Download Datasheet

ALED1642GW
16 channel LED driver with error detection, current gain control and
12/16-bit PWM brightness control for automotive applications
Datasheet - production data
Description
The ALED1642GW is a monolithic, low voltage,
low current power 16-bit shift register designed for
LED panel displays. The ALED1642GW
guarantees 20 V output driving capability allowing
the user to connect several LEDs in series. In the
output stage, sixteen regulated current sources
provide from 3 mA to 40 mA constant current to
drive the LEDs. The current is programmed
through an external resistor and can be adjusted
by a 7-bit current gain register in two subranges.
The brightness can be adjusted separately for
each channel through 12/16-bit grayscale control.
TSSOP24
(exposed pad)
Features
• AECQ100 qualification
• 16 constant current output channels
Programmable turn-on and turn-off time (four
different values available) improves the low noise
generation performance of the system.
• Output current: from 3 mA to 40 mA
• Current programmable through external
resistor
• 7-bit global current gain adjustment in two
ranges
• 12/16-bit PWM grayscale brightness control
• Programmable output turn-on/off time
• Error detection mode (both open and shortedLED)
• Programmable shorted-LED detection
thresholds
• Auto power saving/auto-wakeup
• Selectable SDO synchronization on the CLK
falling edge
• Gradual output delay (selectable)
Open/short error detection mode is available in
the ALED1642GW. The auto power-shutdown
and auto power-on features (selectable) allow the
device to save power without external
intervention.
Thermal management includes an
overtemperature data alert and output thermal
shutdown (170 °C). The high clock frequency is
up to 30 MHz and it makes the device suitable for
high data rate transmission. A selectable gradual
output delay reduces the inrush current, whereas
the selectable SDO synchronization feature works
when the device is used in daisy-chain
configuration. The supply voltage range is
between 3 V and 5.5 V.
• Supply voltage: 3 V to 5.5 V
• Thermal shutdown and overtemperature alert
• Up to 30 MHz 4-wires interface
• 20 V current generator rated voltage
Applications
• Full color/monochrome displays
• Dashboard (backlighting led indicators)
• Automotive Interior lighting
November 2015
This is information on a product in full production.
DocID025718 Rev 4
1/39
www.st.com
Contents
ALED1642GW
Contents
1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5
Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6
Simplified internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1
Equivalent circuits of inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
Digital blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8
Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1
Gain control (from CFG 0 to 5) and current ranges (CFG- 6) . . . . . . . . . . 20
8.2
Error detection mode (CFG-7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.3
Error detection conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4
Auto-wakeup/auto power shutdown (CFG-10) . . . . . . . . . . . . . . . . . . . . . 25
8.5
Programmable turn-on/turn-off time (CFG-11/12) . . . . . . . . . . . . . . . . . . . 25
8.6
SDO delay (CFG-13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.7
Gradual output delay (CFG-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.8
PWM counter setting and brightness register (CFG-15) . . . . . . . . . . . . . . 28
9
Thermal flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10
Dropout voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/39
DocID025718 Rev 4
ALED1642GW
11
Contents
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.1
TSSOP24 exposed pad package information . . . . . . . . . . . . . . . . . . . . . 33
11.2
TSSOP24 exposed pad packing information . . . . . . . . . . . . . . . . . . . . . . 35
12
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
13
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DocID025718 Rev 4
3/39
39
List of tables
ALED1642GW
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
4/39
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Programmable TON/TOFF (output rise and fall time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Digital key summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Example of current ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Gain steps for the current range selected by REXT = 11 kW . . . . . . . . . . . . . . . . . . . . . . . 21
Diagnostic thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Minimum dropout voltage for some current values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
TSSOP24 exposed pad mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TSSOP24 exposed pad tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DocID025718 Rev 4
ALED1642GW
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
TSSOP24EP pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Typical chip-to-chip accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Timing for clock, serial in, serial out, latch enable and outputs. . . . . . . . . . . . . . . . . . . . . . 14
ALED1642GW simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Input and output equivalent circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Digital keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Channel data and write switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Channel current vs. gain register value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Error detection action sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Error detection power-on timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Configuration register reading sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Configuration register reading sequence (zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Configuration register reading sequence - SDO delay actives . . . . . . . . . . . . . . . . . . . . . . 24
Configuration register reading sequence - SDO delay actives (zoom) . . . . . . . . . . . . . . . . 24
Output TON (current rise time) CFG - 12 = CFG - 11 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 26
Output TOFF (current fall time) CFG -12 = CFG - 11 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Output TON (current rise time) CFG -12 = CFG - 11 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Output TOFF (current fall time) CFG -12 = CFG - 11 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SDO delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Gradual output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PWCLK counter and comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Brightness register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Thermal flag status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Typical channel dropout voltage vs. output current (VDD = 3.3 V). . . . . . . . . . . . . . . . . . . 31
TSSOP24 exposed pad outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TSSOP24 exposed pad tape and reel outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
DocID025718 Rev 4
5/39
39
Pin description
1
ALED1642GW
Pin description
Figure 1. TSSOP24EP pinout
GND
VDD
SDI
R-EXT
CLK
SDO
LE
PWCLK
OUT0
OUT15
OUT1
OUT14
OUT2
OUT13
OUT3
OUT12
OUT4
OUT11
OUT5
OUT10
OUT6
OUT9
OUT7
OUT8
AM13686v1
Table 1. Pin description
6/39
TSSOP24EP
Symbol
Name and function
1
GND
Ground terminal
2
SDI
Serial data input terminal
3
CLK
Clock input terminal
4
LE
Latch input terminal
5-20
OUT0-OUT15
21
PWCLK
22
SDO
23
R-EXT
24
VDD
Output terminals
Clock input for PWM counter
Serial data output terminal
Terminal for external resistor for constant current
programming
Supply voltage terminal
DocID025718 Rev 4
ALED1642GW
2
Absolute maximum ratings
Absolute maximum ratings
Stressing the device above the ratings listed in the Table 2 may cause the device permanent
damage. Operating under conditions above those indicated in the operating section is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
the device reliability.
Table 2. Absolute maximum ratings
Symbol
Parameter
Value
Unit
VDD
Supply voltage
0 to 7
V
VOUT
Output voltage
-0.5 to 20
V
IOUT
Output current
50
mA
Vi
Input voltage
-0.4 to VDD +0.4
V
IGND
GND terminal current
1400
mA
ESD
Electrostatic discharge protection
HBM human body model
±2
kV
DocID025718 Rev 4
7/39
39
Thermal characteristics
3
ALED1642GW
Thermal characteristics
Table 3. Thermal characteristics
Symbol
Parameter
Value
Ta
Operative free-air temperature range(1)
-40 to +150
TOPR
Operative junction temperature range
-40 to +150
TSTG
Storage ambient temperature range
-55 to +150
Rthj-amb
Thermal resistance junction-ambient
TSSOP24EP(2)
Unit
37.5
°C
°C/W
1. This data must be considered in adequate power dissipation conditions, the junction temperature must be maintained
below 150 °C.
2. The exposed pad should be soldered directly to the PCB to get the thermal benefits. The exposed pad can be attached to
a metal land electrically isolated or connected to ground.
4
Electrical characteristics
VDD = 3.3 V, Tj = - 40 to 125 °C, unless otherwise specified.
Table 4. Electrical characteristics
Symbol
Parameter
VDD
Supply voltage
VOUT
Output voltage
VIH
Conditions
VOH
IOleak
Out 0 - out 15
Input voltage
Hyuvlo
8/39
Max.
Unit
5.5
-
-
19
0.7xVDD
-
VDD
GND
-
0.3xVDD
Serial data output voltage
(SDO)
VDD= 3 to 5.5 V
I = +/- 1 mA
-
-
0.4
VDD -0.4
-
-
Output leakage current
VOUT = 19 V, all outputs OFF
-
-
0.5
2.7
2.9
UVLO threshold (rising)
Vuvlo
Typ.
3
VIL
VOL
Min.
V
µA
V
UVLO threshold (falling)
2.2
UVLO hysteresis
2.3
400
DocID025718 Rev 4
mV
ALED1642GW
Electrical characteristics
Table 4. Electrical characteristics (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
VOUT = 0.1 V; (IOUT = 3 mA)
REXT = 11 kΩ
CFG-0…CFG-5= “000000”
CFG-6 = “0”
-
-
±4
VOUT = 0.5 V; (IOUT = 20 mA)
REXT = 11 kΩ
CFG-0…CFG-5 = “011010”
CFG-6 = “1”
-
-
±3
VOUT = 0.8 V; (IOUT = 36 mA)
REXT = 11 kΩ
CFG-0…CFG-5 = “111111”
CFG-6 = “1”
-
-
±3
Output current precision
device-to-device
(all outputs ON)(1)
VOUT = 0.5 V; (IOUT = 20 mA)
REXT=1 1 kΩ
CFG-0…CFG-5 = “011010”
CFG-6 = “1”
-
-
±6
Output current vs. output
voltage regulation (3)
VOUT from 1 V to 3 V; (IOUT =
36 mA) REXT = 11 kΩ
CFG-0…CFG-5 = “111111”
CFG-6 = “1”
-
±0.1
-
%/dVDD
Output current vs. supply
voltage regulation(4)
VDD from 3 V to 5.5 V
VOUT = 0.8 V; (IOUT = 36 mA)
REXT = 11 kΩ
CFG-0…CFG-5 = “111111”
CFG-6 = “1”
Rup
Rdw
∆IOL1
∆IOL2
Output current precision
channel-to-channel
(all outputs ON)(1)(2)
∆IOL3
∆IOL2a
%/dVOUT
Unit
%
%
%/V
-
±1
-
Pull-up resistor for PWCLK pin
400
500
650
Pull-down resistor for LE pin
400
500
650
REXT = 11 kΩ
OUT 0 to 15 = OFF
CFG = default
-
-
6
REXT = 11 kΩ; IOUT = 20 mA
OUT 0 to 15 = ON
CFG-0…CFG-5 = “011010”
CFG-6 = “1”
-
8
IDD(ON2)
REXT = 11 kΩ; IOUT = 36 mA
OUT 0 to 15 = ON
CFG-0…CFG-5 = “111111”
CFG-6 = “1”
-
10
IDD (auto
OFF)
REXT= 11 kΩ;
OUT 0 to 15 = OFF
CFG-0…CFG-5 = “111111”
CFG-6 = “1”
-
KΩ
IDD(OFF1)
Supply current (OFF)
IDD(ON1)
mA
Supply current (ON)
Supply current (auto OFF)
DocID025718 Rev 4
200
500
µA
9/39
39
Electrical characteristics
ALED1642GW
Table 4. Electrical characteristics (continued)
Symbol
Parameter
Tflg
Thermal flag
Tsd
Tsd-hy
Thermal shutdown
Conditions
Min.
Typ.
Max.
Unit
150
(5)
170
Thermal shutdown
hysteresis(5)
°C
15
20
35
40
1. Tested with just one output loaded.
2. (Ioutn - Ioutavg1-15)/ Ioutavg1-15) x 100.
3.
Δ (% / V ) =
( Ioutn @ Voutn = 3. 0 V ) − (Ioutn @ Voutn = 1 .0 V ) 100
×
( Ioutn @ Voutn = 1 .0 V )
3 −1
4.
Δ (% / V ) =
( Ioutn @ V dd = 5. 5 V ) − ( Ioutn @ Vdd = 3 . 0 V )
100
×
( Ioutn @ V dd = 3 . 0 V )
5.5 − 3
5. Not tested, guaranteed by design.
Figure 2. Typical chip-to-chip accuracy
VDD=3.3/5 V; T=25 °C
4
Chip-to-chip (%)
3.5
3
2.5
2
1.5
1
0.5
0
0
5
10
15
20
25
30
IOUT (mA)
AM13688V1
10/39
DocID025718 Rev 4
ALED1642GW
Electrical characteristics
Figure 3. Typical application schematic
LED common rail voltage
+
Cled
…..
Supply voltage
VDD
OUT0
OUT15
OUT1
SDI
CLK
Cin
ALED1642GW
LE
Data loaded
through serial
interface
PWCLK
R-EXT
SDO
Data output
GND
Current setting
resistor
AM13689V1
DocID025718 Rev 4
11/39
39
Switching characteristics
5
ALED1642GW
Switching characteristics
VDD = 3.3 V, Tj = 25 °C, unless otherwise specified.
Table 5. Switching characteristics(1)(2)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
fclk
Clock frequency
Cascade operation
-
-
30
fpwclk
PWclock frequency
-
-
30
tr(SDO)
SDO rise time
-
5
-
tf(SDO)
SDO fall time
-
5
-
-
200
-
8
15
25
-
100
-
8
15
25
20
-
-
20
-
-
20
-
-
Unit
MHz
tPLHLE
LE - OUTn(3)
tPLH
CLK - SDO
CFG-13 = ‘0’
tPHLLE
LE - OUTn(3)
tPHL
CLK - SDO
CFG-13 = ‘0’
tw(CLK)
CLK
tW(PWCLK)
PWCLK
tw(L)
LE
tgr-d
Gradual delay ch-to-ch
tsu(L)
Setup time for LE
th(L)
REXT= 11 kΩ; IOUT = 20 mA
VOUT = 0.8 V
VIH = VDD; VIL = GND
RL = 3.3 KΩ; CL = 10 pF
CFG-0…CFG-5 = “011010”
CFG-6 = “1”
Propagation delay
time
(“L to “H”)
Propagation delay
time
(“H” to “L”)
Pulse width
REXT = 11 kΩ; IOUT = 20 mA
VOUT = 0.8 V
VIH = VDD; VIL = GND
RL = 50 Ω; CL = 10 pF
CFG-0…CFG-5 = “011010”
CFG-6 = “1”
ns
10
5
-
-
Hold time for LE
5
-
-
tsu(D)
Setup time for SDI
5
-
-
th(D)
Hold time for SDI
10
-
-
tclkr(4)
Maximum CLK rise time
-
-
5
(4)
Maximum CLK fall time
-
-
5
-
-
10
%
-
-
1
µs
tclkf
µs
Iout-ov
Output current turn-on overshoot
tn-err
Normal error detection
minimum output ON time
12/39
VOUT = 0.6 to 3 V
CL = 10 pF; IOUT = 3 to 36 mA
DocID025718 Rev 4
ALED1642GW
Switching characteristics
Table 5. Switching characteristics(1)(2)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
tshutdown
Auto power shutdown time (auto OFF)
From LE falling edge to REXT
voltage reference at -10%
-
100
-
ns
twakeup
Auto-wakeup
From LE falling edge to REXT
voltage reference at 90%
-
3
-
µs
1. All table limits are guaranteed by design.
2. Not tested in production.
3. CFG -11= 0 and CFG -12 = 0 (output tr = 30 ns; output tf = 20 ns); CFG-14=1 (no output gradual delay).
4. If devices are connected in cascade and tclkr or tclkf is large, it may be critical to achieve the timing required for data
transfer between two cascaded devices.
Table 6. Programmable TON/TOFF (output rise and fall time)
Configuration bits
(CFG-12 - CFG-11)
0-0
0-1
1-0
1-1
Typ. (20% to 80%)
Conditions
Unit
Turn-on
Turn-off
30 ns
20 ns
100 ns
40 ns
140 ns
80 ns
180 ns
150 ns
REXT = 11 kΩ; IOUT = 20 mA
VOUT = 0.8 V
VIH= VDD; VIL= GND
RL = 50 Ω; CL=10pF
CFG-0...CFG-5=“011010”
CFG-6 = “1”
DocID025718 Rev 4
ns
13/39
39
Switching characteristics
ALED1642GW
Figure 4. Timing for clock, serial in, serial out, latch enable and outputs
The correct sampling of the data depends on the stability of the data at SDI on the rising
edge of the clock signal and it is assured by a proper data setup and hold time (tSU(D) and
th(D)), as shown in Figure 4. The same figure shows the propagation delay from CLK to SDO
(tPLH/tPHL). Figure 4 describes also the minimum duration of CLK, LE pulses (tW(CLK)) and
tW(L) respectively and the propagation delay from LE to OUTn (tPLHLE and tPHLLE) in the
hypothesis that all channels have already been enabled by PWM counter.
14/39
DocID025718 Rev 4
ALED1642GW
6
Simplified internal block diagram
Simplified internal block diagram
Figure 5. ALED1642GW simplified block diagram
SDO
SDI
CLK
LE
Control Logic &
Data Registers
PWCLK
OUT0
PWM
counter
OUT1
VDD
GND
UVLO
& POR
Error
detection
Current gain
adjustment
Channel driver
Timing control
Turn ON/OFF
Gradual delay
…………
R-EXT
Current
Ref.
16 output channels
Thermal
shutdown
Configuration
register
OUT2
OUT14
OUT15
AM13691V1
6.1
Equivalent circuits of inputs and outputs
LE and PWCLK input terminals have pull-down and pull-up connection respectively. CLK
and SDI must be connected to the external circuit to fix the logic level.
DocID025718 Rev 4
15/39
39
Simplified internal block diagram
ALED1642GW
Figure 6. Input and output equivalent circuits
PWCLK terminal
LE terminal
CLK, SDI terminal
SDO terminal
AM13692V1
16/39
DocID025718 Rev 4
ALED1642GW
7
Digital blocks
Digital blocks
The data input arrives through the serial Interface at each CLK rising edge. The LE signal is
used to latch the loaded data and also to address data loading to the appropriate register,
thermal flag reading and error detection. The access to the different registers or functions of
the device (configuration register, brightness register or current gain, error detection, etc.) is
achieved by using different digital keys, defined as a number of CLK pulses during which the
LE signal is asserted. The available digital keys are listed in Table 7 and Figure 7. A typical
channel data input is shown in Figure 8.
Table 7. Digital key summary
Number # CLK rising edge when the LE is “1”
Command description
1
1–2
Write switch (to turn on/off output channels)
2
3–4
Brightness data latch
3
5–6
Brightness global latch
4
7
Write configuration register
5
8
Read configuration register
6
9
Start open error detection mode
7
10
Start short error detection mode
8
11
Start combined error detection mode
9
12
End error detection mode
10
13
Thermal error reading
11
14
Reserved
12
15
Reserved
DocID025718 Rev 4
17/39
39
Digital blocks
ALED1642GW
Figure 7. Digital keys
CLK
LE
Write switch
LE
Data latch
LE
Global latch
LE
Write CR
LE
Read CR
LE
Start open error detection
LE
Start short error detection
LE
Start combined detection
LE
End error detection
LE
Thermal error reading
AM13693V1
Figure 8. Channel data and write switch
SDI
0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00
CLK
LE
16-bit data
AM13694V1
18/39
DocID025718 Rev 4
ALED1642GW
8
Configuration register
Configuration register
The configuration register is used to enable or disable some device features, to program
some parameters and to change other settings. The access to this register (read or write) is
managed to find a description for each bit as described in Table 8. The default value of the
configuration register (when the device is switched on or after a reset) is "0" for all bits. To
change anything in the configuration register, a 16-bit digital word must be sent (CFG - 0
represents LSB, CFG -15 the MSB).
Table 8. Configuration register
Bit
Definition
R/W
Description
Default
CFG-0
0
CFG-1
0
CFG-2
CFG-3
Current gain
adjustment
R/W
6-bit DAC allows adjusting the device output current in 64
steps for each range (defined by CFG-6)
0
0
CFG-4
0
CFG-5
0
CFG-6
Current range
R/W
”0” low current range
“1” high current range
0
CFG-7
Error detection
mode
R/W
“0” normal mode
“1” reserved mode
0
CFG-8
Shorted-LED
detection
thresholds
CFG-9
CFG-10
R/W
CFG-8
Th. volt.
0
0
1.8 V
0
1
2.5 V
1
0
3V
1
1
3.5 V
R/W
Auto OFF
shutdown
CFG-11
R/W
R/W
Output turnon/off time
CFG-12
CFG-13
Programmable output
shorted-LED detection
thresholds
CFG-9
0
“0” device always ON
”1” auto power shutdown active (auto OFF)
Programmable
output rise and fall
time (20% to 80%)
0
CFG-12 CFG-11 Turn-on
Turn-off
0
0
30 ns
20 ns
0
1
100 ns
40 ns
1
0
140 ns
80 ns
1
1
180 ns
150 ns
R/W
SDO delay
R/W
0
0
0
If “0” no delay is present on SDO
If “1” the data are shifted out and they are synchronized with
the falling edge of the CLK signal
DocID025718 Rev 4
0
19/39
39
Configuration register
ALED1642GW
Table 8. Configuration register (continued)
Bit
Definition
R/W
CFG-14
Gradual output
delay
R/W
“0” a progressive delay is applied to output (10 ns per
channel)
”1” no delay is applied to output
0
CFG-15
12/16 PWM
counter
R/W
“0” to select 16-bit brightness register (65536 grayscale
rightness steps).
“1” to select 12-bit brightness register (4096 grayscale
brightness steps)
0
8.1
Description
Default
Gain control (from CFG 0 to 5) and current ranges (CFG- 6)
The LED current can be programmed using an external resistor connected to GND from
REXT pin and can be fixed using the dedicated bits of the configuration register (from CFG 0 to CFG - 5 bits define the gain, while CFG - 6 bit defines the current range within the which
the gain can be adjusted). The device can regulate the current up to 36 mA and down to 0.5
mA. The accuracy of the LED current depends on the selected range and it is guaranteed in
the ranges indicated in the static electrical characteristics only (see Table 3 and 9). When
the device is switched on, the selected current range and the resistor connected to the REXT
pin fix the default LED current:
I OL _ default =
VREF
⋅K
REXT
Where VREF=1.23 V is the voltage of the REXT pin and K is the mirroring current ratio, whose
value depends on the selected current range:
•
K = 28 with low current range selected (CFG - 6 = "0")
•
K = 80 with high current range selected (CFG - 6 = "1")
The relation between the programmed current and the current gain settings is the following:
I OL = ( I OL _ default + G ⋅ ΔI ste p )
where G is the current gain value (decimal value) defined by the dedicated bits of the
current gain register. The current gain is managed by 6-bits of the configuration register
(CFG - 0 to CFG - 5, CFG - 0 is LSB and CFG - 5 is MSB) and can be adjusted within two
ranges (selectable through the bit CFG - 6) over 64 steps. The width of each step depends
on the default current (Iol_default) as well as the selected REXT. Finally, each step is as
follows:
20/39
DocID025718 Rev 4
ALED1642GW
Configuration register
Δ I ste p =
I O L _ d e fa u lt
21
The Table 9 shows an example of the current setting with an external resistance (REXT) = 11
KΩ:
Table 9. Example of current ranges
REXT [KΩ]
CFG-6
CFG-0 to CFG-5
LED current(1) [mA]
Accuracy
11
0
000000
3.1 mA
± 4% ch-to-ch
11
0
111111
12.5 mA
11
1
000000
8.9 mA
11
1
011010
20 mA
Low range
High range
1.
± 3% ch-to-ch
The indicated values may be slightly different on the current device.
The Table 10 shows an example of current setting and gain control with REXT = 11 kΩ, see
also Figure 9.
Table 10. Gain steps for the current range selected by REXT = 11 kΩ
CFG-6
CFG(0 to 5)
LED current (1) [mA]
0
000000
3.131
0
000001
3.280
…
…
…
0
111111
12.524
1
000000
8.945
1
000001
9.371
…
…
…
1
111111
35.782
Low range
High range
1.
The indicated values may be slightly different on the current device.
The external programming resistance must be connected as close as possible to the related
device pins (REXT and GND) to reduce as minimum as possible the routing length and
prevent reference noise injection and electromagnetic interferences. Moreover, a direct
connection to the device GND pin reduces the possible output current variation when the
total device ground current changes (load effect).
DocID025718 Rev 4
21/39
39
Configuration register
ALED1642GW
Figure 9. Channel current vs. gain register value
IOUT vs. gain
(R = range selection, REXT = 11 K or 18 K)
40.0
11 K R=0
35.0
11 K R=1
IOUT (mA)
30.0
18 K R=0
18 K R=1
25.0
20.0
15.0
10.0
5.0
0.0
0
5
10
15
20
25
30
35
40
45
50
Gain register decimal value
8.2
55
60
65
70
AM13695V1
Error detection mode (CFG-7)
Stopping the normal activity of the display and turning on all driver channels allows the error
detection to be performed and failed LED or display defects to be checked.
The error detection is active when the CFG -7 bit of the configuration register is "0". The
diagnostics is performed as shown in Figure 10:
22/39
•
The LED has to be selected turning on the relative channel on the switch register
(powering on or off the output channels); the brightness register value for this channel
cannot be zero.
•
The normal error detection has to be selected in the configuration register (CFG-7=
"0"). The appropriate digital key to choose the type of detection (open, short or
combined) must be sent (see Table 7).
•
After the error detection starts, the channel under testing has to be turned on at least 1
µs (the LED is at the nominal current). Please note that, the output power-on depends
on PWCLK signal and in several applications this signal is not synchronized with the
serial interface clock (CLK pin). Therefore, to be sure that, between the detection start
and the detection end, the output power-on is 1 µs and moreover, that last power-on, in
the interval, starts at least 0.5 µs before the detection end pattern (see Figure 11), it is
suggested that the error detection should be performed just after the device startup
(brightness counter reset) with all channels ON, before applying PWCLK signal..
•
The result of the detection ("0" indicates a fault condition) is shifted out from SDO in 16
clock pulses after the "detection end command" is provided, first output bit represents
channel 15 (error data can be read in a way similar to configuration register data
reading as shown on Figure 12, 13, 14 and 15).
DocID025718 Rev 4
ALED1642GW
Configuration register
Figure 10. Error detection action sequence
Normal detection sequence
Select LED to be turned on and
checked in switch register
data; brightness for selected
channels cannot be zero.
Select normal error detection mode
on CFG register (bit 7 = “0”)
Send open, short or combined
error detection start command
by LE digital keys
Turn on LED by PWCLK
pulses for at least 1 µs
Send error detection end
command by LE digital key
Read error detection result on
SDO in 16 clock pulses after
detection end command
AM13696V1
Figure 11. Error detection power-on timing
x0000 < BRT < xFFFF
Output Current
1us
0.5us
Det.
Start
Det.
End
SPI pattern
It must contain 1us output power ON
AM13697V1
DocID025718 Rev 4
23/39
39
Configuration register
ALED1642GW
Figure 12. Configuration register reading
sequence
C1=CLK
C2=SDI
C3=LE
C4=SDO
C1=CLK
C2=SDI
C3=LE
C4=SDO
First CLK pulse
after CFG Reg
reading command
CFG Reg programming CFG Reg reading command
Figure 13. Configuration register reading
sequence (zoom)
CFG Reg data
CFG Reg data
First CLK pulse
after CFG Reg
reading command
Figure 14. Configuration register reading
sequence - SDO delay actives
C1=CLK
C2=SDI
C3=LE
C4=SDO
Sync. change
C1=CLK
C2=SDI
C3=LE
C4=SDO
First CLK pulse
after CFG Reg
reading command
CFG Reg programming CFG Reg reading command
Figure 15. Configuration register reading
sequence - SDO delay actives (zoom)
CFG Reg data
CFG Reg data
CFG13=1
First CLK pulse
after CFG Reg
reading command
24/39
DocID025718 Rev 4
ALED1642GW
8.3
Configuration register
Error detection conditions
During the error detection phases for each channel, the following checks have to be
performed:
–
The output current in open detection mode (digital key: 9 CLK rising edges when
LE is "1")
–
The output voltage in short detection (digital key: 10 CLK rising edges when LE is
"1")
–
Both parameters (output voltage and current) in combined error detection mode
(digital key: 11 CLK rising edges when LE is "1").
The thresholds for the error diagnostics are listed in Table 11:
Table 11. Diagnostic thresholds
Open
detection
Short
detection
8.4
Combined mode
Error detection
modes
Thresholds (V)
Checked
malfunction
CFG-9
Open line or output
short to GND
x
Short on LED or short
to V-LED
CFG-8
Min.
Typ.
Max.
x
-
IOUT ≤ 0.5 x IOUT
programmed
-
0
0
1.15
VOUT ≥ 1.8
2.05
0
1
2.25
VOUT ≥ 2.5
2.75
1
0
2.75
VOUT ≥ 3.0
3.25
1
1
3.25
VOUT ≥ 3.5
3.80
Auto-wakeup/auto power shutdown (CFG-10)
This feature reduces the power consumption when all outputs are OFF. It is active when the
CFG -10 bit of configuration register is "1". The auto power shutdown (auto OFF) starts
when the data latched is "0" for all channels, and device is active again (wakeup) at the first
latched data string including at least one bit = "1" (at least one channel ON). Timings for
shutdown and wakeup are present in the dynamics feature table. While the auto power
shutdown is active, the device ignores any other command except the channel power-on.
8.5
Programmable turn-on/turn-off time (CFG-11/12)
The device gives the possibility to program the turn-on and turn-off time of the current
generators. Four different values can be selected using CFG -12 and CFG-11 bits of the
configuration register (see Table 8) to fit the application requirements: 30/20 ns (00), 100/40
ns (01), 140/80 ns (10) and 180/150 ns (11). The selected value refers to TON (current rise
time) and TOFF (current fall time).
DocID025718 Rev 4
25/39
39
Configuration register
ALED1642GW
Figure 16. Output TON (current rise time) CFG - Figure 17. Output TOFF (current fall time) CFG 12 = CFG - 11 = 0
12 = CFG - 11 = 0
AM13698V1
AM13699V1
Figure 18. Output TON (current rise time) CFG - Figure 19. Output TOFF (current fall time) CFG 12 = CFG - 11 = 1
12 = CFG - 11 = 1
AM13700V1
26/39
DocID025718 Rev 4
AM13701V1
ALED1642GW
8.6
Configuration register
SDO delay (CFG-13)
Usually in SDO terminal, data are shifted out the rising edge of CLK signal (with a
propagation delay of about 15 ns - signal (a) in Figure 20). The device has the possibility to
shift data out the falling edge of the CLK signal (with few ns of propagation delay - signal (b)
in Figure 20). This feature is active when CFG -13 bit of the configuration register is "1".
Default setting for this bit is "0" hence the SDO delay is not activated by default. This feature
is particularly useful when some devices are connected in daisy chain configuration with
mismatched propagation delays, between CLK and SDO data path (board routing).
Figure 20. SDO delay
(a)
(b)
(a) Data shifted out of the SDO with the device propagation delay
(b) Data shifted out of the SDO by the falling edge of the CLK
AM13702V1
8.7
Gradual output delay (CFG-14)
The gradual output delay consists of turning on gradually the current generators avoiding to
turn on all channels at the same time.
When PWM counter enables the device channels, the outputs can be turned on
simultaneously or with a progressive delay. Thanks to configuration register CFG -14 bit, the
user can decide to put a delay among outputs (10 ns from each channel to the next one,
around 150 ns between first and last channel). The typical output timing is shown in
Figure 21. This feature prevents the inrush current and reduces the bypass capacitor value.
DocID025718 Rev 4
27/39
39
Configuration register
ALED1642GW
Figure 21. Gradual output delay
AM13703V1
8.8
PWM counter setting and brightness register (CFG-15)
The brightness of each channel can be adjusted through a 12/16-bit PWM grayscale
brightness control according to the PWM counter selection (configuration register CFG -15
bit). Brightness data is loaded by the SDI pin in a 16-bit shift register. Once 16-bit has been
loaded (first input bit of brightness word is MSB, 16th bit is LSB), the digital word is moved to
the corresponding temporary buffer (first word is the brightness of channel 15, the last one
is for channel 0) using the appropriate key shown in Table 7 ("data latch"). One "data latch"
key must follow each 16-bit brightness word except the last one. When the last brightness
word is loaded (channel 0 brightness data), the key indicated as "global latch" in Table 7
must be used. This action moves the word from the shift register to the temporary buffer
through the OUT0 and, at the same time, transfers all data of the 16 temporary buffers (16
x16-bit string) to the corresponding brightness registers (see also Figure 23).
The PWM signals are generated by comparing the content of the brightness registers to a
16-bit or 12-bit counter, according to the CFG-15 bit status. The counter's clock source is
provided to the PWCLK pin. In case of selection of 12-bit PWM counter, the four most
significant bits of each brightness data word are ignored. However, each of sixteen
brightness data words must be 16-bit long.The brightness register default value is "0",
unless this value is changed, the LED brightness is minimum. Figure 22 shows this function
in the schematic.
PWCLK must be a square wave signal, duty cycle is not important but the minimum width
has to be above 20 ns, max. frequency has to be 30 MHz (pay attention the minimum output
ON time). Just after the device startup (brightness counter reset), before applying PWCLK
signal, all channels are in power-on condition if the brightness register values are not
zeroed.
28/39
DocID025718 Rev 4
ALED1642GW
Configuration register
Figure 22. PWCLK counter and comparator
AM13704V1
Figure 23. Brightness register setting
SDI
0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00
CLK
LE
Data latch
16-bit Data Word
BRT15
BRT13
BRT14
BRT03
BRT02
BRT01
BRT00
256-bit brightness data
stream
MSB
SDI
0F
LSB
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00
CLK
LE
Global latch
AM13705V1
DocID025718 Rev 4
29/39
39
Thermal flag
9
ALED1642GW
Thermal flag
The device has a thermal control logic providing a flag status when the internal temperature
exceeds 150 °C (if temperature increases over 170 °C a thermal shutdown protects the
device). This status can be read running the digital key "thermal error reading", holding the
LE high for 13 CLK rising edges (see Figure 24). If thermal alert is asserted, a 16-bit string =
"1" is sent by SDO. The error data is uploaded into EDR register and this error notification is
ready to be streamed through SDO to next 16 CLK rising edges. Hence, thermal flag status
can be:
Device temperature
SDO
under 150 °C
“0000 0000 0000 0000”
over 150 °C
“1111 1111 1111 1111”
Figure 24. Thermal flag status
13 Clock pulses with LE asserted
Previous data
Thermal
Flag Status
AM13706V1
30/39
DocID025718 Rev 4
ALED1642GW
Dropout voltage
In order to correctly regulate the channel current, a minimum output voltage (VDROP) across
each current generator must be guaranteed.
The Figure 25 and Table 12 show the minimum VDROP related to the regulated current;
these measurements have been recorded with just one output ON. When more than one
output is active the drop voltage increases. At 36 mA per channel, the minimum output
voltage must be increased about 200 mV.
A VDROP, lower than the minimum recommended, implies the regulation of a current lower
than the expected one. However an excess of VDROP increases the power dissipation.
Figure 25. Typical channel dropout voltage vs. output current (VDD = 3.3 V)
Drop vs. IOUT @ VDD = 3.3 V, T= 25°C
(only one channel ON)
1200
1000
VDROP [mV]
10
Dropout voltage
800
600
400
200
0
0
5
10
15
20
25
30
35
40
45
50
55
IOUT [mA]
AM13707V1
Table 12. Minimum dropout voltage for some current values
Output current [mA]
Minimum VDROP @ VDD = 3.3 V [mV]
3
70
9
180
12
250
20
410
36
730
40
820
45
955
50
1070
DocID025718 Rev 4
31/39
39
Package information
11
ALED1642GW
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
32/39
DocID025718 Rev 4
ALED1642GW
11.1
Package information
TSSOP24 exposed pad package information
Figure 26. TSSOP24 exposed pad outline
7100778_D
DocID025718 Rev 4
33/39
39
Package information
ALED1642GW
Table 13. TSSOP24 exposed pad mechanical data
mm
Dim.
Min.
Max.
A
1.20
A1
0.15
A2
0.80
b
0.19
0.30
c
0.09
0.20
D
7.70
7.80
7.90
D1
4.80
5.00
5.2
E
6.20
6.40
6.60
E1
4.30
4.40
4.50
E2
3.00
3.20
3.40
e
L
k
1.00
1.05
0.65
0.45
L1
0.60
0.75
1.00
0
aaa
34/39
Typ.
8
0.10
DocID025718 Rev 4
ALED1642GW
11.2
Package information
TSSOP24 exposed pad packing information
Figure 27. TSSOP24 exposed pad tape and reel outline
DocID025718 Rev 4
35/39
39
Package information
ALED1642GW
Table 14. TSSOP24 exposed pad tape and reel mechanical data
mm
Dim.
Min.
A
Max.
-
330
13.2
C
12.8
-
D
20.2
-
N
60
-
T
36/39
Typ.
-
22.4
Ao
6.8
-
7
Bo
8.2
-
8.4
Ko
1.7
-
1.9
Po
3.9
-
4.1
P
11.9
-
12.1
DocID025718 Rev 4
ALED1642GW
12
Ordering information
Ordering information
Table 15. Ordering information
Order code
Package
Packing
ALED1642GWXTTR
TSSOP24 exposed pad
2500 parts per reel
DocID025718 Rev 4
37/39
39
Revision history
13
ALED1642GW
Revision history
Table 16. Document revision history
38/39
Date
Revision
Changes
07-Jan-2014
1
Initial release.
03-Mar-2014
2
Modified footnote1 in Table 5: Switching characteristics.
Added footnote 2 in Table 5: Switching characteristics
and footnote 5 in Table 4: Electrical characteristics.
05-Jun-2014
3
Updated Table 13: TSSOP24 exposed pad mechanical
data.
Minor text changes.
16-Nov-2015
4
Updated features in cover page.
Modified footnote 2 in Table 3: Thermal characteristics.
Minor text changes.
DocID025718 Rev 4
ALED1642GW
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID025718 Rev 4
39/39
39