TR0022: SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX Interoperability Test Report

SmartFusion2 and IGLOO2
CoreJESD204BRX and
CoreJESD204BTX Interoperability
TR0022 Test Report
June 2016
Table of Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
AD9250 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ISLA224S Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DAC1658 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ADC34J44 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Deterministic Latency Test Setup for ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Deterministic Latency Test Setup for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Interoperability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
AD9250 Interoperability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Test1: Data Link Layer - Code Group Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Test2: Data Link Layer - Initial Lane Alignment Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Test3: Receiver Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Test4: Descrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Test5: Deterministic Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ISLA224S Interoperability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Test1: Data Link Layer - Code Group Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Test2: Data Link Layer -Initial Lane Alignment Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Test3: Receiver Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Test4: Descrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Test5: Deterministic Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DAC1658 Interoperability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Test1: Data Link Layer - Code Group Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Test2: Data Link Layer -Initial Lane Alignment Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Test3: Receiver Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Test4: Descrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Test5: Deterministic latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ADC34J44 Interoperability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Test1: Data Link Layer - Code Group Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Test2: Data Link Layer - Initial Lane Alignment Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Test3: Receiver Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Test4: Descrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Test5.1: Deterministic Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Test5.2: Deterministic Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Revision 2
2
SmartFusion2 and IGLOO2 CoreJESD204BRX and
CoreJESD204BTX Interoperability
Introduction
Microsemi provides solutions for interfacing to analog-to-digital converter (ADC) and digital -to-analog
converter (DAC) devices using the JESD204B JEDEC standard. These solutions are provided as
DirectCore IPs - CoreJESD204BRX and CoreJESD204BTX. Both of these are soft IPs interfacing to the
high-speed serial interfaces (SERDESIF) of the SmartFusion®2 system-on-chip (SoC) field
programmable gate array (FPGA) and IGLOO®2 FPGA devices.
This interoperability report gives the information that was obtained while working with third party ADC
and DAC devices. The interoperability test results describe the JESD204B link parameters, hardware
test setup, equipment used, and final test report of Microsemi DirectCores - CoreJESD204BRX and
CoreJESD204BTX.
References
•
CoreJESD204BRX v2.5 Handbook
•
CoreJESD204BTX v2.0 Handbook
•
UG0447: SmartFusion2 and IGLOO2 FPGA High Speed Serial Interfaces User Guide
•
JESD204B - Serial Interface for Data Converters (Revision of JESD204B, July 2011).
Date: January 2012 (www.jedec.org)
•
AD9250 Datasheet from Analog Devices (www.analog.com)
•
ISLA224S Datasheet from Intersil (www.intersil.com)
•
DAC1658 Datasheet from IDT (www.idt.com)
•
ADC34J44 Datasheet from Texas Instruments (www.ti.com)
Scope
The interoperability test results described in this report are limited to the JESD204B link. To develop a
reference platform to work with JESD204B and third party ADC and DAC devices, other IP was used in
the SmartFusion2 based design. This report describes the hardware setup used for interoperability
testing and reporting the test results of the JESD204B link.
The SmartFusion2 and IGLOO2 JESD204B solution supports link widths of x1, x2, and x4 up to 3.2 Gbps
per lane using subclass 0, 1, and 2.
Table 1 shows the configuration for the devices tested.
Table 1 • Configuration for the Devices Tested
Device
Link Rate
Link Width
Subclass
Analog Devices - AD9250
2.45 Gbps
x2
0, 1
Intersil - ISLA224S25
2.5 Gbps
x2
0, 2
IDT - DAC1658D1G5NLGA
2.5 Gbps
x2
0, 1
Texas Instruments - ADC34J44
2.5 Gbps
x4
0, 1, 2
Revision 2
3
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Hardware Setup
The interoperability testing is carried out on the SmartFusion2 Advanced Development Kit (MS2150ADV-KIT) and the FMC cards from the ADC and DAC vendors. The design for interoperability is
developed using the Libero® SoC tool by instantiating the CoreJESD204BRX IP and CoreJESD204BTX
IP cores in SmartDesign. Identify Debugger, JESD204B Demo GUI and serial terminal programs (for
example, RealTerm) are used for the interoperability testing and for the ADC register configuration.
CoreJESD204BRX IP is configured in JESD204B Subclass 0, Subclass 1 and Subclass 2 modes.
CoreJESD204BTX IP is configured in JESD204B Subclass 0, Subclass 1 modes.
AD9250 Setup
AD9250 ADC is operated in two converters and two-lane mode. Each lane is operated in 2.45 Gbps
mode. The fabric logic and SERDES blocks are operated with 122.8 MHz frequency.
Figure 1 shows the hardware setup for the interoperability testing with AD9250
Figure 1 • Hardware Setup for Interoperability Testing with AD9250
4
R e vi s i o n 2
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
ISLA224S Setup
ISLA224S ADC is operated in two converters and two-lane mode. Each lane is operated in 2.5 Gbps
mode. The fabric logic and SERDES blocks are operated with 125 MHz frequency.
Figure 2 shows the hardware setup for the interoperability testing with ISLA224S.
Figure 2 • Hardware Setup for Interoperability Testing with ISLA224S
Revision 2
5
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
DAC1658 Setup
DAC1658 DAC is operated in two converters, two-lane mode and the interpolation factor is two. Each
lane is operated in 2.5 Gbps mode. The fabric logic and SERDES blocks are operated with 125 MHz
frequency.
Figure 3 shows the hardware setup for the interoperability testing with DAC1658.
Figure 3 • Hardware Setup for Interoperability Testing with DAC1658
6
R e vi s i o n 2
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
ADC34J44 Setup
ADC34J44 ADC is operated in four converters and four-lane mode. Each lane is operated at 2.5 Gbps
mode. The fabric logic and SerDes blocks are operated at 125 MHz frequency.
Figure 4 hardware setup for interoperability testing with ADC34J44.
Figure 4 • Hardware Setup for Interoperability Testing with ADC34J44
Revision 2
7
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Deterministic Latency Test Setup for ADC
A pulse signal was fed into the analog input of the ADC and channel A of an oscilloscope using a pulse
generator. The most significant bit (MSB) of COREJESD204BRX DATA_OUT was routed to the
BB_GPIO11 (FPGA pin number: P8) on the SmartFusion2 Advanced Development Kit. This was
connected to the channel B on the oscilloscope.
With this setup the latency between the pulse entering the ADC and the MSB toggled at the output of the
COREJESD204BRX IP can be measured.
Figure 5 shows the setup used to measure the deterministic latency.
3XOVH*HQHUDWRU
$QDORJ,QSXWWR$'&
2VFLOORVFRSH
$'&
&KDQQHO$
)0&&RQQHFWRU
&KDQQHO%
6)$GYDQFHG
'HYHORSPHQW.LW
/DWHQF\
06%RI6DPSOH'DWD
Figure 5 • Deterministic Latency Setup - ADC
Deterministic Latency Test Setup for DAC
A pulse signal was generated from the FPGA fabric and was fed to the DAC converter. The MSB of the
generated pulse is routed to the BB_GPIO6 (FPGA pin number: P7) on the SmartFusion2 Advanced
Development Kit. This was connected to the channel A on the oscilloscope. The analog output from DAC
is connected to channel B on the oscilloscope.
With this setup the latency between the pulse sent from CoreJESD204BTX and the pulse observed at
the DAC output can be measured.
Figure 6 shows the test setup used to measure the deterministic latency.
$QDORJ2XWSXWIURP
'$&
2VFLOORVFRSH
'$&
&KDQQHO%
)0&&RQQHFWRU
&KDQQHO$
6)$GYDQFHG
'HYHORSPHQW.LW
06%RI7UDQVPLWWHG'DWD
Figure 6 • Deterministic Latency Setup - DAC
8
R e vi s i o n 2
/DWHQF\
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Interoperability Tests
CoreJESD204BRX, AD9250, ISLA224S, and ADC34J44 are configured for interoperability testing, as
shown in Table 2.
Table 2 • JESD204B Parameter Settings
Parameter
CoreJESD204 Analog Devices Intersil
BRX Value
AD9250
ISLA224S
Texas
Instruments
ADC34J44
Description
SCR
0/1
0x1/0x0
0x1/0x0
0x1/0x0
Both scramble enable/disable
L
2
0x1
0x1
0x03
Number of lanes
F
2
0x1
0x1
0x1
Number of octets per frame
K
32
0x1F
0x1F
0x08
Number of frames per multi-frame
M
2
0x1
0x1
0x03
Number of converters
CS
0
0x0
0x0
0x0
Control bits per sample
N
14
0xD
0xD
0xD
Sample resolution
N'
16
0xF
0xF
0xF
Sample envelope
S
1
0x0
0x0
0x0
No of samples per converter per
frame
HD
0
0x0
0x0
0x0
High density mode
CF
0
0x0
0x0
0x0
Control bits per frame
0x0/0x1
0x0/0x2
0x0/0x1/0x2
Subclass0/Subclass1/Subclass2
SUBCLASSV 0/1/2
CoreJESD204BTX and DAC1658 are configured for interoperability testing, as shown in Table 3.
Table 3 • JESD204B Parameter Settings
Parameter
CoreJESD204BTX
Value
IDT DAC1658
Description
SCR
0/1
0x1 / 0x0
Scramble enable or disable
L
2
0x1
Number of lanes
F
2
0x1
Number of octets per frame
K
32
0x1F
Number of frames per multi-frame
M
2
0x1
Number of converters
CS
0
0x0
Control bits per sample
N
16
0xF
Sample resolution
N'
16
0xF
Sample envelope
S
1
0x0
No of samples per converter per frame
HD
0
0x0
High density mode
CF
0
0x0
Control bits per frame
SUBCLASSV
0/1
0x0/0x1
Subclass0/Subclass1/Subclass2
The following tests are performed for the interoperability report:
•
Test1: Data Link Layer - Code Group Synchronization
•
Test2: Data Link Layer - Initial Lane alignment sequence
•
Test3: Receiver Transport Layer
•
Test4: Descrambling
•
Test5: Deterministic latency
Revision 2
9
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
AD9250 Interoperability Tests
Test1: Data Link Layer - Code Group Synchronization
On link startup, the receiver issues a synchronization request and the transmitter emits comma characters /K/=/K28.5/. Identify debugger is used to monitor the operation of the receiver data link layer.
Table 4 shows the data link layer - code group synchronization test results.
Table 4 • Data Link Layer - Code Group Synchronization Test Results
Test Case
Objective
Passing Criteria
Result
AD1.1
Check if the receiver
CoreJESD204BRX _0 
asserts SYNC_N signal SYNC_N signal is observed in
when the link is down
Identify Debugger
SYNC_N goes low
Passed
AD1.2
Check if SYNC_N
request is deasserted
after the correct
reception of at least four
successive /K/
characters
CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0],SYNC_N signals
are observed in Identify Debugger
K28.5 or /K/ character
(0xBC) is observed on
DATA_OUT and SYNC_N
Passed
Check the full code
group synchronization at
receiver after the correct
reception of another four
8B/10B characters
CoreJESD204BRX _0 
CGS error not asserted
DATA_OUT[31:16],
DATA_OUT[15:0],
SYNC_N,CGS_ERR[1:0] signals
are observed in Identify Debugger
AD1.3
Description
is deasserted after the
correct reception of at least
four successive /K/
characters.
Passed
Test2: Data Link Layer - Initial Lane Alignment Sequence
Table 5 shows the data link layer - initial lane alignment sequence test results.
Table 5 • Data Link Layer-Initial Lane Alignment Sequence Test Results
Test Case
Objective
Description
Passing Criteria
AD2.1
Check if the ILAS phase CoreJESD204BRX _0 
Multi-frame starts with 0x1C Passed
starts after the CGS
DATA_OUT[31:16],
and is aligned with
phase
DATA_OUT[15:0]
SOMF_U[1:0]
SOMF_U[1:0],SOMF_L[1:0],
SOF_U[1:0],SOF_L[1:0] signals
are observed in Identify Debugger
AD2.2
Check the JESD
CoreJESD204BRX _0 
configuration data in the DATA_OUT[31:16],
second multi-frame
DATA_OUT[15:0]
SOMF_U[1:0],SOMF_L[1:0],
SOF_U[1:0],SOF_L[1:0],
LINK_CD_ERROR[1:0] signals
are observed in Identify Debugger
Revision 2
Result
Observe the second multi- Passed
frame that starts with 0x1C
followed by 0x9C and
JESD204B configuration
data
10
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test3: Receiver Transport Layer
Table 6 shows the receiver transport layer test results.
Table 6 • Receiver Transport Layer Test Results
Test Case
Objective
Description
Passing Criteria
Result
AD3.1
Check data integrity in
test mode
ADC is configured in PRBS
test mode.
RX_PRBS_16  O_bad signal not Passed
asserted
PRBS checker in the FPGA
fabric checks for data
reliability.
CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0]
RX_PRBS_16 
O_error[3:0],O_bad signals
are observed in Identify
Debugger
AD3.2
Check data integrity in
normal mode
ADC is configured in normal Received signal correlates with the Passed
mode.
input signal given for ADC
CoreJESD204BRX _0  sampling.
DATA_OUT[31:16],
DATA_OUT[15:0] signals are
observed in Identify
Debugger
Test4: Descrambling
Scrambler is enabled in ADC and descrambler is enabled in CoreJESD204BRX IP.
Table 7 shows the descrambling test results.
Table 7 • Descrambling Test Results
Test Case
Objective
Description
Passing Criteria
Result
AD4.1
Check descrambler
functionality
ADC is configured in PRBS
test mode.
RX_PRBS_16  O_bad signal
should not be asserted
Passed
PRBS checker in the FPGA
fabric checks for data
reliability.
CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0]
RX_PRBS_16 
O_error[3:0], O_bad signals
are observed in Identify
Debugger
11
R e visio n 2
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test5: Deterministic Latency
CoreJESD204BRX IP is configured in Subclass 1 mode and AD9250 is configured in different LMF
modes.
Table 8 shows the CoreJESD204BRX IP parameter settings for different ADC modes.
Table 8 • CoreJESD204BRX IP Parameter Settings for different ADC Modes
ADC Mode
M
L
F
K
11
1
1
2
32
21
2
1
4
32
22
2
2
2
32
Table 9 shows the JESD204B deterministic latency measurement test results.
Table 9 • JESD204B Deterministic Latency Measurement Test Results
Test Case
Objective
Description
Passing Criteria
Result
AD5.1
Check LMFC
alignment
CoreJESD204BRX _0 
clkgen_lmfc and SYSREF_IN
signals are observed in Identify
Debugger
SYSREF_IN aligned with
clkgen_lmfc
Passed
AD5.2
SYSREF
CoreJESD204BRX _0 
c2l_mf_phase and SYSREF_IN
signals are observed in Identify
Debugger
LMFC counter restarts after the
SYSREF_IN capture
Passed
Latency fixed for multiple runs
(between the FPGA resets/link
resets)
Passed
capture
AD5.3
Check the latency A single pulse input is applied to
the ADC and the oscilloscope
channel A using 2-port splitter.
Core output MSB is connected to
the oscilloscope channel B.
The delay between captured
pulses on channel A and Channel
B is measured.
AD5.4
Check the data
latency during
user data phase
Check if the data latency is fixed
during the user data phase.
CoreJESD204BRX _0
The ramp pattern is seen without Passed
distortion
 DATA_OUT[31:16],
DATA_OUT[15:0] signals are
observed in Identify Debugger
Revision 2
12
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
ISLA224S Interoperability Tests
Test1: Data Link Layer - Code Group Synchronization
When the link starts, the receiver issues a synchronization request and the transmitter emits comma
characters /K/=/K28.5/. The receiver data link layer operation is monitored by Identify Debugger.
Table 10 shows the data link layer - code group synchronization test results.
Table 10 • Data Link Layer - Code Group Synchronization Test Results
Test Case
Objective
ISL1.1
Description
Passing Criteria
Result
Check if the receiver CoreJESD204BRX _0 
asserts SYNC_N
SYNC_N signal is observed in
signal when the link is Identify Debugger
down
SYNC_N goes low
Passed
ISL1.2
Check if SYNC_N
request is deasserted
after the correct
reception of at least
four successive /K/
characters
CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0],SYNC_N
signals are observed in Identify
Debugger
K28.5 or /K/ character (0xBC) Passed
is observed on DATA_OUT and
SYNC_N is deasserted after
the correct reception of at least
four successive /K/ characters.
ISL1.3
Check full code group
synchronization at the
receiver after the
correct reception of
another four 8B/10B
characters
CoreJESD204BRX _0 
CGS error not asserted
DATA_OUT[31:16],
DATA_OUT[15:0],
SYNC_N,CGS_ERR[1:0]
signals are observed in Identify
Debugger
Passed
Test2: Data Link Layer -Initial Lane Alignment Sequence
Table 11 shows the data link layer - initial lane alignment sequence test results.
Table 11 • Data Link Layer - Initial Lane Alignment Sequence Test Results
Test Case
Objective
Description
ISL2.1
Check if the ILAS
phase starts after
the CGS phase
CoreJESD204BRX _0 
Multi-frame starts with 0x1C
DATA_OUT[31:16],
and is aligned with
DATA_OUT[15:0]
SOMF_U[1:0]
SOMF_U[1:0],SOMF_L[1:0],
SOF_U[1:0],SOF_L[1:0] signals
are observed in Identify Debugger
Passed
ISL2.2
Check the JESD
configuration data
in the second multiframe
CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0]
SOMF_U[1:0],SOMF_L[1:0],
SOF_U[1:0],SOF_L[1:0],
LINK_CD_ERROR[1:0] signals are
observed in Identify Debugger
Passed
13
Passing Criteria
R e visio n 2
Observe the second multiframe that starts with 0x1C
followed by 0x9C and
JESD204B configuration data
Result
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test3: Receiver Transport Layer
Table 12 shows the receiver transport layer test results.
Table 12 • Receiver Transport Layer Test Results
Test Case
Objective
Description
Passing Criteria
Result
ISL3.1
Check data integrity ADC is configured in PRBS RX_PRBS_16  O_bad signal not Passed
in test mode
test mode. PRBS checker in asserted.
the FPGA fabric checks for
data reliability.
CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0]
RX_PRBS_16 
O_error[3:0], O_bad signals
are observed in Identify
Debugger
ISL3.2
Check data integrity ADC is configured in normal Received signal correlates with the Passed
in normal mode
mode.
input signal given for ADC
CoreJESD204BRX _0  sampling.
DATA_OUT[31:16],
DATA_OUT[15:0] signals
are observed in Identify
Debugger
Test4: Descrambling
Scrambler is enabled in ADC and descrambler is enabled in CoreJESD204BRX IP.
Table 13 shows the descrambling test results.
Table 13 • Descrambling Test Results
Test Case
Objective
Description
Passing Criteria
ISL4.1
Check descrambler ADC is configured in PRBS RX_PRBS_16  O_bad signal not
functionality
test mode.
asserted
Result
Passed
PRBS checker in the FPGA
fabric checks for data
reliability.
CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0]
RX_PRBS_16 
O_error[3:0], O_bad
signals are observed in
Identify Debugger
Revision 2
14
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test5: Deterministic Latency
CoreJESD204BRX IP is configured in Subclass 2 mode and ISLAS224S is configured in L=2 and M=2
modes.
Table 14 shows the deterministic latency test results.
Table 14 • Deterministic Latency Test Results
Test Case
Objective
Description
Passing Criteria
Result
ISL5.1
SYNC_N
capture
CoreJESD204BRX _0 
c2l_mf_phase and SYNC_N
signals are observed in Identify
Debugger
LMFC counter restarts after the Passed
SYNC_N capture
ISL5.2
Check the
latency
A single pulse input is applied to
the ADC and the oscilloscope
channel A using 2-port splitter.
Latency fixed for multiple runs Passed
(between the FPGA resets/link
resets)
Core output MSB is connected to
the oscilloscope channel B.
The delay between captured
pulses on channel A and Channel
B is measured.
ISL5.3
Check the data Check if the data latency is fixed
latency during
during the user data phase.
user data phase CoreJESD204BRX _0 
DATA_OUT[31:16],
DATA_OUT[15:0] signals are
observed in Identify Debugger
The ramp pattern is seen
without distortion
Passed
DAC1658 Interoperability Tests
Test1: Data Link Layer - Code Group Synchronization
When the link starts, the receiver issues a synchronization request and the transmitter emits comma
characters /K/=/K28.5/. The transmitter data link layer operation is monitored by Identify Debugger.
Table 15 shows the data link layer - code group synchronization test results.
Table 15 • Data Link Layer - Code Group Synchronization Test Results
Test Case
Objective
Description
IDT1.1
Check if
SYNC_Request is
deasserted on
SYNC_N assertion.
CoreJESD204BTX _0 
SYNC_request goes low
SYNC_request signal is
observed in Identify Debugger
Passed
IDT1.2
Check if at least four
successive /K/
characters are
transmitted on
SYNC_N assertion
CoreJESD204BTX _0 
EPCS_0_TX_DATA[19:0],
EPCS_1_TX_DATA[19:0],
SYNC_N signals are observed
in Identify Debugger
At least four K28.5 or /K/
characters are observed on
EPCS_0_TX_DATA,
EPCS_1_TX_DATA, on
assertion of SYNC_N
Passed
IDT1.3
Check full code group
synchronization at the
transmitter after the
correct transmission of
another four 8B/10B
characters
CoreJESD204BTX _0
TX_STATE[1:0] signal is
observed in Identify Debugger
Check the DAC register
CS_STATE_LNX (address
00EDh).
CoreJESD204BTX TX_STATE Passed
changes from
SYNC_ST(0x00) to
INIT_LANE_ST (0x01). DAC
register CS_STATE_LNX is in
CS_DATA (0x02) state.
15
Passing Criteria
R e visio n 2
Result
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test2: Data Link Layer -Initial Lane Alignment Sequence
Table 16 shows the data link layer - initial lane alignment sequence test results.
Table 16 • Data Link Layer - Initial Lane Alignment Sequence Test Results
Test Case
Objective
Description
Passing Criteria
IDT2.1
Check the ILAS phase 1. CoreJESD204BTX _0 
1. Observe the /R/, /A/, /Q/ in Passed
EPCS_0_TX_DATA[19:0],
the correct order as per
EPCS_1_TX_DATA[19:0],
ILAS.
Signals are observed in
2. The flags /R/, /A/, /Q/ and
Identify Debugger.
/K/ set in DAC K28
2. Check DAC K28 registers.
registers
IDT2.2
Check the JESD
configuration data
IDT2.3
Check if ILA phase is 1. CoreJESD204BTX _0 
TX_STATE[1:0] Signal is
completed successfully
observed in Identify
Debugger.
Check if the DAC has received DAC link configuration data
the expected configuration
matches with
data.
CoreJESD204BTX link
configuration data
2. Check if the DAC has
achieved ILA.
1. CoreJESD204BTX
TX_STATE changes from
INIT_LANE_ST (0x01) to
DATA_ENC_ST (0x02).
Result
Passed
Passed
2. In DAC ila_rcv_flag goes
high.
Test3: Receiver Transport Layer
Table 17 shows the receiver transport layer test results.
Table 17 • Receiver Transport Layer Test Results
Test Case Objective
Description
Passing Criteria
Result
IDT3.1
Check the data
phase
Check if the expected waveform Observe the expected waveform
is obtained at the DAC outputs. on the scope.
Passed
IDT3.2
Check the data
rate
CoreJESD204BTX transfer data Observe the expected waveform
at 2.5 Gbps per lane for
on the scope.
LMF=222.
Passed
Test4: Descrambling
Scrambler is enabled in ADC and descrambler is enabled in CoreJESD204BTX IP.
Table 18 shows the descrambling test results.
Table 18 • Descrambling Test Results
Test
Case
IDT4.1
Objective
Description
Passing Criteria
Check the
scrambler
functionality
Enable scrambler and check data Observe the expected waveform
at the output.
on the scope.
Revision 2
Result
Passed
16
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test5: Deterministic latency
CoreJESD204BTX IP is configured in Subclass 1 mode and DAC1658 is configured in LMF = 222 mode
and interpolation factor = 2.
Table 19 shows the deterministic latency test results.
Table 19 • Deterministic Latency Test Results
Test
Case
Objective
Description
Passing Criteria
IDT5.1
Check the LMFC
alignment
CoreJESD204BTX _0 
SYSREF_IN aligned with
clkgen_lmfc and SYSREF_IN signals clkgen_lmfc
are observed in Identify Debugger
IDT5.2
SYSREF capture
CoreJESD204BTX _0 
c2l_mf_phase and SYSREF_IN
signals are observed in Identify
Debugger
IDT5.3
Check the latency A single pulse input generated in
FPGA is sent to the DAC and the
oscilloscope channel A.
Result
Passed
LMFC counter restarts after the Passed
SYSREF_IN capture
Latency fixed for every link
reset. (SYNC_N ON/OFF).
Passed
The DAC output is connected to
oscilloscope channel B.
The delay between captured pulses
on channel A and Channel B is
measured.
ADC34J44 Interoperability Tests
Test1: Data Link Layer - Code Group Synchronization
On link startup, the receiver issues a synchronization request and the transmitter emits comma
characters /K/=/K28.5/. Identify the debugger that is used to monitor the operation of the receiver data
link layer.
Table 20 shows the data link layer - code group synchronization test results.
Table 20 • Data Link Layer - Code Group Synchronization Test Results
Test Case
Objective
TI_ADC1.1
Passing Criteria
Result
Check if the receiver
CoreJESD204BRX _0 
asserts SYNC_N signal SYNC_N signal is observed in
when the link is down
Identify Debugger
SYNC_N goes low
Passed
TI_ADC1.2
Check if SYNC_N
request is deasserted
after the correct
reception of at least four
successive /K/
characters
CoreJESD204BRX _0 
DATA_OUT[63:48],
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0],SYNC_N signals
are observed in Identify Debugger
K28.5 or /K/ character
Passed
(0xBC) is observed on
DATA_OUT and SYNC_N is
deasserted after the correct
reception of at least four
successive /K/ characters.
TI_ADC1.3
Check the full code
group synchronization at
receiver after the correct
reception of another four
8B/10B characters
CoreJESD204BRX _0 
CGS error not asserted
DATA_OUT[63:48],
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0],
SYNC_N,CGS_ERR[1:0] signals
are observed in Identify Debugger
17
Description
R e visio n 2
Passed
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test2: Data Link Layer - Initial Lane Alignment Sequence
Table 21 shows the data link layer - initial lane alignment sequence test results.
Table 21 • Data Link Layer-Initial Lane Alignment Sequence Test Results
Test Case
Objective
Description
Passing Criteria
Result
TI_ADC2.1
Check if the ILAS phase CoreJESD204BRX _0 
Multi-frame starts with 0x1C Passed
starts after the CGS
DATA_OUT[63:48],
and is aligned with
phase
DATA_OUT[47:32],
SOMF_U[3:0]
DATA_OUT[31:16],
DATA_OUT[15:0]
SOMF_U[3:0],SOMF_L[3:0],
SOF_U[1:0],SOF_L[1:0] signals
are observed in Identify Debugger
TI_ADC2.2
Check the JESD
CoreJESD204BRX _0 
configuration data in the DATA_OUT[63:48],
second multi-frame
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0]
SOMF_U[3:0],SOMF_L[3:0],
SOF_U[3:0],SOF_L[3:0],
LINK_CD_ERROR[3:0] signals are
observed in Identify Debugger
Observe the second
Passed
multi-frame that starts with
0x1C followed by 0x9C and
JESD204B configuration
data
Test3: Receiver Transport Layer
Table 22 shows the receiver transport layer test results.
Table 22 • Receiver Transport Layer Test Results
Test Case
Objective
Description
Passing Criteria
TI_ADC3.1 Check data integrity in ADC is configured in PRBS
test mode
transport layer test mode
Result
Observe the DATA_OUT for PRBS Passed
pattern
CoreJESD204BRX _0 
DATA_OUT[63:48],
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0] signals are
observed in Identify
Debugger
TI_ADC3.2 Check data integrity in ADC is configured in normal Received signal correlates with the Passed
normal mode
mode
input signal given for ADC
CoreJESD204BRX _0  sampling.
DATA_OUT[63:48],
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0] signals are
observed in Identify
Debugger
Revision 2
18
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test4: Descrambling
Scrambler is enabled in ADC and descrambler is enabled in the CoreJESD204BRX IP.
Table 23 shows the descrambling test results.
Table 23 • Descrambling Test Results
Test Case
Objective
Description
Passing Criteria
Result
TI_ADC4.1
Check descrambler
functionality
ADC is configured in PRBS
Transport layer test mode
Observe the DATA_OUT for
PRBS pattern
Passed
CoreJESD204BRX _0 
DATA_OUT[63:48],
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0] signals
are observed in Identify
Debugger
Test5.1: Deterministic Latency
The CoreJESD204BRX IP is configured in subclass 1 mode and ADC34J44 is configured in subclass 1
mode with parameters LMFK = 4429.
Table 24 shows the JESD204B deterministic latency measurement test results.
Table 24 • JESD204B Deterministic Latency Measurement Test Results
Test Case
Objective
Description
Passing Criteria
Result
TI_ADC5.1.1
Check LMFC
alignment
CoreJESD204BRX _0 
clkgen_lmfc and SYSREF_IN
signals are observed in Identify
Debugger
SYSREF_IN is aligned with
clkgen_lmfc
Passed
TI_ADC5.1.2
SYSREF
CoreJESD204BRX _0 
LMFC counter restarts after the
c2l_mf_phase and SYSREF_IN SYSREF_IN capture
signals are observed in Identify
Debugger
capture
TI_ADC5.1.3
Check latency
Passed
A single pulse input is applied to Latency is fixed for multiple runs Passed
(between the FPGA resets/link
ADC and the oscilloscope
channel A using 2-port splitter. resets)
Core output MSB is connected
to the oscilloscope channel B.
The delay between captured
pulses on channel A and
Channel B is measured
TI_ADC5.1.4
19
Check the data
latency during
user data phase
Check if the data latency is fixed The ramp pattern is seen without Passed
during the user data phase.
distortion
CoreJESD204BRX _0
CoreJESD204BRX _0 
DATA_OUT[63:48],
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0] signals are
observed in Identify Debugger
R e visio n 2
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
Test5.2: Deterministic Latency
The CoreJESD204BRX IP is configured in subclass 2 mode and ADC34J44 is configured in subclass 2
mode with parameters LMFK = 4429.
Table 25 shows the JESD204B deterministic latency measurement test results.
Table 25 • JESD204B Deterministic Latency Measurement Test Results
Test Case
Objective
Description
Passing Criteria
TI_ADC5.2.1
SYNC_N capture CoreJESD204BRX _0 
c2l_mf_phase and SYNC_N
signals are observed in Identify
Debugger
TI_ADC5.2.2
Check latency
Result
LMFC counter and the SYNC_N Passed
signals should be aligned
A single pulse input is applied to Latency is fixed for multiple runs Passed
ADC and the oscilloscope
(between the FPGA resets/core
channel A using 2-port splitter.
resets)
Core output MSB is connected
to the oscilloscope channel B
The delay between captured
pulses on channel A and
Channel B is measured
TI_ADC5.2.3
Check the data
latency during
user data phase
Check if the data latency is fixed The ramp pattern is seen without Passed
during the user data phase.
distortion
CoreJESD204BRX _0 
DATA_OUT[63:48],
DATA_OUT[47:32],
DATA_OUT[31:16],
DATA_OUT[15:0] signals are
observed in Identify Debugger
Revision 2
20
SmartFusion2 and IGLOO2 CoreJESD204BRX and CoreJESD204BTX
List of Changes
The following table shows important changes made in this document for each revision.
Revision
Revision 2
(June 2016)
Changes
Updated Table 1 for ADC34J44 device entry (SAR 80233).
3
Added a third-part reference in the "References" section (SAR 80233).
3
Added the "ADC34J44 Setup" section in this document (SAR 80233).
7
Added the ADC34J44 entry in the "Interoperability Tests" section and added the
ADC34J44 related details in Table 2 (SAR 80233).
Revision 1
(August 2015)
21
Page
9 and 9
Added "ADC34J44 Interoperability Tests" section in the document (SAR 80233).
17
Initial release
N/A
R e visio n 2
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: [email protected]
www.microsemi.com
© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.
About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.
51000022-2/06.16