2GHz LOW NOISE AMPLIFIER WITH THE BFG410W

H
Philips Semiconductors B.V.
Gerstweg 2, 6534 AE Nijmegen, The Netherlands
Report nr.
Author
Date
Department
: RNR-T45-97-B-0789
: T. Buss
th
: 30 of September 97
: P.G. Transistors & Diodes, Development
2GHz LOW NOISE AMPLIFIER
WITH THE BFG410W
update of report RNR-T45-96-B-772
Abstract:
This application note contains an example of a Low Noise Amplifier with the new BFG410W Double Poly
RF-transistor. The LNA is designed for a frequency f=2GHz. The Noise Figure NF~1.7dB at f=2GHz and
the gain S21 ~14dB.
Appendix I: Schematic of the circuit
Appendix II: Printlayout and list of used components & materials
Appendix III: Results of simulations and measurements
1
H
Philips Semiconductors B.V.
Introduction:
With the new Philips silicon bipolar double poly BFG400W series, it is possible to design low noise
amplifiers for high frequency applications with a low current and a low supply voltage. These amplifiers are
well suited for the new generation low voltage high frequency wireless applications. In this note a first study
of such an amplifier will be given. This amplifier is designed for a working frequency of 2GHz.
Designing the circuit:
The circuit is designed to show the following performance:
transistor: BFG410W
Vce=2V, Ic =2mA, VSUP~3.3V
freq=2GHz
Gain~14dB
NF<=1.7dB
VSWRi<1:2
VSWRo<1:2
In the simulations the effect of extra RF-noise caused by the SMA-connectors was omitted, so in the practical
situation the NF is ~0.1dB higher. This LNA is not optimised for the highest IP3. The IP3 can be optimised by:
I. an extra series RC-decoupling of the base to the ground
II. increasing IC
With the solution I. two extra components are necessary, and with solution II, the Noise Figure of the LNA
increases and the optimum source impedance also.
The in- and outputmatching is realised with a LC-combination. Also extra emitter-inductance on both emitterleads (µ-strips) are used to improve the matching and the Noise Figure.
Designing the layout:
A lay-out has been designed with HP-MDS. Appendix II contains the printlayout.
Measurements:
Simulations (with realistic RF-models of al used parts) and measurements of the total circuit
(epoxy PCB) are done (Appendix III).
2
H
Philips Semiconductors B.V.
Appendix I: Schematic of the circuit
C3
C4
R1
+VSUP
R3
C2
R4
µS3
µS1
R2
OUT
50Ω
µS2
IN
50Ω
C5
C7
W1
C1 BFG410W
µS4:
µS4
L1
L2
µS4
D1
L3
W2
Figure 1: LNA circuit
2 GHz LNA Component list:
Component:
Value:
Comment:
R1
R2
R3
R4
C1
C2
C3
C4
C5
C7
µs1
µs2
µs3
µs4
Bias.
Better RF-stability (K>1).
RF-block.
Cancelling HFE-spread.
Input match.
2GHz short.
2GHz short.
RF-short
Output match.
Better RF-stability (K>1).
µ-stripline Z0~95Ω (PCB: εr
µ-stripline Z0~95Ω (PCB: εr
µ-stripline Z0~95Ω (PCB: εr
Emitter induction: µ-stripline
47
KΩ
10
Ω
22
Ω
560 Ω
1
pF
5.6 pF
5.6 pF
1
nF
3.3 pF
0.47 pF
W=0.25mm
W=0.25mm
W=0.25mm
(next table)
3
~4.6, H=0.5mm)
~4.6, H=0.5mm)
~4.6, H=0.5mm)
+ via
H
Philips Semiconductors B.V.
µS4 Emitter induction (µ-stripline + via):
Name Dimension Description
L1
2.0mm
length µ-stripline; Z0 ~48Ω (PCB: εr ~4.6, H=0.5mm)
L2
1.0mm
length interconnect stripline and via-hole area
L3
1.0mm
length via-hole area
W1
0.5mm
width µ-stripline
W2
1.0mm
width via-hole area
D1
0.4mm
diameter of via-hole
4
H
Philips Semiconductors B.V.
Appendix II: Printlayout and list of used components & materials
C1
R F i n
C7
R2
RFout
R1
C5
C2
C3
R3
Vsup
R4
C4
BFG410W
Figure 2: Printlayout
2GHz LNA Component list:
Component:
Value:
size:
R1
R2
R3
R4
C1
C2
C3
C4
C5
C5
PCB
47
KΩ
10
Ω
22
Ω
560 Ω
1
pF
5.6 pF
5.6 pF
1
nF
3.3 pF
0.47 pF
εr ~4.6, H=0.5mm
0603 Philips
0603 Philips
0603 Philips
0603 Philips
0603 Philips
0603 Philips
0603 Philips
0603 Philips
0603 Philips
0603 Philips
FR4
5
H
Philips Semiconductors B.V.
Appendix III: Results of simulations and measurements:
BFG410W, Vsup=3.3V, VCE=2V, IC =2mA:
HP-MDS
Simulation:
S-par.
2
|S21| [dB]
2
|S12| [dB]
VSWRi
VSWRo
Noise Figure [dB]
IP3 [dBm] (output)
HP-MDS
Simulation:
SPICEmodel
14.6
-27.4
2.1
1.3
1.8
-
14.2
-24.6
2.6
1.3
1.6
-
Measurements
PCB:
Comment:
14.3
-29.5
2.2
2.1
1.7
-
not measured
Figure 3: HP-MDS simulation circuit
CMP453
M S V I A
W =OWDv=Si0U
a. 4B SmTm= s 1 0 m i l
CMP230
M S V I A
W=O
WDvS=i U
0a . B
4 Sm
Tm
=s10mil
L=L
Wv=i W v i a
CMP287
MSTL
CMP5
SUBST=s10miM
l SSUBSTRATE
SUBST=s10mil
W=L
W=vLi va i
E R = 4 . 6
HU=1.0E+3 m
MUR=1
T=35um
COND=5.8e07
CMP497
P h i l _ C 0 6 0 3 _ N P O _ l e v e
H=0.5mm
C = C o n t k o p
ROUGH=10
CMP231
MSTL
SUBST=s10mil
um
TAND=0.02
L=1
CMP265
L
CMP452
M S V I A
W=O
WDvS=i U
0a . B
4 Sm
Tm
=s10mil
CMP485
model cap.
MSTL
S U LB=SW=W5
0T. =3 s5 1m0mm i l
LOW NOISE AMP. WITH BFG410W@2V/2mA
CMP263
W =LW
= vL ivai
CMP227
C
CMP487
CMP479
S U AB NS G
R
T ==W
90s 0.1=3005m
d. m
2ei 5gm
l m mM S T L
MSTL
SB1/BFG410I#3@2V/2mA
MSRBND
C=1
SUBST=s10mil
SUBST=s10mil
CMP486
L=1.6mm
MSRBND
W=W5
CMP264
W =R0 =. 20 5. 3m5mm m
ANG=90
W=W5
L=3mm
CMP498
P h i l _ C 0 6 0 3 _ N P O _ l e v e
deg
R
C = C o n t k o p
R=0.3
SUBST=s10mil
W=0.25
CMP483
MSTL
mm
L=1 mm
CMP503
P h i l _ R 0 6 0 3 _ l e v
CMP504
CMP505
P h i l _ R 0 6 0 3 _ l e v
SUBST=s10mil
P h i l _ R 0 6 0 3 _ l e v
L=100
SUBST=s10mil
R = 4 7 k O H
CMP481
R=22 OH
R=560
OH
CMP484
CMP482
CMP235
L
CMP236
MSTL
MSRBND
MSRBND
SUBST=s10mil
ANG=90
SUBST=s10mil
deg
MSTL
SB1/BFG410I#3@2V/2mA
R=0.35mm
W=0.25mm
L=1.4mm
W=W5
R =W
0 .=305. m
2 5mm m
ANG=90 deg
SUBST=s10mil
W=W5
CMP480
MSTL
L=0.35mm
S12p=60.71
S22p=-32.33
S12m=0.045963
S22m=0.82784
S11p=-
S 2 1 p = 1 2 2 . 6
S11m=0.6715
S21m=5.09682
JX1=0
JX2=0
W=W6
AGROUND
CMP462
L=2.35mm
MSTL
SUBST=s10mil
SUBST=s10mil
CMP470
MSTL
C = C i n
C M P 3 5Z
9
MSTL
1=50
Z2=50
1
SUBST=s10mil
L=6mm
CMP18
PORT_SPAR
PORTNUM=1
R=50
W=W50_Ohm
CMP500
L=L3
P h i l _ C 0 6 0 3 _ N P O _ l e v e
W=W3
CMP383
MSTL
CMP502
P h i l _ R 0 6 0 3 _ l e v
CMP358
MSTL
CMP456
MSRBND
ANG=90
2
SUBST=s10mil
R=10 OH
CMP460
MSTL
CMP461
SUBST=s10mil
L=L4
L=0.6mm
W=W4
W=W6
SUBST=s10mil
deg
ANG=90
R=0.35mm
SUBST=s10mil
W=0.25mm
SUBST=s10mil
P h i l _ C 0 6 0 3 _ N P O _ l e v e
CMP506
C = 0 . 4 7
W=0.25mm
W=W6
R = 0W. 3= 50 .m2 m
5mm
p F
ANG=90
W=W6
S 2 P
CMP457
deg
W=W6
SUBST=s10mil
CMP466
L=1.3mm
MSTL
AGROUND
SUBST=s10mil
CMP459
CMP468
CMP458
CMP350
MSTL
mm
E Q U A T I O NL 2 = ( 1 )
mm
E Q U A T I O NL 3 = ( 0 . 6 )
E Q U A T I O NW 3 = ( 0 . 5 )
mm
E Q U A T I O NL 4 = ( 0 . 3 )
E Q U A T I O NW 4 = ( 0 . 5 )
mm
E Q U A T I O NL 5 = ( 8 )
mm
E Q U A T I O NW 5 = ( 0 . 2 5 )
mm
E Q U A T I O NL 6 = ( 5 )
mm
E Q U A T I O NW 6 = ( 0 . 2 5 )
mm
E Q U A T I O NL 7 = ( 7 )
mm
E Q U A T I O NW 7 = ( 0 . 2 5 )
mm
E Q U A T I O NW 8 = ( 0 . 2 5 )
mm
mm
W2=0.5
CMP252
MSTAPER
MSRBND
SUBST=s10mil
mm
SUBST=s10mil
L=0.9mm
L=0.9mm
W=W6
W=W6
R = 0W. 3= 50 .m2 m
5mm
ANG=90 deg
W =R0 =. 20 5. 3m5mm m
ANG=90
SUBST=s10mil
SW
U LB
W1=
v=
iSaLT
_ 2e= s 1 0 m i l
deg
SUBST=s10mil
W 1S= U
WB
Lv S
=
i aT
L_=2e s 1 0 m i l
E Q U A T I O NW 5 0 _ O h m = ( 0 . 9 ) m m
E Q U A T I O NL v i a = ( 0 . 2 5 )
E Q U A T I O NW v i a = ( 1 )
W2=0.5
CMP250
MSTL
MSRBND
W =L
0 .=5SL U1mBmS T = s 1 0 m i l
MSTAPER
CMP467
MSTL
CMP351
MSTL
W =L0 =. 5LS 1UmBmS T = s 1 0 m i l
L=1.3mm
MSTL
SUBST=s10mil
E Q U A T I O NL 1 = ( 2 )
deg
R=0.35mm
L=0.4mm
CMP499
JX=0
CMP465
MSRBND
S U B S TM
= SsR B1N0D m i l
mm
E Q U A T I O NW v i a _ e = ( 1 )
mm
CMP469
CMP180
CMP426
C=Cout
M S V I A
E Q U A T I O Nv s w r i = ( 1 + m a g ( s 1 1 ) ) / ( 1 E Q U A T I O Nv s w r o = ( 1 + m a g ( s 2 2 ) ) / ( 1 -
W=Wvia_e
OD=0.4 mm
SUBST=s10mil
MSTL
M S V I A
W=Wvia_e
OD=0.4 mm
SUBST=s10mil
SUBST=s10mil
E Q U A T I O NC i n = ( 1 . 0 )
CMP501
P h i l _ C 0 6 0 3 _ N P O _ l e v e
E Q U A T I O NC o u t = ( 3 . 3 )
L=6mm
PORTNUM=2
W = W 5 0 _ O h mC M P 2 7 0
PORT_SPAR
E Q U A T I O NC o n t k o p = ( 5 . 6 )
R=50
JX=0
AGROUND
6