AN-803: Pin Compatible High Speed ADCs Simplify Design Tasks (Rev. 0) PDF

AN-803
APPLICATION NOTE
One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/461-3113 • www.analog.com
Pin-Compatible High Speed ADCs Simplify Design Tasks
by Robert M. Clarke
Depending on results, the system may be
overspecified and a lower speed or resolution converter
would work or be underdesigned, so a faster or higher
resolution converter is needed. In the former case, there
is an opportunity for cost reduction through a cheaper
converter. In the latter case, major design changes
increase time to market and increase development
cost.
In addition, any change in a working design also introduces risk—the risk of “improving” a working design into
a nonworking design. And the best way to minimize risk
is to future-proof the design by using a single layout and
converters that are pin compatible.
To that end, ADI has developed a family of A/D converters based on a common A/D core to allow the designer
to increase or decrease sampling speeds and resolution
without changing a PC board’s layout.
FAMILY DESCRIPTION
The A/D converters come in single and dual versions.
Each version shares a common package, pinout, and
footprint. These allow the designer to change converter
resolutions or sampling speeds or both during prototype
and field testing if more or less performance is needed.
The converters (Table I) are available in 10-, 12-, and
14-bit pin-compatible versions at speeds from 20 MSPS
to 105 MSPS. All are built around a common core in a
CMOS process.
The converter core (Figure 1) consists of a sampleand-hold amplifier (SHA), followed by a multistage
differential pipelined architecture with output error correction logic and an integrated voltage reference. The
converter family provides from 10 to 14 bits of resolution at speeds ranging from 20 MSPS to 105 MSPS with
no missing codes over the full operating temperature
range.
REV. 0
Table I. Single and Dual A/D Converters
Single ADCs
(32-Lead
Bits LFCSP)
Speeds
(MSPS)
Dual ADCs
(64-Lead
LFCSP)
Speeds
(MSPS)
10
AD9215
65, 80, 105
AD9216
65, 80, 105
12
AD9235
20, 40, 65
AD9238
20, 40, 65
12
AD9236
80
12
AD9237
20, 40, 65
14
AD9245
20, 40, 65, 80 AD9248
20, 40, 65
DRVDD
AVDD
AD9245
VIN+
VIN–
MDAC1
SHA
8-STAGE
1 1/2-BIT PIPELINE
4
A/D
16
3
A/D
REFT
REFB
CORRECTION LOGIC
OTR
14
OUTPUT BUFFERS
D13 (MSB)
VREF
D0 (LSB)
SENSE
0.5V
REF
SELECT
AGND
CLOCK
DUTY CYCLE
STABILIZER
CLK
MODE
SELECT
PDWN
MODE DGND
05640-001
INTRODUCTION
Choosing an A/D converter can be the toughest choice
a system designer makes. The converter’s resolution
and sampling rate determine the system’s performance.
Yet, often the design is based on a series of assumptions
that can’t be verified until the prototype system is put
through its paces.
Figure 1. ADC Family Functional Block Diagram
The wide bandwidth, differential input SHA allows a
variety of user-selectable input ranges and commonmode voltages, including single-ended applications.
It suits both multiplexed applications that switch
full-scale voltage levels in successive channels, and
single-channel applications that undersample signals
at frequencies well beyond the Nyquist rate.
A single- ended clock input controls all internal
conversion cycles. A duty cycle stabilizer (DCS) compensates for wide variations in the clock duty cycle while
maintaining excellent overall ADC performance. The
digital output data is presented in straight binary or
twos complement formats. An out-of-range (OTR) signal
indicates an overflow condition that can be used with the
most significant bit to determine low or high overflow.
AN-803
Fabricated on an advanced CMOS process, each single
ADC is available in a 32-lead LFCSP and is specified over
the industrial temperature range (–40°C to +85°C).
In all dual converters, Pin 57 and Pin 38 are the “A” and
“B” MSBs, respectively, with the countdown towards
the A and B LSBs proceeding clockwise around the
package. Figures 3, 4, and 5 show pin diagrams and
package outlines; Table II and Table III list pin function
descriptions for the converters.
DESIGN AND LAYOUT CONSIDERATIONS
For the layout designer, the only difference between the
pinouts is in the assignment of the data out bits.
24
23
22
21
20
19
18
17
PIN 1
INDICATOR
AD9215
TOP VIEW
(Not to Scale)
VREF
SENSE
MODE
OTR
D9 (MSB)
D8
D7
D6
DNC
CLK
DNC
PDWN
DNC
DNC
(LSB)D0
D1
1
2
3
4
5
6
7
8
AD9235
TOP VIEW
(Not to Scale)
9
10
11
12
13
14
15
16
AVDD
AGND
VIN–
VIN+
AGND
AVDD
REFT
REFB
32
31
30
29
28
27
26
25
AVDD
AGND
VIN–
VIN+
AGND
AVDD
REFT
REFB
32
31
30
29
28
27
26
25
AD9237
TOP VIEW
(Not to Scale)
DNC
CLK
DNC
PDWN
(LSB)D0
D1
D2
D3
VREF
SENSE
MODE
OTR
D11(MSB)
D10
D9
D8
1
2
3
4
5
6
7
8
PIN 1
INDICATOR
AD9245
TOP VIEW
(Not to Scale)
24
23
22
21
20
19
18
17
VREF
SENSE
MODE
OTR
D13(MSB)
D12
D11
D10
D2
D3
D4
D5
D6
D7
DGND
DRVDD
9
10
11
12
13
14
15
16
24
23
22
21
20
19
18
17
PIN 1
INDICATOR
D4
D5
D6
D7
D8
D9
DGND
DRVDD
TOP VIEW
(Not to Scale)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
AD9236
MODE2
CLK
OE
PDWN
DNC
DNC
(LSB)D0
D1
VREF
SENSE
MODE
OTR
D11(MSB)
D10
D9
D8
VREF
SENSE
MODE
OTR
D11(MSB)
D10
D9
D8
D2
D3
D4
D5
D6
D7
DGND
DRVDD
(LSB) D0
D1
D2
D3
D4
D5
DRGND
DRVDD
AVDD
AGND
VIN–
VIN+
AGND
AVDD
REFT
REFB
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
PIN 1
INDICATOR
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
D2
D3
D4
D5
D6
D7
DGND
DRVDD
DNC
CLK
DNC
PDWN
DNC
DNC
(LSB)D0
D1
24
23
22
21
20
19
18
17
PIN 1
INDICATOR
DNC = DO NOT CONNECT
05640-002
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DNC
CLK
DNC
PDWN
DNC
DNC
DNC
DNC
32
31
30
29
28
27
26
25
32
31
30
29
28
27
26
25
AVDD
AGND
VIN–
VIN+
AGND
AVDD
REFT
REFB
AVDD
AGND
VIN–
VIN+
AGND
AVDD
REFT
REFB
In all single converters, Pin 20 is the MSB, with the countdown towards the LSB proceeding clockwise around
the package.
Figure 2. Pin Diagrams for the AD9215, AD9235, AD9236, AD9237, and AD9245 in a 32-Lead LFCSP
��������
����
������
��������
�����
���������
���
����
����
���
����
������
����
����
����
�������
����
����
����
�����
���������
��
��
��
�
�������
���
�������������
��
��
����
�������
����
�
�
���������
���������
��������
��������
��������
��������
�������
�����
����
����
����
�����������
����
����������
������������������������������������������
Figure 3. 32-Lead Lead Frame Chip Scale Package, Very Thin Quad (LFCSP_VQ)
(CP-32-3)
Dimensions shown in millimeters
–2–
REV. 0
AN-803
Table II. Pin Function Descriptions for the AD9215, AD9235, AD9236, AD9237, and AD9245 Single ADCs in a 32-Lead LFCSP
Pin No.
AD9215
10-Bit ADC
Pin Functions
AD9235, AD9236, AD9237
12-Bit ADC
Pin Functions
AD9245
14-Bit ADC
Pin Functions
1
DNC (Do Not Connect)
DNC (AD9237: MODE2)
DNC
2
CLK
CLK
CLK
3
DNC
DNC (AD9237: OE)
DNC
4
PDWN
PDWN
PDWN
5
DNC
DNC
D0 (LSB)
6
DNC
DNC
D1
7
DNC
D0 (LSB)
D2
8
DNC
D1
D3
9
D0 (LSB)
D2
D4
10
D1
D3
D5
11
D2
D4
D6
12
D3
D5
D7
13
D4
D6
D8
14
D5
D7
D9
15
DGND (Digital Output Ground)
DGND
DGND
16
DRVDD (Digital Output VDD)
DRVDD
DRVDD
17
D6
D8
D10
18
D7
D9
D11
19
D8
D10
D12
20
D9 (MSB)
D11 (MSB)
D13 (MSB)
21
OTR (Out-of-Range Indicator)
OTR
OTR
22
MODE (Data Format Select and DCS Mode Selection)
MODE
MODE
23
SENSE (Reference Mode Selection, see Data Sheet)
SENSE
SENSE
24
VREF (Voltage Reference Input/Output)
VREF
VREF
25
REFB (Differential Reference (–) )
REFB
REFB
26
REFT (Differential Reference (+) )
REFT
REFT
27
AVDD (Analog Power Supply)
AVDD
AVDD
28
AGND (Analog Ground)
AGND
AGND
29
VIN+ (Analog Input Pin (+) )
VIN+
VIN+
30
VIN– (Analog Input Pin (–) )
VIN–
VIN–
31
AGND (Analog Ground)
AGND
AGND
32
AVDD (Analog Power Supply)
AVDD
AVDD
REV. 0
–3–
������
�������������
��������
��������������
����
����
����������
���
���
���
���
�����
�����
���
����������
����
����
����
����
����
����
������
������
����
����
������
������
����
�����
������
������
����
����
������
������
����
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
������
�������������
��������
��������������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
����
����
����
����������
���
���
�����
�����
�����
����������
�����
����
����
����
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
�����
����������
����������
������
�����
�����
�����������
�����
�����
�����
�����
�����
����
����
����
��������������������
�����
���������
���� ��
����� ��
��� ��
��� ��
������ ��
����� ��
��� ��
��� ��
���������� ��
���� ��
���� ��
����� ��
����� ��
���� ��
���� ��
���� ��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�����
���������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
�����
���������
������
�������������
��������
��������������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
����
����
����
����
����
����������
�����
�����
�����
�����������
�����
�����
�����
����
����
���������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
������
������
����
����
������
������
����
�����
������
������
����
����
������
������
����
����
�����
���
���
������
�����
����������
����
����
����
����
�����
�����
����
����
����
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
����
�����
���
���
������
�����
���
���
���
���
����������
�����
�����
����
����
����
����
������
������
����
����
������
������
����
�����
������
������
����
����
������
������
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
�����
����������
����������
������
�����
�����
�����������
�����
����
����
�����
�����
����
����
����
����
�����
����������
����������
������
�����
���
����������
����
����
����
�����
�����
����
����
����
AN-803
Figure 4. Pin Diagrams for the AD9216, AD9238, and AD9248 in an LFCSP-48
–4–
REV. 0
AN-803
����
������
��������
��������
����
������
���
����
�
�������������
��
��
�����
���������
�����
�������
����
�����������
����
����
����
�������
��
��
��
�����
���������
��
��
����
���
��������
��������
��������
��������
��������
�������
�����
��������
�����������������������������������������
��������������������������������
Figure 5. 64-Lead Lead Frame Chip Scale Package, Very Thin Quad (LFCSP_VQ)
(CP-64-1)
Dimensions shown in millimeters
REV. 0
–5–
���������
����
����
����
����
����
����
AN-803
Table III. Pin Function Descriptions for the AD9216, AD9238, and AD9248 Dual ADCs in a 64-Lead LFCSP
Pin No.
AD9216
10-Bit ADC
Pin Functions
AD9238
12-Bit ADC
Pin Functions
AD9248
14-Bit ADC
Pin Functions
1
AGND (Analog Ground)
AGND
AGND
2
VIN+_A (Analog Input Pin (+) for Channel A)
VIN+_A
VIN+_A
3
VIN–_A (Analog Input Pin (–) for Channel A)
VIN–_A
VIN–_A
4
AGND (Analog Ground)
AGND
AGND
5
AVDD (Analog Power Supply)
AVDD
AVDD
6
REFT_A (Differential Reference (+) for Channel A)
REFT_A
REFT_A
7
REFB_A (Differential Reference (–) for Channel A)
REFB_A
REFB_A
8
VREF (Voltage Reference Input/Output)
VREF
VREF
9
SENSE Reference Mode Selection (see Data Sheet)
SENSE
SENSE
10
REFB_B (Differential Reference (–) for Channel B)
REFB_B
REFB_B
11
REFT_B (Differential Reference (+) for Channel B)
REFT_B
REFT_B
12
AVDD (Analog Power Supply)
AVDD
AVDD
13
AGND (Analog Ground)
AGND
AGND
14
VIN–_B (Analog Input Pin (–) for Channel B)
VIN–_B
VIN–_B
15
VIN+_B (Analog Input Pin (+) for Channel B)
VIN+_B
VIN+_B
16
AGND (Analog Ground)
AGND
AGND
17
AVDD (Analog Power Supply)
AVDD
AVDD
18
CLK_B (Clock Input Pin for Channel B)
CLK_B
CLK_B
19
DCS (Duty Cycle Stabilizer Mode Pin—Active High)
DCS
DCS
20
DFS (Data Output Format Pin (Low for Offset Binary,
High for Twos Complement)
DFS
DFS
21
PDWN_B (Power Down for Channel B—Active High)
PDWN_B
PDWN_B
22
OEB_B (Output Enable for Channel B—Low Enables
Channel B Data Bus, High Sets Outputs at High Impedance)
OEB_B
OEB_B
23
DNC (Do Not Connect)
DNC
D0_B (LSB)
24
DNC (Do Not Connect)
DNC
D1_B
25
DNC (Do Not Connect)
D0_B (LSB)
D2_B
26
DNC (Do Not Connect)
D1_B
D3_B
27
D0_B (LSB)
D2_B
D4_B
28
DRGND (Digital Output Ground)
DRGND
DRGND
29
DRVDD (Digital Output VDD)
DRVDD
DRVDD
30
D1_B
D3_B
D5_B
31
D2_B
D4_B
D6_B
32
D3_B
D5_B
D7_B
33
D4_B
D6_B
D8_B
34
D5_B
D7_B
D9_B
35
D6_B
D8_B
D10_B
36
D7_B
D9_B
D11_B
37
D8_B
D10_B
D12_B
–6–
REV. 0
AN-803
Pin No.
AD9216
10-Bit ADC
Pin Functions
AD9238
12-Bit ADC
Pin Functions
AD9248
14-Bit ADC
Pin Functions
38
D9_B (MSB)
D11_B (MSB)
D13_B (MSB)
39
OTR_B (Out-of-Range Indicator for Channel B)
OTR_B
OTR_B
40
DRGND (Digital Output Ground)
DGND
DGND
41
DRVDD (Digital Output VDD)
DRVDD
DRVDD
42
DNC (Do Not Connect)
DNC
D0_A (LSB)
43
DNC (Do Not Connect)
DNC
D1_A
44
DNC (Do Not Connect)
D0_A (LSB)
D2_A
45
DNC (Do Not Connect)
D1_A
D3_A
46
D0_A (LSB)
D2_A
D4_A
47
D1_A
D3_A
D5_A
48
D2_A
D4_A
D6_A
49
D3_A
D5_A
D7_A
50
D4_A
D6_A
D8_A
51
D5_A
D7_A
D9_A
52
DRVDD (Digital Output VDD)
DRVDD
DRVDD
53
DRGND (Digital Output Ground)
DGND
DGND
54
D6_A
D8_A
D10_A
55
D7_A
D9_A
D11_A
56
D8_A
D10_A
D12_A
57
D9_A (MSB)
D11_A (MSB)
D13_A (MSB)
58
OTR_A (Out-of-Range Indicator for Channel A)
OTR_A
OTR_A
59
OEB_A (Output Enable for Channel A—Low Enables
Channel A Data Bus, High Sets Outputs at High Impedance)
OEB_A
OEB_A
60
PDWN_A (Power Down for Channel A—Active High)
PDWN_A
PDWN_A
61
MUX_SELECT (Data Multiplexed Mode)
MUX_SELECT
MUX_SELECT
62
SHARED_REF (Low = Independent, High = Shared)
SHARED_REF
SHARED_REF
63
CLK_A (Clock Input for Channel A)
CLK_A
CLK_A
64
AVDD (Analog Power Supply)
AVDD
AVDD
REV. 0
–7–
LAYOUT FOR 10, 12, OR 14 BITS
For the circuit designer, the only difference in designing
with the different pinouts is to account for the unused
data out bits, which means adding optional terminations
to the pins assigned to Bits 11 through 14, that is, the
least significant bits.
PCB DESIGN GUIDELINES FOR CHIP SCALE PACKAGES
The lands on the chip scale package (CP-32 and CP-64)
are rectangular. The printed circuit board pad for these
should be 0.1 mm longer than the package land length,
and 0.05 mm wider than the package land width. The
land should be centered on the pad to ensure that the
solder joint size is maximized. The bottom of the chip
scale package has a central thermal pad. The thermal
pad on the printed circuit board should be at least as
large as this exposed pad.
It’s assumed that the ADC’s output drives either a DSP or
FPGA and that the user will design the circuit and layout
to accommodate resolutions of 10, 12, or 14 bits.
The general technique is to have a resistor in series
with the ADC’s output to terminate the PCB trace and a
nominal 10 kΩ resistor to ground or VDD at the input of
the DSP or FPGA. The resistor configuration will depend
on the manufacturer’s recommendations for the FPGA
or DSP that’s used.
On the printed circuit board, there should be a clearance of at least 0.25 mm between the thermal pad and
the inner edges of the pad pattern. This will ensure that
shorting is avoided. Thermal vias may be used on the
printed circuit board thermal pad to improve the thermal
performance of the package.
Either resistor can be populated (or not) depending on
whether the bit is used (or not). Figure 6 shows a design
example.
BITS 0–9
��
If vias are used, they should be incorporated in the thermal pad at 1.2 mm pitch grid. The via’s diameter should
be between 0.3 mm and 0.33 mm and the via barrel
should be plated with 1 oz. copper to plug the via. The
user should connect the printed circuit board’s thermal
pad to AGND.
DSP, FPGA
���
BITS 10–13
��
���
CONCLUSION
This application note explains the common pinout and
footprints of single and dual high speed ADCs and how
a designer can take advantage of their pin compatibility.
It lists the pin functions for the converters and shows the
differences in the data out bits so a user is able to design
a single board that can accommodate different resolutions and speeds to changing the converter’s speed or
resolution without changing a layout, thus saving time
to market.
DATA IN
BITS 10–13
���
���������������������������������������
������������������������������������������
��������������������������������������������
Figure 6. Flexible Design for Pin-Compatible Converters
Either RPU or RPD is used if a termination resistor is required for unused bits. Some devices terminate unused
bits internally and do not require external termination
resistors. The most flexible design for the pin-compatible converters is to layout the PC board with a series
termination resistor followed by pads for both pull-up
(RPU) and pull-down (RPD ) resistors. Depending on the
DSP or FPGA, only one of RPU or RPD will be used if an
external termination is required, or neither when the
termination is internal.
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
–8–
REV. 0
AN05640-0-9/05(0)
AN-803