GR712RC LEON 3FT Processor (11/15)

GR712RC
Dual-Core LEON3-FT SPARC V8 Processor
2016 Data Sheet
The most important thing we build is trust
Features
• Dual-core SPARC V8 integer unit, each with 7stage pipeline, 8 register windows, 4x4 KiB multiway instruction cache, 4x4 KiB multi-way data
cache, branch prediction, hardware multiplier
and divider, power-down mode, hardware watchpoints, single-vector trapping, SPARC reference
memory management unit, etc.
• Two high-performance double precision IEEE754 floating point units
• EDAC protected (8-bit BCH and 16-bit Reed-Solomon) interface to multiple 8/32-bits
• PROM/SRAM/SDRAM memory banks
• Advanced on-chip debug support unit
• 192 KiB EDAC protected on-chip memory
• Multiple SpaceWire links with RMAP target
• Redundant 1553 BC/RT/MT interfaces
• Redundant CAN 2.0 interfaces
• 10/100 Ethernet MAC with RMII interface
• SPI, I2C, ASCS16 (STR), SLINK interfaces
• CCSDS/ECSS Telemetry and Telecommand
• UARTs, Timers & Watchdog, GPIO ports,
• Interrupt controllers, Status registers, JTAG, etc.
• Configurable I/O switch matrix
Description
The GR712RC is an implementation of the dual-core
LEON3FT SPARC V8 processor using RadSafe technology. The fault tolerant design of the processor in
combination with the 
radiation tolerant 
technology provides 
total immunity to 
radiation effects.
Specification
• CQFP240 package
• Total Ionizing Dose (TID) up to 300 krad(Si)
• Proven Single-Event Latch-Up (SEL) immunity
• Proven Single-Event Upset (SEU) tolerance
• 1.8V & 3.3V supply
• 15 mW/MHz processor core power consumption
• 100 MHz system frequency
• 200 Mbps SpaceWire links
• 10 Mbps CCSDS Telecommand link
• 50 Mbps CCSDS Telemetry link
Applications
GR712RC is an advanced system-on-chip, targeting high reliability radhard space, aeronautics and military applications. It incorporates a
dual-core LEON3-FT SPARC V8 processor and is implemented with
Ramon Chips’ RadSafe library on TowerJazz’ 180 nm CMOS technology.
GR712RC-DS, Jan 2016, Version 2.3
www.cobham.com/gaisler
GR712RC
Table of contents
1
Introduction.............................................................................................................................. 3
1.1
1.2
1.3
1.4
1.5
2
Electrical characteristics ........................................................................................................ 17
2.1
2.2
2.3
2.4
3
Overview ................................................................................................................................................. 3
Key features............................................................................................................................................. 3
Signal overview ....................................................................................................................................... 5
Signal description .................................................................................................................................... 6
I/O switch matrix overview ..................................................................................................................... 7
Absolute maximum ratings ................................................................................................................... 17
Recommended operating conditions ..................................................................................................... 17
DC electrical performance characteristics............................................................................................. 18
AC electrical performance characteristics............................................................................................. 20
Mechanical description .......................................................................................................... 35
3.1
3.2
3.3
Package.................................................................................................................................................. 35
Pin assignment....................................................................................................................................... 35
Mechanical package drawings............................................................................................................... 41
4
Reference documents ............................................................................................................. 43
5
Screening, qualification, and quality control ......................................................................... 44
6
Ordering information ............................................................................................................. 44
7
Change record ........................................................................................................................ 44
GR712RC-DS, Jan 2016, Version 2.3
2
www.cobham.com/gaisler
GR712RC
1
Introduction
1.1
Overview
GR712RC is a dual-core LEON3-FT SPARC V8 processor, with advanced interface protocols, dedicated for high reliability Rad-Hard aerospace applications.
The GR712RC is fabricated at Tower Semiconductors Ltd., using standard 180 nm CMOS technology. It employs radiation-hard-by-design methods from Cobham Gaisler and the RadSafeTM technology from Ramon Chips Ltd., enabling superior radiation hardness together with excellent low-power
performance.
The LEON3-FT processors provide hardware support for cache coherency, processor enumeration
and interrupt steering. Each processor core includes a SPARC Reference Memory Management Unit
(SRMMU) and an IEEE-754 compliant double-precision FPU for floating-point operations. It can be
utilized in symmetric or asymmetric multiprocessing mode.
The GR712RC architecture is centered around the AMBA Advanced High-speed Bus (AHB), to
which the two LEON3-FT processors and other high-bandwidth units are connected. Low-bandwidth
units are connected to the AMBA Advanced Peripheral Bus (APB) which is accessed through an
AHB to APB bridge.
GR712RC is provided in a 240-pin, 0.5 mm pitch high-reliability ceramic quad flat package (CQFP).
This document is complemented by the GR712RC Dual-Core LEON3-FT SPARC V8 Processor User's Manual from Cobham Gaisler [UM], which provides information related to software integration and development.
1.2
Key features
•
Technology: 180 nm standard CMOS, Tower Semiconductors Ltd.
•
Library: 180 nm RadSafe™, Ramon Chips Ltd.
•
Package:
• 240 pin CQFP, 0.5 mm pitch, 32 mm ×x 32 mm, hermetically sealed, 
delivered with flat pins and insulating lead-frame for customer trim and form
• Core voltage 1.8V +/- 0.15V, I/O voltage 3.3V +/- 0.3V
• -55ºC to +125ºC temperature range
•
Radiation tolerance:
• TID: up to 300 krad(Si)
• SEL: > 118 MeV-cm2/mg
• SEU: proven tolerance with hardened flip-flops and error correction on all on-chip memories
• Error detection and correction on external memories
•
Maximum system clock frequency of 100 MHz (depending on external memory choice)
• Optional 2x internal system frequency multiplication by an all-digital DLL
• Optional 2x or 4x internal SpaceWire frequency multiplication by an all-digital DLL
• Clock-gating for each major core
•
Two LEON3-FT SPARC V8 compliant 32-bit processors, each with:
• SPARC reference memory management unit (SRMMU) with 32 TLB entries
• High-performance double-precision IEEE-754 floating point co-processor (GRFPU)
GR712RC-DS, Jan 2016, Version 2.3
3
www.cobham.com/gaisler
GR712RC
• 16 KiB multi-way instruction cache and 16 KiB multi-way data cache
•
Internal on-chip high speed AMBA (AHB) bus
•
Instruction trace and AMBA (AHB) trace buffers for debugging
•
Timer unit with four 32-bit timers including watchdog
•
Secondary timer unit with four 32-bit timers
•
Primary and secondary interrupt controller for 31 interrupts
•
On-chip 192 KiB memory block with EDAC
•
External memory support:
• up to 32 MiB PROM over two 16 MiB banks
• up to 32 MiB SRAM over two 16 MiB banks
• up to 1 GiB SDRAM over two 512 MiB banks
• Bus width: 8 bits, or 32 bit data plus 8/16 bits for EDAC checkbits, 24 bit address
• 8 bit BCH EDAC for SRAM and PROM, 16 bit Reed-Solomon EDAC for SDRAM
• Memory types: SRAM, SDRAM, PROM / EEPROM / NOR-FLASH and I/O address space
• Programmable wait-states:
• SRAM read/write cycle 2 - 5 clock cycles
• PROM / EEPROM / NOR-FLASH read cycle 2 - 32 clock periods
• One idle clock period between accesses to SRAM and PROM
•
Debug Support Unit (DSU) accessed via JTAG and SpaceWire RMAP targets
•
Two SpaceWire ports with RMAP targets, maximum 200 Mbps full-duplex data rate
•
Configurable I/O selection matrix, connecting a subset of available I/O units to 67 shared pins:
• Four SpaceWire ports, maximum 200 Mbps full-duplex data rate
• Redundant MIL-STD-1553B BRM (BC/RT/BM) interface
• Two CAN 2.0B bus controllers
• Six UART ports, with 8-byte FIFO
• Ethernet MAC with RMII 10/100 Mbps port
• SPI master serial port
• I2C master serial port
• ASCS16 (STR) serial port
• SLINK 6 MHz serial port
• CCSDS / ECSS Telecommand decoder (five input channels), maximum 10 Mbps input rate
• CCSDS / ECSS Telemetry encoder, maximum 50 Mbps output rate
• 26 input and 38 input/output general purpose ports
GR712RC-DS, Jan 2016, Version 2.3
4
www.cobham.com/gaisler
GR712RC
1.3
Signal overview
INCLK
RESETN
DLLBPN
Clock & Reset
Error & Watchdog
TESTEN
SCANEN
Test
TCK
TMS
TDI
DATA[31:0]
CB[7:0]
BRDYN
BEXCN
SPWCLK
SPW_RXD[1:0]
SPW_RXS[1:0]
JTAG
Memory interface
SpaceWire Links
I/O Matrix
ERRORN
WDOGN
TDO
ADDRESS[23:0]
RAMSN[1:0]
RAMOEN
RAMWEN
ROMSN[1:0]
IOSN
OEN
READ
WRITEN
SDCLK
SPW_TXD[1:0]
SPW_TXS[1:0]
SWMX[66:0]
Figure 1. Signal overview
GR712RC-DS, Jan 2016, Version 2.3
5
www.cobham.com/gaisler
GR712RC
1.4
Signal description
The external signals are described in table 1.
Table 1. External signals
Name
Usage
Direction
Polarity
INCLK
Main system clock
In
-
DLLBPN
DLL bypass
In
Low
RESETN
System reset
In
Low
SCANEN
Scan enable (tie to ground)
In
High
TESTEN
Test enable (tie to ground)
In
High
ERRORN
Processor error mode
Out-Tri
Low
WDOGN
Watchdog output
Out-Tri
Low
TCK
JTAG Test Clock
In
-
TMS
JTAG Test Mode
In
High
TDI
JTAG Test Data Input
In
-
TDO
JTAG Test Data Output
Out
-
ADDRESS[23:0]
Memory address
Out
-
DATA[31:0]
Memory data bus
In/Out
-
CB[7:0]
Memory checkbits
In/Out
-
RAMSN[1:0]
SRAM chip selects
Out
Low
RAMOEN
SRAM output enable
Out
Low
RAMWEN
SRAM write enable strobe
Out
Low
OEN
PROM, I/O output enable
Out
Low
WRITEN
PROM, I/O write strobe
Out
Low
Out
High
READ
SRAM, PROM I/O read indicator
1)
IOSN
I/O area chip select
Out
Low
ROMSN[1:0]
PROM chip selects
Out
Low
BRDYN
Bus ready
In
Low
BEXCN
Bus exception
In
Low
SDCLK
SDRAM clock
Out
-
SPWCLK
SpaceWire receiver and transmitter clock
In
-
SPW_RXD[1:0]
SpaceWire Data input
In
High
SPW_RXS[1:0]
SpaceWire Strobe input
In
High
SPW_TXD[1:0]
SpaceWire Data output
Out
High
SPW_TXS[1:0]
SpaceWire Strobe output
Out
High
SWMX[66:0]
I/O switch matrix
In/Out
-
Note 1:
The READ signal may also change value during SDRAM accesses.
GR712RC-DS, Jan 2016, Version 2.3
6
www.cobham.com/gaisler
GR712RC
1.5
I/O switch matrix overview
The I/O switch matrix provides access to several I/O units. When an interface is not activated, its pins
automatically become general purpose I/O. After reset, all I/O switch matrix pins are defined as I/O
until programmed otherwise. Note that some pins are input only, some are output only, and the rest are
both input and output, as described in table 3. The enabling of the I/O units is described in [UM].
Figure 2 shows how the various I/O units are connected to the I/O switch matrix.
Table 2 shows examples of possible configurations using the I/O switch matrix. Note that two SpaceWire interfaces are always available outside the I/O switch matrix.
Table 3 shows a listing of all pins in the I/O switch matrix, indicating the priority amongst them.
Table 4 shows a listing of pin utilization per I/O unit.
Table 5 shows a listing of pins in the I/O switch matrix grouped per function (GPIO is not listed).
Table 6 shows a complete listing of conflicts between I/O units (GPIO is not listed).
TMS, TCK
TDI, TDO
JTAG
INCLK, SPWCLK
DLLBPN, RESETN
ERRORN
DSU
LEON3FT
LEON3FT 192K RAM CANMUX CLKGATE GPREG
TESTEN
SCANEN
WDOGN
IRQ
STAT
TIMERS
AMBA
TM
MCTRL SDRAM
1553
TC
SLINK
CAN
I2C
ETH
SPI
UART
UART
UART
UART
UART
UART
ASCS
GPIO
GPIO
SPW
SPW
SPW
SPW
SWMX[66:0]
ADDRESS[23:0]
DATA[31:0], CB[7:0]
CTRL, SDCLK
SPW
SPW
SPW_TXD/S[1:0]
SPW_RXD/S[1:0]
Figure 2. Architectural block diagram showing connections to the I/O switch matrix
Table 2. Example of possible configurations using the I/O switch matrix. Note that other configurations are also possible.
Interface type
Example configuration
CF0
SDRAM with or without Reed-Solomon
CF1
CF2
CF3
CF4
CF5
1
1
1
1
1
6
UART
6
4
6
6
6
SpaceWire
6
4
2
2
4
3
1
1
Ethernet
MIL-STD-1553B BC/RT/BM
1
I2C
1
SPI
1
1
SLINK
1
ASCS16
1
CCSDS/ECSS TC & TM
GR712RC-DS, Jan 2016, Version 2.3
1
1
1
1
1
1
1
7
www.cobham.com/gaisler
GR712RC
Table 3. I/O switch matrix pin description, defining the order of priority for outputs and input/outputs, with the highest
priority for each pin listed first.
Pin no.
Pin name
Pin function
Polarity
Reset value
Dir.
Description
4
SWMX[0]
UART_TX[0]
-
High
Out
UART Transmit 0
3
SWMX[1]
UART_RX[0]
-
2
SWMX[2]
UART_TX[1]
-
1
SWMX[3]
UART_RX[1]
-
GPIO[0]
-
In
GPIO 1 Register, bit 0 (input only)
240
SWMX[4]
UART_TX[2]
-
High-Z
Out
UART Transmit 2
GPIO[1]
-
High-Z
In/Out
GPIO 1 Register, bit 1
MCFG3[8]
-
In
At reset, bit 8 in MCFG3 register in the memory controller is set from this input.
239
238
233
232
231
230
229
228
227
226
225
220
219
SWMX[5]
SWMX[6]
SWMX[7]
SWMX[8]
SWMX[9]
SWMX[10]
SWMX[11]
SWMX[12]
SWMX[13]
SWMX[14]
SWMX[15]
SWMX[16]
SWMX[17]
High
In
UART Receive 0
Out
UART Transmit 1
In
UART Receive 1
UART_RX[2]
-
In
UART Receive 2
GPIO[2]
-
In
GPIO 1 Register, bit 2 (input only)
UART_TX[3]
-
High-Z
Out
UART Transmit 3
GPIO[3]
-
High-Z
In/Out
GPIO 1 Register, bit 3
MCFG1[9]
-
In
At reset, bit 9 in MCFG1 register in the memory controller is set from this input
UART_RX[3]
-
In
UART Receive 3
GPIO[4]
-
In
GPIO 1 Register, bit 4 (input only)
UART_TX[4]
-
Out
UART Transmit 4
High-Z
TMDO
-
High-Z
Out
Telemetry Data Out
GPIO[5]
-
High-Z
In/Out
GPIO 1 Register, bit 5
UART_RX[4]
-
In
UART Receive 4
TMCLKI
Rising
In
Telemetry Clock Input
GPIO[6]
-
UART_TX[5]
-
High-Z
In
GPIO 1 Register, bit 6 (input only)
Out
UART Transmit 5
TMCLKO
-
High-Z
Out
Telemetry Clock Output
GPIO[7]
-
High-Z
In/Out
GPIO 1 Register, bit 7
UART_RX[5]
-
In
UART Receive 5
TCACT[0]
High
In
Telecommand Active 0
In
GPIO 1 Register, bit 8 (input only)
Out
SpaceWire Transmit Strobe 4
GPIO[8]
-
SPW_TXS[4]
High
High-Z
SDCSN[0]
Low
High-Z
Out
SDRAM Select 0
GPIO[9]
-
High-Z
In/Out
GPIO 1 Register, bit 9
SPW_TXD[4]
High
High-Z
Out
SpaceWire Transmit Data 4
SDCSN[1]
Low
High-Z
Out
SDRAM Select 1
High-Z
GPIO[10]
-
In/Out
GPIO 1 Register, bit 10
SPW_RXS[4]
High
In
SpaceWire Receive Strobe 4
TCCLK[0]
Rising
In
Telecommand Clock 0
A16DASA
-
In
ASCS DAS A - Slave data in
GPIO[11]
-
In
GPIO 1 Register, bit 11 (input only)
SPW_RXD[4]
High
In
SpaceWire Receive Data 4
TCD[0]
-
In
Telecommand Data 0
A16DASB
-
In
ASCS DAS B - Slave data in
In
GPIO 1 Register, bit 12 (input only)
GPIO[12]
-
SPW_TXS[2]
High
High-Z
Out
SpaceWire Transmit Strobe 2
CANTXA
-
High-Z
Out
CAN Transmit A
GPIO[13]
-
High-Z
In/Out
GPIO 1 Register, bit 13
SPW_TXD[2]
High
High-Z
Out
SpaceWire Transmit Data 2
CANTXB
-
High-Z
Out
CAN Transmit B
GPIO[14]
-
High-Z
In/Out
GPIO 1 Register, bit 14
GR712RC-DS, Jan 2016, Version 2.3
8
www.cobham.com/gaisler
GR712RC
Table 3. I/O switch matrix pin description, defining the order of priority for outputs and input/outputs, with the highest
priority for each pin listed first.
Pin no.
Pin name
Pin function
Polarity
218
SWMX[18]
SPW_RXS[2]
CANRXA
217
203
202
201
200
197
196
193
192
191
SWMX[19]
SWMX[20]
SWMX[21]
SWMX[22]
SWMX[23]
SWMX[24]
SWMX[25]
SWMX[26]
SWMX[27]
SWMX[28]
Reset value
Dir.
Description
High
In
SpaceWire Receive Strobe 2
-
In
CAN Receive A
GPIO[15]
-
In
GPIO 1 Register, bit 15 (input only)
SPW_RXD[2]
High
In
SpaceWire Receive Data 2
CANRXB
-
In
CAN Receive B
GPIO[16]
-
In
GPIO 1 Register, bit 16 (input only)
SPW_TXS[3]
High
High-Z
Out
SpaceWire Transmit Strobe 3
SLSYNC
High
High-Z
Out
SLINK SYNC
GPIO[17]
-
High-Z
In/Out
GPIO 1 Register, bit 17
SPW_TXD[3]
High
High-Z
Out
SpaceWire Transmit Data 3
A16ETR
High
High-Z
Out
ASCS ETR - Synchronization signal
GPIO[18]
-
High-Z
In/Out
GPIO 1 Register, bit 18
SPW_RXS[3]]
High
In
SpaceWire Receive Strobe 3
GPIO[19]
-
In
GPIO 1 Register, bit 19 (input only)
SPW_RXD[3]
High
In
SpaceWire Receive Data 3
GPIO[20]
-
In
GPIO 1 Register, bit 20 (input only)
SPW_TXD[5]
High
High-Z
Out
SpaceWire Transmit Data 5
SDDQM[0]
High
High-Z
Out
SDRAM Data Mask 0, corresponds to
DATA[7:0]
GPIO[21]
-
High-Z
In/Out
GPIO 1 Register, bit 21
SPW_TXS[5]
High
High-Z
Out
SpaceWire Transmit Strobe 5
SDDQM[1]
High
High-Z
Out
SDRAM Data Mask 1, corresponds to
DATA[15:8]
High-Z
GPIO[22]
-
In/Out
GPIO 1 Register, bit 22
SPW_RXS[5]
High
In
SpaceWire Receive Strobe 5
TCRFAVL[0]
High
In
Telecommand RF Available 0
GPIO[23]
-
In
GPIO 1 Register, bit 23 (input only)
SPW_RXD[5]
High
In
SpaceWire Receive Data 5
TCCLK[1]
Rising
In
Telecommand Clock 1
GPIO[24]
-
In
GPIO 1 Register, bit 24 (input only)
1553RXENA
High
High-Z
Out
MIL-STD-1553B Receive Enable A
High-Z
Out
Proprietary, enabled by CAN
-
190
SWMX[29]
RMTXD[0]
-
High-Z
Out
Ethernet Transmit Data 0
GPIO[25]
-
High-Z
In/Out
GPIO 1 Register, bit 25
1553TXA
High
High-Z
Out
MIL-STD-1553B Transmit Positive A
High-Z
Out
Proprietary, enabled by CAN
-
189
188
185
SWMX[30]
SWMX[31]
SWMX[32]
RMTXD[1]
-
High-Z
Out
Ethernet Transmit Data 1
GPIO[26]
-
High-Z
In/Out
GPIO 1 Register, bit 26
1553RXA
High
In
MIL-STD-1553B Receive Positive A
TCD[1]
-
In
Telecommand Data 1
RMRXD[0]
-
In
Ethernet Receive Data 0
GPIO[27]
-
In
GPIO 1 Register, bit 27 (input only)
1553RXNA
Low
In
MIL-STD-1553B Receive Negative A
TCACT[1]
High
In
Telecommand Active 1
RMRXD[1]
-
In
Ethernet Receive Data 1
GPIO[28]
-
In
GPIO 1 Register, bit 28 (input only)
1553TXNA
Low
High-Z
Out
MIL-STD-1553B Transmit Negative A
High-Z
Out
Proprietary, enabled by CAN
-
184
SWMX[33]
RMTXEN
High
High-Z
Out
Ethernet Transmit Enable
GPIO[29]
-
High-Z
In/Out
GPIO 1 Register, bit 29
1553TXINHA
High
High-Z
Out
MIL-STD-1553B Transmit Inhibit A
GR712RC-DS, Jan 2016, Version 2.3
9
www.cobham.com/gaisler
GR712RC
Table 3. I/O switch matrix pin description, defining the order of priority for outputs and input/outputs, with the highest
priority for each pin listed first.
Pin no.
Pin name
Pin function
Polarity
Reset value
High-Z
Out
Proprietary, enabled by CAN
GPIO[30]
-
High-Z
In/Out
GPIO 1 Register, bit 30
1553RXB
High
In
MIL-STD-1553B Receive Positive B
TCRFAVL[1]
High
In
Telecommand RF Available 1
-
183
182
179
178
177
SWMX[34]
SWMX[35]
SWMX[36]
SWMX[37]
SWMX[38]
Dir.
Description
RMCRSDV
High
In
Ethernet Carrier Sense / Data Valid
GPIO[31]
-
In
GPIO 1 Register, bit 31 (input only)
1553RXNB
Low
In
MIL-STD-1553B Receive Negative B
TCCLK[2]
Rising
In
Telecommand Clock 2
RMINTN
Low
In
Ethernet Management Interrupt
GPIO[32]
-
In
GPIO 2 Register, bit 0 (input only)
1553RXENB
High
High-Z
Out
MIL-STD-1553B Receive Enable B
A16MCS
High
High-Z
Out
ASCS MCS - TM start/stop signal
RMMDIO
-
High-Z
In/Out
Ethernet Media Interface Data
GPIO[33]
-
High-Z
In/Out
GPIO 2 Register, bit 1
1553TXB
High
High-Z
Out
MIL-STD-1553B Transmit Positive B
A16HS
High
High-Z
Out
ASCS HS - TM/TC serial clock
RMMDC
-
High-Z
Out
Ethernet Media Interface Clock
GPIO[34]
-
High-Z
In/Out
GPIO 2 Register, bit 2
SpaceWire clock
divisor registers
-
In
At reset, bits 8 and 0 in the clock divisor register of the SpaceWire interfaces are set from
this input
1553CK
-
In
MIL-STD-1553B Clock
TCD[2]
-
In
Telecommand Data 2
RMRFCLK
-
In
Ethernet Reference Clock
GPIO[35]
-
In
GPIO 2 Register, bit 3 (input only)
176
SWMX[39]
TCACT[2]
High
In
Telecommand Active 2
GPIO[36]
-
175
SWMX[40]
1553TXNB
Low
174
173
172
169
166
165
SWMX[41]
SWMX[42]
SWMX[43]
SWMX[44]
SWMX[45]
SWMX[46]
High-Z
In
GPIO 2 Register, bit 4 (input only)
Out
MIL-STD-1553B Transmit Negative B
A16DCS
-
High-Z
Out
ASCS DCS - Slave data out
GPIO[37]
-
High-Z
In/Out
GPIO 2 Register, bit 5
SpaceWire clock
divisor registers
-
In
At reset, bits 9 and 1 in the clock divisor register of the SpaceWire interfaces are set from
this input
1553TXINHB
High
High-Z
Out
MIL-STD-1553B Transmit Inhibit B
A16MAS
High
High-Z
Out
ASCS MAS - TM start/stop signal
GPIO[38]
-
High-Z
In/Out
GPIO 2 Register, bit 6
TCRFAVL[2]
High
In
Telecommand RF Available 2
GPIO[39]
-
In
GPIO 2 Register, bit 7 (input only)
GPIO[40]
-
SpaceWire clock
divisor registers
-
SPICLK
High-Z
Out
Proprietary, enabled by CAN
High-Z
In/Out
GPIO 2 Register, bit 8
In
At reset, bits 10 and 2 in the clock divisor register of the SpaceWire interfaces are set from
this input
SPI Clock
High-Z
Out
SLO
-
High-Z
Out
SLINK Data Out
GPIO[41]
-
High-Z
In/Out
GPIO 2 Register, bit 9
SPIMOSI
-
High-Z
Out
SPI Master Out Slave In
SLCLK
High
High-Z
Out
SLINK Clock
GPIO[42]
-
High-Z
In/Out
GPIO 2 Register, bit 10
SpaceWire clock
divisor registers
-
In
At reset, bits 11 and 3 in the clock divisor register of the SpaceWire interfaces are set from
this input
TCCLK[3]
Rising
In
Telecommand Clock 3
GPIO[43]
-
In
GPIO 2 Register, bit 11 (input only)
GR712RC-DS, Jan 2016, Version 2.3
10
www.cobham.com/gaisler
GR712RC
Table 3. I/O switch matrix pin description, defining the order of priority for outputs and input/outputs, with the highest
priority for each pin listed first.
Pin no.
Pin name
Pin function
164
SWMX[47]
TCD[3]
-
In
Telecommand Data 3
GPIO[44]
-
In
GPIO 2 Register, bit 12 (input only)
SDCASN
Low
High-Z
Out
SDRAM Column Address Strobe
GPIO[45]
-
High-Z
In/Out
GPIO 2 Register, bit 13
SDRASN
Low
High-Z
Out
SDRAM Row Address Strobe
GPIO[46]
-
High-Z
In/Out
GPIO 2 Register, bit 14
TCACT[3]
High
In
Telecommand Active 3
GPIO[47]
-
In
GPIO 2 Register, bit 15 (input only)
163
162
161
160
157
155
SWMX[48]
SWMX[49]
SWMX[50]
SWMX[51]
SWMX[52]
SWMX[53]
Polarity
Reset value
SPIMISO
Dir.
Description
In
SPI Master In Slave Out
TCRFAVL[3]
High
In
Telecommand RF Available 3
SLI
-
In
SLINK Data In
GPIO[48]
-
In
GPIO 2 Register, bit 16 (input only)
SDWEN
Low
High-Z
Out
SDRAM Write Enable
GPIO[49]
-
High-Z
In/Out
GPIO 2 Register, bit 17
SDDQM[2]
High
High-Z
Out
SDRAM Data Mask 2, corresponds to
DATA[23:16]
GPIO[50]
-
High-Z
In/Out
GPIO 2 Register, bit 18
154
SWMX[54]
SDDQM[3]
High
High-Z
Out
SDRAM Data Mask 3, corresponds to
DATA[31:24]
GPIO[51]
-
High-Z
In/Out
GPIO 2 Register, bit 19
153
SWMX[55]
TCACT[4]
High
In
Telecommand Active 4
GPIO[52]
-
In
GPIO 2 Register, bit 20 (input only)
TCRFAVL[4]
High
In
Telecommand RF Available 4
GPIO[53]
-
In
GPIO 2 Register, bit 21 (input only)
High-Z
In/Out
I2C Serial Data
High-Z
In/Out
GPIO 2 Register, bit 22
In
Telecommand Clock 4
High-Z
In/Out
I2C Serial Clock
High-Z
In/Out
GPIO 2 Register, bit 23
In
Telecommand Data 4
Reed-Solomon Check Bit 8
144
143
142
140
137
136
135
132
129
128
127
SWMX[56]
SWMX[57]
SWMX[58]
SWMX[59]
SWMX[60]
SWMX[61]
SWMX[62]
SWMX[63]
SWMX[64]
SWMX[65]
SWMX[66]
I2CSDA
GPIO[54]
-
TCCLK[4]
Rising
I2CSCL
GPIO[55]
-
TCD[4]
-
CB[8]
-
High-Z
In/Out
GPIO[56]
-
High-Z
In/Out
GPIO 2 Register, bit 24
CB[9]
-
High-Z
In/Out
Reed-Solomon Check Bit 9
GPIO[57]
-
High-Z
In/Out
GPIO 2 Register, bit 25
CB[10]
-
High-Z
In/Out
Reed-Solomon Check Bit 10
GPIO[58]
-
High-Z
In/Out
GPIO 2 Register, bit 26
CB[11]
-
High-Z
In/Out
Reed-Solomon Check Bit 11
GPIO[59]
-
High-Z
In/Out
GPIO 2 Register, bit 27
CB[12]
-
High-Z
In/Out
Reed-Solomon Check Bit 12
GPIO[60]
-
High-Z
In/Out
GPIO 2 Register, bit 28
CB[13]
-
High-Z
In/Out
Reed-Solomon Check Bit 13
GPIO[61]
-
High-Z
In/Out
GPIO 2 Register, bit 29
CB[14]
-
High-Z
In/Out
Reed-Solomon Check Bit 14
GPIO[62]
-
High-Z
In/Out
GPIO 2 Register, bit 30
CB[15]
-
High-Z
In/Out
Reed-Solomon Check Bit 15
GPIO[63]
-
High-Z
In/Out
GPIO 2 Register, bit 31
GR712RC-DS, Jan 2016, Version 2.3
11
www.cobham.com/gaisler
GR712RC
Table 4. I/O switch matrix pin utilization per interface type
Interface type
Pin function
Direction
SDRAM
SDDQM[3:0], SDCASN, SDRASN, SDWEN, SDCSN[1:0]
SDRAM Reed-Solomon
CB[15:8]
GPIO
GPIO[...]
26
UART
UART_TX[5:0], UART_RX[5:0]
6
6
SpaceWire
SPW_RXD[5:2], SPW_RXS[5:2], SPW_TXD[5:2], SPW_TXS[5:2]
8
8
Ethernet
RMTXD[1:0], RMTXEN, RMMDIO, RMMDC
5
4
CAN
CANTXA, CANRXA, CANTXB, CANRXB
4
4
8
MIL-STD-1553B BC/RT/BM
1553RXA, 1553RXNA, 1553RXENA, 1553TXA, 1553TXNA, 1553TXINHA
5
8
13
In
Out
Total
In/Out
9
9
8
8
38
64
12
16
1
10
RMRFCLK, RMRXD[0:1], RMCRSDV, RMINTN
1553RXB, 1553RXNB, 1553RXENB, 1553TXB, 1553TXNB, 1553TXINHB
1553CK
I2C
I2CSDA, I2CSCL
SPI
SPICLK, SPIMOSI, SPIMISO
1
2
2
3
SLINK
SLI, SLO, SLSYNC, SLCLK
1
3
4
5
ASCS16
A16DASA, A16DASB, A16MCS, A16HS, A16DCS, A16MAS, A16ETR
2
CCSDS/ECSS TC
TCACT[4:0], TCD[4:0], TCCLK[4:0], TCRFAV[4:0]
20
CCSDS/ECSS TM
TMDO, TMCLKO, TMCLKI
1
GR712RC-DS, Jan 2016, Version 2.3
12
2
7
20
2
3
www.cobham.com/gaisler
GR712RC
Table 5. I/O switch matrix pins listed per function, including supporting signals outside the I/O switch matrix.
Pin no.
Pin name
Pin function
Polarity
Reset value
Dir.
Description
157
SWMX[52]
SDWEN
Low
High-Z
Out
SDRAM Write Enable
163
SWMX[48]
SDCASN
Low
High-Z
Out
SDRAM Column Address Strobe
162
SWMX[49]
SDRASN
Low
High-Z
Out
SDRAM Row Address Strobe
228
SWMX[12]
SDCSN[0]
Low
High-Z
Out
SDRAM Select 0
227
SWMX[13]
SDCSN[1]
Low
High-Z
Out
SDRAM Select 1
197
SWMX[24]
SDDQM[0]
High
High-Z
Out
SDRAM Data Mask 0, corresponds to
DATA[7:0]
196
SWMX[25]
SDDQM[1]
High
High-Z
Out
SDRAM Data Mask 1, corresponds to
DATA[15:8]
155
SWMX[53]
SDDQM[2]
High
High-Z
Out
SDRAM Data Mask 2, corresponds to
DATA[23:16]
154
SWMX[54]
SDDQM[3]
High
High-Z
Out
SDRAM Data Mask 3, corresponds to
DATA[31:24]
140
SWMX[59]
CB[8]
-
High-Z
In/Out
Check Bit 8, Reed-Solomon
137
SWMX[60]
CB[9]
-
High-Z
In/Out
Check Bit 9, Reed-Solomon
136
SWMX[61]
CB[10]
-
High-Z
In/Out
Check Bit 10, Reed-Solomon
135
SWMX[62]
CB[11]
-
High-Z
In/Out
Check Bit 11, Reed-Solomon
132
SWMX[63]
CB[12]
-
High-Z
In/Out
Check Bit 12, Reed-Solomon
129
SWMX[64]
CB[13]
-
High-Z
In/Out
Check Bit 13, Reed-Solomon
128
SWMX[65]
CB[14]
-
High-Z
In/Out
Check Bit 14, Reed-Solomon
127
SWMX[66]
CB[15]
-
High-Z
In/Out
Check Bit 15, Reed-Solomon
ADDRESS[16:2]
ADDRESS[16:2]
-
Low
Out
Memory address
DATA[31:0]
DATA[31:0]
-
High-Z
In/Out
Memory data bus
High-Z
CB[7:0]
CB[7:0]
-
In/Out
Memory checkbits
240
SWMX[4]
MCFG3[8]
-
In
At reset, bit 8 in MCFG3 register in the
memory controller is set from this input.
238
SWMX[6]
MCFG1[9]
-
In
At reset, bit 9 in MCFG1 register in the
memory controller is set from this input
4
SWMX[0]
UART_TX[0]
-
High
Out
UART Transmit 0
3
SWMX[1]
UART_RX[0]
-
In
UART Receive 0
2
SWMX[2]
UART_TX[1]
-
High
Out
UART Transmit 1
1
SWMX[3]
UART_RX[1]
-
In
UART Receive 1
240
SWMX[4]
UART_TX[2]
-
High-Z
Out
UART Transmit 2
In
UART Receive 2
High-Z
Out
UART Transmit 3
In
UART Receive 3
High-Z
Out
UART Transmit 4
In
UART Receive 4
High-Z
Out
UART Transmit 5
239
SWMX[5]
UART_RX[2]
-
238
SWMX[6]
UART_TX[3]
-
233
SWMX[7]
UART_RX[3]
-
232
SWMX[8]
UART_TX[4]
-
231
SWMX[9]
UART_RX[4]
-
230
SWMX[10]
UART_TX[5]
-
229
SWMX[11]
UART_RX[5]
-
In
UART Receive 5
213
SPW_RXD[0]
SPW_RXD[0]
High
In
SpaceWire Receive Data 0
214
SPW_RXS[0]
SPW_RXS[0]
High
In
SpaceWire Receive Strobe 0
215
SPW_TXD[0]
SPW_TXD[0]
High
Low
Out
SpaceWire Transmit Data 0
216
SPW_TXS[0]
SPW_TXS[0]
High
Low
Out
SpaceWire Transmit Strobe 0
204
SPW_RXD[1]
SPW_RXD[1]
High
In
SpaceWire Receive Data 1
205
SPW_RXS[1]
SPW_RXS[1]
High
In
SpaceWire Receive Strobe 1
206
SPW_TXD[1]
SPW_TXD[1]
High
Low
Out
SpaceWire Transmit Data 1
209
SPW_TXS[1]
SPW_TXS[1]
High
Low
Out
SpaceWire Transmit Strobe 1
217
SWMX[19]
SPW_RXD[2]
High
In
SpaceWire Receive Data 2
218
SWMX[18]
SPW_RXS[2]
High
219
SWMX[17]
SPW_TXD[2]
High
High-Z
220
SWMX[16]
SPW_TXS[2]
High
High-Z
Out
SpaceWire Transmit Strobe 2
200
SWMX[23]
SPW_RXD[3]
High
In
SpaceWire Receive Data 3
201
SWMX[22]
SPW_RXS[3]
High
In
SpaceWire Receive Strobe 3
GR712RC-DS, Jan 2016, Version 2.3
13
In
SpaceWire Receive Strobe 2
Out
SpaceWire Transmit Data 2
www.cobham.com/gaisler
GR712RC
Table 5. I/O switch matrix pins listed per function, including supporting signals outside the I/O switch matrix.
Pin no.
Pin name
Pin function
Polarity
Reset value
Dir.
Description
202
SWMX[21]
SPW_TXD[3]
High
High-Z
Out
SpaceWire Transmit Data 3
203
SWMX[20]
SPW_TXS[3]
High
High-Z
225
SWMX[15]
SPW_RXD[4]
High
226
SWMX[14]
SPW_RXS[4]
High
227
SWMX[13]
SPW_TXD[4]
High
High-Z
228
SWMX[12]
SPW_TXS[4]
High
High-Z
192
SWMX[27]
SPW_RXD[5]
High
Out
SpaceWire Transmit Strobe 3
In
SpaceWire Receive Data 4
In
SpaceWire Receive Strobe 4
Out
SpaceWire Transmit Data 4
Out
SpaceWire Transmit Strobe 4
In
SpaceWire Receive Data 5
193
SWMX[26]
SPW_RXS[5]
High
In
SpaceWire Receive Strobe 5
197
SWMX[24]
SPW_TXD[5]
High
High-Z
Out
SpaceWire Transmit Data 5
196
SWMX[25]
SPW_TXS[5]
High
High-Z
Out
SpaceWire Transmit Strobe 5
178
SWMX[37]
-
In
At reset, bits 8 & 0 are set from this input
175
SWMX[40]
-
In
At reset, bits 9 & 1 are set from this input
172
SWMX[43]
SpaceWire clock
divisor registers
values at reset, all
other bits are zero.
-
In
At reset, bits 10 & 2 are set from this input
166
SWMX[45]
-
In
At reset, bits 11 & 3 are set from this input
185
SWMX[32]
RMTXEN
High
High-Z
Out
Ethernet Transmit Enable
191
SWMX[28]
RMTXD[0]
-
High-Z
Out
Ethernet Transmit Data 0
190
SWMX[29]
RMTXD[1]
-
High-Z
Out
Ethernet Transmit Data 1
189
SWMX[30]
RMRXD[0]
-
In
Ethernet Receive Data 0
188
SWMX[31]
RMRXD[1]
-
In
Ethernet Receive Data 1
183
SWMX[34]
RMCRSDV
High
In
Ethernet Carrier Sense / Data Valid
182
SWMX[35]
RMINTN
Low
In
Ethernet Management Interrupt
179
SWMX[36]
RMMDIO
-
High-Z
In/Out
Ethernet Media Interface Data
178
SWMX[37]
RMMDC
-
High-Z
Out
Ethernet Media Interface Clock
In
Ethernet Reference Clock
High-Z
Out
CAN Transmit A
In
CAN Receive A
High-Z
Out
CAN Transmit B
177
SWMX[38]
RMRFCLK
-
220
SWMX[16]
CANTXA
-
218
SWMX[18]
CANRXA
-
219
SWMX[17]
CANTXB
-
217
SWMX[19]
CANRXB
In
CAN Receive B
191
SWMX[28]
-
High-Z
Out
Proprietary, enabled by CAN
190
SWMX[29]
-
High-Z
Out
Proprietary, enabled by CAN
185
SWMX[32]
-
High-Z
Out
Proprietary, enabled by CAN
184
SWMX[33]
-
High-Z
Out
Proprietary, enabled by CAN
172
SWMX[43]
-
High-Z
Out
Proprietary, enabled by CAN
177
SWMX[38]
1553CK
-
184
SWMX[33]
1553TXINHA
High
190
SWMX[29]
1553TXA
High
High-Z
Out
MIL-STD-1553B Transmit Positive A
185
SWMX[32]
1553TXNA
Low
High-Z
Out
MIL-STD-1553B Transmit Negative A
191
SWMX[28]
1553RXENA
High
High-Z
Out
MIL-STD-1553B Receive Enable A
189
SWMX[30]
1553RXA
High
In
MIL-STD-1553B Receive Positive A
High-Z
In
MIL-STD-1553B Clock
Out
MIL-STD-1553B Transmit Inhibit A
188
SWMX[31]
1553RXNA
Low
174
SWMX[41]
1553TXINHB
High
178
SWMX[37]
1553TXB
High
High-Z
Out
MIL-STD-1553B Transmit Positive B
175
SWMX[40]
1553TXNB
Low
High-Z
Out
MIL-STD-1553B Transmit Negative B
179
SWMX[36]
1553RXENB
High
High-Z
Out
MIL-STD-1553B Receive Enable B
183
SWMX[34]
1553RXB
High
In
MIL-STD-1553B Receive Positive B
182
SWMX[35]
1553RXNB
Low
In
MIL-STD-1553B Receive Negative B
143
SWMX[57]
I2CSDA
In/Out
I2C Serial Data
High-Z
High-Z
In
MIL-STD-1553B Receive Negative A
Out
MIL-STD-1553B Transmit Inhibit B
142
SWMX[58]
I2CSCL
High-Z
In/Out
I2C Serial Clock
169
SWMX[44]
SPICLK
High-Z
Out
SPI Clock
166
SWMX[45]
SPIMOSI
160
SWMX[51]
SPIMISO
GR712RC-DS, Jan 2016, Version 2.3
-
High-Z
14
Out
SPI Master Out Slave In
In
SPI Master In Slave Out
www.cobham.com/gaisler
GR712RC
Table 5. I/O switch matrix pins listed per function, including supporting signals outside the I/O switch matrix.
Pin no.
Pin name
Pin function
Polarity
Reset value
Dir.
Description
203
SWMX[20]
SLSYNC
High
High-Z
Out
SLINK SYNC
166
SWMX[45]
SLCLK
High
High-Z
Out
SLINK Clock
160
SWMX[51]
SLI
-
In
SLINK Data In
169
SWMX[44]
SLO
-
226
SWMX[14]
A16DASA
-
High-Z
Out
SLINK Data Out
In
ASCS DAS A - Slave data in
225
SWMX[15]
A16DASB
-
In
ASCS DAS B - Slave data in
202
SWMX[21]
A16ETR
High
High-Z
Out
ASCS ETR - Synchronization signal
175
SWMX[40]
A16DCS
-
High-Z
Out
ASCS DCS - Slave data out
174
SWMX[41]
A16MAS
High
High-Z
Out
ASCS MAS - TM start/stop signal
179
SWMX[36]
A16MCS
High
High-Z
Out
ASCS MCS - TC start/stop signal
178
SWMX[37]
A16HS
High
High-Z
Out
ASCS HS - TM/TC serial clock
229
SWMX[11]
TCACT[0]
High
In
Telecommand Active 0
226
SWMX[14]
TCCLK[0]
Rising
In
Telecommand Clock 0
225
SWMX[15]
TCD[0]
-
In
Telecommand Data 0
193
SWMX[26]
TCRFAVL[0]
High
In
Telecommand RF Available 0
188
SWMX[31]
TCACT[1]
High
In
Telecommand Active 1
192
SWMX[27]
TCCLK[1]
Rising
In
Telecommand Clock 1
189
SWMX[30]
TCD[1]
-
In
Telecommand Data 1
183
SWMX[34]
TCRFAVL[1]
High
In
Telecommand RF Available 1
176
SWMX[39]
TCACT[2]
High
In
Telecommand Active 2
182
SWMX[35]
TCCLK[2]
Rising
In
Telecommand Clock 2
177
SWMX[38]
TCD[2]
-
In
Telecommand Data 2
173
SWMX[42]
TCRFAVL[2]
High
In
Telecommand RF Available 2
161
SWMX[50]
TCACT[3]
High
In
Telecommand Active 3
165
SWMX[46]
TCCLK[3]
Rising
In
Telecommand Clock 3
164
SWMX[47]
TCD[3]
-
In
Telecommand Data 3
160
SWMX[51]
TCRFAVL[3]
High
In
Telecommand RF Available 3
153
SWMX[55]
TCACT[4]
High
In
Telecommand Active 4
143
SWMX[57]
TCCLK[4]
Rising
In
Telecommand Clock 4
142
SWMX[58]
TCD[4]
-
In
Telecommand Data 4
144
SWMX[56]
TCRFAVL[4]
High
In
Telecommand RF Available 4
231
SWMX[9]
TMCLKI
Rising
In
Telemetry Clock Input
230
SWMX[10]
TMCLKO
-
High-Z
Out
Telemetry Clock Output
232
SWMX[8]
TMDO
-
High-Z
Out
Telemetry Data Out
GR712RC-DS, Jan 2016, Version 2.3
15
www.cobham.com/gaisler
GR712RC
Table 6. Conflicting interfaces in the I/O switch matrix are marked with an X, with duplicates shown in bold typeface.
-
UART 0
X
X
-
UART 1
-
UART 2
-
UART 3
-
UART 4
-
UART 5
X
-
SpaceWire 0
X
X
-
SpaceWire 1
-
SpaceWire 2
-
X
SpaceWire 3
X
-
SpaceWire 5
X
-
X
-
Ethernet
CAN
X
MIL-STD-1553B
X
X
-
X
X
-
X
X
-
I2C
X
X
X
X
X
X
-
SPI
SLINK
X
ASCS
X
CCSDS TC 0
X
X
X
CCSDS TC 1
X
-
X
X
-
X
X
X
CCSDS TC 2
X
X
X
X
X
-
X
X
-
CCSDS TC 3
X
X
-
16
CCSDS TC 3
CCSDS TC 2
CCSDS TC 1
CCSDS TC 0
ASCS
SLINK
I2C
MIL-STD-1553B
CAN
Ethernet
SpaceWire 5
SpaceWire 4
SpaceWire 3
SpaceWire 2
-
SpaceWire 1
X
SpaceWire 0
UART 3
UART 2
UART 1
UART 0
SDRAM (with RS)
GR712RC-DS, Jan 2016, Version 2.3
X
UART 5
X
CCSDS TM
UART 4
CCSDS TC 4
X
CCSDS TM
X
CCSDS TC 4
SpaceWire 4
X
SPI
SDRAM (with RS)
www.cobham.com/gaisler
GR712RC
2
Electrical characteristics
2.1
Absolute maximum ratings
These values specify the stress that might apply to the device without causing it permanent damage.
Table 7. Absolute maximum ratings 1)
Symbol
2.2
Parameter
Rating
Units
Min.
Max.
VDDIO
DC Supply Voltage for I/O
-0.3
4.2
V
VDD
DC Supply Voltage for Core
-0.3
2.4
V
VIN
Input Voltage
-0.3
VDDIO + 0.3
V
Tstor
Storage Temperature
-65
+150
°C
Tcase
Operating Case Temperature
-55
+125
°C
Tsolder
Lead Temperature (Soldering 10 sec.)
+250
°C
Tj
Junction Temperature
+150
°C
JC (ceramic)
Thermal Resistance, Junction to Case
4
°C/W
PD
Power Dissipation
6.25
W
Note 1:
Extended operation at the maximum levels may degrade the performance and affect the reliability of the
device.
Recommended operating conditions
Table 8. Recommended operating conditions
Symbol
Parameter
Rating
Units
Min.
Typ.
Max.
VDDIO
DC Supply Voltage for I/O
3.0
3.3
3.6
V
VDD
DC Supply Voltage for Core
1.65
1.8
1.95
V
VIN
Input Voltage
0
VDDIO
V
Tcase
Operating Case Temperature
-55
+125
°C
SLIN
Slew rate of all inputs 1)
0.4
Note 1:
Applies only to the range 0.8V and 2.0V.
GR712RC-DS, Jan 2016, Version 2.3
17
V/ns
www.cobham.com/gaisler
GR712RC
2.3
DC electrical performance characteristics
Table 9. DC characteristics (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Symbol
Parameter
Condition
Rating
Min.
VOH
Output High Voltage 1)
IOH = -4 mA 2)
Typ.
Units
Max.
2.4
V
IOH = -6 mA 3)
VOL
Output Low Voltage
0.5
IOL = 4 mA 2)
V
IOL = 6 mA 3)
VIH
Input High Voltage
VIL
Input Low Voltage
IILEAK
Input Leakage Current
IOLEAK
Output Leakage Current
IOS
Short-circuit Output Current
2.0
outputs at
tri-state
V
0.8
V
-30 7)
30 7)
uA
-30 7)
30 7)
uA
120 5)
mA
VO = VDDIO,
VDDIO = 3.6V
VO = 0V,
VDDIO = 3.6V
-120 5)
IDDS
Core Static Current
FCLK = 0 MHz
1
250 8)
mA
IDD
Core Supply Current
FCLK = 100 MHz
0.9
2.0 5)
A
IDDIOS
I/O Static Current 4)
FCLK = 0 MHz
VDDIO = 3.6V
0.2
4 9)
mA
IDDIO
I/O Supply Current 6)
CI/O
I/O Pad Capacitance 5)
Note 1:
Except open-drain outputs ERRORN, WDOGN, I2CSCL and I2CSDA.
Note 2:
All outputs defined with a slow drive capability in the pin assignment table in section 3.2.
Note 3:
All outputs defined with a fast drive capability in the pin assignment table in section 3.2.
Note 4:
All inputs at 0 V or VDDIO. No resistive load.
Note 5:
Supplied as a design limit. Parameter not measured during production test.
Note 6:
The dynamic power consumption of the I/O supply can be calculated as a function of the average frequency and
the capacitive load of each output i: sum of [FI/O * CLOAD](i) * (VDDIO)2
Note 7:
This parameter is degrading with TID radiation. Given value at 300 krad(Si). Leakage current up to 100 krad(Si)
is +/-15 uA.
Note 8:
This parameter is degrading with TID radiation. Given value at 300 krad(Si). Leakage current up to 100 krad(Si)
is 10 mA.
Note 9:
This parameter is degrading with TID radiation. Given value at 300 krad(Si). Leakage current up to 100 krad(Si)
is 2 mA.
GR712RC-DS, Jan 2016, Version 2.3
mA
15
18
pF
www.cobham.com/gaisler
GR712RC
Table 10. Detailed core power consumption (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Test condition
Rating
Units
Typ.
Max. 1)
Static, no clocks or toggling signals
30
50
mW
Standby, all cores clock gated
4
6
mW/MHz
1 processor core active at 50%, remaining IP cores clock gated
7
10
mW/MHz
1 processor core active at 100%, remaining IP cores clock gated
10
15
mW/MHz
2 processor cores active at 100%, remaining IP cores clock gated
15
24
mW/MHz
1 SpaceWire link active @ 100 Mbit/s
1
1.5
mW/MHz
2 CAN interfaces active 100% @ 1 Mbit/s
1
1.5
mW/MHz
0.5
1
mW/MHz
Telemetry encoder active @ 10 Mbit/s
Note 1: Supplied as a design limit. Parameter not measured during production test.
GR712RC-DS, Jan 2016, Version 2.3
19
www.cobham.com/gaisler
GR712RC
2.4
AC electrical performance characteristics
All measured AC parameters have been tested with a 50 pF - 70 pF capacitive load on the outputs.
Transition time measurements have been tested at a voltage level of 1.4 V. Equivalent load chart is
provided in the product specification [PS.]
2.4.1
Clock
The timing waveforms and timing parameters are shown in figure 3 and are defined in table 11.
TINCLK
INCLK
Figure 3. Timing waveforms
Table 11. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference
Min
Max
Unit
TINCLK
input clock period without DLL
INCLK
10
-
ns
FINCLK
input clock frequency without DLL 2)
INCLK
-
100
MHz
TINCLK_HIGH
input clock high phase without DLL 5)
INCLK
4.5
ns
TINCLK_LOW
input clock low phase without DLL 5)
INCLK
4.5
ns
TINCLK
input clock period with DLL 1)
INCLK
20
22 3)
ns
FINCLK
input clock frequency with DLL 1) 2)
INCLK
46 3)
50
MHz
DCINCLK
input frequency duty cycle with DLL
INCLK
35
65
%
TINCLK_HIGH
input clock high phase with DLL 5)
INCLK
7
ns
TINCLK_LOW
input clock low phase with DLL 5)
INCLK
7
ns
TCLK
internal system clock period 4) 5) 6)
-
10
-
ns
FCLK
internal system clock frequency 2) 4) 5) 6)
-
-
100
MHz
Note 1:
For the system clock, the DLL provides a times 2 multiplication of the input frequency.
Note 2:
TINCLK = 1/FINCLK, TCLK = 1/FCLK
Note 3:
Parameter not measured during production test.
Note 4:
Applies to the system clock only (i.e. processor and AMBA clock) only. SpaceWire clocks are discussed in section 2.4.9.
Note 5:
The maximum internal system clock frequency is specified by the parameters TCLK and FCLK.
The parameters TINCLK and FINCLK specify what the clock input pin and the DLL can support, and
not what the internal logic can support.
Note 6:
The internal system clock frequency is limited by the timing of the memory interface towards external
synchronous memory components.
GR712RC-DS, Jan 2016, Version 2.3
20
www.cobham.com/gaisler
GR712RC
2.4.2
Reset and initialization
The timing waveforms and timing parameters are shown in figure 4 and are defined in table 12.
INCLK
RESETN
tRSTGEN0
Figure 4. Timing waveforms
Table 12. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tRSTGEN0
asserted period
-
10
-
TINCLK periods
Note 1:
The RESETN input is re-synchronized internally.
Note 2:
VDD must reach at least minimum operating voltage for tRESTGEN0 before RESETN is de-asserted.
Note 3:
If DLL is used, the internal reset is released 2048 TINCLK periods after RESETN is de-asserted
Note 4:
After power-up all flip-flops, on-chip memory and DLL are in an unknown state before reset.
2.4.3
LEON3 - High-performance SPARC V8 32-bit Processor
The timing waveforms and timing parameters are shown in figure 5 and are defined in table 13.
INCLK
tLEON0
ERRORN
tLEON1
Figure 5. Timing waveforms
Table 13. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tLEON0
clock to output delay
rising INCLK edge
2 1)
23 2)
ns
tLEON1
clock to output tri-state
rising INCLK edge
50 1)
ns
Note 1:
Parameter not measured during production test.
Note 2:
Parameter measured during production test without DLL enabled.
Note 3:
For correct operation, the signal should be pulled-up externally with 1- 10 kOhm. GR712RC does
not include any internal pull-up resistors.
GR712RC-DS, Jan 2016, Version 2.3
21
www.cobham.com/gaisler
GR712RC
2.4.4
Fault tolerant memory controller
The timing waveforms and timing parameters are shown in figure 6 and are defined in table 14.
SDCLK
tFTMCTRL0
ADDRESS[23:0]
RAMSN[1:0]
ROMSN[1:0]
tFTMCTRL1
tFTMCTRL1
tFTMCTRL2
tFTMCTRL2
RAMWEN, WRITEN
tFTMCTRL2
tFTMTRL2
READ
tFTMCTRL3, tFTMCTRL4
DATA[31:0], CB[7:0]
(output)
tFTMCTRL5
SDCLK
ADDRESS[23:0]
RAMSN[1:0]
ROMSN[1:0]
tFTMCTRL6
tFTMCTRL6
RAMOEN, OEN
READ
tFTMCTRL7
DATA[31:0], CB[7:0]
(input)
tFTMCTRL8
tFTMCTRL10
tFTMCTRL9
BRDYN, BEXCN
Figure 6. Timing waveforms - SRAM (0 wait state) access, PROM (0 wait state) access
GR712RC-DS, Jan 2016, Version 2.3
22
www.cobham.com/gaisler
GR712RC
The timing waveforms and timing parameters are shown in figure 7 and are defined in table 14.
SDCLK
tFTMCTRL0
ADDRESS[23:0]
tFTMCTRL1
IOSN
tFTMCTRL1
tFTMCTRL2
tFTMCTRL2
RAMWEN, WRITEN
tFTMCTRL2
tFTMCTRL2
READ
tFTMCTRL3, tFTMCTRL4
DATA[31:0]
(output)
tFTMCTRL5
SDCLK
ADDRESS[23:0]
IOSN
tFTMCTRL6
tFTMCTRL6
OEN
READ
tFTMCTRL7
DATA[31:0]
(input)
tFTMCTRL8
tFTMCTRL10
tFTMCTRL9
BRDYN, BEXCN
Figure 7. Timing waveforms - I/O accesses
GR712RC-DS, Jan 2016, Version 2.3
23
www.cobham.com/gaisler
GR712RC
Table 14. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge 2)
Min
Max
Unit
tFTMCTRL0
address clock to output delay 3)
rising SDCLK edge
0 1)
7.5
ns
tFTMCTRL1
clock to RAMSN[1:0] and
ROMSN[1:0]output delay 3)
rising SDCLK edge
0 1)
7.5
ns
tFTMCTRL1
clock to IOSN output delay 3)
rising SDCLK edge
0 1)
8.5
ns
tFTMCTRL2
clock to output delay
rising SDCLK edge
0 1)
8.5
ns
tFTMCTRL3
clock to data output delay
rising SDCLK edge
0 1)
6.5
ns
tFTMCTRL4
clock to data non-tri-state delay
rising SDCLK edge
0 1)
6.5
ns
tFTMCTRL5
clock to data tri-state delay 4)
rising SDCLK edge
0 1)
6.5 1)
ns
tFTMCTRL6
clock to output delay
rising SDCLK edge
0
1)
8.5
ns
tFTMCTRL7
data input to clock setup
rising SDCLK edge
6.9
-
ns
tFTMCTRL8
data input from clock hold
rising SDCLK edge
-0.5 1)
-
ns
tFTMCTRL9
input to clock setup
rising SDCLK edge
6.9
-
ns
tFTMCTRL10
input from clock hold
rising SDCLK edge
-0.5 1)
-
ns
Note 1:
Parameter not measured during production test.
Note 2:
The specified timing is valid for the default programmable internal clock delay of value 0.
Note 3:
The ADDRESS[23:0] and RAMSN[1:0] signals change in the same clock cycle, which might not be
compatible with all SRAM types. Check your SRAM documentation for compatibility.
Note 4:
GR712RC does not provide internal pull-up resistors on the DATA[31:0] and CB[15:0] buses. In the
case of prolonged periods of idle bus activity in a board design, i.e. high impedance state, it is
advised to add external pull-up resistors.
GR712RC-DS, Jan 2016, Version 2.3
24
www.cobham.com/gaisler
GR712RC
The timing waveforms and timing parameters are shown in figure 8 and are defined in table 15.
SDCLK
SDCASN, SDRASN
SDWEN, SDCSN[1:0]
SDDQM[3:0]
tFTMCTRL11
write
nop
read
nop
nop
term
nop
nop
nop
tFTMCTRL11
ADDRESS[16:2]
tFTMCTRL12
tFTMCTRL14
tFTMCTRL13
DATA[31:0], CB[15:0]
tFTMCTRL15
Figure 8. Timing waveforms - SDRAM accesses
Table 15. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge 2)
tFTMCTRL11
clock to output delay
rising SDCLK edge
1
tFTMCTRL12
clock to data output delay
rising SDCLK edge
tFTMCTRL13
data clock to data tri-state delay
tFTMCTRL14
Min
Max
Unit
6
ns
1 1)
6.5
ns
rising SDCLK edge
1 1)
6.5 1)
ns
data input to clock setup
rising SDCLK edge
6.9
-
ns
tFTMCTRL15
data input from clock hold
rising SDCLK edge
-0.5 1)
-
ns
Note 1:
Parameter not measured during production test.
Note 2:
The specified timing is valid for the default programmable internal clock delay of value 0.
Note 3:
The maximum operating frequency of the GR712RC may be limited due to the timing performance
of external SDRAM devices.
1)
The timing waveforms and timing parameters are shown in figure 9 and are defined in table 16.
TSDCLK0, TSDCLK51
INCLK
SDCLK
Figure 9. Timing waveforms
Table 16. Timing parameters (VDD = 1.65V, VDDIO = 3.0V, Tcase = +125°C) 1)
Name
Parameter
Reference
TSDCLK0
clock to output delay, delay value 0
TSDCLK51
clock to output delay, delay value 51
Note 1:
Production test performed at fixed voltage and temperature without DLL enabled.
GR712RC-DS, Jan 2016, Version 2.3
25
Min
Max
Unit
rising INCLK edge 7
10
ns
rising INCLK edge 16
25
ns
www.cobham.com/gaisler
GR712RC
2.4.5
JTAG Debug Interface
The timing waveforms and timing parameters are shown in figure 10 and are defined in table 17.
tAHBJTAG0
tAHBJTAG1
TCK
tAHBJTAG2
TDI, TMS
tAHBJTAG4
tAHBJTAG3
TDO
Figure 10. Timing waveforms
Table 17. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tAHBJTAG0
clock period
-
100
-
ns
tAHBJTAG1
clock low/high period
-
40
-
ns
tAHBJTAG2
data input to clock setup
rising TCK edge
10 1)
-
ns
tAHBJTAG3
data input from clock hold
rising TCK edge
10 1)
-
ns
tAHBJTAG4
clock to data output delay
falling TCK edge
0 1)
21
ns
Note 1:
Parameter not measured during production test.
Note 2:
For correct operation, all JTAG signals should be pulled-up externally with 1 - 10 kOhm. This is in
line with the TAP specification where TMS and TDI implementation should be such that if an external signal fails (e.g. open circuit) then the behavior of TMS and TDI should be equivalent to a logical 1 input. GR712RC does not include any internal pull-up resistors.
2.4.6
General Purpose Timer Unit
The timing waveforms and timing parameters are shown in figure 11 and are defined in table 18.
INCLK
tGPTIMER0
WDOGN
tGPTIMER1
Figure 11. Timing waveforms
Table 18. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tGPTIMER0
clock to output delay
rising INCLK edge
2 1)
23 2)
ns
tGPTIMER1
clock to output tri-state
rising INCLK edge
50 1)
ns
Note 1:
Parameter is not measured during production test. Defined without DLL enabled.
Note 2:
Parameter measured during production test without DLL enabled.
Note 3:
For correct operation, the signal should be pulled-up externally with 1 - 10 kOhm. GR712RC does
not include any internal pull-up resistors.
Note 4:
WDOGN output is undefined during internal reset when DLL is used to generate the internal system
clock frequency. See section 2.4.2 for detailed timing information on the reset behavior.
GR712RC-DS, Jan 2016, Version 2.3
26
www.cobham.com/gaisler
GR712RC
2.4.7
General Purpose Input Output Port
The timing waveforms and timing parameters are shown in figure 12 and are defined in table 19.
INCLK
GPIO[...]
(output)
tGRGPIO0
tGRGPIO0
tGRGPIO1
tGRGPIO2
GPIO[...]
(output)
GPIO[...]
(input)
tGRGPIO3
tGRGPIO4
Figure 12. Timing waveforms
Table 19. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tGRGPIO0
clock to output delay
rising INCLK edge
2 1)
21 2)
ns
tGRGPIO1
clock to non-tri-state delay
rising INCLK edge
2 1)
21 1)
ns
tGRGPIO2
clock to tri-state delay
rising INCLK edge
50 1)
ns
tGRGPIO3
input to clock hold
rising INCLK edge
-
-
ns 3)
tGRGPIO4
input to clock setup
rising INCLK edge
-
-
ns 3)
Note 1:
Parameter is not measured during production test. Defined without DLL enabled.
Note 2:
Parameter measured during production test without DLL enabled.
Note 3:
The GPIO[...] inputs are re-synchronized to the internal system clock with a TCLK period.
2.4.8
UART Serial Interface
The timing waveforms and timing parameters are shown in figure 13 and are defined in table 20.
INCLK
UART_TX[5:0]
tAPBUART0
UART_RX[5:0]
tAPBUART1
tAPBUART0
tAPBUART2
Figure 13. Timing waveforms
Table 20. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
tAPBUART0
clock to output delay
rising INCLK edge
2
tAPBUART1
input to clock hold
rising INCLK edge
-
-
ns 3)
tAPBUART2
input to clock setup
rising INCLK edge
-
-
ns 3)
Note 1:
Parameter is not measured during production test. Defined without DLL enabled.
Note 2:
Parameter measured during production test without DLL enabled.
Note 3:
The UART_RX[5:0] inputs are re-synchronized to the internal system clock with a TCLK period.
GR712RC-DS, Jan 2016, Version 2.3
27
Min
1)
Max
21
2)
Unit
ns
www.cobham.com/gaisler
GR712RC
2.4.9
SpaceWire Interface
The timing waveforms and timing parameters are shown in figure 14 and are defined in table 21.
TSPWCLK
SPWCLK
tSPW2
tSPW2
SPW_TXD[5:0]
tSPW2
SPW_TXS[5:0]
tSPW3
SPW_TXD[5:0]
SPW_TXS[5:0]
tSPW4, tSPW6
tSPW4, tSPW6
SPW_RXD[5:0]
SPW_RXS[5:0]
tSPW4, tSPW6
tSPW5
SPW_RXD[5:0]
SPW_RXS[5:0]
Figure 14. Timing waveforms
GR712RC-DS, Jan 2016, Version 2.3
28
www.cobham.com/gaisler
GR712RC
Table 21. Timing parameters transmitter (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
TSPWCLK
input clock period without DLL 5)
SPWCLK
10 4)
-
ns
FSPWCLK
input clock frequency without DLL 2)
SPWCLK
-
100 4)
MHz
DCSPWCLK
input frequency duty cycle without DLL 5)
SPWCLK
45
55
%
TSPWCLK
input clock period with DLL x2 1) 6)
SPWCLK
20
22 4)
ns
FSPWCLK
input clock frequency with DLL x2 1) 2)
SPWCLK
45 4)
50
MHz
TSPWCLK
input clock period with DLL x4 1) 6)
SPWCLK
20
22 4)
ns
FSPWCLK
input clock frequency with DLL x4 1) 2)
SPWCLK
45 4)
50
MHz
DCSPWCLK
input frequency duty cycle with DLL
SPWCLK
35 4)
65 4)
%
TSPW
internal transmitter clock period 6)
-
5
500 4)
ns
FSPW
internal transmitter clock frequency 2) 6)
-
2 4)
200
MHz
tSPW2
output data bit period
-
5 4)
500 4)
ns
tSPW3
data & strobe output skew & jitter
-
-
500 4)
ps
tSPW4
input data bit period
-
5 4)
500 4)
ns
tSPW5
data & strobe input skew, jitter & hold
-
-
800 4)
ps
tSPW6
data & strobe edge separation 5)
-
2500 4)
-
ps
Note 1:
For the internal SpaceWire clock, the DLL provides a times 2 or 4 multiplication of the input frequency.
Note 2:
TSPWCLK = 1/FSPWCLK, TSPW = 1/FSPW
Note 3:
N/A
Note 4:
Parameter not measured during production test.
Note 5:
Minimum internal edge separation equals half the internal transmitter clock period. Minimum tSPW6 is
specified at minimum TSPW with 50% duty cycle. External edge separation should not be less than the
sum of tSPW5 + tSPW6.
Note 6:
The maximum SpaceWire clock frequency is specified by the parameters TSPW and FSPW.
The parameters TSPWCLK and FSPWCLK specify what the clock input pin and the DLL can support, and
not what the internal logic can support.
Note 7:
The parameters tSPWn are only valid between signals belonging to one SpaceWire link.
GR712RC-DS, Jan 2016, Version 2.3
29
www.cobham.com/gaisler
GR712RC
2.4.10 Ethernet Media Access Controller (MAC)
The timing waveforms and timing parameters are shown in figure 15 and are defined in table 22.
RMRFCLK
RMTXD[1:0], RMTXEN
tGRETH0
RMRXD[1:0]
tGRETH0
tGRETH1
tGRETH2
Figure 15. Timing waveforms
Table 22. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tGRETHREF
Ethernet reference clock period
any RMRFCLK edge
20 4)
-
ns
tGRETH0
transmitter clock to output delay
rising RMRFCLK edge
2 1)
15
ns
tGRETH1
input to receiver clock hold
rising RMRFCLK edge
2
-
ns
tGRETH2
input to receiver clock setup
rising RMRFCLK edge
4
-
ns
Note 1:
Parameter not measured during production test.
Note 2:
The RMINTN, RMMDIO and RMCRSDV inputs are re-synchronized internally.
Note 3:
The RMMDIO and RMMDC outputs are low speed signals without any timing relationship with the
RMRFCLK clock.
Note 4:
According to Ethernet standard the reference clock RMRFCLK frequency must be 50 MHz +/- 50 ppm.
2.4.11 CAN Interface
The timing waveforms and timing parameters are shown in figure 16 and are defined in table 23.
INCLK
tCAN_OC0
CANTX[A:B]
tCAN_OC2
CANRX[A:B]
tCAN_OC1
Figure 16. Timing waveforms
Table 23. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
21 2)
ns
tCAN_OC0
clock to data output delay
rising INCLK edge
2 1)
tCAN_OC1
data input to clock setup
rising INCLK edge
-
-
ns 3)
tCAN_OC2
data input from clock hold
rising INCLK edge
-
-
ns 3)
Note 1:
Parameter is not measured during production test. Defined without DLL enabled.
Note 2:
Parameter measured during production test without DLL enabled.
Note 3:
The CANRX[A:B] input is re-synchronized to the internal system clock with a TCLK period.
GR712RC-DS, Jan 2016, Version 2.3
30
www.cobham.com/gaisler
GR712RC
2.4.12 Obsolete
Proprietary function not supported.
2.4.13 MIL-STD-1553B BC/RT/BM
The timing waveforms and timing parameters are shown in figure 17 and are defined in table 24.
1553CK
t1553BRM0
1553TXA/TXAN
1553TXB/TXBN
1553TXINHA, 1553TXINHB
1553RXENA, 1553RXENB
1553RXA/RXAN
1553RXB/RXBN
t1553BRM2
t1553BRM1
Figure 17. Timing waveforms
Table 24. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
t1553BRM0
clock to data output delay
rising 1553CK edge
2 1)
21 1)
ns
t1553BRM1
data input to clock setup
rising 1553CK edge
-
-
ns 2)
t1553BRM2
data input from clock hold
rising 1553CK edge
-
-
ns 2)
t1553BRM3
clock frequency
1553CK
16, 20, 24
MHz 3)
Note 1:
Parameter not measured during production test.
Note 2:
The 1553RXA, 1553RXAN, 1553RXB and 1553RXBN inputs are re-synchronized internally.
Note 3:
The core frequency must be lower than the internal system frequency: t1553BRM3 < FCLK
GR712RC-DS, Jan 2016, Version 2.3
31
www.cobham.com/gaisler
GR712RC
2.4.14 I2C-master
The timing waveforms and timing parameters are shown in figure 18 and are defined in table 25.
I2CSCL
(input/output)
tI2C0
I2CSDA
(output)
tI2C1
tI2C3
I2CSDA
(input)
tI2C2
Figure 18. Timing waveforms
Table 25. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tI2C0
data output valid before clock
rising I2CSCL edge
-
scaler 1)
TCLK periods
tI2C1
data output valid after clock
falling I2CSCL edge
scaler 1)
-
TCLK periods
tI2C2
data input setup to clock
rising I2CSCL edge
2 2)
-
TCLK periods
tI2C3
data input hold from clock
falling I2CSCL edge
0 2)
-
TCLK periods
Note 1:
The core’s I2C bus functional timing depends on the core’s scaler value and the internal system clock
TCLK period. When the scaler is set for the core to operate in Fast- or Standard-Mode, the timing characteristics in the I2C-bus specification apply. The maximum TCLK period for proper operation is 50 ns.
Note 2:
The I2CSCL and I2CSDA inputs are re-synchronized to the internal system clock with a TCLK period.
Note 3:
I2CSCL and I2CSDA are open-drain outputs, driving a logical 0 level or tri-state.
Note 4:
For correct operation, the signals should be pulled-up externally with 10 kOhm. GR712RC does not
include any internal pull-up resistors.
2.4.15 SPI controller
The timing waveforms and timing parameters are shown in figure 19 and are defined in table 26.
SPICLK
SPIMOSI
tSPICTRL0
SPIMISO
tSPICTRL1
tSPICTRL0
tSPICTRL2
Figure 19. Timing waveforms
Table 26. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
tSPICTRL0
clock to output delay
driving SPICLK edge
tSPICTRL1
input to clock hold
sampling SPICLK edge 0 2)
-
ns 3)
tSPICTRL2
input to clock setup
sampling SPICLK edge 20 2)
-
ns 3)
Note 1:
The driving and sampling edges of the interface are programmable, and always opposite to each
other.
Note 2:
Parameter not measured during production test.
Note 3:
The SPIMISO input is re-synchronized to the internal system clock with a TCLK period.
GR712RC-DS, Jan 2016, Version 2.3
32
Min
-15
2)
Max
Unit
2)
ns 1)
15
www.cobham.com/gaisler
GR712RC
2.4.16 SLINK Serial Bus Based Real-Time Network Master
The timing waveforms and timing parameters are shown in figure 20 and are defined in table 27.
SLCLK
SLO, SLSYNC
(output)
tSLINK0
SLI
(input)
tSLINK1
tSLINK0
tSLINK2
Figure 20. Timing waveforms
Table 27. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tSLINK0
clock to output delay
rising SLCLK edge
1
-
TCLK periods 1)
tSLINK1
input to clock hold
rising SLCLK edge
0
-
TCLK periods
tSLINK2
input to clock setup
rising SLCLK edge
2
-
TCLK periods
Note 1:
Output timing depends on the ODEL setting in the core’s control register. Outputs will transition
(ODEL+1)*(system clock period) ns after SLCLK rising edge.
2.4.17 ASCS controller
The timing waveforms and timing parameters are shown in figure 21 and are defined in table 28.
tASCS1
A16MCS, A16MAS
tASCS3
tASCS4
tASCS5
A16DCS
tASCS2
A16HS
tASCS0
tASCS6
tASCS7
A16DASA, A16DASB
Figure 21. Timing waveforms
Table 28. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tASCS0
clock period
rising A16HS edge
2
-
TCLK periods 1)
tASCS1
qualifier de-asserted width
-
20
-
TCLK periods 1)
tASCS2
qualifier asserted to clock
rising A16HS edge
8
-
TCLK periods 1)
tASCS3
clock to qualifier de-asserted
falling A16HS edge
2
-
TCLK periods 1)
tASCS4
output data to clock setup
rising A16HS edge
1
-
TCLK periods 1)
tASCS5
output data after clock hold
rising A16HS edge
1
-
TCLK periods 1)
tASCS6
input data to clock setup
rising A16HS edge
2
-
TCLK periods
tASCS7
input data after clock hold
rising A16HS edge
2
-
TCLK periods
Note 1:
The timing of the interface is programmable and is dependable on the tASCS0 clock period.
GR712RC-DS, Jan 2016, Version 2.3
33
www.cobham.com/gaisler
GR712RC
2.4.18 CCSDS / ECSS Telecommand Decoder
The timing waveforms and timing parameters are shown in figure 22 and are defined in table 29.
TCCLK[4:0]
tGRTC0
TCACT[4:0]
TCD[4:0]
TCRFAVL[4:0]
tGRTC1
tGRTC2
tGRTC3
tGRTC4
Figure 22. Timing waveforms
Table 29. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tGRTC0
bit period
rising TCCLK edge
7
-
TCLK periods
tGRTC1
data/active input to clock hold
rising TCCLK edge
3
-
TCLK periods
tGRTC2
data/active input to clock setup
rising TCCLK edge
3
-
TCLK periods
tGRTC3
RF available input to clock hold
rising INCLK edge
-
-
ns 1)
tGRTC4
RF available input to clock setup
rising INCLK edge
-
-
ns 1)
Note 1:
The TCRFAVL[4:0] inputs are re-synchronized to the internal system clock with a TCLK period.
2.4.19 CCSDS / ECSS Telemetry Encoder
The timing waveforms and timing parameters are shown in figure 23 and are defined in table 30.
TMCLKO
TMDO
tGRTM0
TCACT[4:0], TCRFAVL[4:0]
tGRTM1
tGRTM0
tGRTM2
Figure 23. Timing waveforms
Table 30. Timing parameters (VDD = 1.8V +/- 0.15V, VDDIO = 3.3V +/- 0.3V, Tcase = -55°C to +125°C)
Name
Parameter
Reference edge
Min
Max
Unit
tGRTM0
clock to output delay
any TMCLKO edge
-15 3)
15 3)
ns 1)
tGRTM1
input to clock hold
rising INCLK edge
-
-
ns 2)
tGRTM2
input to clock setup
rising INCLK edge
-
-
ns 2)
tGRTM3
input to output delay
TMCLKI to TMCLKO
0 3)
23 3)
ns
tGRTM4
TMCLKI clock period
-
20 3)
Note 1:
The TMDO signal is output simultaneously with the programmable TMCLKO clock edge. The opposite clock edge should be used for sampling TMDO.
Note 2:
The TCACT[4:0] and TCRFAVL[4:0] inputs are re-synchronized to the TCLK period.
Note 3:
Parameter not measured during production test.
GR712RC-DS, Jan 2016, Version 2.3
34
ns
www.cobham.com/gaisler
GR712RC
3
Mechanical description
3.1
Package
Ceramic hermetically sealed CQFP-240L package with 0.5 mm lead pitch, with gold plated leads.
See drawing in section 3.3.
All devices are marked on top lid with GR712RC. For space class marking see the product specification [PS].
Lead trimming and forming are performed by customer prior to assembly on printed circuit board.
3.2
Pin assignment
The pin assignment in table 31 shows the implementation characteristics of each signal, indicating
how each pin has been configured in terms of drive capability, polarity and reset value.
Table 31. Pin assignment
Pin no.
Pin name
Dir.
1
SWMX[3]
In
2
SWMX[2]
Out
Drive
Polarity
Reset value
Slow
-
Note
I/O Switch Matrix 3
High
-
I/O Switch Matrix 2
3
SWMX[1]
In
4
SWMX[0]
Out
Slow
-
High
I/O Switch Matrix 1
I/O Switch Matrix 0
5
CB[6]
In/Out
Slow
-
High-Z
Check Bit 6
6
VDDIO
I/O Supply Voltage
I/O Supply Ground
7
GNDIO
8
CB[5]
In/Out
Slow
-
High-Z
Check Bit 5
9
CB[4]
In/Out
Slow
-
High-Z
Check Bit 4
10
CB[3]
In/Out
Slow
-
High-Z
Check Bit 3
11
CB[2]
In/Out
Slow
-
High-Z
Check Bit 2
12
CB[1]
In/Out
Slow
-
High-Z
Check Bit 1
13
VDD
14
GND
15
CB[0]
In/Out
Slow
-
High-Z
Check Bit 0
16
DATA[31]
In/Out
Slow
-
High-Z
Data Bit 31
17
DATA[30]
In/Out
Slow
-
High-Z
18
VDDIO
2)
Core Supply Voltage
Core Supply Ground
Data Bit 30
I/O Supply Voltage
19
GNDIO
20
DATA[29]
In/Out
Slow
-
High-Z
I/O Supply Ground
Data Bit 29
21
DATA[28]
In/Out
Slow
-
High-Z
Data Bit 28
22
DATA[27]
In/Out
Slow
-
High-Z
Data Bit 27
23
DATA[26]
In/Out
Slow
-
High-Z
Data Bit 26
24
DATA[25]
In/Out
Slow
-
High-Z
Data Bit 25
25
DATA[24]
In/Out
Slow
-
High-Z
Data Bit 24
26
DATA[23]
In/Out
Slow
-
High-Z
Data Bit 23
27
DATA[22]
In/Out
Slow
-
High-Z
28
VDDIO
I/O Supply Voltage
29
GNDIO
I/O Supply Ground
30
VDD
Core Supply Voltage
31
GND
32
DATA[21]
In/Out
Slow
-
High-Z
Data Bit 21
33
DATA[20]
In/Out
Slow
-
High-Z
Data Bit 20
34
DATA[19]
In/Out
Slow
-
High-Z
Data Bit 19
35
DATA[18]
In/Out
Slow
-
High-Z
Data Bit 18
Data Bit 22
Core Supply Ground
GR712RC-DS, Jan 2016, Version 2.3
35
www.cobham.com/gaisler
GR712RC
Table 31. Pin assignment
Pin no.
Pin name
Dir.
Drive
Polarity
Reset value
Note
36
DATA[17]
In/Out
Slow
-
High-Z
Data Bit 17
37
DATA[16]
In/Out
Slow
-
High-Z
38
VDDIO
Data Bit 16
I/O Supply Voltage
39
GNDIO
40
DATA[15]
In/Out
Slow
-
High-Z
I/O Supply Ground
Data Bit 15
41
DATA[14]
In/Out
Slow
-
High-Z
Data Bit 14
42
DATA[13]
In/Out
Slow
-
High-Z
Data Bit 13
43
DATA[12]
In/Out
Slow
-
High-Z
Data Bit 12
44
DATA[11]
In/Out
Slow
-
High-Z
Data Bit 11
45
DATA[10]
In/Out
Slow
-
High-Z
Data Bit 10
46
DATA[9]
In/Out
Slow
-
High-Z
Data Bit 9
47
VDD
48
GND
49
DATA[8]
50
VDDIO
Core Supply Voltage
Core Supply Ground
In/Out
Slow
-
High-Z
Data Bit 8
I/O Supply Voltage
51
GNDIO
52
DATA[7]
In/Out
Slow
-
High-Z
Data Bit 7
53
DATA[6]
In/Out
Slow
-
High-Z
Data Bit 6
54
DATA[5]
In/Out
Slow
-
High-Z
Data Bit 5
55
DATA[4]
In/Out
Slow
-
High-Z
Data Bit 4
56
DATA[3]
In/Out
Slow
-
High-Z
Data Bit 3
57
DATA[2]
In/Out
Slow
-
High-Z
Data Bit 2
58
DATA[1]
In/Out
Slow
-
High-Z
Data Bit 1
59
DATA[0]
In/Out
Slow
-
High-Z
60
VDDIO
61
GNDIO
62
ADDRESS[0]
I/O Supply Ground
Data Bit 0
I/O Supply Voltage
I/O Supply Ground
Out
Slow
-
Low
Address Bit 0
63
ADDRESS[1]
Out
Slow
-
Low
Address Bit 1
64
ADDRESS[2]
Out
Fast
-
Low
Address Bit 2
65
ADDRESS[3]
Out
Fast
-
Low
Address Bit 3
66
VDD
Core Supply Voltage
67
GND
68
ADDRESS[4]
69
VDDIO
I/O Supply Voltage
70
GNDIO
I/O Supply Ground
71
ADDRESS[5]
Out
Fast
-
Low
Address Bit 5
72
ADDRESS[6]
Out
Fast
-
Low
Address Bit 6
73
ADDRESS[7]
Out
Fast
-
Low
Address Bit 7
74
ADDRESS[8]
Out
Fast
-
Low
Address Bit 8
75
VDDIO
76
GNDIO
77
ADDRESS[9]
78
VDD
79
GND
80
ADDRESS[10]
Core Supply Ground
Out
Fast
-
Low
Address Bit 4
I/O Supply Voltage
I/O Supply Ground
Out
Fast
-
Low
Address Bit 9
Core Supply Voltage
Core Supply Ground
Out
Fast
-
Low
Address Bit 10
81
ADDRESS[11]
Out
Fast
-
Low
Address Bit 11
82
ADDRESS[12]
Out
Fast
-
Low
Address Bit 12
83
VDDIO
84
GNDIO
85
ADDRESS[23]
Out
Slow
-
Low
Address Bit 23
86
ADDRESS[13]
Out
Fast
-
Low
Address Bit 13
I/O Supply Voltage
I/O Supply Ground
GR712RC-DS, Jan 2016, Version 2.3
36
www.cobham.com/gaisler
GR712RC
Table 31. Pin assignment
Pin no.
Pin name
Dir.
Drive
Polarity
Reset value
Note
87
ADDRESS[22]
Out
Slow
-
Low
Address Bit 22
88
ADDRESS[21]
Out
Slow
-
Low
Address Bit 21
89
ADDRESS[14]
Out
Fast
-
Low
Address Bit 14
90
VDD
91
GND
92
ADDRESS[20]
93
VDDIO
Core Supply Voltage
Core Supply Ground
Out
Slow
-
Low
Address Bit 20
I/O Supply Voltage
94
GNDIO
95
ADDRESS[19]
Out
Slow
-
Low
Address Bit 19
I/O Supply Ground
96
ADDRESS[15]
Out
Fast
-
Low
Address Bit 15
97
ADDRESS[18]
Out
Slow
-
Low
Address Bit 18
98
ADDRESS[16]
Out
Fast
-
Low
Address Bit 16
99
ADDRESS[17]
Out
Slow
-
Low
Address Bit 17
100
SCANEN
In
101
ROMSN[0]
Out
102
VDD
Core Supply Voltage
103
GND
Core Supply Ground
104
VDDIO
I/O Supply Voltage
105
GNDIO
I/O Supply Ground
106
ROMSN[1]
Out
Slow
Low
High
PROM Select 1
107
WRITEN
Out
Slow
Low
High
Write Strobe for PROM, I/O
108
IOSN
Out
Slow
Low
High
I/O Select
109
RAMSN[0]
Out
Slow
Low
High
SRAM Select 0
110
RAMSN[1]
Out
Slow
Low
High
SRAM Select 1
111
RAMOEN
Out
Slow
Low
High
SRAM Output Enable
112
RAMWEN
Out
Slow
Low
High
113
BRDYN
In
114
VDD
Core Supply Voltage
115
GND
Core Supply Ground
116
VDDIO
I/O Supply Voltage
117
GNDIO
I/O Supply Ground
High
Slow
Low
Scan enable (tie to ground)
High
Low
PROM Select 0
SRAM Write Enable
Bus Ready
118
BEXCN
In
119
WDOGN
Out
Slow
Low
120
READ
Out
Slow
121
TDI
In
-
Jtag Test Data In
122
TCK
In
-
Jtag Test Clock
123
TMS
In
High
124
TDO
Out
125
TESTEN
In
126
OEN
Out
Slow
Low
High
Output Enable for PROM, I/O
127
SWMX[66]
In/Out
Slow
-
High-Z
I/O Switch Matrix 66
128
SWMX[65]
In/Out
Slow
-
High-Z
I/O Switch Matrix 65
129
SWMX[64]
In/Out
Slow
-
High-Z
I/O Switch Matrix 64
130
VDDIO
131
GNDIO
132
SWMX[63]
133
VDD
Slow
Bus Exception
Low
High-Z
High
High
-
Watchdog Indicator (output is driven active low, else it
is in tri-state and therefore requires external pull-up)
SRAM, PROM, I/O read indicator
Jtag Test Mode Select
Low
High
Jtag Test Data Out
Test Enable (tie to ground)
I/O Supply Voltage
I/O Supply Ground
In/Out
Slow
-
High-Z
I/O Switch Matrix 63
Core Supply Voltage
134
GND
135
SWMX[62]
In/Out
Slow
-
High-Z
I/O Switch Matrix 62
Core Supply Ground
136
SWMX[61]
In/Out
Slow
-
High-Z
I/O Switch Matrix 61
137
SWMX[60]
In/Out
Slow
-
High-Z
I/O Switch Matrix 60
GR712RC-DS, Jan 2016, Version 2.3
37
www.cobham.com/gaisler
GR712RC
Table 31. Pin assignment
Pin no.
Pin name
138
VDDIO
Dir.
Drive
Polarity
Reset value
Note
139
GNDIO
140
SWMX[59]
141
CB[7]
In/Out
Slow
-
High-Z
Check Bit 7
142
SWMX[58]
In/Out
Slow
-
High-Z
I/O Switch Matrix 58
143
SWMX[57]
In/Out
Slow
-
High-Z
I/O Switch Matrix 57
144
SWMX[56]
In
145
RESETN
In
146
ERRORN
Out
147
DLLBPN
In
Low
DLL Bypass
148
INCLK
In
-
Input Clock
I/O Supply Voltage
I/O Supply Ground
In/Out
Slow
-
High-Z
-
I/O Switch Matrix 56
Low
Slow
Low
I/O Switch Matrix 59
System Reset
High-Z
Processor Error Mode (output is driven active low, else
it is in tri-state and therefore requires external pull-up).
See a more detailed description of LEON3 integer unit
exceptions in the section named “Exceptions” in [UM]
149
VDDIO
I/O Supply Voltage
150
VDD
Core Supply Voltage
151
GND
Core Supply Ground
152
GNDIO
I/O Supply Ground
153
SWMX[55]
In
154
SWMX[54]
In/Out
Fast
-
High-Z
I/O Switch Matrix 55
I/O Switch Matrix 54
155
SWMX[53]
In/Out
Fast
-
High-Z
I/O Switch Matrix 53
156
SDCLK
Out
Fast
-
-
SDRAM Clock
157
SWMX[52]
In/Out
Fast
-
High-Z
I/O Switch Matrix 52
158
VDDIO
159
GNDIO
160
SWMX[51]
I/O Supply Voltage
I/O Supply Ground
In
-
I/O Switch Matrix 51
161
SWMX[50]
In
162
SWMX[49]
In/Out
Fast
-
High-Z
163
SWMX[48]
In/Out
Fast
-
High-Z
164
SWMX[47]
In
165
SWMX[46]
In
166
SWMX[45]
In/Out
167
VDD
168
GND
169
SWMX[44]
170
VDDIO
171
GNDIO
172
SWMX[43]
-
I/O Switch Matrix 50
-
-
I/O Switch Matrix 48
I/O Switch Matrix 47
Slow
I/O Switch Matrix 49
I/O Switch Matrix 46
High-Z
I/O Switch Matrix 45 1)
Core Supply Voltage
Core Supply Ground
In/Out
Slow
-
High-Z
I/O Switch Matrix 44
I/O Supply Voltage
I/O Supply Ground
In/Out
Slow
-
High-Z
I/O Switch Matrix 43 1)
173
SWMX[42]
In
174
SWMX[41]
In/Out
Slow
-
High-Z
I/O Switch Matrix 41
175
SWMX[40]
In/Out
Slow
-
High-Z
I/O Switch Matrix 40 1)
176
SWMX[39]
In
-
177
SWMX[38]
In
-
178
SWMX[37]
In/Out
Slow
-
High-Z
I/O Switch Matrix 37 1)
179
SWMX[36]
In/Out
Slow
-
High-Z
I/O Switch Matrix 36
180
VDDIO
I/O Supply Voltage
181
GNDIO
I/O Supply Ground
182
SWMX[35]
In
-
183
SWMX[34]
In
-
184
SWMX[33]
In/Out
Slow
-
High-Z
I/O Switch Matrix 33
185
SWMX[32]
In/Out
Slow
-
High-Z
I/O Switch Matrix 32
186
VDD
GR712RC-DS, Jan 2016, Version 2.3
-
I/O Switch Matrix 42
I/O Switch Matrix 39
I/O Switch Matrix 38
I/O Switch Matrix 35
I/O Switch Matrix 34
Core Supply Voltage
38
www.cobham.com/gaisler
GR712RC
Table 31. Pin assignment
Pin no.
Pin name
187
GND
Dir.
Drive
Polarity
Reset value
Note
188
SWMX[31]
In
-
I/O Switch Matrix 31
189
SWMX[30]
In
-
I/O Switch Matrix 30
190
SWMX[29]
In/Out
Slow
-
High-Z
I/O Switch Matrix 29
191
SWMX[28]
In/Out
Slow
-
High-Z
I/O Switch Matrix 28
192
SWMX[27]
In
-
I/O Switch Matrix 27
193
SWMX[26]
In
-
I/O Switch Matrix 26
194
VDDIO
195
GNDIO
196
SWMX[25]
In/Out
Fast
-
High-Z
I/O Switch Matrix 25
197
SWMX[24]
In/Out
Fast
-
High-Z
I/O Switch Matrix 24
198
VDD
199
GND
200
SWMX[23]
In
-
I/O Switch Matrix 23
201
SWMX[22]
In
-
I/O Switch Matrix 22
202
SWMX[21]
In/Out
Fast
-
High-Z
I/O Switch Matrix 21
203
SWMX[20]
In/Out
Fast
-
High-Z
I/O Switch Matrix 20
204
SPW_RXD[1]
-
SpaceWire Receive Data 1
205
SPW_RXS[1]
-
SpaceWire Receive Strobe 1
206
SPW_TXD[1]
207
VDDIO
208
GNDIO
209
SPW_TXS[1]
Core Supply Ground
I/O Supply Voltage
I/O Supply Ground
Core Supply Voltage
Core Supply Ground
Out
Fast
-
Low
SpaceWire Transmit Data 1
I/O Supply Voltage
I/O Supply Ground
Out
Fast
-
Low
SpaceWire Transmit Strobe 1
210
VDD
211
GND
Core Supply Voltage
212
SPWCLK
In
-
SpaceWire Receiver and Transmitter Clock
213
SPW_RXD[0]
In
-
SpaceWire Receive Data 0
Core Supply Ground
214
SPW_RXS[0]
In
215
SPW_TXD[0]
Out
Fast
-
216
SPW_TXS[0]
Out
217
SWMX[19]
In
SpaceWire Receive Strobe 0
-
Low
Fast
-
Low
Slow
-
SpaceWire Transmit Data 0
SpaceWire Transmit Strobe 0
I/O Switch Matrix 19
218
SWMX[18]
In
219
SWMX[17]
In/Out
Fast
-
High-Z
I/O Switch Matrix 17
220
SWMX[16]
In/Out
Fast
-
High-Z
I/O Switch Matrix 16
221
VDDIO
I/O Supply Voltage
222
VDD
Core Supply Voltage
GR712RC-DS, Jan 2016, Version 2.3
-
39
I/O Switch Matrix 18
www.cobham.com/gaisler
GR712RC
Table 31. Pin assignment
Pin no.
Pin name
223
GND
224
GNDIO
225
SWMX[15]
Dir.
Drive
Polarity
Reset value
Note
Core Supply Ground
I/O Supply Ground
In
-
I/O Switch Matrix 15
226
SWMX[14]
In
227
SWMX[13]
In/Out
Fast
-
High-Z
228
SWMX[12]
In/Out
Fast
-
High-Z
229
SWMX[11]
In
230
SWMX[10]
In/Out
231
SWMX[9]
In
232
SWMX[8]
In/Out
233
SWMX[7]
In
234
VDD
Core Supply Voltage
235
GND
Core Supply Ground
236
VDDIO
I/O Supply Voltage
237
GNDIO
I/O Supply Ground
238
SWMX[6]
In/Out
239
SWMX[5]
In
240
SWMX[4]
In/Out
Note 1:
See tables 3 and 5 for detailed description of behavior at reset.
Note 2:
GNDIO is connected internally to GND.
GR712RC-DS, Jan 2016, Version 2.3
-
I/O Switch Matrix 14
Slow
-
-
High-Z
I/O Switch Matrix 10
High-Z
I/O Switch Matrix 08
I/O Switch Matrix 09
-
Slow
-
I/O Switch Matrix 07
High-Z
Slow
-
40
I/O Switch Matrix 12
I/O Switch Matrix 11
Slow
I/O Switch Matrix 13
I/O Switch Matrix 06 1)
I/O Switch Matrix 05
High-Z
I/O Switch Matrix 04 1)
www.cobham.com/gaisler
GR712RC
3.3
Mechanical package drawings
GND
GND
VDD
VDD
GND
GND
VDDIO
VDDIO
Figure 24. Top view
Table 32. Dimensions
Millimeters
Min.
Max.
A
Total height
---
3.50
A1
Body height
---
2.75
0.10
0.40
A2
b
Lead width
0.15
0.25
c
Lead height
0.10
0.20
D/E
74.80
75.40
D1/E1
55.44
56.56
D2/E2
31.75
32.25
D3/E3
29.50 BSC
D4/E4
21.00 TYP
e
Lead pitch
0.50 BSC
L1
16.50 TYP
Note 1: The seal ring and the lid are connected to GND.
Note 2: Package weight is 16 +/-1 grams, including the lead-frame.
GR712RC-DS, Jan 2016, Version 2.3
41
www.cobham.com/gaisler
GR712RC
Figure 25. Capacitor pads on top of package (mm)
GR712RC-DS, Jan 2016, Version 2.3
42
www.cobham.com/gaisler
GR712RC
4
Reference documents
[UM]
GR712RC Dual-Core LEON3-FT SPARC V8 Processor - User's Manual, Cobham
Gaisler, www.cobham.com/gaisler
[PS]
Product Specification GR712RC, GR712RC-PS, Cobham Gaisler
[SPARC]
The SPARC Architecture Manual, Version 8, Revision SAV080SI9308, SPARC 
International Inc.
[SPW]
ECSS - Space Engineering, SpaceWire - Links, Nodes, Routers and Networks, 
ECSS-E-ST-50-12C, 31 July 2008
[RMAPID]
ECSS - Space Engineering, SpaceWire Protocol Identification, ECSS-E-ST-50-51C,
February 2010
[RMAP]
ECSS - Space Engineering, Remote Memory Access Protocol, ECSS-E-ST-50-52C,
February 2010
[1553BRM]
Core1553BRM Product Handbook, 50200040-0/11-04, November 2004, Actel Corporation
Core1553BRM MIL-STD-1553 BC, RT, and MT, 51700052-4/12.05, v 5.0, 
December 2005, Actel Corporation
Core1553BRM User's Guide, 50200023-0/06.04, June 2004, Actel Corporation
Core1553BRM v2.16 Release Notes, 51300019-8/6.06, June 2006, Actel Corporation
[MIL883]
Test Method Standard, Microcircuits, revision H, 26 February 2010, MIL-STD-883H
[MIL38535] Integrated Circuits (Microcircuits) Manufacturing, General Specification For, revision
J, 28 December 2010, MIL-PRF-38535J
GR712RC-DS, Jan 2016, Version 2.3
43
www.cobham.com/gaisler
GR712RC
5
Screening, qualification, and quality control
GR712RC is provided as a high reliability product for space, for which space level screening and
qualifications tests are performed in accordance to the product specification [PS].
A Certificate of Compliance is delivered with space grade parts.
A procurement specification is provided for space grade parts.
GR712RC is also provided in prototype grade in military or commercial temperature range.
6
Ordering information
Ordering information is provided in table 33 and a legend is provided in table 34.
Table 33. Ordering information, available models
Product
Description
GR712RC-MS-CQ240
Flight model
GR712RC-MP-CQ240
Electrical qualification model
GR712RC-CP-CQ240
Engineering model (prototype)
Note: The -CQ240 affix was previously -CG240. There is however no change to the package. The product and qualification
state is the same.
Table 34. Ordering legend
Designator
Option
Description
Product
GR712RC
Dual-core LEON3-FT SPARC V8 Processor
Temperature Range
M
-55°C to +125°C (Military range)
C
0°C to +70°C (Commercial range)
S
Space grade
P
Prototype grade
Package Type
CQ
Ceramic Quad Flat Pack (CQFP) 1)
Lead Count
240
Number of leads
Screening Level
Note 1: Gold lead finish
7
Change record
Change record information is provided in table 35.
Table 35. Change record
Issue
Date
Sections
Note
2.3
2016 Jan
None
Updated text in footer. No other changes. Change bars preserved from version 2.2.
2.2
2015 Nov
1.2
Maximum size and bank size for PROM, SRAM and SDRAM
3.2
Point to ERRORN description in [UM]
GR712RC-DS, Jan 2016, Version 2.3
44
www.cobham.com/gaisler
GR712RC
Table 35. Change record
Issue
Date
2.1
2014 June
Sections
Note
1.2
Key features: TID up to 300 krad(Si)
2.3
Updated DC electrical performance characteristics
2.4.4
Table 16 note 1 updated
2.4.6
Table 18 note 1 updated
2.4.7
Table 19 note 1 updated
2.4.8
Table 20 note 1 updated
2.4.11
Table 23 note 1 and parameter note updated
3.2
Max load changed to drive capability in Table 31
OEN pin output drive capability specified
2.0
3.3
Table 32 note 1 updated
6
Part numbering updated with new affix for the package identification
2013 February 1.2
Key features updated
1.4
Signal descriptions clarified
2.1
Absolute maximum ratings updated
2.2
Recommended operating conditions updated
2.3
DC parameters updated
2.4
AC parameter test conditions clarified
2.4.1, 2.4.3, 2.4.4, 2.4.5, 2.4.6, Updated timing
2.4.7, 2.4.8, 2.4.9, 2.4.10,

2.4.11, 2.4.13, 2.4.15, 2.4.19
1.5, 2.4.12
Obsolete proprietary function removed
3.1
Package marking clarified
3.2
GNDIO connection to GND clarified
3.3
Weight information added
4
Reference to product specification added
1.5
2012 May
1.5
The following conflicts added to table:
CCSDS TC 0 vs. Proprietary
CCSDS TC 0 vs. ASCS
CCSDS TC 1 vs. Proprietary
CCSDS TC 1 vs. Ethernet
CCSDS TC 2 vs. Ethernet
Proprietary vs. SpaceWire 2
1.4
2012 January
2.4.5
TCK edges in JTAG waveform & timing parameters corrected
1.3
2011 March
1.2, 2
4, 5
Table 6
Timing parameters redefined
Qualification level specified
Conflict between SLINK and CCSDS TC 3 clarified
1.2
2011 August
2.3
Added detailed core power consumption
1.1
2011 February Tables 3 and 5
Tables 3, 4 and 19, figure 19
Table 31
SDDQM signals marked as active high
GPIO1/GPIO2 names changed to GPIO
Reference added regarding behavior at reset
1.0
2011 February All
New document layout
All pin descriptions, reset values etc. updated
GR712RC-DS, Jan 2016, Version 2.3
45
www.cobham.com/gaisler
GR712RC
Cobham Gaisler AB
Kungsgatan 12
411 19 Göteborg
Sweden
www.cobham.com/gaisler
[email protected]
T: +46 31 7758650
F: +46 31 421407
Cobham Gaisler AB, reserves the right to make changes to any products and services described herein at any
time without notice. Consult Cobham or an authorized sales representative to verify that the information in
this document is current before using this product. Cobham does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed to
in writing by Cobham; nor does the purchase, lease, or use of a product or service from Cobham convey a
license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Cobham
or of third parties. All information is provided as is. There is no warranty that it is correct or suitable for any
purpose, neither implicit nor explicit.
Copyright © 2016 Cobham Gaisler AB
GR712RC-DS, Jan 2016, Version 2.3
46 of 46
www.cobham.com/gaisler