OP183: 5 MHz Single-Supply Operational Amplifier Data Sheet (Rev. D) PDF

5 MHz Single-Supply
Operational Amplifier
OP183
Single supply: 3 V to 36 V
Wide bandwidth: 5 MHz
Low offset voltage: 1 mV
High slew rate: 10 V/μs
Low noise: 10 nV/√Hz
Unity gain stable
Input and output range includes GND
No phase reversal
PIN CONNECTION
NULL 1
–IN 2
+IN 3
OP183
8
NC
7
V+
6 OUT
TOP VIEW
V– 4 (Not to Scale) 5 NULL
00292-001
FEATURES
Figure 1. 8-Lead Narrow Body SOIC
(S Suffix)
APPLICATIONS
Multimedia
Telecom
ADC buffers
Wide band filters
Microphone preamplifiers
GENERAL DESCRIPTION
The OP183 is a single-supply, 5 MHz bandwidth amplifier with
slew rates of 10 V/μs. It can operate from voltages as low as 3 V
and up to 36 V. This combination of slew rate and bandwidth
yields excellent single-supply ac performance, making this
amplifier ideally suited for telecom and multimedia audio
applications.
The OP183 also provides good dc performance with guaranteed
1 mV offset. Noise is a respectable 10 nV/√Hz. Supply current is
only 1.2 mA per amplifier.
This amplifier is well suited for single-supply applications that
require moderate bandwidth even when used in high gain
configurations. This makes it useful in filters and instrumentation. The output drive capability and very wide full-power
bandwidth of the OP183 make it a good choice for multimedia
headphone drivers or microphone input amplifiers.
The OP183 is available in a SO-8 surface-mount package. It is
specified over the extended industrial (−40°C to +85°C)
temperature range.
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2005 Analog Devices, Inc. All rights reserved.
OP183
TABLE OF CONTENTS
Specifications..................................................................................... 3
Direct Access Arrangement ...................................................... 13
Electrical Characteristics @ VS = 5 V......................................... 3
5 V Only Stereo DAC for Multimedia ..................................... 13
Electrical Characteristics @ VS = 3 V......................................... 4
Low Voltage Headphone Amplifiers........................................ 14
Electrical Characteristics @ VS = ±15 V.................................... 5
Low Noise Microphone Amplifier for Multimedia ............... 14
Absolute Maximum Ratings............................................................ 6
3 V 50 Hz/60 Hz Active Notch Filter with False Ground ..... 14
ESD Caution.................................................................................. 6
Low Voltage Frequency Synthesizer for Wireless
Transceiver .................................................................................. 15
Typical Performance Characteristics ............................................. 7
Applications..................................................................................... 13
Offset Adjust ............................................................................... 13
Outline Dimensions ....................................................................... 16
Ordering Guide .......................................................................... 16
Phase Reversal............................................................................. 13
REVISION HISTORY
5/05—Rev. C to Rev. D
Updated Format.................................................................. Universal
Removed OP283 ................................................................. Universal
Updated Outline Dimensions ........................................................16
Changes to Ordering Guide ...........................................................16
Revision 0: Initial Version
2/02—Rev. B to Rev. C
Edits to FEATURES...........................................................................1
Edits to GENERAL DESCRIPTION...............................................1
Edits to SPECIFICATIONS......................................................... 2–3
Edits to Package Type........................................................................4
Edits to ORDERING GUIDE...........................................................4
Edits to ABSOLUTE MAXIMUM RATINGS ...............................4
Edits to OUTLINE DIMENSIONS ...............................................12
Rev. D | Page 2 of 16
OP183
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS @ VS = 5 V
TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
VOS
VCM = 2.5 V, VOUT = 2.5 V,
−40°C ≤ TA ≤ +85°C
VCM = 2.5 V, VOUT = 2.5 V,
−40°C ≤ TA ≤ +85°C
VCM = 2.5 V, VOUT = 2.5 V,
−40°C ≤ TA ≤ +85°C
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Offset Voltage Drift
Bias Current Drift
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Min
Typ
Max
Unit
0.025
1.0
1.25
600
750
mV
mV
nA
nA
nA
nA
V
350
430
11
0
CMRR
AVO
ΔVOS/ΔT
ΔIB/ΔT
VOH
VOL
ISC
VCM = 0 to 3.5 V
−40°C ≤ TA ≤ +85°C
RL = 2 kΩ, 0.2 ≤ VO ≤ 3.8 V
70
100
±50
3.5
104
dB
V/mV
μV/°C
nA/°C
4
−1.6
RL = 2 kΩ to GND
RL = 2 kΩ to GND
Source
Sink
4.0
4.22
50
25
30
75
V
mV
mA
mA
POWER SUPPLY
Power Supply Rejection Ratio
PSRR
VS = 4 V to 6 V,
−40°C ≤ TA ≤ +85°C
Supply Current/Amplifier
ISY
70
dB
VO = 2.5 V,
−40°C ≤ TA ≤ +85°C
Supply Voltage Range
104
VS
1.2
3
1.5
mA
±18
V
DYNAMIC PERFORMANCE
Slew Rate
Full Power Bandwidth
SR
BWp
RL = 2 kΩ
1% Distortion
Settling Time
tS
To 0.01%
Gain Bandwidth Product
GBP
Phase Margin
фm
5
10
>50
V/μs
kHz
1.5
μs
5
MHz
46
Degrees
NOISE PERFORMANCE
Voltage Noise
en p-p
0.1 Hz to 10 Hz
2
μV p-p
Voltage Noise Density
en
f = 1 kHz, VCM = 2.5 V
10
nV/√Hz
Current Noise Density
in
0.4
pA/√Hz
Rev. D | Page 3 of 16
OP183
ELECTRICAL CHARACTERISTICS @ VS = 3 V
TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
VOS
VCM = 1.5 V, VOUT = 1.5 V,
−40°C ≤ TA ≤ +85°C
VCM = 1.5 V, VOUT = 1.5 V,
−40°C ≤ TA ≤ +85°C
VCM = 1.5 V, VOUT = 1.5 V,
−40°C ≤ TA ≤ +85°C
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
OUTPUT CHARACTERISTICS
Min
Typ
Max
Unit
0.3
1.0
1.25
600
750
mV
mV
nA
nA
nA
nA
V
350
11
0
CMRR
AVO
VCM = 0 V to 1.5 V,
−40°C ≤ TA ≤ +85°C
RL = 2 kΩ, 0.2 ≤ VO ≤ 1.8 V
70
100
2.0
±50
1.5
103
260
dB
V/mV
Output Voltage High
VOH
RL = 2 kΩ to GND
Output Voltage Low
VOL
RL = 2 kΩ to GND
90
2.25
V
Short-Circuit Limit
ISC
Source
25
mA
Sink
30
mA
113
dB
125
mV
POWER SUPPLY
Power Supply Rejection Ratio
PSRR
VS = 2.5 V to 3.5 V,
−40°C ≤ TA ≤ +85°C
Supply Current/Amplifier
ISY
−40°C ≤ TA ≤ +85°C, VO = 1.5 V
60
1.2
1.5
mA
DYNAMIC PERFORMANCE
Gain Bandwidth Product
GBP
5
MHz
10
nV/√Hz
NOISE PERFORMANCE
Voltage Noise Density
en
f = 1 kHz, VCM = 1.5 V
Rev. D | Page 4 of 16
OP183
ELECTRICAL CHARACTERISTICS @ VS = ±15 V
TA = 25°C, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
0.01
1.0
1.25
600
750
±50
+13.5
mV
mV
nA
nA
nA
V
1.5
dB
V/mV
μV/°C
nA/°C
mV
−40°C ≤ TA ≤ +85°C
Input Bias Current
Input Offset Current
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Offset Voltage Drift
Bias Current Drift
Long-Term Offset Voltage
OUTPUT CHARACTERISTICS
IB
IOS
300
400
11
−40°C ≤ TA ≤ +85°C
−40 ≤ TA ≤ +85°C
−15
CMRR
AVO
ΔVOS/ΔT
ΔIB/ΔT
VOS
VCM = −15 V to +13.5 V,
–40°C ≤ TA ≤ +85°C
RL = 2 kΩ
70
100
86
1000
3
−1.6
Note 1
Output Voltage High
VOH
RL = 2 kΩ to GND, −40°C ≤ TA ≤ +85°C
Output Voltage Low
VOL
Short-Circuit Limit
ISC
RL = 2 kΩ to GND, −40°C ≤ TA ≤ +85°C
Source
30
mA
Sink
50
mA
ZOUT
f = 1 MHz, AV = +1
15
Ω
Power Supply Rejection Ratio
PSRR
VS = ± 2.5 V to ± 18 V,
112
dB
Supply Current/Amplifier
ISY
VS = ±18 V, VO = 0 V,
Supply Voltage Range
VS
Open-Loop Output Impedance
13.9
14.1
−14.05
V
−13.9
V
POWER SUPPLY
−40°C ≤ TA ≤ +85°C
70
−40°C ≤ TA ≤ +85°C
1.2
3
1.75
mA
±18
V
DYNAMIC PERFORMANCE
Slew Rate
SR
RL = 2 kΩ
15
V/μs
Full Power Bandwidth
BWp
1% Distortion
10
50
kHz
Settling Time
tS
To 0.01%
1.5
μs
Gain Bandwidth Product
GBP
5
MHz
Phase Margin
фm
56
Degrees
μV p-p
NOISE PERFORMANCE
1
Voltage Noise
en p-p
0.1 Hz to 10 Hz
2
Voltage Noise Density
en
f = 1 kHz
10
nV/√Hz
Current Noise Density
in
0.4
pA/√Hz
Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.
Rev. D | Page 5 of 16
OP183
ABSOLUTE MAXIMUM RATINGS
Table 4.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage 1
Output Short-Circuit Duration to GND
Storage Temperature Range
Rating
±18 V
±18 V
±7 V
Indefinite
S Package
Operating Temperature Range
−65°C to +150°C
OP183
Junction Temperature Range
−40°C to +85°C
Absolute maximum ratings apply to packaged parts, unless
otherwise noted.
S Package
Lead Temperature Range (Soldering 60 sec)
−65°C to +150°C
300°C
Package Type
8-Lead SOIC (S)
1
Table 5.
For supply voltages less than ±7 V, the absolute maximum input voltage is
equal to the supply voltage. Maximum input current should not exceed
2 mA.
1
θJA1
158
θJC
43
Units
°C/W
θJA is specified for worst-case conditions; in other words, θJA is specified for
device soldered in circuit board for SOIC packages.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. D | Page 6 of 16
OP183
TYPICAL PERFORMANCE CHARACTERISTICS
160
80
VS = 5V
300X
OP AMPS
QUANTITY (Amplifiers)
QUANTITY
60
50
40
30
120
100
80
60
40
10
20
00292-002
20
0
–600
–400
–200
0
200
400
–40°C = TA +85°C
300X OP AMPS
PLASTIC PACKAGE
140
00292-005
70
0
600
0
2
4
INPUT OFFSET VOLTAGE (μV)
80
10
12
3
60
50
40
30
20
00292-003
10
0
–600
–400
–200
0
200
400
TA = 25°C
RL = 2kΩ
VS = 3V
2
1
0
600
00292-006
MAXIMUM OUTPUT SWING (V p-p)
VS = 5V
300X
OP AMPS
70
QUANTITY
8
Figure 5. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ ±15 V
Figure 2. OP183 Input Offset Voltage Distribution @ 5 V
1k
10k
INPUT OFFSET VOLTAGE (μV)
100k
1M
10M
FREQUENCY (Hz)
Figure 3. OP183 Input Offset Voltage Distribution @ ±15 V
Figure 6. OP183 Maximum Output Swing vs. Frequency @ 3 V
5
140
MAXIMUM OUTPUT SWING (V p-p)
–40°C = TA +85°C
300X OP AMPS
PLASTIC PACKAGE
120
100
80
60
40
00292-004
20
0
0
2
4
6
TCVOS (μV/°C)
8
10
4
3
2
1
0
12
TA = 25°C
RL = 2kΩ
VS = 5V
00292-007
160
QUANTITY (Amplifiers)
6
TCVOS (μV/°C)
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 7. OP183 Maximum Output Swing vs. Frequency @ 5 V
Figure 4. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ 5 V
Rev. D | Page 7 of 16
OP183
500
TA = 25°C
RL = 2kΩ
VS = 15V
INPUT BIAS CURRENT (nA)
25
20
15
10
300
VS = +3V
200
1k
10k
100k
1M
0
–75
10M
00292-011
0
VS = ±15V,
VS = +5V
400
100
5
00292-008
MAXIMUM OUTPUT SWING (V p-p)
30
–50
–25
FREQUENCY (Hz)
75
100
125
SOURCE
10m
1μ
10μ
100μ
1m
VS = ±18V
RL = ∞
1.25
1.00
VS = +3V
RL = ∞
0.75
0.50
0.25
0
–75
10m
–50
–25
LOAD CURRENT (A)
0
25
50
75
100
125
TEMPERATURE (°C)
Figure 12. Supply Current per Amplifier vs. Temperature
Figure 9. Output Voltage vs. Sink & Source Current
600
1.50
TA = 25°C
400
300
200
00292-010
100
–10
–5
0
5
10
1.25
1.00
0.75
0.50
0.25
0
13.5
COMMON MODE VOLTAGE (V)
00292-013
SUPPLY CURRENT AMPLIFIER (mA)
TA = 25°C
VS = ±15V
500
0
–15
VS = +5V
RL = ∞
00292-012
SUPPLY CURRENT AMPLIFIER (mA)
SINK
100m
00292-009
OUTPUT VOLTAGE Δ TO RAIL (V)
50
1.50
1
INPUT BIAS CURRENT (nA)
25
Figure 11. Input Bias Current vs. Temperature
Figure 8. OP183 Maximum Output Swing vs. Frequency @ ±15 V
1m
0
TEMPERATURE (°C)
0
±2.5
±5.0
±7.5
±10.0
±12.5
±15.0
±17.5
±20.0
SUPPLY VOLTAGE (V)
Figure 10. Input Bias Current vs. Common-Mode Voltage
Figure 13. Supply Current per Amplifier vs. Supply Voltage
Rev. D | Page 8 of 16
OP183
140
COMMON-MODE REJECTION (dB)
50
40
–1SC
30
+1SC
20
10
100
–50
–25
0
25
50
75
100
+PSRR
80
60
–PSRR
40
20
00292-017
0
–75
TA = 25°C
VS = ±15V
120
00292-014
0
100
125
1k
10k
Figure 14. Short-Circuit Current vs. Temperature @ 5 V
90
TA = 25°C
VS = 3V
RL = 10kΩ
80
50
70
GAIN
60
+1SC
30
50
40
195
30
PHASE
MARGIN
= 43°
PHASE
20
20
00292-015
10
0
–75
–50
–25
0
25
50
75
100
10
45
0
0
–10
125
90
1k
10k
TEMPERATURE (°C)
100k
PHASE (Degrees)
GAIN (dB)
40
–45
10M
1M
00292-018
–1SC
FREQUENCY (Hz)
Figure 15. Short-Circuit Current vs. Temperature @ ±15 V
Figure 18. Open-Loop Gain and Phase vs. Frequency @ 3 V
140
90
TA = 25°C
VS = ±15V
120
TA = 25°C
VS = 5V
RL = 10kΩ
80
70
100
GAIN
GAIN (dB)
60
80
60
50
40
195
30
PHASE
MARGIN
= 46°
PHASE
20
40
0
100
00292-016
20
1k
10k
100k
45
0
0
–10
1M
FREQUENCY (Hz)
90
10
1k
10k
100k
1M
–45
10M
FREQUENCY (Hz)
Figure 16. Common-Mode Rejection vs. Frequency
Figure 19. Open-Loop Gain and Phase vs. Frequency @ 5 V
Rev. D | Page 9 of 16
PHASE (Degrees)
SHORT-CIRCUIT CURRENT (mA)
1M
Figure 17. Power Supply Rejection vs. Frequency
60
COMMON-MODE REJECTION (dB)
100k
FREQUENCY (Hz)
TEMPERATURE (°C)
00292-019
SHORT-CIRCUIT CURRENT (mA)
60
OP183
90
25
TA = 25°C
VS = ±15V
RL = 10kΩ
80
70
20
VS = ±15V
RL = 2kΩ
±SLEW RATE
GAIN
SLEW RATE (V/μs)
50
40
195
20
90
10
45
0
0
–10
1k
10k
100k
–45
10M
1M
15
10
VS = ±15V
RL = 2kΩ
±SLEW RATE
5
0
–75
FREQUENCY (Hz)
00292-023
PHASE
MARGIN
= 56°
PHASE
PHASE (Degrees)
30
00292-020
–50
–25
0
25
50
75
Figure 20. Open-Loop Gain and Phase vs. Frequency @ ±15 V
30
TA = +25°C
VS = ±15V
OR
VS = +3V, +15V
OPEN-LOOP GAIN (V/mV)
800
700
VS = +5V
RL = 2kΩ
600
500
400
200
00292-021
VS = ±15V
OR
VS = +3V
RL = 2kΩ
300
100
–50
–25
0
25
50
75
100
25
20
15
10
5
0
125
00292-024
VOLTAGE NOISE DENSITY (nA√Hz)
900
10
TEMPERATURE (°C)
100
1k
10k
FREQUENCY (Hz)
Figure 21. Open-Loop Gain vs. Temperature
Figure 24. Voltage Noise Density vs. Frequency
50
6
40
30
AV = 10
20
10
AV = 1
0
00292-022
–10
–20
1k
10k
100k
1M
5
4
3
2
1
0
10M
FREQUENCY (Hz)
TA = 25°C
VS = ±15V
OR
VS = +3V, +15V
00292-025
TA = 25°C
VS = ±15V
AV = 100
CLOSED-LOOP GAIN (dB)
125
Figure 23. Slew Rate vs. Temperature
1000
0
–75
100
TEMPERATURE (°C)
CURRENT NOISE DENSITY (pA√Hz)
GAIN (dB)
60
10
100
1k
FREQUENCY (Hz)
Figure 22. Closed-Loop Gain vs. Frequency
Figure 25. Current Noise Density vs. Frequency
Rev. D | Page 10 of 16
10k
OP183
100
TA = 25°C
VS = ±15V
90
80
IMPEDANCE (Ω)
70
60
50
40
30
AV = 10
20
00292-026
00292-029
AV = 1
10
0
100
1k
10k
100k
1M
FREQUENCY (Hz)
Figure 29. Small Signal Performance @ ±15 V
Figure 26. Closed-Loop Output Impedance vs. Frequency
80
TA = 25°C
VS = 5V
RL = 10kΩ
60
50
NEGATIVE
EDGE
40
30
20
00292-027
0
100
200
300
CAPACITANCE (pF)
Figure 30. 0.1 Hz to 10 Hz Noise @ ±2.5 V
Figure 27. Small Signal Overshoot vs. Load Capacitance
00292-031
0
00292-030
POSITIVE
EDGE
10
00292-028
SMALL SIGNAL OVERSHOOT (%)
70
Figure 28. Large Signal Performance @ ±15 V
Figure 31. 0.1 Hz to 10 Hz Noise @ ±15 V
Rev. D | Page 11 of 16
OP183
Preliminary Technical Data
DISTORTION (%)
0.1
OP183
VS = ±2.5V
AV = +1
RF = 0
VIN = 1VRMS
80kHz LOW-PASS FILTER
600Ω
1kΩ
2kΩ
0.010
5kΩ
10Ω
NO
LOAD
00292-032
0.001
0.0005
20
100
1k
10k
20k
FREQUENCY (Hz)
Figure 32. THD + Noise vs. Frequency for Various Loads
Rev. D | Page 12 of 16
OP183
APPLICATIONS
This arrangement drives the transformer differentially so that
the drive to the transformer is effectively doubled over a single
amplifier arrangement. This application takes advantage of the
ability of the OP183 to drive capacitive loads and to save power
in single-supply applications.
OFFSET ADJUST
Figure 33 shows how the offset voltage of the OP183 can be
adjusted by connecting a potentiometer between Pins 1 and 5,
and connecting the wiper to VEE. The recommended value for
the potentiometer is 10 kΩ. This will give an adjustment range
of approximately ±1 mV. If a larger adjustment span is desired, a
50 kΩ potentiometer will yield a range of ±2.5 mV.
300pF
37.4kΩ
VCC
20kΩ
0.1μF
RxA
7
3
A1
OP183
VOS
6
OP183
0.0047μF
20kΩ
4
2
5
VEE
3.3kΩ
1
00292-033
OP183
A2
475Ω
22.1kΩ
0.1μF
TxA
Figure 33. OP183 Offset Adjust
20kΩ
0.33μF
750pF 20kΩ
PHASE REVERSAL
20kΩ
2.5V
5 V ONLY STEREO DAC FOR MULTIMEDIA
The low noise and single-supply capability of the OP183 are
ideally suited for stereo DAC audio reproduction or sound
synthesis applications, such as multimedia systems. Figure 35
shows an 18-bit stereo DAC output setup that is powered from a
single 5 V supply. The low noise preserves the 18-bit dynamic
range of the AD1868.
The OP183 can be used in a single supply direct access
arrangement (DAA) as shown in Figure 34. This figure shows a
portion of a typical DAA capable of operating from a single 5 V
supply; with minor modifications it should also work on 3 V
supplies. Amplifiers A2 and A3 are configured so that the
transmit signal TxA is inverted by A2 and not inverted by A3.
2
3
4
5
6
7
8
VBL
LL
DL
CK
16-BIT
DAC
18-BIT
SERIAL
REG.
VOL
VREF
DGND
VBR
14
7.68kΩ
OP183
9.76kΩ
2
16-BIT
DAC
220μF
+ –
LEFT
CHANNEL
47kΩ OUTPUT
220μF
+ –
RIGHT
CHANNEL
47kΩ OUTPUT
4
100pF
7.68kΩ
VREF
11
VOR
1
330pF
13
AGND 12
18-BIT
SERIAL
REG.
8
3
15
DR
LR
16
7.68kΩ
10
100pF
VS 9
7.68kΩ
9.76kΩ
6
330pF
OP183
5
Figure 35. 5 V Only 18-Bit Stereo DAC
Rev. D | Page 13 of 16
7
00292-035
AD1868
VL
A3
Figure 34. Direct Access Arrangement
DIRECT ACCESS ARRANGEMENT
1
OP183
REF
00292-034
The OP183 is protected against phase reversal as long as both of
the inputs are within the range of the positive supply and the
negative supply −0.6 V. If there is a possibility of either input
going beyond these limits, however, the inputs should be
protected with a series resistor to limit input current to 2 mA.
OP183
3 V 50 HZ/60 HZ ACTIVE NOTCH FILTER WITH
FALSE GROUND
LOW VOLTAGE HEADPHONE AMPLIFIERS
Figure 36 shows a stereo headphone output amplifier for the
AD1849 16-bit SoundPort® Stereo Codec device. The
pseudoreference voltage is derived from the common-mode
voltage generated internally by the AD1849, thus providing a
convenient bias for the headphone output amplifiers.
5kΩ
VREF
5V
10μF
LOUT1L 21
10kΩ
16Ω 220μF
OP183
L VOLUME
CONTROL
47kΩ
HEADPHONE
LEFT
AD1849
Figure 38 shows a 50 Hz/60 Hz active notch filter for
eliminating line noise in patient monitoring equipment. It has
several kilohertz bandwidth and is not sensitive to false-ground
perturbations. The simple false-ground circuit shown achieves
good rejection of low frequency interference using standard offthe-shelf components.
5V
R2
2.67kΩ
OP183
VREF
3V
R1
2.67kΩ
2
CMOUT 19
4
A1
10kΩ
LOUT1R
20
10μF
16Ω 220μF
OP183
R VOLUME
CONTROL
47kΩ
HEADPHONE
RIGHT
VIN
VREF
3
5V
OP183
A3
17 MINL
50Ω
A2
R5
1.33kΩ
(2.67kΩ ÷ 2)
C4
1μF
R10
25kΩ
1
7
VO
R7
1kΩ
R8
1kΩ
Q = 0.75
R12
70Ω
NOTE:
FOR 50Hz APPLICATIONS
CHANGE R1–R4 TO 3.1Ω
AND R5 TO 1.58Ω (3.16Ω ÷ 2).
0.75V
C6
1μF
4
10kΩ
10μF
C5
0.015μF
3V
R9
75kΩ
The OP183 is ideally suited as a low noise microphone preamp
for low voltage audio applications. Figure 37 shows a gain of 100
stereo preamp for the AD1849 16-bit SoundPort Stereo Codec
chip. The common-mode output buffer serves as a phantom
power driver for the microphones.
R4
2.67kΩ
R11
10kΩ
LOW NOISE MICROPHONE AMPLIFIER FOR
MULTIMEDIA
OP183
Figure 38. 3 V Supply 50 Hz/60 Hz Notch Filter with Pseudo Ground
Amplifier A3 biases A1 and A2 to the middle of their input
common-mode range. When operating on a 3 V supply, the
center of the common-mode range of the OP183 is 0.75 V. This
notch filter effectively squelches 60 Hz pickup at a filter Q of
0.75. To reject 50 Hz interference, change the resistors in the
twin-T section (R1 through R5) from 2.67 kΩ to 3.16 kΩ.
20Ω
10kΩ
AD1849
100Ω
The filter section uses OP183 op amps in a twin-T
configuration whose frequency selectivity is very sensitive to
the relative matching of the capacitors and resistors in the twinT section. Mylar is the material of choice for the capacitors, and
the relative matching of the capacitors and resistors determines
the filter’s pass-band symmetry. Using 1% resistors and 5%
capacitors produces satisfactory results.
5V
19 CMOUT
1/2
OP219
100Ω
20Ω
10kΩ
10μF
50Ω
OP183
18 MINR
10kΩ
00292-037
RIGHT
ELECTRET
CONDENSER
MIC
INPUT
C3
1μF
(1μF × 2)
OP183
Figure 36. Headphone Output Amplifier for Multimedia Sound Codec
LEFT
ELECTRET
CONDENSER
MIC
INPUT
R3
2.67kΩ
00292-036
OPTIONAL
GAIN
OP183
6
8
R6
10kΩ
5kΩ
1kΩ
C2
1μF
1
5
3
C1
1μF
00292-038
OPTIONAL
GAIN
1kΩ
To process ac signals, it may be easier to use a false-ground bias
rather than the negative supply as a reference ground. This
would reject the power line frequency interference which can
often obscure low frequency physiological signals, such as heart
rates, blood pressures, EEGs, and ECGs.
Figure 37. Low Noise Stereo Microphone Amplifier for
Multimedia Sound Codec
Rev. D | Page 14 of 16
OP183
LOW VOLTAGE FREQUENCY SYNTHESIZER FOR
WIRELESS TRANSCEIVER
3V
CRYSTAL
OP183
REFERENCE
OSCILLATOR
Figure 39 shows a typical application in a radio transceiver. The
phase noise performance of the synthesizer depends on low
noise contribution from each component in the loop as the
noise is amplified by the frequency division factor of the
prescaler.
PHASE
DETECTOR
V
RF CONTROL
OUT VCO
÷
PRESCALER
00292-039
The low noise and low voltage operation capability of the
OP183 serves well for the loop filter of a frequency synthesizer.
900MHz
Figure 39. Low Voltage Frequency Synthesizer for a Wireless Transceiver
The resistors used in the low-pass filter should be of low to
moderate values to reduce noise contribution due to the input
bias current as well as the resistors themselves. The filter cutoff
frequency should be chosen to optimize the loop constant.
7
QB9
RB4
QB10
RB5
RB6
QB11
RB3
Q7
QB6
R1
QB7
Q8
Q6
Q5
JB1
2
Q12
QD2
R2
Q1
R9
QB8
Q2
CC2
3
QD1
CC3
Z1
R8
6
CF1
QB5A
Q3
R5
Q4
QD3
CB1
QB3
R7
R10
QB2
RB2
CO
5
1
A
R3A
R11
QB13
QB1
RB1
R4A
R3LT
R3AT
R3B
CC1
R4B
R4AT
R4LT
Q10
Q11
QB14
QB12
4
Figure 40. OP183 Simplified Schematic
Rev. D | Page 15 of 16
00292-040
QB4
B
OP183
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
8
4.00 (0.1574)
3.80 (0.1497) 1
5
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2440)
4 5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
COPLANARITY
SEATING 0.31 (0.0122)
0.10
PLANE
0.50 (0.0196)
× 45°
0.25 (0.0099)
8°
0.25 (0.0098) 0° 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Figure 41. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
S-Suffix
Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model
OP183GS
OP183GS-REEL
OP183GS-REEL7
OP183GSZ 1
OP183GSZ-REEL1
OP183GSZ-REEL71
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
1
Z = Pb free part.
©2005 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
C00292-0-5/05(D)
Rev. D | Page 16 of 16
Package Option
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)