMP k IJMP RCALL k ICALL Indirect Call to (Z) PC ← Z None 3 RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None CPSE Rd, Rr 4 1/2/3 CP Rd, Rr Compare Rd - Rr Z,N,V,C,H CPC Rd, Rr Compare with Carry Rd - Rr - C Z,N,V,C,H 1 1 CPI Rd, K Compare Register with Immediate Rd - K Z,N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b) = 0) PC ← PC + 2 or 3 None SBRS Rr, b Skip if Bit in Register is Set if (Rr(b) = 1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b) = 0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b) = 1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 1/2/3 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half-carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half-carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T-flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTC k Branch if T-flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move between Registers Rd ← Rr None 1 LDI Rd, K Load Immediate Rd ← K None 1 LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-inc. Rd ← (X), X ← X + 1 None 2 LD Rd, -X Load Indirect and Pre-dec. X ← X - 1, Rd ← (X) None 2 8 ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) Instruction Set Summary (Continued) Mnemonic Operands Description Operation Flags LD Rd, Y Load Indirect Rd ← (Y) None # Clocks LD Rd, Y+ Load Indirect and Post-inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, -Y Load Indirect and Pre-dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2 LD Rd, Z Load Indirect Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-inc. Rd ← (Z), Z ← Z + 1 None 2 LD Rd, -Z Load Indirect and Pre-dec. Z ← Z - 1, Rd ← (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (k) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-inc. (X) ← Rr, X ← X + 1 None 2 ST -X, Rr Store Indirect and Pre-dec. X ← X - 1, (X) ← Rr None 2 ST Y, Rr Store Indirect (Y) ← Rr None 2 2 ST Y+, Rr Store Indirect and Post-inc. (Y) ← Rr, Y ← Y + 1 None 2 ST -Y, Rr Store Indirect and Pre-dec. Y ← Y - 1, (Y) ← Rr None 2 STD Y+q, Rr Store Indirect with Displacement (Y + q) ← Rr None 2 ST Z, Rr Store Indirect (Z) ← Rr None 2 ST Z+, Rr Store Indirect and Post-inc. (Z) ← Rr, Z ← Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-dec. Z ← Z - 1, (Z) ← Rr None 2 STD Z+q, Rr Store Indirect with Displacement (Z + q) ← Rr None 2 STS k, Rr Store Direct to SRAM (k) ← Rr None 2 Load Program Memory R0 ← (Z) None 3 LPM LPM Rd, Z Load Program Memory Rd ← (Z) None 3 IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1 PUSH Rr Push Register on Stack STACK ← Rr None 2 POP Rd Pop Register from Stack Rd ← STACK None 2 BIT AND BIT-TEST INSTRUCTIONS SBI P, b Set Bit in I/O Register I/O(P,b) ← 1 None 2 CBI P, b Clear Bit in I/O Register I/O(P,b) ← 0 None 2 1 LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1 ROL Rd Rotate Left through Carry Rd(0) ← C, Rd(n+1) ← Rd(n), C ← Rd(7) Z,C,N,V 1 ROR Rd Rotate Right through Carry Rd(7) ← C, Rd(n) ← Rd(n+1), C ← Rd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n = 0..6 Z,C,N,V 1 1 SWAP Rd Swap Nibbles Rd(3..0) ← Rd(7..4), Rd(7..4) ← Rd(3..0) None BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit Load from T to Register Rd(b) ← T None 1 SEC Set Carry C←1 C 1 CLC Clear Carry C←0 C 1 SEN Set Negative Flag N←1 N 1 CLN Clear Negative Flag N←0 N 1 SEZ Set Zero Flag Z←1 Z 1 CLZ Clear Zero Flag Z←0 Z 1 SEI Global Interrupt Enable I←1 I 1 CLI Global Interrupt Disable I←0 I 1 SES Set Signed Test Flag S←1 S 1 CLS Clear Signed Test Flag S←0 S 1 SEV Set Two’s Complement Overflow V←1 V 1 CLV Clear Two’s Complement Overflow V←0 V 1 SET Set T in SREG T←1 T 1 CLT Clear T in SREG T←0 T 1 SEH Set Half-carry Flag in SREG H←1 H 1 CLH Clear Half-carry Flag in SREG H←0 NOP No Operation SLEEP Sleep WDR Watchdog Reset H 1 None 1 (see specific descr. for Sleep function) None 1 (see specific descr. for WDR/timer) None 1 9 1477KS–AVR–08/10 Ordering Information Speed (MHz) Power Supply (V) Ordering Code(2) 2.7 - 5.5 ATtiny26L-8PU ATtiny26L-8SU ATtiny26L-8SUR ATtiny26L-8MU ATtiny26L-8MUR 20P3 20S 20S 32M1-A 32M1-A Industrial (-40°C to +85°C)(1) 4.5 - 5.5 ATtiny26-16PU ATtiny26-16SU ATtiny26-16SUR ATtiny26-16MU ATtiny26-16MUR 20P3 20S 20S 32M1-A 32M1-A Industrial (-40°C to +85°C)(1) 8 16 Notes: Package(2) Operational Range 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. Code Indicators: – U: matte tin – R: tape & reel Package Type 20P3 20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 20S 20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC) 32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 10 ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) Packaging Information 20P3 D PIN 1 E1 A SEATING PLANE A1 L B B1 e E COMMON DIMENSIONS (Unit of Measure = mm) C eC eB Notes: 1. This package conforms to JEDEC reference MS-001, Variation AD. 2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010"). SYMBOL MIN NOM MAX A – – 5.334 A1 0.381 – – D 25.493 – 25.984 E 7.620 – 8.255 E1 6.096 – 7.112 B 0.356 – 0.559 B1 1.270 – 1.551 L 2.921 – 3.810 C 0.203 – 0.356 eB – – 10.922 eC 0.000 – 1.524 e NOTE Note 2 Note 2 2.540 TYP 1/12/04 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 20P3, 20-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP) DRAWING NO. 20P3 REV. C 11 1477KS–AVR–08/10 20S 12 ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) 32M1-A D D1 1 2 3 0 Pin 1 ID E1 SIDE VIEW E TOP VIEW A3 A2 A1 A K 0.08 C P D2 1 2 3 P Pin #1 Notch (0.20 R) K e SYMBOL MIN NOM MAX A 0.80 0.90 1.00 A1 – 0.02 0.05 A2 – 0.65 1.00 A3 E2 b COMMON DIMENSIONS (Unit of Measure = mm) L BOTTOM VIEW 0.20 REF b 0.18 0.23 0.30 D 4.90 5.00 5.10 D1 4.70 4.75 4.80 D2 2.95 3.10 3.25 5.10 E 4.90 5.00 E1 4.70 4.75 4.80 E2 2.95 3.10 3.25 e Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2. NOTE 0.50 BSC L 0.30 0.40 0.50 0.60 12o P – – 0 – – K 0.20 – – 5/25/06 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF) DRAWING NO. 32M1-A REV. E 13 1477KS–AVR–08/10 Errata The revision letter refers to the revision of the device. ATtiny26 Rev. B/C/D • First Analog Comparator conversion may be delayed 1. First Analog Comparator conversion may be delayed If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take longer than expected on some devices. Problem Fix/Workaround When the device has been powered or reset, disable then enable the Analog Comparator before the first conversion. 14 ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) Datasheet Revision History Please note that the referring page numbers in this section refer to the complete document. Rev. 1477K-08/10 Added tape and reel part numbers in “Ordering Information” on page 171. Removed text “Not recommended for new design” from cover page. Updated last page. Rev. 1477J-06/07 1. “Not recommended for new design” Rev. 1477I-05/06 1. Updated “Errata” on page 175 Rev. 1477H-04/06 1. Updated typos. 2. Added “Resources” on page 6. 3. Updated features in “System Control and Reset” on page 32. 4. Updated “Prescaling and Conversion Timing” on page 96. 5. Updated algorithm for “Enter Programming Mode” on page 112. Rev. 1477G-03/05 1. MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF”. 2. Updated “Electrical Characteristics” on page 126 3. Updated “Ordering Information” on page 171 Rev. 1477F-12/04 1. Updated Table 16 on page 33, Table 9 on page 28, and Table 29 on page 57. 2. Added Table 20 on page 40. 3. Added “Changing Channel or Reference Selection” on page 98. 4. Updated “Offset Compensation Schemes” on page 105. 5. Updated “Electrical Characteristics” on page 126. 6. Updated package information for “20P3” on page 172. 7. Rearranged some sections in the datasheet. Rev. 1477E-10/03 1. Removed Preliminary references. 2. Updated “Features” on page 1. 3. Removed SSOP package reference from “Pin Configuration” on page 2. 4. Updated VRST and tRST in Table 16 on page 33. 5. Updated “Calibrated Internal RC Oscillator” on page 29. 15 1477KS–AVR–08/10 6. Updated DC Characteristics for VOL, IIL, IIH, ICC Power Down and VACIO in “Electrical Characteristics” on page 126. 7. Updated VINT, INL and Gain Error in “ADC Characteristics” on page 129 and page 130. Fixed typo in “Absolute Accuracy” on page 130. 8. Added Figure 106 in “Pin Driver Strength” on page 146, Figure 120, Figure 121 and Figure 122 in “BOD Thresholds and Analog Comparator Offset” on page 155. Updated Figure 117 and Figure 118. 9. Removed LPM Rd, Z+ from “Instruction Set Summary” on page 169. This instruction is not supported in ATtiny26. Rev. 1477D-05/03 1. Updated “Packaging Information” on page 172. 2. Removed ADHSM from “ADC Characteristics” on page 129. 3. Added section “EEPROM Write During Power-down Sleep Mode” on page 20. 4. Added section “Default Clock Source” on page 26. 5. Corrected PLL Lock value in the “Bit 0 – PLOCK: PLL Lock Detector” on page 73. 6. Added information about conversion time when selecting differential channels on page 97. 7. Corrected {DDxn, PORTxn} value on page 42. 8. Added section “Unconnected Pins” on page 46. 9. Added note for RSTDISBL Fuse in Table 50 on page 108. 10. Corrected DATA value in Figure 61 on page 116. 11. Added WD_FUSE period in Table 60 on page 123. 12. Updated “ADC Characteristics” on page 129 and added Table 66, “ADC Characteristics, Differential Channels, TA = -40°C to +85°C,” on page 130. 13. Updated “ATtiny26 Typical Characteristics” on page 131. 14. Added LPM Rd, Z and LPM Rd, Z+ in “Instruction Set Summary” on page 169. Rev. 1477C-09/02 1. Changed the Endurance on the Flash to 10,000 Write/Erase Cycles. Rev. 1477B-04/02 1. Removed all references to Power Save sleep mode in the section “System Clock and Clock Options” on page 23. 2. Updated the section “Analog to Digital Converter” on page 94 with more details on how to read the conversion result for both differential and single-ended conversion. 3. Updated “Ordering Information” on page 171 and added QFN/MLF package information. Rev. 1477A-03/02 16 1. Initial version. ATtiny26(L) 1477KS–AVR–08/10 ATtiny26(L) 17 1477KS–AVR–08/10 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Technical Support Enter Product Line E-mail Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2010 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 1477KS–AVR–08/10