EMC1072 1°C Temperature Sensor with Selectable Address PRODUCT FEATURES Datasheet General Description Features The EMC1072 is a high accuracy, low cost, System Management Bus (SMBus) temperature sensor with pin selectable SMBus address. — ±0.25°C typ accuracy (20°C < TDIODE < 110°C) — 0.125°C resolution — Supports 2N3904 and AMD diodes The device provides ±1° accuracy (max) for external diode temperatures and ±2°C accuracy (max) for the internal diode temperature. The EMC1072 monitors two temperature channels (one external and one internal). Internal Temperature Monitor 3.3V Supply Voltage SMBus 2.0 Compliant — ±0.25°C typ accuracy (-5°C < TA < 100°C) Applications Pin Compatible with ADM1032, MAX6649, and LM99 External Temperature Monitors — Programmable SMBus address Notebook Computers Desktop Computers Industrial Embedded applications Programmable Temperature Limits for ALERT and THERM Available in Small 8-pin MSOP Lead-free RoHS Compliant Package Block Diagram VDD EMC1072 Conversion Rate Register DP Digital Mux ΔΣ ADC External Temperature Register(s) Limit Comparator Analog Mux Digital Mux High Limit Registers SMBus Interface Low Limit Registers Switching Current SMCLK SMDATA THERM Limit Register THERM Hysteresis Register Internal Temperature Register DN Configuration Register Internal Temp Diode Interupt Masking ALERT Status Registers SMBus Address Decode THERM/ADDR GND SMSC EMC1072 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Order Number(s): EMC1072-1-ACZL-TR for 8-pin, MSOP Lead-Free RoHS Compliant package EMC1072-A-ACZL-TR for 8-pin, MSOP Lead-Free RoHS Compliant package Note: See Table 1.1, "Part Selection" for SMBus addressing options. Reel size is 4,000 pieces This product meets the halogen maximum concentration values per IEC61249-2-21 For RoHS compliance and environmental information, please visit www.smsc.com/rohs 80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123 Copyright © 2010 SMSC or its subsidiaries. All rights reserved. Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Revision 1.39 (10-11-10) 2 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Table of Contents Chapter 1 Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 3.2 3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SMBus Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMBus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 13 13 13 14 14 Chapter 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THERM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 THERM Pin Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALERT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 ALERT Pin Interrupt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 ALERT Pin Comparator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable External Diode Ideality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consecutive Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 16 16 17 17 17 17 18 18 18 18 20 20 21 Chapter 6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 Data Read Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scratchpad Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . One Shot Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Therm Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Diode Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filter Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMSC EMC1072 3 DATASHEET 24 24 24 25 26 27 27 28 28 28 29 30 31 32 Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet 6.15 6.16 SMSC ID Register (FEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Revision Register (FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 7 Typical Operating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.1 Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 9 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Revision 1.39 (10-11-10) 4 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet List of Figures Figure 2.1 Figure 4.1 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 8.1 Figure 8.2 EMC1072 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 System Diagram for EMC1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Isolating THERM Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Diode Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8-Pin MSOP / TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 EMC1072 Package Markings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 SMSC EMC1072 5 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet List of Tables Table 1.1 Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2.1 EMC1072 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4.7 SMBus Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 5.1 Supply Current vs. Conversion Rate for EMC1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 5.2 EMC1072 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 6.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6.9 One Shot Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.10 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.11 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 6.12 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 6.13 Consecutive Alert / THERM Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.14 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.15 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.16 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.17 Filter Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.18 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.19 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.20 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 9.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Revision 1.39 (10-11-10) 6 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Chapter 1 Part Selection The EMC1072 device configuration is highlighted below. Table 1.1 Part Selection FUNCTIONALITY PART NUMBER SMBUS ADDRESS EMC1072 - 1 1001_100xb EXTERNAL DIODES SMSC EMC1072 DIODE 2 DEFAULT CONFIGURATION OTHER PRODUCT ID Software programmable and maskable High Limits 1 EMC1072 - A DIODE 1 DEFAULT CONFIGURATION AMD or 3904 20h N/A Software programmable THERM Limits See Table 4.7 7 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Chapter 2 Pin Description VDD 1 8 S M C LK DP 2 7 SM DATA DN 3 6 A LE R T THERM / ADDR 4 5 GND Figure 2.1 EMC1072 Pin Diagram Table 2.1 EMC1072 Pin Description PIN NUMBER NAME FUNCTION TYPE 1 VDD Power supply Power 2 DP External diode positive (anode) connection AIO 3 DN External diode negative (cathode) connection AIO THERM / ADDR Active low Critical THERM output signal - requires pull-up resistor to set SMBus Address OD (5V) 5 GND Ground Power 6 ALERT Active low digital ALERT output signal - requires pull-up resistor OD (5V) 7 SMDATA SMBus Data input/output DIOD (5V) 8 SMCLK SMBus Clock input DI (5V) 4 The pin types are described below. All pins labelled with (5V) are 5V tolerant. APPLICATION NOTE: For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT), the voltage difference between VDD and the pull-up voltage must never exceed 3.6V. Power - these pins are used to supply either VDD or GND to the device. AIO - Analog Input / Output. DI - Digital Input. OD - Open Drain Digital Output. DIOD - Digital Input / Open Drain Output. Revision 1.39 (10-11-10) 8 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Chapter 3 Electrical Specifications 3.1 Absolute Maximum Ratings Table 3.1 Absolute Maximum Ratings DESCRIPTION RATING UNIT Supply Voltage (VDD) -0.3 to 4.0 V Voltage on 5V tolerant pins (V5VT_pin) -0.3 to 5.5 V 0 to 3.6 V -0.3 to VDD +0.3 V Operating Temperature Range -40 to +125 °C Storage Temperature Range -55 to +150 °C Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1) Voltage on any other pin to Ground Lead Temperature Range Refer to JEDEC Spec. J-STD020 Package Thermal Characteristics for MSOP-8 Thermal Resistance (θj-a) ESD Rating, All pins HBM 140.8 °C/W 2000 V Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used. Note 3.1 SMSC EMC1072 For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered. 9 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet 3.2 Electrical Specifications Table 3.2 Electrical Specifications VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS DC Power Supply Voltage VDD Supply Current IDD 3.0 3.3 3.6 V 430 850 uA 1 conversion / sec, dynamic averaging disabled 930 1200 uA 4 conversions / sec, dynamic averaging enabled uA > 16 conversions / sec, dynamic averaging enabled 1120 Standby Supply Current IDD 170 230 uA Device in Standby mode, no SMBus communications, ALERT and THERM pins not asserted. Power Up Time tPUP 10 15 ms Temp selection read Note 3.2 Time to first data available tCONV_1 300 ms Internal Temperature Monitor Temperature Accuracy ±0.25 Temperature Resolution ±1 °C -5°C < TA < 100°C ±2 °C -40°C < TA < 125°C 0.125 °C External Temperature Monitor Temperature Accuracy Temperature Resolution ±0.25 ±1 °C +20°C < TDIODE < +110°C 0°C < TA < 100°C ±0.5 ±2 °C -40°C < TDIODE < 127°C 0.125 °C ms EMC1072, default settings nF Connected across external diode Conversion Time all Channels tCONV 190 Capacitive Filter CFILTER 2.2 2.5 ALERT and THERM pins Output Low Voltage VOL Leakage Current ILEAK Note 3.2 Revision 1.39 (10-11-10) 0.4 ±5 V ISINK = 8mA uA ALERT and THERM pins Device powered or unpowered TA < 85°C pull-up voltage < 3.6V The ALERT and THERM pins will not glitch low upon power up. 10 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet 3.3 SMBus Electrical Characteristics Table 3.3 SMBus Electrical Specifications VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS SMBus Interface Input High Voltage VIH 2.0 VDD V 5V Tolerant Input Low Voltage VIL -0.3 0.8 V 5V Tolerant Input High/Low Current IIH / IIL ±5 uA Powered or unpowered TA < 85°C Hysteresis Input Capacitance CIN Output Low Sink Current IOL 420 mV 5 pF 8.2 15 mA SMDATA = 0.4V SMBus Timing Clock Frequency fSMB Spike Suppression tSP Bus free time Start to Stop tBUF 1.3 us Hold Time: Start tHD:STA 0.6 us Setup Time: Start tSU:STA 0.6 us Setup Time: Stop tSU:STP 0.6 us Data Hold Time tHD:DAT 0 us Data Setup Time tSU:DAT 100 ns Clock Low Period tLOW 1.3 us Clock High Period tHIGH 0.6 us Clock/Data Fall time tFALL 300 ns Min = 20+0.1CLOAD ns Clock/Data Rise time tRISE 300 ns Min = 20+0.1CLOAD ns Capacitive Load CLOAD 400 pF per bus line SMSC EMC1072 10 400 kHz 50 ns 11 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Chapter 4 System Management Bus Interface Protocol 4.1 System Management Bus Interface Protocol TheEMC1072 communicates with a host controller, such as an SMSC SIO, through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 4.1. For the first 15ms after power-up the device may not respond to SMBus communications. . TLOW THIGH THD:STA TSU:STO TRISE SMCLK THD:STA TFALL THD:DAT TSU:STA TSU:DAT SMDTA TBUF P S S S - Start Condition P - Stop Condition P Figure 4.1 SMBus Timing Diagram The EMC1072 is SMBus 2.0 compatible and support Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below. All of the below protocols use the convention in Table 4.1. Table 4.1 Protocol Format DATA SENT TO DEVICE # of bits sent DATA SENT TO THE HOST # of bits sent Attempting to communicate with the EMC1072 SMBus interface with an invalid slave address or invalid protocol will result in no response from the device and will not affect its register contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control the timing. 4.2 Write Byte The Write Byte is used to write one byte of data to the registers as shown below Table 4.2: Table 4.2 Write Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK REGISTER DATA ACK STOP 1 -> 0 1001_100 0 0 XXh 0 XXh 0 0 -> 1 Revision 1.39 (10-11-10) 12 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet 4.3 Read Byte The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3. Table 4.3 Read Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 1001_100 0 1 XXh 0 1 -> 0 1001_100 1 1 XX 1 0 -> 1 4.4 Send Byte The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol as shown in Table 4.4. Table 4.4 Send Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK STOP 1 -> 0 1001_100 0 0 XXh 0 0 -> 1 4.5 Receive Byte The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register as shown in Table 4.5. Table 4.5 Receive Byte Protocol START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 1001_100 1 0 XXh 1 0 -> 1 4.6 Alert Response Address The ALERT output can be used as a processor interrupt or as an SMBus Alert. When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA) to the general address of 0001_100xb. All devices with active interrupts will respond with their client address as shown in Table 4.6. Table 4.6 Alert Response Address Protocol START ALERT RESPONSE ADDRESS RD ACK DEVICE ADDRESS NACK STOP 1 -> 0 0001_100 1 0 1001_1000 1 0 -> 1 SMSC EMC1072 13 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet The EMC1072 will respond to the ARA in the following way: 1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication from the device was not prematurely stopped due to a bus contention event). 2. Set the MASK bit to clear the ALERT pin. APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK bit is cleared prior to the Status Register being cleared, the ALERT pin will be reasserted. 4.7 SMBus Address The EMC1072-A SMBus address is determined by the pull-up resistor on the THERM pin as shown in Table 4.7. The Address decode is performed by pulling known currents from VDD through the external resistor causing the pin voltage to drop based on the respective current / resistor relationship. This pin voltage is compared against a threshold that determines the value of the pull-up resistor. Table 4.7 SMBus Address Decode PULL UP RESISTOR ON THERM PIN SMBUS ADDRESS 4.7k 1111_100xb 6.8k 1011_100xb 10k 1001_100xb 15k 1101_100xb 22k 0011_100xb 33k 0111_100xb The EMC1072 responds to hard-wired SMBus slave address as shown in Table 1.1, "Part Selection". 4.8 SMBus Timeout The EMC1072 supports SMBus Timeout. If the clock line is held low for longer than 30ms, the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT bit in the Consecutive Alert Register (see Section 6.11). Revision 1.39 (10-11-10) 14 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Chapter 5 Product Description The EMC1072 is an SMBus temperature sensor. The EMC1072 monitors one internal diode and one externally connected temperature diode. Thermal management is performed in cooperation with a host device. This consists of the host reading the temperature data of both the external and internal temperature diodes of the EMC1072 and using that data to control the speed of one or more fans. The EMC1072 has two levels of monitoring. The first provides a maskable ALERT signal to the host when the measured temperatures exceeds user programmable limits. This allows the EMC1072 to be used as an independent thermal watchdog to warn the host of temperature hot spots without direct control by the host. The second level of monitoring provides a non maskable interrupt on the THERM pin if the measured temperatures meet or exceed a second programmable limit. Figure 5.1 shows a system level block diagram of the EMC1072. EMC1072 CPU Host DP Thermal diode SMCLK DN Internal Diode SMDATA SMBus Interface ALERT THERM Power Control Figure 5.1 System Diagram for EMC1072 5.1 Modes of Operation The EMC1072 has two modes of operation. 5.1.1 Active (Run) - In this mode of operation, the ADC is converting on all temperature channels at the programmed conversion rate. The temperature data is updated at the end of every conversion and the limits are checked. In Active mode, writing to the one-shot register will do nothing. Standby (Stop) - In this mode of operation, the majority of circuitry is powered down to reduce supply current. The temperature data is not updated and the limits are not checked. In this mode of operation, the SMBus is fully active and the part will return requested data. Writing to the oneshot register will enable the device to update all temperature channels. Once all the channels are updated, the device will return to the Standby mode. Conversion Rates The EMC1072 may be configured for different conversion rates based on the system requirements. The conversion rate is configured as described in Section 6.5, "Conversion Rate Register". The default conversion rate is 4 conversions per second. Other available conversion rates are shown in Table 6.6, "Conversion Rate". SMSC EMC1072 15 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet 5.1.2 Dynamic Averaging Dynamic averaging causes the EMC1072 to measure the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled for increased power savings at the lower conversion rates (see Section 6.4, "Configuration Register"). When dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time for the external diode channels. This allows the device to average 2x or 16x longer than the normal 11 bit operation (nominally 21ms per channel) while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved noise rejection due to the longer integration time as well as less random variation of the temperature measurement. When enabled, the dynamic averaging applies when a one-shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate. When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate as shown in Table 5.1 for the EMC1072. Table 5.1 Supply Current vs. Conversion Rate for EMC1072 AVERAGE SUPPLY CURRENT AVERAGING FACTOR (BASED ON 11-BIT OPERATION) CONVERSION RATE ENABLED (DEFAULT) DISABLED ENABLED (DEFAULT) DISABLED 1 / 16 sec 660uA 430uA 16x 1x 1 / 8 sec 660uA 430uA 16x 1x 1 / 4 sec 660uA 430uA 16x 1x 1 / 2 sec 660uA 430uA 16x 1x 1 / sec 660uA 430uA 16x 1x 2 / sec 930uA 475uA 16x 1x 4 / sec (default) 950uA 510uA 8x 1x 8 / sec 1010uA 630uA 4x 1x 16 / sec 1020uA 775uA 2x 1x 32 / sec 1050uA 1050uA 1x 1x 64 / sec 1100uA 1100uA 0.5x 0.5x 5.2 THERM Output The THERM output is asserted independently of the ALERT output and cannot be masked. Whenever any of the measured temperatures exceed the user programmed THERM Limit values for the programmed number of consecutive measurements, the THERM output is asserted. Once it has been asserted, it will remain asserted until all measured temperatures drop below the THERM Limit minus the THERM Hysteresis (also programmable). When the THERM pin is asserted, the Therm status bits will likewise be set. Reading these bits will not clear them until the THERM pin is deasserted. Once the THERM pin is deasserted, the THERM status bits will be automatically cleared. Revision 1.39 (10-11-10) 16 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet 5.2.1 THERM Pin Considerations Because of the decode method used to determine the SMBus Address it is important that the pull-up resistance on THERM pin be within ±10% tolerance. Additionally, the pull-up resistor on the THERM pin must be connected to the same 3.3V supply that drives the VDD pin. For 15ms after power up, the THERM pin must not be pulled low or the SMBus Address will not be decoded properly. If the system requirements do not permit these conditions, then the THERM pin must be isolated from their respective busses during this time. One method of isolating this pin is shown in Figure 5.2. +3.3V +2.5 - 5V 22K VDD 1 4.7K 33K DP1 2 DN1 3 THERM / 4 ADDR Shared THERM EMC1072 8 SMCLK 7 SMDATA 6 ALERT 5 GND Figure 5.2 Isolating THERM Pin 5.3 ALERT Output The ALERT pin is an open drain output and requires a pull-up resistor to VDD and has two modes of operation: interrupt mode and comparator Mode. The mode of the ALERT output is selected via the ALERT / COMP bit in the Configuration Register (see Section 6.4). 5.3.1 ALERT Pin Interrupt Mode When configured to operate in interrupt mode, the ALERT pin asserts low when an out of limit measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected. The ALERT pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT pin will remain asserted until the appropriate status bits are cleared. The ALERT pin can be masked by setting the MASK bit. Once the ALERT pin has been masked, it will be de-asserted and remain de-asserted until the MASK bit is cleared by the user. Any interrupt conditions that occur while the ALERT pin is masked will update the Status Register normally. The ALERT pin is used as an interrupt signal or as an Smbus Alert signal that allows an SMBus slave to communicate an error condition to the master. One or more ALERT outputs can be hard-wired together. 5.3.2 ALERT Pin Comparator Mode When the ALERT pin is configured to operate in comparator mode it will be asserted if any of the measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until all temperatures drop below the corresponding high limit minus the THERM Hysteresis value. SMSC EMC1072 17 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet When the ALERT pin is asserted in comparator mode, the corresponding high limit status bits will be set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is deasserted, the status bits will be automatically cleared. The MASK bit will not block the ALERT pin in this mode, however the individual channel masks (see Section 6.10) will prevent the respective channel from asserting the ALERT pin. 5.4 Programmable External Diode Ideality Factor The EMC1072 is designed for external diodes with an ideality factor of 1.008. Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality factor introduces error in the temperature measurement which must be corrected for. This correction is typically done using programmable offset registers. Since an ideality factor mismatch introduces an error that is a function of temperature, this correction is only accurate within a small range of temperatures. To provide maximum flexibility to the user, the EMC1072 provides a 6-bit register for each external diode where the ideality factor of the diode used is programmed to eliminate errors across all temperatures. 5.5 Diode Faults The EMC1072 detects an open on the DP and DN pins, and a short across the DP and DN pins. For each temperature measurement made, the device checks for a diode fault on the external diode channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see Section 5.6, "Consecutive Alerts") and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short from VDD to DP, or a short from VDD to DN. If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature measurement of 0.000degC (-64°C in extended range) resulting in temperature data of 00h in the MSB and LSB registers. If a short from DN to GND occurs (with a diode connected), temperature measurements will continue as normal with no alerts. 5.6 Consecutive Alerts The EMC1072 contains multiple consecutive alert counters. One set of counters applies to the ALERT pin and the second set of counters applies to the THERM pin. Each temperature measurement channel has a separate consecutive alert counter for each of the ALERT and THERM pins. All counters are user programmable and determine the number of consecutive measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is asserted. See Section 6.11 for more details on the consecutive alert function. 5.7 Digital Filter To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled. The typical filter performance is shown in Figure 5.3, "Temperature Filter Step Response" and Figure 5.4, "Temperature Filter Impulse Response". Revision 1.39 (10-11-10) 18 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Filter Step Response Temperature (C) 90 Disabled 80 70 Level1 Level2 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 Samples Figure 5.3 Temperature Filter Step Response Filter Impulse Response 90 Temperature (C) 80 Disabled 70 60 50 Level1 40 Level2 30 20 10 0 0 2 4 6 8 10 12 14 Samples Figure 5.4 Temperature Filter Impulse Response SMSC EMC1072 19 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet 5.8 Temperature Monitors In general, thermal diode temperature measurements are based on the change in forward bias voltage of a diode when operated at two different currents. This ΔVBE is proportional to absolute temperature as shown in the following equation: where: Δ V BE = η kT q ⎛ I ln ⎜⎜ HIGH ⎝ I LOW ⎞ ⎟⎟ ⎠ k = Boltzmann’s constant T = absolute temperature in Kelvin [1] q = electron charge η = diode ideality factor 5.9 Temperature Measurement Results and Data The temperature measurement results are stored in the internal and external temperature registers. These are then compared with the values stored in the high and low limit registers. Both external and internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB positions of the low byte register. All other bits of the low byte register are set to zero. The EMC1072 has two selectable temperature ranges. The default range is from 0°C to +127°C and the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C in 0.125°C steps. The extended range is an extended temperature range from -64°C to +191°C. The data format is a binary number offset by 64°C. The extended range is used to measure temperature diodes with a large known offset (such as AMD processor diodes) where the diode temperature plus the offset would be equivalent to a temperature higher than +127°C. Table 5.2, "EMC1072 Temperature Data Format" shows the default and extended range formats. Table 5.2 EMC1072 Temperature Data Format TEMPERATURE (°C) Diode Fault DEFAULT RANGE 0°C TO 127°C EXTENDED RANGE RANGE -64°C TO 191°C 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 Note 5.2 -1 000 0000 0000 001 1111 1111b 0 000 0000 0000 Note 5.1 010 0000 0000 0.125 000 0000 0001 010 0000 0001 1 000 0000 1000 010 0000 1000 64 010 0000 0000 100 0000 0000 65 010 0000 1000 100 0000 1000 127 011 1111 1000 101 1111 1000 127.875 011 1111 1111 101 1111 1111 128 011 1111 1111 Note 5.3 110 0000 0000 -64 Revision 1.39 (10-11-10) 20 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Table 5.2 EMC1072 Temperature Data Format (continued) TEMPERATURE (°C) DEFAULT RANGE 0°C TO 127°C EXTENDED RANGE RANGE -64°C TO 191°C 190 011 1111 1111 111 1111 0000 191 011 1111 1111 111 1111 1000 >= 191.875 011 1111 1111 111 1111 1111 Note 5.4 5.10 Note 5.1 In default mode, all temperatures < 0°C will be reported as 0°C. Note 5.2 In the extended range, all temperatures < -64°C will be reported as -64°C. Note 5.3 For the default range, all temperatures > +127.875°C will be reported as +127.875°C. Note 5.4 For the extended range, all temperatures > +191.875°C will be reported as +191.875°C. External Diode Connections The EMC1072 can be configured to measure a discrete 2N3904 diode-connected transistor or an AMD processor diode. The diode can be connected as shown in Figure 5.5, "Diode Configurations". to DP to DP to DN to DN Local Ground Typical remote substrate transistor e.g. CPU substrate PNP Typical remote discrete NPN transistor e.g. 2N3904 Figure 5.5 Diode Configurations SMSC EMC1072 21 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Chapter 6 Register Description The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the bit is not used and will always read ‘0’. Table 6.1 Register Set in Hexadecimal Order REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE 00h R Internal Diode Data High Byte Stores the integer data for the Internal Diode 01h R External Diode Data High Byte Stores the integer data for the External Diode 00h 02h R-C Status Stores status bits for the Internal Diode and External Diodes 00h Page 24 03h R/W Configuration Controls the general operation of the device (mirrored at address 09h) 18h Page 25 04h R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 0Ah) 06h (4/sec) Page 26 05h R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 0Bh) 55h (85°C) 06h R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 0Ch) 00h (0°C) 55h (85°C) PAGE 00h Page 24 Page 27 07h R/W External Diode High Limit High Byte Stores the integer portion of the high limit for the External Diode (mirrored at register 0Dh) 08h R/W External Diode Low Limit High Byte Stores the integer portion of the low limit for the External Diode (mirrored at register 0Eh) 00h (0°C) 09h R/W Configuration Controls the general operation of the device (mirrored at address 03h) 00h Page 25 0Ah R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 04h) 06h (4/sec) Page 26 Revision 1.39 (10-11-10) 22 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE 0Bh R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 05h) 55h (85°C) 0Ch R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 06h) 00h (0°C) 0Dh R/W External Diode High Limit High Byte Stores the integer portion of the high limit for the External Diode (mirrored at register 07h) 55h (85°C) 0Eh R/W External Diode Low Limit High Byte Stores the integer portion of the low limit for the External Diode (mirrored at register 08h) 00h (0°C) 0Fh W One shot A write to this register initiates a one shot update. 00h Page 28 10h R External Diode Data Low Byte Stores the fractional data for the External Diode 00h Page 24 11h R/W Scratchpad Scratchpad register for software compatibility 00h Page 27 12h R/W Scratchpad Scratchpad register for software compatibility 00h Page 27 13h R/W External Diode High Limit Low Byte Stores the fractional portion of the high limit for the External Diode 00h 14h R/W External Diode Low Limit Low Byte Stores the fractional portion of the low limit for the External Diode 00h 19h R/W External Diode THERM Limit Stores the 8-bit critical temperature limit for the External Diode 55h (85°C) Page 28 1Fh R/W Channel Mask Register Controls the masking of individual channels 00h Page 28 20h R/W Internal Diode THERM Limit Stores the 8-bit critical temperature limit for the Internal Diode 55h (85°C) 0Ah (10°C) PAGE Page 27 Page 27 Page 28 21h R/W THERM Hysteresis Stores the 8-bit hysteresis value that applies to all THERM limits 22h R/W Consecutive ALERT Controls the number of out-of-limit conditions that must occur before an interrupt is asserted 70h Page 29 27h R/W External Diode 1 Ideality Factor Stores the ideality factor for External Diode 1 12h (1.008) Page 30 29h R Internal Diode Data Low Byte Stores the fractional data for the Internal Diode 00h Page 24 40h R/W Filter Control Controls the digital filter setting for the External Diode channel 00h Page 31 FDh R Product ID Stores a fixed value that identifies each product Table 6.18 Page 32 SMSC EMC1072 23 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION FEh R SMSC ID FFh R Revision 6.1 DEFAULT VALUE PAGE Stores a fixed value that represents SMSC 5Dh Page 32 Stores a fixed value that represents the revision number 03h Page 32 Data Read Interlock When any temperature channel high byte register is read, the corresponding low byte is copied into an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading from the same high byte register again will automatically refresh this stored low byte data. 6.2 Temperature Data Registers Table 6.2 Temperature Data Registers ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 00h R Internal Diode High Byte 128 64 32 16 8 4 2 1 00h 29h R Internal Diode Low Byte 0.5 0.25 0.125 - - - - - 00h 01h R External Diode High Byte 128 64 32 16 8 4 2 1 00h 10h R External Diode Low Byte 0.5 0.25 0.125 - - - - - 00h As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing the integer value and the low byte representing the fractional value left justified to occupy the MSBits. 6.3 Status Register Table 6.3 Status Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 02h R-C Status BUSY IHIGH ILOW EHIGH ELOW FAULT ETHERM ITHERM 00h The Status Register reports the operating status of the Internal Diode and External Diode 1 channels. When any of the bits are set (excluding the BUSY bit) either the ALERT or THERM pin is being asserted. The ALERT and THERM pins are controlled by the respective consecutive alert counters (see Section 6.11) and will not be asserted until the programmed consecutive alert count has been reached. The status bits (except ETHERM and ITHERM) will remain set until read unless the ALERT pin is configured as a second THERM output (see Section 5.3.2). Revision 1.39 (10-11-10) 24 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause either the ALERT or THERM pins to be asserted. Bit 6 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit. When set, this bit will assert the ALERT pin. Bit 5 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit. When set, this bit will assert the ALERT pin. Bit 4 - EHIGH - This bit is set when the External Diode channel exceeds its programmed high limit. When set, this bit will assert the ALERT pin. Bit 3 - ELOW - This bit is set when the External Diode channel drops below its programmed low limit. When set, this bit will assert the ALERT pin. Bit 2 - FAULT - This bit is asserted when a diode fault is detected. When set, this bit will assert the ALERT pin. Bit 1 - ETHERM - This bit is set when the External Diode channel exceeds the programmed THERM limit. When set, this bit will assert the THERM pin. This bit will remain set until the THERM pin is released at which point it will be automatically cleared. Bit 0 - ITHERM - This bit is set when the Internal Diode channel exceeds the programmed THERM limit. When set, this bit will assert the THERM pin. This bit will remain set until the THERM pin is released at which point it will be automatically cleared. 6.4 Configuration Register Table 6.4 Configuration Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W Configuration MASK_ ALL RUN / STOP ALERT/ COMP 1 1 RANGE DAVG_ DIS - 18h 03h 09h The Configuration Register controls the basic operation of the device. This register is fully accessible at either address. Bit 7 - MASK_ALL - Masks the ALERT pin from asserting. ‘0’ (default) - The ALERT pin is not masked. If any of the appropriate status bits are set the ALERT pin will be asserted. ‘1’ - The ALERT pin is masked. It will not be asserted for any interrupt condition unless it is configured as a secondary THERM pin. The Status Register will be updated normally. Bit 6 - RUN / STOP - Controls Active/Standby modes. ‘0’ (default) - The device is in Active mode and converting on all channels. ‘1’ -The device is in Standby mode and not converting. Bit 5 - ALERT/COMP - Controls the operation of the ALERT pin. ‘0’ (default) - The ALERT pin acts in interrupt mode as described in Section 5.3.1, "ALERT Pin Interrupt Mode". ‘1’ - The ALERT pin acts in comparator mode as described in Section 5.3.2, "ALERT Pin Comparator Mode". In this mode the MASK_ALL bit is ignored. Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels. ‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is binary. ‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset binary (see Table 5.2, "EMC1072 Temperature Data Format"). SMSC EMC1072 25 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels. 6.5 ‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted with an averaging factor that is based on the conversion rate as shown in Table 5.1, "Supply Current vs. Conversion Rate for EMC1072". ‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this averaging factor will be reduced as shown in Table 5.1. Conversion Rate Register Table 6.5 Conversion Rate Register ADDR R/W REGISTER B7 B6 B5 B4 R/W Conversion Rate - - - - 04h 0Ah B3 B2 B1 B0 DEFAULT 06h (4/sec) CONV[3:0] The Conversion Rate Register controls how often the temperature measurement channels are updated and compared against the limits. This register is fully accessible at either address. Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.6, "Conversion Rate". Table 6.6 Conversion Rate CONV[3:0] HEX 3 2 1 0 CONVERSIONS / SECOND 0h 0 0 0 0 1 / 16 1h 0 0 0 1 1/8 2h 0 0 1 0 1/4 3h 0 0 1 1 1/2 4h 0 1 0 0 1 5h 0 1 0 1 2 6h 0 1 1 0 4 (default) 7h 0 1 1 1 8 8h 1 0 0 0 16 9h 1 0 0 1 32 Ah 1 0 1 0 64 Bh - Fh Revision 1.39 (10-11-10) All others 1 26 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet 6.6 Limit Registers Table 6.7 Temperature Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W Internal Diode High Limit 128 64 32 16 8 4 2 1 55h (85°C) R/W Internal Diode Low Limit 128 64 32 16 8 4 2 1 00h (0°C) R/W External Diode High Limit High Byte 128 64 32 16 8 4 2 1 55h (85°C) R/W External Diode High Limit Low Byte 0.5 0.25 0.125 - - - - - 00h R/W External Diode Low Limit High Byte 128 64 32 16 8 4 2 1 00h (0°C) R/W External Diode Low Limit Low Byte 0.5 0.25 0.125 - - - - - 00h 05h 0Bh 06h 0Ch 07h 0Dh 13h 08h 0Eh 14h The device contains both high and low limits for all temperature channels. If the measured temperature exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted. Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status bit is set and the ALERT pin is asserted. The data format for the limits must match the selected data format for the temperature so that if the extended temperature range is used, the limits must be programmed in the extended data format. The limit registers with multiple addresses are fully accessible at either address. When the device is in standby mode, updating the limit registers will have no affect until the next conversion cycle occurs. This can be initiated via a write to the One Shot Register or by clearing the RUN / STOP bit in the Configuration Register (see Section 6.4). 6.7 Scratchpad Registers Table 6.8 Scratchpad Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 11h R/W Scratchpad 7 6 5 4 3 2 1 0 00h 12h R/W Scratchpad 7 6 5 4 3 2 1 0 00h The Scratchpad Registers are Read Write registers that are used for place holders to be software compatible with legacy programs. Reading from the registers will return what is written to them. SMSC EMC1072 27 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet 6.8 One Shot Register Table 6.9 One Shot Register ADDR. R/W REGISTER 0Fh W One Shot B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT Writing to this register initiates a single conversion cycle. Data is not stored and always reads 00h 00h The One Shot Register is used to initiate a one shot command. Writing to the one shot register, when the device is in standby mode and BUSY bit (in Status Register) is ‘0’, will immediately cause the ADC to update all temperature measurements. Writing to the One Shot Register while the device is in active mode will have no affect. 6.9 Therm Limit Registers Table 6.10 Therm Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 19h R/W External Diode THERM Limit 128 64 32 16 8 4 2 1 55h (85°C) 20h R/W Internal Diode THERM Limit 128 64 32 16 8 4 2 1 55h (85°C) 21h R/W THERM Hysteresis 128 64 32 16 8 4 2 1 0Ah (10°C) The THERM Limit Registers are used to determine whether a critical thermal event has occurred. If the measured temperature exceeds the THERM Limit, then the THERM pin is asserted. The limit setting must match the chosen data format of the temperature reading registers. Unlike the ALERT pin, the THERM pin cannot be masked. Additionally, the THERM pin will be released once the temperature drops below the corresponding threshold minus the THERM Hysteresis. 6.10 Channel Mask Register Table 6.11 Channel Mask Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 1Fh R/W Channel Mask - - - - - - E MASK INT MASK 00h The Channel Mask Register controls individual channel masking. When a channel is masked, the ALERT pin will not be asserted when the masked channel reads a diode fault or out of limit error. The channel mask does not mask the THERM pin. Bit 1 - EMASK - Masks the ALERT pin from asserting when the External Diode channel is out of limit or reports a diode fault. ‘0’ (default) - The External Diode channel will cause the ALERT pin to be asserted if it is out of limit or reports a diode fault. Revision 1.39 (10-11-10) 28 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet ‘1’ - The External Diode channel will not cause the ALERT pin to be asserted if it is out of limit or reports a diode fault. Bit 0 - INTMASK - Masks the ALERT pin from asserting when the Internal Diode temperature is out of limit. 6.11 ‘0’ (default) - The Internal Diode channel will cause the ALERT pin to be asserted if it is out of limit. ‘1’ - The Internal Diode channel will not cause the ALERT pin to be asserted if it is out of limit. Consecutive ALERT Register Table 6.12 Consecutive ALERT Register ADDR. R/W REGISTER B7 22h R/W Consecutive ALERT TIME OUT B6 B5 B4 CTHRM[2:0] B3 B2 B1 CALRT[2:0] B0 DEFAULT - 70h The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must be detected in consecutive measurements before the ALERT or THERM pin is asserted. Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality. An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in consecutive measurements will increment the consecutive alert counter. The counters will also be reset if no out-of-limit condition or diode fault condition occurs in a consecutive reading. When the ALERT pin is configured as an interrupt, when the consecutive alert counter reaches its programmed value, the following will occur: the STATUS bit(s) for that channel and the last error condition(s) (i.e. EHIGH) will be set to ‘1’, the ALERT pin will be asserted, the consecutive alert counter will be cleared, and measurements will continue. When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode fault and low limit errors and only increment if the measured temperature exceeds the High Limit. Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be asserted, but the counter will not be reset. It will remain set until the temperature drops below the High Limit minus the THERM Hysteresis value. For example, if the CALRT[2:0] bits are set for 4 consecutive alerts, the high limits are set at 70°C, and none of the channels are masked, then the ALERT pin will be asserted after the following four measurements: 1. Internal Diode reads 71°C and the external diode reads 69°C. Consecutive alert counter for INT is incremented to 1. 2. Both the Internal Diode and the External Diode read 71°C. Consecutive alert counter for INT is incremented to 2 and for EXT is set to 1. 3. The External Diode reads 71°C and the Internal Diode reads 69°C. Consecutive alert counter for INT is cleared and EXT is incremented to 2. 4. The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for INT is set to 1 and EXT is incremented to 3. 5. The Internal Diode reads 71°C and the external diode reads 71°C. Consecutive alert counter for INT is incremented to 2 and EXT is incremented to 4. The appropriate status bits are set for EXT and the ALERT pin is asserted. EXT counter is reset to 0 and all other counters hold the last value until the next temperature measurement. Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled. ‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely without the device resetting its SMBus protocol. ‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than 30ms, then the device will reset the SMBus protocol. SMSC EMC1072 29 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Bits 6-4 - CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the corresponding THERM Limit before the THERM pin is asserted. All temperature channels use this value to set the respective counters. The consecutive THERM counter is incremented whenever any measurement exceed the corresponding THERM Limit. If the temperature drops below the THERM limit, then the counter is reset. If a number of consecutive measurements above the THERM limit occurs, then the THERM pin is asserted low. Once the THERM pin has been asserted, the consecutive therm counter will not reset until the corresponding temperature drops below the THERM Limit minus the THERM Hysteresis value. The bits are decoded as shown in Table 6.13. The default setting is 4 consecutive out of limit conversions. Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of limit condition or diode fault before the ALERT pin is asserted. All temperature channels use this value to set the respective counters. The bits are decoded as shown in Table 6.13. The default setting is 1 consecutive out of limit conversion. Table 6.13 Consecutive Alert / THERM Settings NUMBER OF CONSECUTIVE OUT OF LIMIT MEASUREMENTS 2 1 0 0 0 0 1 (default for CALRT[2:0]) 0 0 1 2 0 1 1 3 1 1 1 4 (default for CTHRM[2:0]) 6.12 External Diode Ideality Factor Registers Table 6.14 Ideality Configuration Registers ADDR. R/W REGISTER B7 B6 27h R/W External Diode 1 Ideality Factor - - B5 B4 B3 B2 B1 IDEALITY[5:0] B0 DEFAULT 12h These registers store the ideality factors that are applied to the external diodes. Table 6.15 defines each setting and the corresponding ideality factor. Table 6.15 Ideality Factor Look-Up Table (Diode Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9949 18h 1.0159 28h 1.0371 09h 0.9962 19h 1.0172 29h 1.0384 0Ah 0.9975 1Ah 1.0185 2Ah 1.0397 0Bh 0.9988 1Bh 1.0200 2Bh 1.0410 Revision 1.39 (10-11-10) 30 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Table 6.15 Ideality Factor Look-Up Table (Diode Model) (continued) SETTING FACTOR SETTING FACTOR SETTING FACTOR 0Ch 1.0001 1Ch 1.0212 2Ch 1.0423 0Dh 1.0014 1Dh 1.0226 2Dh 1.0436 0Eh 1.0027 1Eh 1.0239 2Eh 1.0449 0Fh 1.0040 1Fh 1.0253 2Fh 1.0462 10h 1.0053 20h 1.0267 30h 1.0475 11h 1.0066 21h 1.0280 31h 1.0488 12h 1.0080 22h 1.0293 32h 1.0501 13h 1.0093 23h 1.0306 33h 1.0514 14h 1.0106 24h 1.0319 34h 1.0527 15h 1.0119 25h 1.0332 35h 1.0540 16h 1.0133 26h 1.0345 36h 1.0553 17h 1.0146 27h 1.0358 37h 1.0566 6.13 Filter Control Register Table 6.16 Filter Configuration Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 40h R/W Filter Control - - - - - - B1 B0 FILTER[1:0] DEFAULT 00h The Filter Configuration Register controls the digital filter on the External Diode channel. Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diode temperature measurements. See Figure 5.3, "Temperature Filter Step Response" and Figure 5.4, "Temperature Filter Impulse Response" for examples on the filter behavior. Table 6.17 Filter Settings FILTER[1:0] 1 0 0 0 Disabled (default) 0 1 Level 1 1 0 Level 1 1 1 Level 2 SMSC EMC1072 AVERAGING 31 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet 6.14 Product ID Register Table 6.18 Product ID Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FDh R Product ID EMC1072 0 0 1 0 0 0 0 0 20h The Product ID Register holds a unique value that identifies the device. 6.15 SMSC ID Register (FEh) Table 6.19 Manufacturer ID Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FEh R SMSC ID 0 1 0 1 1 1 0 1 5Dh The Manufacturer ID register contains an 8 bit word that identifies the SMSC as the manufacturer of the EMC1072. 6.16 Revision Register (FFh) Table 6.20 Revision Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FFh R Revision 0 0 0 0 0 0 1 1 03h The Revision register contains an 8 bit word that identifies the die revision. Revision 1.39 (10-11-10) 32 DATASHEET SMSC EMC1072 1°C Temperature Sensor with Selectable Address Datasheet Chapter 7 Typical Operating Curves Tem perature Error vs. Am bient Tem perature (2N3904, TDIODE = 42.5°C, VDD = 3.3V) 1.0 1.0 0.8 0.8 0.6 Temperature Error (°C) 0.5 0.3 0.0 -0.3 -0.5 -0.8 -1.0 3000 -1.0 -40 -25 -10 5 20 35 50 65 80 Am bient Tem perature (°C) 95 110 125 S u p p l y C u r r e n t v s. C o n v e r si o n R a te Tem perature Error vs. External Diode Tem perature (2N3904, TA = 42.5°C, VDD = 3.3V) 1200 1100 1000 900 Supply Current (uA 800 D y n a m ic A v e r a g in g En a b le d 700 D y n a m ic A v e r a g in g D is a b le d 600 500 400 110 125 300 64 32 8 16 4 2 1 4 1 2 200 /1 6 Temperature Error (°C) -0.6 -0.8 4000 Filter Capacitor (pF) 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -40 -25 -10 5 20 35 50 65 80 95 External Diode Tem perature (°C) -0.4 1/ 2000 0.0 -0.2 8 1000 0.2 1/ 0 0.4 1/ Temperature Error (°C) Tem perature Error vs. Filter Capacitor (2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V) C o n v e r si o n R a te SMSC EMC1072 33 DATASHEET Revision 1.39 (10-11-10) D PIN 1 IDENTIFIER AREA (D/2 X E1/2) e 3 DESCRIPTION - DATE RELEASED BY - - SEE SPEC FRONT PAGE FOR REVISION HISTORY Revision 1.39 (10-11-10) REVISION HISTORY REVISION 3 5 c E E1 SEE DETAIL "A" 2 8X b TOP VIEW 34 DATASHEET END VIEW A2 A C SEATING PLANE A1 ccc C SIDE VIEW 3-D VIEW H C NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETER. 2. TOLERANCE ON THE TRUE POSITION OF THE LEADS IS ± 0.065mm MAXIMUM. 3. PACKAGE BODY DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSIONS OR FLASH. MAXIMUM MOLD PROTRUSIONS OR FLASH IS 0.15 mm (0.006 INCHES) PER END AND SIDE. DIMENSIONS "D" AND "E1" ARE DETERMINED AT DATUM PLANE "H". 4. DIMENSION FOR FOOT LENGTH "L" IS MEASURED AT THE GAUGE PLANE 0.25mm ABOVE THE SEATING PLANE. 5. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. GAUGE PLANE 0.25 SEATING PLANE 0° - 8° 4 L UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND TOLERANCES ARE: L1 DECIMAL X.X ±0.1 X.XX ±0.05 X.XXX ±0.025 THIRD ANGLE PROJECTION 80 ARKAY DRIVE HAUPPAUGE, NY 11788 USA ANGULAR ±1° TITLE DETAIL "A" NAME DATE S.K.ILIEV 7/05/04 DIM AND TOL PER ASME Y14.5M - 1994 MATERIAL - SCALE: 3/1 FINISH - CHECKED S.K.ILIEV S.K.ILIEV Figure 8.1 8-Pin MSOP / TSSOP Package REV DWG NUMBER MO-8-TSSOP-3x3 7/05/04 APPROVED PRINT WITH "SCALE TO FIT" DO NOT SCALE DRAWING PACKAGE OUTLINE 8 PIN TSSOP, 3x3 MM BODY, 0.65 MM PITCH DRAWN SCALE 7/07/04 STD COMPLIANCE 1:1 JEDEC: MO-187 / D D SHEET 1 OF 1 SMSC EMC1072 Datasheet 1°C Temperature Sensor with Selectable Address Chapter 8 Package Information 1°C Temperature Sensor with Selectable Address Datasheet 8.1 Package Markings TOP LINE: 1-T – Device Number LINE: 2-T Version, Revision, Country Code (VRCC) 1 0 7 2 2x 1.5pt X R C C e3 PB-FREE/GREEN SYMBOL (Matte Sn) ALL TOP LINES CENTER HORIZONTAL ALIGNMENT PIN 1 BOTTOM PIN 1 LINE: 1-B – Date Code (YYWW) Y Y WW LINE: 2-B – First 3 Digits of Lot Number 1 2 3 LINE: 3-B – Last 4 Digits of Lot Number 4 5 6 a 3x 1.5pt Figure 8.2 EMC1072 Package Markings SMSC EMC1072 35 DATASHEET Revision 1.39 (10-11-10) 1°C Temperature Sensor with Selectable Address Datasheet Chapter 9 Datasheet Revision History Table 9.1 Customer Revision History REVISION LEVEL & DATE SECTION/FIGURE/ENTRY CORRECTION Revision 1.39 (10-11-10) Cover Updated temperature accuracy information to match Table 3.2, "Electrical Specifications". Revision 1.38 (03-25-10) Table 3.2, "Electrical Specifications" Changed Data Hold Time to 0. Note following Electrical Specifications table changed from: “During the power up time, SMBus communication is permitted, however the THERM pin must be pulled low.” To: “The ALERT and THERM pins will not glitch low upon power up.” Figure 5.1, "System Diagram for EMC1072" Changed figure to remove 2-port diode and replace with transistor diode. Section 5.10, "External Diode Connections" Updated diode connections text. Figure 5.5, "Diode Configurations" Updated diode figure. Rev. 1.37 (12-22-09) Section 6.16, "Revision Register (FFh)" Changed default from 01h to 03h to match the actual value. Rev. 1.36 (10-21-09) Table 6.17, "Filter Settings" Added table for bit decode. Rev. 1.35 (06-12-09) Table 2.1, "EMC1072 Pin Description" Identified 5V tolerant pins. Added the following application note below table: “For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, ALERT), the voltage difference between VDD and the pull-up voltage must never exceed 3.6V.” Table 3.1, "Absolute Maximum Ratings" Updated voltage limits for 5V tolerant pins with pull-up resistors. Added the following note below table: “For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.” Table 3.2, "Electrical Specifications" Rev. 1.34 (12-02-08) Revision 1.39 (10-11-10) Added leakage current. Initial release 36 DATASHEET SMSC EMC1072