AN-803 APPLICATION NOTE One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/461-3113 • www.analog.com Pin-Compatible High Speed ADCs Simplify Design Tasks by Robert M. Clarke Depending on results, the system may be overspecified and a lower speed or resolution converter would work or be underdesigned, so a faster or higher resolution converter is needed. In the former case, there is an opportunity for cost reduction through a cheaper converter. In the latter case, major design changes increase time to market and increase development cost. In addition, any change in a working design also introduces risk—the risk of “improving” a working design into a nonworking design. And the best way to minimize risk is to future-proof the design by using a single layout and converters that are pin compatible. To that end, ADI has developed a family of A/D converters based on a common A/D core to allow the designer to increase or decrease sampling speeds and resolution without changing a PC board’s layout. FAMILY DESCRIPTION The A/D converters come in single and dual versions. Each version shares a common package, pinout, and footprint. These allow the designer to change converter resolutions or sampling speeds or both during prototype and field testing if more or less performance is needed. The converters (Table I) are available in 10-, 12-, and 14-bit pin-compatible versions at speeds from 20 MSPS to 105 MSPS. All are built around a common core in a CMOS process. The converter core (Figure 1) consists of a sampleand-hold amplifier (SHA), followed by a multistage differential pipelined architecture with output error correction logic and an integrated voltage reference. The converter family provides from 10 to 14 bits of resolution at speeds ranging from 20 MSPS to 105 MSPS with no missing codes over the full operating temperature range. REV. 0 Table I. Single and Dual A/D Converters Single ADCs (32-Lead Bits LFCSP) Speeds (MSPS) Dual ADCs (64-Lead LFCSP) Speeds (MSPS) 10 AD9215 65, 80, 105 AD9216 65, 80, 105 12 AD9235 20, 40, 65 AD9238 20, 40, 65 12 AD9236 80 12 AD9237 20, 40, 65 14 AD9245 20, 40, 65, 80 AD9248 20, 40, 65 DRVDD AVDD AD9245 VIN+ VIN– MDAC1 SHA 8-STAGE 1 1/2-BIT PIPELINE 4 A/D 16 3 A/D REFT REFB CORRECTION LOGIC OTR 14 OUTPUT BUFFERS D13 (MSB) VREF D0 (LSB) SENSE 0.5V REF SELECT AGND CLOCK DUTY CYCLE STABILIZER CLK MODE SELECT PDWN MODE DGND 05640-001 INTRODUCTION Choosing an A/D converter can be the toughest choice a system designer makes. The converter’s resolution and sampling rate determine the system’s performance. Yet, often the design is based on a series of assumptions that can’t be verified until the prototype system is put through its paces. Figure 1. ADC Family Functional Block Diagram The wide bandwidth, differential input SHA allows a variety of user-selectable input ranges and commonmode voltages, including single-ended applications. It suits both multiplexed applications that switch full-scale voltage levels in successive channels, and single-channel applications that undersample signals at frequencies well beyond the Nyquist rate. A single- ended clock input controls all internal conversion cycles. A duty cycle stabilizer (DCS) compensates for wide variations in the clock duty cycle while maintaining excellent overall ADC performance. The digital output data is presented in straight binary or twos complement formats. An out-of-range (OTR) signal indicates an overflow condition that can be used with the most significant bit to determine low or high overflow. AN-803 Fabricated on an advanced CMOS process, each single ADC is available in a 32-lead LFCSP and is specified over the industrial temperature range (–40°C to +85°C). In all dual converters, Pin 57 and Pin 38 are the “A” and “B” MSBs, respectively, with the countdown towards the A and B LSBs proceeding clockwise around the package. Figures 3, 4, and 5 show pin diagrams and package outlines; Table II and Table III list pin function descriptions for the converters. DESIGN AND LAYOUT CONSIDERATIONS For the layout designer, the only difference between the pinouts is in the assignment of the data out bits. 24 23 22 21 20 19 18 17 PIN 1 INDICATOR AD9215 TOP VIEW (Not to Scale) VREF SENSE MODE OTR D9 (MSB) D8 D7 D6 DNC CLK DNC PDWN DNC DNC (LSB)D0 D1 1 2 3 4 5 6 7 8 AD9235 TOP VIEW (Not to Scale) 9 10 11 12 13 14 15 16 AVDD AGND VIN– VIN+ AGND AVDD REFT REFB 32 31 30 29 28 27 26 25 AVDD AGND VIN– VIN+ AGND AVDD REFT REFB 32 31 30 29 28 27 26 25 AD9237 TOP VIEW (Not to Scale) DNC CLK DNC PDWN (LSB)D0 D1 D2 D3 VREF SENSE MODE OTR D11(MSB) D10 D9 D8 1 2 3 4 5 6 7 8 PIN 1 INDICATOR AD9245 TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 VREF SENSE MODE OTR D13(MSB) D12 D11 D10 D2 D3 D4 D5 D6 D7 DGND DRVDD 9 10 11 12 13 14 15 16 24 23 22 21 20 19 18 17 PIN 1 INDICATOR D4 D5 D6 D7 D8 D9 DGND DRVDD TOP VIEW (Not to Scale) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 AD9236 MODE2 CLK OE PDWN DNC DNC (LSB)D0 D1 VREF SENSE MODE OTR D11(MSB) D10 D9 D8 VREF SENSE MODE OTR D11(MSB) D10 D9 D8 D2 D3 D4 D5 D6 D7 DGND DRVDD (LSB) D0 D1 D2 D3 D4 D5 DRGND DRVDD AVDD AGND VIN– VIN+ AGND AVDD REFT REFB 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 PIN 1 INDICATOR 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 D2 D3 D4 D5 D6 D7 DGND DRVDD DNC CLK DNC PDWN DNC DNC (LSB)D0 D1 24 23 22 21 20 19 18 17 PIN 1 INDICATOR DNC = DO NOT CONNECT 05640-002 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 DNC CLK DNC PDWN DNC DNC DNC DNC 32 31 30 29 28 27 26 25 32 31 30 29 28 27 26 25 AVDD AGND VIN– VIN+ AGND AVDD REFT REFB AVDD AGND VIN– VIN+ AGND AVDD REFT REFB In all single converters, Pin 20 is the MSB, with the countdown towards the LSB proceeding clockwise around the package. Figure 2. Pin Diagrams for the AD9215, AD9235, AD9236, AD9237, and AD9245 in a 32-Lead LFCSP �������� ���� ������ �������� ����� ��������� ��� ���� ���� ��� ���� ������ ���� ���� ���� ������� ���� ���� ���� ����� ��������� �� �� �� � ������� ��� ������������� �� �� ���� ������� ���� � � ��������� ��������� �������� �������� �������� �������� ������� ����� ���� ���� ���� ����������� ���� ���������� ������������������������������������������ Figure 3. 32-Lead Lead Frame Chip Scale Package, Very Thin Quad (LFCSP_VQ) (CP-32-3) Dimensions shown in millimeters –2– REV. 0 AN-803 Table II. Pin Function Descriptions for the AD9215, AD9235, AD9236, AD9237, and AD9245 Single ADCs in a 32-Lead LFCSP Pin No. AD9215 10-Bit ADC Pin Functions AD9235, AD9236, AD9237 12-Bit ADC Pin Functions AD9245 14-Bit ADC Pin Functions 1 DNC (Do Not Connect) DNC (AD9237: MODE2) DNC 2 CLK CLK CLK 3 DNC DNC (AD9237: OE) DNC 4 PDWN PDWN PDWN 5 DNC DNC D0 (LSB) 6 DNC DNC D1 7 DNC D0 (LSB) D2 8 DNC D1 D3 9 D0 (LSB) D2 D4 10 D1 D3 D5 11 D2 D4 D6 12 D3 D5 D7 13 D4 D6 D8 14 D5 D7 D9 15 DGND (Digital Output Ground) DGND DGND 16 DRVDD (Digital Output VDD) DRVDD DRVDD 17 D6 D8 D10 18 D7 D9 D11 19 D8 D10 D12 20 D9 (MSB) D11 (MSB) D13 (MSB) 21 OTR (Out-of-Range Indicator) OTR OTR 22 MODE (Data Format Select and DCS Mode Selection) MODE MODE 23 SENSE (Reference Mode Selection, see Data Sheet) SENSE SENSE 24 VREF (Voltage Reference Input/Output) VREF VREF 25 REFB (Differential Reference (–) ) REFB REFB 26 REFT (Differential Reference (+) ) REFT REFT 27 AVDD (Analog Power Supply) AVDD AVDD 28 AGND (Analog Ground) AGND AGND 29 VIN+ (Analog Input Pin (+) ) VIN+ VIN+ 30 VIN– (Analog Input Pin (–) ) VIN– VIN– 31 AGND (Analog Ground) AGND AGND 32 AVDD (Analog Power Supply) AVDD AVDD REV. 0 –3– ������ ������������� �������� �������������� ���� ���� ���������� ��� ��� ��� ��� ����� ����� ��� ���������� ���� ���� ���� ���� ���� ���� ������ ������ ���� ���� ������ ������ ���� ����� ������ ������ ���� ���� ������ ������ ���� � � � � � � � � � �� �� �� �� �� �� �� ������ ������������� �������� �������������� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� ���� ���� ���� ���������� ��� ��� ����� ����� ����� ���������� ����� ���� ���� ���� ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� ����� ���������� ���������� ������ ����� ����� ����������� ����� ����� ����� ����� ����� ���� ���� ���� �������������������� ����� ��������� ���� �� ����� �� ��� �� ��� �� ������ �� ����� �� ��� �� ��� �� ���������� �� ���� �� ���� �� ����� �� ����� �� ���� �� ���� �� ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ����� ��������� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� � � � � � � � � � �� �� �� �� �� �� �� ����� ��������� ������ ������������� �������� �������������� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� ���� ���� ���� ���� ���� ���������� ����� ����� ����� ����������� ����� ����� ����� ���� ���� ��������� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� ������ ������ ���� ���� ������ ������ ���� ����� ������ ������ ���� ���� ������ ������ ���� ���� ����� ��� ��� ������ ����� ���������� ���� ���� ���� ���� ����� ����� ���� ���� ���� � � � � � � � � � �� �� �� �� �� �� �� ���� ����� ��� ��� ������ ����� ��� ��� ��� ��� ���������� ����� ����� ���� ���� ���� ���� ������ ������ ���� ���� ������ ������ ���� ����� ������ ������ ���� ���� ������ ������ ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���� ����� ���������� ���������� ������ ����� ����� ����������� ����� ���� ���� ����� ����� ���� ���� ���� ���� ����� ���������� ���������� ������ ����� ��� ���������� ���� ���� ���� ����� ����� ���� ���� ���� AN-803 Figure 4. Pin Diagrams for the AD9216, AD9238, and AD9248 in an LFCSP-48 –4– REV. 0 AN-803 ���� ������ �������� �������� ���� ������ ��� ���� � ������������� �� �� ����� ��������� ����� ������� ���� ����������� ���� ���� ���� ������� �� �� �� ����� ��������� �� �� ���� ��� �������� �������� �������� �������� �������� ������� ����� �������� ����������������������������������������� �������������������������������� Figure 5. 64-Lead Lead Frame Chip Scale Package, Very Thin Quad (LFCSP_VQ) (CP-64-1) Dimensions shown in millimeters REV. 0 –5– ��������� ���� ���� ���� ���� ���� ���� AN-803 Table III. Pin Function Descriptions for the AD9216, AD9238, and AD9248 Dual ADCs in a 64-Lead LFCSP Pin No. AD9216 10-Bit ADC Pin Functions AD9238 12-Bit ADC Pin Functions AD9248 14-Bit ADC Pin Functions 1 AGND (Analog Ground) AGND AGND 2 VIN+_A (Analog Input Pin (+) for Channel A) VIN+_A VIN+_A 3 VIN–_A (Analog Input Pin (–) for Channel A) VIN–_A VIN–_A 4 AGND (Analog Ground) AGND AGND 5 AVDD (Analog Power Supply) AVDD AVDD 6 REFT_A (Differential Reference (+) for Channel A) REFT_A REFT_A 7 REFB_A (Differential Reference (–) for Channel A) REFB_A REFB_A 8 VREF (Voltage Reference Input/Output) VREF VREF 9 SENSE Reference Mode Selection (see Data Sheet) SENSE SENSE 10 REFB_B (Differential Reference (–) for Channel B) REFB_B REFB_B 11 REFT_B (Differential Reference (+) for Channel B) REFT_B REFT_B 12 AVDD (Analog Power Supply) AVDD AVDD 13 AGND (Analog Ground) AGND AGND 14 VIN–_B (Analog Input Pin (–) for Channel B) VIN–_B VIN–_B 15 VIN+_B (Analog Input Pin (+) for Channel B) VIN+_B VIN+_B 16 AGND (Analog Ground) AGND AGND 17 AVDD (Analog Power Supply) AVDD AVDD 18 CLK_B (Clock Input Pin for Channel B) CLK_B CLK_B 19 DCS (Duty Cycle Stabilizer Mode Pin—Active High) DCS DCS 20 DFS (Data Output Format Pin (Low for Offset Binary, High for Twos Complement) DFS DFS 21 PDWN_B (Power Down for Channel B—Active High) PDWN_B PDWN_B 22 OEB_B (Output Enable for Channel B—Low Enables Channel B Data Bus, High Sets Outputs at High Impedance) OEB_B OEB_B 23 DNC (Do Not Connect) DNC D0_B (LSB) 24 DNC (Do Not Connect) DNC D1_B 25 DNC (Do Not Connect) D0_B (LSB) D2_B 26 DNC (Do Not Connect) D1_B D3_B 27 D0_B (LSB) D2_B D4_B 28 DRGND (Digital Output Ground) DRGND DRGND 29 DRVDD (Digital Output VDD) DRVDD DRVDD 30 D1_B D3_B D5_B 31 D2_B D4_B D6_B 32 D3_B D5_B D7_B 33 D4_B D6_B D8_B 34 D5_B D7_B D9_B 35 D6_B D8_B D10_B 36 D7_B D9_B D11_B 37 D8_B D10_B D12_B –6– REV. 0 AN-803 Pin No. AD9216 10-Bit ADC Pin Functions AD9238 12-Bit ADC Pin Functions AD9248 14-Bit ADC Pin Functions 38 D9_B (MSB) D11_B (MSB) D13_B (MSB) 39 OTR_B (Out-of-Range Indicator for Channel B) OTR_B OTR_B 40 DRGND (Digital Output Ground) DGND DGND 41 DRVDD (Digital Output VDD) DRVDD DRVDD 42 DNC (Do Not Connect) DNC D0_A (LSB) 43 DNC (Do Not Connect) DNC D1_A 44 DNC (Do Not Connect) D0_A (LSB) D2_A 45 DNC (Do Not Connect) D1_A D3_A 46 D0_A (LSB) D2_A D4_A 47 D1_A D3_A D5_A 48 D2_A D4_A D6_A 49 D3_A D5_A D7_A 50 D4_A D6_A D8_A 51 D5_A D7_A D9_A 52 DRVDD (Digital Output VDD) DRVDD DRVDD 53 DRGND (Digital Output Ground) DGND DGND 54 D6_A D8_A D10_A 55 D7_A D9_A D11_A 56 D8_A D10_A D12_A 57 D9_A (MSB) D11_A (MSB) D13_A (MSB) 58 OTR_A (Out-of-Range Indicator for Channel A) OTR_A OTR_A 59 OEB_A (Output Enable for Channel A—Low Enables Channel A Data Bus, High Sets Outputs at High Impedance) OEB_A OEB_A 60 PDWN_A (Power Down for Channel A—Active High) PDWN_A PDWN_A 61 MUX_SELECT (Data Multiplexed Mode) MUX_SELECT MUX_SELECT 62 SHARED_REF (Low = Independent, High = Shared) SHARED_REF SHARED_REF 63 CLK_A (Clock Input for Channel A) CLK_A CLK_A 64 AVDD (Analog Power Supply) AVDD AVDD REV. 0 –7– LAYOUT FOR 10, 12, OR 14 BITS For the circuit designer, the only difference in designing with the different pinouts is to account for the unused data out bits, which means adding optional terminations to the pins assigned to Bits 11 through 14, that is, the least significant bits. PCB DESIGN GUIDELINES FOR CHIP SCALE PACKAGES The lands on the chip scale package (CP-32 and CP-64) are rectangular. The printed circuit board pad for these should be 0.1 mm longer than the package land length, and 0.05 mm wider than the package land width. The land should be centered on the pad to ensure that the solder joint size is maximized. The bottom of the chip scale package has a central thermal pad. The thermal pad on the printed circuit board should be at least as large as this exposed pad. It’s assumed that the ADC’s output drives either a DSP or FPGA and that the user will design the circuit and layout to accommodate resolutions of 10, 12, or 14 bits. The general technique is to have a resistor in series with the ADC’s output to terminate the PCB trace and a nominal 10 kΩ resistor to ground or VDD at the input of the DSP or FPGA. The resistor configuration will depend on the manufacturer’s recommendations for the FPGA or DSP that’s used. On the printed circuit board, there should be a clearance of at least 0.25 mm between the thermal pad and the inner edges of the pad pattern. This will ensure that shorting is avoided. Thermal vias may be used on the printed circuit board thermal pad to improve the thermal performance of the package. Either resistor can be populated (or not) depending on whether the bit is used (or not). Figure 6 shows a design example. BITS 0–9 �� If vias are used, they should be incorporated in the thermal pad at 1.2 mm pitch grid. The via’s diameter should be between 0.3 mm and 0.33 mm and the via barrel should be plated with 1 oz. copper to plug the via. The user should connect the printed circuit board’s thermal pad to AGND. DSP, FPGA ��� BITS 10–13 �� ��� CONCLUSION This application note explains the common pinout and footprints of single and dual high speed ADCs and how a designer can take advantage of their pin compatibility. It lists the pin functions for the converters and shows the differences in the data out bits so a user is able to design a single board that can accommodate different resolutions and speeds to changing the converter’s speed or resolution without changing a layout, thus saving time to market. DATA IN BITS 10–13 ��� ��������������������������������������� ������������������������������������������ �������������������������������������������� Figure 6. Flexible Design for Pin-Compatible Converters Either RPU or RPD is used if a termination resistor is required for unused bits. Some devices terminate unused bits internally and do not require external termination resistors. The most flexible design for the pin-compatible converters is to layout the PC board with a series termination resistor followed by pads for both pull-up (RPU) and pull-down (RPD ) resistors. Depending on the DSP or FPGA, only one of RPU or RPD will be used if an external termination is required, or neither when the termination is internal. © 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. –8– REV. 0 AN05640-0-9/05(0) AN-803