AVX SM055C185MHN240

www.avx.com
AVX Advanced Ceramic Capacitors
for Power Supply, High Voltage
and Tip and Ring Applications
Version 10.5
Contents
Introduction – Application Specific MLCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
SMPS (Switch Mode Power Supply) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
SM Style Stacked MLC Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28
SMX High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-32
CH/CV Style Vertical/Horizontal Mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-38
TurboCapTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-41
MH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
RH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43-44
Custom Lead Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Assembly Guidelines (SM, CH, CV & RH Styles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-47
SK Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48-49
SE Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-51
CECC Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
High Voltage MLC Leaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ESCC Qualified SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53-58
HV Style (US Preferred Sizes) DIP Lead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-61
CH/CV Style (European Preferred Sizes)
Vertical/Horizontal Mount, DIP & Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-65
SV Style Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66-68
MLC Chip Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Basic Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-73
Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74-78
High Voltage MLC Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-80
High Voltage MLCC Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81-82
High Voltage MLC Chips FLEXITERM® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-84
High Voltage MLC Leaded Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85-86
Hi-Q® High RF Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87-91
Tip & Ring Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92-93
Tip & Ring Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-95
MLC Chips, Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96-97
Single-In-Line Packages (SIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-99
Discoidal MLC Feed-Through Capacitors and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DC Style (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101-103
XB Style (European Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104-107
XF Style (Feed-Through Discoidal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104-107
Filtered Arrays XD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Baseline Management – BS9100 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Advanced Application Specific Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Application Specific MLCs
Problem Solving at the Leading Edge
As the world’s leading manufacturer and innovator in
application specific multilayer ceramic (ASMLC) capacitors,
AVX offers a unique technological and production capability
to the field. AVX actively pursues and satisfies the high
reliability and custom needs of a variety of governmental
and industrial customers. Successful involvement in
missile programs, extensive work in ultra-high reliability
telecommunications and sophisticated capacitor design
applications – all have established AVX as the source for
advanced and high reliability ASMLC capacitors. Advanced
Products are ISO9001 certified organizations for design
and manufacturing of MLC capacitors.
AVX Advanced Application Capacitors are organized around
three distinct functions:
• Application Specific Development Laboratories
• Advanced Manufacturing Facilities
• Quality Control
For designs or applications not listed please consult Advanced Products.
Olean, NY, USA - 716-372-6611
Coleraine, Northern Ireland - ++44(0) 28703 44188
St. Appollinaire, France - ++33(0) 38071 7400
International Space Station
2
Defense / Military
Telecommunications
Undersea Cable Repeater
Application Specific MLCs
Problem Solving at the Leading Edge
APPLICATION SPECIFIC
DEVELOPMENT LABORATORIES
Initially, AVX technical personnel communicate with customers
to learn the requirements that the new capacitor must satisfy.
The personnel involved are well-versed in material, manufacturing and electronic application technologies. They study the
overall application and the environment in which the part will
function. Programs are begun for selection of appropriate
ceramic formulations, metal systems and designs. These programs yield a detailed technology profile from which mechanical design and process specifications follow.
ADVANCED
MANUFACTURING FACILITIES
The ability and reputation of AVX in high reliability MLCs is due
in part to the company’s complete control over all phases of
the production process. This includes powder processing,
tape casting and/or wet build-up, green MLC assembly and
final capacitor assembly/packaging. Recent renovations at
AVX have upgraded green MLC assembly areas to certified
clean room levels.
A favorite feature with many customers of AVX is our ability
to work with customers in solving special packaging
requirements. This includes special lead configurations and
multiple chip packaging that simplifies the mounting of
specialty capacitors. To the customer, the total capability of
AVX assures a high level of consistent control at all steps of
production.
QUALITY CONTROL
The Q. A. organization is an integral part of manufacturing.
Quality Control tests the product of each manufacturing
process, detects flaws or variations from the narrow
acceptable standard and isolates the cause of the deviation.
Corrective action can then be taken to return the process to
within its predetermined control levels.
Quality Assurance has large and well-equipped laboratories
where statistical samples are evaluated and tested to
determine failure rates, characterize products and assure
compliance with specification. Both destructive and nondestructive testing are used, including advanced ultrasonic
inspection equipment for non-destructive inspection of an
entire production quantity.
Put the experience, technology and facilities of the leading
company in multilayer ceramics to work for you. No other
source offers the unique combination of capability and
commitment to advanced application specific components.
3
SMPS Capacitors
SMPS Capacitor Applications
FOREWORD
Output Filter Capacitor
High speed switch mode power supplies place high
demands on the capacitors used in the input or output filters
of Resonant DC-DC or Pulse Modulated DC-DC converters.
AVX Corporation has developed several multilayer ceramic
(MLC) capacitor styles for these switcher applications. These
capacitors have been extensively tested and characterized
and found to have almost ideal performances to meet the
stringent requirements of these applications.
The output from the switching circuit of a Switcher consists
of current on and off. From an elevated DC reference, this
current is an AC ripple additive on the DC. In order to smooth
this ripple effect, a filter circuit (usually inductive input) is built
to allow a storage of energy to take place during the rising
ripple portion and to allow a discharge of energy during the
falling ripple portion.
The ESR and ESL of the capacitor contribute to the net ripple
effect. The output filter capacitor is chosen for ESR, and with
previous types of capacitors, multiples were used in an
attempt to lower the net ESR. The MLC offers ESRs well
below the minimum allowable to lower noise levels, thus
eliminating the need for multiple units.
Input Filter Capacitor
The Input Filter capacitor is required to perform two functions:
To supply an unrestricted burst of current to the power supply
switch circuitry and to not only do it without generating any
noise, but to help suppress noise generated in the switch
circuitry. It is, in effect, a very large decoupling capacitor. It
must have very low ESL, capabilities for very high dv/dt, as
well as di/dt and it must have a very low ESR to eliminate
power loss.
The distance from the primary DC source, as well as the type
of capacitor used in this source (usually electrolytics),
presents a very high inductance to the input of the Switcher.
The MLC input capacitor, with its excellent ESL and ESR
characteristics, is located physically close to the switch
circuitry. Repetitive peak currents, inherent with the Switcher
design, require a high ripple capability, as well as high surge
capability for transients, both induced and conducted from
other sources. MLCs have both these capabilities.
4
Other MLC Capacitors for
SMPS Applications
AVX also manufactures coupling, decoupling, resonant and
snubber capacitors for SMPS applications. Contact AVX for
Application Specific S.M.P.S. capacitor requirements.
Olean, NY, USA
716-372-6611
Coleraine, Northern Ireland
++44(0) 28703 44188
St. Apollinaire, France
++33(0) 38071 7400
SMPS Capacitors
Capacitor Selection and Performance
ASMLC CAPACITOR SELECTION
SMPS Design Information (SM, CH, CV, RH and SK Styles)
Absolute Maximum Capacitance ESL
Absolute Maximum Output Capacitance
Assuming no ESR - Capacitive Induced Ripple
Assuming no ESL and no ESR
25
2 MHz
Load Current - Amps
1 MHz
50 mV Noise
Due to
Capacitance
20
Load Current - Amps
25
15
500 KHz
10
5
250 KHz
DIP Leads
SK Series
20
50 mV Noise
Due to ESL
15
250 KHz
10
500 KHz
5
1 MHz
2 MHz
0
0
0
5
10
15
Maximum Output Filter Capacitance
( ␮F)
0
20
5
10
15
Maximum Output Filter Capacitance ESL
(nH)
20
Absolute Maximum Capacitance ESR
Assuming no ESL - Capacitive Induced Ripple
50 mV Noise
Due to ESR
20
15
5
SK Series
10
DIP Leads
Load Current - Amps
25
0
0
10
20
30
Maximum Output Filter Capacitance ESR
(mOhm)
40
ASMLC CAPACITOR PERFORMANCE
Capacitance as Measured from dv/dt Slope
200 mA/ns Current Pulse
Measurement starts after Inductive Ring Decay
16
14
AI Electrolytic
15 ␮ F
12
Capacitance ( ␮F)
MLC SM02
10 ␮ F
10
Wet Ta
10 ␮ F
8
Solid Ta
5.6 ␮ F
6
4
MLC SM04
4.7 ␮ F
2
0
10 -9
10 -8
10 -7
10 -6
10 -5
Time (Seconds)
5
SMPS Capacitors
Capacitor Performance
AC Ripple Capability
Due to the wide range of product offering in this catalog, the
AC ripple capabilities for switch mode power supply capacitors
and high voltage capacitors are provided in the form of IBM
compatible software package called SpiCalci. It is available
free from AVX and can be downloaded for free from AVX
website: www.avx.com.
SpiCalci program will provide answers to most of the design
engineers’ questions on critical parameters for their specific
applications:
• Equivalent Series Resistance
- function of frequency and temperature
• Equivalent Series Inductance
- function of design
• Self Resonant Frequency
f = 1/ (2 x π
L x C)
• Thermal Characteristics
- function of design
• AC Ripple Capabilities
- function of frequency, temperature and design
Examples of Product Performance
TYPICAL ESR -vs- Frequency
MAXIMUM RMS CURRENT FOR 50 VDC, CH - X7R
FOR SM04 STYLE CAPACITORS
4.7μF
9μF
1μF
@ 100 KHz & 25ⴗC Ambient
ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION
50
10.000
45
40
35
A RMS
ESR (Ohms)
1.000
0.100
30
25
20
15
0.010
10
5
0.001
1.0
10.0
100.0
Frequency (kHz)
1000.0
0
6.8
CH41
8.7
CH51
10.4
CH61
16.5
11.9
CH71 CH76
STYLE
29.9
CH81
26.6
CH86
28.8
CH91
EXAMPLE (CH ONLY)
MAXIMUM RMS CURRENT FOR 50 WVDC, SM - X7R
MAXIMUM RMS CURRENT FOR 25 WVDC, SK - Z5U
@ 100 KHz & 25ⴗC Ambient
ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION
@ 100 KHz & 25ⴗC Ambient
ASSUMING MAX. CAP. FOR EACH STYLE
50
12
100 KHz ARMS
45
100 KHz ARMS
40
35
30
25
20
8
6
4
2
0
1.7
SK01
15
10
4.5
SK04
6.2
SK05
7.4
7.7
SK06 SK07
STYLE
EXAMPLE (SK ONLY)
5
0
36.8
SM01
28.3
SM02
22.7
9.7
SM03
SM04
STYLE
EXAMPLE (SM ONLY)
6
10
5.7
SM05
33.8
SM06
11.0
SK08
6.7
SK09
8.7
SK10
SMPS Capacitors
Application Information on SupraCap®
SUPRACAP® - LARGE CAPACITANCE VALUE MLCs
High speed switch mode power supplies require extremely
low equivalent series resistance (ESR) and equivalent series
inductance (ESL) capacitors for input and output filtering.
These requirements are beyond the practical limits of
electrolytic capacitors, both aluminum and tantalums, but
are readily met by multilayer ceramic (MLCs) capacitors
(Figure 1).
Theoretical SMPS’s output filter capacitor values are in the
range of 6-10 μF/amp at 40KHz and drop to less than
1 μF/amp at 1MHz. Most electrolytic applications use 10 to
100 times the theoretical value in order to obtain lower ESR
from paralleling many capacitors. This is not necessary with
SupraCap® MLC capacitors which inherently have ESRs
in the range of milliohms. These extremely low values of
ESR mean low ripple voltage and less self-heating of
the capacitor.
ESR Comparison of Different Capacitor Technologies
ESR -vs- Frequency
100μF Filter Capacitors
1.E+00
ESR (⍀)
1.E-01
1.E-02
Output noise spikes are reduced by lowering the filter capacitance self-inductance. The ripple current is a triangle wave
form with constant di/dt except when it changes polarity,
then the di/dt is very high. The noise voltage generated by
the filter capacitor is
VNoise = L Capacitor di/dt
AVX SupraCap® devices have inductance value less than 3nH.
Figure 2 compares a 5.6 μF MLC to a 5.6 μF tantalum which
was specially designed for low ESR and ESL. When subjected
to a di/dt of 200 mA/ns the tantalum shows an ESR of 165
mΩ and an ESL of 18nH versus the MLC’s 4 mΩ and 0.3 nH.
These performance differences allow considerable reduction
in size and weight of the filter capacitor.
Additionally, MLCs are compatible with surface mount
technology reflow and assembly techniques which is the
desirable assembly for conversion frequencies exceeding
1 MHz. Electrolytic capacitors (both aluminum and tantalum)
are not compatible with normal vapor phase (VPS) or infrared
(IR) reflow temperatures (205-215°C) due to electrolyte and
structural problems. AVX SupraCap® devices are supplied
with lead frames for either thru-hole or surface mount
assembly. The lead frames act as stress relief for differences
in coefficients of expansion between the large ceramic chip
(10 ppm/°C) and the PC boards.
50nS
TPOS-7
50mV
DSW 16
Ta
1.E-03
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
Frequency (Hz)
Aluminum Electrolytic 100μF / 50V
Low ESR Solid Tantalum 100μF / 10V
Solid Aluminum Electrolytic 100μF / 16V
MLCC 100μF / 50V
MLC
Figure 1
CSW 1
50mV
⌬V=2.0mV
50nS
VZR-0.2
⌬T=25.5nS
Figure 2
7
SMPS Stacked MLC Capacitors
(SM Style) Technical Information on SMPS Capacitors
ELECTRICAL SPECIFICATIONS
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Dielectric Withstanding Voltage 25°C (Flash Test)
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging
current.
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less.
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @
600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.
Typical ESR Performance (mΩ)
ESR @ 10KHz
ESR @ 50KHz
ESR @ 100KHz
ESR @ 500KHz
ESR @ 1MHz
ESR @ 5MHz
ESR @ 10MHz
HOW TO ORDER
SM0
1
Aluminum
Electrolytic
100μF/50V
300
285
280
265
265
335
560
Solid Aluminum
Electrolytic
100μF/16V
29
22
20
18
17
17
22
MLCC
SMPS
100μF/50V
3
2
2.5
4
7
12.5
20
MLCC
SMPS
4.7μF/50V
66
23
15
8
7.5
8
14
AVX Styles: SM-1, SM-2, SM-3, SM-4, SM-5, SM-6
7
C
106
AVX Style
Size
Voltage Temperature
Capacitance
SM0 = Uncoated
See
50V = 5 Coefficient
Code
SM5 = Epoxy Coated Dimensions 100V = 1
C0G = A
(2 significant digits
chart
200V = 2
X7R = C
+ number of zeros)
500V = 7
Z5U = E
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1μF = 105
10 μF = 106
100 μF = 107
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications
across AC supply mains or AC line filtering with polarity reversal. Contact plant
for recommendations.
8
Low ESR
Solid Tantalum
100μF/10V
72
67
62
56
56
72
91
*Hi-Rel
M
A
N
650
Capacitance
Tolerance
C0G:
J = ±5%
K = ±10%
M = ±20%
Test Level
A = Standard
B = Hi-Rel*
Termination
N = Straight Lead
J = Leads formed in
L = Leads formed out
P = P Style Leads
Z = Z Style Leads
Height
Max
Dimension “A”
120 = 0.120"
240 = 0.240"
360 = 0.360"
480 = 0.480"
650 = 0.650"
X7R:
K = ±10%
M = ±20%
Z = +80%, -20%
Z5U:
M = ±20%
Z = +80%, -20%
P = GMV (+100, -0%)
screening for C0G and X7R only. Screening consists of 100% Group A
(B Level), Subgroup 1 per MIL-PRF-49470.
SMPS Stacked MLC Capacitors
(SM Style) Surface Mount and Thru-Hole Styles (SM0, SM5)
CHIP SEPARATION
0.254 (0.010) TYP.
D
CHIP SEPARATION
0.254 (0.010) TYP.
CAPACITOR
E
E
1.651 ± 0.254
(0.065 ± 0.010)
B
1.397 (0.055)
±0.254 (0.010)
A
R 0.508
(0.020)
3 PLACES
B
2.540 ± 0.254
(0.100 ± 0.010)
4.191 ± 0.254
(0.165 ± 0.010)
DETAIL A
6.350 (0.250) MIN
0.254
(0.010)
TYP.
0.508 (0.020) TYP.
2.54 (0.100) TYP.
C
2.54 (0.100) MAX.
0.635 (0.025) MIN.
C
0.254
(0.010)
TYP.
1.016 ± 0.254
(0.040 ± 0.010)
DETAIL A
“N” STYLE LEADS
“P” STYLE LEADS
CHIP SEPARATION
0.254 (0.010) TYP.
CHIP SEPARATION
0.254 (0.010) TYP.
D
E
E
0.254 (0.010)
RAD. (TYP.)
B
0.254 (0.010)
RAD. (TYP.)
1.397 (0.055)
±0.254 (0.010)
A
0.254 (0.010)
TYP.
1.905 (0.075)
±0.635 (0.025)
TYP.
1.778 (0.070)
0.508 (0.020) TYP.
2.54 (0.100) TYP.
±0.254 (0.010)
2.54 (0.100) MAX.
0.635 (0.025) MIN.
C
1.778 (0.070)
±0.254 (0.010)
“J” STYLE LEADS
C
“L” STYLE LEADS
1.397 (0.055)
±0.254 (0.010)
A
0.254 (0.010) TYP.
B
E
RAD.
0.254
(0.010)
(TYP)
1.270 ± 0.254
(0.050 ± 0.010)
CHIP SEPARATION
0.254 (0.010) TYP.
D
0.254 (0.010)
TYP.
1.905 (0.075)
±0.635 (0.025)
TYP.
2.794 ± 0.254
(0.110 ± 0.010)
6.35
(0.250)
MIN.
1.778 ±0.254
(0.070 ± 0.010)
C
0.508 (0.020) TYP.
2.54 (0.100) TYP.
3.048 ± 0.381
(0.120 ± 0.015)
DETAIL B
2.54 (0.100) MAX.
0.635 (0.025) MIN.
DETAIL B
“Z” STYLE LEADS
DIMENSIONS
Style
SM-1
SM-2
SM-3
SM-4
SM-5
SM-6
A (max.)
millimeters (inches)
B (max.)
For “N” Style Leads: “A” Dimension Plus 1.651 (0.065)
See page 10 for
For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080)
maximum “A”
For “P” Style Leads: “A” Dimension Plus 4.445 (0.175)
Dimension
For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120)
C ±.635 (±0.025)
11.4
20.3
11.4
10.2
6.35
31.8
(0.450)
(0.800)
(0.450)
(0.400)
(0.250)
(1.250)
D ±.635 (±0.025)
52.1
38.4
26.7
10.2
6.35
52.1
(2.050)
(1.510)
(1.050)
(0.400)
(0.250)
(2.050)
E (max.)
12.7
22.1
12.7
11.2
7.62
34.3
(0.500)
(0.870)
(0.500)
(0.440)
(0.300)
(1.350)
No. of Leads
per side
20
15
10
4
3
20
Note: For SM5 add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E
9
SMPS Stacked MLC Capacitors
(SM Style)
Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm
SM01 _ _ _ _ _ _ AN120
AVX
STYLE
SM02 _ _ _ _ _ _ AN120
SM03 _ _ _ _ _ _ AN120
SM04 _ _ _ _ _ _ AN120
SM05 _ _ _ _ _ _ AN120
SM06 _ _ _ _ _ _ AN120
50V
100V 200V 500V
50V
100V 200V 500V
50V
.09
.16
.13
.07
.02
.05
.04
.02
.01
3.2 2.4
1.3
1.3
7.5
1.8
1.1
.40
2.8
.68
.40
.16
80
40
24
9.4
6.0 – –
12
4.6
3.0 – – 4.6
1.8
.72 – – 260 140
92
––
50V
100V 200V 500V
50V
100V 200V 500V
50V
100V 200V 500V
C0G
1.0
.70
.40
.18
1.2
1.0
.60
.26
.47 .40
.20
X7R
27
12
7.0
2.6
41
18
11
4.0
18
6.0
3.6
Z5U
84
32
12
– – 110
46
34
––
40
15
100V 200V 500V
.50
Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm
SM01 _ _ _ _ _ _ AN240
AVX
STYLE
SM02 _ _ _ _ _ _ AN240
SM03 _ _ _ _ _ _ AN240
SM04 _ _ _ _ _ _ AN240
SM05 _ _ _ _ _ _ AN240
SM06 _ _ _ _ _ _ AN240
50V
100V 200V 500V
50V
100V 200V 500V
50V
.18
.32
.26
.14
.05
.10
.08
.05
.02
6.4 4.8
2.6
1.0
7.2
2.6
15
3.6
2.2
.80
5.6
1.3
.80
.32
160 80
48
18
12
––
24
9.2
6.0 – – 9.2
3.6
1.4 – – 520 280 180 – –
50V
100V 200V 500V
50V
100V 200V 500V
50V
2.0
1.4
.80
.36
2.4
2.0
1.2
.52
1.0 .80
.40
X7R
54
24
14
5.2
82
36
22
8.0
36
12
Z5U
160
64
24
– – 230
92
68
––
80
30
C0G
100V 200V 500V
100V 200V 500V
Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm
SM01 _ _ _ _ _ _ AN360
AVX
STYLE
SM02 _ _ _ _ _ _ AN360
SM03 _ _ _ _ _ _ AN360
100V 200V 500V
SM04 _ _ _ _ _ _ AN360
SM05 _ _ _ _ _ _ AN360
SM06 _ _ _ _ _ _ AN360
50V
100V 200V 500V
50V
100V 200V 500V
50V
50V
100V 200V 500V
50V
100V 200V 500V
50V
C0G
3.0
2.1
1.2
.54
3.6
3.0
1.8
.78
1.5 1.2
.60
.27
.48
.39
.21
.07
.15
.12
.07
.03
9.6 7.2
100V 200V 500V
3.9
1.5
X7R
82
36
21
7.8 120
54
33
12
54
18
10
3.9
22
5.4
3.3
1.2
8.2
2.0
1.2
.48
240 120
72
28
Z5U
250
96
36
– – 350 130 100 – – 120 45
18
––
36
13
9.0 – –
13
5.4
2.1 – – 780 430 270 – –
Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm
SM01 _ _ _ _ _ _ AN480
AVX
STYLE
SM02 _ _ _ _ _ _ AN480
SM03 _ _ _ _ _ _ AN480
SM04 _ _ _ _ _ _ AN480
SM05 _ _ _ _ _ _ AN480
SM06 _ _ _ _ _ _ AN480
50V
100V 200V 500V
50V
100V 200V 500V
50V
100V 200V 500V
.36
.64
.52
.28
.10
.20
.16
.10
.04
12
9.6
5.2
2.0
14
5.2
30
7.2
4.4
1.6
10
2.7
1.6
.64
320 160
96
37
24
––
48
18
12
––
18
7.2
2.8 – – 1000 570 360 – –
50V
100V 200V 500V
50V
100V 200V 500V
50V
100V 200V 500V
C0G
4.0
2.8
1.6
.72
4.8
4.0
2.2
1.0
2.0 1.6
.80
X7R
110
48
28
10
160
72
44
16
72
24
Z5U
330 120
48
– – 470 180 130 – – 160 60
Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm
SM01 _ _ _ _ _ _ AN650
AVX
STYLE
SM02 _ _ _ _ _ _ AN650
SM03 _ _ _ _ _ _ AN650
SM04 _ _ _ _ _ _ AN650
SM05 _ _ _ _ _ _ AN650
SM06 _ _ _ _ _ _ AN650
50V
100V 200V 500V
50V
100V 200V 500V
50V
.47
.80
.65
.35
.12
.25
.20
.12
.05
16
6.5
2.5
18
6.5
36
9.0
5.5
2.0
12
3.4
2.0
.80
400 200 120
47
30
––
60
23
15
––
23
9.0
3.6 – – 1300 720 460 – –
50V
100V 200V 500V
50V
100V 200V 500V
50V
C0G
5.0
3.5
.90
6.0
5.0
3.0
1.3
2.5 2.0
1.0
X7R
130
60
35
13
200
90
55
20
90
30
Z5U
420 160
60
– – 590 230 170 – – 200 75
10
2.0
100V 200V 500V
100V 200V 500V
12
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470
AVX IS QUALIFIED TO MIL-PRF-49470/1
AND MIL-PRF-49470/2
DSCC drawing 87106 capacitors. MIL-PRF-49470 specification was created to produce a robust replacement for
DSCC 87106. MIL-PRF-49470 offers two product levels.
Level “B” is the standard reliability. Level “T” is the high reliability suitable for space application.
AVX is qualified to supply MIL-PRF-49470/1 parts. These
are unencapsulated ceramic dielectric, switch mode power
supply capacitors. AVX is also qualified to supply MIL-PRF49470/2 parts. These are encapsulated ceramic dielectric,
switch mode power supply capacitors.
PLEASE CONTACT THE DSCC WEBSITE
[http://www.dscc.dla.mil/Programs/MilSpec/DocSearch.asp]
for details on testing, electrical, mechanical and part number
options.
PLEASE CONTACT THE DSCC WEBSITE
[http://www.dscc.dla.mil/Programs/QmlQpl/] for the latest
QPL (Qualified Products List).
The SMPS capacitors are designed for high current, highpower and high-temperature applications. These capacitors
have very low ESR (Equivalent Series Resistance) and ESL
(Equivalent Series Inductance). SMPS Series capacitors offer
design and component engineers a proven technology
specifically designed for programs requiring high reliability
performance in harsh environments.
MIL-PRF-49470 SMPS Series capacitors are primarily used
in input/output filters of high-power and high-voltage power
supplies as well as in bus filters and DC snubbers for high
power inverters and other high-current applications. These
capacitors are available with through-hole and surface
mount leads. The operating temperature is -55°C to +125°C.
The MIL-PRF-49470 capacitors are preferred over the
HOW TO ORDER
M49470
R
01
474
K
C
N
Performance
specification
indicating
MIL-PRF-49470
Characteristic
Performance
specification
sheet number
01 – indicating
MIL-PRF-49470/1
02 – indicating
MIL-PRF-49470/2
Capacitance
Capacitance
Tolerance
Rated Voltage
Configuration
(Lead Style)
For “T” level parts, replace the “M” in the pin with “T” (for
example
M49470R01474KCN
becomes
T49470R01474KCN) MIL-PRF-49470 contains additional
capacitors that are not available in 87106, such as additional lead configurations and lower profile parts.
On the pages to follow is the general dimensional outline
along with a cross reference from 87106 parts to MIL-PRF49470 parts.
11
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470/1
MIL-PRF-49470/1
MIL-PRF-49470/1 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),
standard reliability and high reliability unencapsulated, Style PS01.
D
E
A
See
B
See Note 4
Note 4
1.397 ±0.254
(0.055 ±0.010)
SEATING PLANE
See Note 3
6.35 (0.250) MIN
0.254 ±0.05
(0.010 ±0.002)
See Note 6
2.54 (0.100) MAX
0.635 (0.025) MIN
(See Note 5)
2.54 (0.100) TYP
0.508 ±0.050
(0.020 ±0.002)
6.35 (0.250)
MIN
LEAD STYLE N AND A
E
E
0.254 (0.010)
RAD (TYP)
1.27 (0.050) MIN
C
L
C
LEAD STYLE J AND C
0.254 (0.010)
RAD (TYP)
L
1.27 (0.050) MIN
C
CIRCUIT DIAGRAM
LEAD STYLE L AND B
DIMENSIONS:
millimeters (inches)
D
C ±0.635 (±0.025)
1
11.4 (0.450)
49.5 (1.950)
52.7 (2.075)
12.7 (0.500)
20
2
20.3 (0.800)
36.8 (1.450)
40.0 (1.535)
22.1 (0.870)
15
3
11.4 (0.450)
24.1 (0.950)
27.3 (1.075)
12.7 (0.500)
10
4
10.2 (0.400)
8.89 (0.350)
10.8 (0.425)
11.2 (0.440)
4
5
6.35 (0.250)
6.20 (0.224)
6.97 (0.275)
7.62 (0.300)
3
6
31.8 (1.250)
49.5 (1.950)
52.7 (2.075)
34.3 (1.350)
20
Min.
Max.
E (max.)
Number of
Leads
per side
Case Code
NOTES:
1. Dimensions are in millimeters (inches)
2. Unless otherwise specified, tolerances are 0.254 (±0.010).
3. Lead frame configuration is shown as typical above the seating plane.
4. See table I of MIL-PRF-49470/1 for specific maximum A dimension. For maximum B dimension, add 1.65 (0.065) to
the appropriate A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage
rating.
5. For case code 5, dimensions shall be 2.54 (0.100) maximum and 0.305 (0.012) minimum.
6. Lead alignment within pin rows shall be within ±0.10 (0.005).
12
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470/2
MIL-PRF-49470/2
MIL-PRF-49470/2 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),
standard reliability and high reliability encapsulated, Style PS02.
D
E
A MAX
See Note 3
0.38 ±0.13
(0.015 ±0.005)
SEATING
PLANE
0.254 ±0.05
(0.010 ±0.002)
See Note 4
0.50 ±0.05
(0.020 ±0.002)
4.45 (0.175) MAX
1.02 (0.040) MIN
6.35 (0.250)
MIN
C
2.54 (0.100) TYP
LEAD STYLE N AND A
E
E
0.254 (0.010)
RAD (TYP)
L
0.254 (0.010)
RAD (TYP)
1.27 (0.050) MIN
L
1.27 (0.050) MIN
C
C
LEAD STYLE J AND C
CIRCUIT DIAGRAM
DIMENSIONS:
LEAD STYLE L AND B
millimeters (inches)
D ±0.635 (±0.025)
E (max)
Number of Leads
per side
Case Code
C ±0.635 (±0.025)
1
11.4 (0.450)
54.7 (2.155)
14.7 (0.580)
20
2
20.3 (0.800)
41.0 (1.615)
24.1 (0.950)
15
3
11.4 (0.450)
29.3 (1.155)
14.7 (0.580)
10
4
10.2 (0.400)
12.3 (0.485)
12.3 (0.485)
4
5
6.35 (0.250)
9.02 (0.355)
9.02 (0.355)
3
6
31.8 (1.250)
54.7 (2.155)
36.3 (1.430)
20
NOTES:
1. Dimensions are in millimeters (inches)
2. Unless otherwise specified, tolerances are 0.254 (±0.001).
3. See table I of MIL-PRF-49470/2 for specific maximum A dimension. For
all lead styles, the number of chips is determined by the capacitance and
voltage rating.
4. Lead alignment within pin rows shall be within ±0.10 (0.004).
13
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470
87106- MIL-PRF-49470 PIN AVX PART NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
14
M49470X01105KAN
M49470X01105MAN
M49470X01125KAN
M49470X01125MAN
M49470X01155KAN
M49470X01155MAN
M49470X01185KAN
M49470X01185MAN
M49470X01225KAN
M49470X01225MAN
M49470X01275KAN
M49470X01275MAN
M49470X01335KAN
M49470X01335MAN
M49470X01395KAN
M49470X01395MAN
M49470X01475KAN
M49470X01475MAN
M49470X01475KAA
M49470X01475MAA
M49470X01565KAN
M49470X01565MAN
M49470X01565KAA
M49470X01565MAA
M49470X01825KAN
M49470X01825MAN
M49470X01106KAN
M49470X01106MAN
M49470X01126KAN
M49470X01126MAN
M49470X01156KAN
M49470X01156MAN
M49470X01156KAA
M49470X01156MAA
M49470X01186KAN
M49470X01186MAN
M49470X01226KAN
M49470X01226MAN
M49470X01276KAN
M49470X01276MAN
M49470X01336KAN
M49470X01336MAN
M49470X01396KAN
M49470X01396MAN
M49470X01476KAN
M49470X01476MAN
M49470X01476KAA
M49470X01476MAA
M49470X01686KAN
M49470X01686MAN
M49470X01686KAA
M49470X01686MAA
M49470X01826KAN
M49470X01826MAN
M49470X01826KAA
M49470X01826MAA
M49470X01107KAN
M49470X01107MAN
M49470X01107KAA
M49470X01107MAA
M49470X01157KAN
M49470X01157MAN
SM055C105KHN120
SM055C105MHN120
SM055C125KHN120
SM055C125MHN120
SM055C155KHN240
SM055C155MHN240
SM055C185KHN240
SM055C185MHN240
SM055C225KHN240
SM055C225MHN240
SM055C275KHN360
SM055C275MHN360
SM055C335KHN360
SM055C335MHN360
SM055C395KHN480
SM055C395MHN480
SM055C475KHN480
SM055C475MHN480
SM045C475KHN240
SM045C475MHN240
SM055C565KHN650
SM055C565MHN650
SM045C565KHN240
SM045C565KHN240
SM045C825KHN360
SM045C825MHN360
SM045C106KHN480
SM045C106MHN480
SM045C126KHN480
SM045C126MHN480
SM045C156KHN650
SM045C156MHN650
SM035C156KHN240
SM035C156MHN240
SM035C186KHN240
SM035C186MHN240
SM035C226KHN360
SM035C226MHN360
SM035C276KHN360
SM035C276MHN360
SM035C336KHN360
SM035C336MHN360
SM035C396KHN480
SM035C396MHN480
SM035C476KHN650
SM035C476MHN650
SM025C476KHN240
SM025C476MHN240
SM015C686KHN480
SM015C686MHN480
SM025C686KHN360
SM025C686MHN360
SM015C826KHN480
SM015C826MHN480
SM025C826KHN360
SM025C826MHN360
SM015C107KHN650
SM015C107MHN650
SM025C107KHN480
SM025C107MHN480
SM025C157KHN650
SM025C157MHN650
CAP
(μF)
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
4.7
4.7
4.7
4.7
5.6
5.6
5.6
5.6
8.2
8.2
10
10
12
12
15
15
15
15
18
18
22
22
27
27
33
33
39
39
47
47
47
47
68
68
68
68
82
82
82
82
100
100
100
100
150
150
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE VOLT
CODE (VDC)
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
4
50
4
50
5
50
5
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
2
50
2
50
1
50
1
50
2
50
2
50
1
50
1
50
2
50
2
50
1
50
1
50
2
50
2
50
2
50
2
50
87106- MIL-PRF-49470 PIN AVX PART NUMBER
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
M49470X01187KAN
M49470X01187MAN
M49470X01227KAN
M49470X01227MAN
M49470X01277KAN
M49470X01277MAN
M49470X01684KBN
M49470X01684MBN
M49470X01824KBN
M49470X01824MBN
M49470X01105KBN
M49470X01105MBN
M49470X01125KBN
M49470X01125MBN
M49470X01155KBN
M49470X01155MBN
M49470X01185KBN
M49470X01185MBN
M49470X01225KBN
M49470X01225MBN
M49470X01225KBA
M49470X01225MBA
M49470X01275KBN
M49470X01275MBN
M49470X01335KBN
M49470X01335MBN
M49470X01335KBA
M49470X01335MBA
M49470X01395KBN
M49470X01395MBN
M49470X01475KBN
M49470X01475MBN
M49470X01565KBN
M49470X01565MBN
M49470X01685KBN
M49470X01685MBN
M49470X01825KBN
M49470X01825MBN
M49470X01825KBA
M49470X01825MBA
M49470X01126KBN
M49470X01126MBN
M49470X01156KBN
M49470X01156MBN
M49470X01186KBN
M49470X01186MBN
M49470X01226KBN
M49470X01226MBN
M49470X01276KBN
M49470X01276MBN
M49470X01276KBA
M49470X01276MBA
M49470X01336KBN
M49470X01336MBN
M49470X01336KBA
M49470X01336MBA
M49470X01396KBN
M49470X01396MBN
M49470X01396KBA
M49470X01396MBA
M49470X01476KBN
M49470X01476MBN
SM065C187KHN480
SM065C187MHN480
SM065C227KHN480
SM065C227MHN480
SM065C277KHN650
SM065C277MHN650
SM051C684KHN120
SM051C684MHN120
SM051C824KHN240
SM051C824MHN240
SM051C105KHN240
SM051C105MHN240
SM051C125KHN240
SM051C125MHN240
SM051C155KHN360
SM051C155MHN360
SM051C185KHN360
SM051C185MHN360
SM051C225KHN480
SM051C225MHN480
SM041C225KHN240
SM041C225MHN240
SM051C275KHN480
SM051C275MHN480
SM051C335KHN650
SM051C335MHN650
SM041C335KHN240
SM041C335MHN240
SM041C395KHN360
SM041C395MHN360
SM041C475KHN360
SM041C475MHN360
SM041C565KHN480
SM041C565MHN480
SM041C685KHN480
SM041C685MHN480
SM041C825KHN650
SM041C825MHN650
SM031C825KHN240
SM031C825MHN240
SM031C126KHN240
SM031C126MHN240
SM031C156KHN360
SM031C156MHN360
SM031C186KHN360
SM031C186MHN360
SM031C226KHN480
SM031C226MHN480
SM031C276KHN650
SM031C276MHN650
SM021C276KHN240
SM021C276MHN240
SM011C336KHN360
SM011C336MHN360
SM021C336KHN240
SM021C336MHN240
SM011C396KHN480
SM011C396MHN480
SM021C396KHN360
SM021C396MHN360
SM011C476KHN480
SM011C476MHN480
CAP
(μF)
180
180
220
220
270
270
0.68
0.68
0.82
0.82
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
2.2
2.2
2.2
2.2
2.7
2.7
3.3
3.3
3.3
3.3
3.9
3.9
4.7
4.7
5.6
5.6
6.8
6.8
8.2
8.2
8.2
8.2
12
12
15
15
18
18
22
22
27
27
27
27
33
33
33
33
39
39
39
39
47
47
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
VOLT
(VDC)
50
50
50
50
50
50
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470
87106- MIL-PRF-49470 PIN AVX PART NUMBER
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
M49470X01476KBA
M49470X01476MBA
M49470X01566KBN
M49470X01566MBN
M49470X01686KBN
M49470X01686MBN
M49470X01826KBN
M49470X01826MBN
M49470X01107KBN
M49470X01107MBN
M49470X01127KBN
M49470X01127MBN
M49470X01157KBN
M49470X01157MBN
M49470X01187KBN
M49470X01187MBN
M49470R01474KCN
M49470R01474MCN
M49470R01564KCN
M49470R01564MCN
M49470R01684KCN
M49470R01684MCN
M49470R01824KCN
M49470R01824MCN
M49470R01105KCN
M49470R01105MCN
M49470R01105KCA
M49470R01105MCA
M49470R01125KCN
M49470R01125MCN
M49470R01125KCA
M49470R01125MCA
M49470R01155KCN
M49470R01155MCN
M49470R01155KCA
M49470R01155MCA
M49470R01185KCN
M49470R01185MCN
M49470R01225KCN
M49470R01225MCN
M49470R01275KCN
M49470R01275MCN
M49470R01335KCN
M49470R01335MCN
M49470R01395KCN
M49470R01395MCN
M49470R01395KCA
M49470R01395MCA
M49470R01475KCN
M49470R01475MCN
M49470R01565KCN
M49470R01565MCN
M49470R01685KCN
M49470R01685MCN
M49470R01825KCN
M49470R01825MCN
M49470R01106KCN
M49470R01106MCN
M49470R01126KCN
M49470R01126MCN
M49470R01126KCA
M49470R01126MCA
SM021C476KHN360
SM021C476MHN360
SM011C566KHN650
SM011C566MHN650
SM021C686KHN480
SM021C686MHN480
SM021C826KHN650
SM021C826MHN650
SM061C107KHN360
SM061C107MHN360
SM061C127KHN360
SM061C127MHN360
SM061C157KHN480
SM061C157MHN480
SM061C187KHN650
SM061C187MHN650
SM052C474KHN240
SM052C474MHN240
SM052C564KHN240
SM052C564MHN240
SM052C684KHN360
SM052C684MHN360
SM052C824KHN360
SM052C824MHN360
SM052C105KHN480
SM052C105MHN480
SM042C105KHN120
SM042C105MHN120
SM052C125KHN480
SM052C125MHN480
SM042C125KHN240
SM042C125MHN240
SM052C155KHN650
SM052C155MHN650
SM042C155KHN240
SM042C155MHN240
SM042C185KHN360
SM042C185MHN360
SM042C225KHN360
SM042C225MHN360
SM042C275KHN480
SM042C275MHN480
SM042C335KHN480
SM042C335MHN480
SM042C395KHN650
SM042C395MHN650
SM032C395KHN240
SM032C395MHN240
SM032C475KHN240
SM032C475MHN240
SM032C565KHN240
SM032C565MHN240
SM032C685KHN360
SM032C685MHN360
SM032C825KHN360
SM032C825MHN360
SM032C106KHN480
SM032C106MHN480
SM032C126KHN650
SM032C126MHN650
SM022C126KHN240
SM022C126MHN240
CAP
(μF)
47
47
56
56
68
68
82
82
100
100
120
120
150
150
180
180
0.47
0.47
0.56
0.56
0.68
0.68
0.82
0.82
1.0
1.0
1.0
1.0
1.2
1.2
1.2
1.2
1.5
1.5
1.5
1.5
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
3.9
3.9
4.7
4.7
5.6
5.6
6.8
6.8
8.2
8.2
10
10
12
12
12
12
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
2
2
1
1
2
2
2
2
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
VOLT
(VDC)
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
87106- MIL-PRF-49470 PIN AVX PART NUMBER
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
M49470R01156KCN
M49470R01156MCN
M49470R01156KCA
M49470R01156MCA
M49470R01186KCN
M49470R01186MCN
M49470R01186KCA
M49470R01186MCA
M49470R01226KCN
M49470R01226MCN
M49470R01226KCA
M49470R01226MCA
M49470R01276KCN
M49470R01276MCN
M49470R01276KCA
M49470R01276MCA
M49470R01336KCN
M49470R01336MCN
M49470R01396KCN
M49470R01396MCN
M49470R01476KCN
M49470R01476MCN
M49470R01566KCN
M49470R01566MCN
M49470R01686KCN
M49470R01686MCN
M49470R01826KCN
M49470R01826MCN
M49470R01107KCN
M49470R01107MCN
M49470R01127KCN
M49470R01127MCN
M49470Q01154KEN
M49470Q01154MEN
M49470Q01184KEN
M49470Q01184MEN
M49470Q01224KEN
M49470Q01224MEN
M49470Q01274KEN
M49470Q01274MEN
M49470Q01334KEN
M49470Q01334MEN
M49470Q01394KEN
M49470Q01394MEN
M49470Q01474KEN
M49470Q01474MEN
M49470Q01564KEN
M49470Q01564MEN
M49470Q01564KEA
M49470Q01564MEA
M49470Q01684KEN
M49470Q01684MEN
M49470Q01684KEA
M49470Q01684MEA
M49470Q01105KEN
M49470Q01105MEN
M49470Q01125KEN
M49470Q01125MEN
M49470Q01155KEN
M49470Q01155MEN
M49470Q01185KEN
M49470Q01185MEN
SM012C156KHN360
SM012C156MHN360
SM022C156KHN240
SM022C156MHN240
SM012C186KHN480
SM012C186MHN480
SM022C186KHN360
SM022C186MHN360
SM012C226KHN650
SM012C226MHN650
SM022C226KHN360
SM022C226MHN360
SM012C276KHN650
SM012C276MHN650
SM022C276KHN480
SM022C276MHN480
SM022C336KHN480
SM022C336MHN480
SM022C396KHN650
SM022C396MHN650
SM062C476KHN240
SM062C476MHN240
SM062C566KHN360
SM062C566MHN360
SM062C686KHN360
SM062C686MHN360
SM062C826KHN480
SM062C826MHN480
SM062C107KHN650
SM062C107MHN650
SM062C127KHN650
SM062C127MHN650
SM057C154KHN120
SM057C154MHN120
SM057C184KHN240
SM057C184MHN240
SM057C224KHN240
SM057C224MHN240
SM057C274KHN240
SM057C274MHN240
SM057C334KHN360
SM057C334MHN360
SM057C394KHN360
SM057C394MHN360
SM057C474KHN360
SM057C474MHN360
SM057C564KHN480
SM057C564MHN480
SM047C564KHN240
SM047C564MHN240
SM057C684KHN650
SM057C684MHN650
SM047C684KHN360
SM047C684MHN360
SM047C105KHN360
SM047C105MHN360
SM047C125KHN360
SM047C125MHN360
SM047C155KHN480
SM047C155MHN480
SM047C185KHN650
SM047C185MHN650
CAP
(μF)
15
15
15
15
18
18
18
18
22
22
22
22
27
27
27
27
33
33
39
39
47
47
56
56
68
68
82
82
100
100
120
120
0.15
0.15
0.18
0.18
0.22
0.22
0.27
0.27
0.33
0.33
0.39
0.39
0.47
0.47
0.56
0.56
0.56
0.56
0.68
0.68
0.68
0.68
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
2
2
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
VOLT
(VDC)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
15
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470
87106- MIL-PRF-49470 PIN AVX PART NUMBER
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
16
M49470Q01185KEA
M49470Q01185MEA
M49470Q01275KEN
M49470Q01275MEN
M49470Q01335KEN
M49470Q01335MEN
M49470Q01395KEN
M49470Q01395MEN
M49470Q01475KEN
M49470Q01475MEN
M49470Q01565KEN
M49470Q01565MEN
M49470Q01565KEA
M49470Q01565MEA
M49470Q01825KEN
M49470Q01825MEN
M49470Q01825KEA
M49470Q01825MEA
M49470Q01106KEN
M49470Q01106MEN
M49470Q01106KEA
M49470Q01106MEA
M49470Q01126KEN
M49470Q01126MEN
M49470Q01126KEA
M49470Q01126MEA
M49470Q01186KEN
M49470Q01186MEN
M49470Q01276KEN
M49470Q01276MEN
M49470Q01336KEN
M49470Q01336MEN
M49470Q01396KEN
M49470Q01396MEN
M49470X01685KAN
M49470X01685MAN
M49470X01566KAN
M49470X01566MAN
M49470X01566KAA
M49470X01566MAA
M49470X01127KAN
M49470X01127MAN
M49470X01106KBN
M49470X01106MBN
M49470Q01824KEN
M49470Q01824MEN
M49470Q01225KEN
M49470Q01225MEN
M49470Q01685KEN
M49470Q01685MEN
M49470Q01685KEA
M49470Q01685MEA
M49470Q01156KEN
M49470Q01156MEN
M49470Q01226KEN
M49470Q01226MEN
M49470X01105KAJ
M49470X01105MAJ
M49470X01125KAJ
M49470X01125MAJ
M49470X01155KAJ
M49470X01155MAJ
SM037C185KHN240
SM037C185MHN240
SM037C275KHN360
SM037C275MHN360
SM037C335KHN360
SM037C335MHN360
SM037C395KHN360
SM037C395MHN360
SM037C475KHN480
SM037C475MHN480
SM037C565KHN650
SM037C565MHN650
SM027C565KHN240
SM027C565MHN240
SM017C825KHN480
SM017C825MHN480
SM027C825KHN360
SM027C825MHN360
SM017C106KHN480
SM017C106MHN480
SM027C106KHN360
SM027C106MHN360
SM017C126KHN650
SM017C126MHN650
SM027C126KHN480
SM027C126MHN480
SM027C186KHN650
SM027C186MHN650
SM067C276KHN360
SM067C276MHN360
SM067C336KHN480
SM067C336MHN480
SM067C396KHN650
SM067C396MHN650
SM045C685KHN360
SM045C685MHN360
SM015C566KHN360
SM015C566MHN360
SM025C566KHN240
SM025C566MHN240
SM025C127KHN480
SM025C127MHN480
SM031C106KHN240
SM031C106MHN240
SM047C824KHN360
SM047C824MHN360
SM037C225KHN240
SM037C225MHN240
SM017C685KHN480
SM017C685MHN480
SM027C685KHN240
SM027C685MHN240
SM027C156KHN650
SM027C156MHN650
SM067C226KHN360
SM067C226MHN360
SM055C105KHJ120
SM055C105MHJ120
SM055C125KHJ120
SM055C125MHJ120
SM055C155KHJ240
SM055C155MHJ240
CAP
(μF)
1.8
1.8
2.7
2.7
3.3
3.3
3.9
3.9
4.7
4.7
5.6
5.6
5.6
5.6
8.2
8.2
8.2
8.2
10
10
10
10
12
12
12
12
18
18
27
27
33
33
39
39
6.8
6.8
56
56
56
56
120
120
10
10
0.82
0.82
2.2
2.2
6.8
6.8
6.8
6.8
15
15
22
22
1.0
1.0
1.2
1.2
1.5
1.5
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
6
6
6
6
6
6
4
4
1
1
2
2
2
2
3
3
4
4
3
3
1
1
2
2
2
2
6
6
5
5
5
5
5
5
VOLT
(VDC)
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
50
50
50
50
50
50
50
50
100
100
500
500
500
500
500
500
500
500
500
500
500
500
50
50
50
50
50
50
87106- MIL-PRF-49470 PIN AVX PART NUMBER
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
M49470X01185KAJ
M49470X01185MAJ
M49470X01225KAJ
M49470X01225MAJ
M49470X01275KAJ
M49470X01275MAJ
M49470X01335KAJ
M49470X01335MAJ
M49470X01395KAJ
M49470X01395MAJ
M49470X01475KAJ
M49470X01475MAJ
M49470X01475KAC
M49470X01475MAC
M49470X01565KAJ
M49470X01565MAJ
M49470X01565KAC
M49470X01565MAC
M49470X01685KAJ
M49470X01685MAJ
M49470X01825KAJ
M49470X01825MAJ
M49470X01106KAJ
M49470X01106MAJ
M49470X01126KAJ
M49470X01126MAJ
M49470X01156KAJ
M49470X01156MAJ
M49470X01156KAC
M49470X01156MAC
M49470X01186KAJ
M49470X01186MAJ
M49470X01226KAJ
M49470X01226MAJ
M49470X01276KAJ
M49470X01276MAJ
M49470X01336KAJ
M49470X01336MAJ
M49470X01396KAJ
M49470X01396MAJ
M49470X01476KAJ
M49470X01476MAJ
M49470X01476KAC
M49470X01476MAC
M49470X01566KAJ
M49470X01566MAJ
M49470X01566KAC
M49470X01566MAC
M49470X01686KAJ
M49470X01686MAJ
M49470X01686KAC
M49470X01686MAC
M49470X01826KAJ
M49470X01826MAJ
M49470X01826KAC
M49470X01826MAC
M49470X01107KAJ
M49470X01107MAJ
M49470X01107KAC
M49470X01107MAC
M49470X01127KAJ
M49470X01127MAJ
SM055C185KHJ240
SM055C185MHJ240
SM055C225KHJ240
SM055C225MHJ240
SM055C275KHJ360
SM055C275MHJ360
SM055C335KHJ360
SM055C335MHJ360
SM055C395KHJ480
SM055C395MHJ480
SM055C475KHJ480
SM055C475MHJ480
SM045C475KHJ240
SM045C475MHJ240
SM055C565KHJ650
SM055C565MHJ650
SM045C565KHJ240
SM045C565MHJ240
SM045C685KHJ360
SM045C685MHJ360
SM045C825KHJ360
SM045C825MHJ360
SM045C106KHJ480
SM045C106MHJ480
SM045C126KHJ480
SM045C126MHJ480
SM045C156KHJ650
SM045C156MHJ650
SM035C156KHJ240
SM035C156MHJ240
SM035C186KHJ240
SM035C186MHJ240
SM035C226KHJ360
SM035C226MHJ360
SM035C276KHJ360
SM035C276MHJ360
SM035C336KHJ360
SM035C336MHJ360
SM035C396KHJ480
SM035C396MHJ480
SM035C476KHJ650
SM035C476MHJ650
SM025C476KHJ240
SM025C476MHJ240
SM015C566KHJ360
SM015C566MHJ360
SM025C566KHJ240
SM025C566MHJ240
SM015C686KHJ480
SM015C686MHJ480
SM025C686KHJ360
SM025C686MHJ360
SM015C826KHJ480
SM015C826MHJ480
SM025C826KHJ360
SM025C826MHJ360
SM015C107KHJ650
SM015C107MHJ650
SM025C107KHJ480
SM025C107MHJ480
SM025C127KHJ480
SM025C127MHJ480
CAP
(μF)
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
4.7
4.7
4.7
4.7
5.6
5.6
5.6
5.6
6.8
6.8
8.2
8.2
10
10
12
12
15
15
15
15
18
18
22
22
27
27
33
33
39
39
47
47
47
47
56
56
56
56
68
68
68
68
82
82
82
82
100
100
100
100
120
120
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±10%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE VOLT
CODE (VDC)
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
5
50
4
50
4
50
5
50
5
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
4
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
3
50
2
50
2
50
1
50
1
50
2
50
2
50
1
50
1
50
2
50
2
50
1
50
1
50
2
50
2
50
1
50
1
50
2
50
2
50
2
50
2
50
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470
87106- MIL-PRF-49470 PIN AVX PART NUMBER
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
M49470X01157KAJ
M49470X01157MAJ
M49470X01187KAJ
M49470X01187MAJ
M49470X01227KAJ
M49470X01227MAJ
M49470X01277KAJ
M49470X01277MAJ
M49470X01684KBJ
M49470X01684MBJ
M49470X01824KBJ
M49470X01824MBJ
M49470X01105KBJ
M49470X01105MBJ
M49470X01125KBJ
M49470X01125MBJ
M49470X01155KBJ
M49470X01155MBJ
M49470X01185KBJ
M49470X01185MBJ
M49470X01225KBJ
M49470X01225MBJ
M49470X01225KBC
M49470X01225MBC
M49470X01275KBJ
M49470X01275MBJ
M49470X01335KBJ
M49470X01335MBJ
M49470X01335KBC
M49470X01335MBC
M49470X01395KBJ
M49470X01395MBJ
M49470X01475KBJ
M49470X01475MBJ
M49470X01565KBJ
M49470X01565MBJ
M49470X01685KBJ
M49470X01685MBJ
M49470X01825KBJ
M49470X01825MBJ
M49470X01825KBC
M49470X01825MBC
M49470X01106KBJ
M49470X01106MBJ
M49470X01126KBJ
M49470X01126MBJ
M49470X01156KBJ
M49470X01156MBJ
M49470X01186KBJ
M49470X01186MBJ
M49470X01226KBJ
M49470X01226MBJ
M49470X01276KBJ
M49470X01276MBJ
M49470X01276KBC
M49470X01276MBC
M49470X01336KBJ
M49470X01336MBJ
M49470X01336KBC
M49470X01336MBC
M49470X01396KBJ
M49470X01396MBJ
SM025C157KHJ650
SM025C157MHJ650
SM065C187KHJ480
SM065C187MHJ480
SM065C227KHJ480
SM065C227MHJ480
SM065C277KHJ650
SM065C277MHJ650
SM051C684KHJ120
SM051C684MHJ120
SM051C824KHJ240
SM051C824MHJ240
SM051C105KHJ240
SM051C105MHJ240
SM051C125KHJ240
SM051C125MHJ240
SM051C155KHJ360
SM051C155MHJ360
SM051C185KHJ360
SM051C185MHJ360
SM051C225KHJ480
SM051C225MHJ480
SM041C225KHJ240
SM041C225MHJ240
SM051C275KHJ480
SM051C275MHJ480
SM051C335KHJ650
SM051C335MHJ650
SM041C335KHJ240
SM041C335MHJ240
SM041C395KHJ360
SM041C395MHJ360
SM041C475KHJ360
SM041C475MHJ360
SM041C565KHJ480
SM041C565MHJ480
SM041C685KHJ480
SM041C685MHJ480
SM041C825KHJ650
SM041C825MHJ650
SM031C825KHJ240
SM031C825MHJ240
SM031C106KHJ240
SM031C106MHJ240
SM031C126KHJ240
SM031C126MHJ240
SM031C156KHJ360
SM031C156MHJ360
SM031C186KHJ360
SM031C186MHJ360
SM031C226KHJ480
SM031C226MHJ480
SM031C276KHJ650
SM031C276MHJ650
SM021C276KHJ240
SM021C276MHJ240
SM011C336KHJ360
SM011C336MHJ360
SM021C336KHJ240
SM021C336MHJ240
SM011C396KHJ480
SM011C396MHJ480
CAP
(μF)
150
150
180
180
220
220
270
270
0.68
0.68
0.82
0.82
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
2.2
2.2
2.2
2.2
2.7
2.7
3.3
3.3
3.3
3.3
3.9
3.9
4.7
4.7
5.6
5.6
6.8
6.8
8.2
8.2
8.2
8.2
10
10
12
12
15
15
18
18
22
22
27
27
27
27
33
33
33
33
39
39
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
2
2
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
VOLT
(VDC)
50
50
50
50
50
50
50
50
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
87106- MIL-PRF-49470 PIN AVX PART NUMBER
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
M49470X01396KBC
M49470X01396MBC
M49470X01476KBJ
M49470X01476MBJ
M49470X01476KBC
M49470X01476MBC
M49470X01566KBJ
M49470X01566MBJ
M49470X01686KBJ
M49470X01686MBJ
M49470X01826KBJ
M49470X01826MBJ
M49470X01107KBJ
M49470X01107MBJ
M49470X01127KBJ
M49470X01127MBJ
M49470X01157KBJ
M49470X01157MBJ
M49470X01187KBJ
M49470X01187MBJ
M49470R01474KCJ
M49470R01474MCJ
M49470R01564KCJ
M49470R01564MCJ
M49470R01684KCJ
M49470R01684MCJ
M49470R01824KCJ
M49470R01824MCJ
M49470R01105KCJ
M49470R01105MCJ
M49470R01105KCC
M49470R01105MCC
M49470R01125KCJ
M49470R01125MCJ
M49470R01125KCC
M49470R01125MCC
M49470R01155KCJ
M49470R01155MCJ
M49470R01155KCC
M49470R01155MCC
M49470R01185KCJ
M49470R01185MCJ
M49470R01225KCJ
M49470R01225MCJ
M49470R01275KCJ
M49470R01275MCJ
M49470R01335KCJ
M49470R01335MCJ
M49470R01395KCJ
M49470R01395MCJ
M49470R01395KCC
M49470R01395MCC
M49470R01475KCJ
M49470R01475MCJ
M49470R01565KCJ
M49470R01565MCJ
M49470R01685KCJ
M49470R01685MCJ
M49470R01825KCJ
M49470R01825MCJ
M49470R01106KCJ
M49470R01106MCJ
SM021C396KHJ360
SM021C396MHJ360
SM011C476KHJ480
SM011C476MHJ480
SM021C476KHJ360
SM021C476MHJ360
SM011C566KHJ650
SM011C566MHJ650
SM021C686KHJ480
SM021C686MHJ480
SM021C826KHJ650
SM021C826MHJ650
SM061C107KHJ360
SM061C107MHJ360
SM061C127KHJ360
SM061C127MHJ360
SM061C157KHJ480
SM061C157MHJ480
SM061C187KHJ650
SM061C187MHJ650
SM052C474KHJ240
SM052C474MHJ240
SM052C564KHJ240
SM052C564MHJ240
SM052C684KHJ360
SM052C684MHJ360
SM052C824KHJ360
SM052C824MHJ360
SM052C105KHJ480
SM052C105MHJ480
SM042C105KHJ120
SM042C105MHJ120
SM052C125KHJ480
SM052C125MHJ480
SM042C125KHJ240
SM042C125MHJ240
SM052C155KHJ650
SM052C155MHJ650
SM042C155KHJ230
SM042C155MHJ230
SM042C185KHJ360
SM042C185MHJ360
SM042C225KHJ360
SM042C225MHJ360
SM042C275KHJ480
SM042C275MHJ480
SM042C335KHJ480
SM042C335MHJ480
SM042C395KHJ650
SM042C395MHJ650
SM032C395KHJ240
SM032C395MHJ240
SM032C475KHJ240
SM032C475MHJ240
SM032C565KHJ240
SM032C565MHJ240
SM032C685KHJ360
SM032C685MHJ360
SM032C825KHJ360
SM032C825MHJ360
SM032C106KHJ480
SM032C106MHJ480
CAP
(μF)
39
39
47
47
47
47
56
56
68
68
82
82
100
100
120
120
150
150
180
180
0.47
0.47
0.56
0.56
0.68
0.68
0.82
0.82
1.0
1.0
1.0
1.0
1.2
1.2
1.2
1.2
1.5
1.5
1.5
1.5
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
3.9
3.9
4.7
4.7
5.6
5.6
6.8
6.8
8.2
8.2
10
10
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
2
2
1
1
2
2
1
1
2
2
2
2
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
VOLT
(VDC)
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
17
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470
87106- MIL-PRF-49470 PIN AVX PART NUMBER
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
18
M49470R01126KCJ
M49470R01126MCJ
M49470R01126KCC
M49470R01126MCC
M49470R01156KCJ
M49470R01156MCJ
M49470R01156KCC
M49470R01156MCC
M49470R01186KCJ
M49470R01186MCJ
M49470R01186KCC
M49470R01186MCC
M49470R01226KCJ
M49470R01226MCJ
M49470R01226KCC
M49470R01226MCC
M49470R01276KCJ
M49470R01276MCJ
M49470R01276KCC
M49470R01276MCC
M49470R01336KCJ
M49470R01336MCJ
M49470R01396KCJ
M49470R01396MCJ
M49470R01476KCJ
M49470R01476MCJ
M49470R01566KCJ
M49470R01566MCJ
M49470R01686KCJ
M49470R01686MCJ
M49470R01826KCJ
M49470R01826MCJ
M49470R01107KCJ
M49470R01107MCJ
M49470R01127KCJ
M49470R01127MCJ
M49470Q01154KEJ
M49470Q01154MEJ
M49470Q01184KEJ
M49470Q01184MEJ
M49470Q01224KEJ
M49470Q01224MEJ
M49470Q01274KEJ
M49470Q01274MEJ
M49470Q01334KEJ
M49470Q01334MEJ
M49470Q01394KEJ
M49470Q01394MEJ
M49470Q01474KEJ
M49470Q01474MEJ
M49470Q01564KEJ
M49470Q01564MEJ
M49470Q01564KEC
M49470Q01564MEC
M49470Q01684KEJ
M49470Q01684MEJ
M49470Q01684KEC
M49470Q01684MEC
M49470Q01824KEJ
M49470Q01824MEJ
M49470Q01105KEJ
M49470Q01105MEJ
SM032C126KHJ650
SM032C126MHJ650
SM022C126KHJ240
SM022C126MHJ240
SM012C156KHJ360
SM012C156MHJ360
SM022C156KHJ240
SM022C156MHJ240
SM012C186KHJ480
SM012C186MHJ480
SM022C186KHJ360
SM022C186MHJ360
SM012C226KHJ650
SM012C226MHJ650
SM022C226KHJ360
SM022C226MHJ360
SM012C276KHJ650
SM012C276MHJ650
SM022C276KHJ480
SM022C276MHJ480
SM022C336KHJ480
SM022C336MHJ480
SM022C396KHJ650
SM022C396MHJ650
SM062C476KHJ240
SM062C476MHJ240
SM062C566KHJ360
SM062C566MHJ360
SM062C686KHJ360
SM062C686MHJ360
SM062C826KHJ480
SM062C826MHJ480
SM062C107KHJ650
SM062C107MHJ650
SM062C127KHJ650
SM062C127MHJ650
SM057C154KHJ120
SM057C154MHJ120
SM057C184KHJ240
SM057C184MHJ240
SM057C224KHJ240
SM057C224MHJ240
SM057C274KHJ240
SM057C274MHJ240
SM057C334KHJ360
SM057C334MHJ360
SM057C394KHJ360
SM057C394MHJ360
SM057C474KHJ360
SM057C474MHJ360
SM057C564KHJ480
SM057C564MHJ480
SM047C564KHJ240
SM047C564MHJ240
SM057C684KHJ650
SM057C684MHJ650
SM047C684KHJ240
SM047C684MHJ240
SM047C824KHJ360
SM047C824MHJ360
SM047C105KHJ360
SM047C105MHJ360
CAP
(μF)
12
12
12
12
15
15
15
15
18
18
18
18
22
22
22
22
27
27
27
27
33
33
39
39
47
47
56
56
68
68
82
82
100
100
120
120
0.15
0.15
0.18
0.18
0.22
0.22
0.27
0.27
0.33
0.33
0.39
0.39
0.47
0.47
0.56
0.56
0.56
0.56
0.68
0.68
0.68
0.68
0.82
0.82
1.0
1.0
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
2
2
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
4
4
4
4
VOLT
(VDC)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
87106- MIL-PRF-49470 PIN AVX PART NUMBER
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
M49470Q01125KEJ
M49470Q01125MEJ
M49470Q01155KEJ
M49470Q01155MEJ
M49470Q01185KEJ
M49470Q01185MEJ
M49470Q01185KEC
M49470Q01185MEC
M49470Q01225KEJ
M49470Q01225MEJ
M49470Q01275KEJ
M49470Q01275MEJ
M49470Q01335KEJ
M49470Q01335MEJ
M49470Q01395KEJ
M49470Q01395MEJ
M49470Q01475KEJ
M49470Q01475MEJ
M49470Q01565KEJ
M49470Q01565MEJ
M49470Q01565KEC
M49470Q01565MEC
M49470Q01685KEJ
M49470Q01685MEJ
M49470Q01685KEC
M49470Q01685MEC
M49470Q01825KEJ
M49470Q01825MEJ
M49470Q01825KEC
M49470Q01825MEC
M49470Q01106KEJ
M49470Q01106MEJ
M49470Q01106KEC
M49470Q01106MEC
M49470Q01126KEJ
M49470Q01126KEJ
M49470Q01126MEC
M49470Q01126MEC
M49470Q01156KEJ
M49470Q01156MEJ
M49470Q01186KEJ
M49470Q01186MEJ
M49470Q01226KEJ
M49470Q01226MEJ
M49470Q01276KEJ
M49470Q01276MEJ
M49470Q01336KEJ
M49470Q01336MEJ
M49470Q01396KEJ
M49470Q01396MEJ
SM047C125KHJ360
SM047C125MHJ360
SM047C155KHJ480
SM047C155MHJ480
SM047C185KHJ650
SM047C185MHJ650
SM037C185KHJ240
SM037C185MHJ240
SM037C225KHJ240
SM037C225MHJ240
SM037C275KHJ360
SM037C275MHJ360
SM037C335KHJ360
SM037C335MHJ360
SM037C395KHJ360
SM037C395MHJ360
SM037C475KHJ480
SM037C475MHJ480
SM037C565KHJ650
SM037C565MHJ650
SM027C565KHJ240
SM027C565MHJ240
SM017C685KHJ480
SM017C685MHJ480
SM027C685KHJ240
SM027C685MHJ240
SM017C825KHJ480
SM017C825MHJ480
SM027C825KHJ360
SM027C825MHJ360
SM017C106KHJ480
SM017C106MHJ480
SM027C106KHJ360
SM027C106MHJ360
SM017C126KHJ650
SM017C126KHJ650
SM027C126MHJ480
SM027C126MHJ480
SM027C156KHJ650
SM027C156MHJ650
SM027C186KHJ650
SM027C186MHJ650
SM067C226KHJ360
SM067C226MHJ360
SM067C276KHJ360
SM067C276MHJ360
SM067C336KHJ480
SM067C336MHJ480
SM067C396KHJ650
SM067C396MHJ650
CAP
(μF)
1.2
1.2
1.5
1.5
1.8
1.8
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
4.7
4.7
5.6
5.6
5.6
5.6
6.8
6.8
6.8
6.8
8.2
8.2
8.2
8.2
10
10
10
10
12
12
12
12
15
15
18
18
22
22
27
27
33
33
39
39
TOL
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±10%
±20%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
±10%
±20%
CASE
CODE
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
2
2
6
6
6
6
6
6
6
6
VOLT
(VDC)
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011
CHIP SEPARATION
0.254 (0.010) TYP.
D
B
E
1.397 (0.055)
±0.254 (0.010)
A
6.35
(0.250)
0.254
(0 010)
0.508 (0.020) TYP.
2 54 (0 100) TYP
“N” STYLE LEADS
0.254 (0.010) RAD. TYP.
1.778 (0.070)
±0.254 (0.010)
1.905 (0.075)
±0.635 (0.025)
TYP.
SCHEMATIC
“J” STYLE LEADS
DIMENSIONS
millimeters (inches)
Case
Code
A (max.)
(See Note 2)
B (max.)
(See Note 2)
C ±.635 (±0.025)
E (max.)
No. of Leads
per side
1
16.5 (0.650)
18.2 (0.715)
11.4 (0.450)
52.1 (2.050)
12.7 (0.500)
20
2
16.5 (0.650)
18.2 (0.715)
20.3 (0.800)
38.4 (1.510)
22.1 (0.870)
15
3
16.5 (0.650)
18.2 (0.715)
11.4 (0.450)
26.7 (1.050)
12.7 (0.500)
10
4
16.5 (0.650)
18.2 (0.715)
10.2 (0.400)
10.2 (0.400)
11.2 (0.440)
4
5
16.5 (0.650)
18.2 (0.715)
6.35 (0.250)
6.35 (0.250)
7.62 (0.300)
3
6
16.5 (0.650)
18.2 (0.715)
31.8 (1.250)
52.1 (2.050)
34.3 (1.350)
20
D ±.635 (±0.025)
NOTES:
1. Unless otherwise specified, tolerances 0.254 (±0.010).
2. “A” dimensions are maximum (see tables on pages 22 thru 25 for specific part number dimensions).
3. “N” straight leads; “J” leads formed in.
4. For case code 5, dimensions shall be 2.54 (0.100) maximum, 0.305 (0.012) minimum.
19
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011
Ordering Information
Insulation Resistance.
Part Number: The complete part number shall be as follows:
At +25°C, rated voltage: 100K MΩ or 1,000 MΩ-μF,
whichever is less.
X7R:
87106
XXX
______________
Dash number
(see list)
Ordering Data. The contract or purchase order should
specify the following:
At +125°C, rated voltage: 10K MΩ or 100 MΩ-μF,
whichever is less.
_________________
Drawing number
Dielectric Withstanding Voltage. Dielectric withstanding voltage shall be 250 percent of rated voltage except 500V rated
parts at 150 percent of rated voltage.
a. Complete part number.
b. Requirements for delivery of one copy of the quality conformance inspection data with each shipment of parts by
the manufacturer.
Capacitance Tolerance.
M = ±20 percent.
J = ±5 percent, K = ±10 percent,
c. Whether the manufacturer performs the group B tests, or
provides certification of compliance with group B requirements.
Solderability of Terminals.
49470.
In accordance with MIL-PRF-
d. Requirements for notification of change of products to
acquiring activity, if applicable.
Resistance to Soldering Heat. In accordance with MIL-STD202, method 210, condition B, for 20 seconds.
e. Requirements for packaging and packing.
Source of Supply.
Vendor CAGE
number
_____________
96095
Shock. In accordance with MIL-PRF-49470.
Vendor name
and address
_________________________
Olean Advanced Products
A Division of AVX Corporation
1695 Seneca Avenue
Olean, NY 14760
Performance Characteristics
Operating Temperature Range. The operating temperature
range shall be -55°C to +125°C.
Electrical Characteristics.
Rated Voltage. See tables on pages 22, 23, 24 & 25.
Immersion Cycling. In accordance with MIL-PRF-49470.
Moisture Resistance. In accordance with MIL-PRF-49470.
Life. Life shall be 200 percent of rated voltage except 500V
rated parts at 120 percent of rated voltage applied at +125°C for
1,000 hours.
Thermal Shock. MIL-STD-202, method 107, test condition A,
except high temperature is +125°C.
Capacitance. Measured in accordance with method 305 of
MIL-STD-202 (1KHz at 1.0Vrms, open circuit voltage, at +25°C).
Dissipation Factor (+25°C). X7R: Dissipation factor shall be
2.5 percent maximum (measured under the same conditions
as capacitance.) C0G: Dissipation factor shall be 0.15 percent
maximum.
Temperature Coefficient.
DSCC Dwg.
Bias = 0 volt
88011 All Voltages
0±30 ppm/°C
87106 50 WVDC
±15%
and 100 WVDC
87106 200 WVDC
±15%
87106 500 WVDC
±15%
20
Bias = rated voltage
0±30 ppm/°C
+15, -25%
+15, -40%
+15, -50%
Voltage Conditioning. In accordance with MIL-PRF-49470,
except 500V rated parts at 120 percent of rated voltage at
+125°C.
Terminal Strength. MIL-STD-202, method 211, condition B,
except that each lead shall be bent away from the body 90
degrees from the original position and back, two bends.
Marking. Marking shall be in accordance with MIL-STD-1285,
except the part number shall be as specified in paragraph 1.2
of 87106, or 88011 with the manufacturer’s name or code and
date code minimum, except case sizes 4 and 5 shall be marked
with coded cap and tolerance minimum. Full marking shall be
included on the package.
SMPS Stacked MLC Capacitors
(SM Style) DSCC #87106 and #88011
Table II. Group A inspection.
Inspection
Requirement
paragraph of
MIL-PRF-49470
Test method
paragraph of
MIL-PRF-49470
Sampling procedure
3.9
4.8.5
100% inspection
3.4
3.1
3.5 and 3.5.1
4.8.4
Subgroup 1
Thermal shock and voltage conditioning 1/
Subgroup 2
Visual and mechanical examination:
Material
Physical dimensions
Interface requirements
(other than physical dimensions)
Marking 2/
Workmanship
13 samples
0 failures
3.28
3.30
1/ Post checks are required (see paragraph 3.9 of MIL-PRF-49470).
2/ Marking defects are based on visual examination only. Any subsequent electrical defects shall not
be used as a basis for determining marking defects.
Table III. Group B inspection. 1/
Inspection
Requirement
paragraph of
MIL-PRF-49470
Test method
paragraph of
MIL-PRF-49470
Subgroup 1 3/
Temperature coefficient
Resistance to solvents 5/ 6/
Immersion
Terminal strength 5/
4/
3.23
3.18
3.24
4/
4.8.20
4.8.15
4.8.10
Subgroup 2
Resistance to soldering heat
Moisture resistance
3.20
3.21
Number of
sample units
to be inspected
Number of
defectives
permitted 2/
12
1
4.8.17
4.8.18
12
1
3.28.1
4.8.4.1
6
1
Subgroup 4
Solderability
3.15
4.8.12
3
0
Subgroup 5
Life
3.26
4.8.22
5 minimum
per case code
0
Subgroup 3
Marking legibility
(laser marking only)
6/ 1
1/ Unless otherwise specified herein, when necessary, mounting of group B samples shall be at the
discretion of the manufacturer.
2/ A sample unit having one or more defects shall be charged as a single defective.
3/ Order of tests is at discretion of manufacturer.
4/ See 3.2.3 of DSCC 87106.
5/ Sample size shall be 3 pieces with zero defectives permitted.
6/ Total of one defect allowed for combination of subgroup 1, subgroup 2, and subgroup 3 inspections.
21
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)
Electrical characteristics
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
DSCC
Dwg.
87106-
Cap.
Value
(μF)
001
002
241
242
003
004
243
244
1.0
1.0
1.0
1.0
1.2
1.2
1.2
1.2
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
005
006
245
246
007
008
247
248
009
010
249
250
1.5
1.5
1.5
1.5
1.8
1.8
1.8
1.8
2.2
2.2
2.2
2.2
K
M
K
M
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
011
012
251
252
013
014
253
254
2.7
2.7
2.7
2.7
3.3
3.3
3.3
3.3
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
015
016
255
256
017
018
257
258
3.9
3.9
3.9
3.9
4.7
4.7
4.7
4.7
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
019
020
259
260
5.6
5.6
5.6
5.6
K
M
K
M
5
5
5
5
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
223
224
261
262
6.8
6.8
6.8
6.8
K
M
K
M
4
4
4
4
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
021
022
263
264
8.2
8.2
8.2
8.2
K
M
K
M
4
4
4
4
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
023
024
265
266
025
026
267
268
10
10
10
10
12
12
12
12
K
M
K
M
K
M
K
M
4
4
4
4
4
4
4
4
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
027
028
269
270
15
15
15
15
K
M
K
M
4
4
4
4
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
029
030
271
18
18
18
K
M
K
3
3
3
N
N
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
DSCC
Dwg.
87106-
Cap.
Value
(μF)
272
272
18
18
M
M
3
3
J
J
6.10 (0.240)
6.10 (0.240)
031
032
273
274
033
034
275
276
035
036
277
278
22
22
22
22
27
27
27
27
33
33
33
33
K
M
K
M
K
M
K
M
K
M
K
M
3
3
3
3
3
3
3
3
3
3
3
3
N
N
J
J
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
037
038
279
280
39
39
39
39
K
M
K
M
3
3
3
3
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
039
040
281
282
47
47
47
47
K
M
K
M
3
3
3
3
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
225
226
283
284
56
56
56
56
K
M
K
M
1
1
1
1
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
041
042
285
286
043
044
287
288
68
68
68
68
82
82
82
82
K
M
K
M
K
M
K
M
1
1
1
1
1
1
1
1
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
045
046
289
290
100
100
100
100
K
M
K
M
1
1
1
1
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
227
228
291
292
120
120
120
120
K
M
K
M
2
2
2
2
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
047
048
293
294
150
150
150
150
K
M
K
M
2
2
2
2
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
049
050
295
296
051
052
297
298
180
180
180
180
220
220
220
220
K
M
K
M
K
M
K
M
6
6
6
6
6
6
6
6
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
053
054
299
300
270
270
270
270
K
M
K
M
6
6
6
6
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
Cap.
Value
(μF)
055
056
301
302
.68
.68
.68
.68
K
M
K
M
5
5
5
5
N
N
J
J
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
057
058
303
304
059
060
305
306
061
062
307
308
.82
.82
.82
.82
1.0
1.0
1.0
1.0
1.2
1.2
1.2
1.2
K
M
K
M
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
063
064
309
310
065
066
311
312
1.5
1.5
1.5
1.5
1.8
1.8
1.8
1.8
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
067
068
313
314
069
070
315
316
2.2
2.2
2.2
2.2
2.7
2.7
2.7
2.7
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
071
072
317
318
3.3
3.3
3.3
3.3
K
M
K
M
5
5
5
5
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
073
074
319
320
075
076
321
322
3.9
3.9
3.9
3.9
4.7
4.7
4.7
4.7
K
M
K
M
K
M
K
M
4
4
4
4
4
4
4
4
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
077
078
323
324
079
080
325
326
5.6
5.6
5.6
5.6
6.8
6.8
6.8
6.8
K
M
K
M
K
M
K
M
4
4
4
4
4
4
4
4
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
081
082
327
328
8.2
8.2
8.2
8.2
K
M
K
M
4
4
4
4
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
229
230
329
330
083
084
331
332
10
10
10
10
12
12
12
12
K
M
K
M
K
M
K
M
3
3
3
3
3
3
3
3
N
N
J
J
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
50V
50V
22
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
DSCC
Dwg.
87106-
100V
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)
Electrical characteristics
DSCC
Dwg.
87106-
Cap.
Value
(μF)
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
085
086
333
334
087
088
335
336
15
15
15
15
18
18
18
18
K
M
K
M
K
M
K
M
3
3
3
3
3
3
3
3
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
113
114
361
362
115
116
363
364
.47
.47
.47
.47
.56
.56
.56
.56
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
089
090
337
338
22
22
22
22
K
M
M
M
3
3
3
3
N
N
K
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
091
092
339
340
27
27
27
27
K
M
K
M
3
3
3
3
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
117
118
365
366
119
120
367
368
.68
.68
.68
.68
.82
.82
.82
.82
K
M
K
M
K
M
M
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
093
094
341
342
33
33
33
33
K
M
K
M
1
1
1
1
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
095
096
343
344
097
098
345
346
39
39
39
39
47
47
47
47
K
M
K
M
K
M
K
M
1
1
1
1
1
1
1
1
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
121
122
369
370
123
124
371
372
1.0
1.0
1.0
1.0
1.2
1.2
1.2
1.2
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
125
126
373
374
1.5
1.5
1.5
1.5
K
M
K
M
5
5
5
5
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
099
100
347
348
56
56
56
56
K
M
K
M
1
1
1
1
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
101
102
349
350
68
68
68
68
K
M
K
M
2
2
2
2
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
127
128
375
376
129
130
377
378
1.8
1.8
1.8
1.8
2.2
2.2
2.2
2.2
K
M
K
M
K
M
K
M
4
4
4
4
4
4
4
4
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
103
104
351
352
82
82
82
82
K
M
K
M
2
2
2
2
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
105
106
353
354
107
108
355
356
100
100
100
100
120
120
120
120
K
M
K
M
K
M
K
M
6
6
6
6
6
6
6
6
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
131
132
379
380
133
134
381
382
2.7
2.7
2.7
2.7
3.3
3.3
3.3
3.3
K
M
K
M
K
M
K
M
4
4
4
4
4
4
4
4
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
135
136
383
384
3.9
3.9
3.9
3.9
K
M
K
M
4
4
4
4
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
109
110
357
358
150
150
150
150
K
M
K
M
6
6
6
6
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
111
112
359
360
180
180
180
180
K
M
K
M
6
6
6
6
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
137
138
385
386
139
140
387
388
4.7
4.7
4.7
4.7
5.6
5.6
5.6
5.6
K
M
K
M
K
M
K
M
3
3
3
3
3
3
3
3
N
N
J
J
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
141
142
389
390
143
144
391
392
6.8
6.8
6.8
6.8
8.2
8.2
8.2
8.2
K
M
K
M
K
M
K
M
3
3
3
3
3
3
3
3
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
DSCC
Dwg.
87106-
Cap.
Value
(μF)
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
100V
DSCC
Dwg.
87106-
Cap.
Value
(μF)
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
145
146
393
394
10
10
10
10
K
M
K
M
3
3
3
3
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
147
148
395
396
12
12
12
12
K
M
K
M
3
3
3
3
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
149
150
397
398
15
15
15
15
K
M
K
M
1
1
1
1
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
151
152
399
400
18
18
18
18
K
M
K
M
1
1
1
1
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
153
154
401
402
155
156
403
404
22
22
22
22
27
27
27
27
K
M
K
M
K
M
K
M
1
1
1
1
1
1
1
1
N
N
J
J
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
157
158
405
406
33
33
33
33
K
M
K
M
2
2
2
2
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
159
160
407
408
39
39
39
39
K
M
K
M
2
2
2
2
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
161
162
409
410
47
47
47
47
K
M
K
M
6
6
6
6
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
163
164
411
412
165
166
413
414
56
56
56
56
68
68
68
68
K
M
K
M
K
M
K
M
6
6
6
6
6
6
6
6
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
167
168
415
416
82
82
82
82
K
M
K
M
6
6
6
6
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
169
170
417
418
171
172
419
420
100
100
100
100
120
120
120
120
K
M
K
M
K
M
K
M
6
6
6
6
6
6
6
6
N
N
J
J
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
200V
200V
23
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)
Electrical characteristics
DSCC
Dwg.
87106-
Cap.
Value
(μF)
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
DSCC
Dwg.
87106-
Cap.
Value
(μF)
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
500V
500V
173
174
421
422
.15
.15
.15
.15
K
M
K
M
5
5
5
5
N
N
J
J
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
3.05 (0.120)
175
176
423
424
177
178
425
426
179
180
427
428
.18
.18
.18
.18
.22
.22
.22
.22
.27
.27
.27
.27
K
M
K
M
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
181
182
429
430
183
184
431
432
185
186
433
434
.33
.33
.33
.33
.39
.39
.39
.39
.47
.47
.47
.47
K
M
K
M
K
M
K
M
K
M
K
M
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
J
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
187
188
435
436
.56
.56
.56
.56
K
M
K
M
5
5
5
5
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
189
190
437
438
231
232
439
440
191
192
441
442
193
194
443
444
.68
.68
.68
.68
.82
.82
.82
.82
1.0
1.0
1.0
1.0
1.2
1.2
1.2
1.2
K
M
K
M
K
M
K
M
K
M
K
M
K
M
K
M
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
N
N
J
J
N
N
J
J
N
N
J
J
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
195
196
445
446
1.5
1.5
1.5
1.5
K
M
K
M
4
4
4
4
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
197
198
447
448
1.8
1.8
1.8
1.8
K
M
K
M
4
4
4
4
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
233
234
449
450
2.2
2.2
2.2
2.2
K
M
K
M
3
3
3
3
N
N
J
J
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
199
200
451
452
2.7
2.7
2.7
2.7
K
M
K
M
3
3
3
3
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
24
201
202
453
454
203
204
455
456
3.3
3.3
3.3
3.3
3.9
3.9
3.9
3.9
K
M
K
M
K
M
K
M
3
3
3
3
3
3
3
3
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
205
206
457
458
4.7
4.7
4.7
4.7
K
M
K
M
3
3
3
3
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
207
208
459
460
5.6
5.6
5.6
5.6
K
M
K
M
3
3
3
3
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
235
236
461
462
209
210
463
464
211
212
465
466
6.8
6.8
6.8
6.8
8.2
8.2
8.2
8.2
10
10
10
10
K
M
K
M
K
M
K
M
K
M
K
M
1
1
1
1
1
1
1
1
1
1
1
1
N
N
J
J
N
N
J
J
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
213
214
467
468
237
238
469
470
215
216
471
472
12
12
12
12
15
15
15
15
18
18
18
18
K
M
K
M
K
M
K
M
K
M
K
M
1
1
1
1
2
2
2
2
2
2
2
2
N
N
J
J
N
N
J
J
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
239
240
473
474
217
218
475
476
22
22
22
22
27
27
27
27
K
M
K
M
K
M
K
M
6
6
6
6
6
6
6
6
N
N
J
J
N
N
J
J
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
219
220
477
478
33
33
33
33
K
M
K
M
6
6
6
6
N
N
J
J
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
221
222
479
480
39
39
39
39
K
M
K
M
6
6
6
6
N
N
J
J
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #88011 (C0G)
CG (C0G) Electrical characteristics per MIL-C-20
DSCC
Dwg.
88011-
Cap.
Value
(μF)
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
001*
002*
003*
004*
005*
006*
007*
008*
009*
010*
011*
012*
013*
014*
015*
016*
017*
018*
019*
020*
021*
022*
023*
024*
025*
026*
027*
028*
029*
030*
031*
032*
033*
034*
035*
036*
037*
038*
039*
040*
041*
042*
043*
044*
045*
046*
047*
048*
049*
050*
051*
052*
053*
054*
055*
056*
057*
058*
059*
060*
.056
.056
.068
.068
.082
.082
.10
.10
.12
.12
.15
.15
.18
.18
.22
.22
.27
.27
.33
.33
.39
.39
.47
.47
.56
.56
.68
.68
.82
.82
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
4.7
4.7
5.6
5.6
6.8
6.8
8.2
8.2
10
10
12
12
15
15
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
061*
062*
063*
064*
065*
066*
067*
068*
069*
070*
071*
072*
073*
074*
075*
076*
077*
078*
079*
.047
.047
.056
.056
.068
.068
.082
.082
.10
.10
.12
.12
.15
.15
.18
.18
.22
.22
.27
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
DSCC
Dwg.
88011-
Cap.
Value
(μF)
080*
081*
082*
083*
084*
085*
086*
087*
088*
089*
090*
091*
092*
093*
094*
095*
096*
097*
098*
099*
100*
101*
102*
103*
104*
105*
106*
107*
108*
109*
110*
111*
112*
113*
114*
115*
116*
117*
118*
119*
120*
.27
.33
.33
.39
.39
.47
.47
.56
.56
.68
.68
.82
.82
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
4.7
4.7
5.6
5.6
6.8
6.8
8.2
8.2
10
10
12
12
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
121*
122*
123*
124*
125*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
142*
143*
144*
145*
146*
147*
148*
149*
150*
151*
152*
153*
154*
155*
156*
157*
158*
.022
.022
.027
.027
.033
.033
.039
.039
.047
.047
.056
.056
.068
.068
.082
.082
.10
.10
.12
.12
.15
.15
.18
.18
.22
.22
.27
.27
.33
.33
.39
.39
.47
.47
.56
.56
.68
.68
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
50V
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
2
2
6
6
6
6
6
6
6
6
6
6
DSCC
Dwg.
88011-
Cap.
Value
(μF)
159*
160*
161*
162*
163*
164*
165*
166*
167*
168*
169*
170*
171*
172*
173*
174*
175*
176*
177*
178*
179*
180*
.82
.82
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
2.2
2.2
2.7
2.7
3.3
3.3
3.9
3.9
4.7
4.7
5.6
5.6
3.05 (0.120)
3.05 (0.120)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
*Add J or L for applicable formed leads
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
2
2
2
2
6
6
6
6
6
6
6
6
6
6
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
3.05 (0.120)
3.05 (0.120)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
200V
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
181*
182*
183*
184*
185*
186*
187*
188*
189*
190*
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
211*
212*
213*
214*
215*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
229*
230*
231*
232*
233*
234*
235*
236*
237*
238*
.010
.010
.012
.012
.015
.015
.018
.018
.022
.022
.027
.027
.033
.033
.039
.039
.047
.047
.056
.056
.068
.068
.082
.082
.10
.10
.12
.12
.15
.15
.18
.18
.22
.22
.27
.27
.33
.33
.39
.39
.47
.47
.56
.56
.68
.68
.82
.82
1.0
1.0
1.2
1.2
1.5
1.5
1.8
1.8
2.2
2.2
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
200V (continued)
100V (continued)
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
100V
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
Max. A
Cap. Case Lead Dimension
Tol. Code Style mm (inches)
3
3
3
3
1
1
1
1
1
1
2
2
2
2
6
6
6
6
6
6
6
6
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
16.5 (0.650)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
3.05 (0.120)
3.05 (0.120)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
6.10 (0.240)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
9.14 (0.360)
9.14 (0.360)
12.2 (0.480)
12.2 (0.480)
16.5 (0.650)
16.5 (0.650)
500V
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
2
2
2
2
6
6
6
6
6
6
25
SMPS Stacked MLC Capacitors
(SM9 Style) Technical Information on SMPS Capacitors
ELECTRICAL SPECIFICATIONS
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Dielectric Withstanding Voltage 25°C (Flash Test)
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging
current.
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less.
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @
600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.
Typical ESR Performance (mΩ)
ESR @ 10KHz
ESR @ 50KHz
ESR @ 100KHz
ESR @ 500KHz
ESR @ 1MHz
ESR @ 5MHz
ESR @ 10MHz
HOW TO ORDER
SM9
AVX Style
Size
SM9 = Plastic
Case
Aluminum
Electrolytic
100μF/50V
300
285
280
265
265
335
560
Solid Aluminum
Electrolytic
100μF/16V
29
22
20
18
17
17
22
MLCC
SMPS
100μF/50V
3
2
2.5
4
7
12.5
20
MLCC
SMPS
4.7μF/50V
66
23
15
8
7.5
8
14
AVX Styles: SM91, SM92, SM93, SM94, SM95, SM96
1
7
Size
See
dimensions
chart
Voltage
50V = 5
100V = 1
200V = 2
500V = 7
C
106
M
Temperature
Coefficient
C0G = A
X7R = C
Z5U = E
A
Capacitance
Capacitance
Test
Code
Tolerance
Level
(2 significant C0G: J = ±5%
A = Standard
digits + no.
K = ±10%
B = Hi-Rel*
of zeros)
M = ±20%
10 pF = 100 X7R: K = ±10%
100 pF = 101
M = ±20%
1,000 pF = 102
Z = +80, -20%
22,000 pF = 223 Z5U: Z = +80, -20%
220,000 pF = 224
P = GMV (+100, -0%)
1 μF = 105
10 μF = 106
100 μF = 107
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications
across AC supply mains or AC line filtering with polarity reversal. Contact plant
for recommendations.
26
Low ESR
Solid Tantalum
100μF/10V
72
67
62
56
56
72
91
*Hi-Rel
N
Termination
N = Straight Lead
J = Leads formed
in
L = Leads formed
out
660
Height
See table
on
page 28 for
max cap.
per
height
screening for C0G and X7R only. Screening consists of 100% Group A
(B Level), Subgroup 1 per MIL-PRF-49470.
SMPS Stacked MLC Capacitors
Encapsulated in DAP (Diallyl Phthalate) Case
(SM9 Style)
D
E
0.381 (0.015)
±0.127 (0.005)
Maximum Height
(see table)
6.35 (0.250) (MIN.)
4.445 (0.175) MAX
1.016 (0.040) MIN
0.254 (0.010) TYP.
C
0.508 (0.020) TYP.
2.54 (0.100)
CENTERS TYP.
“N” STYLE LEADS
D
E
Maximum Height
(see table)
0.381 (0.015)
±0.127 (0.005)
0.254 (0.010)
RAD. TYP.
1.778 (0.070)
±0.254 (0.010)
0.254 (0.010)
TYP.
0.508 (0.020) TYP.
1.905 (0.075)
±0.635 (0.025) TYP.
4.445 (0.175) MAX
1.016 (0.040) MIN
C
2.54 (0.100)
CENTERS TYP.
“J” STYLE LEADS
D
E
Maximum Height
(see table)
0.381 (0.015)
±0.127 (0.005)
0.254 (0.010)
RAD. TYP.
1.778 (0.070)
±0.254 (0.010)
0.254 (0.010)
TYP.
0.508 (0.020)TYP.
1.905 (0.075)
±0.635 (0.025) TYP.
4.445 (0.175) MAX
1.016 (0.040) MIN
2.54 (0.100)
CENTERS TYP.
C
“L” STYLE LEADS
DIMENSIONS
Case Code
SM91
SM92
SM93
SM94
SM95
SM96
millimeters (inches)
C
±0.635 (0.025)
11.4
20.3
11.4
10.2
6.35
31.8
(0.450)
(0.800)
(0.450)
(0.400)
(0.250)
(1.250)
D
±0.254 (0.010)
54.7
41.0
29.3
12.3
9.02
54.7
(2.155)
(1.615)
(1.155)
(0.485)
(0.355)
(2.155)
E
+0.000 (0.000) -0.254 (0.010)
14.7
24.1
14.7
12.3
9.02
36.3
(0.580)
(0.950)
(0.580)
(0.485)
(0.355)
(1.430)
No. of Leads
per side*
20
15
10
4
3
20
*Leads styles N, J or L available
27
SMPS Stacked MLC Capacitors
Encapsulated in DAP (Diallyl Phthalate) Case
(SM9 Style)
Max Capacitance (μF) Available Versus Style with Height of 0.270" - 6.86mm
SM91 _ _ _ _ _ _ AN270
AVX
STYLE
SM92 _ _ _ _ _ _ AN270
SM93 _ _ _ _ _ _ AN270
SM94 _ _ _ _ _ _ AN270
SM95 _ _ _ _ _ _ AN270
SM96 _ _ _ _ _ _ AN270
50V
100V 200V 500V
50V
100V 200V 500V
50V
50V
100V 200V 500V
50V
100V 200V 500V
50V
C0G
1.0
.70
.40
.18
1.2
1.0
.60
.26
.47 .40
.20
.09
.16
.13
.07
.02
.05
.04
.02
.01
3.2 2.4
1.3
.50
X7R
27
12
7.0
2.6
41
18
11
4.0
18
6.0
3.6
1.3
7.5
1.8
1.1
.40
2.8
.68
.40
.16
80
40
24
9.4
Z5U
84
32
12
– – 110
46
34
––
40
15
6.0 – –
12
4.6
3.0 – – 4.6
1.8
.72 – – 260 140
92
––
100V 200V 500V
100V 200V 500V
Max Capacitance (μF) Available Versus Style with Height of 0.390" - 9.91mm
SM91 _ _ _ _ _ _ AN390
AVX
STYLE
SM92 _ _ _ _ _ _ AN390
SM93 _ _ _ _ _ _ AN390
SM94 _ _ _ _ _ _ AN390
SM95 _ _ _ _ _ _ AN390
SM96 _ _ _ _ _ _ AN390
50V
100V 200V 500V
50V
100V 200V 500V
50V
.18
.32
.26
.14
.05
.10
.08
.05
.02
6.4 4.8
2.6
1.0
7.2
2.6
15
3.6
2.2
.80
5.6
1.3
.80
.32
160 80
48
18
12
––
24
9.2
6.0 – – 9.2
3.6
1.4 – – 520 280 180 – –
50V
100V 200V 500V
50V
100V 200V 500V
50V
2.0
1.4
.80
.36
2.4
2.0
1.2
.52
1.0 .80
.40
X7R
54
24
14
5.2
82
36
22
8.0
36
12
Z5U
160
64
24
– – 230
92
68
––
80
30
C0G
100V 200V 500V
100V 200V 500V
Max Capacitance (μF) Available Versus Style with Height of 0.530" - 13.46mm
SM91 _ _ _ _ _ _ AN530
AVX
STYLE
SM92 _ _ _ _ _ _ AN530
SM93 _ _ _ _ _ _ AN530
SM94 _ _ _ _ _ _ AN530
SM95 _ _ _ _ _ _ AN530
SM96 _ _ _ _ _ _ AN530
50V
100V 200V 500V
50V
100V 200V 500V
50V
.27
.48
.39
.21
.07
.15
.12
.07
.03
9.6 7.2
3.9
1.5
10
3.9
22
5.4
3.3
1.2
8.2
2.0
1.2
.48
240 120
72
28
18
––
36
13
9.0 – –
13
5.4
2.1 – – 780 430 270 – –
50V
100V 200V 500V
50V
100V 200V 500V
50V
3.0
2.1
1.2
3.6
3.0
1.8
.78
1.5 1.2
.60
X7R
82
36
21
7.8 120
54
33
12
54
18
Z5U
250
96
36
– – 350 130 100 – – 120 45
C0G
.54
100V 200V 500V
100V 200V 500V
Max Capacitance (μF) Available Versus Style with Height of 0.660" - 16.76mm
SM91 _ _ _ _ _ _ AN660
AVX
STYLE
SM92 _ _ _ _ _ _ AN660
SM93 _ _ _ _ _ _ AN660
SM94 _ _ _ _ _ _ AN660
SM95 _ _ _ _ _ _ AN660
SM96 _ _ _ _ _ _ AN660
50V
100V 200V 500V
50V
100V 200V 500V
50V
100V 200V 500V
.36
.64
.52
.28
.10
.20
.16
.10
.04
12
9.6
5.2
2.0
14
5.2
30
7.2
4.4
1.6
10
2.7
1.6
.64
320 160
96
37
24
––
48
18
12
––
18
7.2
2.8 – – 1000 570 360 – –
50V
100V 200V 500V
50V
100V 200V 500V
50V
100V 200V 500V
C0G
4.0
2.8
1.6
.72
4.8
4.0
2.4
1.0
2.0 1.6
.80
X7R
110
48
28
10
160
72
44
16
72
24
Z5U
330 120
48
– – 470 180 130 – – 160 60
Max Capacitance (μF) Available Versus Style with Height of 0.800" - 20.3mm
SM91 _ _ _ _ _ _ AN800
AVX
STYLE
SM92 _ _ _ _ _ _ AN800
SM93 _ _ _ _ _ _ AN800
SM95 _ _ _ _ _ _ AN800
SM96 _ _ _ _ _ _ AN800
50V
100V 200V 500V
50V
100V 200V 500V
50V
50V
100V 200V 500V
50V
100V 200V 500V
50V
C0G
5.0
3.5
2.0
.90
6.0
5.0
3.0
1.3
2.5 2.0
1.0
.47
.80
.65
.35
.12
.25
.20
.12
.05
16
6.5
2.5
X7R
130
60
35
13
200
90
55
20
90
30
18
6.5
36
9.0
5.5
2.0
12
3.4
2.0
.80
400 200 120
47
Z5U
420 160
60
– – 590 230 170 – – 200 75
30
––
60
23
15
––
23
9.0
3.6 – – 1300 720 460 – –
28
100V 200V 500V
SM94 _ _ _ _ _ _ AN800
100V 200V 500V
12
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC
SMX-style, stacked Switch Mode Power Supply Capacitors (SMPS) utilizing
Multilayer Ceramic (MLCC) construction are ideally suited for high temperature
applications up to 200ºC. This product is intended for downhole oil exploration,
including logging while drilling, geophysical probes, as well as space and aerospace
electronics. The high temperature solder utilized in the construction of SMX-style
parts assures reliable operation in harsh environments. The wide product offering
provides designers a solution for high capacitance value and high voltage capacitors rated at 200ºC. The SMX-style capacitors are ideally suited for applications as
DC filters in high power, high frequency motor drives, high pulsed-current circuitry,
as well as low power electronics.
SMX-style, SMPS capacitors are characterized with excellent performance in
comparison to wet tantalum products. The main benefits of SMX-product over wet
tantalum capacitors include:
• Much lower ESR and lower losses
• Excellent capacitance retention with frequency
• Excellent high frequency performance
• Low DC leakage current
• Much higher current handling capabilities
Typical Extended Temperature TCC
Characterization of C0G, SMPS Capacitors
Test conditions: 1 Vrms, 1 kHz, 0 VDC bias
Typical Extended Temperature TCC
Characterization of X7R/X9U, SMPS Capacitors
Test conditions: 1 Vrms, 1 kHz, 0 VDC bias
1.0
Percentage Capacitance
Change
20
0.8
Percentage Capacitance
Change
0.6
0.4
0.2
0.0
-0.2
0
-20
-40
-60
-80
-100
-0.4
-75
-50
-25
-0.6
0
25
50
75
100
125
150
175
200
Temperature (ºC)
-0.8
-1.0
-75
-50
-25
0
25
50
75
100
125
150
175
200
Temperature (ºC)
Typical Extended Temperature IR Characterization of
X7R/X9U, SMPS Capacitors
Typical Extended Temperature IR Characterization of
C0G, SMPS Capacitors
10000
RC Product (⍀*F)
RC Product (⍀*F)
10000
1000
100
1000
100
10
10
120
130
140
150
160
170
Temperature (ºC)
180
190
200
1
120
130
140
150
160
170
180
190
200
Temperature (ºC)
29
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC
ELECTRICAL SPECIFICATIONS
Temperature Coefficient
C0G:
A Temperature Coefficient
X7R/X9U: C Temperature Coefficient
0 ±30 ppm/°C, -55° to +200°C
±15%, -55°C to +125°C
+15% - 56%, -55ºC to +200°C
Capacitance Test (MIL-STD-202 Method 305)
25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G:
0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R/X9U: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
100K MΩ or 1000 MΩ-μF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
10K MΩ or 100 MΩ-μF, whichever is less.
Insulation Resistance 200°C (MIL-STD-202 Method 302)
100 MΩ or 1 MΩ -μF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Moisture Resistance (MIL-STD-202 Method 106)
Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
HOW TO ORDER
SMX
AVX Style
SMX = Uncoated
1
AVX Styles: SMX1, SMX2, SMX3, SMX4, SMX5, SMX6
7
C
106
Size
Voltage Temperature
Capacitance
See
25 = 3 Coefficient
Code
Dimensions 50V = 5
C0G = A (2 significant digits
chart
100V = 1 X7R/X9U = C + number of zeros)
200V = 2
10 pF = 100
500V = 7
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1μF = 105
10 μF = 106
100 μF = 107
M
A
N
650
Capacitance
Tolerance
C0G:
J = ±5%
K = ±10%
M = ±20%
Test Level
A = Standard
Termination
N = Straight Lead
J = Leads formed in
L = Leads formed out
P = P Style Leads
Z = Z Style Leads
Height
Max
Dimension “A”
120 = 0.120"
240 = 0.240"
360 = 0.360"
480 = 0.480"
650 = 0.650"
X7R:
K = ±10%
M = ±20%
Z = +80%, -20%
Note: Capacitors with X7R/X9U dielectric is not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
30
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC
CHIP SEPARATION
0.254 (0.010) TYP.
D
CHIP SEPARATION
0.254 (0.010) TYP.
CAPACITOR
E
E
1.651 ± 0.254
(0.065 ± 0.010)
B
1.397 (0.055)
±0.254 (0.010)
A
R 0.508
(0.020)
3 PLACES
B
2.540 ± 0.254
(0.100 ± 0.010)
4.191 ± 0.254
(0.165 ± 0.010)
DETAIL A
6.350 (0.250) MIN
0.254
(0.010)
TYP.
0.508 (0.020) TYP.
2.54 (0.100) TYP.
C
2.54 (0.100) MAX.
0.635 (0.025) MIN.
C
0.254
(0.010)
TYP.
1.016 ± 0.254
(0.040 ± 0.010)
DETAIL A
“N” STYLE LEADS
“P” STYLE LEADS
CHIP SEPARATION
0.254 (0.010) TYP.
CHIP SEPARATION
0.254 (0.010) TYP.
D
E
E
0.254 (0.010)
RAD. (TYP.)
B
0.254 (0.010)
RAD. (TYP.)
1.397 (0.055)
±0.254 (0.010)
A
0.254 (0.010)
TYP.
1.905 (0.075)
±0.635 (0.025)
TYP.
1.778 (0.070)
0.508 (0.020) TYP.
2.54 (0.100) TYP.
±0.254 (0.010)
2.54 (0.100) MAX.
0.635 (0.025) MIN.
C
1.778 (0.070)
±0.254 (0.010)
“J” STYLE LEADS
C
“L” STYLE LEADS
1.397 (0.055)
±0.254 (0.010)
A
E
0.254 (0.010) TYP.
B
RAD.
0.254
(0.010)
(TYP)
1.270 ± 0.254
(0.050 ± 0.010)
CHIP SEPARATION
0.254 (0.010) TYP.
D
0.254 (0.010)
TYP.
1.905 (0.075)
±0.635 (0.025)
TYP.
2.794 ± 0.254
(0.110 ± 0.010)
6.35
(0.250)
MIN.
1.778 ±0.254
(0.070 ± 0.010)
C
0.508 (0.020) TYP.
2.54 (0.100) TYP.
3.048 ± 0.381
(0.120 ± 0.015)
DETAIL B
2.54 (0.100) MAX.
0.635 (0.025) MIN.
DETAIL B
“Z” STYLE LEADS
DIMENSIONS
Style
SMX1
SMX2
SMX3
SMX4
SMX5
SMX6
A (max.)
millimeters (inches)
B (max.)
For “N” Style Leads: “A” Dimension Plus 1.651 (0.065)
See page 32 for
For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080)
maximum “A”
For “P” Style Leads: “A” Dimension Plus 4.445 (0.175)
Dimension
For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120)
C ±.635 (±0.025)
11.4
20.3
11.4
10.2
6.35
31.8
(0.450)
(0.800)
(0.450)
(0.400)
(0.250)
(1.250)
D ±.635 (±0.025)
52.1
38.4
26.7
10.2
6.35
52.1
(2.050)
(1.510)
(1.050)
(0.400)
(0.250)
(2.050)
E (max.)
12.7
22.1
12.7
11.2
7.62
34.3
(0.500)
(0.870)
(0.500)
(0.440)
(0.300)
(1.350)
No. of Leads
per side
20
15
10
4
3
20
31
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC
Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm
AVX
SMX1 _ _ _ _ _ _ AN120
SMX2 _ _ _ _ _ _ AN120
STYLE
25V 50V 100V 200V 500V 25V
C0G
1.0 .70 .40 .18 .068 1.2
X7R/X9U 22 12 7.0 2.6 1.0 33
SMX3 _ _ _ _ _ _ AN120
50V 100V 200V 500V 25V
1.0 .60 .26 .10 .50
18 11 4.0 1.5 11
SMX4 _ _ _ _ _ _ AN120
50V 100V 200V 500V 25V
.40 .20 .09 .033 .16
6.0 3.6 1.3 .50 3.3
SMX5 _ _ _ _ _ _ AN120
50V 100V 200V 500V 25V
.13 .07 .02 .01 .05
1.8 1.1 .40 .15 1.2
SMX6 _ _ _ _ _ _ AN120
50V 100V 200V 500V 25V 50V 100V 200V 500V
.04 .02 .01 .0039 3.2 2.4 1.3 .50 .20
.68 .40 .16 .056 68 40 24 9.4 3.3
Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm
SMX1 _ _ _ _ _ _ AN240
SMX2 _ _ _ _ _ _ AN240
SMX3 _ _ _ _ _ _ AN240
SMX4 _ _ _ _ _ _ AN240
SMX5 _ _ _ _ _ _ AN240
SMX6 _ _ _ _ _ _ AN240
AVX
STYLE
25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G
2.0 1.4 .80 .36 .13 2.4 2.0 1.2 .52 .20 1.0 .80 .40 .18 .068 .33 .26 .14 .05 .02 .10 .08 .05 .02 .0078 6.4 4.8 2.6 1.0 .40
X7R/X9U 44 24 14 5.2 2.0 66 36 22 8.0 3.0 22 12 7.2 2.6 1.0 6.6 3.6 2.2 .80 .30 2.4 1.3 .80 .32 .110 130 80 48 18 6.6
Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm
SMX1 _ _ _ _ _ _ AN360
SMX2 _ _ _ _ _ _ AN360
SMX3 _ _ _ _ _ _ AN360
SMX4 _ _ _ _ _ _ AN360
SMX5 _ _ _ _ _ _ AN360
SMX6 _ _ _ _ _ _ AN360
AVX
STYLE
25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G
3.0 2.1 1.2 .54 .22 3.6 3.0 1.8 .78 .30 1.5 1.2 .60 .27 .10 .48 .39 .21 .07 .03 .15 .12 .07 .03 .011 10 7.2 3.9 1.5 .60
X7R/X9U 68 36 21 7.8 3.0 100 54 33
12 4.5 33 18
10 3.9 1.5 10
5.4 3.3 1.2 .47 3.6 2.0 1.2 .48 .160 200 120 72 28 10
Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm
SMX1 _ _ _ _ _ _ AN480
SMX2 _ _ _ _ _ _ AN480
SMX3 _ _ _ _ _ _ AN480
SMX4 _ _ _ _ _ _ AN480
SMX5 _ _ _ _ _ _ AN480
SMX6 _ _ _ _ _ _ AN480
AVX
STYLE
25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G
4.0 2.8 1.6 .72 .27 4.8 4.0 2.2 1.0 .40 2.0 1.6 .80 .36 .130 .64 .52 .28 .10 .04 .20 .16 .10 .04 .015 13 9.6 5.2 2.0 .80
X7R/X9U 88 48 28 10 4.0 130 72 44
16 6.0 44 24
14 5.2 2.0 13
7.2 4.4 1.6 .60 4.8 2.7 1.6 .64 .22 270 160 96 37 13
Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm
SMX1 _ _ _ _ _ _ AN650
SMX2 _ _ _ _ _ _ AN650
SMX3 _ _ _ _ _ _ AN650
SMX4 _ _ _ _ _ _ AN650
SMX5 _ _ _ _ _ _ AN650
SMX6 _ _ _ _ _ _ AN650
AVX
STYLE
25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G
5.0 3.5 2.0 .90 .34 6.0 5.0 3.0 1.3 .50 2.5 2.0 1.0 .45 .160 .82 .65 .35 .12 .05 .25 .20 .12 .05 .019 16 12 6.5 2.5 1.0
X7R/X9U 110 60 35 13 5.0 160 90 55
20 7.5 56 30
18 6.5 2.5 16
9.0 5.5 2.0 .80 6.0 3.4 2.0 .80 .28 340 200 120 47 16
32
SMPS Capacitors Chip Assemblies
CH/CV - Radial, Dual-in-Line,
4 Terminal/SMT ‘J’ & ‘L’ Ranges
10nF to 180 μF
BS9100 approved
50V to 500 VDC
Low ESR/ESL
-55ºC to +125ºC
1B/C0G and 2C1/X7R Dielectrics
This range allows SMPS engineers to select the best volumetric
solution for input and output filter applications in high reliability designs.
Utilizing advanced multilayer ceramic techniques to minimize ESR/ESL
giving high current handling properties appropriate for filtering,
smoothing and decoupling circuits.
ELECTRICAL SPECIFICATIONS
Temperature Coefficient CECC 30 000, (4.24.1)
1B/C0G: A Temperature Coefficient - 0 ± 30 ppm/ºC, -55º to +125ºC
2C1/X7R: C Temperature Characteristic - ± 15%, -55º to +125ºC
Dielectric Withstanding Voltage 25°C (Flash Test)
1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA
max charging current. (500 Volt units @ 150% rated voltage)
Capacitance Test 25ºC
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz for 100 pF or less)
2C1/X7R: Measured at 1 VRMS max at 1KHz
Life Test (1000 hrs) CECC 30 000 (4.23)
1B/C0G & 2C1/X7R: 200% rated voltage at +125ºC.
(500 Volt units @ 120% rated voltage)
Dissipation Factor 25°C
1B/C0G: 0.15% max at 1KHz, 1 VRMS max (1MHz for 100 pF or less)
2C1/X7R: 2.5% max at 1KHz, 1 VRMS max
Damp Heat IEC 68-2-3, 56 days.
Insulation Resistance 25°C
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF, whichever
is less
Resistance to Solder Heat IEC 68-2-20
Dielectric Withstanding Voltage 25°C (Flash Test)
1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 150% rated voltage)
Thermal Shock IEC 68-2-14
-55ºC to +125ºC, 5 cycles
Vibration IEC 68-2-6
10Hz - 2000Hz, 0.75mm or 98m/sec2, 6 hrs.
Bump IEC 68-2-29
390m/sec2, 4000 bumps
MARKING
CH and CV 4x, 5x, 81-84
A5C
225K
xxxxxx
Top line A (AVX). Voltage code, dielectric code.
Middle line capacitance code, tolerance code.
Bottom line 6 digit batch code.
Other CH, CV Styles
AVX
5C
156M
xxxxxx
Top line AVX.
Second line voltage code, dielectric code.
Third line capacitance code, tolerance code.
Bottom line, 6 digit batch code.
33
SMPS Capacitors (CV Style)
Chip Assemblies
VERTICALLY MOUNTED RADIAL PRODUCT
DIMENSIONS
Part Number format (CVxxxxxxxxxxxA2)
Typical Part Number CV525C106MA30A2
T Max.
millimeters (inches)
L
(max)
Style
CV41-44
CV51-54
CV61-64
CV71-74
CV76-79
L Max.
H Max.
10.6
11.9
16.5
17.8
22.7
H
(max)
(0.417)
(0.468)
(0.649)
(0.700)
(0.893)
8.7
10.7
13.6
21.6
16.6
S
(nom)
(0.342)
(0.421)
(0.535)
(0.850)
(0.653)
8.2
10.2
15.2
15.2
21.2*
(0.322)
(0.400)
(0.600)
(0.600)
(0.834)
Lead
Dia
(nom)
0.7 (0.028)
0.9 (0.035)
0.9 (0.035)
0.9 (0.035)
0.9 (0.035)
*Tolerance ± 0.8
millimeters (inches)
25 (0.984)
±3 (0.118)
Style
Lead Dia.
See Table
T max
CV41/51/61/71/76
CV42/52/62/72/77
CV43/53/63/73/78
CV44/54/64/74/79
S ±0.5
(0.020)
3.80
7.40
11.1
14.8
(0.150)
(0.291)
(0.437)
(0.583)
VERTICALLY MOUNTED 4 TERMINAL RADIAL PRODUCT
Part Number format (CVxxxxxxxxx3xx4)
DIMENSIONS
Typical Part Number CV435C106MA30A4
T Max.
L
(max)
Style
M1 = M2 ±0.5 (0.020)
L Max.
H Max.
millimeters (inches)
CV43-44
CV53-54
CV63-64
CV73-74
CV78-79
10.6
11.9
16.5
17.8
22.7
H
(max)
(0.417)
(0.468)
(0.649)
(0.700)
(0.893)
8.7
10.7
13.6
21.6
16.6
(0.342)
(0.421)
(0.535)
(0.850)
(0.653)
Lead
Dia
(nom)
0.7 (0.028)
0.9 (0.035)
0.9 (0.035)
0.9 (0.035)
0.9 (0.035)
S
(nom)
8.2
10.2
15.2
15.2
21.2*
(0.322)
(0.400)
(0.600)
(0.600)
(0.834)
*Tolerance ± 0.8 (0.031)
25 (0.984)
±3 (0.118)
M1
Lead Dia.
See Table
M2
S1 ±0.5
(0.020)
millimeters (inches)
Style
S1 ±0.5
(0.020)
CV43/53/63/73/78
CV44/54/64/74/79
T max
S1
11.1 (0.437)
14.8 (0.583)
5.08 (0.200)
7.62 (0.300)
Note 1. This style is only available in 3 & 4 chip assemblies
HOW TO ORDER
CV
Style
Code
52
5
C
106
Size Voltage Dielectric Capacitance Capacitance
Code Code
Code
Code
Tolerance
(see product section)
5 = 50V
1 = 100V
2 = 200V
7 = 500V
A = C0G
C = X7R
A
3
0
Specification
Code
Finish
Code
Lead Dia.
Code
Lead Space
Code
Lead Style
Code
3 = Uncoated 0 = Standard
8 = Coated
(classified as
uninsulated)
A = Standard
2 = 2 Terminal
4 = 4 Terminal
See Note 1
above
(2 significant
C0G: J = ±5% A = Non-customized
digits + no.
K = ±10%
of zeros)
M = ±20%
eg. 105 = 1 μF
X7R: K = ±10%
106 = 10 μF
M = ±20%
107 = 100 μF
P = +100, -0%
Note: See page 109 for How to Order BS9100 parts
34
M
A
2
SMPS Capacitors (CH Style)
Chip Assemblies
HORIZONTALLY MOUNTED 4 TERMINAL RADIAL PRODUCT
DIMENSIONS
Part Number format (CHxxxxxxxxx3xx4)
Typical Part Number CH782C106MA30A4
L max
W max
T max
25 (0.984)
±3 (0.118)
Lead dia
(see table)
Style
L
(max)
W
(max)
S
(nom)
CH42-44
CH52-54
CH62-64
CH72-74
CH77-79
CH82-84
CH87-89
CH92-94
10.6 (0.417)
11.9 (0.468)
16.5 (0.649)
17.8 (0.700)
22.7 (0.893)
14.1 (0.555)
17.8 (0.700)
22.7 (0.893)
8.7 (0.342)
10.7 (0.421)
13.6 (0.535)
21.6 (0.850)
16.6 (0.653)
38.2 (1.503)
38.2 (1.503)
40.6 (1.598)
8.2 (0.322)
10.2 (0.400)
15.2 (0.600)
15.2 (0.600)
21.2* (0.834)
10.2 (0.400)
15.2 (0.600)
21.2* (0.834)
S1
(nom)
5.08 (0.200)
7.62 (0.300)
7.62 (0.300)
15.2 (0.600)
10.2 (0.400)
27.9 (1.100)
27.9 (1.100)
30.5 (1.200)
*Tolerance ± 0.8
M2
M1
millimeters (inches)
S Lead
Dia
(nom)
0.7 (0.028)
0.9 (0.035)
0.9 (0.035)
0.9 (0.035)
0.9 (0.035)
0.9 (0.035)
1.0 (0.039)
1.2 (0.047)
NOTE: This style is only available in 2, 3 & 4 chip assemblies only
S1 ± 0.5
(0.020)
M1 = M2 ± 0.5 (0.020)
millimeters (inches)
Style
S ± 0.5
(0.020)
T max
CH42/52/62/72/77/87/92
CH43/53/63/73/78/88/93
CH44/54/64/74/79/89/94
7.4 (0.291)
11.1 (0.437)
14.8 (0.583)
HORIZONTALLY MOUNTED DUAL-IN-LINE PRODUCT
DIMENSIONS
Part Number format (CHxxxxxxxxxx0A0)
Typical Part Number CH615C106MA30A0
W max
CH41-44
CH51-54
CH61-64
CH71-74
CH76-79
CH81-84
CH86-89
CH91-94
2.0 (0.079)
max
T
max
13 (0.512)
± 1 (0.039)
L2
9.2
10.7
14.9
16.8
21.6
12.0
18.9
24.0
(0.362)
(0.421)
(0.586)
(0.661)
(0.850)
(0.472)
(0.744)
(0.944)
W
(max)
8.7
10.7
13.6
21.6
16.6
38.2
38.2
40.6
S
(nom)
(0.342)
(0.421)
(0.535)
(0.850)
(0.653)
(1.503)
(1.503)
(1.598)
8.2
10.2
14.0
15.2
20.3*
10.2
15.2
20.3*
(0.322)
(0.400)
(0.551)
(0.600)
(0.800)
(0.400)
(0.600)
(0.800)
No. of
Leads
per side
3
4
5
7
6
14
14
14
*Tolerance ± 0.8 (0.031)
S ± 0.5
(0.020)
millimeters (inches)
Style
CH41/51/61/71/76/81/86/91
CH42/52/62/72/77/82/87/92
CH43/53/63/73/78/83/88/93
CH44/54/64/74/79/84/89/94
L1
2.54 (0.100)
± 0.05 (0.002)
L
(max)
Style
L max
millimeters (inches)
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)
T max
3.8 (0.150)
7.4 (0.291)
11.1 (0.437)
14.8 (0.583)
HOW TO ORDER
CH
Style
Code
52
5
C
106
M
Size Voltage Dielectric Capacitance Capacitance
Code Code
Code
Code
Tolerance
(see product section)
5 = 50V
1 = 100V
2 = 200V
7 = 500V
A = C0G
C = X7R
A
3
0
Specification
Code
Finish
Code
Lead Dia.
Code
Lead Space
Code
3 = Uncoated 0 = Standard
8 = Coated
(classified as
uninsulated)
A = Standard
(2 significant
C0G: J = ±5% A = Non-customized
digits + no.
K = ±10%
of zeros)
M = ±20%
eg. 105 = 1 μF
X7R: K = ±10%
106 = 10 μF
M = ±20%
107 = 100 μF
P = +100, -0%
A
0
Lead Style
Code
0 = Straight dual
in line
4 = 4 Terminal
Note: See page 109 for How to Order BS9100 parts
35
SMPS Capacitors (CH Style)
Chip Assemblies
HORIZONTALLY MOUNTED ‘L’ LEAD SMT PRODUCT
DIMENSIONS
Part Number format (CHxxxxxxxxxx0A7)
Typical Part Number CH411C275KA30A7
L
(max)
Style
W max
2.54 (0.1)
± 0.5 (0.02)
T max
L
max
S ± 0.5 (0.02)
2.54 (0.1)
± 0.5 (0.02)
millimeters (inches)
CH41-44
CH51-54
CH61-64
CH71-74
CH76-79
CH81-84
CH86-89
CH91-94
9.2
10.7
14.9
16.8
21.6
12.0
18.9
24.0
W
(max)
(0.362)
(0.421)
(0.586)
(0.661)
(0.850)
(0.472)
(0.744)
(0.944)
8.7
10.7
13.6
21.6
16.6
38.2
38.2
40.6
No. of
Leads
per side
3
4
5
7
6
14
14
14
S
(nom)
(0.342)
(0.421)
(0.535)
(0.850)
(0.653)
(1.503)
(1.503)
(1.598)
8.2
10.2
14.0
15.2
20.3*
10.2
15.2
20.3*
(0.322)
(0.400)
(0.551)
(0.600)
(0.800)
(0.400)
(0.600)
(0.800)
*Tolerance ± 0.8 (0.031)
NOTE: A ‘L’ lead low profile version
(CH....0A5) is available with lead height
1.1 (0.043) max. for single chip assemblies eg.
CH415C225MA30A5
L1
L2
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)
millimeters (inches)
Style
CH41/51/61/71/76/81/86/91
CH42/52/62/72/77/82/87/92
CH43/53/63/73/78/83/88/93
CH44/54/64/74/79/84/89/94
T max
3.8 (0.150)
7.4 (0.291)
11.1 (0.437)
14.8 (0.583)
HORIZONTALLY MOUNTED ‘J’ LEAD SMT PRODUCT
Part Number format (CHxxxxxxxxxx0A8)
DIMENSIONS
Typical Part Number CH411C275KA30A8
L2
L1
2.54 (0.100)
± 0.5 (0.020)
T max
L
max
S ± 0.5 (0.020)
W max
millimeters (inches)
L
(max)
Style
CH41-44
CH51-54
CH61-64
CH71-74
CH76-79
CH81-84
CH86-89
CH91-94
9.2
10.7
14.9
16.8
21.6
12.0
18.9
24.0
W
(max)
(0.362)
(0.421)
(0.586)
(0.661)
(0.850)
(0.472)
(0.744)
(0.944)
8.7
10.7
13.6
21.6
16.6
38.2
38.2
40.6
S
(nom)
(0.342)
(0.421)
(0.535)
(0.850)
(0.653)
(1.503)
(1.503)
(1.598)
8.2
10.2
14.0
15.2
20.3*
10.2
15.2
20.3*
(0.322)
(0.400)
(0.551)
(0.600)
(0.800)
(0.400)
(0.600)
(0.800)
No. of
Leads
per side
3
4
5
7
6
14
14
14
*Tolerance ± 0.8 (0.031)
2.54 (0.100)
± 0.5 (0.020)
millimeters (inches)
Style
CH41/51/61/71/76/81/86/91
CH42/52/62/72/77/82/87/92
CH43/53/63/73/78/83/88/93
CH44/54/64/74/79/84/89/94
NOTE: A ‘J’ lead low profile version (CH....0A3) is available with lead height
1.1 (0.043) max. for single chip assemblies eg. CH515C475MA30A3
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)
T
3.8
7.4
11.1
14.8
max
(0.150)
(0.291)
(0.437)
(0.583)
HOW TO ORDER
CH
Style
Code
52
5
C
106
Size Voltage Dielectric Capacitance Capacitance
Code Code
Code
Code
Tolerance
(see product section)
5 = 50V
1 = 100V
2 = 200V
7 = 500V
A = C0G
C = X7R
A
Specification
Code
(2 significant
C0G: J = ±5% A = Non-customized
digits + no.
K = ±10%
of zeros)
M = ±20%
eg. 105 = 1 μF
X7R: K = ±10%
106 = 10 μF
M = ±20%
107 = 100 μF
P = +100, -0%
Note: See page 109 for How to Order BS9100 parts
36
M
3
0
Finish
Code
Lead Dia.
Code
3 = Uncoated 0 = Standard
8 = Coated
(classified as
uninsulated)
A
7
Lead Space
Code
Lead Style
Code
A = Standard
3 = Low profile ‘J’
(single chip)
5 = Low profile ‘L’
(single chip)
7 = ‘L’ Dual in line
8 = ‘J’ Dual in line
SMPS Capacitors (CH/CV Style)
Chip Assemblies
C0G DIELECTRIC ULTRA STABLE CERAMIC
CH/CV41-44
Styles
CH/CV51-54
Styles
CH/CV61-64
Styles
CH/CV71-74
Styles
CH/CV76-79
Styles
CH81-84
Styles
CH86-89
Styles
CH91-94
Styles
Voltage DC
Cap μF
50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.01
41
0.012
41
0.015
41
0.018
41
0.022
42
51
0.027
42
51
0.033
41 42
52
61
0.039
41 42
52
61
0.047
41 41 43
52
61
0.056
41 41 43
52
61
0.068
41 41 41 44
51 53
62
71
76
0.082
41 41 42
51 53
62
71
76
81
0.1
41 42 42
51 51 54
62
71
76
81
0.12
42 42 42
51 51 52
61 62
72
77
81
86
0.15
42 42 42
51 52 52
61 61 63
72
77
81
86
0.18
42 42 43
51 52 52
61 61 63
72
77
82
86
0.22
42 43 43
52 52 52
61 61 62 64
71 72
76
77
81 82
86
91
0.27
43 43 44
52 52 53
61 62 62
71
71 73
76 76
78
81 81 82
87
91
0.33
43 44
52 53 53
61 62 62
71
71 73
76 76
78
81 81 82
87
91
0.39
44
52 53 54
62 62 62
71 71
72 74 76 76 77
79 81 81 81 83
86 87
92
0.47
53 54
62 62 63
71 71
72
76 76 77
81 81 81 83
86 87
92
0.56
53
62 63 63
71 72
72
76 77 77
81 81 82 84
86
86 88
92
0.68
54
62 63 64
72 72
72
77 77 77
81 82 82
86 86
86 88
92
0.82
63 64
72 72
73
77 77 78
82 82 82
86 86
87 89
91 93
1
63 64
72 72
73
77 77 78
82 82 82
86 87
87
91 91 93
64
72 73
74
1.2
81
77 78 79
82 82 83
87 87
87
91 91 92 94
1.5
73 73
78 78
82 83 83
87 87
87
91 92 92
1.8
73 74
78 79
83 83 84
87 87
88
92 92 92
2.2
74
79
83 84
87 88
88
92 92 92
88 88
89
2.7
84
3.3
88 89
3.9
89
92 92 93
92 93 93
93 93 94
4.7
93 94
5.6
94
NB Figures in cells refer to size within ordering information
37
SMPS Capacitors (CH/CV Style)
Chip Assemblies
X7R DIELECTRIC STABLE CERAMIC
CH/CV41-44
Styles
CH/CV51-54
Styles
CH/CV61-64
Styles
CH/CV71-74
Styles
CH/CV76-79
Styles
CH81-84
Styles
CH86-89
Styles
CH91-94
Styles
Voltage DC
Cap μF
50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.12
41
0.15
41
0.18
41
0.22
41
0.27
42
51
0.33
41 42
51
0.39
41 42
51
0.47
41 42
52
61
0.56
41 43
52
61
0.68
42 43
51 52
61
0.82
42 44
51 52
61
71
76
81
1
41 42 44
51 53
61 62
71
76
81
41 42
52 53
61 62
71
76
81
1.5
41 43
52 54
61 62
71
76
81
1.8
41 41 43
52
61 62
72
77
82
86
2.2
41 41 44
51 52
61 63
71 72
76
77
81 82
86
2.7
41 41
51 53
62 63
71 72
76
77
81 82
87
91
3.3
41 42
51 53
62 64
71 72
76
77
81 82
87
91
3.9
42 42
51 51 54
62
72 73
77
78
81 83
86 87
91
4.7
42 42
51 52
61
62
72 73
77
78
82 83
86 87
91
5.6
42 42
51 52
61
63
72 74
77
79
82 84
86 88
92
6.8
42 43
52 52
61 61
63
8.2
43 43
52 52
61 61
64
10
43 44
52 53
61 62
64
12
44
53 53
62 62
15
53 54
62 62
71 71
76 76
81 81 84
18
54
62 63
71 72
76 77
81 81
22
54
62 63
72 72
77 77
27
63 64
72 72
33
63 64
39
64
1.2
86
72
77
82
86 88
92
71
73
76 78
82
87 89
91 92
71
73
76 78
83
87
91 92
71 71
74
76 76 79
81 83
87
92 93
86
87
92 93
86
88
92 94
81 82
86 86
88
92
77 77
82 82
86 86
89
93
72 73
77 78
82 82
86 87
91 93
72 73
77 78
82 82
87 87
91 91 94
47
73 74
78 79
82 83
87 87
91 92
56
73
78
83 83
87 87
92 92
68
74
79
83 84
87 88
92 92
84
88 88
92 92
100
88 89
92 93
120
89
93 93
82
150
93 94
180
94
NB Figures in cells refer to size within ordering information
38
TurboCapTM
High-CV SMPS Capacitors
The TurboCapTM, MLC capacitors from AVX Corporation are
characterized with very high capacitance in a small volume.
By vertical stacking of the ceramic elements, the footprint
required for mounting the capacitors is greatly reduced.
TurboCapsTM are ideally suited as filters in the input and
output stages of switch mode power supplies (SMPS). With
their ultra-low ESR, these capacitors are designed to handle
high ripple current at high frequencies and high power levels.
The DIP leads in either thru-hole or surface mount
configurations offer superior stress relief to the ceramic
elements. The leads effectively decouple the parts from the
board and minimize thermally or mechanically induced
stresses encountered during assembly, temperature cycling
or other environmental conditions.
TYPICAL APPLICATION OF TURBOCAPTM SMPS CAPACITORS FOR INPUT
AND OUTPUT FILTERS IN DC/DC CONVERTERS
SNUBBER
Vout
Vin
OUTPUT
FILTER
INPUT
FILTER
VCC
FB
G
PWM
CONTROLLER
GND
39
TurboCapTM
High-CV SMPS Capacitors
ELECTRICAL SPECIFICATIONS
Temperature Coefficient
Temperature Coefficient
Dielectric Withstanding Voltage 25°C (Flash Test)
250% rated voltage for 5 seconds with 50 mA max charging current.
±15%, -55° to +125°C
Capacitance Test (MIL-STD-202 Method 305)
25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Life Test (1000 hrs)
X7R: 150% rated voltage at +125°C.
Dissipation Factor 25°C
2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Moisture Resistance (MIL-STD-202 Method 106)
Ten cycles with no voltage applied.
Insulation Resistance 25°C (MIL-STD-202 Method 302)
500 MΩ-μF, whichever is less.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Insulation Resistance 125°C (MIL-STD-202 Method 302)
50 MΩ-μF, whichever is less.
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Typical ESR Performance (Ω)
27μF
0.007
0.003
0.002
ESR @ 10KHz
ESR @ 50KHz
ESR @ 100KHz
HOW TO ORDER
47μF
0.004
0.002
0.0015
100μF
0.003
0.0015
0.001
AVX Styles: ST12 and ST20
ST12
5
C
186
M
A
N
03
AVX
Style
ST12
ST20
Voltage
25V = 3
50V = 5
100V = 1
Temperature
Coefficient
X7R = C
Capacitance Code
(2 significant digits
+ no. of zeros)
1 μF = 105
10 μF = 106
100 μF = 107
Capacitance
Tolerance
M = ±20%
Test Level
A = Standard
Termination
N = Straight Lead
J = Leads formed in
L = Leads formed out
Number
of Leads
Per Side
03 = 3
05 = 5
10 = 10
CAPACITANCE (μF)
ST12
Cap (μF)
.82
1.3
2.7
8.2
12
14
18
22
27
47
50
68
100
220
40
50V
ST20
100V
Voltage
25V
50V
100V
500V
...03
...05
...03
...03
...10
...05
...05
...03
...05
...10
...03
...05
...10
...10
Development
...10
Numbers inside
shaded areas refer
to the number of
leads per side (the
last two digits of
the part number.
TurboCapTM
High-CV SMPS Capacitors
E
D
B
A
1.397 (0.055)
±0.254 (0.010)
6.35 (0.25)
MIN.
0.254 (0.010) TYP.
0.508 (0.020) TYP.
C
3, 5 or 10 leads per side
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
“N” STYLE LEADS
E
D
B
0.254 (0.010) RAD. TYP.
A
1.397 (0.055)
±0.254 (0.010)
1.778 (0.070)
± 0.254 (0.010)
B
0.508 (0.020) TYP.
3, 5 or 10 leads per side
1.397 (0.055)
± 0.127 (0.005)
C
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
“J” STYLE LEADS
E
D
B
A
1.397 (0.055)
±0.254 (0.010)
1.778 (0.070)
± 0.254 (0.010)
B
0.508 (0.020) TYP.
3, 5 or 10 leads per side
0.254 (0.010) RAD. TYP.
1.397 (0.055)
± 0.127 (0.005)
C
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
“L” STYLE LEADS
DIMENSIONS
Style
ST125C***M*N03
ST125C***M*N05
ST125C***M*N10
ST205C***M*N03
ST205C***M*N05
ST205C***M*N10
millimeters (inches)
A (max.)
3.56
3.56
3.56
5.59
5.59
5.59
(0.140)
(0.140)
(0.140)
(0.220)
(0.220)
(0.220)
B (max.)*
5.21
5.21
5.21
7.24
7.24
7.24
(0.205)
(0.205)
(0.205)
(0.285)
(0.285)
(0.285)
C
± 0.635 (± 0.025)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
6.35 (0.250)
6.35 (0.250)
6.35 (0.250)
D
± 1.27 (± 0.050)
9.53 (0.375)
14.61 (0.575)
26.67 (1.050)
8.26 (0.325)
13.34 (0.525)
26.04 (1.025)
E (max.)
6.35
6.35
6.35
7.62
7.62
7.62
(0.250)
(0.250)
(0.250)
(0.300)
(0.300)
(0.300)
Lead
Style
N
N
N
N
N
N
No. of Leads
Per Side
03
05
10
03
05
10
*The “B” dimension is defined for the “N” Style leads. The “L” and “J” Style Leads are 0.381 (0.015) longer. The ST12 will be 5.89 (0.220), the ST20 will be 7.62 (0.300).
41
MH Ceramic Capacitor
Lead Free Ceramic Capacitor in Molded SM Leadframe
AVX are pleased to introduce the MH range of multi layer ceramic capacitors. The MH components
are surface mount molded parts with a multi layer ceramic insert.
MH capacitors combine the ceramic attributes of very low ESR, non polar construction, excellent
high frequency behavior, excellent voltage stress capabilities and wide temperature range; with the
enhanced mechanical protection of a molded case.
The MH range provides a lead free solution to customers who have previously been unable to use
large case ceramic capacitors because of mechanical stressing concerns.
HOW TO ORDER
MH
V
1
1
C
225
M
A
T
2
A
MH Series
Case
Size
see table
below
MLCC
Count
Voltage
3 = 25V
5 = 50V
1 = 100V
Dielectric
C = X7R
Capacitance
Code (In pF)
2 Sig. Digits
+ Number of
Zeros
Capacitance
Tolerance
K = ±10%
M = ±20%
Failure
Rate
A = Not
Applicable
Terminations
T = Tin Plated
Packaging
2 = 7" Reel
4 = 13" Reel
6 = Waffle
Pack
Special
Code
A=
Std.
Product
MH X7R TARGET RANGE
105
125
155
185
225
275
335
395
475
565
685
825
106
126
156
186
226
276
336
396
476
Cap μF
1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
25V
PACKAGING
50V
100V
7" Reels
13" Reels
Waffle Pack
400
1500
108
CASE DIMENSIONS: millimeters (inches)
Code
EIA
Code
L±0.20 (0.008)
V
7361-38
7.30 (0.287)
W+0.20 (0.008) H+0.20 (0.008)
-0.10 (0.004)
-0.10 (0.004)
6.10 (0.240)
3.45±0.30
(0.136±0.012)
= In development, contact plant for detail
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All
statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee,
warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products
are made without representation or warranty that any such use is free of patent infringement and are not recommendations to
infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required.
Specifications are typical and may not apply to all applications.
42
LEAD-FREE COMPATIBLE
COMPONENT
TS 16949, ISO 14001
Certified Manufacture
SMPS Capacitors (RH Style)
RH - Surface Mount ‘J’ Lead Range
0.047 μF to 47.0 μF
Low ESR/ESL
25V to 500 VDC
X7R Dielectric
-55ºC to +125ºC
This range of uncoated MLC capacitors are processed for
input and output filter capacitors in high frequency DC-DC
convertor applications above 10 Watts e.g. telecomms and
instrumentation, where high volume and low cost is required.
These products are available in surface mount ‘J’ leaded
versions and can be supplied in bulk and tape/reel packaging.
ELECTRICAL SPECIFICATIONS
Typical ESR (mΩ) 3 μF, 100V X7R
Temperature Coefficient CECC 30 000, (4.24.1)
X7R: C Temperature Characteristic - ± 15%, -55ºC to +125ºC
Capacitance Test
Measured at 1 VRMS max at 1KHz
ESR @ 100KHz
17
ESR @ 500KHz
12
ESR @ 1MHz
14
DIMENSIONS
Dissipation Factor 25°C
2.5% max at 1KHz, 1 VRMS max
Style
L max
RH21
7.62 (0.300)
5.40 (0.213) 4.60 (0.181) 2.50 (0.098)
RH22
7.62 (0.300)
5.40 (0.213) 7.50 (0.295) 2.50 (0.098)
RH31
7.62 (0.300)
7.00 (0.270) 5.08 (0.200) 5.08 (0.200)
Life Test (1000 hrs) CECC 30 000 (4.23)
200% rated voltage at +125ºC.
(500 Volt units @ 120% rated voltage)
RH32
7.62 (0.300)
7.00 (0.270) 8.13 (0.320) 5.08 (0.200)
RH41
9.20 (0.362)
8.70 (0.342) 4.90 (0.192) 5.08 (0.200)
Thermal Shock IEC 68.2.14
-55ºC to +125ºC, 5 cycles
RH42
9.20 (0.362)
8.70 (0.342) 8.20 (0.323) 5.08 (0.200)
RH51
10.7 (0.421)
10.7 (0.421) 4.90 (0.192) 7.62 (0.300)
RH52
10.7 (0.421)
10.7 (0.421) 8.20 (0.323) 7.62 (0.300)
RH61
14.9 (0.586)
13.6 (0.535) 4.90 (0.192) 10.2 (0.400)
RH62
14.9 (0.586)
13.6 (0.535) 8.20 (0.323) 10.2 (0.400)
Insulation Resistance 25°C
100K megohms or 1000 megohms-μF, whichever is less
Dielectric Withstanding Voltage 25°C (Flash Test)
250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 150% rated voltage)
Resistance to Solder Heat IEC 68.2.20
W max
millimeters (inches)
H max
S ± 0.1
(±0.004)
h
No. of leads
per side
1.50 ±0.30
(0.059 ±0.012)
1.50 ±0.30
(0.059 ±0.012)
1.78 ±0.25
(0.070 ±0.010)
1.78 ±0.25
(0.070 ±0.010)
1.60 ±0.10
(0.062 ±0.004)
1.60 ±0.10
(0.062 ±0.004)
1.60 ±0.10
(0.062 ±0.004)
1.60 ±0.10
(0.062 ±0.004)
1.60 ±0.10
(0.062 ±0.004)
1.60 ±0.10
(0.062 ±0.004)
2
2
3
3
3
3
4
4
5
5
DIMENSIONS millimeters (inches)
L Max.
W Max.
0.6 (0.024)
±0.1 (0.004)
M1
M1 = M2 ±0.5 (0.020)
H Max.
h
M2
0.25 (0.010)Typ.
2.54 (0.100)
±0.05 (0.002)
Non-Accum.
Bend Radius
90° ±5°
1.4 (0.055) Typ.
1.65 (0.065) ±0.15 (0.006)
S
43
SMPS Capacitors (RH Style)
RH - Surface Mount ‘J’ Lead Range
X7R STABLE DIELECTRIC
RH21/RH22
Style
Cap μF
0.047
0.056
0.068
0.082
0.1
0.12
0.15
0.18
0.22
0.27
0.33
0.39
0.47
0.56
0.68
0.78
0.82
1
1.2
1.5
1.8
2.2
2.7
3
3.3
3.9
4.4
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
25
50
100
200
RH31/RH32
Style
500
50
100
RH41/RH42
Style
Voltage DC
200
500
50
100
RH51/RH52
Style
200
500
50
100
200
RH61/RH62
Style
500
50
100
200
500
RH31
RH41
RH32
RH31
RH42
RH51
RH41
RH32
RH52
RH42
RH31
RH21
RH62
RH31
RH61
RH52
RH41
RH32
RH21
RH61
RH51
RH41
RH51
RH62
RH32
RH22
RH42
RH51
RH42
RH52
RH61
RH52
RH61
RH62
RH21 RH22
RH62
RH22
For availability of further parts in the RH21/RH22 Series, contact manufacturing.
PACKAGING
Style
RH21
RH22
RH31
RH32
RH41
RH42
RH51
RH52
RH61
RH62
Qty/Reel 13"
800
500
800
500
800
see note
750
see note
500
see note
Max. Qty/Waffle Pack
270
270
108
108
108
100
88
88
42
42
Note: T&R is not yet available. Contact manufacturing for further information as this will be available in the future.
HOW TO ORDER
RH
31
5
C
225
M
Style
Size Voltage Dielectric Capacitance Capacitance
Code
Code Code
Code
Code
Tolerance
(see table above)
3 = 25V
C = X7R
(2 significant
K = ±10%
5 = 50V
1 = 100V
2 = 200V
7 = 500V
44
digits + no.
of zeros)
eg. 105 = 1 μF
104 = 0.1 μF
M = ±20%
A
3
0
Specification
Code
Package
Code
Lead Dia.
Code
A = Non
customized
3 = Waffle Pack
A = Tape & Reel
A
3
Lead Space Lead Style
Code
Code
0 = Standard
A = Standard
R = RoHS Compliant
3 = ‘J’ Lead
SMPS Capacitors
Custom Lead Configurations
For the requirements that cannot be satisfied by standard
SMPS style products (SM0-style or SM9-style), AVX offers
leading edge solutions in custom lead configuration and
custom packaging. Custom lead configurations offering
optimum packaging, high current handling capabilities and
stress relief mounting options are all possible with AVX. The
custom solutions provided by AVX maintain high reliability of
stacked capacitor product originally developed by AVX and
historically recognized as the highest reliability product in the
market. Custom packaging options provide solutions that
eliminate reliability concerns in the next level assembly. These
custom options provide the following benefits:
CUSTOM LEAD
CONFIGURATIONS…
• eliminate soldering requirements altogether by providing
means of electrical/mechanical connection to the circuit
• provide options for remote soldering away from large
ceramic capacitor body and eliminating the risk of thermal
shock (refer to photograph with soft, insulated leads
soldered to the stacked capacitor using high melting point
SN10 solder)
Many other innovations are available from AVX Olean
Advanced Products. Let them apply these ideas to your
application specific requirements. Please consult with AVX’s
Application Engineering staff for a custom solution that will
meet demands of your program requirements.
CUSTOM PACKAGING…
45
SMPS Capacitors
Assembly Guidelines
Reliability
២
២
=
២
Voltage
Acceleration
២
AVX has been involved in numerous military and customer High
Reliability programs for over 40 years.
Reliability [% Failure Rate (FR%) or Mean Time Between Failure
(MTBF)] is based on the number of failures and the cumulative
test hours expanded by test versus use acceleration factors. The
acceleration factors are calculated according to the following
relationships:
TT – TU
25
Temperature
Where:
= 10
Acceleration
TT = test temp. (°C)
TU = use temp. (°C)
VT
Vu
3
Where:
VT = test voltage
VU = use voltage
Military Reliability levels are usually expressed in terms of rated
conditions versus test conditions (generally 125°C and 2X
WVDC). If actual conditions are less than rated, the reliability levels will improve significantly over rated and can be calculated by
use of the above relationship for determining accelerated test
hours. For example, if the actual use conditions were 75°C and
1/2 WVDC rating for a 125°C rated part, the acceleration factors
are 64X for voltage and 100X for temperature. Reliabilities based
on current testing can be obtained by contacting AVX.
General Processing Guidelines
Soldering
The SM styles capacitors are generally quite large relative to
other types of MLC capacitors. As a result of the size, precautions must be taken before subjecting the parts to any soldering
operation in order to prevent thermal shock. Preheat prior to soldering is essential. The heating rate of the SupraCap® ceramic
bodies during preheat must not exceed 4°C/second. The preheat
temperature must be within 50°C of the peak temperature
reached by the ceramic bodies, adjacent to lead material, through
the soldering process. The leads are attached to the chip stack
with 10 / 88 / 2 (Sn / Pb / Ag, Solidus 268°C, Liquidus 290°C).
Vibration Specifications*
Due to the weight of the SupraCap® and the size and strength of
the lead frame used, when the SupraCap® is to be used in an
application where it will undergo high frequency vibration, we
strongly recommend using our potted SM9 styles SupraCap®.
If other DIP styles SupraCap® are to be used in a high frequency
vibration environment, the SupraCap® should be supported in
some way to prevent oscillation of the capacitor assembly which
will result in lead breakage. If “strapping” the SupraCap® to the
board is the chosen method of support, care should be taken
not to chip the ceramic or apply undue pressure so that cracking of the ceramic results.
46
If bonding the SupraCap® to the board with adhesive, consideration of the CTE (coefficient of thermal expansion) is necessary.
A mismatch between the CTE of the ceramic and adhesive can
cause the ceramic to crack during temperature cycles.
Processing Guidelines*
There are practical size limitations for MLCs which prohibit reliable direct mounting of chip capacitors larger than 2225 (.22" x
.25") to a substrate. These large chips are subject to thermal
shock cracking and thermal cycling solder joint fatigue. Even
1812 (.18" x .12") and 2225 chip capacitors will have solder joint
failures due to mechanical fatigue after 1500 thermal cycles
from 0 to 85°C on FR4 and 3000 cycles on alumina from -55
to 125°C. This is due to differences in the Coefficient of Thermal
Expansion (CTE) between MLCs and substrate materials used in
hybrids and surface mount assemblies. Materials used in the
manufacture of all electronic components and substrates have
wide ranges of CTEs as shown in Table 1.
Table I
CTEs of Typical Components and Substrates
Material
Alloy 42
Alumina
Barium Titanate Capacitor Body
Copper
Copper Clad Invar
Filled Epoxy Resin (<TR)
FR4/G-10 PC Board (X, Y)
Nickel or Steel
Polyimide/Glass PCB (X, Y)
Polyimide/Kevlar PCB (X, Y)
Tantalum
Tin Lead Alloys
CTE (ppm/°C)
5.3
7
10-12
17.6
6-7
18-25
18
15
12
7
6.5
27
Linear Displacement
This CTE difference translates into mechanical stress that is
due to the linear displacement of substrate and component. Linear
displacement is a function of ⌬CTE (CTEsub – CTEcomp) and the
overall length of the component. Long components/ substrates
have large linear displacements even with a small ⌬CTE which will
cause high stress in the solder joints and fatigue after a few temperature cycles. Figure 1 shows linear displacement for conditions
where ⌬CTE is positive and negative.
* Reference AVX Technical Information paper, “Processing Guidelines for
SMPS Capacitors.”
SMPS Capacitors
Assembly Guidelines
DIMENSIONS
AT AMBIENT
TEMPERATURE
CAPACITOR
"J" LEADS
CAPACITOR
BODY
SUBSTRATE
SUBSTRATE LINEAR
DISPLACEMENT
PUTS SOLDER JOINT
AND CAPACITOR IN
TENSION
CAPACITOR
SUBSTRATE
"L" LEADS
CAPACITOR
BODY
SOLDER
FILLETS
SOLDER LAND
Toper > T amb CTE sub > CTE cap
SUBSTRATE
SUBSTRATE LINEAR
DISPLACEMENT
PUTS SOLDER JOINT
AND CAPACITOR IN
COMPRESSION
CAPACITOR
SUBSTRATE
Figure 3. “J” and “L” Leadframes Mounted on
Capacitors to Relieve Stress
Toper > T amb CTE sub < CTE cap
Figure 1. Linear Displacement Between
Component and Substrate
General Processing Guidelines
Figure 2 shows the location of maximum stress in the solder
joint due to positive and negative DCTE and linear displacement.
SOLDER
FILLET
CAPACITOR
MAXIMUM STRESS
Inductance
Adding leadframes has a small impact on component inductance but this is the price that must be paid for reliable operation
over temperature. Figure 4 shows typical leadframe inductance
that is added for two lead standoff distances (0.020" and 0.050")
versus the number of leads along one side of SupraCap® which
are specifically designed output filter capacitors for 1 MHz and
above switchers. The actual inductance will be somewhat less
because the leadframes flare out from the lead where the leadframe is attached to the capacitor body.
0.4
Stress for Toper > T amb CTE sub > CTE cap
MAXIMUM STRESS
CAPACITOR
Total Leadframe
Inductance (nH)
SUBSTRATE
0.3
0.2
0.1
0.050"
Standoff
0.020"
Standoff
SOLDER
FILLET
0
SUBSTRATE
5
10
15
Number of leads on one side of Capacitor
20
Figure 4. Number of Leads on One Side of Capacitor vs. Total
Leadframe Inductance vs. Substrate Standoff Height
Stress for Toper > T amb CTE sub < CTE cap
Figure 2
Stress Relief
Leadframes on larger capacitor sizes (greater than 2225) must
be used to minimize mechanical stress on the solder joints during temperature cycling which is normal operation for power
supplies (Figure 3). Failing solder joints increase both ESR and
ESL causing an increase in ripple, noise and heat, accelerating
failure.
Layout
Effective solder dams must be used to keep all molten solder
on the solder lands during reflow or solder will migrate away
from the land, causing opens or weak solder joints. High frequency output filters cannot use low power layout techniques
such as necked down conductors because of the stringent
inductance requirements.
Very high frequency switch mode power supplies place
tremendous restrictions on output filter capacitors. In addition
to handling high ripple current (low ESR), ESL must approach
zero nano henrys, part must be truly surface mountable
and be available in new configurations to be integrated into
transmission lines to further reduce inductance with load
currents greater than 40A at 1 MHz and as frequencies move
above 1-2 MHz.
The total inductance is the sum of each side of the part where
the inductance of one side is the parallel combination of each
lead in the leadframe. That inductance is given by:
L (nH) = 5x [In (2x) / (B+C) + 1/2]
Where = lead length in inches
In = natural log
B+C = lead cross section in inches
so L1 (nH) = 2xL (nH) where L1 is the total inductance of the
leadframe.
47
SMPS Capacitors (SK Style)
Commercial Radial Range
PRODUCT OFFERING – C0G, X7R AND Z5U
AVX SK styles are conformally coated MLC capacitors for input or output
filtering in switch mode power supplies. They are specially processed to
handle high currents and are low enough in cost for commercial SMPS
application.
ELECTRICAL SPECIFICATIONS
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less.
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less.
HOW TO ORDER
SK
Style
01
Size
See chart
below
3
E
125
Voltage
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
Temperature
Coefficient
Z5U = E
X7R = C
C0G = A
Capacitance
Code
(2 significant
digits + no.
of zeros)
22 nF = 223
220 nF = 224
1 μF = 105
100 μF = 107
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications
across AC supply mains or AC line filtering with polarity reversal. Contact plant
for recommendations.
TAPE & REEL QUANTITY
RoHS
Part
SK01
Pieces
2000
Part
SK01
Available
Yes
SK03/SK53
1000
SK03/SK53
Yes
SK04/SK54
1000
SK04/SK54
Yes
SK05/SK55
500
SK05/SK55
Yes
SK06/SK56
500
SK06/SK56
Yes
SK07
N/A
SK07
No
SK08
N/A
SK08
No
SK09/SK59
500
SK09/SK59
Yes
SK10/SK60
400
SK10/SK60
Yes
48
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Z
A
A
*
Test
Capacitance
Leads
Packaging
Level
Tolerance
A = Tin/Lead
(See Note 1)
C0G: J = ±5%
A = Standard R = RoHS
K = ±10%
Compliant
B = Hi-Rel*
M = ±20%
Note
1:
No
suffix
signifies
bulk packaging,
X7R: K = ±10%
which is AVX standard packaging.
M = ±20%
SK01, SK*3, SK*4, SK*5, SK*6, SK*9
Z = +80, -20%
& SK*0 are available taped and reel
Z5U: M = ±20%
per EIA-468. Use suffix “TR1” if tape &
reel is required.
Z = +80, -20%
P = GMV (+100, -0%)
*Hi-Rel
screening for C0G and X7R only. Screening consists of 100% Group A
(B Level), Subgroup 1 per MIL-PRF-49470.
SMPS Capacitors (SK Style)
Product Offering – C0G, X7R and Z5U
L
L
L
H
H
T
H
H + 3.683
(0.145)
M
M
M
LL
LL
LL
LD
LD
LD
LS
LS
SK01
LS
SK03 – SK10
SK53 - SK56 and SK59 – SK60
C0G Capacitance Range (μF)
Style
SK01
SK03/SK53
SK04/SK54
SK05/SK55
SK06/SK56
SK07
SK08
SK09/SK59
SK10/SK60
25
WVDC
min./max.
.001/0.015
.01/0.056
.01/0.12
.01/0.18
.10/0.56
.10/0.68
.82/1.20
.10/0.27
.10/0.68
50
WVDC
min./max.
.001/0.012
.01/0.047
.01/0.10
.01/0.15
.01/0.47
.01/0.56
.68/1.10
.01/0.22
.01/0.56
100
WVDC
200
WVDC
X7R Capacitance Range (μF)
500
WVDC
Style
min./max. min./max. min./max.
.001/0.010 .0010/0.0056 .0010/0.0018
.01/0.039 .001/0.022
.001/0.0068
.01/0.082
.01/0.047
.001/0.015
.01/0.12
.01/0.068
.001/0.022
.01/0.39
.01/0.22
.01/0.068
.01/0.47
.01/0.27
.01/0.082
.56/0.82
.33/0.47
.10/0.15
.01/0.18
.01/0.10
.001/0.039
.01/0.47
.01/0.27
.01/0.082
SK01
SK03/SK53
SK04/SK54
SK05/SK55
SK06/SK56
SK07
SK08
SK09/SK59
SK10/SK60
25
WVDC
min./max.
.01/0.39
.10/2.2
.10/4.7
.10/6.8
1.0/15
1.0/18
22/33
.10/8.2
1.0/18
50
WVDC
min./max.
.01/0.33
.10/1.8
.10/3.3
.10/6.8
1.0/10
1.0/14
15/22
.10/5.6
1.0/12
100
WVDC
min./max.
.01/0.27
.01/1.5
.10/2.7
.10/3.9
.10/5.6
1.0/8.2
10/15
.10/3.3
.10/6.8
200
WVDC
min./max.
.01/0.12
.01/0.68
.01/1.0
.10/1.8
.10/3.9
.10/4.7
5.6/8.2
.10/2.2
.10/4.7
500
WVDC
min./max.
.001/0.047
.01/0.27
.01/0.47
.01/0.68
.10/1.5
.10/2.2
2.2/3.9
.10/1.2
.10/2.2
Z5U Capacitance Range (μF)
Style
SK01
SK03/SK53
SK04/SK54
SK05/SK55
SK06/SK56
SK07
SK08
SK09/SK59
SK10/SK60
25 WVDC
min./max.
.10/1.2
.10/5.6
1.0/10.0
1.0/18.0
1.0/47.0
1.0/68.0
82/120.0
1.0/27.0
1.0/56.0
50 WVDC
min./max.
.10/0.82
.10/3.30
1.0/8.20
1.0/10.00
1.0/39.00
1.0/47.00
56/100.00
1.0/18.00
1.0/39.00
100 WVDC 200 WVDC
min./max.
.10/0.47
.10/2.20
.10/4.70
1.0/6.80
1.0/22.00
1.0/27.00
33/47.00
1.0/10.00
1.0/22.00
min./max.
.10/0.33
.10/1.50
.10/3.30
.10/4.70
1.0/15.00
1.0/18.00
22/33.00
1.0/6.80
1.0/18.00
DIMENSIONS
Style
SK01
SK03/SK53
SK04/SK54
SK05/SK55
SK06/SK56
SK07
SK08
SK09/SK59
SK10/SK60
L = Length
H = Height
millimeters (inches)
L (max.)
5.08 (0.200)
7.62 (0.300)
10.2 (0.400)
12.7 (0.500)
22.1 (0.870)
27.9 (1.100)
27.9 (1.100)
17.0 (0.670)
23.6 (0.930)
H (max.)
5.08 (0.200)
7.62 (0.300)
10.2 (0.400)
12.7 (0.500)
15.2 (0.600)
15.2 (0.600)
15.2 (0.600)
13.7 (0.540)
18.3 (0.720)
T = Thickness
M = Meniscus 1.52 (0.060) max.
T (max.)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
8.89 (0.350)
5.08 (0.200)
6.35 (0.250)
LS (nom.)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
10.2 (0.400)
20.1 (0.790)
24.9 (0.980)
24.9 (0.980)
14.6 (0.575)
20.3 (0.800)
LD (nom.)
0.508 (0.020)
0.508 (0.020)
0.508 (0.020)
0.635 (0.025)
0.813 (0.032)
0.813 (0.032)
0.813 (0.032)
0.635 (0.025)
0.813 (0.032)
LS = Lead Spacing Nominal ±.787 (0.031)
LL = Lead Length 50.8 (2.000) max./25.4 (1.000) min.
LD = Lead Diameter Nominal ±.050 (0.002)
49
SMPS Capacitors (SE Style)
Extended Commercial Radial Range
PRODUCT OFFERING – X7R
AVX SE styles offer capacitance extension to popular SK ranges. The CV
product for SE-series, X7R capacitors (TCC: ±15% over -55 to +125°C)
compares favorably to high CV ranges offered by other suppliers in much
less stable Y5U dielectric (TCC: +22/-56% over -30 to +85°C). SE style
capacitors are conformally coated and are designed for input and output
filtering applications in switch mode power supplies.
ELECTRICAL SPECIFICATIONS
Temperature Coefficient
X7R: Temperature Coefficient ±15%, -55° to +125°C
Capacitance Test (MIL-STD-202 Method 305)
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Dissipation Factor 25°C
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
X7R: 100K MΩ or 1000 MΩ-μF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current.
Life Test (1000 hrs)
X7R: 200% rated voltage at +125°C
Moisture Resistance (MIL-STD-202 Method 106)
X7R: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
HOW TO ORDER
SE
Style
01
Size
See chart
below
3
C
125
Voltage
25V = 3
50V = 5
100V = 1
Temperature
Coefficient
X7R = C
Capacitance
Code
(2 significant
digits + no.
of zeros)
22 nF = 223
220 nF = 224
1 μF = 105
100 μF = 107
Note: Capacitors with X7R dielectrics are not intended for applications across
AC supply mains or AC line filtering with polarity reversal. Contact plant for
recommendations.
TAPE & REEL QUANTITY
RoHS
Part
SE01
Pieces
2000
Part
SE01
Available
Yes
SE03/SE53
1000
SE03/SE53
Yes
SE04/SE54
1000
SE04/SE54
Yes
SE05/SE55
500
SE05/SE55
Yes
SE06/SE56
500
SE06/SE56
Yes
50
M
Capacitance
Tolerance
X7R: K = ±10%
M = ±20%
Z = +80, -20%
A
Test
Level
A = Standard
B = Hi-Rel*
A
*
Leads
Packaging
A = Tin/Lead (See Note 1)
R = RoHS
Compliant
Note 1: No suffix signifies bulk packaging,
which is AVX standard packaging.
Parts available tape and reel per EIA468. Use suffix “TR1” if tape & reel is
required.
*Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-39014.
SMPS Capacitors (SE Style)
Product Offering – X7R
L
L
L
H
H
T
H
H + 3.683
(0.145)
M
M
M
LL
LL
LL
LD
LD
LD
LS
LS
SE01
LS
SE03 – SE06
SE53 – SE56
X7R Capacitance Range (μF)
Style
25
WVDC
50
WVDC
100
WVDC
min./max.
min./max.
min./max.
SE01
0.47/1.5
0.39/1.0
0.33/0.68
SE03/SE53
2.7/6.8
2.2/4.7
1.8/3.3
SE04/SE54
5.6/12
3.9/10
3.3/6.8
SE05/SE55
8.2/18
6.8/12
4.7/10.0
SE06/SE56
18/39
12/27
6.8/15
DIMENSIONS
Style
SE01
SE03/SE53
SE04/SE54
SE05/SE55
SE06/SE56
L = Length
H = Height
millimeters (inches)
L (max.)
5.08 (0.200)
7.62 (0.300)
10.2 (0.400)
12.7 (0.500)
22.1 (0.870)
H (max.)
5.08 (0.200)
7.62 (0.300)
10.2 (0.400)
12.7 (0.500)
15.2 (0.600)
T = Thickness
M = Meniscus 1.52 (0.060) max.
T (max.)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
LS (nom.)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
10.2 (0.400)
20.1 (0.790)
LD (nom.)
0.508 (0.020)
0.508 (0.020)
0.508 (0.020)
0.635 (0.025)
0.813 (0.032)
LS = Lead Spacing Nominal ±.787 (0.031)
LL = Lead Length 50.8 (2.000) max./25.4 (1.000 min.)
LD = Lead Diameter Nominal ±.050 (0.002)
51
SMPS Capacitors (CECC Offering)
L
T
H
1.50
31.7 (0.059)
(1.248) MAX.
MIN.
t
S
DIMENSIONS
Size Code
millimeters (inches)
Length (L)
(max.)
10.16 (0.400)
12.7 (0.500)
23.6 (0.930)
BR40
BR50
BR84
Height (H)
(max.)
11.7 (0.460)
12.7 (0.500)
17.78 (0.700)
Thickness (T)
(max.)
3.81 (0.150)
5.1 (0.200)
6.35 (0.250)
Nom (t)
S ±0.4
0.51 (0.020)
0.64 (0.025)
0.76 (0.030)
5.08 (0.200)
10.16 (0.400)
20.32 (0.800)
CECC APPROVED RANGE
BR40
BR50
BR84
50V
683-104
124-224
104-564
1B/C0G
CECC 30 601 801 Issue 1
100V
200V
473-683
333-473
104-154
683-104
104-474
104-334
500V
4R5-153
820-333
223-104
50V
185-275
395-475
475-186
2C1/X7R
CECC 30 701 801 Issue 1
100V
200V
125-185
334-474
225-275
684-105
475-156
105-335
500V
473-154
104-394
474-155
HOW TO ORDER
BR
84
1
C
156
K
T
A
Style
Code
Size
Code
See
Voltage
Code
Dielectric
Code
Capacitance
Code
Capacitance
Tolerance
Specification
Code
Lead Length
Code
5 = 50V
1 = 100V
2 = 200V
7 = 500V
A = C0G
C = X7R
table
above
Note: If tape and reel is required, add TR to the end of the part number
52
(2 significant
digits + no.
of zeros)
G = ±2%
C0G only
J = ±5%
C0G only
K = ±10%
M = ±20%
P = -0 +100%
T = CECC
A = 31.7mm min.
ESCC Qualified SMPS Capacitors
High Voltage Chip/Leaded Capacitors
HIGH VOLTAGE CHIP CAPACITORS
Capacitors, Fixed, Chip, Ceramic Dielectric, Type II, High
Voltage, Based on Styles 1812 and 1825 for use in ESCC
space programs, according to ESCC Generic Specification
3009 and associated Detail Specification 3009/034 as
recommended by the Space Components Coordination
Group. (ranges in table below)
Note: Variants 01 to 12: metallized pads
Size
Variant
1812
01
02
03
04
05
06
07
08
09
10
11
12
1825
Rated
Voltage Tolerance Capacitance
(kV)
(%)
Code (E12)
±10
1.0
392 - 223
±20
±10
2.0
152 - 182
±20
±10
3.0
821 - 102
±20
±10
1.0
273 - 563
±20
±10
2.0
222 - 682
±20
±10
3.0
821 - 392
±20
HOW TO ORDER
Parts should be ordered using the ESCC variant number as follows:
3009034 XX
B
XXX
Test Level
Detail Spec Type
Variant C = Standard test level
Number
(per table) B = Level C plus serialized
and capacitance
recorded before and
after 100% burn-in.
Capacitance
Code
The first two digits represent
significant figures and the third
digit specifies the number of
zeros to follow; i.e.
102 = 1000pF
103 = 10000pF
Eg 300903401C223
HIGH VOLTAGE LEADED CAPACITORS
Capacitors, Fixed, Ceramic Dielectric, Type II, High Voltage,
1.0 to 5.0 kV, Based on Case Styles VR, CV and CH for use
in ESCC space programs, according to ESCC Generic
Specification 3001 and associated Detail Specification
3001/034 as recommended by the Space Components
Coordination Group. (ranges in table)
Note 1: Lead Types
a - Leaded Radial (epoxy coated)
b - Leaded Radial (Polyurethane Varnish)
c - Straight Dual in Line
d - L Dual in Line
Note 2: Tolerances of ±10% and ±20% are available
HOW TO ORDER
Parts should be ordered using the ESCC variant
number as follows:
Capacitance Code (E12)
2.0kV
3.0kV
4.0kV
Case
Lead
Size Variant Type 1.0kV
VR30S
VR30
VR40
VR50
VR66
VR84
VR90
CV41
CH41
CH41
CV51
CH51
CH51
CV61
CH61
CH61
CV76
CH76
CH76
CV91
CH91
CH91
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
a
a
a
a
a
a
a
b
c
d
b
c
d
b
c
d
b
c
d
b
c
d
392
273
473
154
224
684
125
473
473
473
154
154
154
224
224
224
684
684
684
125
125
125
-
203
563
124
274
564
105
275
124
124
124
274
274
274
564
564
564
105
105
105
275
275
275
152
222
822
183
393
473
184
822
822
822
183
183
183
393
393
393
473
473
473
184
184
184
-
182
682
153
333
823
154
334
153
153
153
333
333
333
823
823
823
154
154
154
334
334
334
821
821
472
123
223
473
823
472
472
472
123
123
123
223
223
223
473
473
473
823
823
823
-
102
392
103
183
393
683
184
103
103
103
183
183
183
393
393
393
683
683
683
184
184
184
182
562
103
183
473
182
182
182
562
562
562
103
103
103
183
183
183
473
473
473
-
222
822
153
393
124
222
222
222
822
822
822
153
153
153
393
393
393
124
124
124
5.0kV
332
682
123
223
-
392
103
183
563
332
332
332
682
682
682
123
123
123
223
223
223
-
392
392
392
103
103
103
183
183
183
563
563
563
3001034
XX
B
XXX
K
X
Detail Spec
Number
Type Variant
(per table above)
Test Level
C = Standard test level
B = Level C plus serialized
and capacitance recorded
before and after 100%
burn-in.
Capacitance
Code
The first two digits represent
significant figures and the third
digit specifies the number of
zeros to follow; i.e.
102 = 1000pF
103 = 10000pF
Capacitance
Tolerance
K = 10%
M = 20%
Voltage
M = 1kV
P = 2kV
R = 3kV
S = 4kV
Z = 5kV
Eg 300103412C274KM
53
ESCC Qualified SMPS Capacitors
High Capacitance
HIGH CAPACITANCE LEADED CAPACITORS
Capacitors, Fixed, Ceramic Dielectric, Type II, High
Capacitance, Based on Case Styles BR, CV and CH for use
in ESCC space programs, according to ESCC Generic
Specification 3001 and associated Detail Specification
3001/030 as recommended by the Space Components
Coordination Group. (see ranges in table below)
Case
Size Variant Figure
BR40
BR50
BR66
BR72
BR84
CV41
CH41
CH41
CH42
CH42
CH43
CH43
CH44
CH44
CV51
CH51
CH51
CH52
CH52
CH53
CH53
CH54
CH54
CV61
CH61
CH61
CH62
CH62
CH63
CH63
CH64
CH64
CV71
CH71
CH71
CH72
CH72
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
˜31
32
33
34
35
36
37
a
a
a
a
a
b
c
d
c
d
c
d
c
d
b
c
d
c
d
c
d
c
d
b
c
d
c
d
c
d
c
d
b
c
d
c
d
50V
Capacitance Code (E12)
100V
200V
500V
185 - 335
395 - 565
685 - 106
126 - 186
126 - 186
185 - 335
185 - 335
185 - 335
395 - 685
395 - 685
825 - 106
825 - 106
126
126
395 - 565
395 - 565
395 - 565
685 - 106
685 - 106
126 - 156
126 - 156
186 - 226
186 - 226
685 - 106
685 - 106
685 - 106
126 - 226
126 - 226
276 - 336
276 - 336
396
396
126 - 186
126 - 186
126 - 186
226 - 396
226 - 396
125 - 395
225 - 395
475 - 825
825 - 156
825 - 156
125 - 275
125 - 275
125 - 275
335 - 565
335 - 565
685 - 825
685 - 825
106
106
225 - 395
225 - 395
225 - 395
475 - 825
475 - 825
106 - 126
106 - 126
156
156
475 - 825
475 - 825
475 - 825
106 - 156
106 - 156
186 - 226
186 - 226
276 - 336
276 - 336
825 - 156
825 - 156
825 - 156
186 - 276
186 - 276
334 - 564
684 - 105
105 - 225
225 - 335
225 - 335
334 - 564
334 - 564
334 - 564
684 - 125
684 - 125
155 - 185
155 - 185
225
225
684 - 105
684 - 105
684 - 105
125 - 225
125 - 225
275 - 335
275 - 335
395
395
105 - 225
105 - 225
105 - 225
275 - 475
275 - 475
565 - 685
565 - 685
825 - 106
825 - 106
225 - 335
225 - 335
225 - 335
395 - 685
395 - 685
124 - 224
274 - 394
474 - 105
824 - 155
824 - 155
124 - 224
124 - 224
124 - 224
274 - 474
274 - 474
564 - 684
564 - 684
824 - 105
824 - 105
274 - 394
274 - 394
274 - 394
474 - 824
474 - 824
105 - 125
105 - 125
155
155
474 - 105
474 - 105
474 - 105
105 - 185
105 - 185
225 - 275
225 - 275
335
335
824 - 155
824 - 155
824 - 155
185 - 335
185 - 335
Note 1: Lead Types
a - Leaded Radial (epoxy coated)
b - Leaded Radial (Polyurethane Varnish)
c - Straight Dual in Line
d - L Dual in Line
Note 2: Tolerances of ±10% and ±20% are available
Case
Size Variant Figure
CH73
CH73
CH74
CH74
CV76
CH76
CH76
CH77
CH77
CH78
CH78
CH79
CH79
CH81
CH81
CH82
CH82
CH83
CH83
CH84
CH84
CH86
CH86
CH87
CH87
CH88
CH88
CH89
CH89
CH91
CH91
CH92
CH92
CH93
CH93
CH94
CH94
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
c
d
c
d
b
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
50V
476 - 566
476 - 566
686
686
126 - 186
126 - 186
126 - 186
226 - 396
226 - 396
476 - 566
476 - 566
686
686
156 - 226
156 - 226
276 - 476
276 - 476
566 - 686
566 - 686
826
826
226 - 336
226 - 336
396 - 686
396 - 686
826 - 107
826 - 107
127
127
396 - 476
396 - 476
566 - 107
566 - 107
127 - 157
127 - 157
187
187
Capacitance Code (E12)
100V
200V
500V
336 - 396
336 - 396
476
476
825 - 156
825 - 156
825 - 156
186 - 276
186 - 276
336 - 396
336 - 396
476
476
126 - 186
126 - 186
226 - 396
226 - 396
476 - 566
476 - 566
686
686
156 - 276
156 - 276
336 - 566
336 - 566
686 - 826
686 - 826
107
107
336 - 396
336 - 396
476 - 826
476 - 826
107 - 127
107 - 127
157
157
825 - 106
825 - 106
126
126
225 - 335
225 - 335
225 - 335
395 - 685
395 - 685
825 - 106
825 - 106
126
126
225 - 395
225 - 395
475 - 825
475 - 825
106 - 126
106 - 126
156
156
395 - 685
395 - 685
825 - 156
825 - 156
186 - 226
186 - 226
276
276
825 - 106
825 - 106
126 - 226
126 - 226
276 - 336
276 - 336
396
396
395 - 475
395 - 475
565
565
824 - 155
824 - 155
824 - 155
185 - 335
185 - 335
395 - 475
395 - 475
565
565
824 - 155
824 - 155
155 - 225
155 - 225
HOW TO ORDER
Parts should be ordered using the ESCC variant number as follows:
3001030
XX
Detail Spec
Number
Type Variant
(per table above)
B
Test Level
C = Standard test level
B = Level C plus serialized and
capacitance recorded before
and after 100% burn-in.
EG 300103018C106KC
Lot Acceptance Testing is available for all our ESCC qualified ranges.
LAT 1
LAT 2
LAT 3
54
42 samples → 12 mechanical + 20 life test + 6 for TC + 4 for solder
30 samples → 20 life test + 6 for TC + 4 for solder
10 samples → 6 for TC + 4 for solder
XXX
K
X
Capacitance
Code
The first two digits represent
significant figures and the third
digit specifies the number of
zeros to follow; i.e.
102 = 1000pF
103 = 10000pF
Capacitance
Tolerance
K = 10%
M = 20%
Voltage
C = 50V
E = 100V
G = 200V
L = 500V
SMPS Capacitors
ESCC DETAIL SPECIFICATION NO. 3009/034
PHYSICAL DIMENSIONS
Millimeters (Inches)
L
Symbol
I
L
l
e
e
M
=
=
M
M
Variants 01 to 06
Variants 07 to 12
Min.
Max.
Min.
Max.
4.20
(0.165)
2.80
(0.110)
–
5.00
(0.197)
3.60
(0.142)
3.00
(0.118)
0.75
(0.030)
4.20
(0.165)
5.67
(0.223)
–
5.00
(0.197)
6.67
(0.263)
3.30
(0.130)
0.75
(0.030)
0.25
(0.010)
0.25
(0.010)
ESCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – VR STYLE
Millimeters (Inches)
B
F
H
Variant
Case
Size
01
VR30S
02
VR30
03
VR40
04
VR50
05
VR66
06
VR84
07
VR90
J
L
Ød
E
B
Max.
7.62
(0.300)
7.62
(0.300)
10.16
(0.400)
12.7
(0.500)
17.5
(0.689)
23.62
(0.930)
23.5
(0.925)
Ød
Min.
Max.
0.46
(0.018)
0.46
(0.018)
0.46
(0.018)
0.59
(0.023)
0.86
(0.034)
0.86
(0.034)
0.86
(0.034)
0.56
(0.022)
0.56
(0.022)
0.56
(0.022)
0.69
(0.027)
0.96
(0.038)
0.96
(0.038)
0.96
(0.038)
Min.
E
Max.
F
Max.
H
Max.
J
Max.
L
Min.
4.58
(0.180)
4.58
(0.180)
4.58
(0.180)
9.66
(0.380)
14.2
(0.559)
20.4
(0.803)
20.4
(0.803)
5.58
(0.220)
5.58
(0.220)
5.58
(0.220)
10.66
(0.420)
15.2
(0.598)
22.0
(0.866)
22.0
(0.866)
5.00
(0.197)
5.00
(0.197)
5.00
(0.197)
5.10
(0.201)
6.40
(0.252)
6.40
(0.252)
6.40
(0.252)
4.60
(0.181)
9.62
(0.379)
11.7
(0.461)
14.2
(0.559)
16.5
(0.650)
19.78
(0.779)
42.0
(1.654)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
ESCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – CV STYLE
Millimeters (Inches)
F
B
Ød
H
L
Variant
Case
Size
08
CV41
11
CV51
14
CV61
17
CV76
20
CV91
B
Max.
10.6
(0.417)
11.9
(0.469)
16.5
(0.650)
22.7
(0.894)
22.7
(0.894)
Ød
Min.
Max.
0.65
(0.026)
0.85
(0.033)
0.85
(0.033)
0.85
(0.033)
1.15
(0.045)
0.75
(0.030)
0.95
(0.037)
0.95
(0.037)
0.95
(0.037)
1.25
(0.049)
Min.
E
Max.
F
Max.
H
Max.
Min.
L
Max.
7.70
(0.303)
9.66
(0.380)
14.74
(0.580)
20.4
(0.803)
20.4
(0.803)
8.70
(0.343)
10.66
(0.420)
15.74
(0.620)
22.0
(0.866)
22.0
(0.866)
3.80
(0.150)
3.80
(0.150)
3.80
(0.150)
3.80
(0.150)
3.80
(0.150)
8.70
(0.343)
10.7
(0.421)
13.6
(0.535)
16.6
(0.654)
40.6
(1.598)
22.0
(0.866)
22.0
(0.866)
22.0
(0.866)
22.0
(0.866)
22.0
(0.866)
28.0
(1.102)
28.0
(1.102)
28.0
(1.102)
28.0
(1.102)
28.0
(1.102)
L
E
55
SMPS Capacitors
ESCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – CH STYLE, D.I.L.
a1
A
L
b1
E
e
b
D
F
Symbol
a1
Min.
0.45
(0.018)
0.204
(0.008)
2.49
(0.098)
12.0
(0.472)
b
b1
e
L
Max.
Notes
2.00
(0.079)
0.55
(0.022)
0.304
(0.012)
2.59
(0.102)
14.0
(0.551)
1
1
1
2
1
Notes: 1 – All leads
2 – Each space
Millimeters (Inches)
Variant
Case
Size
07
09
11
13
16
18
20
22
25
27
29
31
34
36
38
40
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
CH41
CH42
CH43
CH44
CH51
CH52
CH53
CH54
CH61
CH62
CH63
CH64
CH71
CH72
CH73
CH74
CH76
CH77
CH78
CH79
CH81
CH82
CH83
CH84
CH86
CH87
CH88
CH89
CH91
CH92
CH93
CH94
A
Max.
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
D
Max.
8.70
8.70
8.70
8.70
10.7
10.7
10.7
10.7
13.6
13.6
13.6
13.6
21.6
21.6
21.6
21.6
16.6
16.6
16.6
16.6
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
40.6
40.6
40.6
40.6
(0.343)
(0.343)
(0.343)
(0.343)
(0.421)
(0.421)
(0.421)
(0.421)
(0.535)
(0.535)
(0.535)
(0.535)
(0.850)
(0.850)
(0.850)
(0.850)
(0.654)
(0.654)
(0.654)
(0.654)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.598)
(1.598)
(1.598)
(1.598)
E
Min.
7.70
7.70
7.70
7.70
9.66
9.66
9.66
9.66
13.5
13.5
13.5
13.5
14.74
14.74
14.74
14.74
19.52
19.52
19.52
19.52
9.66
9.66
9.66
9.66
14.74
14.74
14.74
14.74
19.52
19.52
19.52
19.52
Max.
(0.303)
(0.303)
(0.303)
(0.303)
(0.380)
(0.380)
(0.380)
(0.380)
(0.531)
(0.531)
(0.531)
(0.531)
(0.580)
(0.580)
(0.580)
(0.580)
(0.769)
(0.769)
(0.769)
(0.769)
(0.380)
(0.380)
(0.380)
(0.380)
(0.580)
(0.580)
(0.580)
(0.580)
(0.769)
(0.769)
(0.769)
(0.769)
8.70
8.70
8.70
8.70
10.66
10.66
10.66
10.66
14.5
14.5
14.5
14.5
15.74
15.74
15.74
15.74
21.12
21.12
21.12
21.12
10.66
10.66
10.66
10.66
15.74
15.74
15.74
15.74
21.12
21.12
21.12
21.12
ESCC DETAIL SPECIFICATION NO. 3001/034
PHYSICAL DIMENSIONS – CH STYLE, L
A
L
e
b
L
D
E
L
Case
Size
10
13
16
19
22
CH41
CH51
CH61
CH76
CH91
b
e
F
L
A
Max.
3.80
3.80
3.80
3.80
3.80
(0.150)
(0.150)
(0.150)
(0.150)
(0.150)
Min.
Max.
0.45
(0.018)
2.49
(0.098)
2.04
(0.080)
0.55
(0.022)
2.59
(0.102)
3.01
(0.120)
Notes: 1 – All leads
2 – Each space
56
9.20
9.20
9.20
9.20
10.7
10.7
10.7
10.7
14.9
14.9
14.9
14.9
16.8
16.8
16.8
16.8
21.6
21.6
21.6
21.6
12.0
12.0
12.0
12.0
18.9
18.9
18.9
18.9
24.0
24.0
24.0
24.0
(0.362)
(0.362)
(0.362)
(0.362)
(0.421)
(0.421)
(0.421)
(0.421)
(0.587)
(0.587)
(0.587)
(0.587)
(0.661)
(0.661)
(0.661)
(0.661)
(0.850)
(0.850)
(0.850)
(0.850)
(0.472)
(0.472)
(0.472)
(0.472)
(0.744)
(0.744)
(0.744)
(0.744)
(0.945)
(0.945)
(0.945)
(0.945)
Millimeters (Inches)
Variant
Symbol
(0.343)
(0.343)
(0.343)
(0.343)
(0.420)
(0.420)
(0.420)
(0.420)
(0.571)
(0.571)
(0.571)
(0.571)
(0.620)
(0.620)
(0.620)
(0.620)
(0.831)
(0.831)
(0.831)
(0.831)
(0.420)
(0.420)
(0.420)
(0.420)
(0.620)
(0.620)
(0.620)
(0.620)
(0.831)
(0.831)
(0.831)
(0.831)
F
Max.
D
Max.
8.70
10.7
13.6
16.6
40.6
(0.343)
(0.421)
(0.535)
(0.654)
(1.598)
Notes
1
2
1
E
Min.
7.70
9.66
13.5
19.52
19.52
Max.
F
Max.
(0.303) 8.70 (0.343) 9.20 (0.362)
(0.380) 10.66 (0.420) 10.7 (0.421)
(0.531) 14.5 (0.571) 14.9 (0.587)
(0.769) 21.12 (0.831) 21.6 (0.850)
(0.769) 21.12 (0.831) 24.0 (0.945)
SMPS Capacitors
ESCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – BR STYLE
Millimeters (Inches)
B
H
F
J
L
E
Variant
Case
Size
01
BR40
02
BR50
03
BR66
04
BR72
05
BR84
B
Max.
10.16
(0.400)
12.7
(0.500)
17.5
(0.689)
19.3
(0.760)
23.62
(0.930)
Ød
Min.
Max.
0.46
(0.018)
0.59
(0.023)
0.86
(0.034)
0.86
(0.034)
0.71
(0.028)
0.56
(0.022)
0.69
(0.027)
0.96
(0.038)
0.96
(0.038)
0.81
(0.032)
Min.
E
Max.
F
Max.
H
Max.
J
Max.
L
Min.
4.58
(0.180)
9.66
(0.380)
14.2
(0.559)
14.74
(0.580)
18.93
(0.745)
5.58
(0.220)
10.66
(0.420)
15.2
(0.598)
15.74
(0.620)
20.83
(0.820)
5.00
(0.197)
5.10
(0.201)
6.40
(0.252)
6.40
(0.252)
6.40
(0.252)
11.7
(0.461)
14.2
(0.559)
16.5
(0.650)
24.0
(0.945)
19.78
(0.779)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
1.50
(0.059)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
31.7
(1.248)
Ød
ESCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – CV STYLE
Millimeters (Inches)
F
B
Ød
H
L
Variant
Case
Size
06
CV41
15
CV51
24
CV61
33
CV71
42
CV76
B
Max.
10.6
(0.417)
11.9
(0.469)
16.5
(0.650)
17.8
(0.701)
22.7
(0.894)
Ød
Min.
Max.
0.65
(0.026)
0.85
(0.033)
0.85
(0.033)
0.85
(0.033)
0.85
(0.033)
0.75
(0.030)
0.95
(0.037)
0.95
(0.037)
0.95
(0.037)
0.95
(0.037)
Min.
E
Max.
F
Max.
H
Max.
Min.
L
Max.
7.70
(0.303)
9.66
(0.380)
14.74
(0.580)
14.74
(0.580)
20.4
(0.803)
8.70
(0.343)
10.66
(0.420)
15.74
(0.620)
15.74
(0.620)
22.0
(0.866)
3.80
(0.150)
3.80
(0.150)
3.80
(0.150)
3.80
(0.150)
3.80
(0.150)
8.70
(0.343)
10.7
(0.421)
13.6
(0.535)
21.6
(0.850)
16.6
(0.654)
22.0
(0.866)
22.0
(0.866)
22.0
(0.866)
22.0
(0.866)
22.0
(0.866)
28.0
(1.102)
28.0
(1.102)
28.0
(1.102)
28.0
(1.102)
28.0
(1.102)
L
E
57
SMPS Capacitors
ESCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – CH STYLE, D.I.L.
a1
A
L
b1
E
e
b
D
F
Symbol
Min.
a1
0.45
(0.018)
0.204
(0.008)
2.49
(0.098)
2.04
(0.080)
b
b1
e
L
Max.
Notes
2.00
(0.079)
0.55
(0.022)
0.304
(0.012)
2.59
(0.102)
3.04
(0.120)
1
1
1
2
1
Notes: 1 – All leads
2 – Each space
Millimeters (Inches)
Variant
Case
Size
07
09
11
13
16
18
20
22
25
27
29
31
34
36
38
40
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
CH41
CH42
CH43
CH44
CH51
CH52
CH53
CH54
CH61
CH62
CH63
CH64
CH71
CH72
CH73
CH74
CH76
CH77
CH78
CH79
CH81
CH82
CH83
CH84
CH86
CH87
CH88
CH89
CH91
CH92
CH93
CH94
A
Max.
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
D
Max.
8.70
8.70
8.70
8.70
10.7
10.7
10.7
10.7
13.6
13.6
13.6
13.6
21.6
21.6
21.6
21.6
16.6
16.6
16.6
16.6
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
40.6
40.6
40.6
40.6
(0.343)
(0.343)
(0.343)
(0.343)
(0.421)
(0.421)
(0.421)
(0.421)
(0.535)
(0.535)
(0.535)
(0.535)
(0.850)
(0.850)
(0.850)
(0.850)
(0.654)
(0.654)
(0.654)
(0.654)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.504)
(1.598)
(1.598)
(1.598)
(1.598)
E
Min.
7.70
7.70
7.70
7.70
9.66
9.66
9.66
9.66
13.5
13.5
13.5
13.5
14.74
14.74
14.74
14.74
19.52
19.52
19.52
19.52
9.66
9.66
9.66
9.66
14.74
14.74
14.74
14.74
19.52
19.52
19.52
19.52
Max.
(0.303)
(0.303)
(0.303)
(0.303)
(0.380)
(0.380)
(0.380)
(0.380)
(0.531)
(0.531)
(0.531)
(0.531)
(0.580)
(0.580)
(0.580)
(0.580)
(0.769)
(0.769)
(0.769)
(0.769)
(0.380)
(0.380)
(0.380)
(0.380)
(0.580)
(0.580)
(0.580)
(0.580)
(0.769)
(0.769)
(0.769)
(0.769)
ESCC DETAIL SPECIFICATION NO. 3001/030
PHYSICAL DIMENSIONS – CH STYLE, L
A
L
e
b
L
D
F
Symbol
b
e
L
Min.
Max.
0.45
(0.018)
2.49
(0.098)
2.04
(0.080)
0.55
(0.022)
2.59
(0.102)
3.04
(0.120)
Notes: 1 – All leads
2 – Each space
58
Notes
1
2
1
E
L
8.70
8.70
8.70
8.70
10.66
10.66
10.66
10.66
14.5
14.5
14.5
14.5
15.74
15.74
15.74
15.74
21.12
21.12
21.12
21.12
10.66
10.66
10.66
10.66
15.74
15.74
15.74
15.74
21.12
21.12
21.12
21.12
(0.343)
(0.343)
(0.343)
(0.343)
(0.420)
(0.420)
(0.420)
(0.420)
(0.571)
(0.571)
(0.571)
(0.571)
(0.620)
(0.620)
(0.620)
(0.620)
(0.831)
(0.831)
(0.831)
(0.831)
(0.420)
(0.420)
(0.420)
(0.420)
(0.620)
(0.620)
(0.620)
(0.620)
(0.831)
(0.831)
(0.831)
(0.831)
F
Max.
9.20
9.20
9.20
9.20
10.7
10.7
10.7
10.7
14.9
14.9
14.9
14.9
16.8
16.8
16.8
16.8
21.6
21.6
21.6
21.6
12.0
12.0
12.0
12.0
18.9
18.9
18.9
18.9
24.0
24.0
24.0
24.0
(0.362)
(0.362)
(0.362)
(0.362)
(0.421)
(0.421)
(0.421)
(0.421)
(0.587)
(0.587)
(0.587)
(0.587)
(0.661)
(0.661)
(0.661)
(0.661)
(0.850)
(0.850)
(0.850)
(0.850)
(0.472)
(0.472)
(0.472)
(0.472)
(0.744)
(0.744)
(0.744)
(0.744)
(0.945)
(0.945)
(0.945)
(0.945)
Millimeters (Inches)
Variant
Case
Size
08
10
12
14
17
19
21
23
26
28
30
32
35
37
39
41
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
CH41
CH42
CH43
CH44
CH51
CH52
CH53
CH54
CH61
CH62
CH63
CH64
CH71
CH72
CH73
CH74
CH76
CH77
CH78
CH79
CH81
CH82
CH83
CH84
CH86
CH87
CH88
CH89
CH91
CH92
CH93
CH94
A
Max.
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
3.80
7.40
11.1
14.8
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
(0.150)
(0.291)
(0.437)
(0.583)
D
Max.
8.70
8.70
8.70
8.70
10.7
10.7
10.7
10.7
13.6
13.6
13.6
13.6
21.6
21.6
21.6
21.6
16.6
16.6
16.6
16.6
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
40.6
40.6
40.6
40.6
E
Min.
(0.343) 7.70
(0.343) 7.70
(0.343) 7.70
(0.343) 7.70
(0.421) 9.66
(0.421) 9.66
(0.421) 9.66
(0.421) 9.66
(0.535) 13.5
(0.535) 13.5
(0.535) 13.5
(0.535) 13.5
(0.850) 14.74
(0.850) 14.74
(0.850) 14.74
(0.850) 14.74
(0.654) 19.52
(0.654) 19.52
(0.654) 19.52
(0.654) 19.52
(1.504) 9.66
(1.504) 9.66
(1.504) 9.66
(1.504) 9.66
(1.504) 14.74
(1.504) 14.74
(1.504) 14.74
(1.504)) 14.74
(1.598) 19.52
(1.598) 19.52
(1.598) 19.52
(1.598) 19.52
(0.303)
(0.303)
(0.303)
(0.303)
(0.380)
(0.380)
(0.380)
(0.380)
(0.531)
(0.531)
(0.531)
(0.531)
(0.580)
(0.580)
(0.580)
(0.580)
(0.769)
(0.769)
(0.769)
(0.769)
(0.380)
(0.380)
(0.380)
(0.380)
(0.580)
(0.580)
(0.580)
(0.580)
(0.769)
(0.769)
(0.769)
(0.769)
Max.
8.70
8.70
8.70
8.70
10.66
10.66
10.66
10.66
14.5
14.5
14.5
14.5
15.74
15.74
15.74
15.74
21.12
21.12
21.12
21.12
10.66
10.66
10.66
10.66
15.74
15.74
15.74
15.74
21.12
21.12
21.12
21.12
(0.343
(0.343
(0.343
(0.343
(0.420)
(0.420)
(0.420)
(0.420)
(0.571)
(0.571)
(0.571)
(0.571)
(0.620)
(0.620)
(0.620)
(0.620)
(0.831)
(0.831)
(0.831)
(0.831)
(0.420)
(0.420)
(0.420)
(0.420)
(0.620)
(0.620)
(0.620)
(0.620)
(0.831)
(0.831)
(0.831)
(0.831)
F
Max.
9.20
9.20
9.20
9.20
10.7
10.7
10.7
10.7
14.9
14.9
14.9
14.9
16.8
16.8
16.8
16.8
21.6
21.6
21.6
21.6
12.0
12.0
12.0
12.0
18.9
18.9
18.9
18.9
24.0
24.0
24.0
24.0
(0.362)
(0.362)
(0.362)
(0.362)
(0.421)
(0.421)
(0.421)
(0.421)
(0.587)
(0.587)
(0.587)
(0.587)
(0.661)
(0.661)
(0.661)
(0.661)
(0.850)
(0.850)
(0.850)
(0.850)
(0.472)
(0.472)
(0.472)
(0.472)
(0.744)
(0.744)
(0.744)
(0.744)
(0.945)
(0.945)
(0.945)
(0.945)
High Voltage DIP Leaded (HV Style)
C0G Dielectric
N1500
X7R Dielectric
General
Specifications
General
Specifications
General
Specifications
Capacitance Range
100 pF to 1.2 μF
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz, for ≤100 pF use 1 MHz)
Capacitance Tolerances
±5%, ±10%, ±20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
0 ± 30 ppm/°C
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
0.15% max.
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz, for ≤100 pF use 1 MHz)
Insulation Resistance (+25°C, at 500V)
100K MΩ min., or 1000 MΩ-μF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K MΩ min., or 100 MΩ-μF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
Capacitance Range
100 pF to 1.9 μF
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Capacitance Tolerances
±5%, ±10%, ±20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
-1500 ±250 ppm/°C
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
0.15% max.
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Insulation Resistance (+25°C, at 500V)
100K MΩ min., or 1000 MΩ-μF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K MΩ min., or 100 MΩ-μF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
Capacitance Range
100 pF to 15 μF
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Capacitance Tolerances
±10%, ±20%, +80%, -20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
±15% (0 VDC)
Voltage Ratings
1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor
2.5% max.
(25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz)
Insulation Resistance (+25°C, at 500V)
100K MΩ min., or 1000 MΩ-μF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K MΩ min., or 100 MΩ-μF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
HOW TO ORDER
HV
01
AVX Style
Size
See
Dimensions
chart
AVX Styles: HV01 THRU HV06
A
C
105
Voltage Temperature
Capacitance
1K = A
Coefficient
Code
2K = G
C0G = A
(2 significant digits
3K = H
X7R = C
+ number of zeros)
4K = J
N1500 = 4
10 pF = 100
5K = K
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1μF = 105
10 μF = 106
100 μF = 107
M
A
N
650
Capacitance
Tolerance
C0G:
J = ±5%
K = ±10%
M = ±20%
Test Level
A = Does not apply
Termination
N = Straight Lead
J = Leads formed in
L = Leads formed out
P = P Style Leads
Z = Z Style Leads
Height
Max
Dimension “A”
120 = 0.120"
240 = 0.240"
360 = 0.360"
480 = 0.480"
650 = 0.650"
X7R:
K = ±10%
M = ±20%
Z = +80%, -20%
N1500:
J = ±5%
K = ±10%
M = ±20%
Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
59
High Voltage DIP Leaded (HV Style)
Surface Mount and Thru-Hole HV Styles
CHIP SEPARATION
0.254 (0.010) TYP.
D
CHIP SEPARATION
0.254 (0.010) TYP.
CAPACITOR
E
E
1.651 ± 0.254
(0.065 ± 0.010)
B
1.397 (0.055)
±0.254 (0.010)
A
R 0.508
(0.020)
3 PLACES
B
2.540 ± 0.254
(0.100 ± 0.010)
4.191 ± 0.254
(0.165 ± 0.010)
DETAIL A
6.350 (0.250) MIN
0.254
(0.010)
TYP.
0.508 (0.020) TYP.
2.54 (0.100) TYP.
C
2.54 (0.100) MAX.
0.635 (0.025) MIN.
C
0.254
(0.010)
TYP.
1.016 ± 0.254
(0.040 ± 0.010)
DETAIL A
“N” STYLE LEADS
“P” STYLE LEADS
CHIP SEPARATION
0.254 (0.010) TYP.
CHIP SEPARATION
0.254 (0.010) TYP.
D
E
E
0.254 (0.010)
RAD. (TYP.)
B
0.254 (0.010)
RAD. (TYP.)
1.397 (0.055)
±0.254 (0.010)
A
0.254 (0.010)
TYP.
1.905 (0.075)
±0.635 (0.025)
TYP.
1.778 (0.070)
0.508 (0.020) TYP.
2.54 (0.100) TYP.
±0.254 (0.010)
2.54 (0.100) MAX.
0.635 (0.025) MIN.
C
1.778 (0.070)
±0.254 (0.010)
“J” STYLE LEADS
C
“L” STYLE LEADS
1.397 (0.055)
±0.254 (0.010)
A
E
0.254 (0.010) TYP.
B
RAD.
0.254
(0.010)
(TYP)
1.270 ± 0.254
(0.050 ± 0.010)
CHIP SEPARATION
0.254 (0.010) TYP.
D
0.254 (0.010)
TYP.
1.905 (0.075)
±0.635 (0.025)
TYP.
2.794 ± 0.254
(0.110 ± 0.010)
6.35
(0.250)
MIN.
1.778 ±0.254
(0.070 ± 0.010)
C
0.508 (0.020) TYP.
2.54 (0.100) TYP.
3.048 ± 0.381
(0.120 ± 0.015)
DETAIL B
2.54 (0.100) MAX.
0.635 (0.025) MIN.
DETAIL B
“Z” STYLE LEADS
DIMENSIONS
Style
HV01
HV02
HV03
HV04
HV05
HV06
60
A (max.)
millimeters (inches)
B (max.)
For “N” Style Leads: “A” Dimension Plus 1.651 (0.065)
See page 61 for
For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080)
maximum “A”
For “P” Style Leads: “A” Dimension Plus 4.445 (0.175)
Dimension
For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120)
C ±.635 (±0.025)
53.3
39.1
27.2
10.2
6.35
53.3
(2.100)
(1.540)
(1.070)
(0.400)
(0.250)
(2.100)
D ±.635 (±0.025)
10.5
20.3
10.5
10.2
6.35
29.0
(0.415)
(0.800)
(0.415)
(0.400)
(0.250)
(1.140)
E (max.)
54.9
40.7
28.2
11.2
7.62
54.9
(2.160)
(1.600)
(1.130)
(0.440)
(0.300)
(2.160)
No. of Leads
per side
4
8
4
4
3
11
High Voltage DIP Leaded (HV Style)
Surface Mount and Thru-Hole HV Styles
Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm
HV01 _ _ _ _ _ _ AN120
HV02 _ _ _ _ _ _ AN120
HV03 _ _ _ _ _ _ AN120
HV04 _ _ _ _ _ _ AN120
HV05 _ _ _ _ _ _ AN120
HV06 _ _ _ _ _ _ AN120
AVX
1KV
2KV
1KV 2KV 3KV 4KV 5KV
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV
.086 .024 .011 .0062 .0052 .120 .034 .015 .0088 .0074 .042 .013 .0058 .0030 .0024 .012 .0040 .0018 .0009 .0007
.0048
.0013
.240 .066 .028 .018 .015
N1500 .140 .042 .018 .010 .0084 .200 .058 .024 .014 .012 .068 .020 .0090 .0050 .0040 .020 .0066 .0028 .0014 .0012
.0078
.0022
.380 .100 .046 .030 .026
.060
---
3.00 .700 .440 .200 .170
C0G
X7R
1.10 .260 .150 .066 .052 1.50 .360 .200 .094 .078 .520 .130 .072 .032 .024 .160 .042
---
---
---
Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm
HV01 _ _ _ _ _ _ AN240
HV02 _ _ _ _ _ _ AN240
HV03 _ _ _ _ _ _ AN240
HV04 _ _ _ _ _ _ AN240
HV05 _ _ _ _ _ _ AN240
HV06 _ _ _ _ _ _ AN240
AVX
1KV
2KV
1KV 2KV 3KV 4KV 5KV
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV
.170 .048 .022 .012 .010 .240 .068 .031 .017 .015 .084 .026 .011 .0060 .0048 .025 .0082 .0036 .0018 .0014
.0096
.0027
.480 .130 .056 .036 .031
N1500 .280 .084 .036 .020 .016 .400 .110 .048 .028 .024 .130 .040 .018 .010 .0080 .040 .013 .0056 .0028 .0025
.015
.0044
.760 .210 .092 .060 .052
.120
---
6.00 1.40 .880 .400 .340
C0G
X7R
2.20 .520 .300 .130 .100 3.10 .720 .400 .180 .150 1.00 .270 .140 .064 .048 .330 .084
---
---
---
Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.15mm
HV01 _ _ _ _ _ _ AN360
HV02 _ _ _ _ _ _ AN360
HV03 _ _ _ _ _ _ AN360
HV04 _ _ _ _ _ _ AN360
HV05 _ _ _ _ _ _ AN360
HV06 _ _ _ _ _ _ AN360
AVX
1KV
2KV
1KV 2KV 3KV 4KV 5KV
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV
.250 .072 .033 .018 .015 .360 .100 .047 .026 .022 .120 .039 .017 .0090 .0072 .038 .012 .0054 .0027 .0022
.014
.0040
.720 .200 .084 .055 .047
N1500 .420 .120 .055 .030 .025 .600 .170 .072 .043 .036 .200 .060 .027 .015 .012 .060 .020 .0084 .0043 .0037
.023
.0066
1.10 .310 .130 .090 .078
X7R
.180
---
9.00 2.10 1.30 .600 .510
C0G
3.30 .780 .450 .200 .150 4.70 1.00 .600 .280 .230 1.50 .410 .210 .096 .072 .490 .120
---
---
---
Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm
HV01 _ _ _ _ _ _ AN480
HV02 _ _ _ _ _ _ AN480
HV03 _ _ _ _ _ _ AN480
HV04 _ _ _ _ _ _ AN480
HV05 _ _ _ _ _ _ AN480
HV06 _ _ _ _ _ _ AN480
AVX
1KV
2KV
1KV 2KV 3KV 4KV 5KV
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV
C0G
.340 .096 .044 .024 .020 .480 .130 .063 .035 .030 .160 .052 .023 .012 .0096 .051 .016 .0072 .0036 .0029
.019
.0054
.960 .260 .110 .073 .062
N1500 .560 .160 .073 .040 .033 .800 .230 .096 .057 .048 .270 .080 .036 .020 .016 .080 .026 .011 .0057 .0050
.031
.0088
1.50 .420 .180 .120 .100
.240
---
X7R
4.40 1.00 .600 .260 .200 6.30 1.40 .800 .370 .310 2.00 .550 .280 .120 .096 .650 .160
---
---
---
12.0 2.80 1.70 .800
.68
Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm
HV01 _ _ _ _ _ _ AN650
HV02 _ _ _ _ _ _ AN650
HV03 _ _ _ _ _ _ AN650
HV04 _ _ _ _ _ _ AN650
HV05 _ _ _ _ _ _ AN650
HV06 _ _ _ _ _ _ AN650
AVX
1KV
2KV
1KV 2KV 3KV 4KV 5KV
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV
C0G
.430 .120 .056 .031 .026 .610 .170 .079 .044 .037 .210 .065 .029 .015 .012 .064 .020 .009 .0045 .0037
.024
.0068
1.20 .330 .140 .092 .078
N1500 .700 .210 .092 .050 .042 1.00 .290 .120 .072 .060 .340 .100 .045 .025 .020 .100 .033 .014 .0072 .0063
.039
.011
1.90 .530 .230 .150 .130
.300
---
15.0 3.50 2.20 1.00 .850
X7R
5.50 1.30 .750 .330 .260 7.90 1.80 1.00 .470 .390 2.60 .690 .360 .160 .120 .820 .210
---
---
---
61
High Voltage Leaded (CH Style)
Radial, Dual-in-Line & ‘L’ Lead SMT
330 pF to 2.7 μF
1kV to 5kV
-55ºC to +125ºC
1B/C0G and 2C1/X7R Dielectrics
This range of radial, dual-in-line for both through hole and
surface mount products is intended for use in high voltage
power supplies and voltage multiplier circuits. The multilayer
ceramic construction offers excellent volumetric efficiency
compared with other high voltage dielectrics. They are suitable
for both high reliability and industrial applications.
ELECTRICAL SPECIFICATIONS
Temperature Coefficient CECC 30 000, (4.24.1)
1B/C0G: A Temperature Coefficient - 0 ± 30ppm/ºC
2C1/X7R: C Temperature Characteristic - ± 15% (0v dc)
Dielectric Withstanding Voltage 25°C
130% rated voltage for 5 seconds
Life Test (1000 hrs) CECC 30000 (4.23)
1B/C0G & 2C1/X7R: 120% rated voltage at +125ºC.
Capacitance Test 25ºC
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz <100 pF)
2C1/X7R: Measured at 1 VRMS max at 1KHz
Aging
1B/C0G: Zero
2C1/X7R: 2.5%/decade hour
Dissipation Factor 25°C
1B/C0G: 0.15% max at 1KHz, 1 VRMS (1MHz for <100 pF)
2C1/X7R: 2.5% max at 1KHz, 1 VRMS
Insulation Resistance
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF,
whichever is less
DUAL-IN-LINE
3.8
(0.149)
max.
W max.
W max.
2.0
(0.079)
max.
L max.
L
max.
13 (0.512)
±1.0 (0.039)
3.8 (0.149)
max.
S ±0.5 (0.020)
L1 2.54 (0.100) ±0.5 (0.200)
L2
2.54 (0.100) ±0.5 (0.200)
L2
S ±0.5
(0.020)
L1
DIMENSIONS
millimeters (inches)
L
(max)
Style
CH41
CH51
CH61
CH76
CH91
2.54 (0.100)
±0.5 (0.200)
9.2
10.7
14.9
21.6
24.0
(0.362)
(0.421)
(0.587)
(0.850)
(0.944)
W
(max)
8.7
10.7
13.6
16.6
40.6
S
(nom)
(0.342)
(0.421)
(0.535)
(0.654)
(1.598)
8.2
10.2
14.0
20.3*
20.3*
(0.323)
(0.400)
(0.551)
(0.800)
(0.800)
No. of
Leads
per side
3
4
5
6
14
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)
*Tolerance ± 0.8
HOW TO ORDER
CH
Style
Code
41
A
104
K
Size Voltage Dielectric Capacitance Capacitance
Code Code
Code
Code
Tolerance
A = 1kV
G = 2kV
H = 3kV
J = 4kV
K = 5kV
62
C
A = C0G
C = X7R
A
Specification
Code
8
0
Finish
Code
Lead Dia.
Code
Lead Space
Code
Lead Style
Code
0 = Standard
A = Standard
0 = Dual in line
straight
7 = Dual in line
‘L’ style
(2 significant
C0G: J = ±5%
A = Non customized 8 = Varnish
digits + no.
K = ±10%
of zeros)
M = ±20%
eg. 105 = 1 μF
X7R: K = ±10%
106 = 10 μF
M = ±20%
107 = 100 μF
P = +100, -0%
A
7
High Voltage Leaded (CV Style)
Chip Assemblies
VERTICALLY MOUNTED RADIAL PRODUCT
Part Number format (CVxxxxxxxxxxxA2)
Typical Part Number CV51AC154MA80A2
T Max.
DIMENSIONS
L Max.
H Max.
millimeters (inches)
Style
L
(max)
H
(max)
T
(max)
S
(nom)
CV41
CV51
CV61
CV76
CV91
10.6 (0.417)
11.9 (0.469)
16.5 (0.650)
22.7 (0.893)
22.7 (0.893)
8.70 (0.343)
10.7 (0.421)
13.6 (0.536)
16.6 (0.654)
40.6 (1.598)
3.80 (0.150)
3.80 (0.150)
3.80 (0.150)
3.80 (0.150)
3.80 (0.150)
8.20 (0.323)
10.2 (0.402)
15.2 (0.599)
21.2* (0.835)
21.2* (0.835)
25 (0.984)
±3 (0.118)
Lead Dia.
See Table
Lead
Dia
(nom)
0.70 (0.028)
0.90 (0.035)
0.90 (0.035)
0.90 (0.035)
1.20 (0.047)
*Tolerance ± 0.8mm (0.031)
S ±0.5
(0.020)
HOW TO ORDER
CV
Style
Code
51
A
C
154
M
Size Voltage Dielectric Capacitance Capacitance
Code Code
Code
Code
Tolerance
A = 1kV
G = 2kV
H = 3kV
J = 4kV
K = 5kV
A = C0G
C = X7R
A
Specification
Code
(2 significant
C0G: J = ±5%
A = Non customized
digits + no.
K = ±10%
of zeros)
M = ±20%
eg. 105 = 1 μF
X7R: K = ±10%
106 = 10 μF
M = ±20%
107 = 100 μF
P = +100, -0%
8
0
A
Finish
Code
Lead Dia.
Code
Lead Space
Code
8 = Varnish
0 = Standard
A = Standard
2
Lead Style
Code
63
High Voltage Leaded (CH/CV Style)
Chip Assemblies
1B/C0G ULTRA STABLE CERAMIC
CV41-CH41
Styles
Cap pF
330
CV51-CH51
Styles
CV61-CH61
Styles
CV76-CH76
Styles
CV91-CH91
Styles
K
390
J
K
470
J
K
560
J
K
680
J
K
820
H
J
1000
H
J
K
K
1200
H
J
K
1500
H
J
K
1800
G
H
2200
G
H
2700
G
3300
G
G
H
3900
G
G
H
4700
J
K
J
H
G
K
J
K
J
K
J
K
K
G
H
J
5600
A
G
H
J
6800
A
G
G
H
8200
A
G
G
H
J
K
10000
A
G
G
H
J
K
12000
A
A
G
H
J
K
15000
A
A
G
G
K
J
K
G
H
J
J
18000
A
G
H
22000
A
A
G
H
27000
A
A
G
H
33000
A
A
G
39000
A
G
47000
A
A
G
56000
A
A
G
68000
A
A
G
82000
A
G
100000
A
H
G
G
120000
A
150000
A
180000
A
220000
A
270000
A
330000
A
NB Figures in cells refer to size within ordering information
64
High Voltage Leaded (CH/CV Style)
Chip Assemblies
2C1/X7R STABLE CERAMIC
CV41-CH41
Styles
CV51-CH51
Styles
CV61-CH61
Styles
CV76-CH76
Styles
CV91-CH91
Styles
Cap nF
1.2
K
1.3
K
1.5
J
K
2.2
J
K
2.7
J
K
3.3
J
3.9
J
4.7
H
5.6
6.8
K
K
J
J
K
H
J
K
H
J
K
H
J
8.2
G
10
G
H
J
K
12
G
H
J
15
G
H
J
H
K
K
K
18
A
G
H
J
22
A
27
A
G
H
J
K
G
H
J
33
A
K
G
H
J
39
A
A
G
K
H
J
47
A
A
G
H
J
K
56
A
A
G
H
J
K
68
A
A
G
H
J
G
K
K
82
A
A
G
H
J
100
A
A
A
G
H
J
120
A
A
A
G
H
J
150
A
A
G
H
180
A
A
A
G
220
A
A
A
G
270
A
G
A
A
330
A
A
390
A
A
A
470
A
A
A
560
A
A
A
680
A
A
820
A
A
1000
A
A
H
G
1200
A
1500
A
1800
A
2200
A
2700
A
NB Figures in cells refer to size within ordering information
65
High Voltage MLC Radials (SV Style)
Application Information on High Voltage MLC Capacitors
High value, low leakage and small size are difficult parameters
to obtain in capacitors for high voltage systems. AVX special
high voltage MLC radial leaded capacitors meet these
performance characteristics. The added advantage of these
capacitors lies in special internal design minimizing the electric
field stresses within the MLC. These special design criteria
result in significant reduction of partial discharge activity within
the dielectric and having, therefore, a major impact on longterm reliability of the product. The SV high voltage radial
capacitors are conformally coated with high insulation
resistance, high dielectric strength epoxy eliminating the
possibility of arc flashover.
The SV high voltage radial MLC designs exhibit low ESRs at
high frequency. The same criteria governing the high voltage
design carries the added benefits of extremely low ESR in
relatively low capacitance and small packages. These
capacitors are designed and are ideally suited for applications
such as snubbers in high frequency power converters,
resonators in SMPS, and high voltage coupling/DC blocking.
C0G Dielectric
X7R Dielectric
General Specifications
General Specifications
Capacitance Range
10 pF to .15 μF
(+25°C, 1.0 ±0.2 Vrms at 1kHz,
for ≤100 pF use 1 MHz)
Capacitance Tolerances
±5%; ±10%; ±20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
0 ± 30 ppm/°C
Voltage Ratings
600 VDC thru 5000 VDC (+125°C)
Dissipation Factor
0.15% max.
(+25°C, 1.0 ±0.2 Vrms at 1kHz,
for ≤100 pF use 1 MHz)
Insulation Resistance (+25°C, at 500V)
100K MΩ min. or 1000 MΩ-μF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K MΩ min., or 100 MΩ-μF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
66
Capacitance Range
100 pF to 2.2 μF
(+25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances
±10%; ±20%; +80%, -20%
Operating Temperature Range
-55°C to +125°C
Temperature Characteristic
±15% (0 VDC)
Voltage Ratings
600 VDC thru 5000 VDC (+125°C)
Dissipation Factor
2.5% max.
(+25°C, 1.0 ±0.2 Vrms at 1kHz)
Insulation Resistance (+25°C, at 500V)
100K MΩ min., or 1000 MΩ-μF min.,
whichever is less
Insulation Resistance (+125°C, at 500V)
10K MΩ min., or 100 MΩ-μF min.,
whichever is less
Dielectric Strength
120% rated voltage, 5 seconds
Life Test
100% rated and +125°C
High Voltage MLC Radials (SV Style)
L
L
T
H
H
H + 3.683
(0.145)
31.75
(1.25)
MIN
31.75
(1.250)
min.
LD
LD
S
S
SV01 thru SV17
SV52 thru SV59 and SV63 thru SV67
HIGH VOLTAGE RADIAL LEAD
HOW TO ORDER
SV01
AVX
Style
A
Voltage
600V/630V =
1000V =
1500V =
2000V =
2500V =
3000V =
4000V =
5000V =
C
A
S
G
W
H
J
K
AVX Styles: SV01 THRU SV67
A
102
K
Temperature
Coefficient
C0G = A
X7R = C
Capacitance Code
(2 significant digits
+ no. of zeros)
Examples:
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 μF = 105
Capacitance
Tolerance
C0G: J = ±5%
K = ±10%
M = ±20%
X7R: K = ±10%
M = ±20%
Z = +80 -20%
Note: Capacitors with X7R dielectrics are not intended for applications across
AC supply mains or AC line filtering with polarity reversal. Contact plant for
recommendations.
DIMENSIONS
AVX Style
Length (L)
max
A
A
*
Leads
Test
A = Tin/Lead
Level
A = Standard R = RoHS
Compliant
B = Hi-Rel*
Packaging
(See Note 1)
Note 1: No suffix signifies bulk packaging
which is AVX standard packaging.
Use suffix “TR1” if tape and reel is
required. Parts are reel packaged
per EIA-468.
*Hi-Rel
screening consists of 100% Group A, Subgroup 1 per MIL-PRF-49467.
(Except partial discharge testing is not performed and DWV is at 120% rated voltage).
millimeters (inches)
Height (H) Thickness (T) Lead Spacing
max
max
±.762 (.030) (S)
LD (Nom)
TAPE & REEL QUANTITY
RoHS
SV01
6.35 (0.250) 5.59 (0.220)
5.08 (0.200)
4.32 (0.170)
0.64 (0.025)
SV02/SV52
8.13 (0.320) 7.11 (0.280)
5.08 (0.200)
5.59 (0.220)
0.64 (0.025)
Part
SV01
Pieces
1000
Part
SV01
Available
Yes
SV03/SV53
9.40 (0.370) 7.62 (0.300)
5.08 (0.200)
6.99 (0.275)
0.64 (0.025)
SV02/SV52
1000
SV02/SV52
Yes
SV04/SV54
11.4 (0.450) 5.59 (0.220)
5.08 (0.200)
7.62 (0.300)
0.64 (0.025)
SV03/SV53
1000
SV03/SV53
Yes
SV05/SV55
11.9 (0.470) 10.2 (0.400)
5.08 (0.200)
9.52 (0.375)
0.64 (0.025)
SV04/SV54
1000
SV04/SV54
Yes
SV06/SV56
14.0 (0.550) 7.11 (0.280)
5.08 (0.200)
10.16 (0.400)
0.64 (0.025)
SV05/SV55
1000
SV05/SV55
Yes
0.64 (0.025)
SV06/SV56
500
SV06/SV56
Yes
0.64 (0.025)
SV07/SV57
500
SV07/SV57
Yes
0.64 (0.025)
SV08/SV58
500
SV08/SV58
Yes
SV09/SV59
500
SV09/SV59
Yes
SV10
N/A
SV10
No
SV11
N/A
SV11
No
SV12
N/A
SV12
No
SV13/SV63
1000
SV13/SV63
Yes
SV07/SV57
SV08/SV58
SV09/SV59
SV10
14.5 (0.570) 12.7 (0.500)
17.0 (0.670) 15.2 (0.600)
19.6 (0.770) 18.3 (0.720)
26.7 (1.050) 12.7 (0.500)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
5.08 (0.200)
12.1 (0.475)
14.6 (0.575)
17.1 (0.675)
22.9 (0.900)
0.64 (0.025)
SV11
31.8 (1.250) 15.2 (0.600)
5.08 (0.200)
27.9 (1.100)
0.64 (0.025)
SV12
36.8 (1.450) 18.3 (0.720)
5.08 (0.200)
33.0 (1.300)
0.64 (0.025)
SV13/SV63
7.62 (0.300) 9.14 (0.360)
5.08 (0.200)
5.08 (0.200)
0.51 (0.020)
SV14/SV64
10.2 (0.400) 11.7 (0.460)
5.08 (0.200)
5.08 (0.200)
0.51 (0.020)
SV14/SV64
1000
SV14/SV64
Yes
SV15/SV65
12.7 (0.500) 14.2 (0.560)
5.08 (0.200)
10.2 (0.400)
0.64 (0.025)
SV15/SV65
500
SV15/SV65
Yes
SV16/SV66
22.1 (0.870) 16.8 (0.660)
5.08 (0.200)
20.1 (0.790)
0.81 (0.032)
SV16/SV66
500
SV16/SV66
Yes
SV17/SV67
23.6 (0.930) 19.8 (0.780)
6.35 (0.250)
20.3 (0.800)
0.81 (0.032)
SV17/SV67
400
SV17/SV67
Yes
67
High Voltage MLC Radials (SV Style)
CAPACITANCE VALUE
C0G
Style
SV01
SV02/SV52
SV03/SV53
SV04/SV54
SV05/SV55
SV06/SV56
SV07/SV57
SV08/SV58
SV09/SV59
SV10
SV11
SV12
SV13/SV63
SV14/SV64
SV15/SV65
SV16/SV66
SV17/SV67
600/630V
min./max.
100 pF / 1500 pF
100 pF / 6800 pF
100 pF /0.012 μF
100 pF / 3900 pF
1000 pF /0.027 μF
100 pF /0.012 μF
1000 pF /0.056 μF
1000 pF /0.082 μF
1000 pF /0.150 μF
1000 pF /0.100 μF
1000 pF /0.150 μF
0.01 μF /0.220 μF
100 pF /0.018 μF
1000 pF /0.039 μF
1000 pF /0.056 μF
1000 pF /0.120 μF
1000 pF /0.150 μF
SV01
SV02/SV52
SV03/SV53
SV04/SV54
SV05/SV55
SV06/SV56
SV07/SV57
SV08/SV58
SV09/SV59
SV10
SV11
SV12
SV13/SV63
SV14/SV64
SV15/SV65
SV16/SV66
SV17/SV67
1000 pF /0.018 μF
1000 pF /0.082 μF
1000 pF /0.180 μF
1000 pF /0.056 μF
0.01 μF /0.470 μF
0.01 μF /0.180 μF
0.01 μF /0.820 μF
0.01 μF / 1.20 μF
0.10 μF / 1.80 μF
0.01 μF / 1.50 μF
0.10 μF / 2.20 μF
0.10 μF / 3.90 μF
0.01 μF /0.270 μF
0.01 μF /0.470 μF
0.01 μF /0.680 μF
0.01 μF / 1.80 μF
0.01 μF / 2.20 μF
1000V
1500V
2000V
2500V
3000V
4000V
5000V
min./max.
min./max.
min./max.
min./max.
min./max.
min./max.
min./max.
100 pF / 1000 pF
100 pF / 4700 pF
100 pF / 8200 pF
100 pF / 2700 pF
1000 pF / 0.018 μF
100 pF / 0.010 μF
1000 pF / 0.033 μF
1000 pF / 0.047 μF
1000 pF / 0.082 μF
1000 pF / 0.056 μF
1000 pF / 0.082 μF
0.01 μF / 0.15 μF
100 pF / 0.012 μF
1000 pF / 0.022 μF
1000 pF / 0.033 μF
1000 pF / 0.082 μF
1000 pF / 0.10 μF
10 pF / 330 pF
100 pF / 1500 pF
100 pF / 2700 pF
10 pF / 820 pF
100 pF / 6800 pF
100 pF / 3300 pF
1000 pF / 0.015 μF
1000 pF / 0.022 μF
1000 pF / 0.039 μF
1000 pF / 0.022 μF
1000 pF / 0.039 μF
1000 pF / 0.056 μF
100 pF / 4700 pF
100 pF / 8200 pF
1000 pF /0.015 μF
1000 pF /0.039 μF
1000 pF /0.056 μF
10 pF / 220 pF
10 pF / 1000 pF
100 pF / 1800 pF
10 pF / 560 pF
100 pF / 4700 pF
100 pF / 2200 pF
100 pF /0.010 μF
1000 pF /0.015 μF
1000 pF /0.022 μF
1000 pF /0.012 μF
1000 pF /0.022 μF
1000 pF /0.033 μF
100 pF / 2700 pF
100 pF / 5600 pF
100 pF / 0.01 μF
1000 pF /0.027 μF
1000 pF /0.039 μF
10 pF / 120 pF
10 pF / 680 pF
10 pF /1000 pF
10 pF / 270 pF
100 pF /2700 pF
10 pF /1200 pF
100 pF /5600 pF
100 pF /0.010 μF
1000 pF /0.015 μF
100 pF /8200 pF
1000 pF /0.015 μF
1000 pF /0.022 μF
100 pF /1800 pF
100 pF /3300 pF
100 pF /5600 pF
1000 pF /0.015 μF
1000 pF /0.022 μF
1000 pF / 0.012 μF
1000 pF / 0.047 μF
1000 pF / 0.082 μF
1000 pF / 0.033 μF
0.01 μF / 0.22 μF
0.01 μF / 0.10 μF
0.01 μF / 0.39 μF
0.01 μF / 0.68 μF
0.10 μF / 1.00 μF
0.01 μF / 0.82 μF
0.10 μF / 1.2 μF
0.10 μF / 2.20 μF
0.01 μF / 0.10 μF
0.01 μF / 0.18 μF
0.01 μF / 0.33 μF
0.01 μF / 1.0 μF
0.01 μF / 1.2 μF
100 pF / 5600 pF
1000 pF / 0.015 μF
1000 pF / 0.018 μF
100 pF / 6800 pF
1000 pF / 0.056 μF
1000 pF / 0.033 μF
0.01 μF / 0.10 μF
0.01 μF / 0.18 μF
0.01 μF / 0.27 μF
0.01 μF / 0.22 μF
0.01 μF / 0.39 μF
0.01 μF / 0.56 μF
1000 pF / 0.033 μF
1000 pF / 0.068 μF
0.01 μF / 0.10 μF
0.01 μF / 0.27 μF
0.01 μF / 0.39 μF
100 pF / 3900 pF
100 pF / 6800 pF
1000 pF / 0.01 μF
100 pF / 3900 pF
1000 pF /0.027 μF
1000 pF /0.012 μF
1000 pF /0.047 μF
1000 pF /0.082 μF
0.01 μF / 0.12 μF
0.01 μF / 0.10 μF
0.01 μF / 0.18 μF
0.01 μF / 0.27 μF
1000 pF /0.012 μF
1000 pF /0.022 μF
1000 pF /0.033 μF
0.01 μF / 0.12 μF
0.01 μF / 0.15 μF
10 pF
10 pF
10 pF
10 pF
100 pF
10 pF
100 pF
100 pF
100 pF
100 pF
100 pF
1000 pF
100 pF
100 pF
100 pF
100 pF
1000 pF
/ 82 pF
/ 560 pF
/ 680 pF
/ 180 pF
/ 1500 pF
/ 820 pF
/ 3900 pF
/ 6800 pF
/ 8200 pF
/ 5600 pF
/ 8200 pF
/0.015 μF
/ 1000 pF
/ 1800 pF
/ 2700 pF
/ 8200 pF
/0.012 μF
10 pF
10 pF
10 pF
10 pF
10 pF
100 pF
100 pF
100 pF
100 pF
100 pF
100 pF
10 pF
10 pF
100 pF
100 pF
100 pF
—
/ 150 pF
/ 390 pF
/ 100 pF
/1000 pF
/ 470 pF
/2200 pF
/3300 pF
/4700 pF
/3300 pF
/4700 pF
/8200 pF
/ 470 pF
/ 820 pF
/1800 pF
/4700 pF
/6800 pF
10 pF
10 pF
10 pF
10 pF
10 pF
10 pF
100 pF
100 pF
100 pF
100 pF
100 pF
10 pF
10 pF
100 pF
100 pF
100 pF
—
/ 100 pF
/ 220 pF
/ 68 pF
/ 560 pF
/ 390 pF
/1200 pF
/2200 pF
/3300 pF
/2200 pF
/3300 pF
/5600 pF
/ 390 pF
/ 680 pF
/1200 pF
/3300 pF
/4700 pF
X7R
—
—
100 pF /3900 pF 100 pF / 2700 pF
100 pF /6800 pF 100 pF / 4700 pF
100 pF /2200 pF 100 pF / 1800 pF
1000 pF /0.018 μF 1000 pF /0.012 μF
100 pF /8200 pF 100 pF / 6800 pF
1000 pF /0.033 μF 1000 pF /0.027 μF
1000 pF /0.068 μF 1000 pF /0.047 μF
0.01 μF / 0.10 μF 1000 pF /0.068 μF
1000 pF /0.082 μF 1000 pF /0.056 μF
0.01 μF / 0.15 μF 0.01 μF / 0.10 μF
0.01 μF / 0.22 μF 0.01 μF / 0.15 μF
1000 pF / 0.01 μF 100 pF / 6800 pF
1000 pF /0.018 μF 1000 pF /0.015 μF
1000 pF /0.027 μF 1000 pF /0.022 μF
0.01 μF / 0.10 μF 1000 pF /0.068 μF
0.01 μF / 0.12 μF 1000 pF /0.082 μF
—
—
100 pF /1800 pF
100 pF / 820 pF
100 pF /4700 pF
100 pF /2700 pF
1000 pF / 0.01 μF
1000 pF /0.018 μF
1000 pF /0.027 μF
1000 pF /0.022 μF
1000 pF /0.039 μF
1000 pF /0.056 μF
100 pF /2700 pF
100 pF /5600 pF
1000 pF /8200 pF
1000 pF /0.027 μF
1000 pF /0.039 μF
—
—
—
—
—
100 pF /1200 pF
100 pF /6800 pF
1000 pF /0.012 μF
1000 pF /0.018 μF
1000 pF /0.022 μF
1000 pF /0.027 μF
1000 pF /0.033 μF
—
—
100 pF /4700 pF
1000 pF /0.018 μF
1000 pF /0.027 μF
Note: Contact factory for other voltage ratings or values.
AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS
Specification #
87046
87043
87040
87114
87047
87076
89044
87077
87070
Description
C0G-1000
X7R-1000
X7R-2000
C0G-3000
X7R-3000
C0G-4000
X7R-4000
C0G-5000
X7R-5000
VDC
VDC
VDC
VDC
VDC
VDC
VDC
VDC
VDC
Capacitance Range
10
100
100
10
100
10
100
10
100
pF
pF
pF
pF
pF
pF
pF
pF
pF
-
0.025 μF
0.47 μF
0.22 μF
8200 pF
0.1 μF
6800 pF
0.056 μF
5600 pF
0.033 μF
These specifications require group A and B testing per MIL-PRF-49467
Note: Customers may accept, at their discretion, a certificate of compliance with group B requirements in lieu of performing group B tests.
68
MLC Chip Capacitors
Basic Construction
A multilayer ceramic (MLC) capacitor is a monolithic block
of ceramic containing two sets of offset, interleaved
planar electrodes that extend to two opposite surfaces of
the ceramic dielectric. This simple structure requires a
considerable amount of sophistication, both in material and
in manufacture, to produce it in the quality and quantities
needed in today’s electronic equipment.
Terminations
• Standard Nickel Barrier
Lead Free Tin Plate (RoHS Compliant)
5% minimum Lead Plated
• Leach resistance to 90 seconds at 260°C
• Solderable plated for dimensional control
• Special materials as required
Ceramic Layer
Electrode
End Terminations
Terminated
Edge
Terminated
Edge
Margin
Electrodes
QUALITY STATEMENT
AVX focus is customer satisfaction – Customer satisfaction in
the broadest sense: Products, service, price, delivery, technical support, and all the aspects of a business that impact
you, the customer.
Our long term strategy is for continuous improvement which
is defined by our Quality Vision 2000. This is a total quality
management system developed by and supported by AVX
corporate management. The foundation of QV2000 is built
upon military and commercial standards and systems
including ISO9001. QV2000 is a natural extension of past
quality efforts with world class techniques for ensuring a total
quality environment to satisfy our customers during this
decade and into the 21st century.
As your components supplier, we invite you to experience
the quality, service, and commitment of AVX.
69
General Description
EIA CODE
Percent Capacity Change Over Temperature Range
RS198
X7
X5
Y5
Z5
Temperature Range
-55°C to +125°C
-55°C to +85°C
-30°C to +85°C
+10°C to +85°C
Code
Percent Capacity Change
D
E
F
P
R
S
T
U
V
±3.3%
±4.7%
±7.5%
±10%
±15%
±22%
+22%, -33%
+22%, - 56%
+22%, -82%
Effects of Voltage – Variations in voltage have little effect
on Class 1 dielectric but does affect the capacitance and
dissipation factor of Class 2 dielectrics. The application of
DC voltage reduces both the capacitance and dissipation
factor while the application of an AC voltage within a
reasonable range tends to increase both capacitance and
dissipation factor readings. If a high enough AC voltage is
applied, eventually it will reduce capacitance just as a DC
voltage will. Figure 2 shows the effects of AC voltage.
Cap. Change vs. A.C. Volts
X7R
Capacitance Change Percent
Table 1: EIA and MIL Temperature Stable and General
Application Codes
50
40
30
20
10
0
EXAMPLE – A capacitor is desired with the capacitance value at 25°C
to increase no more than 7.5% or decrease no more than 7.5% from
-30°C to +85°C. EIA Code will be Y5F.
12.5
25
37.5
Volts AC at 1.0 KHz
50
Figure 2
MIL CODE
Temperature Range
A
B
C
-55°C to +85°C
-55°C to +125°C
-55°C to +150°C
Typical Cap. Change vs. Temperature
X7R
Symbol
Q
R
W
X
Y
Z
Cap. Change
Zero Volts
Cap. Change
Rated Volts
+15%, -15%
+15%, -15%
+22%, -56%
+15%, -15%
+30%, -70%
+20%, -20%
+15%, -50%
+15%, -40%
+22%, -66%
+15%, -25%
+30%, -80%
+20%, -30%
Temperature characteristic is specified by combining range and change
symbols, for example BR or AW. Specification slash sheets indicate the
characteristic applicable to a given style of capacitor.
In specifying capacitance change with temperature for Class
2 materials, EIA expresses the capacitance change over an
operating temperature range by a 3 symbol code. The
first symbol represents the cold temperature end of the
temperature range, the second represents the upper limit of
the operating temperature range and the third symbol represents the capacitance change allowed over the operating
temperature range. Table 1 provides a detailed explanation of
the EIA system.
70
Capacitance Change Percent
Symbol
Capacitor specifications specify the AC voltage at which to
measure (normally 0.5 or 1 VAC) and application of the
wrong voltage can cause spurious readings.
+20
+10
0VDC
0
-10
-20
-30
-55 -35
-15
+5
+25 +45 +65 +85 +105 +125
Temperature Degrees Centigrade
Figure 3
General Description
Effects of Time – Class 2 ceramic capacitors change
capacitance and dissipation factor with time as well as
temperature, voltage and frequency. This change with time is
known as aging. Aging is caused by a gradual re-alignment
of the crystalline structure of the ceramic and produces an
exponential loss in capacitance and decrease in dissipation
factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 4.
If a Class 2 ceramic capacitor that has been sitting on the
shelf for a period of time, is heated above its curie point,
(125°C for 4 hours or 150°C for 1⁄2 hour will suffice) the part
will de-age and return to its initial capacitance and dissipation factor readings. Because the capacitance changes
rapidly, immediately after de-aging, the basic capacitance
measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use
different time bases but the most popular one is one day
or twenty-four hours after “last heat.” Change in the aging
curve can be caused by the application of voltage and
other stresses. The possible changes in capacitance due to
de-aging by heating the unit explain why capacitance changes
are allowed after test, such as temperature cycling, moisture
resistance, etc., in MIL specs. The application of high voltages
such as dielectric withstanding voltages also tends to de-age
capacitors and is why re-reading of capacitance after 12 or 24
hours is allowed in military specifications after dielectric
strength tests have been performed.
Effects of Frequency – Frequency affects capacitance
and impedance characteristics of capacitors. This effect is
much more pronounced in high dielectric constant ceramic
formulation than in low K formulations. AVX’s SpiCalci
software generates impedance, ESR, series inductance,
series resonant frequency and capacitance all as functions
of frequency, temperature and DC bias for standard chip
sizes and styles. It is available free from AVX and can be
downloaded for free from AVX website: www.avx.com.
Typical Curve of Aging Rate
X7R
+1.5
Effects of Mechanical Stress – High “K” dielectric ceramic
capacitors exhibit some low level piezoelectric reactions
under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of
the ceramic. It is desirable to investigate this effect before
using high “K” dielectrics as coupling capacitors in extremely low level applications.
Reliability – Historically ceramic capacitors have been one
of the most reliable types of capacitors in use today.
The approximate formula for the reliability of a ceramic
capacitor is:
Capacitance Change Percent
0
-1.5
-3.0
-4.5
Lo
=
Lt
-6.0
-7.5
1
10
100
Characteristic
C0G (NP0)
X7R, X5R
1000 10,000 100,000
Hours
Max. Aging Rate %/Decade
None
2
where
Lo =
Lt =
Vt =
Vo =
Vt
Vo
operating life
test life
test voltage
operating voltage
X
Tt
To
Y
Tt = test temperature and
To = operating temperature
in °C
X,Y = see text
Figure 4
Historically for ceramic capacitors exponent X has been
considered as 3. The exponent Y for temperature effects
typically tends to run about 8.
71
General Description
A capacitor is a component which is capable of storing
electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the
dielectric. A typical formula for determining capacitance is:
C = .224 KA
t
C
K
A
t
capacitance (picofarads)
dielectric constant (Vacuum = 1)
area in square inches
separation between the plates in inches
(thickness of dielectric)
.224 = conversion constant
(.0884 for metric system in cm)
Capacitance – The standard unit of capacitance is the
farad. A capacitor has a capacitance of 1 farad when 1
coulomb charges it to 1 volt. One farad is a very large unit
and most capacitors have values in the micro (10-6), nano
(10-9) or pico (10-12) farad level.
Dielectric Constant – In the formula for capacitance given
above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials
are then compared to the dielectric constant of a vacuum.
Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage
requirements mean thinner dielectrics and greater capacitance per volume.
Area – Capacitance is directly proportional to the area of the
electrodes. Since the other variables in the equation are
usually set by the performance desired, area is the easiest
parameter to modify to obtain a specific capacitance within
a material group.
Energy Stored – The energy which can be stored in a
capacitor is given by the formula:
RP
=
=
=
=
E = 1⁄2CV2
E = energy in joules (watts-sec)
V = applied voltage
C = capacitance in farads
Potential Change – A capacitor is a reactive component
which reacts against a change in potential across it. This is
shown by the equation for the linear charge of a capacitor:
I ideal = C dV
dt
where
I = Current
C = Capacitance
dV/dt = Slope of voltage transition across capacitor
Thus an infinite current would be required to instantly
change the potential across a capacitor. The amount of
current a capacitor can “sink” is determined by the above
equation.
72
Equivalent Circuit – A capacitor, as a practical device,
exhibits not only capacitance but also resistance and
inductance. A simplified schematic for the equivalent circuit is:
C = Capacitance
L = Inductance
Rp = Parallel Resistance
Rs = Series Resistance
L
RS
C
Reactance – Since the insulation resistance (Rp) is
normally very high, the total impedance of a capacitor is:
Z=
where
R 2S + (XC - XL )2
Z = Total Impedance
Rs = Series Resistance
XC = Capacitive Reactance =
XL = Inductive Reactance
1
2 π fC
= 2 π fL
The variation of a capacitor’s impedance with frequency
determines its effectiveness in many applications.
Phase Angle – Power Factor and Dissipation Factor are
often confused since they are both measures of the loss in
a capacitor under AC application and are often almost identical in value. In a “perfect” capacitor the current in the
capacitor will lead the voltage by 90°.
I (Ideal)
I (Actual)
Loss
Angle
Phase
Angle
␦
f
IR s
V
In practice the current leads the voltage by some other
phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:
Power Factor (P.F.) = Cos f or Sine ␦
Dissipation Factor (D.F.) = tan ␦
for small values of ␦ the tan and sine are essentially equal
which has led to the common interchangeability of the two
terms in the industry.
General Description
Equivalent Series Resistance – The term E.S.R. or
Equivalent Series Resistance combines all losses both series
and parallel in a capacitor at a given frequency so that the
equivalent circuit is reduced to a simple R-C series
connection.
E.S.R.
C
Dissipation Factor – The DF/PF of a capacitor tells what
percent of the apparent power input will turn to heat in the
capacitor.
Dissipation Factor = E.S.R. = (2 π fC) (E.S.R.)
XC
The watts loss are:
Watts loss = (2 π fCV2 ) (D.F.)
Very low values of dissipation factor are expressed as their
reciprocal for convenience. These are called the “Q” or
Quality factor of capacitors.
Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling
of today’s high speed digital systems. The relationship
between the inductance and the ripple voltage induced on
the DC voltage line can be seen from the simple inductance
equation:
V = L di
dt
Insulation Resistance – Insulation Resistance is the
resistance measured across the terminals of a capacitor and
consists principally of the parallel resistance R P shown in the
equivalent circuit. As capacitance values and hence the area
of dielectric increases, the I.R. decreases and hence the
product (C x IR or RC) is often specified in ohm farads or
more commonly megohm-microfarads. Leakage current is
determined by dividing the rated voltage by IR (Ohm’s Law).
Dielectric Strength – Dielectric Strength is an expression of
the ability of a material to withstand an electrical stress.
Although dielectric strength is ordinarily expressed in volts, it
is actually dependent on the thickness of the dielectric and
thus is also more generically a function of volts/mil.
Dielectric Absorption – A capacitor does not discharge
instantaneously upon application of a short circuit, but drains
gradually after the capacitance proper has been discharged.
It is common practice to measure the dielectric absorption
by determining the “reappearing voltage” which appears
across a capacitor at some point in time after it has been fully
discharged under short circuit conditions.
Corona – Corona is the ionization of air or other vapors
which causes them to conduct current. It is especially
prevalent in high voltage units but can occur with low voltages
as well where high voltage gradients occur. The energy
discharged degrades the performance of the capacitor and
can in time cause catastrophic failures.
di
The dt seen in current microprocessors can be as high as
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic
inductance can cause a voltage spike of 30mV. While this
does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large
percentage.
Another important, often overlooked, reason for knowing
the parasitic inductance is the calculation of the resonant
frequency. This can be important for high frequency, by-pass
capacitors, as the resonant point will give the most signal
attenuation. The resonant frequency is calculated from the
simple equation:
1
fres =
2␲ LC
73
Surface Mounting Guide
MLC Chip Capacitors
REFLOW SOLDERING
Case Size
D2
D1
D3
D4
D5
Dimensions in
millimeters (inches)
0805 (LD05)
1206 (LD06)
*1210 (LD10)
*1808 (LD08)
*1812 (LD12)
*1825 (LD13)
*2220 (LD20)
*2225 (LD14)
*HQCC
*3640 (LD40)
*HQCE
D1
3.00
4.00
4.00
5.60
5.60
5.60
6.60
6.60
6.60
10.67
10.67
(0.120)
(0.160)
(0.160)
(0.220)
(0.220)
(0.220)
(0.260)
(0.260)
(0.260)
(0.427)
(0.427)
D2
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.52
1.52
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.060)
(0.060)
D3
1.00
2.00
2.00
3.60
3.60
3.60
4.60
4.60
4.60
7.62
7.62
(0.040)
(0.090)
(0.090)
(0.140)
(0.140)
(0.140)
(0.180)
(0.180)
(0.180)
(0.300)
(0.300)
D4
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.52
1.52
millimeters (inches)
D5
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.040)
(0.060)
(0.060)
1.25
1.60
2.50
2.00
3.00
6.35
5.00
6.35
6.35
10.16
10.16
(0.050)
(0.060)
(0.100)
(0.080)
(0.120)
(0.250)
(0.200)
(0.250)
(0.250)
(0.400)
(0.400)
*AVX recommends reflow soldering only.
Component Pad Design
Component pads should be designed to achieve good
solder filets and minimize component movement during
reflow soldering. Pad designs are given below for the most
common sizes of multilayer ceramic capacitors for both
wave and reflow soldering. The basis of these designs is:
• Pad width equal to component width. It is permissible to
decrease this to as low as 85% of component width but it
is not advisable to go below this.
• Pad overlap 0.5mm beneath component.
• Pad extension 0.5mm beyond components for reflow and
1.0mm for wave soldering.
WAVE SOLDERING
D2
D1
Case Size
0805
1206
D3
D4
D1
D2
D3
D4
D5
4.00 (0.15)
5.00 (0.19)
1.50 (0.06)
1.50 (0.06)
1.00 (0.04)
2.00 (0.09)
1.50 (0.06)
1.50 (0.06)
1.25 (0.05)
1.60 (0.06)
Dimensions in millimeters (inches)
D5
Component Spacing
For wave soldering components, must be spaced sufficiently
far apart to avoid bridging or shadowing (inability of solder to
penetrate properly into small spaces). This is less important
for reflow soldering but sufficient space must be allowed to
enable rework should it be required.
≥1.5mm (0.06)
≥1mm (0.04)
≥1mm (0.04)
74
Preheat & Soldering
The rate of preheat should not exceed 4°C/second to
prevent thermal shock. A better maximum figure is about
2°C/second.
For capacitors size 1206 and below, with a maximum
thickness of 1.25mm, it is generally permissible to allow a
temperature differential from preheat to soldering of 150°C.
In all other cases this differential should not exceed 100°C.
For further specific application or process advice, please
consult AVX.
Cleaning
Care should be taken to ensure that the capacitors are
thoroughly cleaned of flux residues especially the space
beneath the capacitor. Such residues may otherwise
become conductive and effectively offer a low resistance
bypass to the capacitor.
Ultrasonic cleaning is permissible, the recommended
conditions being 8 Watts/litre at 20-45 kHz, with a process
cycle of 2 minutes vapor rinse, 2 minutes immersion in the
ultrasonic solvent bath and finally 2 minutes vapor rinse.
Surface Mounting Guide
Recommended Soldering Profiles
REFLOW SOLDER PROFILES
Maximum Reflow Profile With Care
250
Component Temperature / ºC
AVX RoHS compliant products utilize termination
finishes (e.g.Sn or SnAg) that are compatible
with all Pb-Free soldering systems and are fully
reverse compatible with SnPb soldering systems.
A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/JEDECJ-STD020C may be referenced. The upper line in the
chart shows the maximum envelope to which
products are qualified (typically 3x reflow cycles
at 260ºC max). The center line gives the
recommended profile for optimum wettability and
soldering in Pb-Free Systems.
Recommended Reflow Profiles
275
Recommended Pb-Free Reflow Profile
Preheat
Preheat
Reflow CoolCool
Down
Reflow
Down
Recommended SnPb Reflow Profile
225
200
175
150
125
100
75
Preheat
50
Reflow
Cool Down
25
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
Time / secs
Preheat:
Wetting Force at 2nd Sec. (higher is better)
0.40
0.30
0.20
F [mN]
The pre-heat stabilizes the part and reduces the temperature
differential prior to reflow. The initial ramp to 125ºC may be
rapid, but from that point (2-3)ºC/sec is recommended to
allow ceramic parts to heat uniformly and plastic
encapsulated parts to stabilize through the glass transition
temperature of the body (~ 180ºC).
SnPb - Sn60Pb40
0.10
Sn - Sn60Pb40
0.00
Sn-Sn3.5Ag0.7Cu
-0.10
Sn-Sn2.5Ag1Bi0.5Cu
Reflow:
-0.20
Sn-Sn0.7Cu
In the reflow phase, the maximum recommended time
> 230ºC is 40secs. Time at peak reflow is 10secs max.;
optimum reflow is achieved at 250ºC, (see wetting balance
chart opposite) but products are qualified to 260ºC max.
Please reference individual product datasheets for
maximum limits
-0.30
Cool Down:
Cool down should not be forced and 6ºC/sec is recommended. A slow cool down will result in a finer grain
structure of the reflow solder in the solder fillet.
-0.40
200
210
220
230
240
250
260
270
Temperature of Solder [C]
IMPORTANT NOTE: Typical Pb-Free reflow solders have a
more dull and grainy appearance compared to traditional
SnPb. Elevating the reflow temperature will not change this,
but extending the cool down can help improve the visual
appearance of the joint.
WAVE SOLDER PROFILES
Preheat:
This is more important for wave solder; a higher temperature
preheat will reduce the thermal shock to SMD parts that are
immersed (please consult individual product data sheets for
SMD parts that are suited to wave solder). SMD parts should
ideally be heated from the bottom-Side prior to wave.
PTH (Pin through hole) parts on the topside should not be
separately heated.
Recommended Soldering Profiles
275
Component Temperature / ºC
For wave solder, there is no change in the recommended
wave profile; all standard Pb-Free (SnCu/SnCuAg) systems
operate at the same 260ºC max recommended for SnPb
systems.
225
Wave
175
Preheat
125
Wave
Cool Down:
Wave
75
Preheat
Wave:
250ºC – 260ºC recommended for optimum solderability.
Cool Down
Preheat
Cool Down
Cool Down
25
0
50
100
150
200
250
300
350
400
Time / seconds
As with reflow solder, cool down should not be forced and
6ºC/sec is recommended. Any air knives at the end of the
2nd wave should be heated.
75
Surface Mounting Guide
MLC Chip Capacitors
APPLICATION NOTES
Wave
300
Storage
Preheat
Good solderability is maintained for at least twelve months,
provided the components are stored in their “as received”
packaging at less than 40°C and 70% RH.
Terminations to be well soldered after immersion in a 60/40
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds.
Leaching
Solder Temp.
Solderability
Terminations will resist leaching for at least the immersion
times and conditions shown below.
Termination Type
Nickel Barrier
Solder
Solder
Tin/Lead/Silver Temp. °C
60/40/0
260 ± 5
Solder Temp.
250
200
220°C
to
250°C
100
50
0
1 to 2 min
3 sec. max
Surface mounting chip multilayer ceramic capacitors
are designed for soldering to printed circuit boards or other
substrates. The construction of the components is such that
they will withstand the time/temperature profiles used in both
wave and reflow soldering methods.
Lead-Free Reflow Profile
Temperature °C
0
General
10 sec. max
(Minimize soldering time)
300
250
200
150
100
50
0
0
100
The recommended peak temperature for lead-free wave
soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.
The following should be noted by customers changing from
lead based systems to the new lead free pastes.
a) The visual standards used for evaluation of solder joints
will need to be modified as lead free joints are not as bright
as with tin-lead pastes and the fillet may not be as large.
b) Resin color may darken slightly due to the increase in
temperature required for the new pastes.
c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting
pads are acceptable, but machine set up may need to be
modified.
Natural
Cooling
1min
230°C
to
250°C
150
Lead-Free Wave Soldering
Preheat
1min
T
(Preheat chips before soldering)
T/maximum 150°C
Reflow
150
200
50
Immersion Time
Seconds
30 ± 1
Recommended Soldering Profiles
300
Natural
Cooling
250
Handling
50
100
150
• Pre-heating: 150°C ±15°C / 60-90s
• Max. Peak Gradient 2.5°C/s
• Peak Temperature: 245°C ±5°C
• Time at >230°C: 40s Max.
200
250
Time (s)
300
Chip multilayer ceramic capacitors should be handled with
care to avoid damage or contamination from perspiration and
skin oils. The use of tweezers or vacuum pick ups
is strongly recommended for individual components. Bulk
handling should ensure that abrasion and mechanical shock
are minimized. Taped and reeled components provides the
ideal medium for direct presentation to the placement
machine. Any mechanical shock should be minimized during
handling chip multilayer ceramic capacitors.
Preheat
It is important to avoid the possibility of thermal shock during
soldering and carefully controlled preheat is therefore
required. The rate of preheat should not exceed 4°C/second
76
Surface Mounting Guide
MLC Chip Capacitors
and a target figure 2°C/second is recommended. Although
an 80°C to 120°C temperature differential is preferred,
recent developments allow a temperature differential
between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and
below with a maximum thickness of 1.25mm. The user is
cautioned that the risk of thermal shock increases as chip
size or temper-ature differential increases.
Soldering
Mildly activated rosin fluxes are preferred. The minimum
amount of solder to give a good joint should be used.
Excessive solder can lead to damage from the stresses
caused by the difference in coefficients of expansion
between solder, chip and substrate. AVX terminations are
suitable for all wave and reflow soldering systems. If hand
soldering cannot be avoided, the preferred technique is the
utilization of hot air soldering tools.
POST SOLDER HANDLING
Once SMP components are soldered to the board, any
bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the
stresses are absorbed by the compliancy of the metal leads
and generally don’t result in problems unless the stress is
large enough to fracture the soldered connection.
Ceramic capacitors are more susceptible to such stress
because they don’t have compliant leads and are brittle in
nature. The most frequent failure mode is low DC resistance
or short circuit. The second failure mode is significant loss of
capacitance due to severing of contact between sets of the
internal electrodes.
Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general
forms:
Cooling
Natural cooling in air is preferred, as this minimizes stresses
within the soldered joint. When forced air cooling is used,
cooling rate should not exceed 4°C/second. Quenching
is not recommended but if used, maximum temperature
differentials should be observed according to the preheat
conditions above.
Cleaning
Flux residues may be hygroscopic or acidic and must be
removed. AVX MLC capacitors are acceptable for use with
all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable
and properly controlled water cleaning systems are also
acceptable. Many other solvents have been proven successful,
and most solvents that are acceptable to other components
on circuit assemblies are equally acceptable for use with
ceramic capacitors.
Type A:
Angled crack between bottom of device to top of solder joint.
Type B:
Fracture from top of device to bottom of device.
Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end
termination falls off during the removal process from PCB,
this is one indication that the cause of failure was excessive
mechanical stress due to board warping.
77
Surface Mounting Guide
MLC Chip Capacitors
COMMON CAUSES OF
MECHANICAL CRACKING
REWORKING OF MLCs
The most common source for mechanical stress is board
depanelization equipment, such as manual breakapart, vcutters and shear presses. Improperly aligned or dull cutters
may cause torqueing of the PCB resulting in flex stresses
being transmitted to components near the board edge.
Another common source of flexural stress is contact during
parametric testing when test points are probed. If the PCB is
allowed to flex during the test cycle, nearby ceramic capacitors may be broken.
A third common source is board to board connections at
vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the
plug/unplug cycle, it may flex and cause damage to nearby
components.
Special care should also be taken when handling large (>6"
on a side) PCBs since they more easily flex or warp than
smaller boards.
Solder Tip
Preferred Method - No Direct Part Contact
Thermal shock is common in MLCs that are manually
attached or reworked with a soldering iron. AVX strongly
recommends that any reworking of MLCs be done with hot
air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when
using hot air reflow.
However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by
soldering iron is absolutely necessary, it is recommended
that the wattage of the iron be less than 30 watts and the
tip temperature be <300ºC. Rework should be performed
by applying the solder iron tip to the pad and not directly
contacting any part of the ceramic capacitor.
Solder Tip
Poor Method - Direct Contact with Part
PCB BOARD DESIGN
To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of
board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the
MLC is located.
No Stress Relief for MLCs
78
Routed Cut Line Relieves Stress on MLC
High Voltage MLC Chips
For 600V to 5000V Applications
High value, low leakage and small size are difficult parameters to obtain
in capacitors for high voltage systems. AVX special high voltage MLC
chip capacitors meet these performance characteristics and are
designed for applications such as snubbers in high frequency power
converters, resonators in SMPS, and high voltage coupling/dc blocking.
These high voltage chip designs exhibit low ESRs at high frequencies.
Larger physical sizes than normally encountered chips are used to make
high voltage MLC chip products. Special precautions must be taken in
applying these chips in surface mount assemblies. The temperature
gradient during heating or cooling cycles should not exceed 4ºC per
second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process.
Chip sizes 1210 and larger should be reflow soldered only. Capacitors
may require protective surface coating to prevent external arcing.
For 1825, 2225 and 3640 sizes, AVX offers leaded version in either
thru-hole or SMT configurations (for details see section on high voltage
leaded MLC chips).
NEW 630V RANGE
HOW TO ORDER
1808
AVX
Style
0805
1206
1210
1808
1812
1825
2220
2225
3640
***
A
Voltage
600V/630V =
1000V =
1500V =
2000V =
2500V =
3000V =
4000V =
5000V =
A
C
A
S
G
W
H
J
K
271
K
A
1
Temperature Capacitance Code Capacitance
Test Level
Termination*
Coefficient
(2 significant digits
Tolerance
A = Standard 1 = Pd/Ag
C0G = A
+ no. of zeros)
C0G:J = ±5%
T = Plated
X7R = C
Examples:
K = ±10%
Ni and Sn
(RoHS Compliant)
10 pF = 100
M = ±20%
100 pF = 101 X7R:K = ±10%
1,000 pF = 102
M = ±20%
22,000 pF = 223
Z = +80%,
220,000 pF = 224
-20%
1 μF = 105
1
A
Packaging
Special
1 = 7" Reel
Code
3 = 13" Reel A = Standard
9 = Bulk
*Note: Terminations with 5% minimum lead (Pb) is available, see pages 81 and 82 for LD style.
Leaded terminations are available, see pages 85 and 86.
Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.
W
L
T
t
DIMENSIONS
millimeters (inches)
SIZE
(L) Length
0805
1206
1210*
1808*
1812*
1825*
2220*
2225*
3640*
2.01 ± 0.20
3.20 ± 0.20
3.20 ± 0.20
4.57 ± 0.25
4.50 ± 0.30
4.50 ± 0.30
5.70 ± 0.40
5.72 ± 0.25
9.14 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width
1.25 ± 0.20
1.60 ± 0.20
2.50 ± 0.20
2.03 ± 0.25
3.20 ± 0.20
6.40 ± 0.30
5.00 ± 0.40
6.35 ± 0.25
10.2 ± 0.25
(0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness
1.30
1.52
1.70
2.03
2.54
2.54
3.30
2.54
2.54
Max.
(0.051)
(0.060)
(0.067)
(0.080)
(0.100)
(0.100)
(0.130)
(0.100)
(0.100)
(t) terminal min. 0.50 ± 0.25
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.76 (0.030)
max. (0.020 ± 0.010) 0.75 (0.030)
0.75 (0.030)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.52 (0.060)
*Reflow Soldering Only
79
High Voltage MLC Chips
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range
10 pF to 0.047 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
±5%, ±10%, ±20%
0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
-55°C to +125°C
0 ±30 ppm/°C (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
HIGH VOLTAGE C0G CAPACITANCE VALUES
VOLTAGE
600/630
1000
1500
2000
2500
3000
4000
5000
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
0805
10pF
330pF
10pF
180pF
—
—
—
—
—
—
—
—
—
—
—
—
1206
1210
1808
1812
1825
2220
2225
3640
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
10 pF
120 pF
—
—
—
—
—
—
—
—
100 pF
2700 pF
10 pF
1500 pF
10 pF
680 pF
10 pF
270 pF
—
—
—
—
—
—
—
—
100 pF
3300 pF
100 pF
2200 pF
10 pF
820 pF
10 pF
330 pF
10 pF
180 pF
10 pF
120 pF
10 pF
47 pF
—
—
100 pF
5600 pF
100 pF
3300 pF
10 pF
1800 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
330 pF
10 pF
150 pF
—
—
1000 pF
0.012 μF
100 pF
8200 pF
100 pF
4700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
820 pF
10 pF
330 pF
—
—
1000 pF
0.012 μF
1000 pF
0.010 μF
100 pF
4700 pF
100 pF
2200 pF
100 pF
1500 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
220 pF
1000 pF
0.018 μF
1000 pF
0.010 μF
100 pF
5600 pF
100 pF
2700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
1000 pF
0.047 μF
1000 pF
0.022 μF
100 pF
0.010 μF
100 pF
6800 pF
100 pF
3900 pF
100 pF
2700 pF
100 pF
1200 pF
10 pF
820 pF
X7R Dielectric
Performance Characteristics
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
±10%; ±20%; +80%, -20%
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
-55°C to +125°C
±15% (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
VOLTAGE
600/630
1000
1500
2000
2500
3000
4000
5000
80
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
0805
1206
1210
1808
1812
1825
2220
2225
3640
100pF
6800pF
100pF
1500pF
—
—
—
—
—
—
—
—
—
—
—
—
1000 pF
0.022 μF
100 pF
6800 pF
100 pF
2700 pF
10 pF
1500 pF
—
—
—
—
—
—
—
—
1000 pF
0.056 μF
1000 pF
0.015 μF
100 pF
5600 pF
100 pF
3300 pF
—
—
—
—
—
—
—
—
1000 pF
0.068 μF
1000 pF
0.018 μF
100 pF
6800 pF
100 pF
3300 pF
10 pF
2200 pF
10 pF
1800 pF
—
—
—
—
1000 pF
0.120 μF
1000 pF
0.039 μF
100 pF
0.015 μF
100 pF
8200 pF
10 pF
5600 pF
10 pF
3900 pF
—
—
—
—
0.010 μF
0.270 μF
1000 pF
0.100 μF
1000 pF
0.056 μF
100 pF
0.022 μF
100 pF
0.015 μF
100 pF
0.010 μF
—
—
—
—
0.010 μF
0.270 μF
1000 pF
0.120 μF
1000 pF
0.056 μF
1000 pF
0.027 μF
100 pF
0.018 μF
100 pF
0.012 μF
—
—
—
—
0.010 μF
0.330 μF
1000 pF
0.150 μF
1000 pF
0.068 μF
1000 pF
0.033 μF
100 pF
0.022 μF
100 pF
0.015 μF
—
—
—
—
0.010 μF
0.560 μF
0.010 μF
0.220 μF
1000 pF
0.100 μF
1000 pF
0.027 μF
1000 pF
0.022 μF
1000 pF
0.018 μF
100 pF
6800 pF
100 pF
3300 pF
High Voltage MLC Chips
Tin/Lead Termination “B”
For 600V to 5000V Applications
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5%
minimum lead. This termination is indicated by the use of a “B” in the
12th position of the AVX Catalog Part Number. This fulfills AVX’s
commitment to providing a full range of products to our customers. AVX
has provided in the following pages, a full range of values that we are
offering in this “B” termination.
Larger physical sizes than normally encountered chips are used to make
high voltage MLC chip product. Special precautions must be taken in
applying these chips in surface mount assemblies. The temperature
gradient during heating or cooling cycles should not exceed 4ºC per
second. The preheat temperature must be within 50ºC of the peak temperature reached by the ceramic bodies through the soldering process.
Chip sizes 1210 and larger should be reflow soldered only. Capacitors
may require protective surface coating to prevent external arcing.
For 1825, 2225 and 3640 sizes, AVX offers leaded version in either
thru-hole or SMT configurations (for details see section on high voltage
leaded MLC chips).
NEW 630V RANGE
HOW TO ORDER
LD08
A
A
Voltage
Temperature
AVX
600V/630V = C
Coefficient
Style
1000V = A
C0G = A
LD05 - 0805
1500V = S
X7R = C
LD06 - 1206
2000V = G
LD10 - 1210
2500V = W
LD08 - 1808
3000V = H
LD12 - 1812
4000V = J
LD13 - 1825
5000V = K
LD20 - 2220
LD14 - 2225
LD40 - 3640
***
271
K
A
Capacitance Code
(2 significant digits
+ no. of zeros)
Examples:
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 μF = 105
Capacitance
Tolerance
C0G: J = ±5%
K = ±10%
M = ±20%
X7R: K = ±10%
M = ±20%
Z = +80%, -20%
Test
Level
A = Standard
B
1
Termination
Packaging
B = 5% Min Pb 1 = 7" Reel
3 = 13" Reel
9 = Bulk
A
Special Code
A = Standard
Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.
W
L
T
DIMENSIONS
t
millimeters (inches)
SIZE
(L) Length
LD05 (0805)
LD06 (1206)
LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225) LD40* (3640)
2.01 ± 0.20
3.20 ± 0.20
3.20 ± 0.20
4.57 ± 0.25
4.50 ± 0.30
4.50 ± 0.30
5.70 ± 0.40
5.72 ± 0.25
9.14 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width
1.25 ± 0.20
1.60 ± 0.20
2.50 ± 0.20
2.03 ± 0.25
3.20 ± 0.20
6.40 ± 0.30
5.00 ± 0.40
6.35 ± 0.25
10.2 ± 0.25
(0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness
1.30
1.52
1.70
2.03
2.54
2.54
3.30
2.54
2.54
Max.
(0.051)
(0.060)
(0.067)
(0.080)
(0.100)
(0.100)
(0.130)
(0.100)
(0.100)
(t) terminal min. 0.50 ± 0.25
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.25 (0.010)
0.76 (0.030)
max. (0.020 ± 0.010) 0.75 (0.030)
0.75 (0.030)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.02 (0.040)
1.52 (0.060)
* Reflow soldering only.
81
High Voltage MLC Chips
Tin/Lead Termination “B”
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
10 pF to 0.047 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
±5%, ±10%, ±20%
0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
-55°C to +125°C
0 ±30 ppm/°C (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
HIGH VOLTAGE C0G CAPACITANCE VALUES
VOLTAGE
600/630 min.
max.
min.
1000 max.
min.
1500 max.
min.
2000 max.
min.
2500 max.
min.
3000 max.
LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640)
10pF
330pF
10pF
180pF
—
—
—
—
—
—
—
—
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
10 pF
120 pF
—
—
—
—
100 pF
2700 pF
10 pF
1500 pF
10 pF
680 pF
10 pF
270 pF
—
—
—
—
100
3300
100
2200
10
820
10
330
10
180
10
120
pF
pF
pF
pF
pF
pF
pF
pF
pF
pF
pF
pF
100
5600
100
3300
10
1800
10
1000
10
470
10
330
pF
pF
pF
pF
pF
pF
pF
pF
pF
pF
pF
pF
1000 pF
0.012 μF
100 pF
8200 pF
100 pF
4700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
820 pF
1000 pF
0.012 μF
1000 pF
0.010 μF
100 pF
4700 pF
100 pF
2200 pF
100 pF
1500 pF
10 pF
1000 pF
1000 pF
0.018 μF
1000 pF
0.010 μF
100 pF
5600 pF
100 pF
2700 pF
100 pF
1800 pF
10 pF
1200 pF
1000 pF
0.047 μF
1000 pF
0.022 μF
100 pF
0.010 μF
100 pF
6800 pF
100 pF
3900 pF
100 pF
2700 pF
X7R Dielectric
Performance Characteristics
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
±10%; ±20%; +80%, -20%
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
-55°C to +125°C
±15% (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
VOLTAGE
600/630
1000
1500
2000
2500
3000
4000
5000
82
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
0805
1206
1210
1808
1812
1825
2220
2225
3640
100pF
6800pF
100pF
1500pF
—
—
—
—
—
—
—
—
—
—
—
—
1000 pF
0.022 μF
100 pF
6800 pF
100 pF
2700 pF
10 pF
1500 pF
—
—
—
—
—
—
—
—
1000 pF
0.056 μF
1000 pF
0.015 μF
100 pF
5600 pF
100 pF
3300 pF
—
—
—
—
—
—
—
—
1000 pF
0.068 μF
1000 pF
0.018 μF
100 pF
6800 pF
100 pF
3300 pF
10 pF
2200 pF
10 pF
1800 pF
—
—
—
—
1000 pF
0.120 μF
1000 pF
0.039 μF
100 pF
0.015 μF
100 pF
8200 pF
10 pF
5600 pF
10 pF
3900 pF
—
—
—
—
0.010 μF
0.270 μF
1000 pF
0.100 μF
1000 pF
0.056 μF
100 pF
0.022 μF
100 pF
0.015 μF
100 pF
0.010 μF
—
—
—
—
0.010 μF
0.270 μF
1000 pF
0.120 μF
1000 pF
0.056 μF
1000 pF
0.027 μF
100 pF
0.018 μF
100 pF
0.012 μF
—
—
—
—
0.010 μF
0.330 μF
1000 pF
0.150 μF
1000 pF
0.068 μF
1000 pF
0.033 μF
100 pF
0.022 μF
100 pF
0.015 μF
—
—
—
—
0.010 μF
0.560 μF
0.010 μF
0.220 μF
1000 pF
0.100 μF
1000 pF
0.027 μF
1000 pF
0.022 μF
1000 pF
0.018 μF
100 pF
6800 pF
100 pF
3300 pF
High Voltage MLC Chips FLEXITERM®
For 600V to 3000V Applications
High value, low leakage and small size are difficult parameters to obtain
in capacitors for high voltage systems. AVX special high voltage MLC
chips capacitors meet these performance characteristics and are
designed for applications such as snubbers in high frequency power
converters, resonators in SMPS, and high voltage coupling/DC blocking.
These high voltage chip designs exhibit low ESRs at high frequencies.
To make high voltage chips, larger physical sizes than are normally
encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies.
In response to this, and to follow from the success of the FLEXITERM®
range of low voltage parts, AVX is delighted to offer a FLEXITERM® high
voltage range of capacitors, FLEXITERM®.
The FLEXITERM® layer is designed to enhance the mechanical flexure
and temperature cycling performance of a standard ceramic capacitor,
giving customers a solution where board flexure or temperature cycle
damage are concerns.
HOW TO ORDER
1808
AVX
Style
0805
1206
1210
1808
1812
1825
2220
2225
***
A
Voltage
600V/630V =
1000V =
1500V =
2000V =
2500V =
3000V =
C
C
A
S
G
W
H
272
K
Temperature Capacitance Code Capacitance
Coefficient
(2 significant digits
Tolerance
C0G: J = ±5%
C0G = A
+ no. of zeros)
K = ±10%
X7R = C
Examples:
M = ±20%
10 pF = 100
100 pF = 101 X7R: K = ±10%
M = ±20%
1,000 pF = 102
Z = +80%,
22,000 pF = 223
-20%
220,000 pF = 224
1 μF = 105
A
Z
Test Level
Termination*
Z = FLEXITERM®
100% Tin
(RoHS Compliant)
1
A
Packaging
Special
1 = 7" Reel
Code
3 = 13" Reel A = Standard
9 = Bulk
Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.
W
L
T
t
DIMENSIONS
SIZE
(L) Length
0805
2.01 ± 0.20
(0.079 ± 0.008)
(W) Width
1.25 ± 0.20
(0.049 ± 0.008)
(T) Thickness
1.30
Max.
(0.051)
(t) terminal min. 0.50 ± 0.25
max. (0.020 ± 0.010)
millimeters (inches)
1206
3.20 ± 0.20
(0.126 ± 0.008)
1.60 ± 0.20
(0.063 ± 0.008)
1.52
(0.060)
0.25 (0.010)
0.75 (0.030)
1210*
3.20 ± 0.20
(0.126 ± 0.008)
2.50 ± 0.20
(0.098 ± 0.008)
1.70
(0.067)
0.25 (0.010)
0.75 (0.030)
1808*
4.57 ± 0.25
(0.180 ± 0.010)
2.03 ± 0.25
(0.080 ± 0.010)
2.03
(0.080)
0.25 (0.010)
1.02 (0.040)
1812*
4.50 ± 0.30
(0.177 ± 0.012)
3.20 ± 0.20
(0.126 ± 0.008)
2.54
(0.100)
0.25 (0.010)
1.02 (0.040)
1825*
4.50 ± 0.30
(0.177 ± 0.012)
6.40 ± 0.30
(0.252 ± 0.012)
2.54
(0.100)
0.25 (0.010)
1.02 (0.040)
2220*
5.7 ± 0.40
(0.224 ± 0.016)
5.0 ± 0.40
(0.197 ± 0.016)
3.30
(0.130)
0.25 (0.010)
1.02 (0.040)
2225*
5.72 ± 0.25
(0.225 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
2.54
(0.100)
0.25 (0.010)
1.02 (0.040)
*Reflow Soldering Only
83
High Voltage MLC Chips FLEXITERM®
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range
10 pF to 0.018 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
±5%, ±10%, ±20%
0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
-55°C to +125°C
0 ±30 ppm/°C (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
HIGH VOLTAGE C0G CAPACITANCE VALUES
VOLTAGE
min.
600/630 max.
min.
1000 max.
min.
1500 max.
min.
2000 max.
min.
2500 max.
min.
3000 max.
min.
4000 max.
min.
5000 max.
0805
10pF
330pF
10pF
180pF
—
—
—
—
—
—
—
—
—
—
—
—
1206
1210
1808
1812
1825
2220
2225
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
10 pF
120 pF
—
—
—
—
—
—
—
—
100 pF
2700 pF
10 pF
1500 pF
10 pF
680 pF
10 pF
270 pF
—
—
—
—
—
—
—
—
100 pF
3300 pF
100 pF
2200 pF
10 pF
820 pF
10 pF
330 pF
10 pF
180 pF
10 pF
120 pF
10 pF
47 pF
—
—
100 pF
5600 pF
100 pF
3300 pF
10 pF
1800 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
330 pF
10 pF
150 pF
—
—
1000 pF
0.012 μF
100 pF
8200 pF
100 pF
4700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
820 pF
10 pF
330 pF
—
—
1000 pF
0.012 μF
1000 pF
0.010 μF
100 pF
4700 pF
100 pF
2200 pF
100 pF
1500 pF
10 pF
1000 pF
10 pF
470 pF
10 pF
220 pF
1000 pF
0.018 μF
1000 pF
0.010 μF
100 pF
5600 pF
100 pF
2700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
X7R Dielectric
Performance Characteristics
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
10 pF to 0.33 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
±10%; ±20%; +80%, -20%
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
-55°C to +125°C
±15% (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
VOLTAGE
600/630
1000
1500
2000
2500
3000
84
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
0805
100pF
6800pF
100pF
1500pF
—
—
—
—
—
—
—
—
1206
1210
1808
1812
1825
2220
2225
1000 pF
0.022 μF
100 pF
6800 pF
100 pF
2700 pF
10 pF
1500 pF
—
—
—
—
1000 pF
0.056 μF
1000 pF
0.015 μF
100 pF
5600 pF
100 pF
3300 pF
—
—
—
—
1000 pF
0.068 μF
1000 pF
0.018 μF
100 pF
6800 pF
100 pF
2300 pF
10 pF
2200 pF
10 pF
1800 pF
1000 pF
0.120 μF
1000 pF
0.039 μF
100 pF
0.015 μF
100 pF
8200 pF
10 pF
5600 pF
10 pF
2200 pF
0.010 μF
0.270 μF
1000 pF
0.100 μF
1000 pF
0.056 μF
100 pF
0.022 μF
100 pF
0.015 μF
100 pF
0.010 pF
0.010 μF
0.270 μF
1000 pF
0.120 μF
1000 pF
0.056 μF
1000 pF
0.027 μF
100 pF
0.018 μF
100 pF
0.012 μF
0.010 μF
0.330 μF
1000 pF
0.150 μF
1000 pF
0.068 μF
1000 pF
0.033 μF
100 pF
0.022 μF
100 pF
0.015 μF
High Voltage MLC Leaded Chips
For 600V to 5000V Applications
HOW TO ORDER
1825
AVX
Style
1825
2225
3640
A
A
Voltage
600V/630V =
1000V =
1500V =
2000V =
2500V =
3000V =
4000V =
5000V =
C
A
S
G
W
H
J
K
271
K
A
V
00N
Temperature Capacitance Code Capacitance
Test Level
Finish
Lead Style
Coefficient
(2 significant digits
Tolerance
A = Standard V = Uncoated
00N = Straight Lead
C0G = A
+ no. of zeros)
C0G:J = ±5%
W = Epoxy Coated 00J = Leads Formed In
X7R = C
Examples:
K = ±10%
00L = Leads Formed Out
10 pF = 100
M = ±20%
100 pF = 101 X7R:K = ±10%
1,000 pF = 102
M = ±20%
22,000 pF = 223
Z = +80%,
220,000 pF = 224
-20%
Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Capacitors may require protective surface coating to prevent external arcing.
B
D
A
1.397 (0.055)
±0.254 (0.010)
E
“N” STYLE
LEADS
6.35
(0.250) MIN.
0.254 (0.010) TYP.
0.508 (0.020) TYP.
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
C
0.254 (0.010) RAD. (TYP.)
B
A
D
1.397 (0.055)
±0.254 (0.010)
E
“J” STYLE
LEADS
0.254 (0.010) TYP.
1.778 (0.070)
0.508 (0.020) TYP.
2.54 (0.100) TYP.
±0.254 (0.010)
C
1.905 (0.075)
±0.635 (0.025)
TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
B
A
D
0.254 (0.010) RAD. (TYP.)
1.397 (0.055)
±0.254 (0.010)
E
“L” STYLE
LEADS
0.254 (0.010) TYP.
1.778 (0.070)
±0.254 (0.010)
0.508 (0.020) TYP.
2.54 (0.100) TYP.
C
1.905 (0.075)
±0.635 (0.025)
TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
DIMENSIONS
millimeters (inches)
Style
A (max.)
B (max.)
1825
2225
3640
2.54 (0.100)
For “N” Style Leads, “B”
Dimension = 4.19 (0.165)
For “J” & “L” Leads, “B”
Dimension = 4.58 (0.180)
C ±.635 (±0.025)
5.08 (0.200)
6.35 (0.250)
10.2 (0.400)
D ±.635 (±0.025)
6.35 (0.250)
6.35 (0.250)
10.2 (0.400)
E (max.)
6.86 (0.270)
7.62 (0.300)
11.2 (0.440)
No. of Leads
per side
3
3
4
Note: For W (Epoxy Coated) part add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E
85
High Voltage MLC Leaded Chips
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range
10 pF to 0.047 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
±5%, ±10%, ±20%
0.15% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
-55°C to +125°C
0 ±30 ppm/°C (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
HIGH VOLTAGE C0G CAPACITANCE VALUES
VOLTAGE
1825
min.
600/630 max.
min.
1000 max.
min.
1500 max.
min.
2000 max.
min.
2500 max.
min.
3000 max.
min.
4000 max.
min.
5000 max.
1000 pF
0.012 μF
100 pF
8200 pF
100 pF
4700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
8200 pF
10 pF
330 pF
—
—
2225
1000 pF
0.018 μF
1000 pF
0.010 μF
100 pF
5600 pF
100 pF
2700 pF
100 pF
1800 pF
10 pF
1200 pF
10 pF
560 pF
10 pF
270 pF
3640
1000 pF
0.047 μF
1000 pF
0.022 μF
100 pF
0.010 μF
100 pF
6800 pF
100 pF
3900 pF
100 pF
2700 pF
100 pF
1200 pF
10 pF
820 pF
X7R Dielectric
Performance Characteristics
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance (+25°C, at 500 VDC)
Insulation Resistance (+125°C, at 500 VDC)
Dielectric Strength
100 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
±10%; ±20%; +80%, -20%
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
-55°C to +125°C
±15% (0 VDC)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
100K MΩ min. or 1000 MΩ - μF min., whichever is less
10K MΩ min. or 100 MΩ - μF min., whichever is less
Minimum 120% rated voltage for 5 seconds at 50 mA max. current
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
VOLTAGE
600/630
1000
1500
2000
2500
3000
4000
5000
86
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
min.
max.
1825
2225
3640
0.010 μF
0.270 μF
1000 pF
0.100 μF
1000 pF
0.056 μF
100 pF
0.022 μF
100 pF
0.015 μF
100 pF
0.010 μF
—
—
—
—
0.010 μF
0.330 μF
1000 pF
0.150 μF
1000 pF
0.068 μF
1000 pF
0.033 μF
100 pF
0.022 μF
100 pF
0.015 μF
—
—
—
—
0.010 μF
0.560 μF
0.010 μF
0.220 μF
1000 pF
0.100 μF
1000 pF
0.027 μF
1000 pF
0.022 μF
1000 pF
0.018 μF
100 pF
6800 pF
100 pF
3300 pF
Hi-Q® High RF Power
MLC Surface Mount Capacitors
For 600V to 7200V Applications
PRODUCT OFFERING
Hi-Q®, high RF power, surface mount MLC capacitors from AVX
Corporation are characterized with ultra-low ESR and dissipation factor
at high frequencies. They are designed to handle high power and
high voltage levels for applications in RF power amplifiers, inductive
heating, high magnetic field environments (MRI coils), medical and
industrial electronics.
HOW TO ORDER
HQCC
AVX
Style
HQCC
HQCE
A
Voltage
600V/630V =
1000V =
1500V =
2000V =
2500V =
3000V =
4000V =
5000V =
7200V =
A
C
A
S
G
W
H
J
K
M
271
A
J
Temperature Capacitance Code
Coefficient
(2 significant digits
C0G = A
+ no. of zeros)
Examples:
4.7 pF = 4R7
10 pF = 100
100 pF = 101
1,000 pF = 102
T
Test Level
Termination*
Capacitance
A = Standard 1 = Pd/Ag
Tolerance
T = Plated
C = ±0.25pF (<13pF)
Ni and Sn
D = ±0.50pF (<25pF)
(RoHS Compliant)
F = ±1% (⭓25pF)
J = 5% Min Pb
G = ±2% (⭓13pF)
J = ±5%
K = ±10%
M = ±20%
1
A
Packaging
Special
1 = 7" Reel
Code
3 = 13" Reel A = Standard
9 = Bulk
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
DIMENSIONS
STYLE
(L) Length
(W) Width
(T) Thickness
Max.
(t) terminal
millimeters (inches)
HQCC
5.84 ± 0.51
(0.230 ± 0.020)
6.35 ± 0.51
(0.250 ± 0.020)
3.3 max.
(0.130 max.)
0.64 ± 0.38
(0.025 ± 0.015)
L
HQCE
9.4 ± 0.51
(0.370 ± 0.020)
9.9 ± 0.51
(0.390 ± 0.020)
3.3 max.
(0.130 max.)
0.64 ± 0.38
(0.025 ± 0.015)
W
T
t
DIELECTRIC PERFORMANCE CHARACTERISTICS
Capacitance Range
Capacitance Tolerances
Dissipation Factor 25°C
Operating Temperature Range
Temperature Characteristic
Voltage Ratings
Insulation Resistance
Dielectric Strength
3.3pF to 6,800pF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1MHz)
±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%
0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1MHz)
-55°C to +125°C
C0G: 0 ± 30 ppm/°C (-55°C to +125°C)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 7200VDC
100K MΩ min. @ +25°C and 500VDC
10K MΩ min. @ +125°C and 500VDC
Minimum 120% of rated WVDC
HIGH VOLTAGE CAPACITANCE VALUES (pF)
600/630
WDC
1000
WVDC
1500
WVDC
2000
WVDC
2500
WVDC
3000
WVDC
4000
WVDC
5000
WVDC
7200
WVDC
min./max.
min./max.
min./max.
min./max.
min./max.
min./max.
min./max.
min./max.
min./max.
HQCC
2,200 - 2,700
1,500 - 1,800
820 - 1,200
470 - 680
330 - 390
3.3 - 270
3.3 - 6.8
HQCE
3.3 - 6,800
3.3 - 4,700
3.3 - 2,700
3.3 - 1,800
3.3 - 1,000
3.3 - 680
3.3 - 390
3.3 - 180
3.3 - 100
Style
87
Hi-Q® High RF Power
Ribbon Leaded MLC Capacitors
Hi-Q®, High RF Power, Ribbon Leaded MLC Capacitors from AVX
Corporation are characterized with ultra-low ESR and dissipation factor
at high frequencies. The HQL-style parts are constructed using nonmagnetic materials. They are designed to handle high power and high
voltage levels for applications in RF power amplifiers, inductive heating,
high magnetic field environments (MRI coils), medical and industrial
electronics.
HOW TO ORDER
HQLC
AVX
Style
HQLC
HQLE
A
Voltage
600V/630 =
1000V =
1500V =
2000V =
2500V =
3000V =
4000V =
5000V =
7200V =
C
A
S
G
W
H
J
K
M
A
271
J
A
A
Temperature
Coefficient
C0G = A
Capacitance Code
(2 significant digits
+ no. of zeros)
Examples:
4.7 pF = 4R7
10 pF = 100
100 pF = 101
1,000 pF = 102
Capacitance
Tolerance
C = ±0.25pF (<13pF)
D = ±0.50pF (<25pF)
F = ±1% (⭓25pF)
G = ±2% (⭓13pF)
J = ±5%
K = ±10%
M = ±20%
Test
Level
A = Standard
Lead Style
A = Axial Ribbon
M = Microstrip
Capacitance Range (pF)
Style
HQLC
HQLE
600/630
WVDC
1000
WVDC
1500
WVDC
2000
WVDC
min./max. min./max. min./max. min./max.
2200 - 2700 1500 - 1800 820 - 1200
470 - 680
3.3 - 6800
3.3 - 4700
3.3 - 2700
3.3 - 1800
2500
WVDC
min./max.
330 - 390
3.3 - 1000
3000
WVDC
4000
WVDC
min./max. min./max.
3.3 - 270
3.3 - 6.8
3.3 - 680
3.3 - 390
5000
WVDC
min./max. min./max.
DIELECTRIC PERFORMANCE CHARACTERISTICS
Capacitance Range
Capacitance Tolerances
Dissipation Factor
Operating Temperature Range
Temperature Characteristics
Voltage Ratings
Insulation Resistance
Dielectric Strength
88
7200
WVDC
3.3pF to 6,800pF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000pF use 1MHz)
±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%
0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000pF use 1MHz)
-55°C to +125°C
C0G: 0 ± 30 ppm/°C (-55°C to +125°C)
600, 630, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 7200VDC
100K MΩ min. @ +25°C and 500VDC
10K MΩ min. @ +125°C and 500VDC
Minimum 120% of rated WVDC
3.3 - 180
3.3 - 100
Hi-Q® High RF Power
Ribbon Leaded MLC Capacitors
Microstrip Leads (Lead Style “M”)
DIMENSIONS millimeters (inches)
Unit
L
LL
Size
±0.51 (0.020)
Min.
HQLC
5.72 (0.225)
12.7 (0.500)
HQLE
9.40 (0.370)
19.1 (0.750)
W
±0.64 (0.025)
6.35 (0.250)
10.2 (0.400)
WL
±0.38 (0.015)
6.10 (0.240)
8.89 (0.350)
H
±0.64 (0.025)
3.68 (0.145)
3.68 (0.145)
HL
±0.38 (0.015)
0.64 (0.025)
0.64 (0.025)
TL
Ref.
0.10 (0.004)
0.25 (0.010)
Note: Side to side lead alignment shall be within ±0.25 (0.010)
Axial Ribbon Leads (Lead Style “A”)
±0.51 (0.020)
DIMENSIONS millimeters (inches)
Unit
L
LL
Size
±0.51 (0.020)
Min.
HQLC
5.72 (0.225)
12.7 (0.500)
HQLE
9.40 (0.370)
19.1 (0.750)
W
±0.64 (0.025)
6.35 (0.250)
10.2 (0.400)
WL
±0.38 (0.015)
6.10 (0.240)
8.89 (0.350)
H
±0.64 (0.025)
3.18 (0.125)
3.18 (0.125)
TL
Ref.
0.10 (0.004)
0.25 (0.010)
Note: Side to side lead alignment shall be within ±0.25 (0.010)
89
Hi-Q® High RF Power
MLC Capacitors
PERFORMANCE CHARACTERISTICS
Typical ESR vs. Capacitance
HQCC and HQLC
Typical Series Resonant Frequency vs. Capacitance
HQCC and HQLC
10000
1.000
1000
0.100
ESR (Ω)
Frequency (MHz)
13.56 MHz
64 MHz
250 MHz
500 MHz
100
0010
10
10
1
100
1000
10000
0.001
Capacitance (pF)
1
10
100
1000
10000
Capacitance (pF)
Typical Quality Factor vs. Capacitance
HQCC and HQLC
Maximum RMS Current vs. Capacitance
HQCC and HQLC
1.00E+05
100.0
Quality Factor (-)
1.00E+04
Maximum RMS Current (A)
13.56 MHz
64 MHz
250 MHz
500 MHz
1.00E+03
1.00E+02
1.00E+01
1.00E+00
1.0
13.56 MHz
64 MHz
250 MHz
500 MHz
0.1
1
10
100
Capacitance (pF)
90
10.0
1000
10000
1
10
100
Capacitance (pF)
1000
10000
Hi-Q® High RF Power
MLC Capacitors
PERFORMANCE CHARACTERISTICS
Typical Series Resonant Frequency vs. Capacitance
HQCE and HQLE
Typical ESR vs. Capacitance
HQCE and HQLE
10000
1.000
1000
0.100
ESR (Ω)
Frequency (MHz)
13.56 MHz
64 MHz
250 MHz
500 MHz
100
0.010
10
1
10
100
1000
10000
0.001
Capacitance (pF)
1
10
100
1000
10000
Capacitance (pF)
Maximum RMS Current vs. Capacitance
HQCE and HQLE
Typical Quality Factor vs. Capacitance
HQCE and HQLE
1.00E+05
100.0
Quality Factor (-)
1.00E+04
Maximum RMS Current (A)
13.56 MHz
64 MHz
250 MHz
500 MHz
1.00E+03
1.00E+02
1.00E+01
1.00E+00
10.0
1.0
13.56 MHz
64 MHz
250 MHz
500 MHz
0.1
1
10
100
Capacitance (pF)
1000
10000
1
10
100
1000
10000
Capacitance (pF)
91
Tip & Ring
Multilayer Ceramic Chip Capacitors
AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip
Capacitors are designed as a standard telecom filter
to block -48 Volts DC telephone line voltage and pass
subscriber’s AC signal pulse (16 to 25Hz, 70 to 90Vrms).
The typical ringing signal is seen on figure on page 93. The
ringer capacitors replace large leaded film capacitors and
are ideal for telecom/modem applications. Using AVX “Tip &
Ring” capacitors not only saves valuable real estate on the
board and reduces the weight of overall product, but also
features standard surface mounting capabilities, so critical to
new and compact designs.
The AVX “Tip & Ring” capacitors are offered in standard
EIA sizes and standard values. They offer excellent high
frequency performance, low ESR and improved temperature
performance over film capacitors.
HOW TO ORDER
1812
P
C
104
K
A
T
AVX
Style
0805
1206
1210
1808
1812
1825
2220
2225
Voltage
250 VDC
Telco
Rating
Temp
Coefficient
X7R
Capacitance
Code
(2 significant
digits + no.
of zeros)
Examples:
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 μF = 105
Capacitance
Tolerance
K = ±10%
M = ±20%
Test
Level
A = Standard
1
A
Packaging
Termination
1 = 7" Reel
T = Plated
3 = 13" Reel
Ni and Sn
(RoHS Compliant) 9 = Bulk
Z = FLEXITERM®
100% Tin
(RoHS Compliant)
Special
Code
A = Standard
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
W
L
T
t
DIMENSIONS
Style
0805
millimeters (inches)
1206
1210*
1808*
1812*
1825*
2220*
2225*
(L) Length
2.01 ± 0.20
3.20 ± 0.20
3.2 ± 0.20
4.57 ± 0.25
4.50 ± 0.30
4.50 ± 0.30
5.60 ± 0.30
5.60 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010)
(W)Width
1.25 ± 0.20
1.60 ± 0.20
2.50 ± 0.20
2.03 ± 0.25
3.2 ± 0.20
6.34 ± 0.30
5.10 ± 0.40
6.35 ± 0.25
(0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010)
(T) Thickness
(t) terminal
1.30 max.
(0.051 max.)
1.78 max.
(0.070 max.)
1.78 max.
(0.070 max.)
2.00 max.
(0.080 max.)
2.00max.
(0.080 max.)
2.00 max.
(0.080 max.)
2.00 max.
(0.080 max.)
0.50 ± 0.25
0.50 ± 0.25
0.50 ± 0.25
0.63 ± 0.38
0.63 ± 0.38
0.63 ± 0.38
0.63 ± 0.38
0.63 ± 0.38
(0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015)
*Reflow Soldering Only
92
1.50 max.
(0.059 max.)
Tip & Ring
Multilayer Ceramic Chip Capacitors
CAPACITANCE RANGE (μF)
Size
min.
max.
0805
0.0010
0.027
1206
0.0010
0.082
1210
0.0010
0.22
1808
0.010
0.27
1812
0.10
0.47
1825
0.33
1.0
2220
0.47
1.0
2225
0.47
1.2
“TIP & RING” GRAPH
250V
Tip & Ring
0
-48V
-250V
200ms/div
-400ms
1.6s
PERFORMANCE CHARACTERISTICS
Capacitance Range
1000 pF to 1.2 μF
Capacitance Tolerances
±10%, ±20%
Dissipation Factor
2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz)
Operating Temperature Range
Temperature Characteristic
(25°C, 1.0 ±0.2 Vrms at 1kHz)
-55°C to +125°C
X7R ±15% (0 VDC)
Voltage Rating
250 VDC Telco rating
Insulation Resistance
1000 megohm-microfarad min.
Dielectric Strength
Minimum 200% rated voltage for 5 seconds at 50 mA max. current
93
Tip & Ring Tin/Lead Termination “B”
Multilayer Ceramic Chip Capacitors
AVX Corporation will support customers for commercial and military Multilayer
Ceramic Capacitors with a termination consisting of 5% minimum lead. This
termination is indicated by the use of a “B” in the 12th position of the AVX
Catalog Part Number. This fulfills AVX’s commitment to providing a full range of
products to our customers. AVX has provided in the following pages, a full range
of values that we are offering in this “B” termination.
AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip Capacitors are
designed as a standard telecom filter to block -48 Volts DC telephone line voltage and pass subscriber’s AC signal pulse (16 to 25Hz, 70 to 90 VRMS). The
typical ringing signal is seen on figure on page 95. The ringer capacitors replace
large leaded film capacitors and are ideal for telecom/modem applications.
Using AVX “Tip and Ring” capacitors not only saves valuable real estate on the
board and reduces the weight of the overall product, but also features standard
surface mounting capabilities, so critical to new and compact designs.
The AVX “Tip & Ring” capacitors are offered in standard EIA sizes and
standard values. They offer excellent high frequency performance, low ESR
and improved temperature performance over film capacitors.
HOW TO ORDER
A
LD12
P
C
104
K
AVX
Style
LD05 - 0805
LD06 - 1206
LD10 - 1210
LD08 - 1808
LD12 - 1812
LD13 - 1825
LD20 - 2220
LD14 - 2225
Voltage
250 VDC
Telco
Rating
Temperature
Coefficient
X7R
Capacitance Code
(2 significant digits
+ no. of zeros)
Examples:
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 μF = 105
Capacitance
Tolerance
K = ±10%
M = ±20%
B
Test
Termination
Level
B = 5% Min Pb
A = Standard X = FLEXITERM®
5% min. Pb
1
A
Packaging
1 = 7" Reel
3 = 13" Reel
9 = Bulk
Special Code
A = Standard
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
W
L
T
t
DIMENSIONS
STYLE (SIZE)
(L) Length
(W)Width
(T) Thickness
(t) terminal
LD05 (0805)
LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225)
2.01 ± 0.20
3.20 ± 0.20
3.2 ± 0.20
4.57 ± 0.25
4.50 ± 0.30
4.50 ± 0.30
5.60 ± 0.30
5.60 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010)
1.25 ± 0.20
1.60 ± 0.20
2.50 ± 0.20
2.03 ± 0.25
3.2 ± 0.20
6.34 ± 0.30
5.10 ± 0.40
6.35 ± 0.25
(0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010)
1.30 max.
(0.051 max.)
1.50 max.
(0.059 max.)
1.78 max.
(0.070 max.)
1.78 max.
(0.070 max.)
2.00 max.
(0.080 max.)
2.00max.
(0.080 max.)
2.00 max.
(0.080 max.)
2.00 max.
(0.080 max.)
0.50 ± 0.25
0.50 ± 0.25
0.50 ± 0.25
0.63 ± 0.38
0.63 ± 0.38
0.63 ± 0.38
0.63 ± 0.38
0.63 ± 0.38
(0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015)
*Reflow Soldering Only
94
millimeters (inches)
Tip & Ring Tin/Lead Termination “B”
Multilayer Ceramic Chip Capacitors
CAPACITANCE RANGE (μF)
STYLE (SIZE)
min.
max.
LD05 (0805)
0.0010
0.027
LD06 (1206)
0.0010
0.082
LD10 (1210)
0.0010
0.22
LD08 (1808)
0.010
0.27
LD12 (1812)
0.10
0.47
LD13 (1825)
0.33
1.0
LD20 (2220)
0.47
1.0
LD14 (2225)
0.47
1.2
“TIP & RING” GRAPH
250V
Tip & Ring
0
-48V
-250V
200ms/div
-400ms
1.6s
PERFORMANCE CHARACTERISTICS
Capacitance Range
1000 pF to 1.2 μF
Capacitance Tolerances
±10%, ±20%
Dissipation Factor
2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz)
Operating Temperature Range
(25°C, 1.0 ±0.2 Vrms at 1kHz)
-55°C to +125°C
Temperature Characteristic
X7R ±15% (0 VDC)
Voltage Rating
250 VDC Telco rating
Insulation Resistance
1000 megohm-microfarad min.
Dielectric Strength
Minimum 200% rated voltage for 5 seconds at 50 mA max. current
95
MLC Chips
Packaging of Chip Components
AUTOMATIC INSERTION PACKAGING
TAPE & REEL QUANTITIES
All tape and reel specifications are in compliance with EIA481 or IEC-286-3.
Tape Size
8mm
Component Pitch P1
4.00
12mm
4.00
24mm
8.00
1812
1825
2220
2225
(LD12)
(LD13)
(LD20)
(LD14)
8.00
16.00
HQCC
3640 (LD40)
HQCE
0805 (LD05)
1206 (LD06)
1210 (LD10)
1808 (LD08)
Qty. per Reel/7" Reel
2000
2000
1000
500
N/A
Qty. per Reel/13" Reel
10,000
4000
4000
2000
1000
Note: Lower quantity per reel may be used at the discretion of AVX.
REEL DIMENSIONS
DIMENSIONS
millimeters (inches)
Tape
Size
A
Max.
B*
Min.
C
D*
Min.
N
Min.
W1
W2
Max.
W3
8mm
330
(12.992)
1.5
(0.059)
13.0±0.20
(0.512±0.008)
20.2
(0.795)
50
(1.969)
+1.5
-0.0
(0.331 +.059)
-0.0
14.4
(0.567)
7.9 Min.
(0.311)
10.9 Max.
(0.429)
12mm
330
(12.992)
1.5
(0.059)
13.0±0.20
(0.512±0.008)
20.2
(0.795)
50
(1.969)
+2.0
12.4 -0.0
(0.488 +.079)
-0.0
18.4
(0.724)
11.9 Min.
(0.469)
15.4 Max.
(0.606)
20.2
(0.795)
60
(2.362)
+2.0
24.4 -0.0
(0.961 +.079)
-0.0
30.4
(1.197)
23.9 Min.
(0.941)
27.4 Max.
(1.079)
Metric dimensions will govern.
+0.5
English measurements rounded and for reference only.13.0
24mm
96
360
(14.173)
1.5
(0.059)
-0.2
(0.512 +.020)
-.008
8.4
MLC Chips
Packaging of Chip Components
P0
T2
T
D0
P2
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
±0.2mm (±0.008)
EMBOSSMENT
DEFORMATION
BETWEEN
EMBOSSMENTS
Chip Orientation
E1
A0
F
TOP COVER
TAPE
B1
T1
W
B0
K0
S1
E2
CENTER LINES
OF CAVITY
P1
MAX. CAVITY
SIZE - SEE NOTE 1
B1 IS FOR TAPE READER REFERENCE ONLY
INCLUDING DRAFT CONCENTRIC AROUND B0
D1 FOR COMPONENTS
2.00 mm x 1.20 mm AND
LARGER (0.079 x 0.047)
User Direction of Feed
8mm, 12mm & 24mm Embossed Tape
Metric Dimensions Will Govern
CONSTANT DIMENSIONS
Tape Size
D0
8mm
12mm
24mm
1.50
(0.059
+0.10
-0.0
+0.004
-0.0
millimeters (inches)
E1
)
P0
1.75 ± 0.10
4.0 ± 0.10
(0.069 ± 0.004) (0.157 ± 0.004)
S1 Min.
T Max.
T1
0.60
(0.024)
0.60
(0.024)
0.10
(0.004)
Max.
VARIABLE DIMENSIONS
Tape Size
B1
Max.
D1
Min.
8mm
4.35
(0.171)
1.00
(0.039)
12mm
8.20
(0.323)
12mm
Double
Pitch
24mm
E2
Min.
millimeters (inches)
F
P1
R
Min.
See Note 2
T2
Max.
W
Max.
A0 B0 K0
6.25
3.50 ± 0.05
4.00 ± 0.10
2.00 ± 0.05
(0.246) (0.138 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002)
25.0
(0.984)
2.50
(0.098)
8.30
(0.327)
See Note 1
1.50
(0.059)
10.25
5.50 ± 0.05
4.00 ± 0.10
2.00 ± 0.05
(0.404) (0.217 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002)
30.0
(1.181)
6.50
(0.256)
12.3
(0.484)
See Note 1
8.20
(0.323)
1.50
(0.059)
10.25
5.50 ± 0.05
8.00 ± 0.10
2.00 ± 0.05
(0.404) (0.217 ± 0.002) (0.315 ± 0.004) (0.079 ± 0.002)
30.0
(1.181)
6.50
(0.256)
12.3
(0.484)
See Note 1
20.10
(0.791)
1.50
(0.059)
22.25
11.5 ± 0.10
16.00 ± 0.10
2.00 ± 0.10
(0.876) (0.453 ± 0.004) (0.630 ± 0.004) (0.079 ± 0.004)
30.0
(1.181)
12.00
(0.472)
24.3
(0.957)
See Note 1
NOTES:
1. The cavity defined by A0, B0, and K0 shall be configured to provide the following:
Surround the component with sufficient clearance such that:
a) the component does not protrude beyond the sealing plane of the cover tape.
b) the component can be removed from the cavity in a vertical direction without mechanical
restriction, after the cover tape has been removed.
c) rotation of the component is limited to 20º maximum (see Sketches D & E).
d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
P2
2. Tape with or without components shall pass around radius “R” without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes.
Refer to EIA-556.
4. B1 dimension is a reference dimension for tape feeder clearance only.
Top View, Sketch "F"
Component Lateral Movements
0.50mm (0.020)
Maximum
0.50mm (0.020)
Maximum
Side or Front Sectional View
Sketch “D”
Top View
Sketch “E”
97
Single-In-Line Packages (SIP)
Capacitor Arrays
SIP-style, MLC ceramic capacitor arrays are Single-In-Line,
conformally coated packages. These capacitor networks
incorporate multiple capacitors into a single substrate and,
therefore, offer excellent TC tracking. The utilization of
SIP capacitor arrays minimizes board real estate and
reduces component count in the assembly. Various circuit
configurations and capacitance/voltage values are available.
Dimensions in millimeters (inches)
Length (Max.)
Length = [# of Leads x 2.54 (0.100)]
+ 1.27 (0.050)
i.e., 10 Lead SIP = 26.67 (1.050)
3.429
(0.135)
Max.
7.62 (0.300)
Max.
0.254
(0.010)
Typ.
3.81
(0.150) Min.
0.508 (0.020) Typ.
1.524 (0.060) Typ.
2.54 (0.100) Typ.
1
2
3
4
5
6
7
8
9
10
CIRCUIT CONFIGURATION "A"
ONE END LEAD GROUND
98
1
2
3
4
5
6
7
8
9
10
CIRCUIT CONFIGURATION "B"
ADJACENT LEAD PAIR CAPS
1
2
3
4
5
6
7
8
9
10
CIRCUIT CONFIGURATION "C"
BOTH END LEADS GROUND
Single-In-Line Packages (SIP)
Capacitor Arrays
HOW TO ORDER
SP
AVX Style
A
1
1
A
561
K
A
A
Circuit
Lead
Style
Voltage
Temperature
Coefficient
Capacitance
Code
Capacitance
Tolerance
Test
Level
Number of
Leads
See Page 98
(A, B, C)
50V = 5
100V = 1
C0G = A
X7R = C
Z5U = E
(2 significant
digits + no.
of zero)
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 μF = 105
10 μF = 106
100 μF = 107
C0G: K = ±10%
A = Standard
M = ±20%
X7R: K = ±10%
M = ±20%
Z = +80%,-20%
Z5U: M = ±20%
Z = +80%,-20%
P = GMV
(+100,-0%)
2=2
3=3
4=4
5=5
6=6
7=7
8=8
9=9
A = 10
B = 11
C = 12
D = 13
E = 14
*For dimensions, voltages, or capacitance values not specified, please contact factory.
Maximum Capacitance*
50V
2200 pF
0.10 μF
0.39 μF
C0G
X7R
Z5U
100V
1500 pF
0.033 μF
0.10 μF
AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS
SPECIFICATION #
DESCRIPTION
CIRCUIT
LEADS
87112
BX-100 VDC
A
8
87116
C0G-100 VDC
A
8
CAPACITANCE RANGE
1000 pF -
0.1 μF
10 pF - 820 pF
87119
BX-100 VDC
C
10
87120
C0G-100 VDC
C
10
1000 pF -
0.1 μF
87122
BX-100 VDC
B
8
1000 pF -
0.1 μF
88019
BX-100 VDC
A
10
1000 pF -
0.1 μF
89086
C0G-100 VDC
B
8
10 pF - 1000 pF
10 pF - 820 pF
99
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style (US Preferred Sizes) / XB Style (European Preferred Sizes)
XF Style (Feed-Through Discoidal)
APPLICATION INFORMATION ON DISCOIDAL
LOWEST CAPACITANCE IMPEDANCES TO GROUND
OD*
ID
T Max.
These surfaces are metallized
.127 (0.005). minimum wide except
for DC61, DC26 and DC63
where metallized surfaces
are .127 (0.005) maximum.
A discoidal MLC capacitor has very low impedance associated with its ground path
since the signal is presented with a multi-directional path. These electrode paths,
which can be as many as 100, allow for low ESR and ESL which are the major elements in impedance at high frequencies.
The assembled discoidal element or feed-thru allows signal to be fed in through a
chassis or bulkhead, conditioned as it passes through the discoidal, and isolated by
the chassis and discoidal from the original signal. An example of this application
would be in an AFT circuit where the AC noise signal would be required to be
stripped from the DC control signal. Other applications include single line EMI/RFI
suppression, L-C filter construction, and coaxial shield bypass filtering.
The shape of the discoidal lends itself to filter construction. The short length allows
compact construction where L-C construction is desired.
The size freedom associated with this element allows almost any inside/
outside diameter combination. By allowing the inside diameter to equal
the center insulator diameter of a coaxial signal line and special termination techniques, this device will allow bypass filtering of a floating shield to ground.
Discoidal capacitors are available in three temperature coefficients (C0G, X7R, Z5U)
and a variety of sizes, the most standard of which appear in this catalog.
INSERTION LOSS
0
*Tol. = +-.254 (0.010) or 3%, whichever is greater
-10
SINGLE CHIP
-20
AVX’s DC Series 50V, 100V, 200V, C0G
and X7R parts are capable of meeting
the requirements of MIL-PRF-31033.
(dB)
-30
-40
DISCOIDAL
-50
-60
-70
-80
0
ELECTRICAL SPECIFICATIONS
100
200
300
400
500
600
700
800
900
1000
f (MHz)
Temperature Coefficient
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° +125°C
X7R: C Temperature Coefficient - ±15%, -55° to +125°C
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz
X7R: 25°C, 1.0±0.2 Vrms at 1KHz
Z5U: 25°C, 0.5 Vrms max at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms at 1KHz
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less.
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)*
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
charging current. 500V rated units will be tested at 750 VDC
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.
Life Test (1000 hrs)
C0G and X7R: 200% rated voltage at +125°C (500 Volt units
@ 600 VDC)
Z5U: 150% rated voltage at +85°C
Moisture Resistance (MIL-STD-202 Method 106)
C0G, X7R, Z5U: Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
HOW TO ORDER
DC61
5
A
AVX
Voltage Temperature
Style
50V = 5 Coefficient
See Pages 100V = 1
C0G = A
101-102 200V = 2
X7R = C
500V = 7
Z5U = E
561
Capacitance Code
(2 significant digits
+ no. of zeros)
Examples:
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 μF = 105
For dimensions, voltages or values not specified, please consult factory.
100
K
A
Capacitance
Test
Tolerance
Level
C0G: J = ±5%
A = Standard
K = ±10%
M = ±20%
X7R: K = ±10%
M = ±20%
Z5U: M = ±20%
Z = +80 -20%
P = GMV
5
Termination
5 = Silver
(AVX Standard)
1
06
Inside
Maximum
Diameter
Thickness
See Pages 06 = 1.52 (0.060)
102-104 10 = 2.54 (0.100)
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
SIZE AND CAPACITANCE SPECIFICATIONS
EIA
Characteristic
C0G
DC61
DC26
DC63
DC04
DC65
DC66
DC67
DC69
DC32
DC70
DC02
DC71
DC05
DC73
DC72
Outside
Diameter (OD)*
2.54
(0.100)
3.43
(0.135)
3.81
(0.150)
4.83
(0.190)
5.33
(0.210)
5.97
(0.235)
6.73
(0.265)
8.13
(0.320)
8.51
(0.335)
8.89
(0.350)
9.40
(0.370)
9.78
(0.385)
12.70
(0.500)
15.24
(0.600)
16.26
(0.640)
Thickness
Maximum
1.52
(0.060)
1.52
(0.060)
1.52
(0.060)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
1,2
1,2,3
1,2,3,4
1,2,3
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
(T)
Inside
Diameter No. (ID)
Voltage
cap. in pF
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
AVX Style
Dimensions: millimeters (inches)
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
*Outside Diameter:
Tolerance is ±0.254 (0.010) or 3%
whichever is greater
Inside Diameter:
+.127
+.005
1 = .635 -.051 (.025 -.002)
+.127
+.005
2 = .762 -.051 (.030 -.002)
+.127
+.005
3 = .914 -.051 (.036 -.002)
+.127
+.005
4 = 1.07 -.051 (.042 -.002)
5 = 1.27±.127 (0.050±.005)
6 = 1.52±.127 (0.060±.005)
7 = 1.73±.127 (0.068±.005)
101
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
SIZE AND CAPACITANCE SPECIFICATIONS
EIA
Characteristic
X7R
DC61
DC26
DC63
DC04
DC65
DC66
DC67
DC69
DC32
DC70
DC02
DC71
DC05
DC73
DC72
Outside
Diameter (OD)*
2.54
(0.100)
3.43
(0.135)
3.81
(0.150)
4.83
(0.190)
5.33
(0.210)
5.97
(0.235)
6.73
(0.265)
8.13
(0.320)
8.51
(0.335)
8.89
(0.350)
9.40
(0.370)
9.78
(0.385)
12.70
(0.500)
15.24
(0.600)
16.26
(0.640)
Thickness
Maximum
1.52
(0.060)
1.52
(0.060)
1.52
(0.060)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
1,2
1,2,3
1,2,3,4
1,2,3
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
(T)
Inside
Diameter No. (ID)
Voltage
cap. in pF
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
AVX Style
Dimensions: millimeters (inches)
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
820,000
1.0 μF
1.2 μF
1.5 μF
1.8 μF
2.2 μF
2.7 μF
3.3 μF
3.9 μF
6.8 μF
*Outside Diameter:
Tolerance is ±0.254 (0.010) or 3%
whichever is greater
102
Inside Diameter:
+.127
+.005
1 = .635 -.051 (.025 -.002)
+.127
+.005
2 = .762 -.051 (.030 -.002)
+.127
+.005
3 = .914 -.051 (.036 -.002)
+.127
+.005
4 = 1.07 -.051 (.042 -.002)
5 = 1.27±.127 (0.050±.005)
6 = 1.52±.127 (0.060±.005)
7 = 1.73±.127 (0.068±.005)
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
SIZE AND CAPACITANCE SPECIFICATIONS
EIA
Characteristic
Z5U
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
5,6,7
1,2,3,4
200
Voltage
cap. in pF
50
5,6,7
1,2,3,4
100
1,2,3
50
1,2,3,4
200
1,2,3
100
1,2
Inside
Diameter No. (ID)
50
2.54
(0.100)
200
2.54
(0.100)
100
2.54
(0.100)
50
2.54
(0.100)
200
2.54
(0.100)
100
2.54
(0.100)
50
2.54
(0.100)
200
2.54
(0.100)
100
2.54
(0.100)
50
2.54
(0.100)
200
2.54
(0.100)
100
2.54
(0.100)
50
1.52
(0.060)
200
1.52
(0.060)
100
1.52
(0.060)
(T)
50
Thickness
Maximum
200
16.26
(0.640)
100
15.24
(0.600)
50
12.70
(0.500)
200
9.78
(0.385)
100
9.40
(0.370)
50
8.89
(0.350)
200
8.51
(0.335)
100
DC72
8.13
(0.320)
50
DC73
6.73
(0.265)
200
DC05
5.97
(0.235)
100
DC71
5.33
(0.210)
50
DC02
4.83
(0.190)
200
DC70
3.81
(0.150)
100
DC32
3.43
(0.135)
50
DC69
2.54
(0.100)
200
DC67
Outside
Diameter (OD)*
100
DC66
50
DC65
200
DC04
100
DC63
50
DC26
200
DC61
100
AVX Style
Dimensions: millimeters (inches)
1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
820,000
1.0 μF
1.2 μF
1.5 μF
1.8 μF
2.2 μF
2.7 μF
3.3 μF
3.9 μF
4.7 μF
5.6 μF
6.8 μF
8.2 μF
10.0 μF
12.0 μF
15.0 μF
Inside Diameter:
*Outside Diameter:
Tolerance is ±0.254 (0.010) or 3%
whichever is greater
+.127
+.005
1 = .635 -.051 (.025 -.002)
+.127
+.005
2 = .762 -.051 (.030 -.002)
+.127
+.005
3 = .914 -.051 (.036 -.002)
+.127
+.005
4 = 1.07 -.051 (.042 -.002)
5 = 1.27±.127 (0.050±.005)
6 = 1.52±.127 (0.060±.005)
7 = 1.73±.127 (0.068±.005)
103
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – C0G
HOW TO ORDER
XB
06
Z
AVX Style
Size
Class
XB
XF
03
04
06
07
08
09
10
14
15
C = NP0
Z = X7R
G
0104
K
--
Voltage
Capacitance
Tolerance
Packaging
EIA code
on 3 or 4
digits
J = 5%
K = 10%
M = 20%
-- : bulk
D = 63
E = 100
F = 160
G = 250
I = 400
J = 500 (optional)
REFERENCES
Type
bm
Terminations
Reference
Silver
palladium
XB..C•....• --
Mechanical Characteristics
OD
CECC 30600
ID
Tinned
silver palladium
bm
e
XB..C•....• MB
MIL 11015 D
Conformance
Ø
OD
Silver
palladium
to
XF..C•....• --
CK12
TYPE
20
(0.787)
min.
e
20
(0.787)
min.
Tinned
silver palladium
XF..C•....• MB
DIMENSIONS
Size
03
04
08
millimeters (inches)
OD
ID
XB/XF
XB/XF...MB
XB
XB...MB
3.8 ± 0.3
4.1 ± 0.4
0.7 ± 0.15
> 0.4
(0.150 ± 0.012) (0.161 ± 0.016) (0.028 ± 0.006) (> 0.016)
3.8 ± 0.3
—
1.2 ± 0.15
—
(0.150 ± 0.012)
(0.047 ± 0.006)
7.9 ± 0.3
8.2 ± 0.4
0.8 ± 0.15
> 0.5
(0.311 ± 0.012) (0.323 ± 0.016) (0.031 ± 0.006) (> 0.020)
bm
min
0.1
(0.004)
0.1
(0.004)
0.2
(0.008)
ELECTRICAL CHARACTERISTICS
Dielectric Class
Temperature Coefficient
Climatic Category
Operating Temperature
Rated Voltage (UR)
Test Voltage (Ue)
Tangent of Loss Angle
C < 50 pF
C0G
0 ± 30 ppm/°C
-55 / 125 / 56
-55 +125°C
50 to 400V
2.5 UR
C ≥ 50 pF
Insulation Resistance
tg δ < 15(10-4)
Ri ≥ 100 GΩ
104
tg δ < 1.5
+ 7 )10-4
( 150
CR
Ø
(XF)
0.5
(0.020)
—
0.6
(0.024)
e
min
1
1
1
max
See
table
on
page
105
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – C0G
RATED VOLTAGE – RATED CAPACITANCES
Size
10 pF
15 pF
22 pF
33 pF
47 pF
68 pF
100 pF
150 pF
220 pF
330 pF
470 pF
680 pF
1000 pF
1500 pF
2200 pF
3300 pF
4700 pF
6800 pF
10 nF
15 nF
22 nF
33 nF
47 nF
68 nF
100 nF
Thickness emax
mm (inches)
D
D
F
1.4 (0.055)
1.8 (0.071)
1.4 (0.055)
160
50/63
CR
50/63
Capacitance
03
04
08
Rated Voltage - UR (V)/Ur code
• other values, please contact us
• for tinned types, add 0.5 (0.020) to emax
105
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – X7R
REFERENCES
Type
Terminations
Reference
Silver
palladium
XB..Z•....• --
Tinned
silver palladium
XB..Z•....• MB
Mechanical Characteristics
bm
OD
ID
bm
e
CECC 30700
MIL 11015 D
Conformance
Ø
OD
Silver
palladium
to
XF..Z•....• --
CK12, CK13, CK14
TYPES
20
(0.787)
min.
e
20
(0.787)
min.
Tinned
silver palladium
XF..Z•....• MB
DIMENSIONS
Size
03
04
06
07
08
09
10
14
15
OD
XB/XF
XB/XF...MB
3.8 ± 0.3
4.1 ± 0.4
(0.150 ± 0.012) (0.161 ± 0.016)
3.8 ± 0.3
—
(0.150 ± 0.012)
6.4 ± 0.3
6.7 ± 0.4
(0.252 ± 0.012) (0.264 ± 0.016)
7.3 ± 0.3
7.6 ± 0.4
(0.287 ± 0.012) (0.299 ± 0.016)
7.9 ± 0.3
8.2 ± 0.4
(0.311 ± 0.012) (0.323 ± 0.016)
8.4 ± 0.4
8.7 ± 0.5
(0.331 ± 0.016) (0.343 ± 0.020)
9.6 ± 0.4
9.9 ± 0.5
(0.378 ± 0.016) (0.390 ± 0.020)
14.0 ± 0.5
14.3 ± 0.6
(0.551 ± 0.020) (0.563 ± 0.024)
15.0 ± 0.5
15.3 ± 0.6
(0.591 ± 0.020) (0.602 ± 0.024)
millimeters (inches)
ID
XB
0.7 ± 0.15
(0.028 ± 0.006)
1.2 ± 0.15
(0.047 ± 0.006)
1.7 ± 0.15
(0.067 ± 0.006)
1.7 ± 0.15
(0.067 ± 0.006)
0.8 ± 0.15
(0.031 ± 0.006)
1.6 ± 0.3
(0.063 ± 0.012)
1.2 ± 0.15
(0.047 ± 0.006)
1.7 ± 0.3
(0.067 ± 0.012)
2.3 ± 0.3
(0.091 ± 0.012)
XB...MB
> 0.4
(> 0.016)
—
> 0.5
(> 0.020)
> 0.5
(> 0.020)
> 0.5
(> 0.020)
> 0.5
(> 0.020)
> 0.9
(> 0.035)
> 0.9
(> 0.035)
> 0.9
(> 0.035)
bm
min
0.1
(0.004)
0.1
(0.004)
0.2
(0.008)
0.2
(0.008)
0.2
(0.008)
0.2
(0.008)
0.2
(0.008)
0.2
(0.008)
0.2
(0.008)
ELECTRICAL CHARACTERISTICS
Dielectric Class
Temperature Coefficient
Climatic Category
Operating Temperature
Rated Voltage (UR)
Test Voltage (Ue)
Tangent of Loss Angle
Insulation Resistance
C ≤ 10 nF
C > 10 nF
106
X7R
ΔC/C ≤ ± 15% (-55 +125°C)
-55 / 125 / 56
-55 +125°C
50 to 400V
2.5 UR
tg δ ≤ 250(10-4)
Ri ≥ 100 GΩ
Ri xC ≥ 1000s
Ø
(XF)
0.5
(0.020)
—
0.6
(0.024)
0.6
(0.024)
0.6
(0.024)
0.6
(0.024)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
e
min
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
1.0
(0.039)
max
See
table
on
page
107
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – X7R
RATED VOLTAGE – RATED CAPACITANCES
Size
G
I
D E
400
F
250
50/63
D E
160
400
I
100
250
F G
160
D E
14-15
100
I
10
50/63
F G
50/63
G D E
400
250
F
250
160
D E
160
100
D
100
50/63
50/63
50/63
CR
UR-
08-09
(V)/Code UR
400
Capacitance
250
07
160
06
100
03-04
F G I
100 pF
150 pF
220 pF
330 pF
470 pF
680 pF
1000 pF
1500 pF
2200 pF
3300 pF
4700 pF
6800 pF
10 nF
15 nF
22 nF
33 nF
47 nF
68 nF
100 nF
150 nF
220 nF
330 nF
470 nF
680 nF
1 μF
1.5 μF
2.2 μF
3.3 μF
4.7 μF
emax mm (inches)
1.4
(0.055)
2
2
2
2
3
3
3
3
3 1.8 3 1.8 3
3
3
3
3
3
3 3.5 3.5 3.5 3.5 3.5
(0.079) (0.079) (0.079) (0.079) (0.118) (0.118) (0.118) (0.118) (0.118) (0.071) (0.118) (0.071) (0.118) (0.118) (0.118) (0.118) (0.118) (0.118) (0.118) (0.138) (0.138) (0.138) (0.138) (0.138)
• other values, please contact us
• for tinned types, add 0.5 (0.020) to emax
107
Filtered Arrays
XD... Type
FEATURES
•
•
•
•
To be used beneath a connector
Provide an EMI filtered signal line between electronic modules
Effective insertion loss from 1MHz up to ~ 1GHz
Surface mount compatible
HOW TO ORDER
XD
06
Z
F
0153
AVX Style
XD
Size
Class
Voltage
Capacitance
03
06
07
C = NP0
Z = X7R
F = 200
J = 500
EIA code
on 3 or 4
digits
K
--
Tolerance
Packaging
NP0
X7R
F = ±1%
G = ±2%
J = ±5%
K = ±10%
J = ±5%
K = ±10%
M = ±20%
SUFFIX
Burn-in 100% 168H = T5
Burn-in 100% 48H = T3
No burn-in
= --
STYLE & DIMENSIONS
D
L
P
L
P
d
bm
tm
millimeters (inches)
TYPES
L
P
XD07
(4 capacitors)
XD06
(4 capacitors)
XD03
(2 capacitors)
7.00 ± 0.15
(0.275 ± 0.006)
6.00 ± 0.15
(0.236± 0.006)
6.00 x 3.00 ± 0.15
(0.236 x 0.118 ± 0.006)
2.54
(0.100)
2.54
(0.100)
2.54
(0.100)
D
1.70
(0.067
1.70
(0.067
1.70
(0.067
±
±
±
±
±
±
d
0.15
0.006)
0.15
0.006)
0.15
0.006)
1.00
(0.039
1.00
(0.039
1.0
(0.039
±
±
±
±
±
±
0.10
0.0039)
0.10
0.0039)
0.10
0.0039)
bm maxi
Thickness
maxi
0.3
2mm
0.3
2mm
0.3
1.5mm
Terminations: Silver – Palladium – Platinum, on 4 or only 2 sides of the array
CAPACITANCE vs VOLTAGE TABLE
Cap. Range
(each cap.)
200VDC
X7R
500VDC
200VDC
NP0
500VDC
XD07...
33nF → 120nF
4.7nF → 18nF
470pF → 1500pF
220pF → 620pF
XD06...
15nF → 68nF
2.2nF → 10nF
220pF → 750pF
120pF → 330pF
XD03...
8.2nF → 39nF
1nF → 4.7nF
180pF → 390pF
82pF → 180pF
ELECTRICAL CHARACTERISTICS
Dielectric Class
Temperature Coefficient
Climatic Category
Rated Voltage (UR)
Test Voltage (Ue)
Tangent of Loss Angle - DF
Insulation Resistance
108
X7R
ΔC/C ≤ ± 15% (-55 +125°C)
55 / 125 / 56
200 VDC
500VDC
2 x UR
1.5 x UR
tg δ ≤ 250(10-4)
C ≤ 10nF = Ri ≥ 100 GΩ
C > 10nF = Ri x C ≥ 1000s
NP0
0 ± 30ppm/°C
55 / 125 / 56
200VDC
2 x UR
tg δ ≤ 15(10-4)
Ri ≥ 100 GΩ
500VDC
1.5 x UR
Baseline Management
A Dedicated Facility / BS9100 Requirements
Baseline Products —
A Selection of Options
As a matter of course, AVX maintains a
level of quality control that is sufficient
to guarantee whatever reliability specifications are needed. However, AVX
goes further. There are over 65 quality
control and inspection operations that
are available as options to a customer.
Any number may be requested and
written into a baseline process. The
abbreviated list that follows indicates
the breadth and thoroughness of available Q.C. services at AVX:
Ultrasonic Scanning
Destructive Physical Analysis (DPA)
X-Ray
Bondability Testing
Sorting and Matching to
Specification Limits
Temperature and Immersion
Cycling
Load/Humidity Life Testing
Dye Penetration Evaluation
100% Ceramic Sheet Inspection
Voltage Conditioning
Termination Pull Testing
Pre-encapsulation Inspection
Within the “specials” area, AVX accommodates a broad variety of customer
needs. The AVX facilities are capable of
developing and producing the most
reliable and advanced MLCs available
anywhere in the world today. Yet it is
equally adept at making volume “custom”
components that may differ only in
markings or lead placement from the
standard catalog part.
Stretching the Limits
Advanced Products are developed to
meet the extraordinary needs of specific
applications. Requirements may include:
low ESR, low ESL, voltages up to 10’s
of thousands, advanced decoupling
designs for frequencies up to 10’s of
megahertz, temperatures up to 200°C,
extremely high current discharge, ability
to perform in high radiation or toxic
atmospheres, or minimizing piezoelectric
effect in high vibration environments.
In addition, solving customer packaging
problems, aside from addressing circuit
problems, is available. Special lead
frames for high current or special
mounting requirements are examples.
Multiple ceramic chip package designs
per customer requirements are also
available.
Advanced Products always begin with
a joint development program involving
AVX and the customer. In undersea
cable components, for example,
capacitance and impedance ratings
had to be maintained within 1% over
the multi-year life of the system. In this
case, Advanced Products not only
met the parametric requirements of the
customer, but accelerated life testing of
3,500 units indicated an average life
expectancy of over 100,000 years.
PROCUREMENT OF COMPONENTS OF
BS9100 (CH/CV RANGE 50-500V)
The manufacturing facilities have IS09001 approval. Customers
requiring BS9100 approved components are requested to
follow these steps:
1. The customer shall submit a specification for the required
components to AVX for approval. Once agreed a Customer
Detail Specification (CDS) number will be allocated by AVX
to this specification. This number with its current revision
must be quoted at the time of order placement.
2. If the customer has no specification, then AVX will supply a
copy of the standard CDS for the customer’s approval and
signature. As in 1 above, when agreed this CDS number
must be quoted at order entry. In the event of agreement
not being reached the component cannot be supplied to
BS9100.
For assistance contact: EMAP Specification Engineering
Dept. AVX Ltd. Coleraine, Northern Ireland
Telephone ++44 (0)28703 44188, Fax ++44 (0)28703 55527
Baseline Program Management
Baseline Program Management has
been AVX’s forte over the years. This is
both a product and a service function
designed to provide the customer the
full capabilities of AVX in meeting their
program requirements. AVX has had
Baseline and Program Management in
the following major systems:
—AT&T Undersea Cable
—Minuteman
—Peacekeeper
—STC Undersea Cable
—CIT Undersea Cable
—Raytheon-Hawk Missile
—Trident
—Small Missile Program
—Northrop - Peacekeeper
—Sparrow Program
—Space Station
—European Space Agency (ESA)
—Commercial Satellite Program
—Arianne 4 & 5
—EuroFighter (Typhoon)
—EH101 (Merlin)
AVX technical personnel stand ready to
answer any questions and provide any
information required on your programs
from the most exotic Hi-Rel part to the
simplest variation on a standard. Put the
experience, technology and facilities of
the leading company in multilayer
ceramics to work for you. No other
source offers the unique combination of
capability and commitment to advanced
application specific components.
PACKAGING
Unless otherwise stated in the appropriate data sheet parts
are supplied in a waffle pack.
109
Advanced Application
Specific Products
Examples of Special Packaging and Custom
Lead Configurations from Advanced Products
Custom Lead
Configurations. . .
optimum 3D packaging, high current
applications and high reliability stress
relief mounting.
Custom
Packaging. . .
eliminate reliability concerns with multiple
component assembly.
Many other innovations are available from Advanced Products. Let them apply these ideas
to your application specific programs.
AMERICAS
EUROPE
ASIA-PACIFIC
ASIA-KED
(KYOCERA Electronic Devices)
AVX Myrtle Beach, SC
Tel: 843-448-9411
AVX Limited, England
Tel: +44-1252-770000
AVX/Kyocera (S) Pte Ltd.,
Singapore
KED Hong Kong Ltd.
Tel: +852-2305-1080/1223
Tel: +65-6286-7555
AVX Northwest, WA
AVX S.A.S., France
Tel: 360-699-8746
Tel: +33-1-69-18-46-00
AVX/Kyocera, Asia, Ltd.,
Hong Kong
AVX Midwest, IN
AVX GmbH, Germany
Tel: +852-2363-3303
Tel: 317-861-9184
Tel: +49-8131-9004-0
AVX Mid/Pacific, CA
AVX SRL, Italy
AVX/Kyocera Yuhan Hoesa,
South Korea
Tel: 408-988-4900
Tel: +39-02-614-571
Tel: +82-2785-6504
AVX Northeast, MA
AVX Czech Republic
Tel: 617-479-0345
Tel: +420-57-57-57-521
AVX/Kyocera HK Ltd.,
Taiwan
KED Hong Kong Ltd.
Shenzen
Tel: +86-755-3398-9600
KED Company Ltd.
Shanghai
Tel: +86-21-3255-1833
KED Hong Kong Ltd.
Beijing
Tel: +86-10-5869-4655
Tel: +886-2-2656-0258
AVX Southwest, CA
AVX/ELCO UK
Tel: 949-859-9509
Tel: +44-1638-675000
AVX/Kyocera (M) Sdn Bhd,
Malaysia
AVX Canada
ELCO Europe GmbH
Tel: +60-4228-1190
Tel: 905-238-3151
Tel: +49-2741-299-0
AVX South America
AVX S.A., Spain
Tel: +55-11-4688-1960
AVX/Kyocera International
Trading Co. Ltd.,
Shanghai
Tel: +34-91-63-97-197
Tel: +86-21-6215-5588
AVX Benelux
AVX/Kyocera Asia Ltd.,
Shenzen
Tel: +65-6509-0328
Tel: +86-755-3336-0615
Kyocera Corporation
Japan
AVX/Kyocera International
Trading Co. Ltd.,
Beijing
Tel: +81-75-604-3449
Tel: +31-187-489-337
KED Taiwan Ltd.
Tel: +886-2-2950-0268
KED Korea Yuhan Hoesa,
South Korea
Tel: +82-2-783-3604/6126
KED (S) Pte Ltd.
Singapore
Tel: +86-10-6588-3528
AVX/Kyocera India
Liaison Office
Tel: +91-80-6450-0715
Contact:
A KYOCERA GROUP COMPANY
http://www.avx.com
S-AP0M510-C