EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones PRODUCT FEATURES Datasheet General Description Features The EMC1053 is a System Management Bus (SMBus) temperature sensor that monitors three temperature zones, one internal diode and two externally connected diodes, for PC and embedded environments. The EMC1053 includes resistance error correction and ideality factor configuration to eliminate major sources of temperature measurement error.1 An added feature to the EMC1053 is a function that automatically compares the two external temperature zones and reports the hotter of the two temperatures. Selectable conversion rates and standby mode support low-power operation. The temperature measurement ranges support two data ranges (and formats), -64°C to +127°C and -64°C to +191°C. ±1°C Accuracy (40°C to 80°C) 0.125°C Resolution Ideality Factor Configuration Accepts 2200pF Cap Across External Diodes for Noise Suppression — Optional Resistive Error Correction on External Diode 2 — Resistance Error Correction (up to 100 Ohms) — Selectable Beta Compensation for Substrate Diodes Internal Temperature Diode — ±3°C Accuracy (0°C to 85°C) — 0.125°C Resolution Low Power Operation 3.0V to 3.6V Supply Programmable Conversion Rate SMBus 2.0 Compliant Reports Hotter of Two Diodes with Dual-core CPU — 4uA Standby Current Desktop and Notebook Computers Hardware Management Servers Embedded Applications Supports two External Temperature Diodes — — — — Applications 1.Patents pending. Simplified Block Diagram Switching Current Configuration Register Analog Mux and Anti-Alias Filter DN1 DP2 DN2 Local Temp Diode 11-bit delta-sigma ADC External Diode 2 Register Digital Mux and Byte Interlock Internal Diode Register SMCLK Status Register SMSC EMC1053 DATASHEET SMBus Interface External Diode 1 Register DP1 SMDATA Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet ORDERING INFORMATION ORDERING NUMBER PACKAGE FEATURES SMBUS ADDRESS 1001_100x EMC1053-1-ACZL-TR EMC1053-2-ACZL-TR EMC1053-3-ACZL-TR 8 pinMSOP package (Lead Free ROHS compliant) Two external diodes with REC EMC1053-4-ACZL-TR 1001_101x 1001_000x 1001_001x Reel size is 4,000 pieces. Evaluation Boards available upon request. (EVB-EMC1053, EVB-EMC1053C) 80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123 Copyright © 2008 SMSC or its subsidiaries. All rights reserved. Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Revision 1.44 (04-14-08) 2 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Table of Contents Chapter 1 Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 2.2 2.3 2.4 2.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.4 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.5 SMBus Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SMBus Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 3 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . One Shot During Standby Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation During Run Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable Ideality Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 11 12 12 12 14 14 15 15 15 Chapter 4 Register Set and Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Legacy Temperature Data Registers (00h, 23h, 01h, 10h, F8h, F9h) . . . . . . . . . . . . . . . . . . . . . . Extended Format Temperature Registers (FAh-FDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status Register - 02h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Register (03h Read, 09h Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration 2 Register - (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . One Shot Register - (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ideality Configuration Registers (27h - 28h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beta Configuration Registers (29h - 2Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product ID Register (EDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Manufacturer ID Register (FEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision Register (FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 19 19 20 21 21 23 24 24 24 Chapter 5 Typical Operating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 6 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1 Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SMSC EMC1053 3 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet List of Figures Figure 1.1 Figure 2.1 Figure 3.1 Figure 3.2 Figure 3.3 Figure 6.1 EMC1053 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 System Management Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EMC1053 Diode System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Block Diagram of Temperature Monitoring Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 External Diode Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8-Pin MSOP Package Outline - 3x3mm Body 0.65mm Pitch. . . . . . . . . . . . . . . . . . . . . . . . . 27 Revision 1.44 (04-14-08) 4 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet List of Tables Table 1.1 EMC1053 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2.3 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 2.4 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 2.5 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 2.6 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.1 Supply Current vs. Conversion Rate and ADC Averaging Factor . . . . . . . . . . . . . . . . . . . . . . 12 Table 3.2 EMC1053 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 4.1 EMC1053 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4.2 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 4.3 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 4.4 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 4.5 Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 4.6 One Shot Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 4.7 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 4.8 Ideality Factor Look Up Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 4.9 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 4.10 Beta Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 4.11 Beta Configuration Look Up Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 4.12 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 4.13 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 4.14 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6.1 8-Pin MSOP Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SMSC EMC1053 5 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Chapter 1 Pin Function DP1 1 DN1 2 8 SMCLK 7 SMDATA 8-MSOP DP2 3 6 VDD DN2 4 5 GND Figure 1.1 EMC1053 Pin Diagram Table 1.1 EMC1053 Pin Description PIN PIN NO. DP1 1 External Diode 1 Positive (anode) Connection DN1 2 External Diode 1 Negative (cathode) Connection DP2 3 External Diode 2 Positive (anode) Connection DN2 4 External Diode 2 Negative (cathode) Connection GND 5 Ground VDD 6 Supply Voltage SMDATA 7 System Management Bus Data - bi-directional data, open drain output SMCLK 8 System Management Bus Clock Input Revision 1.44 (04-14-08) DESCRIPTION 6 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Chapter 2 Electrical Specifications 2.1 Absolute Maximum Ratings Table 2.1 Absolute Maximum Ratings DESCRIPTION RATING UNIT Supply Voltage VDD -0.3 to 5.0 V Voltage on SMDATA and SMCLK pins -0.3 to 5.5 V -0.3 to VDD+0.3 V Operating Temperature Range -40 to 125 °C Storage Temperature Range -55 to 150 °C Voltage on any other pin Lead Temperature Range Refer to JEDEC Spec. J-STD-020 Package Thermal Characteristics for MSOP-8 Thermal Resistance TJA(at 0 air flow) ESD Rating, All Pins Human Body Model 135.9 °C/W 2000 V Note: Stresses above those listed could cause damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used. 2.2 Electrical Specifications Table 2.2 Electrical Characteristics VDD=3.0V to 3.6V, TA= -20°C to +85°C, Typical values at TA = 27°C unless otherwise noted PARAMETER SYMBOL MIN TYP MAX UNITS CONDITIONS Supply Voltage VDD 3.0 3.3 3.6 V Average Operating Current IDD 340 400 μA 4 conversions/s See Table 4.4. ISTBY 2 4 μA Standby mode ±1 ±3 °C -20°C≤ TA ≤85°C ± 1.5 °C 0°C < TA ≤ 85°C DC Power Internal Temperature Monitor Temperature Accuracy Temperature Resolution SMSC EMC1053 0.125 7 DATASHEET °C Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Table 2.2 Electrical Characteristics (continued) VDD=3.0V to 3.6V, TA= -20°C to +85°C, Typical values at TA = 27°C unless otherwise noted PARAMETER SYMBOL MIN TYP MAX UNITS ±1 ±3 ±5 °C °C °C CONDITIONS External Temperature Monitor Temperature Accuracy Remote Diode 40°C to 80°C Remote Diode -20°C to 125°C Remote Diode -64°C to 192°C Temperature Resolution Filter Capacitor °C 0.125 CFILTER 15°C≤TA≤70°C -20°C≤TA≤85°C -20°C≤TA≤85°C 2.2 nF 5.5 V Connected across external diode Note 2.2 Voltage Tolerance Voltage at pin ( SMDATA,SMCLK) VTOL -0.3 Input High Level VIH 2.0 Input Low Level VIL SMBus Interface (SMDATA,SMCLK) Input High/Low Current IIH/IIL -1 Hysteresis Input Capacitance Output Low Sink Current V 0.8 V 1 μA 500 mV 5 pF 6 mA SMDATA = 0.6V SMBus Timing Clock Frequency FSMB 10 Spike Suppression 400 kHz 50 ns TBUF 1.3 μs Hold time Start THD:STA 0.6 μs Setup time Start TSU:STA 0.6 μs Setup time Stop TSU:STO 0.6 μs Data Hold Time THD:DAT 0.3 μs Data Setup Time TSU:DAT 100 ns Clock Low Period TLOW 1.3 μs Clock High Period THIGH 0.6 μs Clock/Data Fall Time TF * 300 ns *Min = 20+0.1Cb ns Clock/Data Rise Time TR * 300 Note 2.1 ns *Min = 20+0.1Cb ns Capacitive Load (each bus line) Cb 0.6 400 pF Bus free time Start to Stop Revision 1.44 (04-14-08) 8 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet 2.3 Note 2.1 300nS rise time max is required for 400kHz bus operation. For lower clock frequencies, the maximum rise time is (0.1/FSMB)+50nS Note 2.2 See SMSC Applications for Application Notes and Guidelines when measuring GPU processor diodes and CPU processor diodes. System Management Bus Interface Protocol A host controller, such as an SMSC I/O controller, communicates with the EMC1053 via the two wire serial interface named SMBus. The SMBus interface is used to read and write registers in the EMC1053, which is a slave-only device. A detailed timing diagram is shown in Figure 2.1. TLOW THIGH THD:STA TR TSU:STO TF SMCLK THD:STA THD:DAT TSU:DAT TSU:STA SMDATA TBUF S P S S - Start Condition P - Stop Condition P Figure 2.1 System Management Bus Timing Diagram The EMC1053 implements a subset of the SMBus specification and supports Write Byte, Read Byte, Send Byte, and Receive Byte protocols as shown. In the tables that describe the protocol, the “gray” columns indicate that the slave is driving the bus. All of the below protocols use the following convention: DATA SENT TO DEVICE DATA SENT TO THE HOST # of bits sent 2.3.1 # of bits sent Write Byte The Write Byte is used to write one byte of data to the registers as shown in Table 2.3. Table 2.3 Write Byte Protocol START SLAVE ADDRESS WR ACK COMMAND ACK DATA ACK STOP 1 7 1 1 8 1 8 1 1 2.3.2 Read Byte The Read Byte protocol is used to read one byte of data from the registers as shown in Table 2.4. Table 2.4 Read Byte Protocol START SLAVE ADDRESS SMSC EMC1053 WR ACK COMMAND ACK START 9 DATASHEET SLAVE ADDRESS RD ACK DATA NACK STOP Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Table 2.4 Read Byte Protocol 1 7 2.3.3 1 1 8 1 1 7 1 1 8 1 1 Send Byte The Send Byte protocol is used to set the Internal Address Register to the correct Address as shown in Table 2.5. The Send Byte can be followed by the Receive Byte protocol described in Table 2.6 to read data from the register. The send byte protocol cannot be used to write data - if data is to be written to a register then the write byte protocol must be used as described in Section 2.3.1. Table 2.5 Send Byte Protocol START SLAVE ADDR WR ACK REG. ADDR ACK STOP 1 7 1 1 8 1 1 2.3.4 Receive Byte The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This can be used for consecutive reads of the same register as shown in Table 2.6. Table 2.6 Receive Byte Protocol START SLAVE ADDR RD ACK REG. DATA NACK STOP 1 7 1 1 8 1 1 2.3.5 SMBus Timing Diagram The Timing for the SMBus is shown in Figure 2.1. 2.4 SMBus Addresses The EMC1053 may be ordered with one of four slave addresses as shown in Ordering Information. Attempting to communicate with the EMC1053 SMBus interface with an invalid slave address or invalid protocol results in no response from the device and does not affect its register contents. The EMC1053 supports stretching of the SMCLK signal by other devices on the SMBus but will not perform this operation itself. 2.5 SMBus Timeout The EMC1053 includes an SMBus time-out feature. Following a 25 ms period of inactivity on the SMBus, the device will time-out and reset the SMBus interface. Revision 1.44 (04-14-08) 10 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Chapter 3 Product Description The EMC1053 is an SMBus sensor that monitors three temperature zones for use in a personal computer or embedded environment. The part may be used as a companion to one of SMSC’s broad line of SIO host devices to perform fan control and thermal management. A typical system drawing of the EMC1053 is shown in Figure 3.1. EMC105 DP13 DN1 Hos t SMBu s Interface SMBu s DP2 DN2 Interna Diod l e Figure 3.1 EMC1053 Diode System 3.1 Power Modes The EMC1053 has two power modes. 3.2 Run Mode - In this mode, the temperature monitors are active and converting at the programmed conversion rate. The average power dissipation will depend on the conversion rate. When the EMC1053 is not actively converting a channel, it goes into a lower power wait state. Standby Mode (power-up default) - in this mode, the EMC1053 is put into a low power state. In the standby mode, temperature monitoring is disabled. The device will still respond to SMBus commands. One Shot During Standby Mode The EMC1053 supports a One-Shot command when it is in Standby Mode. Writing to the One-Shot register will cause the device to power up, perform 1 full set of temperature conversions, then return to Standby Mode. 3.3 Operation During Run Mode When the device is active, there are two modes of operation available. Normal Mode (power-up default) - In this mode of operation, the EMC1053 continuously samples and updates all of its temperature channels. Hotter of Two Mode - In this mode, the EMC1053 continuously samples and then compares the two remote zones. The hotter of the two remote zones is loaded into the External Diode 2 Data Registers. In addition, the HOTTER bit in the Status register is set or cleared to indicate which external diode zone is hotter. If the two remote zones are exactly equal to each other, then the HOTTER bit is cleared (set to ‘0’), and the results of the two remote zones are stored in their respective registers. SMSC EMC1053 11 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet 3.3.1 Conversion Rates The EMC1053 may be configured for different conversion rates based on the system requirements. The available rates are 1 full set of conversions per second to 16 full sets of conversions per second. The conversion rate is configured as described in Section 4.4. The available conversion rates are shown in Table 4.4. 3.3.2 Dynamic Averaging The EMC1053 temperature channels support a new feature that measures the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled as described in Section 4.5 for increased power savings at the lower conversion rates. When Dynamic Averaging is enabled, the device will automatically adjust the sampling and measurement time for both external diode channels. This allows the device to average 2x or 4x longer than the normal 11 bit operation while still maintaining the selected conversion rate. The benefits of Dynamic Averaging are improved noise rejection due to the longer integration time as well as less random variation on the temperature measurement. The Dynamic Averaging applies when a One-Shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate. The Dynamic Averaging will affect the average supply current based on the chosen conversion rate as shown in Table 3.1. Table 3.1 Supply Current vs. Conversion Rate and ADC Averaging Factor ADC AVERAGING FACTOR 4X (MAX_RES = 1) (DA_N = 0) CONVERSION RATE 2X (MAX_RES = 0) (DA_N = 0) 1X (DA_N = 1) 1 / sec 190uA 132uA 105uA 2 / sec 315uA 205uA 150uA 4 / sec 580uA 350uA 235uA 8 / sec N/A 640uA 405uA 16 / sec N/A N/A 750uA 3.4 Temperature Monitors In general, thermal diode temperature measurements are based on the change in forward bias voltage of a diode when operated at two different currents. This ΔVBE is then proportional to absolute temperature as shown in the following equation: where: ΔVBE = VBE _ HIGH − VBE _ LOW = ηkT ⎛ I HIGH ⎞ q ⎟⎟ ln⎜⎜ ⎝ I LOW ⎠ k = Boltzmann’s constant T = absolute temperature in Kelvin [1] q = electron charge η = diode ideality factor Revision 1.44 (04-14-08) 12 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet IHIGH ILOW Substrate PNP DP AntiAliasing Filter Resistance Error Correction ΔΣ ADC DN Figure 3.2 Block Diagram of Temperature Monitoring Circuit Figure 3.2 shows a block diagram of the temperature measurement circuit. The negative terminal for the remote temperature diode, DN, is internally biased with a forward diode voltage referenced to ground. The external diodes in the EMC1053 are compatible with a broad range of thermal diodes that may be connected as shown in Figure 3.3. t D o P t D o N Local Ground Typical substrate remote i.e. CPU substrate transistor PNP Typical remote discrete PNP transistor i.e. 2N3906 t D o P t D o P t D o N t D o N Typical remote discrete NPN transistor i.e. 2N3904 Figure 3.3 External Diode Configurations SMSC EMC1053 13 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet 3.5 Temperature Measurement Results and Data Each temperature result for each zone is available in two byte wide data registers. As shown in Section 4.1, the 11-bit format has the 8 most significant bits stored in the high byte register and the 3 least significant bits stored in the three MSB positions of the low byte register. The delta-sigma ADC may be operated with more than 11 bits of resolution for improved averaging as described in Section 4.5, but the temperature result is reported at 11-bit resolution. The temperature results for the two remote zones are also stored in extended format with a range from -64°C to +191°C. The data format is a 2’s complement number offset by 64°C as shown in Section 4.2. The data for each of the remote zones in both legacy and extended format is stored in separate data registers so that both data formats are always available. Table 3.2 shows the default and extended range formats. Table 3.2 EMC1053 Temperature Data Format RANGE -64°C TO 127°C RANGE -64°C TO 191°C BINARY OFFSET BINARY TEMPERATURE (°C) Diode Fault 100 0000 0000 100 0000 0000 <= -64 110 0000 0000 100 0000 0000 -63.875 110 0000 0001 100 0000 0001 -63 110 0000 1000 100 0000 1000 -1 111 1111 1000 101 1111 1000 0 000 0000 0000 110 0000 0000 0.125 000 0000 0001 110 0000 0001 1 000 0000 1000 110 0000 1000 64 010 0000 0000 000 0000 0000 65 010 0000 1000 000 0000 1000 127 011 1111 1000 001 1111 1000 127.875 011 1111 1111 001 1111 1111 128 011 1111 1111 010 0000 0000 191 011 1111 1111 011 1111 1000 >= 191.875 011 1111 1111 011 1111 1111 3.6 Resistance Error Correction (REC) Resistance error correction is an automatic feature that eliminates the need to characterize and compensate for series resistance in the external diode lines. The EMC1053 corrects for as much as 100 ohms of series resistance. When using a temperature sensor that does not include resistance error correction, voltage developed across the parasitic resistance in the external diode path produces an error in the reported temperature. The error introduced by this resistance is approximately +0.7°C per ohm. Sources of series resistance are PCB trace resistance, on die (i.e. on the processor) metal resistance, bulk resistance in the base and emitter of the temperature transistor. Revision 1.44 (04-14-08) 14 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet When monitoring the thermal diode of an AMD K8 processor, the Resistance Error Correction must be disabled for accurate temperature measurements. This is accomplished by clearing the REC bit in the configuration 2 register (see Section 4.5). Please see Application note “13.16 - Using the EMC1043 with AMD Processors” for more details. 3.7 Beta Compensation The Beta Compensation function can be programmed to eliminate temperature errors caused by beta variation in modern, low beta transistors used for monitoring processor temperatures. Changes in beta as differing currents are applied to temperature transistors can cause significant temperature errors in monitoring devices. As modern processor geometries shrink the trend is for transistor betas to decrease, which exacerbates temperature errors. By default, this functionality is disabled. It can be enabled by writing any value other than 07h in the Beta Configuration Registers (see Section 4.11). Discrete transistors, with collector connected to base to form a diode, are generally immune to these temperature errors because of high (>100) betas. A beta variation of 10% from low current to high current, when beta equals 100, induces approximately 0.12° error at 100°C. However for a low beta (1.0) substrate transistor used for processor temperature measurement, a beta variation of 10% from low to high current induces approximately 6.12° error at 100°C. When measuring an AMD K8 processor, the Beta Compensation circuitry must be disabled. See Section 4.8. Please see SMSC Application note “13.16 - Using the EMC1043 with AMD Processors” for more details. 3.8 Programmable Ideality Factor The EMC1053 default is for a diode ideality factor of 1.008 which is common for a 2N3904 diode and for many processor transistors. When a diode or transistor is used that has a different ideality factor value than 1.008 a temperature error is induced that is a linear function of temperature. Previous solutions for this mismatch in ideality factor has been to supply a programmable offset to the temperature reading which corrects the error at a single temperature but causes a residual error at all other temperatures. The EMC1053 ideality factor register corrects this mismatch error at all temperatures (see Section 4.7). APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most ideality errors. 3.9 Diode Faults The EMC1053 detects a fault if the DP pin is left floating or is shorted to VDD. In the case of a diode fault, the corresponding status bit will be set and the output data will be set at 400h. SMSC EMC1053 15 DATASHEET Revision 1.44 (04-14-08) Revision 1.44 (04-14-08) The following registers are accessible through the SMBus Interface. Table 4.1 EMC1053 Register Set REGISTER ADDRESS WRITE R/W REGISTER NAME SYMBOL B7 B6 B5 00h N/A R Internal Temperature High Byte - Legacy Format INTHBL Sign 64 32 23h N/A R Internal Temperature Low Byte - Legacy Format INTLBL 0.5 0.25 0.125 01h N/A R External Diode 1 High Byte - Legacy Format ET1HBL Sign 64 32 10h N/A R External Diode 1 Low Byte - Legacy Format ET1LBL 0.5 0.25 0.125 F8h N/A R External Diode 2 High Byte - Legacy Format ET2HBL Sign 64 32 F9h N/A R External Diode 2 Low Byte - Legacy Format ET2LBL 0.5 0.25 0.125 FAh N/A R External Diode 1 High Byte - Extended Format ET1HBE 128 64 32 FBh N/A R External Diode 1 Low Byte - Extended Format ET1LBE 0.5 0.25 0.125 FCh N/A R External Diode 2 HIgh Byte - Extended Format ET2HBE 128 64 32 B4 16 B3 8 B2 4 B1 2 B0 1 DEFAULT VALUE 00h 00h 16 8 4 2 1 00h 16 DATASHEET READ 00h 16 8 4 2 1 00h 00h 16 8 4 2 1 00h 00h 16 8 4 2 1 00h SMSC EMC1053 Datasheet 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Chapter 4 Register Set and Description REGISTER ADDRESS READ WRITE R/W REGISTER NAME SYMBOL FDh N/A R External Diode 2 Low Byte - Extended Format ET2LBE B7 0.5 B6 0.25 B5 B4 B3 B2 B1 B0 0.125 DEFAULT VALUE 00h Status and Control 02h N/A R Status STS Busy - - HOTT ER - - 03h 09h R/W Configuration CFG - ADC_ST OP - - - CR<2:0> 04h 04h R/W Configuration 2 CFG2 - - - - MAX_ RES DA_n D2 D1 00h 45h COMP REC 09h 17 DATASHEET One Shot N/A 0Fh W One Shot Conversion Shot The data written to this register is irrelevant and will not be stored 00h Ideality 27h 27h R/W External Diode 1 Ideality Correction Factor IDCF1 - - B5 B4 B3 B2 B1 B0 12h (1.008) 28h 28h R/W External Diode 2 Ideality Correction Factor IDCF2 - - B5 B4 B3 B2 B1 B0 12h (1.008) 29h 29h R/W External Diode 1 Beta Configuration BCF1 - - - - - BETA<2:0> 07h 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Revision 1.44 (04-14-08) Table 4.1 EMC1053 Register Set (continued) SMSC EMC1053 B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT VALUE READ WRITE R/W REGISTER NAME SYMBOL 2Ah 2Ah R/W External Diode 2 Beta Configuration BCF2 - - - - - BETA<2:0> EDh EDh R Product ID PID 0 0 1 1 1 1 0 0 3Ch (-1) 0 0 1 1 1 1 0 1 3Dh (-2) 0 0 1 1 1 1 1 0 3Eh (-3) 0 0 1 1 1 1 1 1 3Fh (-4) 07h FEh FEh R Manufacturer ID SMSC 0 1 0 1 1 1 0 1 5Dh FFh FFh R Revision Register REV - - - - 0 0 0 1 01h During Power on Reset (POR), the default values are stored in the registers. A POR is initiated when power is first applied to the part and the voltage on the VDD supply surpasses the POR level as specified in the electrical characteristics. Any reads to undefined registers will return 00h. Writes to undefined registers will not have an effect. Revision 1.44 (04-14-08) REGISTER ADDRESS 18 DATASHEET Datasheet The EMC1053 uses an interlock mechanism that will update the Low byte of a particular monitor when the High Byte is read. This prevents changes in register content when the ADC updates between successive reads. 4.1 Legacy Temperature Data Registers (00h, 23h, 01h, 10h, F8h, F9h) As shown in Table 4.1, each temperature monitor has two data registers. The 11 bit temperature data is stored aligned to the left resulting in the High Byte containing temperature in 1°C steps and the Low Byte containing fractions of a degree. 4.2 Extended Format Temperature Registers (FAh-FDh) The Extended Format Temperature Registers store only the external diode temperatures in the extended data format. This is because, due to the operating range limitations of the EMC1053, the internal temperature could not benefit from the extended temperature range. Like the Legacy data formatting, the data is stored in two registers per temperature channel. SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Table 4.1 EMC1053 Register Set (continued) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet 4.3 Status Register - 02h Table 4.2 Status Register ADDR 02h REGISTER Status B7 Busy B6 B5 - B4 - B3 HOTTER - B2 - B1 D2 B0 D1 DEFAULT 00h The Status Register is a read only register and returns the operational status of the part. External diode faults are indicated by bits 1 and 0. If either bit is set to ‘1’, then a diode fault has occurred. When a diode fault occurs, the D1 or D2 status bit is set, but otherwise the data remains unchanged. Bit 7 - Busy - indicates that the ADC is currently converting a temperature. Bit 4 - HOTTER - during Hotter of Two mode, this bit indicates which of the external diode channels is hotter. If this bit is ‘0’, then External Diode 1 is hotter or equal to External Diode 2. If this bit is ‘1’, then External Diode 2 is hotter than External Diode 1. During normal operation, this bit will always read a ‘0’. Bit 1 - D2 - indicates that a diode fault has occurred on External Diode 2. Bit 0 - D1 - indicates that a diode fault has occurred on External Diode 1. 4.4 Configuration Register (03h Read, 09h Write) Table 4.3 Configuration Register ADDR 03h Read, 09h Write REGISTER Config B7 - B6 STANDBY B5 - B4 - B3 - B2 B1 B0 CR<2:0> DEFAULT 45h The Configuration Register controls the basic functionality of the EMC1053. The bits are described below: Bit 6 - STANDBY- controls the ADC conversions and power modes of the part. '0' - The device is in the run operating mode. The ADC is converting at the user-programmed conversion rate. '1' - (default) The device is in the standby operating mode (see Section 3.1). Bit 2-0 - CR<2:0> - determines the conversion rate for the temperature monitoring per Table 4.4. SMSC EMC1053 19 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Table 4.4 Conversion Rate CR<2:0> 2 1 CONVERSIONS / SECOND (CONVERSION TIME) 0 0 0 0 Reserved 0 0 1 Reserved 0 1 0 Reserved 0 1 1 1 Conversion / sec 1 0 0 2 Conversions / sec 1 0 1 4 Conversions / sec (default) 1 1 0 8 Conversions / sec 1 1 1 16 Conversions / sec 4.5 Configuration 2 Register - (04h) Table 4.5 Configuration 2 Register ADDR 04h REGISTER CFG2 B7 - B6 - B5 - B4 - B3 MAX_RES B2 B1 B0 DA_n COMP REC DEFAULT 09h The Configuration 2 Register controls the basic functionality of the EMC1053 that is NOT compatible with the EMC1023. Bit 3 - MAX_RES - controls the external diode conversion time during dynamic averaging. Although the dynamic averaging may be used to increase the ADC resolution, only 11 bits of data are available in the temperature registers. ‘0’ - the dynamic averaging will set the ADC averaging factor at 1x when the conversion rate is set at 16 conversions per second and 2x at conversion rates lower than 16 per second. ‘1’ (default) - the dynamic averaging will set the ADC averaging factor at 1x when the conversion rate is set at 16 conversions per second, 2x at 8 conversions / second and 4x at conversion rates lower than 8 per second. Bit 2 - DA_n - controls the dynamic digital averaging circuitry. See Section 3.3.2. ‘0’ (default) - dynamic averaging is enabled. Depending on the selected conversion rate, the ADC averaging factor is increased for the external diodes. ‘1’ - dynamic averaging is disabled. The ADC averaging factor will remain fixed at 1x for all conversion rates and will allow increased power savings at the slower conversion rates. Bit 1 - COMP - configures the device to perform a comparison for the Hotter of Two mode (see Section 3.3, "Operation During Run Mode," on page 11.) ‘0’ (default) - the device is in normal mode ‘1’ - the device is in Hotter of Two mode. In this mode, the two external diode channels are measured and compared against each other. The hotter of the two channels has its data loaded Revision 1.44 (04-14-08) 20 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet into the External Diode 2 Data Registers. The Internal Diode and External Diode 1 Data Registers remain unaffected. Bit 0 - REC - controls the Resistance Error Correction circuitry 4.6 '0' - The Resistance Error Correction circuitry is disabled. '1' (default) - The Resistance Error Correction circuitry is active and will automatically correct for up to 100 ohms of series resistance in the diode lines for both External Diode 1 and External Diode 2 channels. One Shot Register - (0Fh) Table 4.6 One Shot Registers ADDR 0Fh REGISTER One Shot Conversion B7 B6 B5 B4 B3 B2 B1 B0 Writing to this register address initiates the one-shot. The data is not important and is not stored DEFAULT 00h The One Shot Register is an address place holder for the one-shot command. Writing to the address initiates the command. The data written is not important and is not stored. Reading from the one-shot registers will always return 00h. 4.7 Ideality Configuration Registers (27h - 28h) Table 4.7 Ideality Configuration Registers ADDR REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 27h Diode 1 Ideality Correction Factor - - B5 B4 B3 B2 B1 B0 12h (1.008) 28h Diode 2 Ideality Correction Factor - - B5 B4 B3 B2 B1 B0 12h (1.008) The Ideality Configuration Registers store the ideality correction factor that is applied to each external diode. The table below shows the ideality factor settings for the Ideality Configuration registers. Shading indicates power-up default. All codes that are not listed are reserved and should not be used. Beta Compensation and Resistance Error Correction automatically correct for most diode ideality errors, therefore it is not recommended that these settings be updated without consulting SMSC. SMSC EMC1053 21 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Table 4.8 Ideality Factor Look Up Table SETTING FACTOR SETTING FACTOR SETTING FACTOR 001000 0.9951 011000 1.0159 101000 1.0377 001001 0.9964 011001 1.0173 101001 1.0391 001010 0.9976 011010 1.0186 101010 1.0404 001011 0.9989 011011 1.0199 101011 1.0418 001100 1.0002 011100 1.0213 101100 1.0432 001101 1.0015 011101 1.0226 101101 1.0446 001110 1.0028 011110 1.0240 101110 1.0460 001111 1.0041 011111 1.0253 101111 1.0475 010000 1.0054 100000 1.0267 110000 1.0489 010001 1.0067 100001 1.0280 110001 1.0503 010010 1.0080 100010 1.0294 010011 1.0093 100011 1.0308 010100 1.0106 100100 1.0321 010101 1.0119 100101 1.0335 010110 1.0133 100110 1.0349 010111 1.0146 100111 1.0363 For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly differently than for discrete diode-connected transistors. Refer to Table 4.9 when using a CPU substrate transistor. Table 4.9 Substrate Diode Ideality Factor Look-Up Table (BJT Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 001000 0.9869 011000 1.0079 101000 1.0291 001001 0.9882 011001 1.0092 101001 1.0304 001010 0.9895 011010 1.0105 101010 1.0317 001011 0.9908 011011 1.0120 101011 1.0330 001100 0.9921 011100 1.0132 101100 1.0343 001101 0.9934 011101 1.0146 101101 1.0356 001110 0.9947 011110 1.0159 101110 1.0369 001111 0.9960 011111 1.0173 101111 1.0382 010000 0.9973 100000 1.0187 110000 1.0395 Revision 1.44 (04-14-08) 22 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Table 4.9 Substrate Diode Ideality Factor Look-Up Table (BJT Model) (continued) SETTING FACTOR SETTING FACTOR 010001 0.9986 100001 1.0200 010010 1.0000 100010 1.0213 010011 1.0013 100011 1.0226 010100 1.0026 100100 1.0239 010101 1.0039 100101 1.0252 010110 1.0053 100110 1.0265 010111 1.0066 100111 1.0278 SETTING FACTOR 110001 1.0408 APPLICATION NOTE: When measuring a 65nm Intel CPUs, the Ideality Setting should be the default 12h. When measuring 45nm Intel CPUs, the Ideality Setting should be 15h. 4.8 Beta Configuration Registers (29h - 2Ah) Table 4.10 Beta Configuration Registers ADDR REGISTER B7 B6 B5 B4 B3 B2 B1 29h Diode 1 Beta Configuration - - - - - BETA<2:0> 2Ah Diode 2 Beta Configuration - - - - - BETA<2:0> B0 DEFAULT 07h 07h By default, the beta compensation circuitry is disabled and the EMC1053 is configured to measure discrete diode-connected transistors. Writing to the Beta Configuration Registers will enable the beta compensation circuitry and should be used if measuring a CPU substrate diode. The beta compensation circuit is able to compensate for beta variation within a given range. The beta configuration register is configured to the proper range to match the CPU to be monitored. The beta values should be set so that the minimum expected beta is not below the threshold indicated in Table 4.11. Beta compensation is activated if the BETA<2:0> bits are set to any value other than 07h. Table 4.11 Beta Configuration Look Up Table BETA<2:0> 2 1 0 MINIMUM BETA 0 0 0 0.11 0 0 1 0.18 0 1 0 0.25 0 1 1 0.33 1 0 0 0.43 1 0 1 1.00 SMSC EMC1053 23 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Table 4.11 Beta Configuration Look Up Table (continued) BETA<2:0> 2 1 0 MINIMUM BETA 1 1 0 2.33 1 1 1 Disabled (default) 4.9 Product ID Register (EDh) Table 4.12 Product ID Register ADDR EDh REGISTER B7 PID B6 0 B5 0 B4 1 1 B3 B2 1 B1 1 B0 X X DEFAULT 3Ch 3Dh 3Eh 3Fh (-1) (-2) (-3) (-4) The Product ID Register holds the unique product ID for identifying SMSC EMC products. See Table 4.1 for a list of the product ID number for each version of the EMC1053. 4.10 Manufacturer ID Register (FEh) Table 4.13 Manufacturer ID Register ADDR FEh REGISTER SMSC B7 0 B6 1 B5 0 B4 1 B3 1 B2 1 B1 0 B0 1 DEFAULT 5Dh The Manufacturer ID register contains an 8 bit word that identifies the manufacturer of the EMC1053 (SMSC = 5Dh). 4.11 Revision Register (FFh) Table 4.14 Revision Register ADDR FFh REGISTER REV B7 - B6 - B5 - B4 - B3 0 B2 0 B1 0 B0 1 DEFAULT 01h The Revision register contains a 4 bit word that identifies the die revision. Revision 1.44 (04-14-08) 24 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Chapter 5 Typical Operating Curves Tem perature Error vs. Filter Capacitor (2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V) Supply Curre nt vs . Conve rs ion Rate (TA = 27°C, V DD = 3.3V ) 800 0.5 Temperature Error (°C) Supply Current (uA) 700 600 500 400 300 200 100 0.3 0.0 -0.3 -0.5 -0.8 -1.0 0 0 1 2 4 8 16 1000 2000 3000 4000 Filter Capacitor (pF) Conve rs ion Rate (conv / s e c) 2.0 Tem perature Error vs. External Diode Tem perature (2N3904, TA=42.5°C, VDD = 3.3V) 2.0 1.5 1.5 Temperature Error (°C) Temperature Error (°C) Tem perature Error vs. Am bient Tem perature (2N3904, TDIODE = 27°C, VDD = 3.3V) 1.0 0.5 0.0 -0.5 -1.0 -1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.0 0 15 SMSC EMC1053 30 45 60 Am bient Tem perature (°C) 75 90 0 25 DATASHEET 25 50 75 100 External Diode Tem perature (°C) 125 Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Te m pe r ature Err or vs . Le ak age Re s is tance (2N3904, TA = T DIODE = 27°C, V DD = 3.3V ) 30.0 Standby Current vs. Supply Voltage (TA = 27°C) 3.0 DP to GND Standby Current (uA) Temperature Error(°C) 20.0 10.0 0.0 -10.0 -20.0 -30.0 DP to VDD 2.5 2.0 1.5 1.0 0.5 0.0 -40.0 1 10 2.9 100 3.1 Le ak age Re s is tance (M Ω ) 75 0.5 30 0.3 REC Active 0.0 0 20 40 60 80 15 Temperature Error (°C) 45 4 Beta Compensation Disabled 3 2 1 Beta Compensation Enabled 0 -1 0 100 20 30 40 50 60 70 80 90 100 CPU Temperature (°C) Series Resitance (Ω) Revision 1.44 (04-14-08) 3.7 5 Temperature Error (°C) REC Disabled Temperature Error (°C) REC Active 60 REC Disabled 0.8 3.5 Temperature Error vs. CPU Temperature Typical 65nm CPU from major vendor (TA = 27°C, VDD = 3.3V, BETA = 011, CFILTER = 0pF) Temperature Error vs. Series Resistance 2N3904, TA = TDIODE = 27°C, VDD = 3.3V 1.0 3.3 Supply Voltage (V) 26 DATASHEET SMSC EMC1053 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet Chapter 6 Package Outline Figure 6.1 8-Pin MSOP Package Outline - 3x3mm Body 0.65mm Pitch Table 6.1 8-Pin MSOP Package Parameters MIN NOMINAL MAX REMARKS A 0.80 ~ 1.10 Overall Package Height A1 0.05 ~ 0.15 Standoff A2 0.75 0.85 0.95 Body Thickness D 2.80 3.00 3.20 X Body Size E 4.65 4.90 5.15 Y Span E1 2.80 ~ 3.20 Y body Size H 0.08 ~ 0.23 Lead Foot Thickness L 0.40 ~ 0.80 Lead Foot Length L1 0.95 REF e Lead Length 0.65 BSC Lead Pitch θ 0o ~ 8o Lead Foot Angle W 0.22 ~ 0.38 Lead Width ccc ~ ~ 0.10 Coplanarity Notes: 1. Controlling Unit: millimeters. 2. Tolerance on the true position of the leads is ± 0.065 mm maximum. 3. Package body dimensions D and E1 do not include mold protrusion or flash. Dimensions D and E1 to be determined at datum plane H. Maximum mold protrusion or flash is 0.15mm (0.006 inches) per end, and 0.15mm (0.006 inches) per side. 4. Dimension for foot length L measured at the gauge plane 0.25 mm above the seating plane. 5. Details of pin 1 identifier are optional but must be located within the zone indicated. SMSC EMC1053 27 DATASHEET Revision 1.44 (04-14-08) 1°C Triple Temperature Sensor with Resistance Error Correction & Hotter of Two Zones Datasheet 6.1 Package Markings All devices will be marked on the first line of the top side with “1053”. On the second line, they will be marked with the appropriate -X number (-1, -2, etc), the Functional Revision “B” and Country Code (CC) . Revision 1.44 (04-14-08) 28 DATASHEET SMSC EMC1053